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I. INTRODUCTION

A. Background

Factor analysis is a frequently used model building technique,

especially in sciences where a large number of variables need to be

studied. Unfortunately, little work has been done on ways of testing the

goodness of fit of the model to the data. Several techniques for testing

this goodness of fit have been evaluated in this investigation. In

addition, these techniques were used to evaluate the maximum likelihood

estimation procedure as a factor analytic method.

For many years, factor analysis has been used as a research tool for

finding the major or meaningful influences on a set of variables. Many

different methods for finding these influences (or factors) have been

proposed and used (Harman, 1967), but most are strictly non-inferential

in nature. That is, they treat the observed correlations as though they

are population values, and the resulting factor loadings are calculated

directly from the sample correlations. Thus, the statistical problems

of the sampling of individuals are ignored, and results are usually

considered as though they are population values. On the other" hand, the

method of maximun-likelihood estimation prov: - st,,tistical procedure

for the estimation of the par-meters of the 'actor analytic model, bused

on the assunption that the original variables follow a multivarlate

normal distribution.

The basic assumption of factor analysis is that

x =Af + w + e

where x is a random vector of' p variables, f is a random vqector of' m < p

common factor scores, e is a random vector of ;, uniquenesses, A i.- a F x m
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matrix of factor loadings, and p is a p vector of means. It is further

2
assumed that E(f) = 0, E(e) = 0, E(ff') = I, E(ee') = D and E(fe') = 0.

This model is usually written

P = AA' + D2

where P is the correlation matrix. Here, x is assumed to be multivariate

normal and the rows of A are proportional to the rows of A as Lawley (1940)

has shown that the results are independent of the scale of measurement.

B. Algebraic Methods of Factor Analysis

The principal axis method of factor analysis, developed by Hotelling

(1933), is today probably the most commonly used factor analytic technique.

Its basic objective is to determine factors which account for the maximum

amount of variance of the observed variables. The first factor is that

linear combination of the original variables which accounts for maximum

variance. Each subsequent factor nccounts for a maximum amount of the

remaining variance, while remaining uncorrelated -ith all previous factors.

Thus, the factos are derived by an algebraic rule fro= the simple

correlation~s, and ean be strongly in'luence.- by zinmpling variability.

The factora are deteri..ined by the matrix equation A 0 V A where V

contains the nommalized eigenve-tor-s of the amnple correlation zatrix as

columns, and A it; a :la onal •atrix containi-ing the eigenvalues, i.e.,

* R=VAV'.

Minres (minkimu= residual) factor analyrs.•i %Nartm•-) and Jones, 196,6)

is another algebraic approach to the prohblen of obtAinirx factors. Its

aim is the best possible reproduction of the o,,erved correlations, where

best is defined in terms of a least squarei.s fit. Thus the factor matrlx A

is determined such that the su= of squares cf the off diagonal elenents

of R - AA' iz- minimized.



C. Maximum Likelihood Factor Analysis

In contrast to the algebraic techniques mentioned previously, the

method of maximum-likelihood estimation requires the writing down of

the density function of the observations, given the population parameters.

Then the sample values are considered as fixed, and the parameters are

considered as the variables. T.-' resulting function, called the likelihood

function, is then maximized with respect to the parameters. The values

of the parameters which maximize the likelihood function are termed the

maximum-likelihood estimates of the population parameters (Lehmann, 1959).

The possibility of the use of the maximum-likelihood method for the

estimation of factor loadings has exister for at least thirty years

(Lawley, 1940). The method has always required an iterative procedure

with a large number of calculations to be performed on each iteration.

Thus it seemed natural that the development of computers would encourage

the wse or the method, but Lawley and M4axwell (1963) reported that In some

cases conver•ence of the likelihood f'unction to its maximum was a very

uroceea or might not even be attained, unless good initial estimates

for the factor loadit p were used.

J4re•kag (1967 a and b) has develop"e a new .omputatlonal method which

has the Advantwe that the iteratlve proceduroe alwnys convergees. In other

ppers, J.reo:kog (1969, 1970) has extended the m•xit•u-llkelihocnid cstmtio,

ethoid to cover a wide variety of nodels, inchline factor analy-tic ones.

In conj.unction with these efforts, Jiresko., •ruvaeus, w.i van 'A"hillo (1970)

hmve developed a general coputer progran to calcullte mnxirum-likelihood

e.tinate.z. Tho mxi==--ikelihood estimMation proceeaure also provi.es L,

Igkelihc'od-ratio test of the number of' factorv, n,. this test has been made

availaible in their general cc~pwter proeirV.
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In applying the method of maximum likelihood to the general factor

analytic model (P = AA' + D 2), one writes the log of the likelihood function,

omitting a function solely of the observations (Lawley and Maxwell, 1963)

loge L = og IP + tr(Rp-)1

where R is a sample correlation matrix based on a sample of size n + 1.

This expression is then maximized with respect to the elements of the

matrices A and D, to obtain a maximum-likelihood solution.

Since the method of maximum-likelihood estimation is an established

statistical procedure, it is desirable to see how well it does in practice.

Browne (1968) has already shown that maximum-likelihood estimates are

preferable to many other types when dealing with sample correlation

matrices drawn from populations which exactly satisfy the factor analytic

model, but it remains to be seen how well it will work with data more

like real data.

