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NOTATION

Focal distance

Drag coefficient

Drag coefficients due to friction and pressure
Lift coefficient

Lift coefficients due to friction and pressure
Moment coefficient

Moment coefficients due to friction and pressure
Width = 2a cosh 1

= cosh2 n- cos2 8

= -1

Location of grid point

Jacobian

Number of points in the n-direction
Number of points in the §-direction
Frequency of vortex shedding
Pressure

Dimensionless pressure = p'/p U2
Polar coordinates

Reynolds number = 2aU /v

Reynolds number = dU/v

Length of wake
Strouhal number = dn/U

Time
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Subscripts
1
2,3

Dimensionless time = t'U/a

Start of vortex decay

Velocity vector at n = «
Magnitude of U

Velocity vector

Velocity components corresponding to r, ¢

Dimensionless velocity vector = V'/U

Dimensionless velocity components corresponding to n, 6

Cartesian coordinates

Angle of attack

Upper bound in the criterion (24)

Elliptic coordinates defined by Equation (1)
Space increments

Time increment

Kinematic viscosity of the fluid

Density of the fluid

Stream function

Dimensionless stream function = y'/aU

Vorticity vector

»'U/a

I

Dimensionless vorticity vector

Vorticity component normal to the (x, y)-plane

Surface of the body
An, 2An from the surface
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Superscripts

Location of grid point

Outer boundary

Number of iterations

Time step
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ABSTRACT

Numerical solutions for laminar incompressible
fluid flows past thin elliptic cylinders at various angles
of attack are obtained using a stream function-vorticity
formulation. The flow is considered to be two-
dimensional and time-dependent. Potential flow is
selected as the initial condition. Almost steady-state
solutions have been computed for the cases a= OO,

Re = 200; o= 45", Re = 15; and o= 90°, Re = 10
where o« and Re are the angle of attack and the
Reynolds number, respectively. Vortex shedding has
been studied for a = 45°, Re = 30 and 200.
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"Laminar Flows Past a Flat Plate at Various Angles of Attack' in the
Proceedings of the Second International Conference on Numerical Methods
in Fluid Dynamics, September 15-19, 1970, University of California,
Berkeley. Lecture notes in Physics 8, Springer-Verlag, 1971, p. 78.



INTRODUCTION

Flows past a finite flat plate of infinite span in a channel or in
an infinite body of fluid have been studied numerically by a number of
investigators]‘-'?o In all these studies the angle of attack e is either
0 or 90° except for work reported in a recent paper7, in which the
steady flow past an infinitely thin plate between two parallel walls
with = 45° was investigated. Only the work by Fromm and Harlow2

considers vortex shedding from a plate. The angle of attack is a = 90°

in this case.

Periodic vortex shedding from a circular cylinder has been the
subject of recent numerical studies8-llo Extensive surveys on
experimental as well as theoretical work on periodic vortex shedding
from bodies were presented by von Krzywoblocki]"2 and Morkovin

Numerical studies on flows around plates, which have high surface
curvature at the tips, pose many more difficulties and demand much
more computer time than studies on motions past circular cylinders.
The analytical and numerical problems involved have been investigated
and discussed elsewhere14-1'7.for wedges, cones, and disk-shaped
bodies.

The objective of the present study is the numerical investigation
of flows past inclined plates, especially the flow characteristics of
vortex shedding. Due to the high computer costs involved, the study

‘was limited essentially to the Reynolds numbers 10, 15, 30 and 200.

