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ABSTRACT

The exact detection probabilities and false-alarm probabilities for square-law detection of a
signal in Gaussian noise are calculated, with no restrictive assumptions about the size of the
observation-time-bandwidth products, Two cases a:e considered: in the first, called the low-
frequency (LF) case, the signzl is a combination of a dc component and a Gaussian process com-
ponent with exponential correlation, Here the noise is a Gaussian process with icentical exponential
correlation, In the second case, called the narrowband (NB) case, thesignal is a combinationof a
sine wave component and a Gaussian process component with an exponentially damped cosine-
soidal correlation at the same center frequency as the sine wave, Here the noise is a Gaussian
process with identical exponentially damped cosinusoidal correlation, The two components of the
signal are called the coherent and incoherenat components, respectively, in both the LF and NB
cases,

The output of the square-law detector is integrated continuously over the observation time
and compared with a threshold for statements about signal presence. It is not assumed that the
square-law detector output is sampled infrequently enough to yield independent samples.

Results for the detection piobability versus signal-to-noise ratio(S/N), with false-alarm proba-
bility as a parameter, are given for both the LF and NB cases for observation-time-bandwidth
products equal to 27 (n=0(1)7) and { - the fraction of coherent signal power equal tc 0, .2, 1,
For a specified detection probability of .5 and false-alarm probabilities of 107 (a = 1(1)8), the
required S/N is also plotted for the same range of time-bandwidth products and fractions of co- ~
herent signal power as above, Comparisons with a Gaussian approximation for large time-band-
width products are made; it is shown that the Gaussian assumpzion is optimistic in predicting
performance of the scuare-law detecror, the exact amount depending on the time-bandwidth
product.
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. OPERATING'CHARACTERISTICS FOR CONTINUOUS
i SQUARE~-LAW DETECTION IN
GAUSSIAN NOISE

' 1. INTRODUGCTION

Often, signals in noise are detected by filtering a received process to the
frequency band of inferest, squaring the filtered output, continucusly integrat-
ing over an observation.interval where the signalis anticipated, and comparing
this decision variable with a threshold or with the past history of this variable.
In fact, under cerizin conditions, the optimum detector for stochastic signals
takes this form (for example, Ref. 1, Chapter XiI). This form of processor
could be employed whether the received signal is deterministic (known cor
unknown), stochastic, or a combination. of both, although it is not necessarily
optimum in all these cases. This processor is, in fact, frequently adopted for
passive detection of targeis of unknown statistics.

Two important parameters that characterize the performance of this proc-
essor are the ba.ndwuhh of the stdchastic process at the input to the squarer
and the observatlon (or integration) time. Practical cases occur where this
time-bandwidth product ranges from the order of unity to several thousand, In
the latter case of very large time-bdndwidth products, the decision variable
can often be accurately approximated by a Gaussian random variable (RV).
However, when the time-bandwidth product is of the order of unity, it can not
be approximated as Gaussian, especially when very low false-alarm probahil-
ities or high-detection probabilities are of interest. The question then arises
as to the exact performance of the processor. Calculstion of the performance
is comphcated by the difficulty in analyzing the continuous integration of a 1on-~
Gaussian proces‘x since a "sum" of dependent random variables is formed, Also,
approximation of the performance by using a sum of independent variabies is
tenuous, because the exact value of the effective' number of independent
samples touseis not easily ascertained, Thus, there is a nezd for (1) the exact
evaluation of the receiver opevating characteristics (ROC) of the sguare~law
detector followed by an ‘ntegrator, both as a benchmark against which other
processors 2-d appreximations can be compared, and (2) the determiration of
when l’c’he Gaussian assumption can be validly employed, especially for medium
time-bandwidth products angdivery small false~alarm probabilities,
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Two cases of signal and noise spectra at the input fo the squarer are
considered: In the low~frequency (LF) case, the signal is a combination
of a dc component and a stationary, zero-mean, Gaussian process component
with exponential correlation, and the noise is a Gaussian process (of different
power level) with identical exponential correlation, in the narrowband (NB) case,
the gignal is a combination of a sine-wave component and a Gaussian prucess
component with an exponentially damped cosinusoidal correlation, and the noise
is a Gaussian process with identical correlation, except for power level, The
two componeuts cof the signal are called the coherent and incoherent componer”s,
respectively, in both the LF and NB cases, for ease of discussion,

Actually, the general derivations of processor performance capability pre~
sented here are not restricted to the cases above, They actually allow for an
arbitrary deterministic coherent signal component (which may be known or un-
known) and an arbitrary (hut identical) correlation function for the incoherent
signal component and the noise. #owever, numerical evaluation of performance
capability requires evaluatinr ihw resolvent (or reciprocal) kernel and the
Fredholm determinant of ths correlation function, Hence, numerical results
have been confined here to the cases given in the paragraph above.

Several practical applications fall under the framework above, For example,
if the incoherent component of the received signal in the NB case is absent, we
have deteclion of a sine wave; this is encountered in active or passive detection
of a target or in binary on-off communication with another party. Or, if the
ccherent component is absent in the LF or NB case, we have detection of a
random-signal process in noise; this situation canhold true in long-range trans-
mission through a fluctuating medium or in reflection of an acoustic signal off
the time~varying ocean surface. It is often employed in passive detection of a
noisy source, Finally, if both signal components are present, relevant examples
in the NB case are reflections of an acoustic signal from a surface with low
roughness, or communication via a medium supporting both a direct (nonfluc-~
tuating) path and fluctuating paths. Extensions to multitone applications are also
possible and are discussed in Section 4,

A great deal of work on the statistics of the time-average power of a Gaussian
process has been presented in the past. Rice? gave the first four semi-invariants
(or moments) {or an arbitrary correlation function of the Gaussian process,
and approximate«! the probability density function (PDF) for very small and large
observation times, Emerson® gave an infinite product for the characteristic
function (CF) of a filtered squared-Gaussian process and, via the first three
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semi~invariants, approximated the PDF through Gram~Charlier and Laguerre
expansions. Siegert® gave the CF in terms of the solution of an integral equa~
tion obtained by Kac and Siegert.’ Inthe former, the CF was iaterms of an
infinite product, although it was shown that the resolvent kernel offered an al-
ternative approach. No examples were presented, Darling and Siegert® and
Siegert’ showed that the CF of a more general functional could ke obtained
from the solution of two integral equations, aud they obtained the CF iu closed
form for a finite-tirze exponential averager,for a Gaussianprocess with an expo-
nential correlation. Slepian® cbtained a series expansion for the PD¥ and cumu-
lative distribution function {CDF), where each terr: was given by an integral,
No extreme probabilities were evaluated and the accuracy was about 1 percent,
Jacobs® considered a communications problem with rondom signals and made
a finite approximation to the CF by increasing the number of terms until the
CDF essentially stabilized, Schwartz!® obtained a closed form CF for correla-
tion functions whose corresponding homogeneous Fredholm integral equation
reduces to an equivalent lineardifferential equation. Four examples were given,
and both LF and NB cases were considered, Steenson and Stirling! conducted
a simulation and gave results on the PDF and false-alarm rate and showed tHat
the gamma distribution accurately fitted the data, Some related resulis on the
distribution of quadratic forms are given in References 12, 13, and 14.

