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NOTATION

a Focal distance

CD Drag coefficient

CDF' CDP Drag coefficients due to friction and pressure

C Lift coefficientL

CLF' CLP Lift coefficients due to friction and pressure

C Moment coefficientM

CMF C MP Moment coefficients due to friction and pressure

d Width = 2a cosh

h2 =cosh2r7- cos 2

.2
1 2 -1

i, j Location of grid point

J Jacobian

L Number of points in the ?7 -direction

M Number of points in the 6-direction

n Frequency of vortex shedding

p Pressure

p Dimensionless pressure = p'/pU2

ro •Polar coordinates

Re Reynolds number = 2aU/v

Red Reynolds number = dUl'

s Length of wake

St Strouhal number = d n/U

tv Time

v



t Dimensionless time = t' U/a

t Start of vortex decay

U Velocity vector at t "

U Magnitude of U

179 1 Velocity vector

V9 v' Velocity components corresponding to r,

v' Dimensionless velocity vector = V/U

v , ve Dimensionless velocity components corresponding ton, e

x, y Cartesian coordinates

Angle of attack

Upper bound in the criterion (24)

77, 6 Elliptic coordinates defined by Equation (1)

A1, A68 Space increments

At Time increment

Kinematic viscosity of the fluid

p Density of the fluid

Stream function

1$ Dimensionless stream function = 0'/aU

0 vVorticity vector

SDimensionless vorticity vector = 'W' U/a

w• Vorticity component normal to the (x, y)-plane

Subscripts

1 Surface of the body

2,3 A17, 2Ai7 from the surface
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ij Location of grid point

L Outer boundary

Superscripts

k Number of iterations

n Time step
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ABSTRACT

Numerical solutions for laminar incompressible

fluid flows past thin elliptic cylinders at various angles

of attack are obtained using a stream function-vorticity

formulation. The flow is considered to be two-

dimensional and time-dependent. Potential flow is

selected as the initial condition. Almost steady-state

solutions have been computed for the cases a= 00

Re =200; a= 450, Re -15; and a =900, Re= 10

where a and Re are the angle of attack and the

Reynolds number, respectively. Vortex shedding has

been studied for a = 450, Re = 30 and 200.
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Proceedings of the Second International Conference on Numerical Methods

in Fluid Dynamics, September 15-19, 1970, University of California,

Berkeley. Lecture notes in Physics 8, Springer-Verlag, 1971, p. 78.
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INTRODUCTION

Flows past a finite flat plate of infinite span in a channel or in

an infinite body of fluid have been studied numerically by a number of
1-7

investigators o In all these studies the angle of attack o is either

0° or 90 except for work reported in a recent paper7 , in which the

steady flow past an infinitely thin plate between two parallel walls

with a•-; 450 was investigated, Only the work by Fromm and Harlow2

considers vortex shedding from a plate. The angle of attack is y = 900

in this case.

Periodic vortex shedding from a circular cylinder has been the
8-11,

subject of recent numerical studies Extensive surveys on

experimental as well as theoretical work on periodic vortex shedding
12 13

from bodies were presented by von Krzywoblocki and Morkovin

Numerical studies on flows around plates, which have high surface

curvature at the tips, pose many more difficulties and demand much

more computer time than studies on motions past circular cylinders.

The analytical and numerical problems involved have been investigated

and discussed elsewhere 17. for wedges, cones, and disk-shaped

bodies.

The objective of the present study is the numerical investigation

of flows past inclined plates, especially the flow characteristics of

vortex shedding. Due to the high computer costs involved, the study

was limited essentially to the Reynolds numbers 10, 15, 30 and 200°

I References are listed on page 48.
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FORMULATION OF THE PROBLEM

The laminar flow of an incompressible fluid past a plate of elliptic

cross-section was considered. The motion was assumed to be two-

dimensional and time-dependent. Mathematically, an initial- boundary

value problem for the Navier-Stokes equations must be solved. This is

conveniently carried out in the elliptic coordinate system (77, e) (see

Figure 1) which is defined by the transformation:

x+iy=acosh(77+i0), a>0, i2 =1 (1)