D. The Tucker, Koopman, and Linn Study

Tucker, Koopman, and Linn (1969) generated 54 population correlation

matrices in order to study factor analytic methods. One of their simulated

correlation matrices was defined by

R = BIPIB1 + B2P2B2 + B3P3B3

where B1 , B,, and B3 were diagonal matrices with real positive diagonal

3ielements bWj b~j and bj (j = 1, 2,...,p, the number of varilables),
2

respectively. Since blj was the proportion of variance of variable J

due to the major factors, b2' the proportion due to the minor factors, and

2 the proportion due to the unique factors they had:

2' 2b 2bb lj + b 2j + b 31 i.
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Thus, bl2 + b 2 equaled the communality (common va..iance) of variable J.

Three different relationships between these coefficients defined the three

tyres of population matrices used by Tucker et al. Correlation matrices

with bj = 0 and b. = (1 - b 2) exactly fitted the mathematical factor
2 3t

2analytic model (common factors + uniquenesses). With b = 0 and
302

b (1 - b-), the correlation matrices constituted the simulation
2j

model, as 17 contained the accumulated effect of 180 minor factors.

It was hoped that these simulation matrices would approximate real data

population-cnrrelation matrices which could be thought of as arising from

a few major and many minor influences. They also employed a third model

whi~ch contained influences of both minor factors and uniquenesses. For

2 2 1 - b2
this middle mý,Ael, they had b2j = b3j = S2

A-1 correlation matrices contained 20 variables. Each P matrix
s

(s 1,2,3) was constructed from the relationship P = A* A*' where
s s s

A* was obtained by ad.justing the rows of A to be of unit length.s s

The A, matrices were generated by random: processes and contained

eithe.- thrcee or seven columns, representing the nu.m.ber of major factors

in ea-,h ccrrelation matrix. The A2 matrices were generated by another

random nrocess so that the effect of P2 was -;s though there were 180 minor

facto-rs in it. P3 was an identity matrix, as the factor analytic model

aZsumes a unique factor for each variable, and that these unique factors

are uncorrelated. Tucker et a! also used three levels of entries in the

B 1ntrice• ; hi (.6, .7, .8), wide (.2, .3, .4, .5, .6, .7, .8), and low

(.2, .3, .4•). Thus their design was three (models) x two (number of major

"-actor') x three (levels of B1 coefficients), and they generated three

cufLrelption matrices for each of the eighteen cells. Tucker, Koopman,

anrd1 L:inn wure interested in comparing several factor analytic techniques,

3est Avai!e CoPy
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but the data they generated are useful for studying any procedures

related to factor analysis.

In the Tucker, Koopman, and Linn (1969) study, the authors used

a random process to generate conceptual input factor loadings A for the

major factor domain. They combined these with random normal deviates,

applied a skewing function, and multiplied by the matrices B1 , in order

to get to actual input factor loadings A. (A, = B A* where A* A*' =P )

The authors used joint rotations of actual input factors with output

factors, and also rotations of output factors only, to assess the degree

to which actual input factors were found on output. Thus there were two

methods of comparison used, and each resulted in a separate index (coeffi-

cient of congruence) for each actual input factor.

Although the raw data of the Tuhcker, Koopman, and Linn study consisted

of population-correlation matrices and not samples, some of their results;

can serve as standards for some of the results of the current study. In

general, the reproduction of" the actual input factors in the output factors

was very -ood "or the formal model, and poorer for the simulation model.

The reproduction wus good with a high level of b and poorer for a low

level. Thirdly, results were better for Three factor.: than for seven.

Finally. the combination of simuiation model, low b',, and seven factors

prcduced extremely 1xor results. Thence resulto led Tucker et al to conclude

that the quality of factor analytic results depended heavily on the design

and conduct of the study.

E. Ocoones of Fi

The get of factor analytic methods can be divided into two parts:

exploratory methods which are used in early "nveatigations in an area,

with the purpose of reducing a large rumber of variables to a s=Mller
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number of -,factors when the investigator has no a priori hypotheses as to

the composition of the factors; and confirmatory methods which are used

by investigators with specifiable hypotheses about the factors. The

present study considers confirmatory factor analysis only, and a major

interest is in the discovery or development of a measure which would

reflect the degree of fit of the final solution to the specified

hypothesis. It is possible to test this hypothesis via the likelihood-

ratio technique, and although the distribution of the likelihood-ratio
1 

2
statistichas not-been tabled, it is distributed approximately as a X

in laroe samples (Lawley and Maxwell, 1963). Unfortunately, this test

sets up the hypothesis as a null hypothesis, and as the sample size

increases, it is more likely to be rejected, as no hypothesis is exactly

true. Thus, this test is of little use to many researchers who are

interested in how well their data agree with their model, fully realizing

that the1i- -.odel cannot be exactly true in the popuilation. Therefore Vhat

is needed is a measure to assess the goodness of fit of the model to the

data. Thus, the problem in this study is different from the one considered

by Tucker, Koopman, and Linn as they were interested in factor matching, while

here, the aim is to have one index to-measure the total goodness of fit.

