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SEISMIC ANALYSIS OF THE RULISON EXPLOSION

Abstract

RULISON was an underground nuclear explosion detonated to stim-
ulate gas production as part of the PLOWSHARE program, The RULISON
device was detonated at 21:00:00.1Z on 10 -September 1969. It was
detonated in Western Colorado, which represented a new source
region, and was emplaced at a depth nearly double that of previous
American explosions.

Our analysis includes study of seismograms from 18 LRSM, 2
VELA observatories, LASA, and 8 WWSS stations. When travel-times
are compared to the Herrin 68 tables, interval velocities along an
easterly profile generally agree with previously published findings.,
The most probable magnitude estimates based on amplitude data are:

mb(Gutenberg) = 4,62 and MS (Gutenberg) = 3,99,

Proposed identification criteria, developed mostly from NTS
explosions and Western United States earthquakes were applied to
RULISON and were compared when possible to a previous chemical ex-
plosion at CLIMAX, Colorado, and to a selected Colorado earthquake,
The criteria include location, depth of focus, complexity, Ms Vs
m,, energy relationships among phases, first motion, and radiation
patterns,

Computed locations displaced the event from the true epicenter
from 1 to 24 km depending upon the number of recording stations
used and the source depth restrictions placed on the computations.
Cepstral analyses produced a depth estimate of about 2.5 km for
RULISON with reasonable velocity assumptions although the depth
phase pP was not.visible. For the 9 August 1967 earthquake cep-
stral analysis produced a depth estimate of 5.0km, At present,
however, we lack sufficient experience with earthquakes to say that
cepstral peaks of the magnitude observed might occur for many of
them. Thus, strictly speaking, the depth determination cannot be
used as a discriminant. Complexities are not applicable to RULISON,



M5 versus my and energy relationships among phases place RULISON in
the explosion population; and show that there is less shear energy
present for RULISON than for the 9 August 1967 Colorado earthqualke,
No rarefactional first motion was observed on RULISON or earthquake
recordings. The long-period LQ/LR ratios can be explained by
surface-wave radiation patterns from a compressional source accom-

Panied by tectonic strain release of relative strength 0.6,
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ANALYSIS OF THE RULISON EVENT

Introduction

The underground nuclear detonation RULISON was a part of the
PLOWSHARE program to investigate gas stimulation. However, by
virtue of its location, shot medium, and depth it provided an im-
portant set of new data relevant to underground nuclear test detec-
tion and identification. Its setting was in Western Colorado
(39°21'21"N, 107°56'53"W), a completely new source region for in-
vestigation and comparison with the other source regions where
underground nuclear detonations have occurred. The depth (8,431
feet) was approximately a factor of two greater than any previous
underground nuclear explosion in the United States, and the shot
medium (Mesa verde Sandstone) is different from previous shot media
with the exception of GASBUGGY. Thus, the RULISON event provided
an excellent opportunity to test the effectiveness of the proposed
diagnostic criteria which were developed largely on the basis of
NTS experience.

In this study we have made an evaluation of a selected set of
RULISON seismic data and examined the applicability of each of the
current purposed diagnostic criteria for identifying underground
nuclear explosions, A more complete data analyses by the USC§GS is
in preparation., In addition there was a large chemical explosion
(CLIMAX) in the same general region available for comparison with
RULISON,

The basic observational data are presented in a single section
and saved permanently on magnetic tape at the Seismic Data Labora-
tory in order to provide a readily accessible data base for each
aspect of this investigation as well as for future work. These
data are then used in the detailed evaluation of location, source
depth, and other diagnostic parameters for the RULISON event as
compared to other underground nuclear detonations and earthquakes,
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BASIC OBSERVATIONS AND MEASUREMENTS

\

1 Ay B \
' Tabulated data : : \ ‘
|

Epicefiter data for the nuclear event RULISON are given in
Table I. Data for 28 stations are presented in Table II, These
include~travei-timés for observed short-period phases: P, Pg, and
Lg. Maximum zero to peak amplitudes (A/T) and corresponding
beriods for short-period and long-period phases; and body-wave (mb
and me) magnitudes and surface-wave (Ms andlMg) magnitudes at those

stations for which they could be computed. \

\The stati&ns listed ihclude 18 LRSM stations, 2 VELA observa-
tories and 8 WWSS stations. The stations are listed in order of
increasing dist?nce froﬂ,the RULﬁSON epicenter. The geographic }
coordinates and elevations for these stations are given in Appendix
1. Fighré 1, shows the event location and the LRSM and VELA sta-
tion network. . \

\.

Instrumentation

\ The LRSM, VELA and WWSS stations consist of three component
short-period and long-period instrqmentation. Pertinent recording
infor%ation for these stations is given\in Appengix 2. Relative

magnification curves for all these networks are given in\Appendix 3,
. 1

1

Reduced travel-times !
]|_7 1)

Reduced travel-times are shown in Figure 2 relative to Hetrin
68 times. We also show the Pn and P velocities which fit the data.
hese indicated velocities are used in conjunction with relative
Pn and P amplitu?es for magnitude estimates according to Evernden
(1967) and are discussed in the magnitude section. \
\ | |
Amplitudes

Figures 3 through 7 are plots of maximuﬁ amplitude (zero to
peak A/T) of Pn, P, Pg, Lg,\LQ, and LR. For the short-periq@ Pn
and P phases, the maximum peak-to-peak excursion within the first \
few cycles of motion of the phase was.measured, halved, and

‘ \
|
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divided by the period of the measured amﬁlitude cycle to obtain
zero-to-peak A/T. For both the short and long-period Pg, Lg, LQ,
and LR phases the maximum peak-to-peak excursion visible on the
record was ﬁeasured, halved, and divided by the period 'to again-
obtain a zero-to-peak A/T value. Further, Lg and LQ measurements
were made from the records of the horizontal instrument most nearly
normal to the direction of the propagating wave.