The focal distance is designated by a0 The equations of motion are

formulated in terms of 4, the dimensionless stream function, and w,

the dimensionless vorticity component normal to the (r, 9)-plane:

w + 1 a(o ) 2 2 (2)
at h 667 ) Re ' (2

2
V = Wa° (3)

Here, t and Re are dimensionless time and Reynolds number

Re = 2 aU/v, where v is the kinematic viscosity and U the magnitude

of the constant velocity at infinity. (Sometimes, the Reynolds number

Red = d U/v with d = 2 a cosh l is used for practical reasons0 In

all cases considered in this paper, except for tl = 0.2, Re ; Red'.)

The characteristic length and velocity scales in the dimensionless

quantities are a and U. In particular, the del operator is made

dimensionless by a. The coefficient h is defined by h2 =cosh2 7- cos e,

The contour of the plate is the constant coordinate line ?7 = 7,

(Figure 1). On this line boundary conditions are prescribed such that

the velocity vector v is zero0 The dimensionless velocity components

3
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v and v e are connected with 0 by

h 7e Ve 6 h o (4)

Thus, at the body surface the boundary conditions are

? =71: = 0, -= . (5)

Here, the constant value of 0 is chosen to be zero. Far away from
-4

the plate, a uniform parallel flow with velocity U is assumed, where

the vector U is specified by a and U (Figure 1). In terms of 0 the

conditions are:

. 5 = hsin(e-•), - =hcos (6- ) (6)

Potential flow is taken to be the initial condition.

In order to compute drag, lift, and torque on the plate by means

of flow quantities at the body, the pressure distribution on the surface

of the plate must be determined. From the Navier-Stokes equations it

follows that

=-A2 curlv (7)p=1,- R-e culW -at - ( + v x w,(7

where w is the dimensionless vorticity vector, and where the pressure
2

is made dimensionless by pU2. The quantity p is the density of the

fluid. The surface pressure is computed from the e-component of

(7) to be

1 =c+Re 02  de7 (8)

5



where p is the pressure at (711, 7 ). This point is selected for

numerical reasons. The pressure pc is obtained from the 7-component

of (7) by prescribing the value of p at n= o to be p,=0:

p2 va. + h ---- hvw d7 + (9)
C ' ie a 6 t

The drag coefficient is defined by

CD = Drag/T U2 a cosh V, (10)

and consists of two parts, the drag coefficients due to pressure and

friction C C 4, C with
D DP DF'wt

277 27T

CDP =-2 tanh7 1 cos f j plcosede-2sina I psinede, (11)

0 0

4[2 27rO

CDF Re -coso a wLsinede+tanh 7sina 2l cosede1 (12)
0 0

Equation (11) is simplified by means of Equation (8) to

4 sined2
4 tanh 7i cos aJ 0 s

0

-sins a -- ) cos8de 0 (13)

Correspondingly, the lift coefficient is

CL Lift/'P U 2 a cosh 71 (14)

6



with

C = - tanhnt 1 sin • " sina deo 1

- cos a 27T cos ed l, (15)
01

4 27T 27T
CLF=R-e [Sin a I wsined8+tanh77icosafJ'wcosede7. (16)

0 0

The moment coefficient is

CM = Torque/ P U2 a2 cosh2 ?1 (17)

with27 MPt2 22a sin ode , (18)
Re cosh •l

S4 27a
CMF w tanh7l 1  w elde • (19)