1 References are listed on page 48.



FORMULATION OF THE PROBLEM

The laminar flow of an incompressible fluid past a plate of elliptic
cross-section was considered. The motion was assumed to be two-
dimensional and time-dependent. Mathematically, an initial-boundary
value problem for the Navier-Stokes equations must be solved. This is
conveniently carried out in the elliptic coordinate system (n,8) (see
Figure 1) which is defined by the transformation:

X+ iy =acosh(n+ig), a>0, i2=—1° (1)

The focal distance is designated by a. The equations of motion are
formulated in terms of §, the dimensionless stream function, and w,

the dimensionless vorticity component normal to the (n, 6)-plane:

3w 1 a(‘bﬁw) _ _2__' 2
st * 72 3(n,6) Re ' @
vztb = W . (3)

Here, t and Re are dimensionless time and Reynolds number

Re =2aU/v, where v is the kinematic viscosity and U the magnitude

of the constant velocity at infinity. (Sometimes, the Reynolds number

Red =dU/v with d=2acosh ul is used for practical reasons. In

all cases considered in this paper, except for ny = 0.2, Re~ Red .)

The characteristic length and velocity scales in the dimensionless

quantities are a and U. In particular, the del operator is made

dimensionless by a. The coefficient h is defined by h2 =coshZ n- cosze.
The contour of the plate is the constant coordinate line 7= m

(Figure 1). On this line boundary conditions are prescribed such that

the velocity vector v 1is zero. The dimensionless velocity components
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vn and v, are connected with § by

8
1239 =13y
™ h3e’ Y6 hoanp (4)
Thus, at the body surface the boundary conditions are
= . = ﬂ =
m=mng: ¥= 0, o 0 . (5)

Here, the constant value of ¢ is chosen to be zero. Far away from
the plate, a uniform parallel flow with velocity l—j is assumed, where
the vector fJ is specified by « and U (Figure 1). Interms of § the
conditions are:

nN=w: %—% = hsin(6- o), Z—% =hcos (6- a) - (6)

Potential flow is taken to be the initial condition.

In order to compute drag, lift, and torque on the plate by means
of flow quantities at the body, the pressure distribution on the surface
of the plate must be determined. From the Navier-Stokes equations it
follows that

-2 .

vp=-—g-curla—av-v(gz—)+;x w , (M

Re 3t

where  is the dimensionless vorticity vector, and where the pressure
is made dimensionless by pUzo The quantity p is the density of the
fluid. The surface pressure is computed from the §-component of

(7) to be

1 ¢c Re Iy \an/t1 ’
2




where P, is the pressure at (1)1, %)o This point is selected for

numerical reasons. The pressure P, is obtained from the n-component

of (7) by prescribing the value of p at n=» to be p_=0:

p_ = fn 1 —-2-- -é-"u—)"*“h'?—zl'hv w d‘n +1 (9)
c . Re 236 3t 6 2 -

The drag coefficient is defined by

2
Cp~ Drag/«zlt2 U” a cosh n, (10)

and consists of two parts, the drag coefficients due to pressure and

friction CD = C + C F with

DP D
27 27
Cpp = -2 tanh 1, cos o I pycos6de-2sina [ pysinede, (11)
0 0
4 2% 27 '
CDF = ﬁé[ COoS o f wlsmede+tanh nlsma gwlcosede] (12)

Equation (11) is simplified by means of Equation (8) to

2% 3
C tanhn] cos o f (——‘9—> sinede
1

4
DP ~ Re

2% A 5
- sinw f—a—9—> cosede] . (13)
0\ |

Correspondingly, the lift coefficient is

C. = Lift/P U2 a cosh 7 (14)
2 1

L



with

4 I 2 3w )
CLP " Re [;- tanhn, sin « z[)‘ (577—)1 sin6de

2T /3 ' ]
-cosa [ (S—n—>1cos ed 9_] , (15)
0
i 21 2 -l
CIr=Rs [ism o J;) w, sin@de+tanhn, cosoz{;w1 cos 6d 6;' . (16)

The moment coefficient is

- P 2 2 2
CM Torque/zU a” cosh™ ny (17)
with
Carp = 2 5 ?ﬂ<§w) sin’ 9de (18)
Re cosh ny 0 \ON/1
4 27
Cyr = Reo fanhny [ wy;de . (19)
0