The expected attenuation rates for Pn and P are indicated with
thé amplitudes on Figure 3. These are discussed in more detail in
the Magnitude section. Attenuation rates of R'S,fitted Qisually
for Pg and Lg data are shown in Figures 4 and 5. For LQ he.visually
fitted a slope of -1.66 through the data points, Figure 6. In
Figure 7, LR amplitudes, we 'show two slopes of -1.16 and -1.66 for
distances less than 15° and a slope of -1.66 for distances greater
tﬁan 15°. These slopes are based on the surface wave magnitude
estimates and are discussed in more detail in the Magnitude section,

In general, the Pg, Lg, and LQ amplitude data .conform to the
expected attenuation rates.

\
!

Magnitudes

Body-wave 'magnitudes are estimated in this report in two ways
for stations in the distance range 2°-100°.

\ \_

m, = logA/T + B (Gutenberg and Richtér 1956)

where

\

A = maximum zero to peak ground motion (millimicrons) of the

A

Pn or P phase within the first t?rée or four cycles,
T = apparent period of maximum ground motion (seconds),

B = distance correction factor.
! . .
The distance correction factors from 16° to 100° were taken' from
Gute?berg and Richter (1956%. The VELA Seismological Center (VSO)




projected this curve back to 10° and assumed an inverse-cube rela-
tionship for the amplitude decay of the Pn wave from 10° to 2°.
These factors are listed in Appendix 4.

Gutenberg and Richter's definition of body wave magnitude
at teleseismic distances is accepted by practically all seismologi-
cal organizations as the standard; however, Evernden (1967) shows
that for distance less than 20° it is necessary to adjust the
distance correction factor in their formulation for the Nevada Test
Site. Evernden's formulas used in this report are as follows:

=7.55 + 1.21 (log (A/T) + 3.04 1logd)

=3.27 + log (A/T) + 2 logh

A = distance in kilometers.

Application of these formulas are based on the appropriate veloc-
ites and relative amplitudes of P (Figures 2 and 3). 1In addition
in Figure 3 we show what the amplitudes should be, for the various
magnitude determinations relative to my (Gutenberg, A>16°) = 4,62,

It should be noted that the Evernden formulation of mg 1 Was
not used in these estimates. Even though the travel-times for LAO,
TUC, and BP-CL show an apparent 8.1 km/sec velocity, these stations
do not correspond to the appropriate region or path indicated by
Evernden for this correction and; therefore, m, g was used for the
magnitude estimates. CR2NB could be either an Mg 1 OT Mg ¢ accord-
ing to Figure Z; however, the amplitude shown in Figure 3 indicates
that an mg g would provide a better estimate with respect to the
teleseismic magnitude estimate. The signals for LON and COR appear
to travel at the 7.9 km/sec velocity but the amplitude at COR is
large and consequently the Mg o is applied at this site. SJ-TX and
WQ-IL show an apparent velocity of about 10.5 km/sec; however, the
amplitudes indicate that mg s provides the better magnitude esti-
mates. We show all magnitude estimates in Table I and Figure 8.

-4-



On the basis of Figures 3 and 8, the best body-wave magnitude esti-
mates are (Gutenberg A>16°) my = 4.62 and the adjusted my = 4,59,
However, due to the uncertainties, note! above, for applying
Evernden's corrections, the most acceptable magnitude estimates is
my (Gutenberg A>16°) = 4,62,

Calculation of the surface-wave magnitude for RULISON is by
the method of Gutenberg (1945) for all distances. In addition we
computed M for distances less than 15° by a method of Von Seggern
(1969).

M
s

log AH * 1.656 log + 1.818 + C + D, Gutenberg (1945),
where

AH = 0.5 peak to peak amplitude in microns at T = 20 seconds
for the horizontal radial component of Rayleigh wave,

1.656 logh = distance correction factor with A measured in
degrees. This correction is limited to A between 15° and 130°.

(@]
]

Site correction factor.

o
]

Depth of source, azimuthal correction, etc.

For this study we set C and D equal to 0 and use the following re-
lation adopted by Geotech (1964):

MS = log (AZ/T) + 1.66 logA - 0.18 where (AZ) = peak to peak
amplitude in my and T = corresponding period in seconds for the
vertical component of the Rayleigh wave and A = distance in degrees.

These two formulas are identical at T = 20 seconds. The
Geotech formula does not consider ellipticity (AH/AZ); however, for
periods of 15 to 17 seconds and an ellipticity of 0.8 the variance
of MS (Geotech) to MS (Gutenberg) is *+ 0.03 magnitude units. Since
small magnitude events traversing continental paths have their
maximum measurable amplitudes spanning this range of periods, the
formula is compatible with Gutenberg's.