0

NUMERICAL ANALYSIS

The infinite domain of integration in the (77, @)-plane is replaced

by a finite network of points (77 + (i - 1) 677, (j - 1)Ae) with i = 1,... L,

j = 1, . . .M. For most examples, L and M are 75 and 60; that is, the

total number of grid points is 4500 and Ae = 77/30. In special instances

M = 80 (or AO = 7u/40) is used. For all cases A77 = 0. 05. This choice

7



is based on previous experience I With A? Oo5 and L 75, the

outer boundary 77 L 4 4 (L - 1)A?7 is about 11i plate lengths away

from the body center. Figure 2 shows the grid system in the vicinity of

the plate for n,, '- 0-1. Two different layouts are used: one which

includes the tip points in the grid, another which excludes the tip points

by shifting the grid A0/2 in the e-direction (see Figure 3). The

importance of this distinction was noticed in the course of the study

when numerical computations revealed a much larger stability for plates

with hIgh curvature (77_<, 0< O.) when the tip points were excluded from the
17

grid, A detaiJled account was given in an earlier report

The numerical solution of tbe initial boundary value problem stated

in the previous section poses two essentfal difficulties: the approximation

of the differential operators of Equations (2) and (3) through suitable

difference schemes, and the prescription of boundary conditions for the

outer boundary, where ?7L < I in the numerical scheme.

The discretization of the differential operators is similar to that
18

used by Rimon The linear part of Equation (2) is approximated by

the DuFort-Frankel scheme. The Jacobian is written in conservation

form and expressed by central difference formulae. Then, Equation (2)

yields, when solved fer the (n+ i)th time step of w

-! n-i
n4i, 1 2 1F1

wij ::2X +Re h, (A•?)2 6W()2 2-t

2 J (n n-I n

Re h2 .( (6A) J J 1I i ]i

I n n-I n l
" -( -Wn + Wn - (20)

(AO)2-



Figure 2 - Elliptic grid system near the body, v7=0. 1, An-=0.05, A@=ir/30. The total
number of grid points is 75 x 60 = 4500

9



PHYSICAL PLANE:

(Te) -PLANE:

7T 7r2 2~

An

(a) the Tip is a Grid Point, (b) the Tip is Excluded from the Grid

Figure 3 - Grid near the tip. The cells closest to the tip are shaded.
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where the Jacobian is

1i, 3 hI L2At jhcaj)i - h

1 )(hvv w) (h.v w)10+ 25 An 777

+ 2&@ e iw),j±1 (hvew/ ijl j (21

and the velocity components

(v 1 ij+l -i, j-1 () 1 (i+1,ji-1,j
7 hi, j ' -e h.(22)

It is recognized that central difference schemes for the Jacobian cause

oscillations in w which result in "cancer cells". These oscillations

destroy the quality of the solutions for larger Reynolds numbers unless

smaller space increments are employed. Hence, the capacity of the

computer sets an upper limit on the Reynolds number. With the space

increments At= 0. 05 and Ae = 6 generally used in this report, the

upper limit is about Re = 300 (see also Reference 18). Improvements

were found by Fromm19 and Dawson and Marcus11 who applied fourth

order approximations and a combination of central difference and

backward-forward schemes, respectively. Since the present study is

restricted to the pure Klrm~n vortex street range, with Re < 300, the

simple central-difference scheme was adopted.

Equation (3) is approximated by the five-point formula which yields,

for i

11



~. [ 2'r. 2 2 (e

S 2, 2 2 (3
S ( 0i,2 (ij4 2 ij_j') - (At7,AS)2h~igj i, j] (23)

This system of algebraic equation,; ýs solved with Gauss-Seidel line

overrelaxation applied along hnes of constant 77. The overrelaxation

factor is 1,. 82. The fteration prccess is halted after the kth iteration if

iV2 0k k< E (24)

at each grid point, where E is of the order of to-3 in most cases.

For Re 15 and 30. a •: 4 0 of the order 10-4 had to be used. The

number of iterations varmes with the magnitude of temporal, change of

the flow field. For Re - 200, u eoy 450 771ý ý 0. 1 the growth of the vortices

attached behind the plate requires about 60 iterations per time step,

whereas vortex separation needs about 1,30.

During the preparation of this report several sources (Wirz 6

Briley and Walls 20 Goodson'. Buzbee et al 21) suggested to the authors

that modified Peaceman-Rachford methods and methods of cyclic block

reduction would re';ult in more efficient use of computer time than the

presented method. Studies of the flow problem discussed in this paper

are underway to check the proposed techniques. Results will be

published later.