Tucker (personal communication) has suggested a measure

2
(X- - 1)df

Pim 2

OLdf 
0

where X d.f. is the chi-square approximate sest criterion for tlie

likelihood-ratio test statistic divided by its degrees of freedom, taken

after --,ero factors-anrl after m factors have been extracted. This mea.-,ure

tl^'ble COPYBe, st Ava, 1" E,
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is analogous to a percent of variance accounted for by the model, as the

2
expected value of a X random variable divided by itg degrees of freedom

is one. More recently, Tucker and Lewis (1970) have developed a second

relliabiiity coefficient,

M -M
- 0 m

M--
0 nt

m

where n' 6N i- (2p + 5) - 2m, p= number of variables, M F ,dfm m m A

F = minimum vAlue of F (A, D) log JPJ + tr(RP log JR - P
in M. = Oe e rB -lg R
(J~reskog, 1967b) for m factors, and df = degrees of freedom for m factors.

It was hoped that this coefficient would be independent of the sample size

and would provide •an estimate of the goodness of fiti of the factor

analytic model in the population. Tucker and Lewis calculated o2 for the

nu- ber of major factors for some of the population-correlation matrices

of Tucker, Kooplnan, and Linn. These values (Table 3) can serve as targets

for the current study. These two measures (im and. 0.m) are similar (as
-_an be ieee by substituting = n' F in o1), but not identical. It

oan ~~ be but no detca.I

is hoped that .nie or both of them tre good indicators of goodness of fit

* for Lnxinwiu-likelihood factor analysis.

'.:.. 4-fi~fr. ~--...
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Table 1

Values of P Obtained by Tucker and Lewis from Eight. of the Tucker,

Koopmanl, and Linn Population Correlation Matrices (N , p = 20).

3 Factors in MaJori Domain, Reliabilities for 3 Common Factor Models

Formal Model Simulation Model
2

high b 1.00 .83

low b'.5
ij 1.00 .55

7 Factors in Major Doma-,.n, Reliabilities for 7 Common Factor Models

Formal Model Simulation Model

2high 2 1.00 .71

* 11'. •.2 1.00 " .48

Another possible measure of goodness of fit is the sum of squares of

differences between the correlations implied by the model and those

reproduced by the actual output factors. Browne (1968) suggested this

measure of goodness of fit:

p i- Z z [4' - AA•'I
i=l J=l i

where A is the sample factor matrix, ý is the population factor matrix,

and p is the number of variableR. Of course, another possibility is to

exclude the diagonal elements. This would emphasize reproduct'ion of thQ

correlations, while ignoring the communalities:

p i-il,

SZ [ -(0]'AA'iJ
2 i=2 J=l



10

Both measures were scaled by the total sum of squares in order to produce

coefficients, r1 and r 2 , with upper limits of 1.00. In mcst cases they

should vary between zero and one.

rI l - P 1

Z1 Z [44,2

i=l J=l iJ

r~ c 2
r 2 =1- p i-l

SZ Z. [011]ij2
i=2 J=l

These measures (ci, c2 , r1 , r 2 ) are all invariant under orthogonal rotation

of the sample factor matrix A, and of the hypothesis factor matrix 4).

All six measures (including p1 and 02) were obtained for all 96 sample

correlation matrices.
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II. bETHOD

A. Data Used

Due to limitations on computer time, it was necessary to use only

some of the population correlation matrices from the Tucker, Koopman, and

Linn study. In order to preserve the effects due to the independent vari-

ables used in generating those matrices, it was decided to randomly select

ene matrix from each of eight cells in their design. The eight cells were

created by using two levels of each of the three independent variables used

by Tucker et al; i.e. model (formal vs simulation), level of B1 (high vs low),

and numl:na of factors in the major domain (3 vs 7). The eight matrices used

are identified in mabie 2. The level of battery (1, 2, or 3) was used by

Tuck(--, &oopman, and Lirn to designat3 a particular correlation matrix, as

they had tlree such matrices in each cell in their design. In the current

study, one battery was randomly selected from each of the eight cells of

interest. In order to include the parameter of sample size, it was decided

to draw samples of sire lou, 400, and 1600 from each population-correlation

matrix. To achieve some stability of results, four sample correlation

matrices were drawn from each populition-correlation matrix, at each level

of sample size, yielding 96 sample correlation matrices.

Table 2

Level Number of
Matrix of b Model Factors Battery

1 high formal 3 2

2 high formal 7 2

3 high simulation 3 3

4 high simulation 7 3

5 low formal 3 3

6 low formal 7 1

7 low simulation 3 1

8 low simulation 7 1
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B. Generation of Sample Correlation Matrices

The intuitive way to generate sample correlation matrices is to

generate samples of random variables from a multivariate normal distribu-

tion with a specified correlation matrix (Kaiser and Dickman, 1962) and

to calculate the sample correlation matrices directly from this raw data.

However, this method requires a large quantity of random numbers and a

large amount of computer time, especially when large sample sizes are

required. To avoid this problem, a more economical procedure, described

ty Odell and Feiveson (1966) and used by Browne (1968), was used in this

study.

In order to compute a sample correlation matrix R when given the

population correlation matrix P, one uses

R = (Diag [A])D- 2 A (Diag [A])-/2 and

A = (QT)(QT)' where

P = M•' and the elements of T(lower triangular) are chosen as

independently distributed variables:

tij is distributed as N(0,1) (i > J)

t.. is distributed as Chi with (N-i) degrees of freedom

t,..=0 i• J
iJ

For convenience of calculation, Q was chosen to be lower triangular and

was obtained by the square root method for triangular factoring (Dwyer, 1945).