None of the previous results are of sufficient accuracy to allow calculating
the cumulative distributions very near zero or unity — the regions of interest
for very small failse-alarm and high-detection prcbabilities. The complicated
results for the CF, even when in closed form, indicate the need for quick and
accurate CDF calculations that do not require moment evaluations or series
expansions, Here we make no attempt to find analytic expressions for the PDF
or CDF, but proceed directly numerically from the CF of thedecision variable
to the CDF via a Fast Fourier Transform (FFT).'»16  The assumption that
the incoherent component of the received signal has the same correlation (and,
hence, spectrum) as the noise in both the LF and NB cases, except for power
levels, enables evaluating the CF in closed form.

If the integrator following the squarer were replaced by a sampler and sum-
mer, calculation of the CF in closed form can be accomplished fairly simply
once the eigenvalues of the matrix of sampled correlations are evaluated. This
technique allows very generai aud different signal ana noise spectra and will be
the subject of a future report. For now, however, we restrict ourselves to con-
tinuous integration without sampling the squarer output.
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2. PRCBLEM DEFINITICN

Two different caser will be considered in this report, namsly,. the.LF aand
NB processors. Block diagrams of each processor vill be given and the perti-
nent characteristics of the signal and noise described, Then the expecied per-
formance of the two cases will be briefly compared for the case of large time-
bandwidth products.

2.1 LOW~-FREQUENCY CASE

A bleck diagram of the LF processor is given in Fig, 1, where y(t) is a
L¥ waveform composed of three components:

y() =c(t) +s(t) +nlt) . . )
In (1),

a; o(t) is a LF deterministic waveform (known or unknown) and is called
the coherent componett of the received signal.

b, s{) is a statlonary, zero~-mean, LI Gaussian process with correlation

R (7) =02 exp(-2W_ ir) (2

and is called the incoherent component of the received signal,

The noise n(t) hasthe same statistical description as s(t), but the two procesaes
are independent. Its correclation is

R () =clexp(-2W, |7]) . 3)

The (double-sided) spectra of s(t) and n(t) are given by
: W/ @)

(4
a0 24w, /m?

$,n

where W, can be interpreted as the effective (or statistical) bandwidth!” of the
positive~frequency components of the LF random processes:

2
{j- df Gs,n(f)] R2 o) (5)

<

v = = 5,0

I TPY: 7 2
[dfGE (D 2[ drR{ (1)
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The idontical speciral shape of the incoherent conponent st) and the noise
a{t) is realized in practice by filtering fairly hroadband received signal and
noise processes through a low-pass RC filter. I can be interpreted physically
as overresolving the received signal with a veryslow-pass filter,

The decision variable £ in Fig. 1 is given by
] =-_1: I’r ae fc(0) + s(0) + a(0)? (6)
b S

a1
-

and is to be compared with a threshold for detecting signal presence. (No as- :
suraption about the size of the time-bandwidth product TW, is made.) This
is broadband-energy detection and contains three subcases of importance:

: a, c(t) = 0, Signal presence indicated by an increased power level in the
| received randoni process,

b. s{t) = 0, Signal presence indicated by a nonzero, time-~varying mean in
the received random process,

¢, Both c(t) and s(t) nonzero, Signal presence indicated by addiug a non-
zero, time-varying, mean-random process to the received random process,

o

2,2 NARROWBAND CASE

A block diagram of the N3 processor is given in Fig, 2. In the figure, y(t)
is an NB waveform composed of three components, as in (1). The signal c(t) is
; an NB waveform centered at freguency fo’ with a deterniinistic complex enve-
iope (known ¢r unknown), and is called the coherent component of the received
signal, Both s(t) and n(t) are independent, stationary, zero~mean, NB Gaussian
processes with correlations

A
R, ()= oi,n exp (=W {7} cos (2af 1), £ >> Qc

M
e (It is assumed that f,T >> 1, where T is the integratiou time in Fig, 2.) By
, definition, s(t) is called the incoherent component of the received signal,
; The (double-sided) spectra of s(t) and n(t) are given by
b { 2 el‘ ! ' ©
g Gs.n(f) =00 4"2 Q 7t Q 2 ’

(f—-f(,)2 +( c) (f+€)2 +(—-—-f-) )
2 o 2n
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where ﬁ'c ‘can be interpreted asthe effectivebandwidth of the positive-frequensy
components of the NB randein processes:

w2
[{ df L’l s, ”(f)J _ R:'n(o)

[a6l.0  2far? (0

& - ®)

The identical spectralshape of the inccherent comporent s{t) and the noise
n({t) are realized in practice by fiitering faivly broadband received signal and
noise processes through an RLC filterthat is NB. It canbe interpreted physically
as overresolving the received signal with a very NB fiter,

The decisior variable £ is given by

1 .. . 2
] =2—'l:']r di|e(2) » s() +n(0}* , (10)

whers x(t) denotesthe complex envelope of x(t) (see Appendix A), The decision
variable £ is compared with a threshold in order to detect signal presence,
(No assumption about the size of the time-bandwidth product TW, is made.)
Thie is NB energy detection and contains three subcases:

a, c(t) = 0, Signal presence indicated by an increased power level in the
received random process,

b. s(t) = 0. Signal presence indicated by an NB waveform in the received
random process,

c. Both c(t) and s(t) nonzero. Signal presence indicated by adding an NB
waveform and random process to the received random process,

2.3 PERFORMANCE COMPARISON BETWEEN LOW-
FREQUENCY AND NARROWBAND CASES

The effective bandwidths of the ILF and NB processes, which have been de-
fined in (5) and (9), respectively, are measures of the spectral width of the
positive~-frequency components of the respective processes, A bandlimited low-
pass process confined to frequencies (-W, W) must be sampled at least every
(2W)~! seconds in order nct to lose any information. Thus, in along time interval
T, there would be (2W)T samples upon which to base a decision as to signal
presence or absence. On the other hand, a bandlimited NB process confined to
frequencies (f, - W/2, {,+ W/2) and the corresponding negative frequency band

e e e P ey,
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must have its ia-phase and quadrature components sampled at least every W™!
seconds-in order not.to lose any information; Then in a time T, there would be-
2(W)T samples upon which tc base a decision-as to signal preseénce, Therefore,
both bandlimited processes, LF and NB, vield the same number of information
samples whea W is interpreted as the spectral width of the positive~frequency
components, As a result, in our investigation of nonbandlimited processes, we
e*cpect that when the effective positive~freguency bandwidths are equal, that is,
W .. the performance of the LF and NB processors should be comparable
for large TW.. This will bé borne out by the numerical examples in the next
section,

For smali time-bandwidtk products, however, the performance of
the LF and NB processors differ. For example, as T—0 in (6) and (10),
Dio—ip to)s Lyg—1/2 [¥2 () +y? (t.)] (see Appendix A). Thus, in the
limit of small time~baadwidth products, LF processing contains one degree of
freedom, whereas NB processiug contains two degrees of freedom, The per-
formance of the NB processor will be better than that of the L.F processor for
small time-bandwidth products.
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3. RESULTS

» The CFs for the LiF and NB cases are derfived in Appendix B, the general
‘Tesults being (B-22) and (B~46). These results are specialized to the cases of

" ifterest here, resulting in (B-31) and (B-51), respectively. For the special
caseof T —0, (6) and (10) reduce to a single sample of the input processes,
and derivation of the detection probabilities and false-alarm probabilities is
possible in closed form; these derivations are presented in Appendix C.