* Goodson, R., Mechanica] Engineering Department2 Purdue

University2 West Lafayette , Indiana, private communication.
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At the body surface a one-sided difference scheme must be used

in order to calculate the vorticity w, j * That this approximation

strongly affects the numerical stability was demonstrated in a previous
22

investigation22 By trial and error it was found that the formula

• 1 ,j= 4h, (j )2 1 2 ( j+ 4 3, j - 049j) (25)

yields the best results. This equation is derived from the Taylor series

expansions with the nonslip condition (ao/aI)1, j = 0 incorporated

(• , \r2 2 3,j

(26)

2( 3 2  o[(A) 3] .2•3 = - 677$ A+ 2(A17)2+0A7

By using W ( -5) and replacing (-)i~ withByý_ asin 2)~ =j a7 1,1,

2A? 7 -(I-i, O +0 0) (27)

one arrives at Equation (25). Hence, Taylor series expansions are

used which result in an expression for w1, with error of second

order in 677 However, when first derivatives at inner points are

replaced by finite differences, the final formula for w.-, is of the

first order. The hybrid form, Equation (25), is more stable than the

first order approximation used by mbst other investigators

13



W1l~ -h2 0(A 7)2 + 0 (A77 (28)
j h 2 (A77) 2  (8

and much more stable than second order approximations investigated,

for instance,

i~21
W (8 2,j )+ o0(,677) (29)¢••j = 2hi 2 (677)2 2 , - p 39

In fact, it was found that Atmax is about 10 times smaller for

Equation (28) and 100 times smaller for Equation (29) than Atmax for

Equation (25). However, the statement that Equation (25) is superior

to Equation (28) is not valid in general. For instance, in other work2 3

we found Equations (25) and (28) to be comparable with regard to

stability.

Since the domain of numerical integration is bounded, severe

difficulties are encountered in prescribing the conditions at the outer

boundary i 7 •L . This boundary is almost circular and is divided

in half. On the upstream half of the boundary, the conditions (6) are

used with the alteration that the second condition is replaced by

vanishing vorticity,
0 !24, a

" <2o _:. h sin(6- o), (6 0 (30)77L - T +a < 27T a'7r

i1

In difference form (tip point not included in grid):

"h--J sin (j _ W• 0 (31)

14



On the downstream half of the boundary a convection type condition is

used:

•77=7L, + (Y< 8< VT+•

at • (U V) W 0

=0. (32)
L• + - (U.- v) =0.

U --te

This type of condition was proposed by Dawson and Marcus for the

vorticity and seems to work well when extended as above to the velocity.

With the difference approximations of Equations (32) the values of w

and ao/a77 are computed on the boundary 7= %

n+1 n 6t [(c sinh
L, j L, cs j 7L Cos ej

L,j

"n n

+ sin a cosh tL sine.) L . j L4 .

+(sin a sinh 7L cos ej - cos a cosh ?7L sin e.)

n n
( LW L j-+1 9(33)

15



I -•/~ ::-]~ 11- ossnh/osj+l1 incosh•L sinej1

n4 nL, j L9 j [ 1 cos a sinh nh Lcos e + sin a coshLj+

h__ (~cos a silh 77L Cos e6.,, sina cosh 77hL• j4•, 1+

n
v

sin ejj) hL, j-t1hL•j-I

V @L j+I

i (sin a sinh7LO cos6 1 - cos acosh Lsine.+l) e. L 1

v

hLe j-1

-2~e (csi a s(nh3 cs ns

+ 2 AO (Cos a sinh 7L Cos ej + sin a cosh VL sin aj)WL (34)

The decision to use convection equations of the type in Equations (32)

is heuristic and guided by the idea of interfering with the downstream

flow as little as possible. Photographs of wind-tunnel flows reveal that

the shapes of the vortices are well preserved over many cycles of the

Ka.rman vortex street.

The integration process is carried out-in the following way: The

vorticity Wn+1 for the advanced time step (n+1) is computed at the
1J n+1 n+l

inner points according to Equation (20). Next , WLAj and O /rl7Lj

are determined on the downstream boundary points by means of

16



,n+l1

Equations (33) and (34). Then j is calculated with the aid ofi~i n+l

Equation (23). The cycle concludes with the calculation of w,

from Equation (25).