Thus, this method requires only the generation of 2 random' 2

normal deviates and p (p = 20, the number of variables) random Chi variables

for each sample correlation matrix, regardless of the sample size. Also a

large amount of computational time is saved in the calculation of the

correlation matrix.
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In order to generate the random normal deviates for the T matrix, it

was first necessary to generate random integers on the computer. These

integers were converted to real numbers uniformly distributed between

zero and one, and then these were normalized. Unfortunately, there is no

way to pick truly random numbers on the computer, so the random integers

needed were produced by a simple arithmetic process. These random integers

are often called pseudo random integers, because they are produced by a

deterministic process. Richardson (1969) reviewed several methods of

generating pseudo random integers and chose the multiplicative congruential

method as the best for the IBM 360, on the basis of randomness (passing

statistical tests), length of period (number of integers generated before

the sequence repeats itself), and generation time needed. This method is

based on the relation Xi+1 = aXi (mod m) which means that aX. is divided by
st

m and the i+l random integer X i+ is set equal to the remainder. *

Muller (1959) compared several methods of generating pseudo random

normal deviates from pseudo random numbers on the interval (0, 1). The

direct approach (Box and Muller, 1958) was picked as best because of the

resulting reliability in the tails of the distribution and the relatively

greater accuracy when compared with other methods. The transformations are:

XI = (-2 log 1/2 cos 21t 2

X2 = (-2 loge U ) 1/2 sin 27U2

•The modulus m was set to 2 24 in order to provide the maximum possible
period. The constant a was chosen by Richardson from 1500 different
multipliers, as the one which produced the integers with the best statistical
properties. Integers on the IBM 360 occupy 32 binary digits (bits), but
real numbers use only 24 bits (the remaining 8 are used for the exponent).
Thus, the pseudo random integers were converted to a uniform distribution
by merely inserting tht arpr-'priate exponent in the first eight bits, so
that the real numbers would lie between zero and one.
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where U1 and U2 are pseudo random numbers from the interval (0, 1), and

X1 and X2 are independent variables from the normal distribution with

mean zero and unit variance [N(O, 1)].

In order to determine the pseudo random Chi variables for the

diagonals of the T matrix, the following approximation was used

(Abramowitz and Stegun, 1966)

= 2 2 ]3 ( 0
Xp 9-V + (Xp-hV )9

where V = degrees of freedom and X is a pseudo random normal deviate. The
P

value for h is gotten from the relation hV = LO-h where h is tabled
agans V 6h 60 whr 6o stbe

against values of X from -3.5 to +3.5 by Abramowitz and Stegun. A cubic

equation was used to interpolate between the tabled values of h6 0 .

h = .0009244X - .000159X2 + .000308X 3 + .000189

The correlation between h60 and h6o (for the 15 tabled values) was 1.0000.

C. Factor Analyses

Each correlation matrix was factored using Joreskog's (19 6 7a)

maximum-likelihood factor analysis program. The maximum number of iterations

was set to 100 and the probability of chance occurence was set to 1.0 so

that all solutions were obtained. Solutions were obtained for the number

of factors in the major domain. Additionally, the likelihood ratio tests

of the number of common factors were obtained from zero up to the number of

acLors in lhc ,.ajor domain, so that p and P2 could be calculated for

each possible number of factors. The coefficients cl, c2 , rl, and r 2 were

calculated for each factor matrix.

D. Analysis of Variance

In order to determine the effects of the four independent variables

(model, level of blj, number of factors, and number of observations) on

..... . . _
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the measures of goodness of fit, six separate fixed-factor analyses of

variance were performed, each being 2 x 2 x 2 x 3.
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III. RESULTS

A. Reliability Coefficients p1 and p2

The means of pl and p2. across the four samples of the same size for

each population-correlation matrix, are presented in Appendix A. There

were only small differences between the two coefficients. For very large

sample sizes, the formulas yield quite similar results, as is illustrated

by the samples of size 1600. The correlation between p1 and p2 for the

number of factors in the major domain, across all 96 sample factorings

was .998. All results are discussed mainly in terms of p2, as it is the

later, published version.

P2 was an excellent measure of goodness of fit for the factor matrices

obtained from samples from the population-correlation matrices (hereafter

called sample factor matrices) of the formal model. In the three factor

matrices, with high or low b (Table 3) P2 was very close to 1.00, for
11 2

all sample sizes. With seven factors and high b (Table 4) the results

were as good. However, with seven factors but low b 2, P ., went above 1.00

after four factorts with only 100 observations. The average value of 02

after seven factors were obtained was 1.4-85, and the individual values

were 1.0956, 1.0428, 1A710, and 2.1046. This value, 1.i285, was much

larger than the population value of 1.00 obtained by Tucker tknd Levis (1970).

