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ABSTRACT

The exact detection probabilities and false-alarm pgobabilities for square-law detection of a
signal in Gaussian noise are calculated, with no restrictive assumptions about the size of tile
observation-time-bandwidth products. Two cases ate considered: In the first, called the low-
frequency (LF) case, the signoi is a combination of a dc component and a Gaussian process com-
ponent with exponential correlation. Here the noise is a Gaussian process with identical exponential
correlation. In the second case, calIled the narrowband (ND) case, the signalI is a combination of a
sine wave component and a Gaussian process component with an exponentially damped cosinu-

soidal correlation at the same center frequency as the sine wave. Here the noise is a Gaussian
process with identical exponentially damped cosinusoidalcorrelation. The two components of the
signal are called the coherent and incoherent components, respectively, in both the LF and NB
cases.

The output of the square-law detector is integrated continuously over the observation time
and compared with a threshold for statements about signal presence. It is not assumed that the
square-law detector output is sampled infrequently enough to yield indeperpdent samples.

Results for the detection plobability versus signa l-to-noise ratio(S/N), with false-alarm proba-
bility as a' parameter, are given for both the LF and NB cases for observation-time-bandwidth
products equal to 2n (n = 0(1)7) and f - the fraction of coherent signal power equal to 0, .2, 1.
For a specified detection probability of .5 and false-alarm prbbabilities of 10"n (n = 1(!)8), the
required S/N is also plotted for the same range of time-bandwidth products and fractibns of co-

herent signal power as above. Compari.ons with a Gaussian approximation for large time-band-
width products are made; it is shown that the Gaussian assumption is optimistic in predicting
performance of the scuare-law detecror, the exact amount depending on the time-bandwidth
product.
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I

a' OPERATING CHARACTERISTICS FOR CONTINIUOUS

SQUARE-LAW DETECTION IN
GAUSSIAN NOISE

over bad1. INTRODUCTION

Often, signals in n6ise are detected by filtering a received process to the
frequency band of interest, squaring the filtered output, continuously integrat-
ing over an observation .interval. where the signal is anticipated, and comparing
this decision variable with a threshold 6r with the past history of this variable.
"In fact, under cert.An conditions, the optimum detector for stochastic signals
takes this form (for' example, Ref. 1, Chapter XM). This form of processor
coild be employed whether the received signal is deterministic (known orunknown), stochastic, or a combination. of both, although it' is not necessarily

optimum in all these cases. This processor is, in fact, frequently adopted for
passive detection of targets of unknown statistics.

Two important parameters that characterize the performance of this proc-
essor are the bandwidth of the stdchastic process at the input to the squarer
and the pbservation (or integration) time. Practical cases occur where this
time-bandwidth product ranges from the order of uuity to several thousand. In
the latter case of very large time-bandwidth products, the decision variable
can often be accurately approximated by a Gaussian random variable (RV).
However, when the time-bandwidth product is of the order of unity, it can not
be approximated as Gaussian, especially when very low false-alarm probabil-
ities or high-detection probabilities are of interebt. The question then arises
as to the exact performance of the processor. Calculation of the performance
is complicated by the difficulty in analyzing the continuous integration of a -on-
Gaussian process since a "sum" of dependent random variables is formed. Also,
app•-oximation of the performance by using a sum of independent variables is
tenuous, bdcause the exact value of the P'effective" number of independent
samples touseis not easily a !,rtained. Thus, there is a need for (1) the exact
evaluation of the receiver operating characteristics (ROC) of the square-law
detector followed by an integrator, both as a benchmark against which other
processors a-d approximations can be compared, and (2) the determination of
when the Gaussian assumption can be validly employed, especially for medium
time-bandwidth products and very small false-alarm probabilities.
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Two cases of signal and noise spectra at the input to the squarer are
considered: In the low-frequency (LF) case, the signal is a combination
of a dc component and a stationary, zero-mean, Gaussian process component
with exponential correlation, and the noise is a Gaussian process (of different
power level) with identical exponential correlation. in the narrowband (NB) case,
the signal is a combination of a sine-wave component and a Gaussian process
component with an exponentially damped cosinusoidal correlation, and the noise
is a Gaussian process with identical correlation, except for power level. The
two components of the signel are called the coherent and incoherent componer'S,
respectively, in both the LF and NB cases, for ease of discussion.

Actually, the general derivations of processor performance capability pre-
sented here are not restricted to the cases above. They actually allow lor an
arbitrary deterministic coherent signal component (which may be known or un-
known) and an arbitrary (but identical) correlation function for the incoherent
signal component and the noise. ýt4wever, numerical evaluation of performance
capability requires evaluati:.' ibh resolvent (or reciprocal) kernel and the
Fredholm determinant of th- c:rrelation function. Hence, numerical results
have been confined here to the cases given in the paragraph above.

Several practical applications fall under the framework above. For example,
if the incoherent component of the received signal in the NB case is absent, we
have detection of a sine wave; this is encountered in active or passive detection
of a target or in binary on-off communication with another party. Or, if the
coherent component is absent in the LF or NB case, we have detection of a
random-signal process in noise; this situation can hold true in long-range trans-
mission through a fluctuating medium or in reflection of an acoustic signal off
the time-varying ocean surface. It is often employed in passive detection of a
noisy source. Finally, if both signal components are present, relevant examples
in the NB case are reflections of an asoustic signal from a surface with low
roughness, or communication via a medium supporting both a direct (nonfluc-
tuating) path and fluctuating paths. Extensions to multitone applications are also
possible and are discussed in Section 4.

A great deal of work on the statistics of the timc-average power of a Gaussian
Sprocess has been presented in the past. Rice' gave the first four semi-invariants

(or moments) fbr an arbitrary correlation function of the Gaussian process,
and approximated the probability density function (PDF) for very small and large
observation times. Emerson" gave an infinite product for the characteristic
function (CF) of a filtered squared-Gaussian process and, via the first three

2
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semi-invariants, approximated the PDF through Gram-Charlier and Laguerre
expansions. Siegert 4 gave the CF in terms of the solution of an integral equa- j
tion obtained by Kac and Siegert. 5 In the former, the CF was In terms of an
infinite product, although it was shown Vhat the resolvent kernel offered an al-
ternative approach. No examples were presented. Darling and- Siegert6 and
Siegert 7 showed that the CF of a more general functional could be obtained
from the solution of two integral equations, aud they obtained the CF in closed
form for a finite-time exponential averagerfor a Gaussianprocese with an expo-
nential correlation. Slepian8 obtained a series expansion for the PDF and cumu-
lative distribution function (CDF), where each ternt was given by aul integral.
No extreme probabilities were evaluated and the accuracy was about 1 percent.
Jacobs I considered a communications problem with rondom signals and made
a finite approximation to the CF by increasing the number of terms until the
CDF essentially stabilized, Schwartz'" obtained a closed form CF for correla-
tion functions whose corresponding homogeneous Fredholm integral equation
reduces to an equivalent linear differential equation. Four examples were given,

and both LF and NB cases were considered. Steenson and Stirling " conducted
a simulation and gave results on the PDF and false-alarm rate and showed that
the gamma distribution accurately fitted the data. Some related results on the
distribution of quadratic forms are given in References 12, 13, and 14.

