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I. INTRODUCTION
A. Background

Factor analysis is a frequently used model building technique,
especially in sciences where a large number of variables need to be
studied. Unfortunately, little work has been done on ways of testing the
goodness of fit of the model to the data. Several techniques for testing
this goodness of fit have been evaluated in this investigation. In
addition, these techniques were used to evaluate the maximum likelihood
estimation procedure as & factor analytic method.

For many years, factor analysis has been used as & research tool for
finding the major or meaningful influences on a set of variables. Many
different methods for finding these influences (or factors) have bdeen
proposed and used (Harman, 1967), but most are strictly non-inferential
in nature. That is, they treat the observed correlations as though they
are population values, and the resulting factor loadings are calculated
directly from the sample correlations. Thus, the statistical problems
of the sampling of individuals are ignored, ond results are usually
considered as though they are population values. On the other hand, the
method of maximum-likelihood estimation prov: icn 1 sintistical procedure
for the estimation of the par-meters of the racter analytic model, based
on the assumption that the original variables follow a nultivariate
normel distribution.

The basic assunption of factor analysis is that

x=A +u+e

where x is a random vector of p variadles, f is a random vector of m < p

common tactor scores, e is a random vector of p uniquenesses, A iz u p X

m




matrix of factor loadings, and U is a p vector of means. It is further
assuned that E(f) = 0, E(e) = 0, E(ff') = I, E(ee') = D2, and E(fe') = 0.
This model is usually written

P = AA' + D2

where P is the correlation matrix. Here, x is assumed to be multivariate
normal and the rows of A are proportional to the rows of A as Lawley (1940)

has shown that the results are independent of the scale of measurement.

B. Algebraic Methods of Factor Analysis

The principal axis method of factor analysis, developed by Hotelling
(1933), is today probably the most commonly used factor analytic technique.
Its basic objective is to determine factors which account for the maximum
amount of wvariance of the observed variables. The first {acter is that
linear combination of the original variables which accounts for maximum
variance. Each subsequent factor accounts for a maximum amount of the
remaining variance, while remaining uncorreisted with all previous factors.
Thus, the factors are derived by an algebraic rule fros the zample

correlations, and can be atrongly influenced by sampling varisbility.

/2

a3

The factors are determined by the matrix equation A = ¥ ﬂi where ¥
containy the normalized eigenventorsz of the smtple correlation matrix as
columns, and A i3 a disgonal matrix containing the eigenvalues, f.e.,
Re=v AV,

Minres {minimum residual) factor ansiysziz {Harman and Jenes, 1966)
ig another algebraic approach tc the problenw of ollaining Tectors. Its
aim i3 ‘he best possible repreduction of the obrerved correlations, where
best is defined in terws of 2 lemst sguaves Fit. Thus the Tactor matrix A

{s determined such that the sum of squares cf the off diagonal elemenis

of R - AA' {2 minimized.
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C. Maximum Likelihood Factor Analysis

In contrast to the algebraic techniques mentioned previously, the
method of maximum-likelihood estimation requires the writing down of
the density function of the observations, given the population parameters.
Then the sample values are considered as fixed, and the parameters are
considered as the variables. TL~ resulting function, cslled the likelihood
function, is then maximized with respect to the parameters. The values
of the parameters which maximize the likelihood function are termed the
maximum-likelihood estimates of the population parameters (Lehmann, 1959).

The possibility of the use of the maximum-likelihood method for the
estimation of factor loadings has existed for at least thirty years
(Lawley, 1940). The method has always required an iterative procedure
with a large number of calculations to be performed on each iteration.

Thus it seemed natursl that the development of computers would encourage
the use of the method, but Lawley and Maxwell (1963) reported that in some
cages convergence of the likelihood functien to ity maximum was a very
slee provesy or might not even be attained, unless goed initial estimates
for the factor loadings vere used.

Joreskag {1967 a and b) has developed a new computational method which
hag the advantage that the {terative procedure always converges. In other
papers, Joreskog (1969, 1970) has extended the maxizum-likelihood estimation
method to cover a wide variety of models, {ncluding factor analytic ones.
In conjunction with these efforts, Joreskog, Gruvaeuz, w.nt van Thille (1970}
have developed a general computer progras to calculate maximum-likelihood
estimates, The maximum-likelikeod estimation procedure also proviaes a
likelihood-ratio test of the number of factors, snt this test hasg been made

availsble in thelsr general computer progranm.
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In applying the method of maximum likelihood to the general factor

analytic model (P = AA' + D2), one writes the log of the likelihood function,

omitting a function solely of the observations (Lawley and Maxwell, 1963)

log_ L= -3 [1og_ [P| + tr(RP™)]

where R is a sample correlation matrix based on a sample of size n + 1.
This expression is then maximized with respect to the elements of the
matrices A and D, to obtain a maximum-likelihood solution.

Since the method of maximum-likelihood estimation is an established
statistical procedure, it is desirable to see how well it does in practice.
Browne (1968) has already shown that maximum-likelihood estimates are
preferable to many other types when dealing with sample correlation
matrices drawn from populations which exactly savisfy the factor analytic
model, but it remains to be seen how well it will work with dats more

like real data.