It is important to note that this magnitude estimate gives a
magnitude of 0.18 less than the USC§GS and Bashams estimates, Their
formulas are as follows:

USC&GS, MS = log (A/T) + 1.66 loga + 3.3
where
A = distance in degrees
and
A/T = amplitude, zero to peak in u/sec;
Basham, Ms = log(A/T) + 1.66 logh + 0.3
where
A = distance in degrees
and
A/T = amplitude, zero to peak in mu/sec.
Since Gutenberg's formulation is for distances greater than
15°, we use a modified distance correction factor for surface waves
for those less than 15° (Von Seggern, 1969) derived by the use of

Rayleigh wave amplitude measurements from 29 Nevada Test Site ex-
plosions.

The formulation is as follows:

Mg = log(A/T) + 1.16 logh + 0.74.

These estimates are tabulated in Table I and shown in Figure 9,
Further, in Figure 7 we show the Rayleigh amplitudes and the ex-
pected amplitudes for M: = 4,18, M, = 3.99 (4>15°) and M, = 3.84

-6-



for all stations; however, the scatter of the data makes it diffi-
cult to determine which slope best fits the data for distances less
than 15°. From Figure 9, it is clear that Mg formulation over
corrects and the Gutenberg MS formulation applied to distances less
than 15° under estimates the surface wave magnitude relative to
those estimated at teleseismic distances. Therefore, we conclude
that the best magnitude estimate is MS (Gutenberg A>15°) = 3,99,

The following table summarizes the magnitude estimates for
RULISON, The word "Adjusted' preceding the magnitude symbol indi-
cates the nearer station magnitudes are corrected using either
Evernden or Von Seggern's formulas and are included in the average.
The my or MS for "all distances" includes in the average, the mag-
nitudes determined by the use of VSC distance correction factors
for my and Gutenbergs formula for MS for distances less than 15°.

(A1l Distances) my 4.90 + 0.62 for 27 stations,

(Gutenberg, A>16°) m, = 4.62 + 0.36 for 11 stations,
Adjusted m, = 4.59 + 0.35 for 27 stations,
(A1l Distances) M, = 3.84 + 0.39 for 26 stations,
(Gutenberg, A>15°) MS = 3,99 + 0.44 for 12 stations,
Adjusted Ms = 4,09 + 0.36 for 26 stations.

RULISON seismograms

Various profiles consisting of LRSM and VELA station seismo-
grams for RULISON are shown in Appendix 8, Most of the indicated
profiles are not profiles in terms of a continental linear array
type due to the paucity of stations and lack of azimuthal alignment.
However, the East profile consists of six LRSM stations (CR2NB,
BY-10, WQ-IL, GZ-OH, AS-PA, and PJ-PA) which are about equally
spaced between 957 and 2757 kilometers and on an 80° azimuth from
RULISON. Included also, is HN-ME even though this station is not
exactly on the profile (Figure 1).

In Figure 10 we show the seismograms for the East profile
which indicate a Pn velocity of 7.9 km/sec and later P velocities

-7-



of 8.4, 10.4, and 13.1 km/sec., These velocities appear reasonable
when compared to the NE profile from BILBY, Archambeau et al (1969)
and data from the Lake Superior study by Glover and Alexander
(1970) . Further the 8.4 km/sec lies between the 8.32 and 8.52 km/sec
for the ESE and NNE profiles from GASBUGGY (Rasmussen and Lande,
1968). Thus the velocities seen along this profile are as expected.

Summary

Fcr the RULISON event we have obtained the travel-time and
amplitude data for 18 LRSM stations, 2 VELA observatories, LASA,
and 8 WWSS stations. These are saved on magnetic tape at the
Seismic Data Laboratory. In addition, the seismograms for the LRSM
and VELA observatory stations were digitized and saved for subse-
quent analysis.

We conclude that the magnitude estimates most appropriate .« -
RULISON are as follows:

4,62

|1+

(Gutenberg, A>16°) my 0.36 for 11 stations,

(Gutenberg, A>15°) M 3.99 0.44 for 12 stations.

|1+
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IDENTIFICATION CRITERIA APPLIED TO RULISON

Introduction

One of the main objectives of the VELA program has been to
develop seismological criteria for distinguishing between under-
ground nuclear explosions and earthquakes. Prior to RULISON, con-
siderable effort had been devoted to establishing diagnostic crite-
ria making use primarily of Nevada Test Site (NTS) explosions,
nearby earthquakes, and earthquakes from both Western United States
and elsewhere. The RULISON explosion provided an excellent oppor-
tunity to determine the general applicability of these diagnostic
criteria to a new source region. A chemical explosion was detona-
ted in the same general region as RULISON on 23 May 1967 at Climax,
Colorado; however, the seismic energy released was not sufficient
to be detected at teleseismic distances thereby seriously limiting
the application of the diagnostic criteria for that event. Where-
ever possible, these criteria have been applied to the CLIMAX explo-
sion and to a selected Colorado earthquake as well as to RULISON.
The earthquake occurred on 9 August 1967 and was located by USC§GS
approximately 280 km east of RULISON. This earthquake was selected
on the following basis from the Preliminary Determinations of Epi-
centers (USC§GS) listing, 1) magnitude approximately equal to that
of RULISON, 2) a shallow event and, 3) location as near to RULISON
epicenter as possible and fitting the above requirements. The 9
August 1967 earthquake, along with other Denver earthquakes at or
near the Rocky Mountain Arsenal (RMA) well, is documented and
discussed by Major and Simon, 1968. Further, the location used
for this study was determined with depth restrained to 5 km and
with travel-times from 43 WWSS and VELA stations, USC§GS Earth-
quake Data Report, 50-67, (See Appendix 5 for the event spatial
and temporal parameters.)

