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1. INTRODUCTION

The object of this paper is to survey reccent results in the statisti-
cal analysis of univariate point processes (eeries of events), The survey
is personal reflecting my own present interests, and is not comprehensive,
For convenience, I have taken '‘recent' to mean anything published since
Cox and Lewis (1966). I have also mentioned rfome topics and results
which were omitted, for reasons of emphasis or ignorance, from that
monograpl, Finally, I point out areas where further w;)rk is required,

A survey of work in this field is not so difficult as a survey of,
say, the theory of poinl processes because the advances in the statisti-
cal analysis of point processes are, by comparison with the theory, few,
This m‘ay reflect the relative difficulties of these areas, but that thought
may be a personal bias,

Some of the shortcomiags of the Cox and Lewis monograph were,

in hindsight, the following:

(i) Not enough consideration of grouped data, In some cases where
point events occur, such as epidemiology, recording limitations or the
volume of data force one to work with numbers of events in fixed inter~
vals whose width may or may not be controllable in advance, [ have

touched un this problem recently (Lewis, 1970); separate epectral




analyses of the {ntervals and of the counting procese (Bartlett, 1963)
are, for example, not possible, One has to use a spectral analysis of
the grouped counts (i, e,, number of events in a fixed time interval),
which is very nonstandard in its distribution theory, but in which well
known problems of aliasing arise, Results cf Cox (1970) may be useful
here, and Cox (1955) has considered some other aspects of the analysis
of grouped events,

Interesting examples of this type of problem are found in physics
and optics, For example (Helstrom, 1964; Karp and Clark, 1970)
photon or other particle emissions are known from physical consider=-
atiors to be generated by a doubly stochastic Poisson process and it is
required to determine parameter values of the driving process from
counts of the number of photons emitted in successive periods, Here
it is prohibitively costly to record exact times of occurrence, However,
the recording interval can be determined in advance by the experimenter,

Problems of grouped Poisson counts (McNeill, 1971) are also common,

(i1) Very little ernphasis was given to sequential methods, While this
was to deliberate to save space, it is also true that most data I have come
across is presented for analysis in toto, Thi s may change as better re-
cording methods are introduced and, hopefully, as statisticians are called

in before the fact., There is still a problem in that simple sequential




methods are known only for Poisson processes (homogeneous or non-
homogeneous) and also that rather unsmooth inhomogeneities occur in
practice which make the application of formal sequential methods based

on very definite assumptions quite hazardous,

Less formal sequential methods are useful; in particular, an
analysis of the data in successive sections is very useful, both to cut
down on computation time in, say, spectral analyses (Lewis, 1970)
and to examine the time evolution of the process.

As an example, consider a series of arrivals at an intensive
care unit in a hospital. This data will be used for illustration through-
out the paper; it was supplied by Dr, A, Barr, of the Oxford Region-

al Hospital Board, England, ¥ The first r-~ction, consisting of

n=x 251 arrivals in t_ = 409 days (4 February, 1963 - 18 Maxch, 1964),

0

wase analyzed in Chapter 1 of Cox and Lewis (1966). Later on, the
arrivals up to 6 February, 1968 were received. Three subsequent

sections of length t_ = 409 days were taken from these later arrivals

0

for comparison and their statistics, as well as those for the total

record, are shown in Table 1.

* These times-of-arrival were exceptionally well recorded. Of the
1468 arrivals in the 1420-day period from 4 February, 1963 to

6 February, 1968, only one time-of-day was not recorded. Nine tied
arrivals occurred. Generally, recording times seemed to be at the
five-minute intervals of the hour, although other times do occur. The
data to 18 March, 1964 is given in Cox and lL.ewis (1966, p.255); the
rest in Lewis (1971).
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Table 1, Arrivals at an intensive care unit (no ties)

Period 1 Period 2 Period 3 Period 4 Total

4 Feb'63- 19 Mar '64- 3 May '65- 16 June '66- 4 Feb '63-
18 Mar '64 2 May '65 15 June '66 29 July '67 6 Feb '68

n 251 350 372 316 1458

to 409 409 409 409 1829
U(days) 218. 47 218.53 183. 69 197. 20 954, 25
u 1. 874 2,222 -3.399 -1. 099 2. 874
m=N/t,  0.614 0. 856 0.910 0.773 0. 797

n
The statistic U= Eltiln, where the ti are the times to events and
i=

n the number of events in the period of observation of length : is the

o'

centroid of the ti'l and is used to test (Cox and Lewis, 1966, p. 47)
for the trend parameter B in a nonhomogeneous Poisson process with

rate

A(t) = expla + t)= N\ exp(ft). (1. 1)

In testing for p = 0 against f ¢ O, a is a nuisance parameter with
sufficient statistic n and the test is based on the distribution of U,
given n. The normalized statistic U in line three of Table | shouid
be distributed approximately as a N(0,1) variable. There was fairly
strong evidence of a monotone trend at the end of the first observation
period (® 7 percent level), but later on in the series, as in Section 3,
there is a definite decreasing trend. However, the total arrival process

gives fairly strong evidence of an increase in X\ (t), the value U= 2.874
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being significant at about a 2 percent level. For Period | and Period 2 combined,

FoeTg TO PR

U was found to be 4.492 which is significant at a level much smaller than 1 percent.

An actual sequential test of p = 0 against f ¥ 0 rejects the null hypo-

P

thesis at A 1 percent level after 550 days. The sectioned analysis of

it

four periods suggests a long cycle or quadratic term in the exponential

TR T )

f 3 trend (1.1). The nonhomogeneity is confirmed very strongly by a dis-

i

persion test (Cox and Lewis, 1966, p. 232) applied to the numbers of

events in the four sections. This has value 26.74; ite distribution is

1 that of a chi-square variable with 3 degreer of freedom which has a

0. 9999 point equal to 21.11.

E
A plot of the times-to-events ti against serial number i is
given in Figure 1, and a plot of the average values of successive sets

of twenty intervals between arrivals is shown in Figure 2. Again the

S et e bt

long cycle or quadratic trend is quite evident graphically. We return

to this example later in the paper.

et daas g o

(1i1) Sectioning brings up in some ways the analysis of replicated

point processes, which again was not considered in detail by Cox

and Lewis (1966). This replication can occur quite commonly in exper-

i i s i

imenta) situations, for instance in neurophysiology where experiments

g ik

can be repeated many times. Here the signals are trains of very narrow
) spikes of apparently fixed height, so it is appropriate to analyze the \

times of occurrence of the spikes as a point process. Observation over 1

T -
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Figure 1, Arrival of patients at an intensive care unit,
Complete record, 4 February 1963 to 8 February 1968, Number‘ef arrivals (n) 1458 in
period of to = 1829 days. Arrival number vs, time to arrival, m = n/to =0, 7972,
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Figure 2, Arrival of patients at an intensive care unit,
Averages of successive groups of 20 inter-arrival times, Number of arrivals (n) 1458
in periodof t_= 1829 days, Overall average is 1, 2564 days, Homogeneity of variance
statistics = 918. 000 (XZ_”: mean 71, o = 11,92).
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A too long a period can be deceiving, because of physiological deterioration, - '
and replication is sometimes preferable. Of course, care must still be

taken that physiological ur experimental conditions have not changed.