D. The Tucker, Koopman, and Linn Study

Tucker, Koopman, and Linn (1969) generated 54 population correlation
matrices in order to study factor analytic methods. One of their simulated

correlation matrices was defined by

R = BlplBl + B2P282 + B3P383

where Bl‘ B,, and B3 were diagonal matrices with real pesitive diagonal

elements b baj‘ and b31 (J =1, 2,...,p, the number of variables),

e
12
respectively. Since bIJ was the proportion of variance of variable

(2]
due Lo the major factors, bEJ the proportion due to the minor factors, and

bid the proportion due to the unique factors they had:




bl

- 2 .2
‘s, blj + DEJ

Three different relationships between these coefficients defined the three

equaled the communality (common variance) of variable J.

types of population matrices used by Tucker et a2l. Correlation matrices
~
= 0 ard b? = (1 - v°

with sz 33 lj) exactly fitted the mathematical factor
enalytic model (common factors + uniquenesses). With bgi = 0 and
~ o s
bgj = (1 - b],), the correlation matrices constituted the simulation
B

rmodel, as F_ contained the accumulated effect of 180 minor factors.
It was hoped that these simulation meatrices would approximate real data
population-corirelation matrices which could be thought of as arising frem

a few majcr and many minor influences. They alsco employed a third model

which contained influences of both minor factors and uniquenesses. For
. | 2 2 _ 1 -7%°
this niddle mcdel, they had 923 = b3j = _~ 13 .
2

All correlation mzatrices contained 20 variables. Each PS matrix

,2,3) was constructed from the relationship PS = A: A;' where

=

(s =
A: was obtained by adjusting the rows of As to be of unit length.

The A, matrices were generated by randcm processes and contained
cither threc or saven columns, representing the nunber of major factors

in each corrslation matrix. The A2 matrices were generated by another

random process so that the effect of P, was s though there were 180 minor
—

factors in it. P, was an identity matrix, as the factcr analytic model

3

zzsumes a unique factcor for each variable, and that these unique factors

are uncorrelated. Tucker et al also used three levels of entries in the

Bl motricec: hi (.6, .7, .8), wide (.2, .3, .4, .5, .6, .7, .8), and low

. -3, .h). Thus their design was three (models) x two (number of major

(.

actor<) x three (levels of B, coefficients), and they generated three

correlation matrices for each of the eighteen cells. Tucker, Koopman,

ny

ard Linn were interested in comparing several fuctor analytic techniques,

3est Available Copy



but the data they genersted are useful for studying any procedures
related to factor analysis.

In the Tucker, Koopman, and Linn (1969) study, the authors used
a random process to generate conceptual input factor loadings Kl for the

major factor domain. They combined these with random normal deviates,

applied a skewing function, and multiplied by the matrices Bl’ in order
. s . = # * AR o Y,
to get to actual input factor loadings A, (A1 B A? where Al AY P, )

The authors used Joint rotations of actual input factors with output
factors, and also rotations of output factors only, to assess the degree
to which actual input factors were found on output. Thus there were two
methods of comparison used, and each resulted in a separate index (coeffi-
cient of congruence} for each actusl input factor.

Although the raw da%a of the Tucker, Koopman, and Linn study consisted
of population-correlation matrices and not samples, some of their results
can serve as standards for seme of the results of the current study. In
general, the reproduction of the actual input factors In the output factors
wag very good for the formal model, and poorer for the simulation model.

The reproduction was good with & high level of b; and poorer Tor & low

J
level, Thirdly, results were better for "Wree factor:s than for seven.
-
Finally., the cowmbination of simulation model, low b;,, and seven factors
<
preduced extremely poor results. These resulls led Tucker et al to conclude

that the gquality of factor analytic results sdepended heavily on the design

and conduct of the study.

B, QGeoodness of Fit

The set of Tacilor analytic methods can be divided into two parts:
exploratory methods which are used in early investigations in an area,

with the purpose of reducing & large number of varisbies %o 2 smeller
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number of factors when the investigator has no a priori hypotheses as to
the composition of the factors; and confirmatory methods which are used

by investigators with specifiable hypotheses about the factors. The
present study considers confirmatory factor analysis only, and a major
interest is in the discovery or development of a measure which would
reflect tiie degree of fit of the final solution to the specified
hypothesis. It is possible to test this hypothesis via the likelihood-
ratio technique, and although the distribution of the likelihood-ratio
statistic has not-been tabled, it is distributeé appfoximately as a x2

in large samples (Lawley and Maxwell, 1963). Unfertunately, this test

sets up the hypothesis as a null hypothesis, and as the sample size
increascs, it is more likely to be rejected, as no hypothesis is exactly
true. Thus, this test is of little use to many researchers who are
interested in how well their data agree with their model, fully realizing
that thei: model cannot be exactly true in the population. Therefore what
is needed is a measure to assess the goodness of fit of the model to the
data. Thus, the problem in this study is different from the one considered
by Tucker, Koopman, and Linn as they were interested in factor matching, while
here, the aim is to have one index to measure the total goodness of fit.