Since we know the location, origin time, and size of RULISON
it is important to show the degree to which RULISON revealed itself
seismologically. Therefore, in this section we discuss the follow-
ing diagnostic criteria as applied to RULISON: (1) location,

(2) depth of focus, (3) complexity, (4) Ms versus m, (5) energy
relationships among phases, (6) radiation patterns, and (7) other

criteria.

-0-



Location

P-wave arrival times were read from all available VELA obser-
vateries and LRSM stations film seismograms, and from USCEGS WWSSN
film chips. Where the film was not available, USC&GS arrival times
reported in the "Earthquake Data Reports' were used in order to
obtain a network of stations with the best distance range and azi-
muth aperture. Location according to Chiburis (1966) employing the
Herrin 1968 travel-time tables was used for all the location deter-

minations.

RULISON, when located using 66 stations with depth free to
vary, shifted 6 km on an azimuth of 31° from the actual location
with a depth estimate of 41 km. Using a subset of 33 stations
having about the same azimuthal distribution, the event was mis-
located about 10 km along an azimuth of 202° with depth estimated
at 59 km.

Results of the cepstral analysis revealed the source at the
expected depth. Accordingly, RULISON was relocated with depth re-
strained using the 66 station set, which produced an error of 1 km
along an azimuth of 263°, In the case of the 33 station net, the
epicenter shifted 24 km along an azimuth of 208° from the true

epicenter,

The earthquake was located using all ten available arrival
times and by restraining depth to the USC§GS determined value of
5 km, It shifted 27 km on an azimuth 10° from the input USCEGS
location. The ten stations that recorded the earthquake also re-
corded RULISON, Using this ten station network, RULISON shifted
16 km on an azimuth of 38° from its true location. A comparison
of location results is presented in Table III. The CLIMAX explo-
sion was not located because there were no teleseismic data,

Thus, we see that location estimates for the RULISON event are
highly variable (1 km to 24 km) depending on the recording stations
and travel times used and the source depth restrictions placed on
the computations,

It is desirable to determine the degree to which the

-10-



travel-times derived from one event are valid for use in locating
another. Accordingly, travel time corrections were determined
(Chiburis, 1968b) and the events were relocated with the network

of ten common stations. Using the corrections determined from the
earthquake, RULISON shifted 15 km on an azimuth of 172°, yielding
no improvement in accuracy. We would expect a standard deviation

of less than 0.5 seconds for a good solution with corrected travel
times; however, the standard deviation of the travel time residuals
was only reduced from 1.49 seconds for the uncorrected solution to
1.07 seconds for the corrected solution with a corresponding de-
crease in the standard 95% confidence ellipse from 4607 km2 to

2396 kmz. Both ellipses comfortably contain the actual epicenter.
The fact that the location did not improve is not surprising when
one considers that the two events are separated by a distance of
more than 275 km including the Rocky Mountains. Locating the earth-
quake with travel times determined from RULISON produced a shift

to 14.42 km on an azimuth of 348,7°, which is nearly a mirror
image, as expected, (Chiburis, 1969) of the shift obtained for
RULISON with the earthquake travel time corrections. That the
standard deviation of errors did not decrease significantly demon-
strates that that the travel time corrections used are not appro-
priate. The conclusion is that RULISON and the Colorado earthquake
are not in the same travel-time region. Although the area in the
vicinity of RULISON is now calibrated for locating subsequent
events, the area in the vicinity of the earthquake remains unknown
regarding suitable corrections for accurate locations.

Depth of focus

Since the depth of focus for explosions is presently limited
by drilling technology to shallow depths (less than 10 km), and
since most earthquakes are known to occur at greater depths than
this, depth determination is an important identification criterion.
Events determined to be significantly deeper than a few kilometers
can be classified as earthquakes. Determination of the focal depth
is aided by the fact that many earthquakes have observable depth
phases (pP, sP, etc.); explosions, however, are generally too
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shallow to produce visually distinct depth phases on the seismo-
gram. The RULISON event, for example showed no depth phase on the

indivdual recordings.

For shallow events the pP and P phases overlap. However, if
their waveforms are similar, the fact that an echo exists in the P
coda may possibly be detected by the presense of periodic nulls in
the P spectra. Cohen (1969) found nulls in P spectra for several
explosions due to the interference of the pP and P phases. By com-
puting the spectrum of the spectrum (the cepstrum), it was possible
in some cases to estimate objectively the depth-phase delay time,
The dot product of the cepstrum and the pseudo-autocorrelation
functions shows the depth phase if present as a negative correla-

tion peak.

RULISON and the 9 August 1967 earthquake are two shallow
events which are deep enough to estimate their depths by the spec-
tral null method. We would expect RULISON (2.6 km depth) to gener-
ate a pP phase 1.5 seconds (+ 20% depending upon the overburden
velocity) behind the P phase, with spectral nulls every 0.7 Hz. We
would expect the earthquake at 5.0 km depth to generate a pP phase
2.8 seconds behind the P phase, and with spectral nulls every 0.4Hz.