TN

Comparison of rates and trends, mainly in Poivson processes,

it S et

was discussed in Cox and Lewis (1966). See also Qureishi (1964) for

the comparison of rates in two Weibull processes. General problems

é‘
E of multiple point processes (multivariate point processes) are discussed

: in Cox and Lewis (1972) and Perkel, Gerstein and Moore (19670), but

are beyond th.e scope of this paper. Lewis (1970) discussed estimates
of the spectrum of counts from sectioned data, as well as pooling and

comparison of the spect.a.

(iv) Although trend analysis was discussed in Chapter 3 of Cox

and Lewis (1966), Idon't believe it received enough emphasis,
Also, problems such as the analysis of cyclic trends were barely
touched upon, These and other problems in trend analysis are

discussed in more c2tail later in the paper,

(v) Finally, perhaps more emphasis could have been given to graph-
ical methods. These were discussed in Chapter 1, but no reference was
made to probability plot:ing, for example, in later chapters. See, for

example, Wilk and Gnanadesikan (196 8).
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» The field where most use has been made of techniques for the
analysis of point processes is in neurophysiological work on the signals
occurring on nerve fibers. A summary of techniques for this type of
analysis given in Perkell, Gerstein and Moore (1967a, 1967!;) largely
parallelse Cox and Lewis (1966), v;ith more information on the special
problems of neurophysiology. For later work and applicatioﬁs, see,
for example, Moore, Segundo, Perkel and Levitan (1970) and the
references given in that paper. It would be impossible to try to sum-
maripe all of this work here; some of ‘lit will be touched on later, but
there is virtually no statistical methodology given in them which is not
given in Cox and Lewis (1966).

1

Another interesti _ field of application is to the study of the

occurrence of carthquakes. While strictly not a univariate point pro-
cess, an approximation to the earthquake process as a univariate point
process yields uneful insights. For such analyses, see Vere-Jones,

Turnovsky and Eiby (1964), Vere-Jones and Davies (1966), Vere-Jones

(1970), and Shlien and Toksoz (1970). The discussion of Vere-Jones (1970)
contains extensive comments on the problem of analyzing elrthqua]\(e oc-
currence data,

Computational problems in the spectral analysis of point processes
have been discussed by Lewis (1970). By spectral analysis here and in

° the rest of the paper we mean Bartlett's spectral analysis of the counting

i Fleg s T e ae A i s s R
R i i e b TS ST T s SRS w

process, N(t) of a point process (Bartlett, 1963; Cox and Lewis, 1966,
|
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Chapter 5). Thie spectral analysis of the intervals between events in a

peint process has been greatly facilitated by the availability of the fast
Fourier transform algorithm; see Cooley and Tukey (1965) and Cooley,
Lewis and Welch (1970) for details. -

Most of the statistical methodology for the analysis of univariate
series of events given in Cox and Lewis (1966) has been implemented in
a computer programn called SASEIV. For details, see Lewis (1966)
and Lewis, Katcher and Weise (1969). SASE IV is a large 'FORTRAN
program with graphical output which is available from the IBM Program
Information Department, 40 Saw Mill River Road, Hawthorne, New York
10532, as Program No. 360 L 130001,

In subsequent sections of this paper we discuss first two central
problems in the statistical analysis of point processes, namely tests
for renewal processes and tests for Poisson processes. Then techniques
for specific non-renewal processes, such as doubly stochastic and cluster-
ing Poisson processes are discussed. The inability to write down a
likelihood function makes the formal analysis of non-renewal point pro-
cesses difficult; it is only for the important doubly stochastic Poisson
process that techniques are beginning to appear.

The final sections deal with trend analyses, mostly of non-
homogeneous Poisson processes; first we consider the case of monotone

trends, then the case of cyclic trends and their relationship to the

spectral analysis of point processes. Following this, some general




e
11
1 . problems of trend analysis are considered; these include tests for particular

rate functions and the nonhomogenecus Poisson process model per se, and
the definition of '"residuals' {n the analysis of nonhomogeneous Poisson

models.

e
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TESTS FOR RENEWAL PROCESSES
2.1 Markov interval\pxoceues and serial correlation coefficients.

A natural extension of the renewal process model is to processes
with first order dependence of intervals (Wold, 1948; Cox, 1955). The
naturalness may be only mathematical since point processes
of this type have not been commonly found in applications, although
they have recently been postulated in neurophysiological contexts
(Lampard, 1968; Walle, et al, 1969). In the process of Walloe
et al (1969), the first order Markov interval property depends
on the input to a neuron being a Poisson process. However, since the
input is the superposition of an unknown number of fairly regular neuron
signals, the hypothesis is tenuous. A drawback in the use of the first
order Markov interval process as an approximate model for serial
dependence in series of events is the difficulty of obtaining analytical
results on, for example, the spectrum of counts or the variance-time curve.
This difficulty is closely related to the fact that there are no regenera-
tion points in the process.

Another problem with the model is the dearth (until recently)
of useful bivariate distribution models. Cox (1955) used a bivariate

exponential of the form

£ (6ox; =y) =Xy exp {-\ (y)x}, (2.1)
i+l

RN R T W
" " g2




E where

bE

gﬁ My) =X (L+Xx x)>0,
|

i

which had the drawback of nonlinear restrictions on the parameter.