Tucker (personal communication) has suggested a measure

xi
(df -1)
m

Pm =13
(g; -1)
0
[»]
where X/ d.f. is the chi-square approximate test criterion for the

likelihood-ratio test statistic divided by its degrees of freedom, taken

after sero factors-and after m factors have been extructed. This measurc

Best Availebie Copy



8
is analogous to a percent of variance accounted for by the model, as the
, : : \
expected value of a x2 random variable aivided by its degrees of freedom

is one. More recently, Tucker and Lewis (1970) have developed a second

reliaoility coefficient,

M, -M

= 9 m_
P = 1} :
¢ n' :

n '
' ' !

where n'm =N - l;- % (2p + 5) - %-m, p = number of variables, Mm = Fm/dfm,
F = minimum vdlue of Fmi(A, D) = log, lp| + tr(RP7Y) - log, IR|\- P

| (Joreskog, 1967b) for m factors, and df, = degrees of freedom for m factors.
It was hoped that this coefficient would be independent of the sample size
and would provide an estimate of the goodness of fitiof the fact§r
analytic model in ﬁhe population. Tucker and Lewis calculated 02 for the

number of major factors for some of the population-correlation matrices

\

of Tucker, Koopman, and Linn. These values (Table 1) can serve as targets
\
for the curvent study. These two measures'(olm

4

\
and-ozm, are similar (as

1

e
can be geen by substituting A"P = n'm Fm in p,_), but not identical. It

1m

{s hoped that o~ae or both of them are good Indicators of goodness of fit

for maxinwe-likelihood fuctor analysia.

R L R Tt S T T Y i i T R R o T S LY Lt A A
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Table 1
Values of 02 Obtained by Tucker and Lewis from Eight of the Tuéker,
Koopmaﬁ,_and Linn Population Correlation Mairices (N = =, p = 20}.
3 Factors in Majori Domain, Relisbilities for 3 Common Factor Medels

i
Formal Model Simulation Model A

. 2 .
high blj 1.00 .83
‘z o2 -
| Low by 1.00 - 55

7 Factors in Major Domain, Relisbilities for 7 Common Factor Models

Formal Model - Simulation Model
high bij 1.00 71
5

1. : 1.00 o A48

Another possible measure of goodness of fit is the sum of squares of
differences between the correlations'impliéd by the model and those

reproduced by the actual output factors. Browne (1968) suggested this

measure of goodness of fit: \
) i
' '\\
p i a '
¢, = pX T [o0r - AA'];}
i=1 =1 te

\

where A is the samplé factor matrix, ¢ is the population féctor matrix,

and p is the numbes of variableg. Of course, another possibility is to
‘ v

exclude the diagonali elements. This would emphasize reproduction of the
correlations, while ignoring the communalities: '
!

I SN CTIOTTESETIRTIRAATY N I TN A U UIE Ry ATy s agr T o e A e e
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Both measures were scaled by the total sum of squares in order to produce
coefficients, rl and Ty with upper limits of 1.00. In mest cases they

should vary betweer. zero and one.

c

1
rl =] - 5 q ;
b T [¢e']S
i=1 =1 1
¢
2
S I X
Ior [ee)’
i=2  j=1 J

These measures (cl, c2, rl, r2) are all invariant under orthogonal rotation
of the sample factor matrix A, and of the hypothesis factor matrix ¢,
All six measures (including p, and 02) were obtained for all 96 sample

correlation matrices.

ARG e
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II. METHOD

A. Data Used

Due to limitations on computer time, it was necessary to use only
some of the population correlation matrices from the Tucker, Koopman, and
Lirn study. In order to preserve the effects due to the independent vari-
ables used in generating those matrices, it was decided to randomly select
cne matrix from each of elght cells in their design. The eight cells were
created by using two levels of each of the three independent variables used
by Tucker et &l; i.e. model (formal vs simulation), level of B, (high vs low),
and numt :» of factors in the major domain (3 vs 7). The eight matrices used
are identified in Table 2. The level of battery (1, 2, or 3) was used by
Tucke », noopman, and Lirm o designate a particular correlation matrix, as
they had tlree such matrices in each cell in their design. In the current
study, one battery was ranaomly selected from each of the eight cells of
interest. In order to include the parameter of sample size, it was decided
to draw samples of size 10u, 400, and 1600 from each population-corrclation
matrix. To achieve some stability of results, four sample correlation
matrices were drawn {rom each population-correlation matrix, at each level

of sample size, yielding 96 sémplh correlation matrices.

Table 2
Level Number of
Matrix of le_A Model Factors Battery
1 high formal 3 2
2 high formal T 2
3 high simulation 3 3
L high simulation 7 3
5 low formal 3 3
6 low formal T 1
7 low simulation 3 1
8 low simulation T 1
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B. Generation of Sample Correlation Matrices

The intuitive way to generate sample correlation matrices is to
generate samples of random veriables from a multivariate normal distribu-
tion with a specified correlation matrix (Kaiser and Dickman, 1962) and
to calculate the sample correlation matrices directly from this raw data.
However, this method requires a large quantity of random numbers and a
large amount of computer time, especially when large sample sizes are
required. To avoid this problem, a more economical procedure, described
ty Odell and Feiveson (1966) and used by Browne (1968), was used in this
study.