The best evidence of regular spectral nulls and of the promi-
nent negative dot-product correlation peaks are in the LASA data
Figures 1la, 11b, and llc. The data show Pn spectra (0 to 4 Hz)
for RULISON recorded on the center seismometers of 18 LASA sub-
arrays. The dot product of the pseudo-autocorrelation and the
cepstrum accompanies each spectrum. The spectra are arranged in
order of increasing distance from RULISON.

The sum spectrum (bottom, Figureillc) gives the clearest indi-
cation of the spectral nulling occurring every 0.7 Hz interval. In
addition, the negative correlation peak at 1.45 seconds is the most
prominent feature on the dot product function. These results agree
with the expected values for RULISON. Many of the individual
spectra show some of the spectral nulls, but none of them as clearly
as the summation spectra. In addition, many of the individual dot
product functions show the negative correlation at the correct
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delay but also display other more prominent positive and negative
correlation peaks not associated with the expected depth phases.

LASA data for the 9 August 1967 earthquake is not available
for comparison with these LASA results for RULISON.

Sum spectra from LRSM stations for both RULISON (17 stations
at Pn and P distances) and the 9 August 1967 earthquake (15 sta-
tions at all distances) are shown in Figure 18. These spectra are
log plots of the sums shown in Figures 12c and 13c. Spectral nulls,
indicated for both events, are more prominent for the earthquake
spectrum. Note, too, that since the earthquake is deeper, more
spectral nulls are observed in the signal band of 0.5 Hz to 4.0 Hz.

Figures 12a, 12b, and 12c show individual and summation spec-
tra and dot product traces for RULISON obtained from recordings at
stations at all distances. The regular spectral nulls and negative
dot-product correlation peaks are decidedly less prominent than
those shown on the LASA data.

Figures 13a, 13b, and 13c show individual and sum spectra, and
dot product traces from the 9 August 1967 earthquake for 15 LRSM
stations at all distances. Again, these LRSM stations do not exhibit
the regular spectral nulls and prominent negative correlation peaks
as well as does the LASA data for RULISON.

Conclusions

1) Regular spectral nulls and negative correlation peaks were
seen for both events where expected at several stations.

2) Not all stations show the regular spectral nulls and cor-
relation peaks.

3) Nearly all stations showed other spectral nulls and nega-
tive correlation peaks besides those correlated with depth phases.

4) LASA data exhibited the clearest estimates of depth
through the analysis of regular spectral nulls and dot-product
correlation peaks,

5) This method requires summation spectra or correlations
from several traces to cancel path and site effects. Multichannel
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stations like LASA are helpful in this way since the structure
varies across the array.

6) RULISON showed four spectral nulls across the short-period
signal band (0 5 Hz to 3.0 Hz). A fewer number of nulls would
make recognition of regular spectral nulling difficult, Thus,
events with depths shallower than RULISON would be difficult to
determine by any variation of this method.

8) The 9 August 1967 earthquake showed six regular nulls
across the sigral band. As a consequence, the depth phase for this
event was easier to detect on LRSM station data than was RULISON's.

9) The method requires good signal-to-noise ratios.

-14-



Comglexitz

The generally agreed upon requirements for the satisfactory
application of complexity as a diagnostic, (large teleseismic dis-
tances, good signal to noise ratios) could not be satisfied because
of a lack of stations. However, the complexities for RULISON and
the 9 August 1967 earthquake are shown in Figure 14 plotted as a
function of distance. Both events have similar complexity values
(Fc). However, for common stations; LC, KN, SJ, PG, and NP the
earthquake has greater values of F. except at NP where the noise
for the quake is so high that one can hardly see the signal.
Basically, the signal to noise ratio is iradequate to apply this

criterion,

M us m
L versus b

Since body wave and surface wave magnitude estimates give some
measure of the source type and/or depths by minimizing azimuthal
and distance effects, the relative excitation of body and surface-
wave energy is an important diagnostic in that most earthquakes
have larger surface-wave magnitudes than explosions with comparable
body-wave magnitude. RULISON by virtue of its new location and
greater depth provided an opportunity to determine the effective-
ness of this criterion as compared to nuclear explosions from the
Nevada Test Site (NTS) and earthquakes from the Western United
States,

Figure 15 shows surface-wave magnitudes with the Gutenberg
formula applied to all distances, relative to Adjusted body-wave
magnitudes (Adjusted mb), Evernden (1967), for 39 Nevada Test Site
(NTS) explosions. For comparison we also include twelve earth-
quakes from Western United States with magnitude estimates deter-
mined by Basham (1969) using the Canadian station network. Since
the Canadian seismological network includes three stations at
distances less than 15° from the Nevada Test region, we excluded
16 other earthquakes with an m, determined by nine or less stations
for the purpose of minimizing the near distant station effects.
Therefore, Basham's my should be comparable to the Adjusted m, .
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- If these earthquakes are representative of the area then they fall
in a different population than the explosions. For 26 NTS explo-
sions observi teleeeismically, Basham obtained a least squares
magnitude relationship of M = 1,24 my - 1.76. We obtain M = 1,21
my, - 1.89 for 39 exp1051ons including regional and near reglonal
observations, Therefore, the latter M Prmy relationship appears
valid for NTS; howeVer, the separatlon betdeen our expﬂp51on and
Basham's earthquake populations is enhanced. This is largely due
to the d1fferences in the M formulation (0. 18) between Basham and
Geotech (see Magnltude sectlon) Also included in the figure, but
not in the least squares determlnatioT, are the RULISON, GASBUGGY
and CLIMAX explosions, the 23 January '1966 New Mexico and 9 August