Another widely used model for bivariate gamma distributions which

Sl (i U e

arises quite naturally has been discussed by Moran (1967a), Vere-Jones

(1967), Lampard (1968), and Gaver (1970). (See also Griffiths, 1969,

|
? i for general properties of bivariate gamma distributions.) These bi-

variate distributions all have positive correlations. Bivariate exponen-

e

tials with negative correlation have been derived by Gaver (1972 and

e

bivariate, negatively correlated intervals have been observed in a

.
e g

neurophysiological context by Walloe et al (1969).
For statistical analysis, one of the most important theoretical
results on bivariate exponential distributions is that of Moran (1967a),

who showet from more general resul.s that the serial correlation

SLLG el S i SR
T P R ARNT oy mad o -

soefficient (or order 1) for bivariate exponential distributions is

always greater than -0.6649;

E{(X, - E(X))X

1
= 1~ — = -0, . .
’1 T (xi) 1 ral 0.6649 (2. 2)

i1 - E(X} 2

Estimates of the serial correlation and tests of the renewal

hypothesis against a first order Markov interval process are based on

o e S TRV PP




the sample serial correlation coefficient ;1, defined as follows.
For simplicity, assume observation starts with an event and

ends with an event, there being n observed intervals between events

X,%X.,...,%X with mean ;-n-lzx. Let z, = x, - x. Then
) ] n i i i

n-l

A R

ol = c (2.3)

Before discussing theoretical results on tests for renewal pro-
cesses based on :1, consider its distribution for renewal processes,

a great deal about which is now known,

The expected value of ;1 under the renewal hypothesis, for any

distribution of the intervals X, is (Moran, 1967b)

E(p) = - ==, (2. 4)

and while its variance ia known to be asymptotically n"1 if p =0, the

t:act variance depends on the distributions of the x, (Moran, 1967b):
4

nz-n+1 n+l Ezi

. E{ } = _n-2_ . (2.5)
n% (n-1) n(n-l) (Z ziZ)Z n(n-1)

var(;l) =

Moran (1967b) obtained an approximation by replacing the expectation

by the ratio of the expectations of the numerator and denominator. This

result is exact for normally distributed x

i'l, giving

R

I

o ey
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2
var(p) = {2220 2. 6)

n (n-l)

For exponentially distributed xi , the Moran approximation gives

~ 1 7 58 398
var(pl) = nz + -n—3‘- -;-I APy on . (2.7)

Moran (1970) compared his approximation to sampling results obtained
by Cox (1967) and a brief summary of their results on the variances

follows.

(a) The variance of ;1 tends to be smaller than that for the normal

case for positive random variables with long tails.

(b) Moran's approximation works reasonably well with gamma dis-
tributions with shape parameter k€0, nZ50, or k8, nl0.
Outside these limits the approximation underestimates the variance

(k= 0 is the exponential distribution).

(c) For the exponential distribution, a partial reconstruction of
Table 1 from Moran (1970) using eampling results from Goodman

aad Lewis (1972) follows.




~

Table 2. Variance of Py in exponentially distributed random samples.

Observed
Sample variance Moran's Difference/
size n (simulation) approximation Difference Observed
20 0. 0419 0. 0371 0. 0048 . 115
50 0. 0182 0. 0176 0. 0010 . 055
100 0. 00945 0. 00935 0. 00010 . 011
450 0. 00219 0. 00221 0. 000020 . 009
(d) For very skewed distributions, a better approximation to var(;l)

is needed. This is apparent from Table 3 for random samples where
the X, have a Weibull distribution with shape parameter -;—(%Wiebuf.l)
A random variable with this Weibull distribution is the square of a random -

variable with a unit exponential distribution,

Table 3. Variance of ;1 in 1/2 Weibull random samples

Observed
Sample variance Moran's Difference/
size n (» “mulation) approximation Difference Observed
50 0.01410 0. 00058 0. 01352 . 96
100 0. 00782 0. 00054 0. 00728 .93
450 0.00201 0. 00047 0. 00154 17

Returning to the distribution of ;1, Moran (1970b) showed that
n1/2;1 converges in distribution to a unit normal variate if the first

four moments of the x, exist. Cox (1966) examined the distribution

by synthetic sampling for the case where the x had a normal distri-
i

bution, and also distributions of the form

e i i
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1‘*(‘1%71) e X x, (x = 0), (2. 8)

—r—

with k=24, 8,1, 0, -1/2, a rectangular distribution, a double

exponential distribution and a Cauchy distribution. The first two

moments and coefficients of skewness and kurtosis were examined.
For the positive random variables, the distributions were generally
| positively skewed with convergence to normality apparently fairly
rapid.

These results have been extended for the case of x, exponen-

tially distributed in large scale simulations reported in Goodman and

Lewis (1972).

Figure 3 shows a cymputer plot of the estimated mean (*),
standard deviation (x) and coefficients of skewness (+) and kurtosis
(A) of 'p"l as a function of n (RHO(],N)) for n = 11(1)120, 130, 140,
b | 150. The simulations involved at least 3, 000, 000 replications for

each n, so that the sampling variances of the estimates are small.

I The curves have not been smoothed. Note that the skewness is positive,
with a maximum value of about 0.32 at n = 35, after which it starts
back toward its asymptotic value of zero. The lurtosis is small,

w going from positive to negative at about n = 35 and then going back

E toward its asymptotic value of zero very slowly.

The departure from normality (positive skewness) is seen

much more clearly in Figure 4, where the computer plot gives esti-




mated neriralized values of, from top to bottom, the quantiles at

levels 0.001, 0.002, 0.005, Z.010, 0.020, 0.025, 0.050, 0.100,

the estimated mean plus (n-l)-l, and the quantiles at

levels 0.900, 0.950, 0.975, 0.980, 0.990, 0.995, 0.998, 0.99%

These should converge to the corresponding gquantiles

of the unit normal distribution.

Note two things: the departures from normality are relatively
small for the inner quantiles and convergence to the normal quantiles
is very slow.

More detailed results from which the departure from normality
and the slow rate of convergence can be assessed are shown in Table 4,
The quantiles and moments of ;1 (called RHO(l,N) in the computer)
for n = 450 are shown in the rows m.rked exponential. Of these
rows, the first row is the actual estimated value of the moment or
ki | quantile, the bracketed quantities in the next row are the estimated
;r sampling standard deviations of the estimates (5 degrees of freedom),
and the third row is the quantile minus ';, all divided by 0. <This

row illustrates the departure from normality, being 2. 039

0. 975
] instead of 1.960.

Much more serious departures occur for the quantiles of ;1

) R AR

from random samples with 1/2 Weibull intervals. These are given

} in the rows marked '1/2 Weibull" in Table 4. Thus, not only is

Moran's approximation poor, as scen above, but the normal appioxi-
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mation is considerably off. The simulation results for the 1/2 Weibull
case are discussed more fully in Goodman and Lewis (1972).

Moran (1967b) showed that tests for independence agains: first order
serially correlated intervals with exponentially distributed marginals
based on pN1 are asymptotically most powerful. He also conjectured
that this is true for Gamma distributed intervals. More formal results
have been reported l'y Yang (1970).

Moran (1967b) also proposed two modifications of the serial corre=-
lation :oefﬂciegt. One is obtained (see also Cox, 1955) by replacing the
estimate of the variance in the denominator of (2. 3) by the square of the
estimate of the mean (the mean and the standard deviation are equal for the
exponential distributicn)., The other modification is due to Ogawara,
Moran (1967b, 1970) gives the first two moments of these test statistics
and shows that asymptotically they involve no loss of efficiency against
the first-order Markov interval process. However, Moran's conjec-
ture that the distribution of Ogawara statistic converges rapidly to the
normal is not correct (Goodman and Lewis, 1972); in fact, its distri-
bution is very similar to that of ;1 in the null exponential case.