NUMERICAL ANALYSIS

The infinite domain of integration in the (n, 6)-plane is replaced
by a finite network of points (n1+ (i-1)An, (j-1)Ae) withi=1,...L,
j=1,...M. For most examples, L and M are 75 and 60; that is, the
total number of grid points is 4500 and A6 =7/30. In special instances
M = 80 (or A6=7/40) is used. For all cases An = 0.05. This choice



S

is based on previous experience ]‘80 With An= 0.05 and L = 75, the

outer boundary n= ny = g+ (L-1)An is about 11 plate lengths away
from the body center. Figure 2 shows the grid system in the vicinity of
the plate for My * 0.%. Two different layouts are used: one which
includes the tip points in the grid, another which excludes the tip points
by shifting the grid Ag/2 in the §-direction (see Figure 3). The
importance of this distinction was noticed in the course of the study
when numerical computations revealed a much larger stability for plates
with high curvature (TI-E <2 0. 1) when the tip points were excluded from the
grid. A detailed accm}nt was given in an earlier reportwo

The numerical solution of the initial boundary value problem stated
in the previous section poses two essential difficulties: the approximation
of the differential operators of Equations (2) and (3) through suitable
difference schemes, and the prescription of boundary conditions for the
outer boundary, where L, < « in the numerical scheme.

The discretization of the differential operators is similar to that
used by Rimonlgu The linear part of Equation (2) is approximated by
the DuFort-Frankel scheme. The Jacobian is written in conservation
form and expressed by central difference formulae. Then, Equation (2)

yields, when solved for the (n—%'l,)th time step of w,

1,7
-1 n-1
il [1 L2 [ _1___” [f}_L
i,j 2At Reh 12 ; (An) 2 (AG)Z ‘ 2At
2 { 1 n-1 n
4ot (w ~w, . tw, )
? (an )? it1,j i, i-1,]j
)3
1 n n-1 n | ]
gy g mwy L rw )} -d. oL (20)
(Ae)z T et U Mt U B | lylj



Figure 2 - Elliptic grid system near the body, ny=0.1, An=0.05, A6=7/30. The total
number of grid points is 75 x 60 = 4500
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PHYSICAL PLANE:

(n,a)—— PLANE :

(a) the Tip is a Grid Point, (b) the Tip is Excluded from the Grid

Figure 3 - Grid near the tip. The cells closest to the tip are shaded.
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where the Jacobian is

1 %157 %41

(V ) =T ’ (V)
Ni,j hi,j 2A6 03, j h, . 2An

| (22)

It is recognized that central difference schemes for the Jacobian cause
oscillations in «w which result in "cancer cells'. These oscillations
destroy the quality of the solutions for larger Reynolds numbers unless
smaller space increments are employed. Hence, the capacity of the
computer sets an upper limit on the Reynolds number. With the space
increments An= 0.05 and A8= 6° generally used in this report, the
upper limit is about Re = 300 (see also Reference 18). Improvements
were found by Fromm19 and Dawson and Marcus11 who applied fourth
order approximations and a combination of central difference and
backward-forward schemes, respectively. Since the present study is
restricted to the pure K4rmén vortex street range, with Re < 300, the
simple central-difference scheme was adopted.

Equation (3) is approximated by the five-point formula which yields,

for wi,j s

11



1 1 - 2
b, oy Ty [(Ae) (¥, 5 ++¥ )
i,] 2 (An}éﬁl-(Ae)z | i1, Ti-1,j
\ 2 2
NRCUAR USSR NS RI UL higjwiyj]a (23)

This system of algebraic eguaticns is solved with Gauss-Seidel line
overrelaxation applied along lines of constant . The overrelaxation

factor is 1.82. The iteration process is halied after the kth iteration if
2 k k
vy - w [<e (24)

at each grid point, where ¢ is of the crder of 1073 in most cases.

For Re = 15 and 30, ¢ = 450g ¢ of the order 1074 had to be used. The
number of iterations varies with the magnitude of temporal change of

the flow field. For Re = 200, ¢ = 45°, ng = 0.1 the growth of the vortices
attached behind the plate requires about 60 iterations per time step,
whereas vortex separation needs about 130.