None of the previous results are of sufficient accuracy to allow calculating
the cumulative distributions very near zero or unity - the regions of interest
for very small false-alarm and high-detection prcbabilities. The complicated
results for the CF, even when in closed form, indicate the need for quick and
accurate CDF calculations that do not require moment evaluations or series
expansions. Here we make no attempt to find analytic expressions for the PDF
or CDF, but proceed directly numerically from the CF of the decision variable
to the CDF via a Fast Fourier Transform (FFT). 1, 6  Prhe assumption that
the incoherent component of the received signal has the same correlation (and,
hence, spectrum) as the noise in both the LF and NB cases, except for power
levels, enables evaluating the CF in closed form,

If the integrator following the squarer were replaced by a sampler and sum-
mer, calculation of the CF in closed form can be accomplished fairly simply
once the eigenvalues of the matrix of sampled correlations are evaluated. This
technique allows very general 9nd different signal and noise spectra and will be
the subject of a future report. For izow, however, we restrict ourselves to con-
tinuous integration without sampling the squarer output.

3/4
REVERSE BLANK



Th4233

2. LPROBLEM DEFINITION

Two different cases- will be considered in tbls report, name~ly,, theLL and
NB processors. Block diagrams of each proceasoir will be g'iven-wid the perti-.
nent characteristics of the signal and rnoise described.. Then the- expected per-
formance of the two cases will be briefly compared for the case of la~rge time-
bandwidth products.

2.1 LOW-FREQUENCY CASE

A block diagram of the LF processor is given in Fig, I,. where y(t) is a

LF waveform composed of three components:II~ y(t) = c (t) + S (t) + n(t)(1

In (1),
a. ci(t) is a LF deterministic waveform (kýnown or unknown) and is called

the coherent component of the received signal.

b. s(t) is a stationary, zero-mean, LF Gaussian process with correlation

RS(ir)= a82 exp(-2W,, 1,j (2)

and is called the incoherent component of the received signal.

;~ IThe noise' n(t) has the same statistical description as s (t), but the two processes
are independent. Its correlation is

R (r) =cr 2 exp(-2W, ITI) (3)

The (double-sided) spectra of s(t) and n(t) are given by

G 0a 2  Wei 2 (4)

where W, can be interpreted as the effective (or statistical) baiidwidth,17 of the

positive-frequency components of the LF random processes:

pdf G Sf)] H2 '0o)()

f00df G', 2f0 dTR' (r)
.00
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rThe identical spectrai shape of the incoherent component s(t) and the noise

n(t) Is realized in practice by filtering fairly broadband received signal and
noise processes through a low-pass RC filter. It can be interpreted physically
as overresolving the received signal-with a very-lovw--pass filter.

The decision variable .2 in Fig4 I is given by

fdt[c() + (E) 2 (6)
T T 2

and Is to be compared with a threshold for detecting signal presence. (No as-
sumption about the size of the time-bandwidth product TW, is made.) This
is broadband-energy detection and contains three subcases of importance:

a. c(t) = 0. Signal presence indicated by an increased power level in the
received random process.

b. s(t) = 0. Signal presence indicated by a nonzero, time-varying mean in
the received random process.

c. Both c(t) and s(t) nonzero. Signal presence indicated by adding a non-

zero, time-varying, mean-ranclom process to the received random process.

2.2 NARROWBAND CASE

A block diagram of the ND• processor is given in Fig. 2. In the figure, y(t)
is an NB waveform composed of three components, as in (1). The signal c(t) is
an NB waveform centered at frequency fo, with a deterndnistic complex enve-
lope (known or unknown), and is called the coherent component of the received
signal. Both s(t) and n(t) are independent, stationary, zero-mean, NB Gaussian
processes with correlations

s,,n ( ,n=: a2 eXP(-WIrp)cos(2rrfrX .0 (7)

(It is assumed that foT >> 1, where T is the integration time In Fig. 2.) By
definition, a(t) is called the incoherent component of the received signal.

The (double-sided) spectra of s(t) and n(t) are given by

A
c 2 e 1 (8)

6; s,n 4,7 2 ^ 2
i'-(f_f )2 Jo (f+f f2 +
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- where -cari be interpreted as the effective bandwidth of the p6sitlve-frequen,3y
components of the NB random processes:

2

A dft%.,.J 
_ (0o)VV S (9)

(df G!s.() 2 2 (r)

The identical spectral-'shape of the incoherent component s(t) and the noise
n(t) are realized in practice by filtering fairly broadband received signal and
noise processes through an RLC filterthat is NB. It can be interpreted physically
as overresolving the received signal with a very NB filter.

The decision variable . is given by

I=1-- J" & Ic_() t- s(t) + n_(t)12 (10)
2T T

where x(t) denotes the complex envelope of x(t) (see Appendix A). The decision
variable -9 is compared with a threshold in order to detect sipnal presence.
(No assumption about the size of the time-bandwidth product TW, Is made.)
This is NB energy detection and contains three subcases:

a. c(t) = 0. Signal presence indicated by an increased power level in the
received random process.

b. s(t) = 0. Signal presence indicated by an NB waveform in the received
random process.

$ c. Both c(t) and s(t) nonzero. Signal presence indicated by adding an NB
waveform and random process to the received random process.

2.3 PERFORMANCE COMPARISON BETWEEN LOW-
FREQUENCY AND NARROWBAND CASES

The effective bandwidths of the LF and NB processes, which have been de-
fined in (5) and (9), respectively, are measures of the spectral width of the
positive-frequency components of t.he respective processes. A bandlimited low-
pass process confined to frequencies (-W, W) must be sampled at least every
(2W)-I seconds in order not to lose any information. Thus, in a long time interval
T, there would be (2W)T samples upon which to base a decision as to signal

4 presence or absence. On the other hand, a bandlimlted NB process confined to
frequencies (f, - W/2, f, + W/2) and the corresponding negativefrequencyband

7
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must have it8 ia-phase and quadrature components sampled at least every
seconds-in order not~to lose any -information, Then in a time T, there Would be-

2(W)T samples upon which to base a decision as tosignal presence. Therefore,
both bandlimited processes, LF and NB, yield the same number of information
samples when W is interpreted as the spectral wIdtih of the positive-frequency
components. As a result, in our investigation of-nonbandlimited processes, we
expect that when the effective positive-frequency bandwidths are equal, that is,

, = W,, the performance of the LF and NB processors should be comparable
for large TWI. This will bei borne out by the numerical examples in the next
section.