In order to compute a sample correlétion matrix R when given the

population correlation matrix P, one uses

(Diag [A1)"Y/2 A (Diag [A1)Y2  ana

R =
A = (Qr)(QT)! where
P = OQ' and the elements of T(lower triangular) are chosen as

independently distributed variables:

t,, is distributed as N(0,1) (i > J)

ij
t., is distributed as Chi with (N-i) degrees of freedom
= i <
tij 0 i J

For convenience of calculation, 2 was chosen to be lower triangular and

was obtained by the square root method for triangular factoring (Dwyer, 1945).
Thus, this method requires only the generation of ~I&§:il- random

normal deviates and p (p = 20, the number of variables) random Chi variables

for each sample correlation matrix, regardless of the sample size, Also a

large amount of computational time is saved in the calenlation of the

correlation matrix.
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In order to generate the random normal deviates for the T matrix, it
was first necessary to generate random integers on the computer. These
integers were converted to real numbers uniformly distributed between
zero and one, and then these were normalized. Unfortunately, there is no
way to pick truly random numbers on the computer, so the random integers
needed were produced by a simple arithmetic process. These random integers
are often called pseudo random integers, because they are produced by a
deterministic process. Richardson (1969) reviewed several methods of
generating pseudo random integers and chose the multiplicative congruential
method as the best for the IBM 360, on the basis of randomness (passing
statistical tests), length of period (number of integers generated before
the sequence repeats itself), and generation time needed. This method is

based on the relation Xi+ = aXi(mod m) which means that aXi is divided by

1

m and the i+lSt random integer Xi+ is set equal to the remainder. ¥

1

Muller (1959) compared several methods of generating pseudo random
normal deviates from pseudo random numbers on the interval (0, 1). The
direct approach (Box and Muller, 1958) was picked as best because of the

resulting religbility in the tails of the distribution and the relatively

greater accuracy when compared with other methods. The transformations are:

L]

)1/2 cos 21U

X 2

1 (=2 loe_:e U

1
)1/2

<
L}

(-2 log, U sin 2nU

1 2

(Al

¥ The modulus m was set to Z“h in order to provide the maximum possible
period. The constant a was chosen by Richardson from 1500 different
multipliers, as the one which produced the integers with the best statistical
properties. Integers on the IBM 360 occupy 32 binary digits (bits), but
real numbers use only 24 bits (the remaining 8 are used for the exponent).
Thus, the pseudo random integers were converted to & uniform distribution
by merely inserting the arpr-priate exponent in the first eight bits, so
that the real numbers would lie between zero and one.
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where Ul and U, are pseudo random numbers from the interval (0, 1), and

2

X, and X, are independent variables from the normal distribution with

1 2
mean zero and unit variance [N(0, 1)].

In order to determine the pseudo random Chi variables for the
diagonals of the T matrix, the following approximation was used
(Abramowitz and Stegun, 1966)

]3

X = vl - + (X_-h) (v > 30)

2 2

b 9v P v 9y

where Vv = degrees of freedom and Xp is a peseudo random normal deviate. The
. . _ 60 .

value for hv is gotten from the relation hv = 3 h60 where h60 is tabled

against values of Xp from -3.5 to +3.5 by Abramowitz and Stegun. A cubic

equation was used to interpolate between the tabled values of h60'

~ 0 3
h.. = -,000924X - ,000159X° + .000308X~ + .00018
60 ?, P X D 9

The correlation between h6 and 860 (for the 15 tabled values) was 1.0000.

0

C. Factor Analyses

Each correlation matrix was factored using Joreskog's (1967a)
maximun-likelihood factor analysis program. The maximum number of iterations
was set to 100 and the probability of chance occurence was set to 1.0 so
that all solutions were obtained. OSolutions were obtained for the number
of factors in the major domain. Additionslly, the likelihood ratio tests
of the number of common factors were obtained from zero up to the number of

;aclors in the wmajor domain, so that p. and p, could be calculated for

1
each possible number of factors. The coefficients Cys Cos Ty and r, were

calculated for each factor matrix.

D. Analysis of Variance

In order to determine the effects of the four independent variables

"
(model, level of bIJ' number of factors, and number of observations) on




e e

15

the measures of goodness of fit, six separate fixed-factor analyses of

variance were performed, each being 2 x 2 x 2 x 3.
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III. RESULTS

A. Reliability Coefficients y and 02

The means of pl and 02’ across the four samples of the same size for
each population-correlation matrix, are presented in Appendix A. There
were only small differences betwecn the two coefficients. For very large
sample sizes, the formulas yield quite similar results, as is illustrated
by the samples of size 1600. The correlation between Py and Py for the
number of factors in the major domain, across all 96 sample factorings
was .998. All results are discussed mainly in terms of Pos 8S it is the
later, published version.