An interesting application of serial correlation statistics in
examining neurophysiological models is given by Walloe et al (1969).
There is very evident negative correlation between successive inter-
vals; given the known structure of the neuronal process, first order
Markov dependence would have been expected if the input to the

neuron had been a Polsson process, and this was tested by checking
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if (;1)Z ~p, Unfortunately, (personal communication) p, Was esti -
mated by ﬁveraging toge‘ther estimate\s obtained from successive sections
of length 20, and the bias (2, 4) accounts for a large part of the observation
that for several experiments (: 1)2 was systematically significantly larger
than KZ' A jackknifed estimate (Quenouille, 1956) could have been used,
or a correction for bias introduced, There probably still is real higher
order depend :nce in th;s data accounted for by the fact that the input to the

neuron is a superposition of a finite number of inputs and therefore not quite

a Poisson process,
|

2.2 Product moment score statistics

An alternative to the serial correlation coefficient is obtained
(Cox and Lewis, 1966, pp.166-7) by replacing the actual interval
values X, by their ranks r, or exponential scores e(ri;n) (Cox
anci Lewis, 1966, pp. 26-27), and computing a first order product
moment statistic

nN-4

Rl(n) = izﬂ e(ri;n)x e(ri+1;n). (2. 9)

A test for serial independence is then based on the null distribution of

Rl(n) under a permutation hypothesis.

' An advantage to using Rl(n) is that it controls outliers in the

\
series of events; i.e., missing points. Its distribution has been tabu-

t
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lated by Lewis and Goqdman (1969, 1970) for ranks, exponential scores,
scores from gamma populations with parameter k= -1/2 apd scores
from Weibull populations with shape parameter 1/2 (1/2 Weibull).

The distributions for these product moment rank statistics‘ are .
sirpilar to those for the ordinary serial correlation coefficient ;1 from
the equivalent parent population; positively skewed and very slow to
converge to the asymptotic normal distribution. The distribution of the
normalized exponential score product-moment statistic does in fact
converge to the distribution\of ;1 when the series length is n = 10, 000;

|
quantiles are shown for n= 450 in Table 5 and should be compared

with the exponential values in Table 4. '

Table 5. Normalized exponential score product-moment statistic; n = 450

X0,001 *0.002 *0.005 *0.010 *0.020 *0.025 *0.050 *o.

-2.799  -2.623 -2.370 -2.159 -1.929. -1.848 -1.567  -1.
*0.900 *0.950 *0.975 *0.980 ¥0.990 *0.995 *0.998 0.

1,270 1.656 1. 994 2. 096 2,395 2.669 3. 009 3.

The sampling error in the values in Table 5 is approximately 0. 0Cl.
\ ‘ !
Note that the idea behind these tests is similar to that for the
technique of random shuffling described in Perkel et al (1967a) and

apparently commonly used in neurophysiological work., The use of the

r
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product-moment statistic is more sophisticated and does not require a

computer to do the shuffling,

2.3 Tests of serial independence based on the periodogram

The first serial correlation coefficient ;1 can be used as a test
for serial independence for alternatives other than the first order
Markov interval process, but has certain drawbacks. In particular,
for the more common alternatives such as clustering processes, there
is no imperative for looking at just the first serial correlation and tests
combining serial correlations of several orders present difficulties be-~
cause of the correlation between these statistics.

Tests based on the periodogram were advocated by Bartlett (1954)
and descrit.zd in Cox and Lewis (1966, pp 168-170 and Durbin (1969).
Denote the finite Fourier transform of the n intervals Xpoooe s X by

H(w)=——l—17§ ; x e p, w = 2wp/n,

noP (27 n) =1 * P
p=1,2,..,[1/2 n] = ¢.

and the periodogram by
2
I.m(wp) = IHn(wp)I .

Tie test is essentially for a ''flat'" spectrum using the distribution
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theory for the In(wp)'s. The theory states that the In(wp)'l are
approximately independent, exponentially distributed random variables,

the result being exact for x Ce X independent and identically normally

O
distributed.

This hypcthesis of a 'flat' spectrum can be tenmted using a modi-
fied homogeneity of variance statistic, or the cumulated periodogram
values

{ !
U‘n r ln(wP)/ X ln(wP) pel,2,..., -1
pel pel
can b_ "eeted ae order otatiotice from a uniform distribution. Bartlett
shcwed that the distribution theory s eseentially 1ndependent of k3,
the third cumulant of the intervales between eventuy, bat it can be shown
to be sensitive to k., the fourth cumulant.

Again, results have been obtained by synthetic sainpling by
Goodman and Lewis (1972). Thedistribution of the maximuwn values
of the periodogram is shown in Table 6, the values for normally dis-
tributed xl'l being exact, those for exponential and half Weibull being
taken frorn a large simulation. The deviations from the normal case
for exponential xi'a is small; for 1/2 Weibull xi'l, which have a

coefficient of kurtosis of 84.720, the departure is dramatic.

In Figure 5, for exponential variaties, we give a computer plot

of the distribution of the modified Kolmogorov-Smirnov statistic

e

AR e S e
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KSTWO(N) = ¥n C = Ao max IUi) -i/t]
1:€isst-1 (

in the form of computer printed plots of sixteen quantiles as a function

of n, the length of the series. (n= N in the plot and the statistic is

T o

K
: |
|

called KSCTWO(N)). The quantiles are a little smaller than for the
normal case in whicl; the upper (asymptotic) 5 percent and 1 percent
pointa are 1.358 and 1. 628, respectively. Note that for N = 140 the
statistic is based on £ = 69 U(i)"' so that the convergence of the
quantiles is faster than it appears to be in the figure, although not as
fast as in the normal case. Of course, it is not known that the dis-
tribution based on the spectrum for non-normal variates converges to

the distribution for normal variates, but it is likely if the first four

moments exist.
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3. TESTS FOR POISSON PROCESSES

We will discuss here primarily tests for the Poisson hypothesis
against stationary alternatives, trends being discussed in Section 5. We
assume as before that n events are observed at times t1< tZ <... < tn
in the fixed interval (O, to] . Intervals between events are denoted by
Xpo Xpo e s X and it is convenient to denote the residual interval at the
end of the period of observation by X4l * to - tn.

There are four major categories of tests. ’

a) Tests based on the ti's, conditional upon n = Nto), which is a
sufficient statistic for the nuisance parameter \, the rate in a homo-
geneous Poisson process. Since the ti's are (conditionally) the order
statistics from a uniform distribution, the empirical count function N(t)
(see Figure 1) is proportional to the empirical cumulative distribution
function for the uniformly distributed samples. The intervals x, are
then just the gap statistics for the sample.