"

The CDF P of a nonnegative RV from its CF f can be evaluated numerically
via use of any of the equivalent forms! ;

00 d§
F (X) =; - %fo 7 Inlf(&) exp(~i£X)]
=7-?;-_Zo 25 £ (&) sia(£X) (11)
-1-2 }:g&éfi(f)cos(f)(), X>0

In (11), f, and f; are thereal and imaginary parts, respectively, of CF f, The
. error in terminating the integrals in (11) at finite limits for computer evalua-
tion is considered in Appendix D,

3.1 LOW-FREQUENCY CASE

Suppose £ in (6) is compared with a threshold X for purposes of signal
detection, We now define a normalized threshold,
X
AN =—0
n

, (12)

n

and the time-bandwidth product,
B=TW_ . {13)

Values of the required normalized threshold A, for different values of 8 and
specified false~alarm probability P. are given in Table 1.

Before presenting results for the detection probability, it is convenient to
define several power signal-to-noise ratios (S/Ns). We define the received co-
herent signal power

=1 2
PC-T{dtc (0 (14)
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Table 1
THRESHOLDS FOR LF PROCESSOR
B ] .
0 1 2 4 8 16 32 64 128
B ,
10"l 2.706 | 2.065 | 1.841 '1.634 1,461 1.329¢ 1. 233 1, 164 1,115
1072 6.635 | 4.302.} 3,362} 2,600[2,065( 1,710} 1,478} 11,3241 1,225
107 ] 10.828 | 6.706 | 4.971 {8,564 |2.630] 2.047| 1.684 | 1,455 1,307
§ 10~ 15,187 | 9.180 | 6,631 {4,540 13,182] 2.364] 1,872 1,571} 1,381
: lﬁ’“’ 19,511 ] 11,698 | 8,822 5,526 (3,.728| 2,670} 2,050 1.678] 1,448
107¢ 23,928 | 14.28D | 10,031 | 6.523 {4.272{ 2,970] 2,221 1.779{ 1. 5611
1077 | 28.874 | 16.785 | 11,758 | 7.527 | 4.8151] 8. 265 2.3871 1. 877} 1. 570
1078 | 82.841 ] 19.852 | 13,483 | 8.537 | 5.889] 8. 5568] 2.549] 1. 970 1. 627
The coherent and incoherent S/Ns are defined, respectively, as
pc
R, ==t
% (15)
and
o]
“,“;nr . (16)
The total received S/N is defined as
Pc +a§
R= pr =R, +R, (17)

We also define the fraction f of total received signal power that is coherent as

10

n

p

flﬂ—-—n——-h———

3
Pc +ay

R

4

R

(18)

A J
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using (15), (16}, and (17). Then we can express
- R_=fR,
© (19)
R ,=(1-f)R ,
and, thereby, utilize the total recelved S/N R and the fracﬁon f of coherent

signal power as the fundamental parameters characterizing the performauce
of the processor.

In the series of Figs. 3 through 11, to follow, plots of the detection prob-
ability P, versus RY? are given, with P, as a parameter. Each figure
corresponds to a different value of B, specifically g=0, 1, 2, 4, 8, 16, 32, 64,
and 128, Each figure is composed of three parts: Part A is for f= 1, part B is
for £= .2, and part C is for £=: 0.

The equation
dB3 = 10 log,, R =20 log,, RY/2 (20)

canbe employedto convert the abscissatodecibels in Figs. 3 through 11. (R is
a power S/N, whereas RY? is a measure of a voltage S/N.\ Equation (20) is the
total input S/N expressed in decibels,

The difference in performance for different fractions f of coherent signal
power is very marked for small 2, Thus, Fig. 3, for f=0, illustrates a sig-
nificant drop in Py for large values of RY? when f is decreased from unity, In
fact, this degradatiopn in performance occurs even when f is decreased from 1
to .9 (this curve is not shown). As 8 increases, the difference in performance is
lessened until, for large B, the oppositebehavior occurs for large RY? (for
example, P, ~ .9999). That is, the required value of R'? for a specified P,
near wnity is less for f = 0 than for f = 1 for very large B; see, for example,
Fig. 131,

On the other hand, for small values of P, the smaller values of f yield
the better performance for small 8, whereas the larger values of f give bet-
ter performance for large B. There is, however, rather slight differences in
performance, that is, required S/N R, in the case of small Py.

The reason for this cross-over of the curves is explained by the fact that
we are considering a fixed receiver and varying the transmitted signal composi-~
tlon, The fixed receiver is more nearly optimum for some transmitted signals
than others, and it is ir.possible to order the performance of the various com-~
binations of coherent and incoherent signal power,

11
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The situation is made more striking when the performance of the optimum
receiver for completely coherent recepfion, f=1, is considered. For a dc
signal waveform, LF processing, and exponential noise correlation, we can
use the first equation on p. 114 of Reference 1 to evaluate Helstrom's power
S/N d? for the optimum receiver as

d*=R (1+T¥) =R(1+TW) =R{1+B) . 21)

The false-alarm and detection probabilities for this case are given by [Ref. 1,
p. 106, Eq. (3. 32)]

Pp=®(-x),

P, =®d-x) = G/T+BVR-x) ,

(22)

where* x is selected for prescribed P.. (For 2 specified performance (P,
P,) of this optimum processor for f=1, required values of d can be read
from Ref. 1, p. 88, Fig. IV.1.) When (22) is superposed on part A of Figs. 3
through 11, it lies everywhere above the square-law detection curves, as is
expected, Furthermore, the slope of the straight lines ((22!, is greater than
the slopes of the square-law detection curves. However, when (22) is super-
posed on parts B and C of Figs. 3 through 11, the equationlies below the square-
law detection curves for small R and above it for the larger values of R. The
square-law detector can give better performance in some regions of R (for

f < 1) than the optimum coherent receiver (for f= 1) for the flat transmitted
signal, because the transmitted signal (the flat waveform) is not the optimum
one to transmit in this noise spectrum, Rather, a deterministic signal that
oscillates arbitrarily fast in the interval T and, thereby, occupies a region of
low-noise~density does arbitrarily good; there is no optimum signal unle s we
impose some bandwidth constraint. This case has not been considered here,

Two analytical results along a related line are possible for 8 =0. From
(C-7), it is found that the detection probability for fixed P, aund fixed R (>0)
always decreases as f increases from zero (for A, > 0) regardless of the
values of the tfalse-alarm probability and S/N. (A, < 0 and R < 0 areuninteresting
situations.) Of course, for large A,, thatis, low P, the rate of decrease
is not very large and may not be noticeable from the plots. However, for large
A, and R, forexample, R = A, -1, (C-T7) gives

*(b is the CDF for a zero-mean unit variance Gaussian RV; sce (C-3).