02 was an excellent measure of goodness of fit for the factor matrices
obtained from samples from the population-correlation matrices {(hereafter
called sample factor matrices) of the formal model. In the three factor
matrices, with high or low bij (Table 3) p, was very close te 1.Q0, for
all sample sizes. With seven factors and high bfj (Table &) the results
were as good. However, with seven factors but low bfj. 02 went above 1.00
after four factors with only 100 observations. The average value of 04
after seven factors were obtained wag 1.4285, and the individual values
vere 1.0956, 1.0428, 1.4710, and 2.1046, This value, 1.h285, vas much
larger than the population value of 1.00 obieined by Tucker and Lewis {(1970).
While this result was probably due to the sspll sample size of 100, it
reflected an undesireable property feor a reliabiliity coefficient. Hovever,
with h0D and 1600 observations, results vere tuch better. Thus, the method
of maximum likelihood resulted in good solutions as meagured by Dy vhen the
populations exactly fitted the factor analviic model. The only exception

wvas with variables ¢f low comsunality, in vhich case more observations were

necessary to obtain a good fit.
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Table 3

Means of p,. for Matrices with 3 Factors in the Major Domain,
After 3 Factors Have Been Obtained

Formal Model Simulation Mcdel
Sample
size

5 100 1.0011 .8535
High by, koo 1.0018 .8253
v 1600 1.000k .8319
5 100 .9929 .6157
Low bl 400 1.0127 .5690
) 1600 1.0023 .5623

Table b

Means cf Py for Matrices with 7 Factors in the Major Domain,
After T Factors Have Been Qbtained
Formal Model Simulation Model
Sample
gize

o 100 1.0139 .T348
High b;J h00 1.001h .6829
1600 .9997 L7118
R 100 1.k285 6022
Low bl Loo 1.0482 .5312
J 1600 .998k 1982

Table S

Meang of 0, for Matrices with 3 Factors in the Major Jomain,
After 4 Vactors Have Been Obtained

Formal Model Simulation Model
Sample
size
n %00 1.0116 8715
High b7, 500 1.005k 8622
e 1600 1.001) Bhbp
A 100 1.0h16 L6743
v by 500 1.0257 .6029

1600 1.0050 L6108
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Pesults from the simulation model metrices were not nearly as good.

In no case did 02 reach the value of 1.00. The largest values were

2
1]
.8535. There was a trend for 05 to decrease with increased sample size

for simulation model matrices with low b2 (Tables 3 and 4). Py also

13

beceme smaller as the number of factors in the major domain increased and

obtained with high b>, and three factors (Table 3), but the highest was

2
as blJ decreased.

The calculation of 02 was extended to four factors in the three factor
matrices, in order to see how it behaved. It was thought that there might

Ve some leveling off, after three factors. This did occur for the formal

model (Table 5), after P, had already reached 1.000. There was some tend-

2

ency for the values of 02 to level off for the simulation model, high le’

as the increase from two factors to three factors was much greater than
that from three factors to four factors (Appendix A). In the simulation

o]
model with low bI there were no signs of a leveling off of 02 after

JS

three factors.

B. Other Goodness of Fit Measures

The results for ¢y and ¢, (Table 6) were very similar, as were the

results for ry and oo To get an idea of the degree of similarity, the

coefficients were correlated across all 96 matrices. Since c1 correlated

.968 with ¢, and ry correlated .99l with r., results will be discussed

in terms of N and ry only. The coefficient = behaved exactly as expected.

For all eight matrices, ¢, got smaller as the sample size increased. In

1
all casges, increasing the number of factors, while holding model, level of
nd

bi’. and sample size fixed, caused an Increase in cl. In all cases, moving
from the formal model to the simulation model while holding the other three

independent variables fixed caused ean increase in ¢ Finally, in all

1
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Means of the Coefficients ¢

Semple

size

Table 6

100
koo
1600

.9587
2h72
.0L6kh

100
400
1600

1.6355
.L625
.1035

100
Loo
1600

1.%689
5290
3523

100
400
1600

2.5336
9252
6677

[, ]

100
400
1600

1.5298
L3131
L0749

100
400
1600

3.7076
JgJ22
5T

100
Lo
1600

5.0038
2.90%0
2307k

100
L00
1600

6.7834
%.1870
N (SN

1* Coo rl, and Tss After the Number

of PFactors in the Major Domain Have Been Extracted

— by &
“ . .

£y te
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Table T

1? C20 Ty

, and re, After the

Number of Factors in the Major Domain Have Been Extracted

Matrix Sagple c; 5 rl r2

Slze

1 100 .2668 .2555 .0061 .00TL

L0o .0696 L0632 L0016 .0018

1600 , 0066 .0071 .0001 .0002

2 100 4390 .5500 JOLTT .0307

LoQ .1100 1057 .0039 .0059

1600 .0230 L0240 .0008 L0013

3 100 L9734 Q28T ,0196 .0231

Loo .0lé6 L0459 .0008 .0011

1600 L0534 .OUST L0011 L0011

h 100 4661 L2975 .0200 .Q222

Loo 1814 .1938 L0078 .01kh8

1600 L1T0h L1382 L0073 .Q103

5 100 L2350 L0033 Q220 e

Loo .1363 L1308 L0130 L0159

1600 L0130 006) Q012 L0007

f 100 2hio L1978 L0871 L0794

400 1819 L0ské J0k20 L0219

1600 L1348 L1 L3R .0QhS

7 100 2.300h 2.0 2126 2529

hao L110e ORGG Q10 0TS

1600 A28 JAfap 384 L0210

3 100 YRS L5566 J1s0z L2234

hoo RSN LAOTE RL! 2799

1600 L3706 L1726 LORT0 .QE92
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cases, ¢; increased when the bij went from high to low. (Note, there was

one reversal of this last finding with c2, which decreased as the level of
bij went from high to low from matrix 2 to matrix 6.)