For small time-bandwidth products, however, the performance of
the LF and NB procesaors differ. For example, as T--0 in (6) and (10),

,-.2-*y• (t0), -NB-.-"/2 [Yc2 (t.) + y2 (to)] (see Appendix A). Thus, in the
limit of small time-bandwidth products, LF processing contains one degree of
freedom, whereas NB processig contains two degrees of freedom. The per-
formance of the NB processor will be better than that of the LF processor for
small time-bandwidth products.

8



TR 4233

3. RESULTS

The CFs for the LF and NB cases are derlved in Appendix B, the general
-f~esdlts being (3-22) and (B-46). Thiese results are specialized to the cases of
iiiterest here, resulting in (B-31) and (B-51), respectively. For the special
case'of T -- 0, (6) and (10) reduce to a single sample of the input processes,
and derivation of the detection probabilities and false-alarm probabilities is
possible in closed form; these derivations are presented in Appendix C.

The CDF P of a nonnegative RV from its CF f can be evaluated numerically
via use of any of the equivalent forms' 6 :

M()= - d6 o mI e exp (-i e:X) I

=•'o2 d6 ,f(6), sin (e:X) (..02 -d

~ 1=1-fe Y~.•f() cos(%eX), X> 0

SIn (11), f, and fi are the real. and imaginary parts, respectively, of CF f. The
error in terminating the integrals in (11) at finite limits for computer evalua-
tion is considered in Appendix D.

3.1 LOW-FREQUENCY CASE

Suppose 0 in (6) is compared with a threshold X for purposes of signal
detection. We now define a normalized threshold,

x
A =_ (12)n a 2

and the time-bandwidth product,

=TWe (13)

Values of the required normalized threshold A, for different values of 0 and
specified false-alarm probability PF are given in Table 1.

Before presenting results for the detection probability, it is convenient to
define several power signal-to-noise ratios (S/Ns). We define the receiled co-
herent signal power

PC--1 f dt C2(t)
T T (14)

9
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Table 1

THRESHOLDS FOR LF PROCESSOR

01 2 4 8 16 32 j64 128

10- 2.706 2.065 1.841 1.634 1.461 1.329 1. 233 1. 164 1. 1i5

10-2 6.635 4.302, 3.362 2.600 2.065 1.710 1.478 1.324 1.223

10-3 10.828 6. 706 4. 971 3. 564 2. 630 2. 047 1.684 1.455 1. 307

1.0-' 15. 137 9. 180 6. 631 4. 540 3. 182 2. 364 1. 872 1.571 1. 381i 10-3 19. 511 11. 693 8. 322 5. 526 3, 728 2.670 2. 050 1.678 1.448

10-' 23.928 14. 2-0 10.031 6.523 4.272 2. 970 2. 221 1.779 1.511

10-7 28. 374 16.785 11.753 7.527 4.815 3.265 2.387 1.877 1.570

10-8 32. 841 19. 352 13.483 8. 537 5. 389 3. 558 2. 549 1. 970 1.627

The coherent and incoherent S/Ns are defined, respectively, as

•, c ,,•.(15)

and
0,a2

(16)

The total received S/N Ws defined as

R C---7- a R2 " RC R (17)
n

We also define the fraction f of total received signal power that is coherent as

f P Re (18)
p . =.=-

PC +10 R

•o10



' TR 4233

Susing (15), (16), and (1 ). Then w e can express 1-

Rs U-0 R, (19)
R5 -- (1-f) R ,

j and, thereby, utilize the t.tal received S/N R and the fraction f of coherent Li
signal power as the fundamental parameters characterizing the performauce

of the processor.

I •In the series of Figs. 3 through 11, to follow, plots of the detection prob-
j ability PD versus R1/2 are given, with PF as a parameter. Each figure

corresponds to a different value of j9, specifically 13 0, 1, 2, 4, 8, 16, 32, 64,
Sand 128. Each figure is composed of three parts: Part A is for f = 1, part B is

* for f =.2, and part C is for f = 0.

The eqaation

dR = 10 log,, R = 20 log,, R1/ 2  (20)

canbe employedto convert the abscissatodecibels inFigs. 3 through 11. (R is
a power S/N, whereas R is a measure of. a voltage S/N. ) Equation (20) is the
total input S/N expressed in decibels.

The difference in performance for different fractions f of coherent signal
power is very marked for small R. Thus, Fig. 3, for fl= 0, illustrates a sig-
nificant drop in P. for large values of R1/ 2 when f is decreased from unity. In
fact, this degradatioD in performance occurs even when f is decreased from 1
to . 9 (this curve is not shown). As 8 increases, the difference in performance is
lessened until, for large 13, the oppositebehavior occurs for large RI/2 (for
example, PD ý• .9999). That is, the required value of R1 2 for a specified PD

near unity is less for f = 0 than for f = 1 for very large 13; see, for example,
Fig. 11.

On the other hand, for small values of PD, the smaller values of f yield
the better performance for small fl, whereas the larger values of f give bet-
ter performance for large 0. There is, however, rather slight differences in
performance, that is, required S/N R, in the case of small PD.

The reason for this cross-over of the curves is explained by the fact that
we are considering a fixed receiver and varying the transw'Itted signal composi-
tion. The fixed receiver is more nearly optimum for some transmitted signals
than others, and it is irmpossible to order the performance of the various com-
binations of coherent and incoherent signal power.