1967 Colorado earthquakes. .

As shown in Figure 15, M versus Adjusted my the three explo-
sions, 2ll from different source regions, fall into the NTS explo-
sion population and the two earthquakes fall in the group of other
earthquahes in Western Upited States., Thus had we not known in
advance that these events were, explosions, we would certainly have
decided that they were susp1c1$us on the basis of this cr1ter10n

alone.
!
ARE and ERZ\(area under the Rayleigh wave and total energy

contained in the Rayleigh wave), Turnbull and Lambert (19681, rel-
ative to body-wave magnitude are essentially measures of M_ |- my .
Figure 16 and\17 show ARZ and ERZ plotted versus (Cutenberg) mag-
nitude (mb) for earthquakes and explosions from different regions.
The term (Gutenberg my ) is not a true Gutenberg magnitude but
1nc]udes data for d1stances ‘less than 16° corrected according to
VSC, (see Magnitude section). These figures are taken from the
LONG SHOT report, %bert et al (1970) and the event descriptions
are listed in Appendix S. The results place RULISON clearly in

the ‘explosion population.
\
Thus, on the basis of these results RULISON would fall in the

general explosion population as deflned by previous NTS (and other)
explosions and'earthquakes\ This does not necessarily mean that
we have identified KULISON las an explosion at this point but rather
that pt would not havc been dismissed as being an earthquake. |
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Energy relationships among phases \
' \

The previous section (M, versus m ) shqows that a difference
in excitation of body and surface waves exists between RULISON and
the 9 August 1967 Colorado ethhquake. The purpose of this section\
is to examine these differences in.morF detail, Various authors
have shown that more long-period energy is released by earthquakes
than by explosions having equivalent m,; however, the spectra of
earthquakes seen at far-field\are influenced by source orientation,
depth, and distance (see Von Seggefn and Lambert, 1969, for the
bibniograpﬁy and summary discussion)., Therefore, W% discuss (1) \
P-wave spectra, (2) Rayleigh-wave spectra, (3) spectral energy
ratios, and (4) relative shear energy.

(1) P-wave spectra -

Figure 18, discussed in the Dopth of Focus section %s a log
plot of the sum of 17 stations for RULISON and 15 stations for
is 12¢ dnd 13c respec-
tively. From this display t{he earthquake does show more long-

the 9 August 1967 earthquake shown in Figur

period energy than the explosion. This is in qualitative agree-
with most results of other works in the field of short- ber1od

spectral ratios. '

|

i
" (2) Rayleigh wave-spectra -

Rayleigh-wave energy spectra are computed by a Sine-cbsine
Fourier transform for a signal velocity window of about 3.60 km/seL
to 2.5 km/sec and a noise sample of ‘equal length., Thé noise spec-
trum iF subtracted from the signal spectrum. The resultant #nergy
spectrum is then reduced to an amplitudﬁ spectrum which is further
corrected for static magnification and system response, Figures
192 and 19b show Rayleigh-wave spectra of five common stations
(KN-UT, LC-NM, SJ-TX, RK-ON, and NP-NT) for RULISON and 9 August
1567 earthquake. Fourteen additional RULISON spectra are shown in
Appendix 6,

In Flgure 20 Me show summed and normalized energy spectra for
these same five common stat1ons for each event, ihis process of
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.summing Rayleigh-wave spectra smears out the spectrum because of
frequency dependent attenuation with distance. Since the RULISON
and earthquake epicenters are separated by a large distance

(289 km) this method could also introduce large path effects. How-
ever, it is interesting to note that the spectral sums are very
similar in shape between 0.02 and 0.076 cps. The earthquake does
show more energy in the low (0.02 to 0.38 cps) and high (0.076 to
.10 cps) frequency portions, however. This result is discussed
more quantatively in the next section,

(3) Energy ratios -

Von Seggern and Lambert (1969) studied the Rayleigh wave
spectral dependency .as functions of magnitude, source type, and
distance both theoretically and empirically. The theory indicates,
for explosions, that the shape of the source spectra should not
change with magnitude in the spectral band of interest (T = 10 to
50 seconds); thus, ratios of total energy between adjacent bands
of frequency should not change with magnitude. However, due to
different source types, layering response and depths, earthquake
ratios can be greater than, less than, or equal to those of explo-
sions. Empirical evidence supports these theoretical findings.

Mean ratios for RULISON, the 9 August 1967 Colorado earth-
quake and the 23 January 1966 New Mexico earthquake are computed

as follows:

f f
2 3
[Jfl Em(f)df/sz E_(£)df]

where ﬁi equals the average energy ratio for n stations recording
one event and Em is the energy spectra at station m. For El we let

a2}
I

= 1/T1 and T, = 48 seconds,

1
f2 = 1/T2 and T, = 22 seconds,
f3 = 1/T3 and T3 = 15 seconds.