12
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aP

1
=—{(22)"Y2 exp(~1/2) (1 - X:) ; (23)

f=0

g which is significant,

|
|
|

For f = 1, we find the same result for &= 0; see (C~-8). The slope can be-
come very negative for large A.; in fact,

P, A
3F N———-—]-IT as Anqc\a
f=1 2(24’78) : (24)

! Thus, for 8= 0, performance of the square~law detector is degraded as £ in-
! creases toward 1 for certain S/N R and normalized thresholds A -

For large time~bandwidth products B, it is anticipated that the decision
variable { in (6) could be approximated by a Gaussian RV. In Appendix E are
presented {te equations for the detection and falsc-alarm probabilities under
this Gaussian assumption; see (E-3) and (E-4). In Fig. 12, these equations are
plotted for B8 =128, where f=1, .2, and 0, respectively. These approximate

: curves are generally above the exact curves given in Fig, 11 for the same con-
ditions; that is, the Gaussian assumption gives optimistic performance prs-
dictions compared to the true value, However, the deviation is not great at
B=128.

For a specified performance (P;, P,), the requiredinput /N R decreases
tozeroas T — » ., Infacl, from (E-4), we fiad

Pe~dWB(1-A)as B, (25)

where normalized threshold A, is seiected tokeep the argument fixed; that is,

VB(A_~1) = Th(P,) (26)
is kept fixed at a threshold value that depends on the prescribed Pg. Then (E-3)
yields
Py~ ®W/BR = Th(Pp) as B . @7

Thus, the required S/N R decays as T as T ~ w , rather than according
to T-!; this is attributable to the square-law dstector characteristic, Notice
that this rate of decay of required R holds regaraless of the value of f; that

13
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is, it is independent of the fraction of each type of signal component. Although
this rule was deduced from the Gaussian assumption, it holds in the general
case because the decision variable { approaches Gaussianas B — = .

Figures 4 through 11 may ke used to obtainthe exact values cf theinput S/N R
that are required toattaina specified performance, In particular, for P = 107,
n=1(1)8, and P, =.5, the required valueof R (in decibels) is plotted versus
B in Fig. 13. The three parts of the figure correspond t¢ f=1, .2, and 0,
respectivaly. The rate of decay of R with increasing B is approximately 872
as discussed above, In Gecibels, the decay is -5log 8.

The Gaussian assumption, Fig, 12, gives values of S/IN R that are optimistic
by amounts that depend on the quali’y of performance desired. For example, the
Gaussian approximation fov =128, P, =16"%, and P, =.5 indicates a
required S/N of -3, 05 dB for all f, * whereas the actual required S/N is -1, 98
dB, a difference of 1,07 dB. In fact, the -3.05-dB S/N would yield a Py
greater than 1076 at f= 128, (For P = %4, the differencein decibelsincreases
to almost 1.5 dB, ) However, for Pp =.1, instead of 1078, the decibel dif-
ference between the exact answer and the Gaussian approximationis only . 28 dB
at § =128, These comparisons have been made here only at the P, =.5 level,
and conclusions at other levels can be very differenf, Figures 3 through 11 fur-
nish information for required S/N at other performance levels of interest.

A note of caution is in order at this point: From (C-1), (C-5), and (C-6),
for =0, if £=1, the decision variable { is given by

~(PV24 )2
Jl--(F’c + n) (28)

and .
P, =®RYZ - AY2) + B{-RV2 - AV/2)

, ’ @9)
P, =20{- A:/ 2

*This independence of f for required S/N is true only for‘PD =.5; see (E-3).
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1 H :
Now for a fixed P, A, is fixed, and lx)" versus R plots as a straight
line on normal-probability paper (for example, see Figs. 3 through 11) for all
values of A,. However, the RV § in (28) is definitely not Gaussian. Thus,
a straight-line plof on normal-probability pa.per can not be mtemreted as
cenrresponding i a Gaussian RV, : : . :

2 ¥ARROWBAND CASE : o ,

Most of the comments in the previcus subse;:tlon are applicable here and
will not be repeated, for the sake of brevity. Alswthe notation is similar, except
that 1

I

B=tr . 5 P {30)

Values of the required normalized threshold 4, for different values of ﬁ and
specified P_ are given in Table 2. As a.ntlmpated in Section 243, the thresh-
olds for lax ge time-bandwidth product B are virtually 1dent10a1 to those for.the .
LF case (Table 1). However, the thresholds for small § are quite different,

H

Table 2 ,
THRESHOLDS FOR NB FROCESSOR | '

1

“wd

0 1 2 4 8 16 32 64| 128

107 | 2.303 | 1.979 | 1.799 11,615 )1.454| 1,326 | 1,232 | 1,163 |1,115
1072 | 4,605 | 3.680 | 3,123 |2.528 2,044 1,703 {1,475 | 1.324 | 1,222
10 | 6.908 | 5.381 | 4.447 |3.423|2.593| 2.036 | 1. 681 1.454 [ 1.307
107 | 9.210 | 7.083 | 5.770 |4.316] 3,129 2.349 |1.868 | 1,569 |1.381
10=* |11.513 | 8.784 | 7.093 |5.209 | 3,658 2,652 |:2,045 | 1,676 | 1.448
107¢ {13,816 {10.485 | 8,416 |6.101 4,184 2,948 {2,215 1.778 | 1510
1077 16,118 {12,186 | 9.739 |6.994 (4,709 3,240 {2.380 (1, 874 | 1,569
107 118,421 |13.687 [11.063 |7.886| 5,233 3,528 |2,541,|1.968 | 1.626
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* In Flgs 14 through 22 plots of Py velsus :R‘/z aré: preseuted for the
NB processor, with PF asa parameter.,For ﬁ 128,.ﬂ1e curves are v1rtually
identjcal to those for the LE casé;- tl'us, ‘the Gansszan approximation could be
apphed here. with equal “validity as-for- thecLF casel. Also, -this- corroborates
the: anhc;pated sequality of performance for the deﬁmt:mns of :¢ffective bardwidth
adopted earlier. The curves; -exhibit behavior smular to that for the LF case,
pa.rucularly the cross-ove"' for dlfferent values of f;

The reqmred inpit S/N R t0 attain Pe =10™", n=1(1)8, and P, =.5 is
: plotted.in Fig, 23 for theNB case. The reqmred S/N is less than the one ih the LE
case for-small ﬁ ‘but-is vi y identical to the LF case 1or-large 9
Required values of R for other detectmn probabilities are available from Figs.
14 th.rough 22.. ' ) o D,
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e
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4, DISCUSSION

In the problem considered here, no assumptions about the size 0. thetime-
bandwidth product are necessary, and the decision variable need not be ap-
proximately Gaussian, Small false-alarm probabilities can be easily and very
accurately investigated numerically. The complexity of the closed form CF,
even for the relatively simple case considercd here, precludes any analytic
solution for the CDF; nevertheless, very accurate answers for the CDI can be
obtained. This numerical approach is recommended for other problems of this

type.