Tests based on the maximum deviation between N(t) and t/to
(Kolmogorov-Smirnov statistics and modifications) or other metrics
(Anderson-Darling statistic) have well known distribution theories (see,
for example, Durbin, 1967), but are sensitive mainly to trend departures
from the homogeneous Poisson hypothesis. In fact, Lewis (1965) ehowed

for the special case of gamma renewal alternatives, that the test is not

consistent. Those results can probably be extended by results on
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empirical processes for renewal processes reported in Pyke (1972).

The most important thing to note here is that while the distri-
bution theory of these tests is well kncwn because of the identity with
the problem of testing,in a random sample of size n, a distribution
Fo(t) against an alternative Fl(t), the distribution theory under
alternatives is completely different. In the one case F;l(ti) are order
statistics from nonuniform random samples; for point process other
than (homogeneous or nonhomogeneous) Poisson process, both the
uniformity and the randomness (independence) disappear.

Note that the dispersion test for Poisson variates (Cox and
Lewis, 1966, p.158) is equivalent to testing the uniformity of the ti|'

with a chi-square goodness of fit statistic (Lewis, 1965).

b) The gap statistics for the xi'l, i=1,...,(n+l), which, under
the Poisson hypothesis, are a random number n of independent exponen-

tial variates, are formed from the order statistics of the xi'l as

D =(x

ni (xoz 0, i=1,...,n+l). (3.1)

(i) - x“_n)(n +2 -1)
These are again a random number of independent exponentials

(Cox and Lewis, 1966, p.26) with sum to. and the statistics

T PPN R asac
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! =
k jfl Pny
= {x(1)+x(2)+... +(n+2-i)x(i)}/to (i=1,...,n) (3. 3)

are, conditional upon n, order statistica from a uniform (0,1) distri-
bution (see Cox and Lewis, 1966, p.154 for a more complete derivation;

the conditioning upon n and the fixed total t, is very subtle).

0
A great deal is now known about the null distributions of test

statistics based on the gaps D or on the ordered x,'s, and the

ni’ i
reader is referred to the excellent review articles by Pyke (1965, 1972).
Also, 2gainst renewal alternatives, a good deal is known about asymptotic
and, in some cases, small sample power. Alternatives are generally
specific distributions on those in which the distribution is limited by
specifying that the intervals have, say, distributions with monotone increas-
ing or decreasing failure rate (Proschan and Pyke, 1967). Again see
Pyke (1972) for a summary, and specifically Jackson (1967), Bickel
(1969), and Bickel and Doksum (1969).

Empirically and from a common sense point of view it is
quite clear that against stationary lltermtlvel)ultl for Poisson

processes based on the tl"l are more useful than tests based on

the ti'l. This has been observed in using the SASE program,
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in which the uniformity of the t. ''s is tested using both one-sided and

i

two-sided Kolmogorov=-Smirnov statistics and the Cramer-voa Mises

statistic (Cox and Lewis, 1966, p. 147), ,
More information about the power of these procedures, especially

against cluster alternatives would be valuable (Lewis, 1969; Vere-Jones,

1970).

c) There are also specific tests against renewal alternatives.

The Moran test (Cox and Lewis, 1966, p.161) is an example.

d) A useful test can be based on the empirical spectrum of counts,
as pointed out by Bartlett (1963). Thus, let the finite Fourier-Stieltjes

transform of the sample function N(t) be

t
H ()= (nt )'1/2 Io e't¥ aN(y) (3. 4)
t 0
0 =0
-1/2, B no
= (mtg) { = cos(t,w) +i = sin(t,w)} (3. 5)
31 J =] J
. "‘o’-llz{'\o‘“’ +iB, W), (3.6)

and the periodogram

Xt (W)= (w to)-lu-{Af (w) + BtZ

0 0 0

(w)}.
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We will refer again to the distribution theor; of It (w) later.
Bl 0
Noting, however, that for wto = p2w, It (w) is approxirn 2tely
.0
exponentially distribnted with mean A w, and that for an* two such

frequencies the correlation between the periodogram points is ~1/(l+n),

we can see that the spectral test for independence (Section 2) can be
applied here to test for a Poisson pracess.

The main drawback here is that while the spectrum of intervals
is limited to approximately n/2 periodogram points, the count spectrum
is not limited in such a way. Since there are roughly n/2 degrees of

freedom available, it is 2 problem as to which n/2 points of the

periodogram with frequency of the form wt_= 2rvp to use, Using more

0
would invalidate, for example, use of standard distribution theory of
Kolmogorov=Smirnov statistics to test the cumulated periodogram.
This is a point that needs considerably more work. Tbe tests
are still useful in an informal way, particuarly since the shape of the
spectrum can suggest physical reasons for departures from a Poisso..
process. In neurophysiology (Perkel et al, 1967), the tendency has
been to use the estimated intensity function (Cox and Lewis, 1966, p.121)
rather than the spectrum of counts to assess departures from the Poisson
hypothesis. Thie is because many of the neurophysiological processes
causing departures are more simply expressed in time than in frequency. .

However, the distribution theory for the estimated intensity function is

difficult. Cox (1965) has discussed the distribution theory for the Poisson

case,




35

4. STATISTICAL ANALYSIS
OF NON-RENEWAL POINT PROCESSES

We consider Lere several non-renewal point processes which are
of great practical importance. For the most part, however, the struc-
ture is too complicated to write down a likelihood function so that

estimation and testing is ad hoc. Examples of such analyses are cited.

4.1 Cluster point processes

Cluster point processes (branching point processes) are
important because they arise naturally in practice and have in-
teresting mathematical properties (Lewis, 1969; Vere-Joner,

Briefly, a main process (usually a Poisson process) g nerates
at each point a sequence of subsidiary events. In Vere-Jones (1970) the
main processes are initial earthquake shocks, the subsidiary or cluster
events are aftershocks. The processes of subsidiary evens are inde-
pendent and can, in general, be arbitrary point processes which
terminate with probability one after a finite number of events occur.

Two important special cases arise:

a) The subsidiary events are generated cumulatively as a finite

renewal case. This is known as the Bartlett-Lewis process.




b) The subsidiary events are generated additively, each one of the

random number of events being independently displaced from its (main)
generating event. The resultant subsidiary process is generally non-

stationary and the complete process is called a Neyman-Scott cluster

process.

Computer failure patterns generated by this type of mechanism
have been analyzed by Lewis (1964), and earthquakes by Vere-Jones (1970),
Vere-Jones and Davies (1966), and Shlien and Toks8z (1970). A fairly good
ad hoc analysis can be given for the Bartlett-Lewis process since the
marginal distribution of intervals is known (Lewis, 1964), as well as the
spectrum of counts and in some cases the spectrum of intervals (Gilles
and Lewis, 1967). The Neyman-Scott process does nct yield a simple
expression for the interval distribution and it is not yet known if the
coefficient of variation of the intervals is greater than one, as it s
for the Bartlett-Lewis process.