For ﬁz, we change only Ts from 15 to 10 seconds (T3 = 10 seconds).
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Figures 21 and 22 show El and EZ plotted versus Rayleigh-wave mag-
nitude and the event descriptions are listed in Appendix 7. The
Rayleigh-wave magnitude is determined from the spectra used in the
above energy ratio analysis. For these estimates the maximum am-
plitude is picked from the spectra between T = 17 and 23 seconds
and corrected according to Gutenberg MS formulation applied to all
distances. Therefore these magnitudes do not correspond to those
determined from film analysis. It should be emphasized that,
basically, the ratios are independent of magnitude, but only if

the signal to noise ratio is high enough to allow a valid analysis.

In Figure 21, ﬁl (T3 = 15 sec) determined from 19 stations for
RULISON is clearly in the explosion population. Similar results
for ﬁz (T; = 10 sec) are obtained in Figure 22,

Rl determined from 14 stations for the Colorado earthquake is
greater than Fl for RULISON and places it in the earthquake-popula-
tion while ﬁz for the earthquake places it in the mixed explosion-
earthquake population. Similar results using 14 stations were
obtained for the New Mexico earthquake. However, Von Seggern and
Lambert (1969) indicate that for events with MS greater than 3.0
and an average station network distance greater than 1000 km, ﬁl
(T; = 15 sec) is. more reliable as a diagnostic than ﬁz (Tg = 10
sec). The average station network distances for these three events
ranged from 1700 to 2000 km.

Therefore, for RULISON, ﬁl the preferred diagnostic, shows
that the Rayleigh wave spectra in the T = 15 to 50 second band is
similar to other explosions.

(4) Relative shear energy -

Earthquake source mechanisms by virture of their physical con-
figuration should produce more shear energy than compressive source
mechanisms such as explosions. Thus, we look at relative Lg and
Love wave amplitudes for the 9 August 1967 earthquake and RULISON.

The average ratio of Lg earthquake amplitudes to Lg RULISON
amplitudes is 6,62 and the average ratio of Love earthquake
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amplitudes to Love RULISON amplitudes is 6.58.

Therefore the earthquake has more shear energy than RULISON,
an equivalent magnitude explosion. However, additional data from
many Colorado earthquakes will be needed to ascertain whether this
is typical or atypical of this region. Moreover, there is no well
accepted discriminant function for this ratio against which to test
these two data points.,

Radiation patterns

Various authors have shown that differences in radiation pat-
terns between earthquakes and explosions should exist. Since path
and site effects greatly influence body-wave amplitudes such that
definitive radiation patterns are rarely possible, we look at only
the direction of first motion for P,

For RULISON and the Colorado earthquake (9 August 1967) there
appeared to be no distinct rarefactional first motion; however, the
quality of the seismograms prevents any reliable determination of
first motion. Thus, neither the earthquake nor RULISON, could be
dismissed as an earthquake.

Studies by Toksoz et al (1965) and Toksoz and Clermont (1967)
have shown that observations of non-circular radiation patterns of
surface waves for the nuclear explosions, HARDHAT, HAYMAKER, SHOAL,
and BILBY can be explained in terms of a compressional source accom-
panied by the release of tectonic strain.

For the theoretical aspects and procedural considerations of
this study we reference Toksoz and Clermont (1967) and show formula
7 in the above paper.

v | FkfA, cos20
U 5 ‘% [] [Y exp [-r(YL = YR)]
|"Rz| (1+F sin 26)Apkp (ut/v )
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UL = far-field displacement of Love waves,

URZ = far-field displacement of Rayleigh waves,

F = relative strength of the double-couple,

cos 26 = azimuthal dependence of the Love wave radiation for
the double-couple,

sin2e = azimuthal dependence of the Rayleigh wave radiation
for the double-couple,

kL,kR = wave numbers for Love and Rayleigh waves,

r = radial distance,

Y12 YR = Love and Rayleigh wave attenuation coefficients,

AL,AR = the medium response for Love and Rayleigh waves due
to a vertical force,

U W, = the components of particle velocity at the surface.

We determined AL AR, kL’ kR, and (u*/w*) using Harkrider's
program (1964) for an average structure of the Western United
States as given by Alexander (1963). These parameters were deter-
mined for a period (T) of 13.0 seconds since most of the observed
peak amplitudes of the Love and Rayleigh waves for RULISON were
near this value (Table II),

Figure 23 shows all possible data of U /U for RULISON and
also the theoretical radiation pattern based on a strike plane of
the double-couple system, 6 = 24° » and a relative strength (F) of
the double-couple to explosion of 0.60.

The strike angle is normal to the strike of the tectonic fea-
tures in the vicinity of the RULISON epicenter (Figure 24). Toksoz
indicates that the relative strength (F) seemingly depends upon the
properties of the source medium and cites the following:

(1) GNOME and SALMON (salt), SEDAN (loose aluvium); f = 0,0,
(2) HAYMAKER (allivium); F = 0.333,
(3) BILBY (tuff); F = 0.47,

(4) SHOAL at a relatively greater depth in granite; f 0.90.
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On this basis alone the F = 0.60 obtained for RULISON, perhaps
appears greater than expected. It is possible that depth and the
immediate stress field as well as medium would influence this value.

A further consideration of importance to the identification
problem is a comparison of Love to Rayleigh wave amplitude ratios
between RULISON and 9 August 1967 Colorado.earthquake. Figure 25
shows the LQ/LR amplitude ratios for the Colorado earthquake. Even
though we did not determine the earthquake double-couple parameters,
it is evident that the differences are dramatic, as compared to
RULISON both in radiation pattern and magnitude of ratios. The
average LQ/LR amplitude ratio for RULISON is 0.52 and for the
earthquake 3.48, Major and Simon (1968) indicate right lateral
fault movement determined from RMA close-in strainmeter records for
the 9 August 1967 earthquake, Further, the event originated at a
depth of 5.0 km about 2.7 km north and 4,6 km west of the RMA well
and propagated N70°W for a distance of about 10 km with a velocity
of about 3.0 km/sec.