Also, r, increased with increased sample size, increased values of

1

bij’ fewer factors, and from the simulation model to the formal model.

For high bi formal model, the values of r. were good for three rfactors,

N 1

all sample sizes, while seven factors required a sample size of 400 for e

2
satisfactory result. With the simulation model, low bij’ and three factors,
r, reached only .T964 with 1600 observations. In matrix 8 (simulation

1

model, low b2

13 1
This was partly due to the low total sum of squares n the model correlation

, seven factors), the values of ., were actually negative.
matrix, but this result indicated, much better than did 02’ the inaccuracy
of these solutions.

The standard deviations of the coefficients s Cor Ty and T, were
calculated (Table T). There was a tendency for the standard deviations
to be smaller with better fit, but theroe were morg reversals than wvith

the means. Asgo, since ry and r, had upper limits of 1.0, their standard

1
deviations were forcad o decresse as the means increased because the

upper limit was being approached.

C. Usp of the Likelirood-Ratio Teer

Joreskog (19670} used the likelihood-ratio technique to test the
hypothesis that the aumber of factors o wvae a glven musber. The exact
distribution of the likelihood-ratio test statistic i{s ot known, but for
large N {ts distribution g approximately a \2 distribution with degrees

¢ freedor %-{(p - n)e - {p *+ n)j. If the hypothesis of m factors was
rejected (due to a statistically significan? value of The test statistic),

Joreskog refactored the matrix for me) Cactors. I was thought that by

smr et sy tat
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Table 8\

\

3 Factor Matrices

! Range of Probability Levels for Xz Statistics

when rovnded to 4 decimai places.
accuracy of the computations (about 7 decimal places).

| 2 Factors 3 Factors T Factors
‘size . | Min. Max. | Min. Max. Min. Max,
1, 100 .0000 0000 1173 .8533 .9890 .9976
| 400 .0 X)) 2697  .9211 .9820 1.0000
1600 .0 .0 .2028 .8257 9776 .9968
\ 4 \

3 100 .000G  .0000 .0000 .0000 .0000 ¥,019h
400 .0 .0 .0 .0 .000n  ,0000

1600 .0 .0 .0 .0 .0 .0
5 ;o 1C L0066 .650k4 .2060 .8027 L9376  .9960
\ Loo .0000 .0000 ! L1201 .9712 8897 .9082
; *600 .0 .0 L5070 .9186 .961§ .9923
T 100 .0000 .G000 .000G  .0000 .0C07T .005k4
i 400, .0 0 .0 .0 .0000 .0000

1600 .0 ) 0 .0 .0 .0

\ T Factor Matrices ‘
' 4 Factors 6 Fectors 7 Factors

_ Min, Max. Min.  Max. Min, _ Max.
2 100 .0000 .0000 L0000 .0683 .5381  .8465
Loo .0 .0 .CO00  .0000 L2903  ,(9L8
1600 .0 .0 .0 .0 2043 ,7330
in 100 L0000 .0000 .0000 loooo L0000 .0000-

L 00 .0 .0 .0 .0 0 .0

‘1600 -O OO 00 .O -0 -O
6 100 0722 .95%80 .5019 .9995 6065 ,9998
hoo L0000  ,0000 L0840 .6060 (T133  .9684
1600 .0000 ~ .0000 .0005 .0112 2279 L5371
8 100 L0000 .0000 .0000 .0000 .0000 .0C00
Loo .0 .C .0 .0000 .0000 .,0000

1600 0 0 .0 .0 .0 0

Note: In the above table, the entry .0000 m=ans that the number was a iero,
The entry .0 was an exact zero, to the
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locking at the perability levéls (probabil;ties of the chance occurence
of the observed x2 valugs) of the test stat;stic for various numbérs of
factors, one might.be able to determihe the correct number of factors.

In Table 8 areipresented the ranges of these probabilitf:leveis, for

selected numbers of factors. for the formal model (matrices 1 and 3 for

three factors, and matrices 2 and 6 for seven factors), in all cases one
i
|

would accept (at'anf reasonable probability level from .00l to .100) the |,

" hypothesis of the number of factors in the major domain. The' probability

three factor matrix

'j’

» seven factor matrix. However, in one

levels raﬁged from & low of .1173 for one high bi

to a high of .9998 for a low b?d

case, with low bij, three factors, and a sample size ¢ 100, the hypothesis
y

of two factors was also accepted (P = .6504). With seven factors, and low

bij (matrix 6), an hypothesis cf onhy four factors was supported with 100

observaﬁions and hn hypothesis of six factors was supported with 40O

1

observations. , \

For all simulation model matrices, however, the hypotﬁesis that
: !

the number of factors was equal to fhe number of ractors in the major

domain, was rejected. Even the hypothesis of seven\factors for a sample
\

factor matrix with high b2 and only éhree factors in the major domain

1]

was rejected (although one matrix of samble size 100 did have a P = .Ol9h
\
which would not have been rejec$ed at the .0l level). lThus, this test

is appropriate for teésting the hypothesis that the factor analytic model
' \
holds exactly in the data, but it is of no ise as & measure of goodness

"of fit for data that do not fit the model.