These cluster processes are overdispersed relative to a Poisson
process and the variance time curve has an asymptotic form which is
independent of the fine structure of the subsidiary processes. This is
a help in analyzing the data; basically for large time periods the counts
of events N(t) behave as though the subsidiary events were concentrated

at the main, generating event, i.e., like a bulk Poisson process.

3
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Despite these points, the nituation with regard to cluster processes
is unsatisfactory; questions such as the discrimination of Bartlett-Lewis
and Neyman-Scott processes arise in practice and are not solved (see '
the discul_sion in Vere-Jones (197 0)).

When the cluster process has clusters with only one event, the pro-
cess is equivalent to an infinite server queue. For Poisson main events
(p%ra.meter \) the process of subsidiary events is, in equilibrium, a
Poisson process and the delay distribution cannot be determined.

An important special case occurs when the main process is regu-
lar and each event is independently delayed. Appointment processes are
very often of this type and the determination of the delay distribution from
observation of the subsidiary events (arrivals) has breen considered in
detail by Govier and Lewis (1967) for several delay distributions. Since
the variance-time curve has a finite limit, they have called these pro-

|
cesses with controlled variability.

4.2 Superposed processes

Statistical analysis of processes which arz superpositions of
point processes is important, particularly in neurophysiological contexts,
and usually hinges on questions of estimating the number of contributing

processes or, when this is known, identifying the structure of the com-

I
\

1}

ponent processes.




These are difficult questions whose solution has not progressed
much beyond the basic work of Cox and Smith reported in Cox and Lewis
(1966, Chapter 8). Without specific assumptions; i.e., that the com-
ponent processes are renewal processes with, say, gamma distributed
intervals, very little can be done to estimate the number of processes.
The problem of Walloe et al (1969) is of th\ia kind, the nature of the
input processes and the neural meckanism being well known, the main
question being how many inputs impinged on the neuron.

Identifying the component processes is again, difficult, without
specific assumptions. Work such as that of Ross (1970) on identifying
the interval distribution in a known number k of superposed processes
is rather technical; note that the variance time curve and spectra of
counts are additive; e.g., the spectrum of counts of the superposed
process is k times the spectrum of the individual processes. Thus,since
the spectrum of counts of a renewal process is simply related to the Laplace

transform of the probability density of the intervals, f;(l),

i*(lw) f*(-iw)
X X

1
gx(u) =(pr {1+ l-f:(iu) * l-f;(-iu)}

(4.1)

where 1 is the mean of x, the spectrum of the superposed proceass
;+(u) = kg+(u) and it is natural, and probably efficient. to use the

estimated spectrum or the estimated covariance density to estimate

fx(x). Convergenc: follows from results of Brillinger (1972).

e n T i e bt s o
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Nonhomogeneous supeipositions also occur (Blumenthal, Green-
wood, and Herbach (1971)), but as in the homogeneous case, when the
number of contributing processes is large, the resultant process over
realistic periods of observation is almost indistinguishable from a

(homogeneous or nonhomogeneous) Poisson process.

4.3 Doubly stochastic point processes

Let A(t) be a real valued, nondecreasing stochastic process.

A doubly stochastic point process is a generalization of the nonhomo-
geneous Poisson process in which the integrated intensity function is
replaced by At). Thus, given a realization of A(t), the point prccess
is a nonhomogeneous Poisson process. Generally At) is differentiable
and X\ (t) = A'(t) might be a stationary stochastic process, a determin-
istic trend or a combination of both. The pro.ess was introduced by
Cox (1955); see Bartlett (1966, p. 325), Cox and Lewis (1966, p.179),
and Grandell (1970) for details. Gaver (1963) considered the case where
A (t) changea level at random times and called the procese a random
hazard process.

The doubly stochastic mechanism in a point process is very
realistic and probably quite common. Thus computer failure processes
depend to some extent on temperature, humidity, etc. Unfortunately,
analytic properties of the process when X (t) has a stochastic element

are very difficult to derive; see Lawrance (1972). If X (t) is a stationary
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stochastic process with mean \, variance OX and autocorrelation

function

o) -1
plr)y =1/2n [ plr) e “TdF(w), (4. 2)
where F(w) in the integrated spectrum and f(w) =F'w) when it exists,
then several useful results can be obtained (Cox and Lewis, 1966,
4 p-179-183). In particular, the covariance density y+(t) of the doubly

stochastic Poisson process is

v, = o) p(t), (4.3

and the spectrum of counts

K
b
v

g, (w) = Moo+ 2f(w). (4. 4)

Also, in general, the index of dispersion is

o) =14+ 2 ‘¢f

o
[ p(u) du, (4. 5)
0
so that the process is overdispersed relative to the Poisson proceas.
There has been a great deal of interest in the doubly stochastic

Poisson process in physics, optics, and engineering, and some work




on the estimation problems.

Ly

a) In physics photr~ emission is a well understood physical process,

TR

and it is known that the process modulating the Poisson emission is, for
instance, an Ornstein-Uhlenbeck process. The parameters of this

r process are physical parameters which it is of interest to estimate,

Candicn

¢ and attempts have been made (e, g., Pusey, 1971, Jakeman, Pyke and

Swain, 1971, and Koppel, 1971) to do this via the spectrum and the

i e den Be g
-

“ i relationship (4. 4). Again, lascr light is deliberately focused on a physical

system and the resultant intensity fluctuations in the scattered light re-

flects rates of molecular motions and interactions in the system,

In most cases the number of photon counts in these experiments

is very large and it is convenient, and very often necessary to cumulate

counts. There are problemns of determining the best sampling interval,

a problem which is often made simpler by detailed knowledge of the

modulating process.

Perhaps because of the large amount of data involved and the

fact that the \ (t) process is fairly well understood, physicists rarely

bother about details such as the efficiency or optimality of estimation

Moreover, the spectral estimation is very often automated

procedures.

and done digitally.




b) In engineering, two areas are involved. One is biomedical
engineering in which for example, radioactive substances are injected
into the blood stream and the counts of the radioactive emission are used
to estimate a decay function which is related to a physical process of
interest (Snyder, 1971).

A second area is optics, where modulated light is used to trans-
mit information (Reiffen and Scherman, 1963; Bar-David, 1969; Karp
and Clark, 1970; Clark and Hoversten, 1970), Here \(t) is very often
a signal changing levels, a possible problem being the discrimination
of several \ i(t)'s from photon counts of the noise. Very often a
stattonary ''noise'' element is also present; see Bédard (1966) for the
physical considerations.