Thus, it is clear that the two events have distinctly differ-
ent source mechanisms; however, additional data from many Colorado
earthquakes will be needed to ascertain whether this earthquake is
typical or atypical of this region,

»
Tt

Other criteria

Seismic events detected from aseismic regions and far from
known nuclear test areas, are ones that would naturally be subjec-
ted to further study for the purpose of identification. For such
events the presence or absence of aftershock activity would also
be of considerable importance,

RULISON occurred in northern Colorado away from a known test
region. The USC§GS, PDE listing was searched for events occuring
in a 2° (latitude and longitude) area around the RULISON epicenter
between 9 August 1966 and 1 January 1970, No seismic events were
reported except RULISON (Figure 26). Further, from this listing
and film analysis, no aftershocks were observed. In addition, the
origin time, as determined from the location results, Table III,
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is within 2.5 seconds of the 21:00:00.0Z hour. In contrast, a
similar 2° area was studied for the 9 August 1967 earthquake and
14 events were reported. However, all but one of these events
should also be considered suspicious because of the reported shal-
low depths (5 km) and close spatial grouping, near the RMA well.
Table IV :and Figure 27,

Thus, RULISON is located in an'aseismic uncommon test region
w1th ‘an origin time of 21:00:00,0Z,

Summary and conclusions

The‘following table summarizes the results of applying the
various discriminants discussed above to RULISON. ;
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TABLE I
Event Description
For

RULISON

Date: 10 September 1969
Time of Origin: 21:00:00.12
Magnitude: 4.62 with standard deviution of 10.36 (11 stations)
Location: Western Colorado situated between the White River
uplift and the Uinta Basin
Coordinates:
Latitude: 39°24'21"N
Longitude: 107°56'53"W
Environment:
Geological Medium: Mesa Verde Sandstone
Surface Elevation: 8154 feet above mean sea level
Shot Elevation: 277 feet below mean sea level

Shot Depth: 8431 feet below surface
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COQE
uso

KN-UT

ALQ

TFO

LC-KM

LAO

ToC

CR2hb

BP-CL

BMO

8Y-10

LON

$J-Tx

GH-MS

STATION

— e —

Unita 8asin, Utah

Kanab, Otah

Albuquerque, New
Mexico

Tonto forest,
Arizona

Las Cruces,
New Mexico

LASA, Montana

Tucson, Arizona

Crete, Nebraska

Bishop, Calif.

Blue Mountain,
Uregon

gloomfield, lowa

Longmire,
Washington

Corvallis, QOregon

san Jose, Texas

Greenville,
Mississippt

OISTANCE
km de
172.0 1,55
503.0 4,52
512.8 4.6
641.0 5.76
787.0 7.07
822.0 7.39
B27.8 7.45
957.0  8.6)
965.0 B.68
981.0 B8.82
1329.0 11,95
1390.2 12.%0
1594.0 12,54
1583.0 14.23
1658.0 14,91

MAGNI-
FICATION

TABLE 11
Principa) Phases for RULISON

INST, Fl{:llo PHASE

5P
SP2
5P2
SPZ
SPE

5P1
5P2
5P
5PL
5PR
SPT
LPT
LP2
SPZ
SPN
LPZ

5PZ
5PL
5P2
SPE
LPE
LP2

5P1
5P1
5P1
5PZ
LPR
LPZ

5PL
LP2

5PZ
5PN
LPZ

SP2
5P2
SPR
L

sp2
SP1
LP2

5P1
5P1
5PZ
SP1
LPL

5P2
SPZ
SPT
LP2

Pz
SPE
LPZ

5PZ
LPN
LPZ
5PZ
5PZ

5PR
Pl

LPZ

0.54
0.58
0.58
0.54
0.06

23.8
23.8
23.8
7.75¢
24.7
8.75%
15,56*
32.8

J62.0
362.0
5.4

62.5
7.50
32,6 *
7.50
2,50
8.50

76.5
76.5
76.5
76.5
42.9
5.20

362.0
362.0
2.70

13.3
13.3
13.9
2.39

‘148.0
148.0
148.0
148.0
42.5

830.0
25.0
25.0
25.0
25.0

72.0
22.0
24.0
12.3

181.0
181.0
2.70

45,3
2.70
2.70

330.0
60.0
321.0

2.37

4.80

-
o

Tbetave. T AR iTone MAGNITOOES
WIN_ SEC  _SEC AT m M m, B
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02 21.0 1.4 452.0
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02 0.9 0.9 373.0
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Collega, Alaska
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® 31~
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d
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2757.0

3320.0

3819.7
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i 4,32
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APPENDIX 3A.

System Response Curves WWSSS Network.
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APPENDIX 3B,

LRSM Large or Small Benioff Short Period and
Sprengnether Long Period.
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| LRSM Geotech 18300 Short Period.
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VELA Johnson-Matheson Short Period.
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Distance Factors (B) for Surface Focus
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Additional Long Perfod Rayleigh-Wave Spectra

APPENDIX 6.
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