11
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The situation is made more striking when the performance of the optimum
receiver for completely coherent reception, f= 1, is considered. For a dc
signal waveform, LF processing, and exponential noise correlation, we can
use the first equation on p. 114 of Reference 1 to evaluate Helstrom's power
S/N d2 for the optimum receiver as

*d2 = Re(1 -TW) R U +TWe)=R( +P)

The false-alarm aud detection probabilities for this case are given by [Ref. 1,
p. 106, Eq. (3. 32)]

PF = C-0 , (22)

where* x is selected for prescribed PF" (For a specified performance (PF,
PD) of this optimum processor for f = 1, required values of d can be read
from Ref. 1, p. 88, Fig. IV. 1.) When (22) is superposed on part A of Figs. 3
through 11, it lies everywhere above the square-law detection curves, as is
expected. Furthermore, the slope of the straight lines ((221, is greater than
the slopes of the square-law detection curves. However, when (22) is super-
posed (m parts B and C of Figs. 3 through 11, the equation lies below the square-
law detection curves for small R and above it for the larger values of R. The
square-law detector can give better performance in some regions of R (for
f < 1) than the optimum coherent receiver (for f = 1) for the flat transmitted
signal, because the transmitted signal (the flat waveform) is not the optimum
one to transmit in this noise spectrum. Rather, a deterministic signal that
oscillates arbitrarily fast in the interval T and, thereby, occupies a region of
low-noise-density does arbitrarily good; there is no optimum signal unle s we
impose some bandwidth constraint. This case has not been considered here.

Two analytical results along a related line are possible for (3 = 0. From
(C-7), it is found that the detection probability for fixed P. and fixed R (> 0)
always decreases as f increases from zero (for A, > 0) regardless of the
values of the false-alarm probability and S/N. (A, < 0 and R < 0 are uninteresting
situations.) Of course, for large An, that is, low P•, the rate of decrease
is not very large and may not be noticeable from the plots. However, for large
An and R, for example, R = An -1, (C-7) gives

*(D is the CDF for a zero-mean unit variance Gaussian RV; see (C-3).

12
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O --(2.- exp(-1/2) ( (23)

which is significant.

For f = 1, we find the same result for 0 = 0; see (C-8). The slope can be-
come very negative for large A .; in fact,

p D A s A.af-T f = 1 2 (2-te)I/2 a n

2 =i /2-(24)

R1/ 2 - 1/2 -
n

Thus, for 6 = 0, performance of the square-law detector is degraded as f in-
creases toward 1 for certain S/N R and normalized thresholds A0 .

For large time-bandwidth products ft, it is anticipated that the decision
variable S in (6) could be approximated by a Gaussian RV. In Appendix E are
presented tie equations for the detection and false-alarm probabilities under
this Gaussian assumption; see (E-3) and (E-4). In Fig. 12, these equations are
plotted for B = 128, where f = 1, . 2, and 0, respectively. These approximate
curves are generally above the exact curves given in Fig. 11 for the same con-
ditions; that is, the Gaussian assumption gives optimistic performance pre-
dictions compared to the true value. However, the deviation is not great at
13=128.

For a specified performance (Pr, PD), the required input S/N R decreases
to zero as T - . In fact, from (E-4), we find

P F"' i(\/7'(1 -A^)) /3-, c , (25)

where normalized threshold A, is selected to keep the argument fixed; that is,

Fv)(A-1) = Th (PF) (26)

is kept fixed at a threshold value that depends on the prescribed PF. Then (E-3)

yields

-PDq(\/R - Th (PF)) as 3 -oo (27)

Thus, the required S/N R decays as T-1/2 as T - ., rather than according
to T-'; this is attributable to the square-law dAtector characteristic. Notice
that this rate of decay of required R holds regarcdess of the value of f; that

13
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is, it is independent of the fraction of each type of signal comzponent. Although
Sth. rule was deduced from the Gaussian assumption, it holds in the general
case because the decision variable I approaches Gaussian as 0 - or.

Figures4throughllmayheused to obtainthe exact values cf the input S/N R
that are requiredto attain-a specified performance. In particidar, for P. = 10",
n = 1(1)8, and PD =. 5, the required value of R (in decibels) is plotted versus
0 in Fig. 13. The three parts of the figure correspond tV f = 1, .2, and 0,
respectivaly. The rate of decay of R with increasing 0 is approximately /1-ip,
as discussed above. In decibels, the decay is -5 log ,,

The Gaussian assumption, Fig. 12, gives values of S/N R that are optimistic
by amounts that depend on the quali;-y of performance desired. For example, the
Gaussian approximation for j = 128, P. = 10-, and P, .5 indicates a
required S/N of -3. 05 dB ior all f, * whereas the actual required S/N is -1. 98
dB, a difference of 1.07 dB. In fact, the -3. 05-dB S/N would yield a Pr
greaeter than 10-6 at 6= 128. (For 0= 64, the difference in elecibels increases
to almost 1. 5 dB. ) However, for PF = 1, instead of 10-i, the decibel dif-
ference between the exact answer and the Gaussian approximation is only. 28 dB
at B = 128. These comparisons have been made here only at the P, = .5 level,
and conclusions at other levels can be very different. Figures 3 through 11 fur-
nish information for required S/N at other performance levels of interest.

A note of caution is in order at this point: From (C-1), (C-5), and (C-6),
for 0 = 0, if f = 1, the decision variable I is given by

k = "(p ' 2 n) (28)

and

PD = (D(R 1 1 2 - A'/ 2). +b(DR-R1/2_AV/2)

P P -
A21/( A(92)

*This independence of f for required S/N is true only forPD = .5; see (E-3).

14
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1/

Now for a fixed P., A,, is fixed, and PDv versus R plots as a straight
line on normal-probability paper (for example, see Figs. 3 thrugh 11) for all

values of A'. However, the RV -2 in (28) is definitely not Gaussian. Thus,-
a straight-line plot on norml-probability paper can not be interpreted as
crresponding to a Gaussian RV.

3.2 '-ARROINBAND CASE

Most of the comments in the previous subsection are applicable here ana
will not be repeated, for the sake of breyity. Alsthe ndoation is similar, except
that

! I
A A:

3 = W ,T .(30) ,

Values of the required normalized threshold A. for different values of , and
specified PF are given in Table 2. As anticipated in Section 2.A3, the thresh-
olds for laige time-bandwidth product f are virtually identical to those for.the.
LF case (TCable 1). However, the thresholds for small • are quite different.

Table 2

THRESHOLDS FOR NB PROCESSOR

0 1 2 4 8 16 .32 641 '128

10-1 2.303 1.979 1.799 1.615 1.454 1.326 1.232 1. 16 1.115

10-2 4. 605 3.680 3.123 2.528 2.044 1. 703 1.475 1.324 1. 2ý2

I0-3 6.908 5.381 4.447 3.423 2.593 2.036 1.681 1.454 1.307

10-1 9.210 7. 083 5. 770 4.316 3. 129 2. 349 1.868 1.569 1.381

10-5 11.513 8.784 7.093 5.209 3.658 '2. 652 -.2. 045 1.676 1.448

10-6 .13.816 10.485 8.416 6.101 4. 184 2.948 2.215 1.778 1,510

10-7 16.118 12.186 9. 739 6. 994 !4. 709 3.240 2.380 1. 874 1.569

10- 18.421 13. 887 11.063 7.886 5. 233 3. 528 2.541, 1.968 1.626

15
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4. DISCUSSION

In the problem considered here, no assumptions about the size o" the time-
bandwidth product are necessary, and the decision variable need not be ap-
proximately Gaussian. Small false-alarm probabilities can be easily and very
accurately investigated numerically. The complexity of the closed form CF,
even for the relatively simple case considered here, precludes any analytic
solution for the CDF; nevertheless, very accurate answers for the CDF can be
obtained. This numerical approach is recommended for other problems of this
type.