For each doubling of the time-bandwidth product, it has been shown that
the required input S/N R decreases by 1.5 dB (for large products) in order to
maintain a prescribed performance (P, Pp). This result is similar tothat cited
for an envelope detector [Ref. 18, p. 262, and Exercises 8, 8 and 8. 9] and is
a result of the squaring operation in the receiver. The improved performance
for f=0 versus f=1 at low S/N has also heen observed for other processors
operating in fading media {Ref, 18, pp. 208-9 and pp. 214-5].

Use of a Gaussian approximation on the decision variable for large time-
bandwidth products is in error by approximately 1 dB when the time-bandwidth
product is 100. For larger products, the Gaussian approximation yields pro-
gressively better estimates, at least for detection probabilities that are not
extreme and for false-alarm probabilities that exceed 10~%, This applies to
both the LF and NB processors under the conditions investigated here,

Some extensions of the problem studied here are possible, They center
around the abilify to obtainthe CF of the decisionvariable either in a closed form
or in a reasonable amount of computer time. For example, suppose the decision
variable { is given as a weighted sum,

(61)

where the kth branch output, £, , has signal s, (t) and noise n,(t) independent
of all other branches. (This occurs, for example, if a bank of filters is excited
by broadband processes, and the filter in the kth branch is disjoint with that in
the jth branch for j # k.) The statistical situation obtaining in the kth branch
can be any one of the six cases listed under (6) and (10) and can be dissimilar
in different branches, Furthermore, thetime of observation, the effective baad-
width, center frequency, and S/N can be different in each branch, The CIF
corresponding t» the RV ¢ in (31) is given by

17
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N
=1 f=8H (32)

where f,(¢) is the CF of the RV ¢, inthe kth branch,
Examples that fit into the framework of (31) include the following:

a, Multitone active detection or communicatioa in a time: varying random
medium that gives rise to the scatter component of the received signal, (The
multiple tones could be transmitted to combat fading or jamming or both. )

b. Multitone passive detection, wherethe scatter component of the received
signal may be due to either medium perturbations or source instabilities.

c. Single-tone passive detectionby comparison with a threshold established
fcom neighboring filter outputs,

A ccinpilation of performance-capability characteristics has been presented
for continuous processing of both LF and NB processes. However, they are
limited to an identical exponential correlation of the random received signal
and noise processes; nonidentical spectra, for example, of the signal and noise
processes are disallowed. The only cther continuous processor that yields
closed-form expressions 1r e CF of the decision variable is an exponential
integrator [Ref. 7, p. 41]«, rather than the finite-time average considered
here. However, it, tco, requires an exponential correlation function. The only
reasonable way to generalize to arbitrary (unequal) signal and noise spectia is
t0 consider sampled processors, Often this is the practical situation anyway.
The decision variable for the square-law detector can thenbe transformed into
a sum of squares of indepe=dent Gaussian variables, and the CF evaluated as a
finite product. If the size of this product is not excessive, direct numerical
calculation of the CF and, hence, the CDF by the methods in Refs, 15 and 16
is possible, This approach will be the subject of future investigation on more
general processors and spectra,

In passing, itis noticedthat the detection problem posed hereis theoretically
a singuiar one for the purely incoherent signal; that is, detection canbe accom-
plished with zeroprobability of error (see, for example, Ref. 1, pp. 304-306).
However, the optimum method of processing is impractical — it would require
precise knowledge and use of all the eigenvalues of the correlation kernel;
equivalently, second-derivatives of the observed process are required. The
physical impossibility of accomplishing this in a practical case forces us to
adept a suboptimum procedure similar to that considered here,

18
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Fig, 4A, f=1
Fig, 4, Detection Probability; LF, g=1
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Fig. 5A, f=1
Fig. 5. Detection Probability; LF, £=2
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Fig, 8, Detection Probability; LF, B=16
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Appendix A
COMPLEX ENVELOPE RELATIONS
Jr. this appendix, wé collect the coinplex envelope felations that are re-
quired in analyzing the narrowband (NB) processor, Consider a stationary zero-

mean process x(t) passed through a time-~invariant linear filter, as depicted
in Fig, ' -1, Here U(f) is the unit step function:

U@ = %0’ f <OE (A-1)

x (t)

Fig. A-1, Single-Sided Filter

Thus, the output x () contains only positive-frequency comporents, If the
spectrum of x() is G, (f), then, from Fig. A-1, the spectrum of x () is

G, (D=4UD G . (A-2)
Also, since
U =1+sgn(d =1+il-isgn(n] , (A-3)
we can express
x4 (1) = x(1) +ixy(r) (A-4)

where x,(t) is the Hilbert transform of x(t):

._x(7)

1 o
xH(t) :-—f ar
- t—-r

(A~5)

Let the ""center" frequency of G, 4. (f) be f_ and let the complex envelope
x(t) of x(t) be detined as

x(0) = x (1) exp(~i2af ¢) . (A~6)

Then the spectrum of the complex envelope is

83




60 =Gx+(f+f°) =4U(f+£) G (f+f) ,

(A-T)
and the mean magnitude-squared value of the complex envelope is
012 Farcn=4[aecm=-202 ,
T ° - (A-8)

where o2 is the power of process x(t).

Let the complex envelope, which is low-frequeancy (LF), be represented in
terms of its real and imaginary components:

x() =x () +ix() . (A-9)
There follows, using (A-4), (A-6), and (A-~9),
x(t) =x () cos (2nf 1) —x (1) sin 2mf 0 . (A-10)

Thus, x.(t) and x (t) are the in-phase and quadrature components of x(t).

Now if the process x(t) is filtered by a linear filter with transfer function
H(f), yielding (complex) output y(t), it can be shown that

YOy(-D = [ df expli2ntr) G (0 H(D H(-f) (A-11)
Applying this result to Fig, A-1, we obtain
x40 x{e=7) =0forall 7 , (A-12)

since U(f) and U(-f) are disjoint. Hence, from (A-6),

2(0x(t-7) =0 forall 7 . (A-13)
Therefore, using (A-9) and {A~13),

x (8 x (t=7) = Re {x (0] Im bx (e~ 1)}

-1 [x(t) + x* (0] -_—]:[x(t-‘) -x* (-7
2 - i2 =
(A-14)
LR D R = - L R ()}
14 - Rad 2 -

1

.__i__-

- ~_;. tn] [ df exp(i2afr) Gx(f)% <=2 [ df sin(2nr) G (D

84
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where we have defined . :

R (1) = x(1) x* (r—7) i . (A-15)

and utilized the fact that G,(f) is real (see (A-T)). Now from (A-14), it may be
seen that if and only if the LF spectrum G,(f) is even about £=0, then the
processes X.(t) and x.(t) are uncorrelated for all relative time &elays. In terms
of the original spectrum G,(f), processes x.(t) and x,{t} are uncorrelated for
all time delays if and only if G.(f) is even about f, (in (0, 2£,)). In the special
case where x(t) is a Gaussian process (not assumed up to new), x.{t) and
x.(t) are independent processes [Ref. 19, p. 41], since x.(t) and x(t) are
Gaussian processes (being linear combinations of x(t)). ’