While this result was probably due to the =%all saaple size of I00, it

reflected an undesireable property for a reliability coefficient. However,

with h4DO and 1600 observations, results were much better. Thus, the nethod

of maximum likelihood resulted In good solutions a, measured by o2 when the

population3 exactly fitted the factor ana.vlco model. The only exception

was with variables cf' low cc unality, in which case more observations were

necessary to obtain a good fit.
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Table 3

Means of p2 for Matrices with 3 Factors in the Major Domain,
After 3 Factors Have Been Obtained

Formal Model Simulation Model
Sample

size

2 100 1.0011 .8535
High bit 400 1.0018 .8253

1600 i.000o4 .8319

100 .9929 .6157
Low 2 400 1.0127 .5690

1600 1.0023 .5623

Table 4

Means of 02 for Matrices with 7 Factors in the Major Domain,
After 7 Factors Have Been Obtained

Formal Model Simulation Model
Sample

•i e

100 1.0139 .7348
H h0oo 1.0014 .6829

i6oo _.9992 .7118

100 1.4285 .6022
i4w 0 4oo 1.0482 .5312

6 e6oo .9984 .4982

Table 5

Mewls of o2 rfo- Matrices with 3 Factors !n the Major Jomain,After 4 Factors Have Been Obtained

Formal Model Simulation Model

sZize

,100 1.0116 .8778
High b O0 1.0054 .8422;•iJ !J1(00 1,.0O 0 8h

2100 1.0,16 .6743
L OU0 1.0257 .6020

I600 (1.005() .610o
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Results from the simulation model matrices were not nearly as good.

In no case did P2 reach the value of 1.00. The largest values were
2

obtained with high b and three factors (Table 3), but the highest was

.8535. There was a trend for p2 to decrease with increased sample size

2

2eaesalra h ubro atr ntemjrdmi nrae n

as b decreased.

The calculation of p2 was extended to four factors in the three factor

matrices, in order to see how it behaved. It was thought that there might

be some leveling off, after three factors. This did occur for the formal

model (Table 5), after P2 had already reached 1.000. There was some tend-
2

ency for the values of p2 to level off for the simulation model, high bl,

as the increase from two factors to three factors was much greater than

that from three factors to four factors (Appendix A). In the simulation

model with low bl there were no signs of a leveling off of 2 after

three factors.

B. Other Goodness of Fit Measures

The results for cI and c, (Table 6) were very similar, as were the

results for r and r 2 . To get an idea of the degree of similarity, the

coefficients were oorrelated across all 96 matrices. Since c 1 correlated

.968 with c, and 1'. correlated .994 with r..,, results will be discussed

in term of eI and rI only. The coefficient 0 behaved exactly as expected.

For all eight matrices, c 1 got smaller as the sample size increased. In

all cases, increasing the number of factors, while holding model, level of

2
bl,, and sample size fixed, caused an increase in c, . In all cases, moving

from the formal model to the simulation model while holding the other three

independent variables fixed caused on increase in c 1 . Finally, in all



19

Table 6

Means of the Coefficients cl, c 2 , rl, and r25 After the Number

of Factors in the Major Domain Have Been Extracted

Matrix Sample c1 c2 r1 r2
size

1 100 .9587 .9050 .9782 .9737
400 .2472 .2296 .9944 .9933

1600 .0464 .0426 .9990 .9988

2 100 1.6355 1.4322 .9413 .9201
400 .4625 .4336 .9834 .9758

i600 .1035 .0943 .2963 .9947

3 100 1.4689 1.3214 .9705 .9671
400 .5290 .4547 .9894 .9887

16oo .3523 .29(5• .9929 .9929

4 100 2.5336 2.1420 .8915 .8403
400 .9252 .6490 .9604 .9516

1600 .6677 .4593 .9714 .9657

5 100 1.5298 1.,2331 .8541 .8520
4oo .3131 .2732 .901 ..96T7.

16oo .0749 .0623 .9929 .9925

6 100 3.7076 1.8881 .1256 .2423
400 .7221 .3854 .8297 .8453

i6oo , .2576 .1078 .9392 .9567

100 5.0938 .. 173" .5351 .5258
400 2.9050 2.0161 .73119 .7709

,1600 2.3471, 1.7914 .7858 ..79,6

8 100 6.783 1' 4.1999 -. 5998 -. 68514
00 5.1870 ?.0895 -.233 -. 2398

16oo0 4I7,. h.7i 3 -. 12•-1.. -. 0893

4 i
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Table 7

Standard Deviations of the Coefficients cl, c2, rl, and r 2 , After the

Number of Factors in the Major Domain Have Been Extracted

Matrix Sample c c2  r r
size 1

1 100 .2668 .2555 .0061 .0074
hoo .0696 .0632 .0016 .0018

1600 .oo66 .0071 .0001 .0002

2 100 .4•90 .5500 .0177 .0307
400 .1100 .1057 .0039 .0059

1600 .0230 .0240 .0008 .0013

3 100 .9734 .9287 .0196 .0231
0oo .o416 .0459 .0008 .0011

1600 .0534 .01r7 .0011 .0011

I 100 .4661 `2975 .0200 .0222
o00 .1814 .1938 .0078 .01118I6oo .1704 .138 , .003. .0103

5 100 .2350 .0933 .0221 .0112
)too .1('3 .1315 .0130 .0159

•160 0 .01.30 .o61 .0012 .0007

100 .24.19 .197, .OST7 .0794
4Q0 .1819 .0546 .04.2 .0219Wo 14 o .0"3i: .0o49

1600 132 o5q ..-,o

4OO .1106 .0656 .0101 .0075
1600 .!228 1 r I .o"16 0 (1210

1010 T3 Th 10.24
400 ." 4a r"'1 .2799

,1600 .,3"71 .12 .0V7F; .0692
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2
cases, cI increased when the b went from high to low. (Note, there was

One reversal of this last finding with c 2 , which decreased as the level of
2

b l went from high to low from matrix 2 to matrix 6.)