D. Analyses of Variance
Separate analysis of variance summary tables for the six measures

ol, Poy €y Cpos Ty and r, are presented in Appendix B. These analyses

e e e St A
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were performed in order to discover the relative sizes of the effects of

the four independent variables, level of b2 , model, number of factors in

13
the major domain, and sample size. Since tue assumption of normality of
analysis of variance was possibly violsted, especially with pl, 02, rys and
s border line significant F ratios should not be taken too seriously.

The results for Dl and 02 were again very similar, so results are
discussed in terms of Oy The main effect of model accounted for 61.19%
of the total sum of squares for 92. The average value of 92 for the
formal model was 1.042, while for the simulation model, it was only .668.
The only other large contributor to the total sum of squares (except for

within cell) was the interaction between model and level of b2 » which

1J

accounted for 9.07% of the total sum of squares.

formal simulation
high bij 1.003 T3
2
low le 1.080 .563

Four other small but statistically significant effects were also

found. The average value of was .888 for sample factor matrices with

Po
and .822 for those with low bi

2
1J 3

trend for p? to decrease with increased sample size. The averages were

high b There was also a significant

.905, .834, and .826, for sample sizes 100, 400, and 1600, respectively.

The BXF and MXF interactions were also significant at the .0l level.

3 Factors 7 Factors 3 Factors T Factors
high bij 919 .857 formal 1.002 1.082
low bfj .792 .851 simuletion .T10 627

Although the results were similar for c, and c,, only 6.68% of the

1

total sum of squares was attributable to error for Cyo whereas 13.02% was

yn RS S S ik oAt il o ALY

AN A,
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error for Cye This supported the earlier decision to discuss results in

terms of ¢y only, as it was less variable, within cells. The main effect

of level of bij accounted for 25.17% of the total sum of squares. The

mean value of cl was .827 for high bij and 2.807 for low bfj.

accounted for 24.62% of the total sum of squares, and the mean for the

Model

formal model was .838 while for the simulation model, it was 2.796.
Semple size accounted for 17.37% of the total sum of squares, with <y
dropping as sample size increased. The means were 2.964, 1.411, and

1.077 for the sample sizes 100, 400, and 1600, respectively. The level

of bij by model interaction accounted for 13.58% of the total sum of
squares.
formal simulation
high bi* 576 1.079
J
2
low bii 1.101 4.513

The main effect of numbers of factors in the major domain (c. = 1,322 for

1

three factors, ¢, = 2.312 for seven factors) and the three interactions

1

shown below were also significant at the .0l level.

3 Factors 7 TFactors 100 400 1600
s
high sz .600 1.055 high bij 1.649 .5kl .292
o
low biﬁ 2.0k 3.570 low by, | h.279 | 2.262 | 1.86)

3 Factors T Factors
formal .528 1,148

simulation 2,116 3077

n
Unfortunately, due to negative values for low bij’ simulation model,

and 7 factors (summed across sample size), every main effect and interaction
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which did not involve sample size was highly significant for ry and r2.

While the negative values (r2 = -.338, r, = -.315) indicated how poor

results were for that combination, the effect was apparently strong

enough to influence most other effects. The main effect of sample size '
did account for 5.14% of the total sum of squares, with r, increasing

as sample size increased. The means .587, .780, and .819 for 100, k400,

and 1600 observations, respectively.

. . . » T . T e Sl e RIS, R o
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IV. DISCUSSION

A major goal of the present study was to find or develop a measure
of goodness of fit for the factor analytic model. One such measure
studied was pg. 61.19% of the sum of squares of pe wa.s accounted for
by the main effect of model. For samples from population-correlation
matrices constructed to exactly fit the factor analytic model, 02 worked
exceedingly well. Only in the case of seven factors and low bij was it
necessary to have a sample size greater than 100. 92 also had the
desirable property of approaching unity (or nearly so) as the sample

size increased, for the matrices developed from the formal model. The

samples from the simulation model behaved quite differently. Even in the

2
13

Thus, in all cases, p2 reflected the presence of the minor factors.

best case (three factors, high b.,), the average value of p, was .8535.
There was also a significant decrease in Py for sample sizes 400 and
1600, when compared with 100, This is not a good property for a proposed
measure of goodness of fit, as intuitively one would expect the fit to a
good model to improve with more observations. However, this decrease is
due in part to 02 coming down to 1.000, after going over that value for
samples of 100. There was a significant decrease in ¢y with increased
correlations implied by the model better with more observations. This
was further illustrated by the fact that the Py values were approaching
the populatinn values obtained by Tucker and Lewis., This can be seen by

suhtracting the population values (Table 1) from the sample values

(Tables 3 and 4).
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Table 9

Differences Between Sample Values and Population
Values of p2

Sample Size

100 400 1600

High bij, Formal Model, 3 Factors .0011 .0018 000k
7 Factors .0139 .0014 -.0003

High bi ;» Simulation Model, 3 Factors  .0235 -.0047 .0019
T Factors .0248 -.0271 .0018

Low bij, Formal Model, 3 Factors -.0071 0127 .0023
T Factors L4285 .0L82 -.0016

Low bi ;» Simulation Model, 3 Factors 0657 .0190 .0123
7 Factors 1222 .0512 .0182

Since these values (Table 9) are only accurate to two decimal places (as

the Tucker and Lewis figures are to two places), all except the low bij,

simulation model matrices were within rounding error of the population
values for samples of size 1600. Thus, the decreases in 05 with
increasing sample sizes were toward the population values.