Lastly (eliminating the Gaussian assumpfiion again), by a procedure anal-

ogous to (A-14), |

i fw df cos 27£7) G (f) ..(A-16)

x () x (t=1) =x (1) x _(t-7) =-;—Re{Rx(r)§ =

o

As a special case, the powers are, using (A-8),

Cmr——

x2(0) =x2(9) =

N'l—l

fdfo(0=oi . (A-17)

!
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o DERIVATION OF CHARACTERISTIC FUNCTION
FOR' LOW-FREQUENCY AND:NARROWBAND CASES

This aopendlx consists of twoparts: The first part derives the cha.ractenstlc
function (dF) of the degision varigble £ for the low-frequency (LF) case, as
_ ! given by (6)*; the second partidoes the same for the narrowba.nd (NB) decision
' variable {,;as given by (10). * An example for each case is presented,

]
H

4

. LOW-FREQUENCY CASE

From (6), * :
! 1

o —,1-34 t[c(t)‘+s(t)+n(t)]2. B-1)

The powers in the ze.o-meah Gaussian processes s(t) and n(t) are o2 and
a2, respectxvely. Let us now define

i !
13

‘ ; L i l‘(t)='!"‘-'c—('t‘)“;—/2‘ )
, (0§'+0§)
|
i
) ‘ ’ -2
{ s(t) +n(t) i ®-2)
o S s/
, | (o§+a§)
|
Then
| 2 =lo2+0Dp B-3)
where .
| a-’li_-g t[.r(t)+x(t)]2 . B-4)

Let the correlation of ;é(t) be R(r), which is general here, except that R(0) = 1,

as seen from (B-2); s(t) and n(t) are assumed independent of each other, At
this point, the deter.ministi‘c waveform c(t) is also general,

. *This equation is in the main text of this report.
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The CF £ of the random variable V)£ is related to the CF f;, of the RV P
according to ‘

 £(O=explil) = exp (€2 50Dp) = (02 402N &) , B-5)

s - -n

using (B-3).

Now we define for the kernel (correlation) R, the eigenvalues {%}, and
eigenfunctions {¢, } :
A [ duR(t-u) ¢(u) = (0), teT (B-6)
T

Next, we expand x(t) in the set of eigenfunctions according to

x(t) = ’E x,¢,(9, teT , B-7)

where
x; = { de x(1) é,(0) (B-8)

since the eigenfunctions are orthonormal [Ref. 1, pp. 98-103]. The RVs {x;}
have the properties

X,
i

0 ’
3-9
XX, = f[ dt du R(t-u) $;(1) b (w) = L (1B-9)
T

?

l\\j 6,1(

using the fact that x(t) has zero-mean and employing (B-8) and (B--6). Since
x; in (B-8) is a linear operation on the Gaussian process x(t), then {x i} are
independent Gaussian variables,

When we employ (B-7) in (B-4), we obtain

— . 2 2 1 - 2 -
p= fT dt () +?§"ixi +7r-2. x5, B-10)

1
T j
where

= Jrdee(® <I>'(t) . B-11)
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Then the CF of RV p is

fp(§)=exp(i§[>)=exp<i %_[r.dttz(t))ﬂ;.ew[i%rixi*'ié f]i , (3-12)

using (B-10) and the independence of the {x i} . The jth average in (B~12) is,
letting o} = 1/X, and using (B-9),

dx x? (2¢ € 2
exp{———J)expli—r.x+i—x
2170j 2052 T ! T

I~-i exp | -

% -i24T )
‘;

where the square root is principal value. Equation (B-12) canthenbe expressed

oo -

However, employing (B-11), we get

r2 d(1) p{u)
_E —-’—— ﬁrd: du r(t) r(u) Z—,—-)—-
oA -i2gT T j A-i2dT

=ﬂdtdu (@) D (,ui2T) ,
'y

where T is the resolvent {or reciprocal) kernel of R [Ref. 20, p. 141, Eq, 64
and p, 134, Eq. 52} . Substituting (B-15! into (B~14) and employing (B~2) yields

-1/2
2 . 1
fp(g) =ﬂ/€ 1-1i ¢ exp i...._‘f_.__. ?fdt cz(t)
l AT o2 + o}

} i %a T

2¢2 1
- - fdt duc(t) cu) T' (¢, u;:28T)
T

2 2 T
Os+0'n

T

172

) ¢ 282 r2
) } exp (i ’-;- [ de rz(t)\) exp (—- Z ! (B-14)
“r T2 1} A -i28/T

/

2¢
AT
j

(B-15)

(B~16)
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Now, if the coherent signal component is absent, that is, c(t) = 0, this CF

must reduce to
-1/2
[ i2¢ ] 17
D -?— ’ (B )

where D is the Fredholm determinant [see Ref. 10, p. 18] (notice that the
eigenvalues {\;} here are equalto {1/A;} inRef.'10). The square root in
(B-17) is not principal value, but must be determined by tracing D(i2¢/T)
from ¢=0, where D(0) =1, in a continucus fashion, This result follows by
inspecting the product ofprincipal value square roots in (B-16). Utilizing (B-17)
in (8~16), we obtain the CF of p as

-1/2
¢
£ =|D(i2¢/T) exp |i —— .}.f de (1)
0! + arf T T

s

(B-18)
2

f2
'iz j] dtduc(t) c(u) T (¢, u;i2 &/T) .
0: T T

2
Os+

This CF depends on the Fredholm determinant, on the resolvent kernel of cor-
relation R, and on the waveform c(t). If the Fredholm determinant and the
double integral on the resolvent kernel can be expressed in closed form, the
CF of p is available in closed form.

It iz convenient to normalize waveform c(t) as follows: Denote the average
power in received waveform c(t) over the interval T as

- A 2
Pc = —T— fT dt ¢ (t) , (B-lg)

and define the normalized waveform

cl(t) = P’cl/z () . (B-20)
The average power in c,(t) over T is unity. Also we deiine two S/Ns:
2
R =nf R =l ®-21)
¢ 2 T F '
On On

These are the ratios of coherent signal power to noise power, 2nd incoherent
signal power to noise power, respectively, at the input to the LF processor
in Fig. 1. Equation (B~18) can then be expressed as
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(08 = [DE2 &N ep |1 — ¢
P ® 1+R
2R, , 1 f[ r e/ (B-22)
— — —_ d ,u;i2 .
=y 3 ] 8 de du (1) c () T' (¢, ;12 §/T)
Exampie: Exponential Correlation; Constant Waveform,

We assume that s(t) and n(t) areindependent and have the same expozential
correlation, as given in (2). * Then, using (B-2),

R(7) =exp(-2W_|r}) .

(B-23)

The coherent waveform is taken to be dec;

C‘(t)=l, teT.

(B-24)
Then, from Ref, 10, Eq, (37),T we have

£14)

-1/2
1-i¢/B -
= exp (B) [._.____. sioh (28 $(£/B)) + cosh (2l3¢(§//3))-! , (B-25)
c(t) =0 ¢(§/B) J

where

B WcT’ (B"ZG)
Hw = (1~-i2w)t? .

The square root for ¢ is principal value;thatfor £, is not, but must be traced
continuously from £ =0, wkere £,(0) = 1.