Also, r increased with increased sanple size, increased values of

2blj, fewer factors, and from the simulation model to the formal model.

For high b,,, formal model, the values of r1 were good for three factors,

all sample sizes, while seven factors required a sample size of h00 for a
5

satisfactory result. With the simulation model, low l, and three factors,

rI reached only .796h with 1600 observations. in matrix 8 (simulation
2

model, low bl2, seven factors), the values of r were actually negative.
1 "1

This was partly due to the low total sum of squares '.n the model correlation

matrix, but this result indicated, much better than did P2' the inaccuracy

of these solutions.

The standard -teviations of the coefficients c1, C2 , r,, and r2 were

calculated (Table 7). There waý a tendency for the standard deviations

to be smaller with better fit, but there were more reversals than with

the meuis. Aiso, since r1 mid r, had upper limitr of 1.0, their standard

deviations were forced to decreae ats the mes increaced because the

upper limit wats being approached.

C. tUt(e of thw !A.l~ ~ Tio t-e

.16reskog (1967b) uned the likelhood-ratio technique to test Ithe

hyothesis that the number of factrv m. wv a given number. The exact

distribution of the likelihood-ratio test itatimtc 1s 4;ot known, but for

large N its distrlbutlot. is approximately a X dlstribution with degrees

offr~eedom 1_- ) (P + in).1 ie hei of ,,factors ws

rejecte.d (due to a statistically significant value of the test statistic),

J6reskog refattored the naltrix for m=+ factors. I1 was thought that by
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Table 8

Range of' Probability Levels f'or X Statistics

3 Factor Matrices

Matrix $.ample 2 Factors ' 3 Factors 7 Factors
'size . Min. Max. Min. Iax. Min. Max .

1 100 .0000 .0000 .1173 .8533 .9890 .9976
400 .0 -0 .2697 .9211 .9820 1.0000

16oo .0 .0 .2028 .8257 .9776 .9968

3 100 .0000 po00o .0000 .0000 .0000 .0194
4oo .0 .b .0 .0 .000(1 '.0000

16oo .0 .0 .0 .0 .0 .0

5 1 10 .oo66 .65o4 .2060 .8027 .9376 .9960
4oo .0000 .0000 .1201 .9712 .8897 .9o82
.6oo .0 .0 .5070 .9186 .9616 .9923

7 100 .0000 .0000 .0000 .0000 .0007 .0054
4oo. .0 .ýO .0 .0 .0000 .0000

16oo .0 1;0 .0 .0 .0 .

7 Factor Matrices

4 Factors 6 F&ctors 7 Factors
Mirn. N'aX. Min. Max. Min. Max.

C? 100 .0000 .0000 o0000 o0683 .5381 .8465
boo .0 .0 .COOO .0000 .290-3 .1'(948

16oo .0 .0 .0 .0 .2o43 .7330

4 100 . .0000 .0000 .0000 .0000 .0000 .0000
":Oo .0 .0 .0 .0 .0 .0

16oo .0 .0 .0 .0 .0 .0

6100 .072-3 .9560 .5019 .9995 .6o6o'5 .9998
boo .0000 .0000 o084o .6o60 .7133 .9684

16o0 .0000 .0000 .0005 .0112 .2279 .5371

8100 .0000 .0000 .0000 .0000 .0000 .0000
1100 .0 .0 .0 .0000 .0000 .0000

Note: In the above table, the entry .0000 ni--ans that the number was a tero,
when rounded to 4 decilial places. The entry .0 was an exact zero, to the
accuracy oc the~comput ation.3 (ab.ut 7 decimal places).

.. . ..... ~~~~~~ ..~.... .>.. ... . . ..+2.*. .-.f.t.I.m.*.¶.i.....2...<.V.
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looking at the probability levels (probabilities of the chance occurence

of the observed X2 values) of the test statistic for various numbers of

factors, one might .be able to determine the correct number of factors.

In Table 8 are presented the ranges of these probability' levels, for

selected numbers of factors. For the formal model (matrices 1 and 3 for

three factors, and matrices 2 and 6 for seven factors), in all cases one

would accept (at any reasonable probability level from .001 to .100) the

.hypothesis of the number of factors in the makjor domain. The probability

*levels ranged from a low of .1173 for one high b three factor matrix

2
to a high of .9998 for a low b1 j, seven factor matrix. However, in one

2
case, with low blj, three factors, and a sample size cf 100, the hypothesis

of two factors was also accepted (p = .6504). With seven factors, and low

2 (matrix 6) an hypothesis cf on2 y four factors was supported with 100blj,

observations and Ln hypothesis of six factors was supported with 400

observations.

For all simulation model matrices, however, 'the hypothesis that

the number of factors was equal to the number of factors in the major

domain, was rejected. Even the hypothesis of seven \factors for a sample

2
factor matrix with high bj and only three factors in the major domain

was rejected (although one matrix of sample size 100 did have a p = .0194

which would not have been rejected at the .01 level). 'Thus, this test

is appropriate fo- tqsting the hypothesis that the factor analytic model

holds exactly in the data, but it is of no use as a measure of goodness

of fit for data that do not fit the model.