During the preparation of this report several sources (WirzG,
Briley and Wa]lszos Goodson*, Buzbee et a12]’) suggested to the authors
that modified Peaceman-Rachford methods and methods of cyclic block
reduction would re=ult in more efficient use of computer time than the
presented method. Studies of the flow preblem discussed in this paper
are underway to check the proposed techniques. Results will be

published later.

* Goodson, R., Mechanical Engineering Department, Purdue
University, West Lafayette, Indiana, private communication.

12



At the body surface a one-sided difference scheme must be used

in order to calculate the vorticity wyq j° That this approximation
)
strongly affects the numerical stability was demonstrated in a previous

investigationzza By trial and error it was found that the formula

1
wy = —g g (by +4dg =¥, ) (25)
1, 4hi,j(An)2 2,7 7781 41

yields the best results. This equation is derived from the Taylor series

expansions with the nonslip condition (3y / 317)1 j = 0 incorporated
3

2 3
é£> = (M) An+l<3_*2> (An)2+05(An)3" /
<an 29] 31’)2 1’] 2 37’]3 lsj [ ]

(26)
(_a% ‘—“2@2—4)) An+ 2<ﬂ> (An)2+0[(An)3}
M35 \gp?/ 1, an/ 1,1 ST
9 .
By using @y =(f‘2— :_n%>1,j and replacing(-:—%)i’j with
1 : 2
7am W1 g ¥g, 9O (am)”] (27)

one arrives at Equation (25). Hence, Taylor series expansions are
used which result in an expression for wl,j with error of second
order in An. However, when first derivatives at inner points are
replaced by finite differences, the final formula for w'l,j is of the
first order. The hybrid form, Equation (25), is more stable than the

first order approximation used by most other investigators

13



wy 1= A + 0(an) (28)
s
hlsj(An)

and much more stable than second order approximations investigated,
for instance,

2

1

; -
Wy o @ ———s (8, .-, )+ Ol(an)
19) Zh‘f j(An)z 29] 39] ¢

(29)

In fact, it was found that At o is about 10 times smaller for
Equation (28) and 100 times smaller for Equation (29) than At o for
Equation (25). However, the statement that Equation (25) is superior
to Equation (28) is not valid in general. For instance, in other work
we found Equations (25) and (28) to be comparable with regard to
stability.

Since the domain of numerical integration is bounded, severe
difficulties are encountered in prescribing the conditions at the outer
boundary n= n, ¢ This boundary is almost circular and is divided
in half. On the upstream half of the boundary, the conditions (6) are
used with the alteration that the second condition is replaced by

vanishing vorticity:

0<6= g-+a )
:—a—;% = hsin(6- o), w=0. (30)

n=n {
L~ 3 +ag20 <27 ‘ d

2— m
In difference form (tip point not included in grid):

é@ . - . . _1 R, .

14



On the downstream half of the boundary a convection type condition is

used:

n=m %+a<e<%w+a:

ot U
- . (32)
v 1,2 27
[ S+ (U-m)F] =0
6
1for the

This type of condition was proposed by Dawson and Marcus
vorticity and seems to work well when extended as above to the velocity.

With the difference approximations of Equations (32) the values of w

and 3y /3n are computed on the boundary n= n,

nl_ n At .
WL, i = 9L + hi . [(cos o sinh n; cos ej
sd

n n ._
Wy -~ Wy 4

+ sin o cosh n; sin ej) ( L, ] - L 1,])

n /

+(sing sinh ny,€OS ej - cos ¢ coshny sin ej)

wn _wn

[“L. i ;i

( ,]""1 L’] 1)] ’(33)
2 A6

15



™ (il_b_) Bt fosasi « -
<¥a’7>L,j “\an ‘L9j+ 5AS [(cos a sinhn, cos ej+1+s1nacoshnL sin ej+1)