The resolvent kernel is [Ref. 10, p. 21, Eqgs. (29) and (30)]

2
r‘(tvu;iz é/’r) =
wTy

[cos(wt) cos(wu) = y? sin(wt) sin(wu)

(B-27)
- ysin(wit-uf}] , tu, T,

where

oT =i284(¢/B) = i2B¢

(B~28)
* This equation is in the main text of this report.
The factor 4 in Ref. 10, Eq. (37), should be a 2.
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and

1 + cosh(28¢(&/B)) + $(£/B) sinh(2B $(&/8))

sish (28¢(&/B)) + $(&/B) [ 1 + cosh(2BH(&/B))]

cosh(B¢) + ¢ sinh(B¢)
= — (B-29)
sioh(B¢) + ¢ cosh(B¢)

1+ ¢ tanh(B )
¢ + tanh (B ¢)

y =-

There follows, after some manipulation,

-12-[[«-1: du T (1, u312&/T) = 1 .
™ B(1-i2&/8)

=30
sinh (28 ¢) } (B-30)
1- .
Bol1+cosh(2B¢) + psinh(28¢)]
Finally, the CF, (B-22), becomes
1/2
1-i¢/B R,
fp(f) = exp(f) | ————— sinh(28 ¢) + cosh(2 B¢) exp| i ——— o
¢ 1+R,
(B-31)
& 2¢ sinh (2 B4) ]
1-i ,
1-i2¢/B8 B d 1+ cosh(2B¢) + ¢ sinh(2 Be)
where ¢ is given by (B-28) and (B-26) as
g=(1-i2¢/p'? . (B-32)
(As B - 0, there follows from (B-31)
Rc i -
fp(f) »(1-1i2 f)-1/2 exp {~ ""—l—-é—— , (B 33)
I+R_ 1-i2€
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which may be readily derived as the CF of p in (B-4) for one sample .f
[r¢) + x(t)]*. The CDF is derived in Appendix C.)

The CDF can be found from (B-31) by employing the methods in Rels, 15
and 16, The square root in (B-31) is not principal value, but must be :raced
continuously from §=0, where £,(0)=1.

AR, S R S R TR AR IR T

NARROWBAND CASE

From (10), *

= 1 fdt () + s(v +_r_1_(t)!2 . (B-34)
2T JT

The powers in zero-mean Gaussian processes s(t) and n(t) are ¢2 and o2 ,
respectively. We now define
(0]

£() & ——

2 2,172
(05 + o) (B-35)
s(t) + (1)
x(1) = —————— .
(ag + 03‘)1/2
As a result,
L=(2+0od)p, (B-36)
where
1 2
p= E_[r defz(d +x(0} - B-37)

The correlation of x(t) is Zﬁ(r), where ﬁ( 7) is general, except that ﬁ(O) =1
(see Appendix A),

The characteristic function (CF) of the random variable RV){ is

£(9) =£ (e +0D) O . (B-38)

¥ This equation is in rhe main text of this report.
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In order to evaluate the CFf,, we expand r(t) and x(f) in terms of their real
and imaginary parts:

o) =1 () + ir () ,

(B-39)
(0 =x () + ix (9 .
Then
P =%(pc +Ppg B-40)
where
Pc =—1‘f de [r (1) + xc(t)]z ,
TJT (B-41)

P, =711_-'/; delr (o) + xs(t)]2

Now if and only if the spectrum é(t) corresponding to lAi(r) is even about £ =0

(that is, G, . (f) even about f, in (0,2f,)), then x () and x,(t) are independ-

ent random processes I'Ref 19, p. 41] each with correlation f{(r) Then, 2
using (B-40), the low-frequency (LF) results of (B-16), and the symmetry prop-

erty I'(t,us\) = I‘(u,t A) of the resolvent kernel of R that is symmetric,
we obtain the CF of p as ¥

1 1
GO =, (? f) ‘a(? f)
/ . § " . § 1 2
H-1w=) {eo|ig L feicor @2
; }\iT o§+o: 2T JTt
-/]‘dt du ¢(t) c* () F(t wié/T| .
a +a" 21'2

The average power in c(t) over T is, for f, T >> 1,

1 20 < L 2 (B~43)
P, Tj;dtc(t) ZTI; de le(mi” .

We now define a normalized waveform,

=P 50, (B-44)
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for then
_1._f dleg, 0% =1. (B-45)
TJr
The CF iu (B~42) can now be expressed as
bae/m] ~ ¢
f =10(@¢/T i :
{9 =[0Ge/n]  exp i 1+K, (B-46)

1

RC - 1 r . A
& — [[eaedso Peniegn)|,
T? JT '

1+Rs

following the reasoning developed in (B-16), (B-1i7), and (B-18). and using (B-21,.
Notice that this CF depends on the complex envelope "¢, (t), and not juston the
physical envelope | c, (t)| of the coherent signal component of the narrowband
(NB) deterministic waveform, However, any constant unknown phase in this

NB deterministic waveform is irrelevant because it cancels out of the expres- .
sion c,(t) ¢ (u). That is, if complex envelope c,(t) is expressed as

€, =E® explig(t) +i 6], B-47)

where E(t) is the envelope modulation, & (t) is the phase modulation, and ¢
is an unknown phase independent o imet, then
€,(9 ¢ (v) = E(t) E(u) exp [i (1) ~i(u)] (B-48)

is independent of 4.
Example: Exponential Correlation; Constant Complex Envelope,

Here we assume the correlation ﬁ(r) of complex envelope x(t) to be
exponential:

ﬁ(f) = CXP(-Qe F71); ése’eT . (B-49)

The correlation of the corresponding NB waveform is given by a form similar
to (7). * We also take for the complex envelope of the coherent signal component

g =1, (B-50)

* This cquation is in the main text of this report.
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vaich corresponds to a pure sine wave for c(t). When an approach analagous
to that given above for the LF case is employed, the CF (B~46) becomes*

(8=, (£ &2, 8- B/
LP

1-i&/B . s ‘I" .
= Ay j——————sinh (8 & h(8 o) exp i ° -51)
eXP(B)[ 3 sinh (B &) + cos B(}J -y B
¢ 2 4¢ sinh (B ) }]
—_— 1~ n *
1-i2¢/8 ( B¢ 1 +ccsh(,§<$)+$sinh(/3¢’;)
where
i b=a-n¢p'?, (B-52)
;
f and we have utilized (B-31). (As £ - 0, (B-51) yields
| R, ¢
(- (1-i8" eXP[ ——] (B-53)
1+R  1-i&

which may be readily derived as the CF of the RV p in (B-40) for one sampl.,
The cumulative distribution function (CDF) is derived in Appendix C.)

The CDF can be found from (B-51) by employing the methods in Refs. 15
and 16, There is only one square root involved, that for é in (B-52), and it is
a principal value.

*Th/f leading factors in (B-51) agree with Ref. 10, Eq. (44), when we note thac his 8 is
A
WeT/Z =B/2 here.
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Apperdix C

DETECTION PROBABILITIES FOR ONE SAMPLE

As the observation time T in (6)* and (10)* approaches zero, the decision
variables £ take special forms for which the distributions can be evaluateda in
closed form. Also, the signal and noise spectra are not restricted in any way,
Here we utilize some of the nofation developed in Appendix B.