For each doubling of the time-bandwidth product, it has been shown that

the required input S/N R decreases by 1.5 dB (for large products) in order to
maintain a prescribed performance (Ps, PD). This result is similar to that cited

for an envelope detector [Ref. J.8, p. 262, and Exercises 8. 8 and 8. 9] and is
a result of the squaring operation in the receiver. The improved performance
for f = 0 versus f = 1 at low S/N has also been observed for other processors
operating in fading media [Ref. 18, pp. 208-9 and pp. 214-5J.

Use of a Gaussian approximation on the decision variable for large time-
bandwidth products is in error by approximately 1 dB when the time-bandwidth
product is 100. For larger products, the Gaussian approximation yields pro-
gressively better estimates, at least for detection probabilities that are not
extreme and for false-alarm probabilities that exceed 10-8. This applies to
both the LF and NB processors under the conditions investigated here.

Some extensions of the problem studied here are possible. They center
around the ability to obtain the CF of the decisionvariable either in a closedform
or in a reasonable amount of computer time. For example, suppose the decision
variable -2 is given as a weighted sum,

N
W k k k (31)

.: k=lI

where the kth branch output, .O:, has signal sk (t) and noise nk(t) independent
of all other branches. (This occurs, for example, if a bank of filters is excited
by broadband processes, and the filter in the kth branch is disjoint with that in

* the jth branch for j 0 k.) The statistical situation obtaining in the kth branchIf can be any one of the six cases listed under (6) and (10) and can be dissimilar
in different branches. Furthermore, the time of observation, the effective band-
width, center frequency, and S/N can be different in each branch. The CF
corresponding to the RV . in (3"1) is given by

17
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N N

k=1 k

where f k ) is the CF of the RVIk inuthe kth branch.

Examples that fit into the framework of (31) include the following:

a. Multitone active detection or communication in a time. varying random
medium that gives rise to the scatter component of the received signal. (The
multiple tones could be transmitted to combat fading or jamming or both.)

b. Multitone passive detection, where the scatter component of the received
signal may be due to either medium perturbations or source instabilities.

c. Single-tone passive detection by comparison with a threshold established
from neighboring filter outputs.

A compilation of performance-capability characteristics has been presented
for continuous processing of both LF and NB processes. However, they are
limited to an identical exponential correlation of the random received signal
and noise processes; nonidentical spectra, for example, of the signal and noise
processes are disallowed. The only other continuous processor that yields
closed-form expressions m.r die CF of the decision variable is an exponential
integrator [Ref. 7, p. 41]1, rather than the finite-time average considered
here. However, it, too, requires an exponential correlation function. The only
reasonable way to generalize to arbitrary (unequal) signal and noise spectca is
to consider sampled processors. Often this is the practical situation anyway.
The decision variable for the square-law detector can thenbe transformed into
a sum of squares of independent Gaussian variables, and the CF evaluated as a
finite product. If the size of this product is not excessive, direct numerical
calculation of the CF and, hence, the CDF by the methods in Refs. 15 and 16
is possible. This approach will be the subject of future investigation on more
general processors and spectra.

In passing, it is noticed that the detection problem posed here is theoretically
a singular one for the purely incoherent signal; that is, detection canbe accom-
plished with zeroprobability of error (see, for example, Ref. 1, pp. 304-306).
However, the optimum method of processing is impractical - it would require 1
precise knowledge and use of all the eigenvalues of the correlation kernel;
equivalently, second-derivatives of the observed process are required. The
physical impossibility of accomplishing this in a practical case forces us to
adopt a suboptimum procedure similar to that considered here.

iJi
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Appendix A

COMPLEX ENVELOPE RELATIONS

Jr. this appendix, wd collect te OomileX envelope reiatios thait ar re-
quired in analyzing the narrowband (NB) processor. Consider a stationary zero-
mean process x(t) passed thrdugh a time-invariant linear filter, as depicted
in Fig. -1. Here U(f) is the unit step function:

, f <01 (A-i)

Fig. A-i. Single-Sided Filter

Thus, the output x,(t) contains only positive-frequency compor.ents. If the
spectrum of x(t) is G, (1), then, from Fig. A-i, the spectrum of x+(t) is

-G' G(0 = 4 U(f) G,,(f (A-2)

Also, since

U(f) = 1 + sgn( = ! + i [-i sgn()] (A-3)

we can express
x,(t) = x(t) + ixii(t) , (A-4)

where x,,(t) is the Hilbert transform of x(t):

1 x(r)XH(t) f dr- (A-5)
Ir/o t-r

Let the "center" frequency of G, () be fo and let the complex envelope

x(t) of x(t) be defined as

x(t) = x+(t) exp(-i2i'f 0 t) (A-6)

Then the spectrum of the complex envelope is
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G, (o=G (f+f+) = 4U(f+fo) G(f+fo)
G,(, ... ('+ (A-7)

and the mean magnitude-squared value of-the complex envelope is

l(t)12 dfcf= fdfGG a--2o
oo 0 (A-8)

where a2 is the power of process x(t).

Let the complex envelope, which is low-frequency (LF), be represented in
terms of its real and imaginary components:

x(t) = xC(t) + i X (t) (A-9)

There followb, using (A-4), (A-6), and (A-9),

x(t) = x (t) cos (2ff f 0t) - xs(t) sin (2rrfot) (A-10)

Thus, x,(t) and x5 (t) are the in-phase and quadrature components of x(t).