The maximum stable time step Atmax , beyond which numerical

instability occurs, is determined by increasing the time step until

oscillations from one time step to another appear in the w-values

near the tips. The magnitude of Atmax depends on factors other

than w 1 o It is a linear function of the Reynolds number, at least for

Re < 200, and decreases rapidly as either At7, A6, or 77 approaches
18

zero . There seems to be no dependence on a. Computer time is

saved by enlarging 71 as much as possible without the loss of the

essential features of the flat plate (if 77 is changed from 00 05 to 0. 1,

Atmax increases fourfold). The values of Atmax are for 77= 0. 1, tip

point out,

Re a Atmax

15 450 0.0004

30 450 0. 0007

50 900 0.0012

200 00, 450 0.005

Smaller time steps are necessary near t = 0, when large vorticity

gradients are present. For high surface curvature, that is for

71 < 0. 1, stability is improved if the grid system is shifted by Ae/2

in the @-direction so that there are no grid points at the tips. This

does not affect the overall accuracy of the solution and, in addition to

improving the stability, makes possible the computation of the flow

field when 7,= 017

17



Accuracy considerations are stmilar to those for the flow past
18

oblate spheroids . Additional information on the quality of the solution

is obtained by integrating aco/6rj over the body contour. The integral

of this function over a segment of the surface is the pressure

difference between the end points of the segment. Hence, the

integration around the entire contour of the body should yield zero

and is a sensitive test. which must be passed to a certain degree by any

accurate solution. For Re ý 200, a ý- 450 771 =: 0. 19 the value of this

integral is always smaller than 3% of the difference between the

maximum and minimum pressure at. the surface. Other "confidence-

building" tests compare our results to those obtained with different

methods.

The numerical calculation of the drag, lift, and moment coefficients

is sensitive to the difference scheme used for the approximation of
17

the integrals of Equations (I) thrcugh (19) . These coefficients can

be computed either with the aid of a double integral (for CDP it is

formula (10 ) or by means of a sIngle integration (for C it is

formula (13) For botb, mcthods two difference schemes have been

checked and are presented herE. for the example f p1 cos e d e with

the tip not included in the grid, 0

Simpson's rule,
A0 cos 4 2 cos ( 3e

p,, cos 6 d [2e: - pl 1 co'.. - pj C A0)
0

42P•3cos(5 A) iooo p,4 cos(-2M-IAe (35)

18



Second approximation:

2,ff M
I p, cos e d e = E 6ePl 3, cosj(i-.)Aeý' (36)
0 j1=

For the grid which does not contain the tip point the following values

have been computed: Re = 50, a= 90°, 0 l7= 0.1, t= 1.71.

CDP CDF

Double integration:

Simpson's rule: 5.67 0.230

Approximation (36): 5.67 0.230

Single integration:

Simpson's rule: 6.50 0. 230

Approximation (36): 5.67 0.230

If the tip point is included in the grid, the data for the case Re = 50,

a= 900, 771 =0.05, t=2.31 are

Double integration:

Simpson's rule: 5.21 0.097

Single integration:

Simpson's rule: 2. 70 0.097

Approximation (36): 5.20 0.105

Based on earlier results17 where theory and experiment were compared,

it is assumed that the worst result is obtained with the single integration

by using Simpson's rule. Unfortunately, this case was reported in the

condensed version of this paper, Lecture Notes in Physics 8, 1971,

Springer Verlag, p. 78. The value of 2. 8 given in this paper for Re = 50,

a= 90°0 771 = 0. 05, t = 2.13 is not correct. Throughout the present

report the single integration by using approximation (36) is employed.