LOW-FREQUENCY PROCESSING
From (6)* and (B-19), for T -~ 0,
L=P¥ +s+n)’ = (P% + 07 . (C-1)

Then

Prob (£ > X) = Prob([P¥% 4+ x|>X)

oo ~X¥%-p%
= dx p(x) + f dx p(x)
X% - p% =00
P% - X% (-p’c‘ -X"n \ (C-2)
=® +¢

(oi + o \(of + 02) %/

( RC ] An % o /Rc 14 / An %
(b - * - - ?
|1+R, 1+ ) " ‘\1+Rs) \1+Rs)

since x is Gaussian with variance o2 + 02 . Here ¢ is the cumulative dis-

tribution function (CDF) for a Gaussian random variable (RV),

O = [ de@m” exp(-t3/2), (C-3)
and the normalized threshold A, is defined in (12). *

We define the fraction f of the total received signal power that is coherent
as

*This equation is in the main text of this report.
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. Pc R, + R, : .
=5 =—, Co(C4
P+ a§ R_+R, R

where R is the total S/N at the input to Fig. 1. Then (C-2) yields
(fR) 172 _ Al/2 : l/-(fR) 1/2_A1/2\ ’
P = = + (I) ! LI
\a +R(1—f))1/2/ '

(1+R (-9
' for the detection probability. The false-alarm probability follows by setting
‘ R=0: oo : '

(C-5)

|
o P =20(=A?) . (C-6)

Notice that the signal and noise sf)ectra do not 'appear in' (C~5) or (C-6).

From (C-5) there follows

P, i © AT AR . (©-7)
=-(2m)"%% exp {- ) .
of | | . 20L+RY (14p)32
Also, ' .
P , :
- = -(2m~12 lem12 (/\1”’—1)(.1—111’2 —1) + '
ot |-, . " 2 ° . (C-8)

pl/22 172 .
" exp [—--;—- (2 /\il/2 —'1)2] /\t‘/2 (An!-l)§

The meaning and interpretaticn of these equations are given in Section 3 of the
main text, '
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i . ' . !
: NARROWBAND PROCESSING
' From (B-37), (B-40), and (B-41), for T — 0,
: e =%!l£+'z|2"=-,}(ff+=c)zi+—;'(fs+xs)2 . (C~9)
Then from (B-36) and (C-3),
! ( A,
' + Proh(2 >X) =Prob {p>—
: 1+R, (C-10)
. , 24,
P . =Prob |(c_+x )% +{r +x )2 >
. : € € s 1+R_1 .
' When the variables are changed, y. =I. +X., ¥s =Ts +X,,
" I 27,
Prob(R > P b .
| o X) =Pro yc+ys Y
(y -1 )2+(y -t )-]
=[f[dy, dy
| R 2 J
= T dttfdG——exp[—-—ft -2t (r_ cos 0 +r_ sinf) +r2 +r2ﬂ
2 )1/2 . 27 2
(-] ) P
= d'ttcxp[—-l—tz—l-l_gl"i] I, (le]o)
24 \/2 2. 2
' (_._;_) (C-11)
1+R,

v / '!-u\ 2\ [, R W2 A 2
«Q {lt], [ —2— =Q [2—5 , 22 .
, ¢ \m'\u Rs) ) ¢ ( 1+Rs) ( i*Rs)
where R is theregion outside a circleof radius (2A,/(1+R,))?, and Q i8
tabulated iz Ref, 21, The probability of detection is

‘

E; i AR \/2 ( 20, )"2 (C-19)
D~ 1+R(1-H "\1+R1-D) )
1
t
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The probability of false alarm is obtained by setting R = 0:
P =expl-A) . ' (C-13) |
Again, the signal and noise spectra do not enter (C-12) and (C-13).
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Appendix D

ASYMPTOTIC BEHAVIOR OF CHARACTERISTIC FUNCTION
AND ERROR BOUND

The cumulative distribution function (CDF) canbe found fromthe character-
istic function (CF) by use of Ref, 18, Eq. (3) :

P(X) =71)_...%. fd—g- Inm {£(£) exp(~36XM . (D-1)

(Alternatively, Ref. 16, Eq. (14) or (15), could be used for the problems en-
countered here. ) Since numerical evaluation of this integral must be limited to
a finite interval, it is necessary to evaluate the error incurred by terminating
the range of the integral., To evaluate this error, the behavior of the CF {(¢) for
large ¢ maust be known,

For the low-frequency (LF) case, the pertinent CF is giver in (B-31), It
may be shown that for large ¢ the secoud exponentialis upper~bounded by unity,
and the leading terms behave as

1/4 : /
(E-) ’;l—-]:il-u'l/z-l exp [B 1-ul”? -——l-u'l/z) °
2 1770 4

u
[ , -172
expl-i-g-ﬂB \"1‘/2-—%u ) as £+,

where u=£/8. As an example of the accuracy of this asymptotic form, for
B =1 and =250, the exact value of the CF is 1,489$62 + 10~ exp (-i2. 6Y2384),
whereas the asymptotic expapsion in (D-2) gives 1,490921 + 10~ exp (~i2. 693924),
An upper bound on the CF for large § follows from (D-2) as

D-2)

u

g \1/4 ) A
(—) exp [B(1-ul/?)] . (D-3)
The error in terminating the integral in (D-1) can thenbe related to the integral
00 1/4
L i i’.(ﬁ.) expi2(1-ul/3)]
w u

(O-4)
Q7/4  €XP [B(1-u IL/ZI]

de 7372 axp(-Bo) <
172 g Bud/t
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Valyes of u; used {o keep the error below. specified tolerances--can be found
easily frcm (D~4), These values are: dependent on 't exact value of B; however,
‘ they are mdependent of R, and R, and are; there‘ re, corservative,
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Appendix E
DETECTION PROBABILITY UNDER GAUSSIAN ASSUMPTION
In this appendix, we assume the time-bandwidth product 8 large enough so

that the random variable p in (B-4) can be assumed Gaussian, In that event,
we need only compute the mean and variance of p, We have

P 1+R
P=—t— 1= e
P 02 +5? Y TTeRA-D (E-1)
using (B-2), (B-19), (B-21), and (19). * The variance of p is given by
. .
02(p) =—— [ dt du [41() e(2) R(t~u) + 2R (e ~1)]
T2 T

(E-2)

_ 2R 2B-1+exp(-2f) . 4B-1 + exp (~4p)
1+R(1-f) B? 482

?

using (B-23) and (B-24) for the case of interest kere, Then from (B-3), (12), *
and (C-3),

A
Prob (2 >X) = Prob |p >—-2
1+R

7 A
() T O | B
(G(P) (1+R(1-£) a(p))

1+R ~ Ar
-ofVE '
~ 12
[1+R(1-H)1/2 [1+R +3Rf -—4-/—15—(1 +R+7Rf) +—%—£ exp (-28) +—1~i§5-5§—cxp(—4ﬂ)]

(E-3)
The probability of false alarm is obtaired by setting R = 0:

-\
Pe=0VE _1 R l-exp(—éﬁ)—;ﬂ} ’ (E-4)
L 9B ]

* This equation is in the main text of this report.
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