Now if the process x(t) is filtered by a linear filter with transfer function
H(f), yielding (complex) output y(t), it can be shown that

y(t)y(t-r)= f df exp(i2fffr)Gx(f) H( (-f) (A-li)
-o A

Applying this result to Fig. A-i, we obtain

x+(t) x+(t-r) =0 for all r (A-12)

since U(f) and U(-f) are disjoint. Hence, from (A-6),

x(t)_x(t -r) = 0 for all 7 (A-13)

Therefore, using (A-9) and (A-13),

xC(t) x8(t-r) ='Re lx(t)l Im ix(tr-r)

= k(t) + x* (t)] I7 [x (t - ) * (t - r)A

2 i (A-14)

= R(z)_ ý R* (r)0 = - im IR,(r) I
i4 - -2

2= lira df exp(i2nfr) G -' =- f df sin(27ffr) Gx(O
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where we have defined

R (r) = x(t) !* (r -. r) I (A-15)

and utilized the fact that G. (f) is real (see (A-7)). Now from (A-14), it may be
seen that if and only if the LF spectrum G.(f) is even about f = 0, Oten the
processes x,(t) and x,(t) are uncorrelated for allrelative time Aelays. In terms
of the original spectrum G,(f), processes xr(t) and x,(t) are uncorrelated for
all time delays if and only if G1 (f) is even about fo (in (0, 2f.)). in the special
case where x(t) is a Gaussian process (not assumed up to now), x,(t) and
x, (t) are independent processes [Ref. 19, p. 41], since x,(t) and x,(t) are
Gaussian processes (being linear combinations of x(t)).

Lastly (eliminating the Gaussian assumption again), by ,a procedure anal.-
ogous to (A-14),

xW(t) x (t-r) = Xs(t) xs(t-r) =I Re IR(r) =(:,,I df cos(27rfr) G(f) .. (A-16)

2 - 2-oo

As a special case, the powers are, using (A--8), :

2-00

x 2(t) =x2s(t) f dfGM 2(A77
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Appendix.B
I • DERIVATION OF CHARACTERISTIC FUNCTION

FOR LOW-FREQUENCY AND:NARROWBAND CASES

This appendix cdnsists of 'wo parts: The first part derives the characteristic
ftmction (dF) of the decision variable I fr the low-frequeny.c(LF) case, asgiven~~~ue by (6)*;) "a•ee asoc arde- •

given by (6)*; t~h'e seco'nd part does the same for the narrbwban.d (N'B) decision
variable .2, as given by (10). * An 6xample for eadh case is presented.

LOW-FREQUENCY CASE

From (6),

I-' f dr[c(t)'+ s(t) +n(t)]2. (B-1)ST T

The powers in the ze2 o-meah Gaussian processes s(t) and n(t) are g7 and
a 2, respectively. Let us now define

c(t)S• rtt) = ,

s(t) + n(t)

. (t 2 2) 1/2
S~(o2 + 2)

Then

5 n(B-3

where

P=T f dtfr(t) + x(t)12 (B-4)
TT

Let the correlation of x(t) be R(r), which is general here, except that R(0) = 1,
as seen fiom (B-2); s(t) and ný(t) are assumed independent of each other. At
this point, the deterministic waveform c(t) is also general.

*This equation is in the main text of this report.
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The CF f# of the random variable (EV)a is related to the CF f. of the RV Pt
according toi! i

tf)()!= .exp u•)"•. = ep (ia(2 +a o)p) f C((a2 + U,. ý) , (B-5)

using (B-3).

Now we define for the kernel (correlation) R, the efgenvalues j X, } , and
eigenfunctions jo} :

'Xi f du R(t-u) 4j(u) = j(t), t tT (B-6)
T

Next, we expand x(t) in the set of eigenfunctions according to

x(t) = W x1qSi(t), tcT (B-7)

where

4 x -f dt x(t) i0,(t) , (B-8)
T

since the eigenfunctions are orthonormal [Ref. 1, pp. 98-103]. The RVs I xj
have the properties

S=0 ,
(B-9)

Xxk = ff dt du R(t-u) p1 (t) k(U = -o
r "3 jk

using the fact that x(t) has zero-mean and employing (B-8) and (B-6). Since
x, in (B-8) is a linear operation on the Gaussian process x(t), then {xj, ate
independent Gaussian variables.

When we employ (B-7) in (B-4), we obtain

p f dtr2 (t)± , 4---r.x. .L x 2 (B-10)
T T Ti' T '

where

r, fT dt r (t) 5,(t) (B-li)
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Then the CF of RV p is

f p ( 0) = e x p ( i Q p ) = d t r 2C t ))ex p i TLe "r' x + ( Bx

using (B-10) and the independence of the { The jth average in (B-12) is,
letting a = 1/X and using (B-9),

dx X2\/2e
exp -- exp -r. X + ix

/" 2a24. 1/2 / 2r2 e 2 /T 2 i (B-13)

exp 1\' 4T
T1

where the square root is principal value. Equation (B-12) canthenbe expressed
as

r(t, I _f~e( d) r 2 !) } x exp

However, employing (B-11), we get

______ .A.o(t) q .2u)
SJ -Ji 2ur/T Jr)Z j - i 2Y/T

(B-15)

& = dtdu r(t) r(u) r (t, u; i 2 /T)V

where r is the resolvent (or reciprocal) kernel of R [Ref. 20, p. 141, Eq. 64
and p. 134, Eq. 52]. Substituting (B-15ý into (B-14) and employing (B-2) yields

-1/2 ex[

(B-W6)

2a 2 +0 T it du c(t) c(u) I (t, u; 2 6/T
C2 2 T7

s II
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Now, if the coherent signal component is absent, that is, c(t) = 0, this CF
must reduce to

[D 03-17)

"where D is the Fredholm determinant [see Ref. 10, p. 18] (notice that the
eigenvalues JX I here are equal to j1/X 1 in Ref. '10). The square root in
(B3-17) is not principal value, but must be determined by tracing D(i 2 k /T)
from k = 0, where D(0) = 1, in a continuous fashion. This result follows by
inspecting the product of principal value square roots in (B-16). Utilizing (B-17)
in (B-16), we obtain the CF of p as

f [D(i2 ]el / exp fdt c 2(t)

- 03-18)

2 + 2 T2 dt du c(t) c(u) r"(t, u;i2 / el

This CF depends on the Fredholm determinant, on the resolvent kernel of cor-
relation R, and on the waveform c(t). If the Fredholm determinant and the
double integral on the resolvent kernel can be expressed in closed form, the
CF of p is available in closed form.

It is convenient to normalize waveform c(t) as follows: Denote the average
power in received waveform c(t) over the interval T as

P =1 dt c 2 (t) (B-19)

and define the normalized waveform

c1(t) - P 11 2 c(t) (B-20)

The average power in c I(t) over T is unity. Also we define two S/Ns:

p ca2

C Ii- ~RC c• , RS =_-(J•,1
a_ .2 a.2

These are the ratios of coherent signal power to noise power, and incoherent
signal power to noise power, respectively, at the input to the LF processor
in Fig. 1. Equation (3-18) can then be expressed as
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fp(t) --[D(i2 • T] I2 ep i -
I+Rs

2Rc L 2 1 dt dit c (t) c (u) r"(t, u;2 U/

ýI+R T

Example: Exponential Correlation; Constant Waveform.