19



RESULTS

All computations were carried out in double precision on an

IBM 360-91. computer. The graphic display of streamlines and lines

of constant vorticity wa'9 produced with a Stromberg-Carlson SC-4020

charactron plotter. The examples selected for computation are

compiled in Table 1I

Symmetric Flows

For the symmetric flow configurations, which according to

experiments are expected for a 0 0 . Re < 200, 71 !z 0o. 1 and a = 900

Re < 50p 77, arbitrary, a steady state is approached as t -- o. For

Re - 109 U go 900 7l , ', 0. 1 one aspect of the transient stage is displayed

in Figure 4, where the drag coefficient is plotted against time. Figures 5

and 6 show the streamlines and lines of constant vorticity for the almost

steady state t - 11. 2 , The development of the twin vortices behind the

body is recorded in Figure 7, where the dimensionless length of the

wake s/d is plotted against time. Although the steady-state value

measured by Taneda24 is approached quite accurately, the data for the

transient stage are low compared with the empirical formula developed

by Taneda and Honji 2 5

s/d - 0.89(t/2) 2/3 Re - 8.l (37)

This relation, which does not contain the kinematic viscosity v,

holds only for an intermediate time interval. As can be seen immediately

from Figure 7, the wake length approaches a finite value when t -,

a process which is governed by viscous forces. Near t = 0, Equation (37)

cannot be valid either. As shown also in Taneda and Honji's experiments 2 5 ,

20



TABLE I - COMPILATION OF THE CALCULATED EXAMPLES

Red t 771 tFINAL GRID TIP IS GRID POINT

10 900 0.1 11.2 75 x 60 NO

15 450 001 7.2 75 x 60 NO

30 450 001 16.3 75 x 60 NO

50 00 0.1 1.5 75 x 60 YES

50 90° 0.05 2.3 75 x 60 YES

50 900 0.1 3.5 75 x 60 NO

200 00 0A1 18.7 75 x 60 YES

200 100 0 1.9 75 x 80 NO

200 450 0 0.04 75 x 80 NO

200 450 0A1 30.0 75 x 60 NO

200 450 0.2 8.1 75 x 60 NO

200 450 0.2 11.5 75 x 80 NO
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Figure 5 - Streamlines for Re - 10, a " 90°, 0 1= 0. 1 at t 11. 2

(almost steady state)
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Figure 6 - Lines of constant vorticity for Re = 10, a= 900,

r=1 = 0. 1 at t = 11.2 (almost steady state)
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Figure 7 - Dimensionless wake length versus time for Re = 10 and 50,
go 90, l = 0. 1
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the vortices are generated at the tips and then join at the centerline

after a certain time (Figure 8). The instant at which they join is the

beginning of the wake development with nonvanishing s. For small

Reynolds numbers the two time periods which are excluded from

Equation (37) overlap and the curve of Equation (37) is not reached.

This appears to be the reason for the low values at Re = 10.

The drag coefficients for the almost steady state are compared

with other sources in Table 2.

TABLE 2 - DRAG COEFFICIENTS FOR SYMMETRIC

FLOW CONFIGURATIONS

CD

Re 77 tFINAL Computed From Dennis & Chang4

00 50 01 1 1- 50 1.39 1. 432 (for Re 40)

00 200 0o1 8 M7 0.55 0. 492 (for 1, 0)

90°0 10 021 112 6.02

0°

The values for a 0 • compare fav7orably with the steady-state solutions
4

of Dennis and Chang o

It may be mentioned that in the condensed version of this paper,

published in the Lecture Notes in Physics, No. 8, Springer-Verlag, 1971,

the case a'- 900 , Re •: 50, 1!, ýz 0. 05, t - 2. 13 was considered as an

almost steady state. This statement is incorrect, since' the wake
24

grows considerably larger when t - Po
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Nonsymmetric Flows

Most of the numerical data compiled are obtained for the non-

symmetric case ac- 450 , Re = 200. The first series of pictures, which

is shown in Figure 9, is selected to display the flow behavior following

the abrupt start of the body at t - 0. Immediately after t = 0, in the

initial potential-flow field, a starting vortex forms and separates from

the trailing edge. In the streamline pictures this vortex is visible as

a wavy pattern which indicates the movement of the vortex relative to the

plate (which is kept at rest). The lines of constant vorticity clearly

exhibit a local extremum at the center of the vortex. In the early time

period the zero streamline migrates from the rear stagnation point of

the potential flow to the trailing edge. This verifies, even for the low

Reynolds number Re = 200, the hypothesis of Lanchester-Prandtl, that

circulation around an airfoil is generated by a starting vortex and that the

zero streamline follows a kind of Kutta condition.