In all of this engineering literature, there is much concern
with optimality, in some sense, and procedures are based on likelihood
ratios, Bayesian posterior statistice and maximum likelihood detectors.
It is a difficult literature to penetrate and my overall impression is that
there are many hidden assumptions involved, one being that samples
are large, the other a normality assumption which may be quite incorrect,
Moreover, most explicit results are for very simple situations such as
mixed Poisson processes of one type or another, or rates (Reiffen and Sherman,
1963; Snyder, 1972) changing at known times, The latter problem is very simple
and straightforward, especially when compared to the case of unknown change

points which gives a true doubly stochastic Poisson process and an
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inference problem similar to the difficult change point problem.

c) Grandell (1971, 1972) has considered inference in doubly stochastic
| processes from the viewjoint of mathematical statistics, his motivation

apparently being primarily problems in actuarial work. His approach is

quite different from that in the engineering literature, cited above, and
f he has considered, for example, optimum estimates of E{\(t)} based

on linear combinations f the data. The problems are related to the

general problem of curve estimation from random data and, while

Grandell (1972) gives specific examples, much remains to be done.
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S5. TREND ANALYSIS
IN NON-HOMOGENEOUS POISSON PROCESSES

We discuss now the analysis of trends in non-homogeneous Pcizsun
processes, extending the results of Cox and Lewis (1966, Ch. 3). Initially:
we discuss results based on specific parametric models for the rate function
A(t) of the non-homogeneous Poisson process. These results are based on
the fact that the likelihood function for n observations in the fixed period

YL ¢
(O,tO] st times t <t,< t 1s

n to
0 Mt; 8) exp {- [y Muig) du}, (5.1)

L(t ot on;g)’:

1’"""*'n i
where § denotes the vector of parameters in the model. Moreover, given
that n events occur in (O,to], the times to events t, are the order statis-

i

tics from a random sample from the probability density function

A (t;9Q) - A8 o<y (5.2)
[y Ox (ugdu  At;iQ)

f(t;0) =

and the conditional likelihood is

L(tl’ A ,tn;n;_g) =n! 1;1:1 Mti;g)/ {A(to;g)}n. (5. 3)

Later in the section we discuss procedures for examining the adequacy

of the model for \t) and adequacy of the non-homogeneous Polsson process

mode. itself.
5.1 Monotone and e volutionary trends

The estimate of A(t) when there is no trend present {.e. \(t) =\, {s

n/to.
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In Cox and Lewis (1966 . Chapter 3 the exponential linear trend

A(t) = exp {a+gt} = \exp (Bt} (5. 4)
was discussed and it was shown, using (5.1), that (n,Eti) were 8 set of |
sufficient statistics for (a,8). A test for =0 against f§ #0, where a is
a nuisance parameter, {s based on the distribution of mi/n, given n. This
is an optimum (conditional) test. The maximum likelthood estimate of 8
was also given implicitly, but no small sample properties of the estimate
are known.

The test for =0 was applied in Section 1 to analyze a sequence of ar-
rivals at an intensive care unit (Table 1) and a sectioned analysis indicated
that the trend was not monotone, although same overall increase in the rate
was present.

An exponential quadratic trend uses the model

A(t) =exp {a+pt + Ytz}x \exp{B t+ Ytz}, (5.5)

for which we get

InL{(a,8,Y)=nln X\ +p2ti+y2tz

4 (5. 6)

% 2
-Xfo exp (Bu+vyu)du.

The maximum likelihood estimates of \,a,8 are given as the solution of the

equations
A tO a2
A\ =n/ {fo exp 6u+yu )du}, (5.7)
*o A a2
Zti fo u exp(Bfu +Yu )du
- -0, (5. 8)

A ~
" foooxpafu +Yu2)du
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2 - -
lEt, foouzoxpO\H yuz)du

— - : = 0, (5.9)

foooxp Bu+$ uz)du

and it i{s clear that (-, Z?ti, St‘z) are a set of sufficient statistics for
(«, B, V).
There are several interesting open questions here.
What are the small sample properties of the estimators and what are
their large sample properties? Note that the usual theory for maximum
likelihood estimates is not directly applicable because of the random sample
size.
. ~ What effect doss tha quadratic term (i.e. Y#0) have on the estimates
of B in the model (5.4)?
For the arrival data the following estimates were obtained.

Linear modek

0.634%  f=0,00014275 _
Quadratic model:

X =
A = 0,4792; g = 0.0009788: y=-0. 44811-10-6

Note the large difference in 5 in the two cases.
Another problem of interest is to test for the quadratic term in the
trend. It is clear from Table | that either a quadratic team or a long cycle
is necessary to adequately model the annual data from Section 1.
A formal test can be based on the idea that, for any given Yy, n and 23ti
are a set of sufficient statistics for a,8. Therefore a test for Y {s based
on the statistic Ztlz and its conditional distribution, given n and Zt‘.

distribution is difficult to obtain analytically, 2tf being the square of the

distance to the sample point, which is constrainad to lie in the (n=-l)-dimen-

This

sional hyperplane defined by thl a C.
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For large samples this distribution can be obtained from the fact

that Zti/n and Z‘.tlz/n, conditioned on n, are jointly normally distri.uted

§
for large n, and the following exact moment results: :
1
A

2 2 -1
My = E{ Et‘/n} = to/Z; o, = var { Eti/n} = to(IZn) ;
.2 2 2 2 4 -l
By = E{Zti/n} = t0/3; gt var { '.'.‘.ti /n} = 4t0(45n)
} (B th} IS 0 oeg
p-corr-—-‘n.—’n = = =0 S

Thus, using normal theory results we test with Etlzln having a normal

distribution with mean and deviation

o, Tt
- l( { - )
B=p,tpp (— ®
p..t. 2 B i
2ha+t (Z4 - %0, (5.10)
0 o —— ——
n 2
¢ e (1-p2F. (5.11)

For the complete set of arrival data T..ti/n = 954, 25, giving u=1,187,783,
and o= 6, 530, z:tf/n = 1,161,565, giving ( ztiz/n-li)/o' = =4.0l5 and this
is clearly a highly significant rejection of the hypothesis that Yy =0.
Boswell (1966) and Boswell and Brunk (1969) have considered tests
of the hypoth;lil that A\(t) is not constant but is non-decreasing. Using a

likelihood ratio criterion, conditional on the fixed value of N(to)zn, he

found the test statistic

n - =1 1
(307 .12




;1= LT éx&n (k-j+l)/(tk+l-tj), (3.13)
the null hypothesis being rejected for large values of the statistic.

The statistic (5.12) 1s not simple to compute, but Boswell gave an '
{terative procedure for the computation, and same results on the limiting
distribution of the statistic.