An important result was pointed out by the significant interactions

2
between level of b, and the model for 02 and ¢ In both cases, the

13 1

results in the simulation model, low bg cell were much poorer than would

1

have been predicted from the main effects alone. These results, an average

p,, of .563 and an average ¢, of 4.513 (over four times greater than the

1

next largest cell), showed that one cannot expect to support one's hypothesis
with variables that have low percentage of variance accounted for in the

major tactors. It was interesting to note that while the values of c1 were
2

J 13
formal model, the former had 02 = ,TT3 and the latter had o, = 1.080,

about the same in the two cells high bi s 8imulation model and low b

Thus the model correlations were reproduced as well for simulation model,

o) 2
high b51 as for formal model, low b;1.

vt oy aedanhy i i dadlars SRS OLT O H
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The fact that level of bi (25.17%) accounted for as large a per-

J

centage of the total sum of squares of c. as did podel (2h.62%) was

1
encouraging. Thus, if the simulation model is a better model of the
world, it is still possible for an experimenter to improve his results
by constructing measures with high proportions of variance accounted for
by the major factors.
The x2 statistic was useful for sample factor matrices for the
formal model only. Even then, it lead to the acceptance of too few factors
in some cases, with low bij and/or too few observations.

The measure rl did well for the formal model matrices, although

more observations were necessary before it neared its maximum of 1.00.

2
1J

.9392. However, the simulation model matrices with high bi

Also, with seven factors, low b, and 1600 observations it only attaimed

also gave

J

high values of r Thus the maximum-likelihood estimation procedure was

1
doing a good job of reproducing the model correlations, but this was not
reflected in p,. The results on matrices T and 8 (simulation model, low bfd)
confirmed the importance of controlling the relstionship between the major
and minor influences on one's results. The major factors should predominate
over minor factors in any study. The results did indicate that it is
easier to reproduce a small number of factors in a poorly designed study.
Thus r, vas shown to be useful as a measure of goodness of fit. It
does require the writing down of an hypothesized factor matrix ¢, so it

can not normally be used in exploratory studies. It has the advantage

that it could be used with any factor analytic procedure. On the other

hand, p,, could be used with any study, as long as the maximum-likelihood i
2

:
!
!
i
;

estimation procedure is used. However, it seems somewhat less useful than

r, when the factor analytic model does not hold in the population.

1
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An investigator should strive to develop variables which strongly
represent his major factors. He should have a large sample size (a ratio
of five observations per varisble was not always sufficient to insure
good results, even with high bij

maximum-likelihood factor analysis, he should usually stop factoring

and the formal model). If he uses

when the x2 becomes non-significant, if his sample size is large enough.
However, with real data, there may be statistically significant minor
factors which are not of interest. In this case the x2 cannot give an
indication of when to stop factoring. However, the investigator can use
02 as an estimate of how well the formal factor analytic model holds in
the population from which his data was teken. Although the statistical
properties of this estimate are not known, and it may be high for smsall
semples, it does have the desirable property of having z value of 1.00
in populations which exactly fit the formal factor aanalytic model.
Small values of 92 probably indicate a poorly controlled study, and

the investigator may be able to improve his results by using better
controls over minor factors, by having variables with high percents of
variance in the major domain, and by having s higher ratio or variables
to major fauctors. Finally, in a confirmatory study he should write
down an hypothealsed factor matrix and use ¢, amd r. to determine its

1 1

goodness of fit,
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Table 10

Means of pl for 3 Factor Matrices
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3 Matrix Sample 1 Factor 2 Factors 3 Factors 4 Factors
-3 size

1 100 L4321 LTT4L 1.0011 1.0135

400 1385 LTHT2 1.0017 1.0054

1600 4323 L1575 1.000k 1.0011

3 100 4776 6626 8570 .8818

Loo 4648 6458 .B262 8L32

1600 4679 6522 .8321 .8Lhk

5 100 6739 .8879 .9932 1.0397

400 LE58L .8639 1.0126 1.0255

1600 .6581 8641 1.0023 1.0050

7 100 U719 5591 6264 .6863

koo 4413 .5205 L5714 .6058

1600 ASTT .S1T7T . 5629 L6112

Table 11

Means of 0, for 3 Factor Matrices

Matrix Sample 1 Factor 2 Factors 3 Factors L Factors

.
dlie

1 100 4273 1703 1.0011 1.0i16
Loo A3TS LThE2 1.0018 1,008k
1600 Li320 L1573 1. 000h 1.0001
3 100 LT3 6571 L3538 AB778
400 L6339 JBhLG 82353 LBLg2
1600 676 L6517 8110 Bhh2
) 100 6702 .BBs2 0020 1.0416
hoo 6576 JB63% 1.6127 1.02%7
1600 6570 5655 1.0023% , 1. 0050
7 100 RS .5%09 6157 NSLE
ago RN L6187 . 5690 €029

1600 57k 5173 562 G108
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