n
v‘ﬂ
L9 j+1 ( i °
© ——++— - (cosq €inhn, cos @, ;+sina coshy
hL, j+1 L j-1 L
n
V’ﬂ
Sine',l) .IT_ELJ,:_I__
e |

v

e ‘, . _ . oL, j+1

+ {sin @ sinh ny,€OS ej+1 cos gcosh 7y, $1n 6j+1) ———hL ;—————+1
,j+1

- (sin g si - COS 6 CO i -8,j-1
(sine sinhn, cos §_y - cos acoshn sin 9]._1) M

L,j-1

1
+2A6 (cos o sinh ny, €08 ej+ sinacoshnp sine.)wrﬁ . (34)
2

J ]j

The decision to use convection equations of the type in Equations (32)
is heuristic and guided by the idea of interfering with the downstream
flow as little as possible. Photographs of wind-tunnel flows reveal that
the shapes of the vortices are well preserved over many cycles of the
Kérma/.n vortex street.

The integration process is carried out-in the following way: The
vorticity w?Jr'j]' for the advanced time step (n+1) is computed at the

i o . . n+1 n+1
inner points according to Equation (20). Next, @r, and (3Y /an)L 3
3 3

are determined on the downstream boundary points by means of

16



Equations'i (33) and (34). Then zp?jjl is calculated with the aid of
Equation (23). The cycle concludes with the calculation of wrllj:"
from Equation (25).

The maximum stable time step Atmax , beyond which numerical
instability occurs, is determined by increasing the time step until
oscillations from one time step to another appear in the w-values
near the tips. The magnitude of Atmax depends on factors other
than Wy - It is a linear function of the Reynolds number, at least for
Re 51200, and decreases rapidly as either An, A6, or m approaches
zero . There seems to be no dependence on o«. Computer time is
saved by enlarging ny as much as possible without the loss of the
essential features of the flat plate (if U is changed from 0.05 to 0.1,

At . increases fourfold). The values of At ., are for n = 0.1, tip

point out,
Re o Atmax
15 45° 0.0004
30 45° 0.0007
50 90° 0.0012
200 0°, 45° 0.005

Smaller time steps are necessary near t = 0, when large vorticity
gradients are present. For high surface curvature, that is for

m < 0.1, stability is improved if the grid system is shifted by A8/2
in the g-direction so that there are no grid points at the tips. This
does not affect the overall accuracy of the solution and, in addition to
improving the stability, makes possible the computation of the flow

field when ny = 0170

17




Accuracy considerations are similar to those for the flow past
oblate spheroidslsc Additional information on the quality of the solution
is obtained by integrating 3w/3n over the body contour. The integral
of this function over a segment of the surface is the pressure
difference between the end points of the segment. Hence, the
integration around the entire contour of the body should yield zero
and is a sensitive test which must be passed to a certain degree by any
accurate solution. For Re 200, ¢ = 4509 ny © 0.1, the value of this
integral is always smaller than 3% of the difference between the
maximum and minimum pressure at the surface. Other "confidence-
building’ tests compare ocur resulis to those obtained with different
methods.

The numerical calculation of the drag, lift, and moment coefficients
is sensitive to the difference scheme used for the approximation of
the integrals of Equations (11) thrcugh (].9)17,, These coefficients can
be computed either with the aid of a double integral (for CDP it is
formula (11} ) or by means of a single integration (for CDP it is
formula (13) ). For both methads two difference schemes have been
checked and are presented here for the example J‘ g P, €os pd e with

the tip not included in the grid: 0

Simpson’s rule:

.. A8 28 3
[ py cos 6d g 5 LZpi;lcos 5 4p192cos(2A6)

5 2M-1
+2pj$3cos(<2fA6)+ +4p1 peost=— Ae):l (35)

18



Second approximation:

] pjcosede= T A6 p; .cos{(j--g)Ae} - (36)
0 j=1 sJ 4
For the grid which does not contain the tip point the following values

have been computed: Re = 50, a= 900, ny= 0.1, t=1,71,

CDP CDF

Double integration:
Simpson's rule: 5.67 0.230
Approximation (36): 5.67 0.230

Single integration:
Simpson's rule: 6. 50 0.230
Approximation (36): 5.67 0.230

If the tip point is included in the grid, the data for the case Re = 50,
o= 900, ny = 0.05, t =2.31 are

Double integration:

Simpson’'s rule: 5.21 0.097
Single integration:

Simpson's rule: 2.70 0.097

Approximation (36): 5.20 0.105

Based on earlier results17 where theory and experiment were compared,
it is assumed that the worst result is obtained with the single integration
by using Simpson's rule. Unfortunately, this case was reported in the
condensed version of this paper, Lecture Notes in Physics 8, 1971,
Springer Verlag, p. 78. The value of 2. 8 given in this paper for Re = 50,
o= 900, ny = 0.05, t = 2,13 is not correct. Throughout the present

report the single integration by using approximation (36) is employed.
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RESULTS

All computations were carried out in double precision on an
IBM 360-91 computer. The graphic display of streamlines and lines
of constant vorticity was produced with a Stromberg-Carlson SC-4020
charactron plotter. The examples selected for computation are

compiled in Table 1.

Symmetric Flows

For the symmetric flow configurations, which according to
experiments are expected for g= 009 Re < 200, ny < 0.1and g = 900,
Re < 50, ul arbitrary, a steady state is approached ast - «. For
Re ~ 10, @ = 900, ny 0.1 one aspect of the transient stage is displayed
in Figure 4, where the drag coefficient is plotted against time. Figures 5
and 6 show the streamlines and lines of constant vorticity for the almost
steady state t = 11,2, The development of the twin vortices behind the
body is recorded in Figure 7, where the dimensionless length of the
wake s/d is plotted against time. Although the steady-state value
measured by Taneda24 is approached quite accurately, the data for the
transient stage are low compared with the empirical formula developed

by Taneda and Honji25
s/d = 0,89 (t/2)%/3, Re = 18.1 (37)

This relation, which does not contain the kinematic viscosity v,

holds only for an intermediate time interval. As can be seen immediately
from Figure 7, the wake length approaches a finite value whent - «,

a process which is governed by viscous forces. Near t = 0, Equation (37)

cannot be valid either. As shown also in Taneda and Honji's experimentsZ5,
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TABLE 1 - COMPILATION OF THE CALCULATED EXAMPLES

Re,, o 7| teINAL GRID TIP IS GRID POINT
10 90° | o.1 11,2 75 x 60 NO
15 45° | 0.1 7.2 75 x 60 NO
30 45° | 0.1 16.3 75 x 60 NO
50 0° | o.1 1.5 75 x 60 YES
50 90° | 0.05 2.3 75 x 60 YES
50 90° | 0.1 3.5 75 x 60 NO

200 0° | o.1 18.7 75 x 60 YES

200 10° | 0 1.9 75 x 80 NO

200 45° | 0 0.04 75 x 80 NO

200 45° | 0.1 30.0 75 x 60 NO

200 45° | 0.2 8.1 75 x 60 NO

200 45° | 0.2 11.5 75 x 80 NO
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Figure 5 - Streamlines for Re = 10, o = 90°, n;=0.1at t = 11,2
(almost steady state)
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Figure 6 - Lines of constant vorticity for Re = 10, o= 900,
ny=0. 1 att=11.2 (almost steady state)
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Figure 7 - Dimensionless wake length versus time for Re = 10 and 50,
a=90°, n, = 0.1
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the vortices are generated at the tips and then join at the centerline
after a certain time (Figure 8). The instant at which they join is the
beginning of the wake development with nonvanishing s. For small
Reynolds numbers the two time periods which are excluded from
Equation (37) overlap and the curve of Equation (37) is not reached.
This appears to be the reason for the low values at Re = 10.