D. An}lyses of Variance

Separate ar'alysis of variance sumrary tables for the six measures

, p2, P) , c 2 , rl, and r 2 are presented in Appendix B. These analyses

2\

Ut- I
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were performed in order to discover the relative sizes of the effects of

the four independent variables, level of b m number of factors in

1j model, nme ffcosi

the major domain, and sample size. Since tue assumption of normality of

analysis of variance was possibly violated, especially with pl1 P2 . rl, and

r2s border line significant F ratios should not be taken too seriously.

The results for P1 and p 2 were again very similar, so results are

discussed in terms of p2 . The main effect of model accounted for 61.19%

of the total sum of squares for p2. The average value of p 2 for the

formal model was 1.042, while for the simulation model, it was only .668.

The only other large contributor to the total sum of squares (except for

within cell) was the interaction between model and level of bl2 which

accounted for 9.07% of the total sum of squares.

formal simulation

high bl2 1.003 .773

2low b 1.080 .563

Four other small but statistically significant effects were also

found. The average value of p2 was .888 for sample factor matrices with

high b 2 and .822 for those with low bl2.There was also a significant

trend for p2 to decrease with increased sample size. The averages were

.905, .834, and .826, for sample sizes 100, 400, and 1600, respectively.

The BXF and MXF interactions were also significant at the .01 level.

3 Factors 7 Factors 3 Factors 7 Factors

high b 2 .919 •857 formal 1.002 1.082

low bl2  .792 .851 simulation .710 .627

Although the results were similar for c1 and c2 , only 6.68% of the

total sum of squares was attributable to error for cl, whereas 13.02% was
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error for c2. This supported the earlier decision to discuss results in

terms of c1 only, as it was less variable, within cells. The main effect

2of level of blj accounted for 25.17% of the total sum of squares. The
2 2

mean value of cI was .827 for high b and 2.807 for low b . Model
1 li li,

accounted for 24.62% of the total sum of squares, and the mean for the

formal model was .838 while for the simulation model, it was 2.796.

Sample size accounted for 17.37% of the total sum of squares, with c1

dropping as sample size increased. The means were 2.964, 1.411, and

1.077 for the sample sizes 100, 400, and 1600, respectively. The level
2.-

of bl2 by model interaction accounted for 13.58% of the total sum of

squares.

formal simulation

high bl .576 1.079
2

low bl2 1.101 4.513

The main effect of numbers of factors in the major domain (c! 1.322 for

three factors, ce = 2.312 for seven factors) and the three interactions

shown below were also significant at the .01 level.

3 Factors 7 Factors 100 LOO 1600

high bl2 .600 1.055 high b 1.649 .541 .292

low b 2.044 3.570 low bl2  4.279 2.282 1.861

3 Factors 7 Factors

formal .528 I.]i.48

simulation 2.116 3. -177

S

Unfortunately, due to negative values for low b"j, simulation model,

and 7 factors (summed across sample size), every main effect and interaction
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which did not involve sample size was highly significant for rIand r 2 .
While the negative values (r2 = -. 338, rI = -. 315) indicated how poor

results were for that combination, the effect was apparently strong

enough to influence most other effects. The main effect of sample size

did account for 5.14% of the total sum of squares, with r1 increasing

as sample size increased. The means .587, .780, and .819 for 100, 400,

and 1600 observations, respectively.
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IV. DISCUSSION

A major goal of the present study was to find or develop a measure

of goodness of fit for the factor analytic model. One such measure

studied was p2. 61.19% of the sum of squares of O2 was accounted for

by the main effect of model. For samples from population-correlation

matrices constructed to exactly fit the factor analytic model, 2 worked
2

exceedingly well. Only in the case of seven factors and low b was it
ej

necessary to have a sample size greater than 100. p2 also had the

desirable property of approaching unity (or nearly so) as the sample

size increased, for the matrices developed from the formal model. The

samples from the simulation model behaved quitE differently. Even in the
2

best case (three factors, high b the averageŽ value of p2 was .8535.

Thus, in all cases, p 2 reflected the presence of the minor factors.

There was also a significant decrease in p2 for sample sizes 400 and

1600, when compared with 100. This is not a good property for a proposed

measure of goodness of fit, as intuitively one would expect the fit to a

good model to improve with more observations. However, this decrease is

due in part to p2 coming down to 1.000, after going over that value for

samples of 100. There was a significant decrease in c1 with increased

correlations implied by the model better with more observations. This

was further illustrated by the fact that the p2 values were approaching

the population values obtained by Tucker and Lewis. This can be seen by

subtracting the population values (Table 1) from the sample values

(Tables 3 arid 4).
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Table 9

Differences Between Sample Values and Population

Values of p2

Sample Size

100 400 1600
2

High blj, Formal Model, 3 Factors .0011 .0018 .ooo4
7 Factors .0139 .0014 -. 0003

High bl2,J Simulation Model, 3 Factors .0235 -. 0047 .0019
7 Factors .0248 -. 0271 .0018

2
Low blij Formal Model, 3 Factors -. 0071 .0127 .0023

7 Factors .4285 .0482 -. 0016

Low blJ, Simulation Model, 3 Factors .0657 .0190 .0123
7 Factors .1222 .0512 .0182

Since these values (Table 9) are only accurate to two decimal places (as

the Tucker and Lewis figures are to two places), all except the low bl2

simulation model matrices were within rounding error of the population

values for samples of size 1600. Thus, the decreases in p2 with

increasing sample sizes were toward the population values.