We assume that s(t) and n(t) are independent and have the same exponential
correlation, as given in (2). * Then, using (B-2),

R(r) = exp(_2We I r) (B-23)

The coherent waveform is taken to be dc:

cII) = 1, t t T (B.-24)

Then, from Ref. 10, Eq. (37),t we have
-1/2

fp(4) = exp (j3) sinh (2j8 9 (6/)S)) + cosh (2j60( /ji), (B-25)
P(4/13)

' ~c(t)=0

where

/3 W , (B-26)
1/2! O(u) -- (I -i2 u)t

The square root for 0 is principal value; that for fp is not, but must be traced
continuously from • = 0, where fP(0) = 1.

The resolvent kernel is [Ref. 10, p. 21, Eqs. (29) and (30)]

20 2F (t, u; i2 ý/T, = - [ cos(Ojt) cos(W u) - y2 sin(a)t) sin (ou)
&oTy (B-27)

- ysin(coit-uI)] , t,u, uT,

where
:•( oT = i2j6(/f)- i28 0 (B-28)

* This equation is in thd main text of this report.
"I The factor 4 in Ref. 10, Eq. (37), fhould be a 2.
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and

1+ cosh(2/0 q5(ý//)) + 95(6/1) sinh(2A3(//3))

sinh(2,3(//3)) + 9(W/3) [1 + cosh(2 3j0( /f3))]

cosh(P3tb) + 0 sinh(f3i )
--i (B-29)

sinh(P3 ) + 0 cosh(,36)

I + 0 tanh(P3 )

S+ tanh (P3 )

There follows, after some manipulation,

.• 2 fdt du r (t, u; i2 e/T) 1
T3(I - i2 /3)

sinh (2 j0 ) (B-30)

I [ 1 + cosh (2,) + 0sinh(23q)]

Finally, the CF, (B-22), becomes

SR C
fp(O =exp( 3 ) sinh(2Ij6A)+cosh(2 00)] exp iI....

(B-31)

2 sinh(2/30)
1-i2•/3 1 32 1+cosh(2,36 ) + 0sinh(2 3e9)

where 0 is given by (B-28) and (B-26) as

,€= (1 - i2 •/g) 1/2 (B-32)

(As -.- 0, there follows from (B-31)
1._ /2 c (B-33)

9 2(I - U e) exp
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which may be readily derived as the CF of p in (B-4) for one sample Af
r(t) + x(t)] 2 . The CDF is derived in Appendix C.)

The CDF can be found from (B-31) by employing the methods in R U. .15
and 16. The square root in (B-31) is not principal value, but must be •Caced
continuously from • = 0, where fp(0) = 1.

NARROWBAND CASE

From (10), *

=_ fdt IJ_(t)+,t0+n(t) 2 (B-34)
2T JT

The powers in zero-mean Gaussian processes s(t) and n(t) are o2 and ,2u

respectively. We now define
c(t)(r)t =-_ _ _ _W (2 + a 2)1/2

+ n" (B-35)

.Lt t) + =(t

Co.s + no),

As a result,
(=C2 + a2) p , (B-36)

where

P = 't It(t) +x_(t) (2
2T JT
SA A

The correlation of x(t) is 2R(r), where R(T) is general, except that R (0) = 1
(see Appendix A).

The charmcteristic function (CF) of the random variable (RV)O is

PcO f((a2 + U2) (B-38)

* This equation is in -he main text of this report.
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In order to evaluate the CF f p, we expand r(t) and x(t) in terms of their real
and imaginary parts:

r(t) =r(t) + ir3 (t) , 3
E(0 = xC(t) + i X(. .

Then
P=-(P, + p) , (3-40)

2C

where4.S
PC dt [rc(t) + xc(t)

(3-41)
ps, f dt [rs (t) + xs (t) 2

A A

Now if andonly if the spectrum G(f) corresponding to R(r) is even about f = 0
(that is, G, (f) even about fo in (0, 2foJ), then xc(t) and x,(t) are independ-A

ent random processes [Ref. 19, p. 41], each with correlation R(r). Then,
using (13-40), the low-frequency (LF) results of (B-16), and the symmetry prop-
erty (t,u;X) r(u,t; X) of the resolvent kernel of R that is symmetric,
we obtain the CF of p as