The computation of the case Re = 200, a = 450, •71 = 0. 1 was

carried out over three cycles of vortex shedding. The last cycle was

repeated with the fine mesh Ai7= 0. 05, Ae = 7T/40. The flow patterns of

the third cycle obtained with the fine mesh are displayed in Figure 10.

The development and the detachment of the vortices are similar to those

of the first cycle in Figure 9. An overall view of the wake is presented

in Figure 11. To the right the boundary of the grid system is visible,

The location of the vortices shows that the vortex street is not parallel

to the undisturbed flow.

In Figure 12 the drag, lift, and torque coefficients are plotted

against time t. The abrupt start of the body requires infinite values

for CD and C, Uwhereas the C M-value begins from zero. The Strouhal

28



t=1.48

b

t=2.98

C

t=5.23

d

t=6.73

e

t=8.98

Figure 9 -Sequence of streamlines and equal-vorticity lines for Re = 200,a- 450,77 = 0.1 at various times after the abrupt start. Potential flow
at t= 0
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a
t=17.8

t=20.3

t=22.4

t=23.2

t=24.1

Figure 10 - Sequence of streamlines and equal-vorticity lines for the
third cycle of Re = 200, a= 450, r7l = 0. 1 after the abrupt start
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number which is defined by

St dn (38)U

is about 0. 23 for the second cycle and 0. 25 for the third. In

Equation (38) n is the frequency of the vortex shedding. If one

relates the Strouhal number to the projected plate width d sin a, the

values for the second and third cycles are 0. 163 and 0. 177, respectively.

A comparison of Figures 10 and 12 reveals that the coefficients

CD' CLU and CM assume relative maxima whenever a vortex separates

from the leading edge.

In Figure 13 the coefficients CDF and CLF are plotted against

time for Re 200, a = 450, 71 = 00 10

For 1= 0.2 computations have been made with A6 = 7r/30 as well

as with Ae = i/40o. The differences in the CD, CL, and CM values

between the two cases are so small that they cannot be observed on a

graphic display.

In Figures 14 and 15 the surface vorticity and the surface pressure

are plotted against e for the third cycle of the case Re = 200, a= 45°,

771 = 0. 1 computed with the fine mesh. The production of vorticity at

the edges is smallest when a vortex separates from the edge, and it

is highest when a vortex starts growing.

Based on Timme's experiments26 the decay of vortices in the

Karman-vortex street can be described by the Hamel-Oseen solution

for each vortex:

cnst !l - e(r 2/4v(t'-t')), v' 0 (39)
v = r er=
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where the polar coordinates (r, 0) with the corresponding velocity

components (vr , v') are used. Equation (39) represents the decay

of a potential vortex from the time t' 2= t' . This expression
0 27

represents the lowest mode of plane disturbances. The vorticity at

the vortex center (where the extremum of vorticity is located) dissipates

according to

V _ const (40)
r•:0

For the next higher mode of the spectrum of disturbances the vorticity

9 wol-eay s(t 2 27Wr0 would decay as (t-t) as was shown elsewhere The

numerical data can be checked against the analytic prediction. In

Figure 16 the decay of the central vorticity of the initial vortex for

Re = 200, oem' 45°G Y7 1 • 0. 1 is displayed with logarithmic scales. The

best fit to a linear relation between the logarithms of the central

vorticity and time is obtained when to0 -0. 3 and the slope is -1L

Vortices which are generated after the initial, vortex behave similarly.

Near the outer boundary of the grid, where the mesh size increases

rapidly, the numerical. values deviate from the analytic curve. This

deviation depends on the mesh size (see Figure 16). Apparently, the

numerical -solution is not accurate enough to describe the vortex decay

in that part of the grid.