The drag coefficients for the almost steady state are compared

with other sources in Table 2.

TABLE 2 - DRAG COEFFICIENTS FOR SYMMETRIC
FLOW CONFIGURATIONS

“p
o Re ny 'FINAL Computed | From Dennis & Chang4
0° 50 0.1 1,50 1.39 1.432 (for Re = 40)
0° 200 0.1 18.17 0.55 0.492 (for ny = 0)
90° 10 0.1 11.2 6.02

The values for ¢ = 0° compare favorably with the steady-state solutions
of Dennis and Chang4a

It may be mentioned that in the condensed version of this paper,
published in the Lecture Notes in Physics, No. 8, Springer-Verlag, 1971,
the case o= 9009 Re = 50, ny = 0.05, t = 2,13 was considered as an
almost steady state. This sfatement is incorrect, since the wake

grows considerably larger when t~ . 24
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Nonsymmetric Flows

Most of the numerical data compiled are obtained for the non-
symmetric case o= 450, Re = 200. The first series of pictures, which
is shown in Figure 9, is selected to display the flow behavior following
the abrupt start of the body at t = 0. Immediately after t = 0, in the
initial potential-flow field, a starting vortex forms and separates from
the trailing edge. In the streamline pictures this vortex is visible as
a wavy pattern which indicates the movement of the vortex relative to the
plate (which is kept at rest). The lines of constant vorticity clearly
exhibit a local extremum at the center of the vortex. In the early time
period the zero streamline migrates from the rear stagnation point of
the potential flow to the trailing edge. This verifies, even for the low
Reynolds number Re = 200, the hypothesis of Lanchester-Prandtl, that
circulation around an airfoil is generated by a starting vortex and that the
zero streamline follows a kind of Kutta condition.

The computation of the case Re = 200, ¢ = 45°, ny = 0.1 was
carried out over three cycles of vortex shedding. The last cycle was
repeated with the fine mesh An= 0.05, A6=7/40. The flow patterns of
the third cycle obtained with the fine mesh are displayed in Figure 10.
The development and the detachment of the vortices are similar to those
of the first cycle in Figure 9. An overall view of the wake is presented
in Figure 11. To the right the boundary of the grid system is visible.
The location of the vortices shows that the vortex street is not parallel
to the undisturbed flow.

In Figure 12 the drag, lift, and torque coefficients are plotted
against time t. The abrupt start of the body requires infinite values

for CD and CL’ whereas the CM-value begins from zero. The Strouhal

28
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number which is defined by

_ dn
St = T (38)

is about 0. 23 for the second cycle and 0.25 for the third. In

Equation (38) n is the frequency of the vortex shedding. If one

relates the Strouhal number to the projected plate width d sin «, the

values for the second and third cycles are 0.163 and 0.177, respectively.
A comparison of Figures 10 and 12 reveals that the coefficients

Cp Cr

from the leading edge.

and CM assume relative maxima whenever a vortex separates
In Figure 13 the coefficients CDF and C are plotted against
time for Re = 200, o = 45°, n; = 0.1.

For n, =0.2 computations have been made with A6 = 71/30 as well
as with A@ = 7/40. The differences in the C

LF

D’ CL, and CM values
between the two cases are so small that they cannot be observed on a
graphic display.

In Figures 14 and 15 the surface vorticity and the surface pressure
are plotted against 6 for the third cycle of the case Re = 200, a= 450,
ny = 0.1 computed with the fine mesh. The production of vorticity at
the edges is smallest when a vortex separates from the edge, and it
is highest when a vortex starts growing.