.- ) exp [idtbI
2 (t)1J (B-42)

~~~~ 2T aad ugt *u "(~~ T
2 

1

- dt du £ (t) s* Mu Pr(t,u; i 1
a2 + 01 7r ff1 /Tj

The average power in c(t) over T is, for f. T >> 1,

PC f dt c2(t) -= -T r dt I (t)12 . (B-43)

We now define a normalized waveform,

C1 (t) = P C), (t) , (3-44) -
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I' for then

4J7f dtL 1Ct) 2=1. (B-45)

The CF in (B-42) can now be expressed as

fp() [e (xT). p R

= [1ep + R (B-46)
I+s

• idtduc(t c(U) •(tu; i 6/T)/1 R TT

following the reasoning developed in (B-16), (BE-7), and (B-18), and using (B-21,.
Notice that this CF depends on the complex envelope "c (t), and not just on the
physical envelope Ic1 (t)I of the coherent signal component of the narrowband
(NB) deterministic waveform. However, any constant unknown phase in this
NB deterministic waveform is irrelevant because it cancels out of the expres-
sion c ,(t) c* (u). That is, if complex envelope cl(t) is expressed as

s,= E(t) exp[i 0(t) +iO] , (B-47)
where E(t) is the envelope modulation, 4 (t) is the phase modulation, and 0

is an unknown phase independent o- ime t, then

cl(t) 1(n) ( E(t) E(u) exp [i 0(t) - i O(u)] (B-48)

is independent of 0.

Example: Exponential Correlation; Constant Complex Envelope.

Here we assume the correlation R (r) of complex envelope x(t) to be
exponential:

I(r) exp(-O l); 0 e T (B-49)

The correlation of the corresponding NB waveform is given by a form similar
to (7). * We also take.for the complex envelope of the coherent signal component

c 1 (t) = 1 , (B-50)

*This equation is in the main text of this report.
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which corresponds to a pure sine wave for c(t). When an approach analagous
to that given above for the LF case is employed, the CF (B3-46) becomes*

fvC•) - [f (e- e/2, 3 -- A12)]

_j I+ s

A A

~~4 sinh (P35)A 4• A A A 11

1 -i2 4 /f .too)i +0cs (fle÷+€sinh( PO)

where

A 1/2 -52)i • - ~(I - i2 V1/6)1/ ,(B-9

and we have utilized (B-31). (As 4 -* 0, (B-51) yields

Sfj ( -i ' exp ,c (B-53)
•+ 1 Rs i e -i

which m'ny be readily derived as the CF of the RV p in (B-40) for one samplb.
The cumulative distribution function (CDF) is derived in Appendix C.)

The CDF can be foumd from (13-51) by employing the methods in Refs. 15
and 16. There is only one square root involved, that for $ in (B-52), and it is
a principal value.

*The leading factors in (13-51) agree with Ref. 10, Eq. (44), when we note that his 13 isA A
W WET/2 P/2 here.
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jt
Appendix C

"DETECTION PROBABILITIES FOR ONE SAMPLE I
I As the observation time T in (6)* and (10)* approaches zero, the decision

variables -9 take special forms for which the distributions can be evaluatea in
closed form. Also, the signal and noise spectra are not restricted in any way.

Here we utilize some of the notation developed in Appendix B.

LOW-FREQUENCY PROCESSING

From (6)* and (B-19), for T -• 0,

-(P14 +s) (P +i D)2 (C-i)

Then

"Prob(k>X)=Prob(IP% +x.>ŽX)

00 X% d P!12

-f dx p(x) + f dx p(x)

X C p 4  -00CC -(D + (
(aco2 + 0.2)% (a2 + a20

=, IR ý*s((1-CRY (A-)s) + +IR,_ R

since x is Gaussian with variance a2 + a2 Here 4) is the cumulative dis-

tribution function (CDF) for a Gaussian random variable (RV),

( l(x) dt (2ff)"½ exp(-t'/2), (C-3)

and the normalized threshold A, is defined in (12). *

We define the fraction f of the total received signal power that is coherent
as

*This equation is in the main text of this report.
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3 .*

C CP' R• , Rc

f .. E--- , ' (C-4)
S + a2 R +R

where R is the total S/N at the input to fig. 1. Then (C-2) yields

P (R)" 2 =' 2\ n + / ,(,D (C-5)

for the detection probability. The false-alarm probability follows by setting
BR 0:

-2cD(-Al/ 2) (C-6)

Notice that the signal and noise spectra do not appear in: (C-5) or (C-6).

From (C-5) there follows

3f =-(2n)-I/
2  exp 2 nl+ (1+R 3 2  (C- )

af= 2(1fo LIR)

Also,

-(2P0 'I C 1/W/2-1) 1/

af n 12 ('n'A 1) I + (-8)
-22 A)!2  - ( -

n Imp [-.i. (2 A 1/2 -2] A"1/2 (A

The meaning and interpretation of thesb equations are given in Section 3 of the
main text.
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NARROWBAND PROCESSING

Fropn (B-3'7), (B-40), and (B-41), for T- - 0,

22 ~ 2 S

Them from '(B-36) and (Cz-3),

=ProbR [(r+iic)+(sx) j(C)

Prob~i>X> XPr) ( P24 o2 J

2A \1/2 2A

1+R 5 R

I 2A

1/2 d (k pE)0 Pr+ol 2I+ y 25

2A2 \R/ \1-i 12

00 t(2 r 2 1 (.Qj t2 L) /
2A * \1/2 s 1- (+R 11)

where R is the region outside a circlb of radius (2 A, /(l.÷R~ ), fmad Qis
tabulated in Ref. 21. The 6~rabability of detection is
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The probability of false alarm is obtained by setting R =0:

P -- =e- A) AC-13)

Again, the signal and noise spectra do not enter (C-12) and (C-13).

41
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Appendix D

ASYMPTOTIC BEHAVIOR OF CHARACTERISTIC FUNCTION
AND ERROR BOUND

The cumulative distribution function (CDF) canbe found fromthe character-
istic function (CF) by use of Ref. 16, Eq. (3)

P P(X) f1 I d_j_ m {f(6)exp(-.-6X (D-1)

(Alternatively, Ref. 16, Eq. (14) or (15), could be used for the problems en-
countered here.) Since numerical evaluation of this integral must be limited to
a finite interval, it is necessary to evaluate the error incurred by terminating
the range of the integral. To evaluate this error, the behavior of the CF1f(t) for
large t mast be known.

• I For the low-frequency (LF) case, the pertinent CF is given in (B-31). It
may be shown that for large t the second exponential is upper-bounded by unity,

* +and the leading terms behave as
()1/4 [_, l+i -.1/1 exp 1-u1/2 1_' -1/2)]

U2 j L (D-2)

exp i~ (.' U1/~2  )las\ 4

where u = A/g. As an example of the accuracy of this asymptotic form, for
S= 1 and A = 250, the exact value of the CF is 1. 489,62 •1-7 exp (-i2. 692384),

whereas the asymptotic expansion in (D-2) gives 1.490021 • 10-7 exp (-i2. 693924).
An upper bound on the CF for large } follows from (D-2) as

The error in terminating the integral in (D-1) can thenbe related to the integral

I - du 1/4 1 /2)]
f- exp [I3(1 Q Ul~

77 U L U

7/ / x [8Q- / (D-4)
27/ exp(p) dt t-/22

S- 2~'~ ~ f dt t"33"2 exp(-/3t) <2/-- exp[/(1 - (D-21

Y 101
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Values of uL used to keep' the error below. specified tolerances..can be-found
easily from (D-4). These values are, depenfient on't'4o exact value. of #;however,
they areindependent of R and Rs and are, there' re, conservative.

10.2
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Appendix E

DETECTION PROBABILITY UNDER GAUSSIAN ASSUMPTION

In this appendix, we assume the time-bandwidth product 1 large enough so
that the random variable p in (B-4) can be assumed Gaussian. In that avent,
we need only compute the mean and variance of p. We have

WP I+R
Pc +1= R (E-()

using (B-2), (B-19), (B-21), and (19). * The variance of p is given by

I
a2(p) =-ff dt du [4r(t)r(-) R(t-u) + 2R 2(t-u)]

T2 T

2tR 2P-1 + exp (-2p6) 4P-1 + exp(-4,) (E-2)

a +R(1-0 A 2 4P2

using (B-23) and (B-24) for the case of interest here. Then from (B-3), (12), *
and (C-3),

Prob(t>X) -Protp>

(P A +an

=(•P) -(1 +S R- f))-(p)/

1+R -A

[I +R1( f)]1/2 +R+Rf---(I+R +7Rf) +2 exp (-2p)+ + -ei4

(E-3)

The probability of false alarm is obtained by sietting R = 0:

__ PF =4( • 1- exp (-4)'I /
S(E-4)

* This equation is in the main text of this report.
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