For Re - 200, some information was obtained when a 100 0o

The initial phase up to t 1 1o 94 is recorded in Figures 17 and 18. Non-

periodic vortex shedding from the leading edge, which has been observed*

* Laitone, E. V. University of California, Berkeley, private
communication.
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Figure 16 - Decay of central vorticity of the initial vortex for
Re 200, a 450, 71 =0.1
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t=0.447

t=0.897

t=1.35

t=1.94

Figure 17 - Some patterns of streamlines and equal-vorticity lines for
Re = 200, a= 100, nj = 0 after the abrupt start
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for this small a -value but at much higher Reynolds number, does

not occur in the present example.

For Re = 30, a = 450, 7l = 0. 1 numerical results are obtained

up to t = 16. Neither a clear development of a Karman vortex street

nor a tendency towards a steady state can be observed. The streamline

patterns in Figure 19 show vortex shedding. However, the corresponding

lines of constant vorticity do not exhibit local extrema; they only

oscillate. Apparently, diffusion of vorticity at this low Reynolds

number is already so dominant that vorticity extrema do not develop.

Whether an oscillating state or a steady state is approached when t -•

cannot be determined. However, the critical Reynolds number which

separates these two states must be close to Re = 30. (For bodies

normal to the flow the critical Reynolds number is higher and is about

45.) Figure 20 shows the coefficients CDF and CLF as functions of

time.

The case Re = 15, a = 45°0 l = 0. 1 is computed up to t = 7.

Although a steady state is expected for t -o, the time t = 7 is too

small to be considered as giving an almost-steady state. At least a

qualitative picture of the flow patterns is displayed in Figure 21.

Additional information is recorded in Figures 22 and 23.

CONCLUSIONS

Computer simulation of vortex and vorticity shedding is possible

with accuracy of the order of water- or wind-tunnel experiments for

two-dimensional flows around bodies. With the space increments and
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t=1.59

b

t=3.27

t-6.51

t=8.13

e

t=-9.75

Figure 19 - Sequence of streamlines and equal-vorticity lines for Re = 30, a= 450,

= 0. 1 at various times after the abrupt start. Potential flow at t = 0
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t=1.79

t=3.79

t=5.39

Figure 21 - Some patterns of streamlines and equal-vorticity lines
for Re = 15, ) = 450, V1 = 0. 1 after the abrupt start
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number of grid points (75 x 60 or 75 x 80) used in this paper, the

Reynolds number is limited to about 300. The flow region far from

the body is not well represented. Improvements must be made in

accuracy and in economy of computer time. Promising studies are

under way.

The sudden start of a thin elliptic cylinder under an oblique angle

of attack produces an initial vortex which separates from the trailing

edge. After this time the zero streamline of the wake leaves the body

parallel to the major axis at the trailing edge. This phenomenon,

although occurring at Re = 200, verifies the soundness of the Lanchester-

Prandtl hypothesis of potential flow, in which a circulation, necessary

for the existence of lifts is postulated and determined by means of the

Kutta condition.

For a thin elliptic cylinder with a = 45 the lower limit of vortex

shedding appears to be about Re = 30. (For symmetric configurations

normal to the flow the lower limit is about Re = 45.)

All vortices shed from the body dissipate in such a way that the

relative extrema of their vorticity (which may be considered as vortex

centers) decrease in value approximately as 1/(t - const). Hence,

they behave like decaying potential vortices when separated from the body.
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steady-state solutions have been computed for the cases a = 00, Re = 200;
a= 450, Re = 15; and a= 900, Re = 10 where a and Re are the angle of
attack and the Reynolds number, respectively. Vortex shedding has been
studied for a= 450, Re = 30 and 200.

DD ORvJ14 7 3  (PAGE 1) UNCLASSIFIED
S/N 0101-807-6801 Security Classification



UNCLASSIFIED
Security Classification

1 LINK A LINK 8 LINK C
KEY WORDS

ROLE WT ROLE WT ROLE WT

Navier-Stokes equations
Vortex shedding
Finite-difference method
Flow past plate

D D 1473 (BACK) UNCLASSIFIED
(PAGE- 2) Security Classification