Based on Timme's experiments26 the decay of vortices in the
KArman-vortex street can be described by the Hamel-Oseen solution
for each vortex:

: 2 et
o . const (1 ] e-(r /av(t -to)).). o 9)

(0} r

?
b Vr
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where the polar coordinates (r, ¢) with the corresponding velocity

components (v; , v:p) are used. Equation (39) represents the decay
?

o 27 .
represents the lowest mode of plane disturbances. The vorticity at

of a potential vortex from the time t' =t This expression
the vortex center (where the extremum of vorticity is located) dissipates
according to
] _const
= . 40
) (40)

“r=0 - 2v{t™-ty

For the next higher mode of the spectrum of disturbances the vorticity

-2
? 9 _40
@0 would decay as (t to)

numerical data can be checked against the analytic prediction. In

27
; &8 was shown elsewhere™ . The

Figure 16 the decay of the central vorticity of the initial vortex for
Re = 200, a= 4509 ny = 0.1 is displayed with logarithmic scales. The
best fit to a linear rél‘ation between the logarithms of the central
vorticity and time is obtained when tg = -0.3 and the slope is -1.
Vortices which are generated after the initial vortex behave similarly.
Near the outer boundary of the grid. where the mesh size increases
rapidly, the numerical values deviate from the analytic curve. This
deviation depends on the mesh size (see Figure 16). Apparently, the
numerical ‘solution is not accurate enough to describe the vortex decay
in that part of the grid.

For Re = 200, some information was obtained when o= 1009 n= 0.
The initial phase up to t = 1.94 is recorded in Figures 17 and 18. Non-

periodic vortex shedding from the leading edge, which has been observed*

* Laitone, E.V., University of California, Berkeley, private
communication.
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Ve

for this small @ -value but at much higher Reynolds number, does
not occur in the present example.

For Re = 30, a = 45° ;M= 0.1 numerical results are obtained
up to t = 16, Neither a clear development of a Karma’m vortex street
nor a tendency towards a steady state can be observed. The streamline
patterns in Figure 19 show vortex shedding. However, the corresponding
lines of constant vorticity do not exhibit local extrema; they only
oscillate. Apparently, diffusion of vorticity at this low Reynolds
number is already so dominant that vorticity extrema do not develop.

Whether an oscillating state or a steady state is approached whent - o

~cannot be determined. However, the critical Reynolds number which

separates these two states must be close to Re = 30. (For bodies
normal to the flow the critical Reynolds number is higher and is about

45.) Figure 20 shows the coefficients C_ . and C,p 2s functions of

DF
time.

The case Re = 15, o = 450, ny = 0.1 is computedup tot = 17.
Although a steady state is expected for t »», the time t =7 is too
small to be considered as giving an almost-steady state. At least a
qualitative picture of the flow patterns is displayed in Figure 21.

Additional information is recorded in Figures 22 and 23.

CONCLUSIONS
Computer simulation of vortex and vorticity shedding is possible

with accuracy of the order of water- or wind-tunnel experiments for

two-dimensional flows around bodies. With the space increments and
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Figure 19 - Sequence of streamlines and equal-vorticity lines for Re = 30, o= 450,
ny = 0.1 at various times after the abrupt start. Potential flow at t =0
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number of grid points (75 x 60 or 75 x 80) used in this paper, the
Reynolds number is limited to about 300. The flow region far from
the body is not well represented. Improvements must be made in
accuracy and in economy of computer time. Promising studies are
under way.

The sudden start of a thin elliptic cylinder under an oblique angle
of attack produces an initial vortex which separates from the trailing
edge. After this time the zero streamline of the wake leaves the body
parallel to the major axis at the trailing edge. This phenomenon,
although occurring at Re = 200, verifies the soundness of the Lanchester-
Prandtl hypothesis of potential flow, in which a circulation, necessary
for the existence of liit,is postulated and determined by means of the
Kutta condition.

For a thin elliptic cylinder with ¢ = 45° the lower limit of vortex
shedding appears to be about Re = 30. (For symmetric configurations
normal to the flow the lower limit is about Re = 45.)

All vortices shed from the body dissipate in such a way that the
relative extrema of their vorticity (which may be considered as vortex
centers) decrease in value approximately as 1/(t - const). Hence,

they behave like decaying potential vortices when separated from the body.
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