An important result was pointed out by the significant interactions

22
between level of bl2 and the model for p2 and cI Tn both cases, the

results in the simulation model, low b cell were much poorer than would

have been predicted from the main effects alone. These results, an average

P2 of .563 and an average cI of 4.513 (over four times greater than the

next largest cell), showed that one cannot expect to support one's hypothesis

with variables that have low percentage of variance accounted for in tlie

major factors. It was interesting to note that while the values of c1 were
2 2

about the same in the two cells high b simulation model and low b 2

formal model, the former had p = .773 and the latter had 0, = 1.080.

Thus the model correlations were reproduced as well for simulation model,

high b"1 as for formal model, low b1 j.

......... .......................................
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The fact that level of b (25.17%) accounted for as large a per-

centage of the total sum of squares of cI as did ýnodel (24.62%) was

encouraging. Thus, if the simulation model is a better model of the

world, it is still possible for an experimenter to improve his results

by constructing measures with high proportions of variance accounted for

by the major factors.
2

The X2 statistic was useful for sample factor matrices for the

formal model only. Even then, it lead to the acceptance of too few factors

in some cases, with low bl2 and/or too few observations.

The measure rI did well for the formal model matrices, although

more observations were necessary before it neared its maximum of 1.00.

Also, with seven factors, low bl2 and 1600 observations it only attaimed
2

.9392. However, the simulation model matrices with high b also gave

high values of r 1 . Thus the maximum-likelihood estimation procedure was

doing a good job of reproducing the model correlations, but this was not
2

reflected in p2. The results on matrices 7 and 8 (simulation model, low b )

confirmed the importance of controlling the relationship between the major

and minor influences on one's results. The major factors should predominate

over minor factors in any study, The results did indicate that it is

easier to reproduce a small number of factors in a poorly designed study.

Thus rI was shown to be useful as a measure of goodness of fit. It

does require the writing down of an hypothesized factor matrix 0, so it

can not normally be used in exploratory studies. It has the advantage

that it could be used with any factor analytic procedure. On the other

hand, p2 could be used with any study, as long as the maximum-likelihood

estimation procedure is used. However, it seems somewhat less useful than

r when the factor analytic model does not hold in the population.
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An investigator should strive to develop variables which strongly

represent his major factors. He should have a large sample size (a ratio

of five observations per variable was not always sufficient to insure

good results, even with high bl2 and the formal model). If he uses

maximum-likelihood factor analysis, he should usually stop factoring

when the X2 becomes non-significant, if his sample size is large enough.

However, with real data, there may be statistically significant minor
2

factors which are not of interest. In this case the X cannoc give an

indication of when to stop factoring. However, the investigator can use

p as an estimate of how well the formal factor analytic model holds in

the population from which his data was taken. Although the statistical

properties of this estimate are not known, and it may be high for small

samples, it does have the desirable property of having % value of 1.00

in populations which exactly fit the formal factor analytic model.

Small values of p. probably indicate a poorly controlled study, and

the investigator may be able to improve his results by using better

controls over minor factors, by having variables with high percenta or

variance in the major domain, and by h)ri~ng a higher ratio or variables

to major factors. Final'.y, in a confirmatory study he should write

down an hypothesl;.ed factor matrix and use cI and to detemine its

goodness of fit.
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APPENDIX A

MEANS OF pl AND f2
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Table 10

Means of p1 for 3 Factor Matrices

Matrix Sample 1 Factor 2 Factors 3 Factors 4 Factors
size

1 100 .4321 .7741 1.0011 1.0135
400 .4385 .J471 1.0017 1.0054

1600 .4323 .7575 1.0004 1.0011

3 100 .4776 .6626 .8570 .8818
400 .4648 .6458 .8262 .8432

1600 .4672 .6522 .8321 .8444

5 100 .6739 .8879 .9932 1.0397
400 .6584 .8639 1.0126 1.0255

1600 .6581 .8641 1.0023 1.0050

7 100 .4719 .5591 .6264 .6863
4oo .4413 .5205 .5714 .6058

16oo .4577 .5177 .5629 .6112

Table 11

Means of 02 for 3 Factor Matrices

Matrix wIple I Factor 2 Fact.or 3 Factors Fctor•

1 100 .4273 .7703 1.0011 1.0116
,Oo .4375 .7J62 1.0018 1.00 Ch

1600 .4320 .1. 3 1,o000, 1.001

3 103 .4734 .6571 .T535 .8778
100 .4639 .64L6 .8253 .8322
(,o0 ',,676 .65! 481, 2

5 100 .6702 .8652 .9929 1.0a16
400 .6578 .8634 1.O127 1.0257

.100 .6579 .8655 .0023 1 .,,,1

7 100 .4670 .5509 .6157 .674(",
)AOO .44o3 .5187 .5690 .6029

16.00 .14574 .L517
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