It would be of interest to compare the power of this test against the
power of the test based on Eti /n for the exponential linear trend. Some

results have been obtained by Mr. Ian White of the University of Edin-

burgh.

5.2 Cyclic trends of fixed frequency
Cyclic time trends (as opposed to cycles on serial number) occur
i;equontly in point processes but were treated only as an exercise in Cox &
Lewis (1966). An example of such a series is given in Forrest (1950), who
was investigating thunderstorm severity in Great Britain and its effect on
power lines. He found a tendency for thunderstorms to occur in the morning
(time of day effect) and of course a very strong time of year (seasonal)effect.
The arrival data discussed in Section 1 might be expected to have
such effects, although a time of day effect is by no means evident since there
is only about one arrival every day and a half, In Figure 6 we show a
collapsed plot of the numbers of arrivals in the successive hourly periods
of all days of obssrvation. The plot should be compared to Figure 1. 8a in

Ccx & Lewis (19.66) for the arrivals from 4 February 1963 to 18 March 1963,

o e i i b Yt
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Figure 6, Arrival of patients at an intensive care unit,

Collapsed hourly plot of number of arrivals to investigate ''time-of-day'' effect,
Second period of observation: 19 March 1964 to 8 February 1968, Total number
of arrivals (including ties): 1216, Observation time t_= 1420 days; m = 0, 856,
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Figure 7, Arrival of patients at an intensive care unit,
Collapsed daily plot or arrivals, All arrivals including ties, Solid line
is 2nd period, 19 March 1964 to 8 February 1968 (1216 arrivals in 1420
days), Dashed line :s complgte recordz 4 February 1963 to 8 February
1968 (1467 in 1829 days). %, (n, - 7)
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~12,6.
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The plot for the complete period (4 February 1963~ 6 February 1968) in

Figure 6 is similar in shape to the plot for the earlier period and no formal

statistical test is needed to conclude that there is a real time=-of-day effect.
As a model for the rate \(t) in a non-homogeneous Poisson process

with fixed frequency w_ =2w /T0 we take

0
A(t) = exp {a+ks sin Wit + k_ cos uot} (5.14)
= \ exp {k sin (uot+6)} . (5.15)

Io(k)

2 24 w1 B ‘
where k ={k.+kc} , 0 =tan (‘-(- )5 A= exp(a,xlo(k),
s

and Io(k) {s a modified Bessel function of the first kind of zero order. This

reparameterization is used because

T
0
[y exp {klin(%t+9)}dt= 1,(k), (5.16)

so that if tO’ the total period of observation {s a multiple p of TO (here one
day), we have

t

Alty)= foo Muldu =\t  =ApT, (5.17)

0
In effect we have separated out multiplicatively a linear growth from a
cyclic effect which takes place only within periods of length To.

The reason for using the form 5. 14 rather than, say,

A(t) = a + k sin (uot +8) (5.18)

{s that \(t) must be positive, and to achieve this with (5.18) requires k<a.

e
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For k<< a the two models are essentially the same. In

addition, the rate (5.14) gives simple results based on sufficient

statistics, this being closely connected with the fact that the density

(5.2) belongs to the exponential family of density functions.

An additional reason for using (5. 14) is that such nonsymmetrical

cycles are probably more natural with series of events, possibly because

of the positivity of the rate function, Professor J, W, Tukey has suggested

a 'model which is (5, 18) squared; this could be useful with data in which there

are a large number of arrivals in each period, so that regression techniques

using the square root of the numbers of arrivals in fixed intervals can be

used (Cox and Lewis, 1966, Chapt., 3). This model has also been used by

\ Fisher (1953),

In Lewis (1970) the following results were given for the non-homo-

geneous Poisson process with the rate )\ (t) given in (5. 14).

Using (5. 3) we find that the observations enter into the likelihood

tunction only through

n n
= ¥ sinwct, (5.19
n, Ato(wo) i'z/:‘l cos woti, Bto(wo) = Z sin wots ( )

?‘ and these are a set of sufficient statistics for the parameters a, k:;
¥

' and kc in (5.14). Note that At (wo) and Bt (wo) are the components
0 0

of the periodogram (3.6).

Maximum likelihood estimates of X\, 8, k are

LT PRI PR O
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) , Ato(wo)
8 = tan ( m ) (5. 20)
t. 0
0
= n/tg, (5. 21)
and k is the solution of the equation
2 2 k) o
(lln){At (wg) + B, (wo)} ¥ —=— x (k), (5.22)
0 0 I (k)

where Il(k) is the derivative of Io(k) and y(k) increases monotonically

from 0 to 1 as k goes from 0 to co. This later fact allows one to

use the Neyman-Pearson lemma to show that, conditional onthe observed

value n of N(to), the most powerful test of k = 0 against k¢ 0 is

based on the statistic

AZ (w.) B2 (w.)

tO 0 tO 0 }
t /n) { + x (mt /n) I ). (5. 23)
0 ty t 0 ty O

Since, or k=0, ZIt (wo) has asymptotically (Cox and Lewis,
0

1966, Chaptrr 5) an exponential distribution, the test for k= 0 reduces

to accepting the hypothesis at, say, a 5% level if

2l (w )= 6/mX(t /n)= 6/n)X m . (5.24)
to 0 0

2 2
The factor 6 arises because prob {x‘z' z 6} =.95 where )(Z is a
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random variable with a chi-square distribution of two degrees of freedom.
This test applied in Lewis (1970) to the first section of the arrival
data gave a strong indication of the presence of the cycle at a period of
one day.
For the complete record of arrivals at an intensive care unit dis~

cussed in Section l we get for the periodogram at p = 1829 or w, = 2w,

0

which is the day frequency, since t_ = 1829 and w, = Z'rrp/to.

0 0

21 (w.) = 27.094 and 6m/m = L. 52.
ty O

This is, not surprisingly, highly significant. For the first 409

arrivals the results are (Lewis, 1970)

21 (wg) = 5.0 and 6m/m = 1.10.
0

Thus the periodogram component is increasing roughly in proportion to
n, as it should for a true cyclic component.

When Lewis (1970) was written, the connection of this model for
a cycle of fixed frequency with tests for directionality on the circle was
not realized. In fact, the conditional test (5.24) is equivalent to testing
that n observations on a circle (here a 24-hour clock) have the von Mises

or circular normal distribution (Gumbel, Greenwood and Durand, 1953)
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exp {k sin(f + 8)}

f(1) = Zv 1,0 (0=1=2n). (5. 25)

For k=0, this is a uniform distribution; otherwise, it has a mode at
8, the vector in the direction 6 being called the modal vector. Green-

wood and Durand (1955) obtained the distribution of the square of the

resultant

R2 = ( ;’1‘.. cos l.)z + | g sin l.)z (5. 26)
i= 1 i=1 2

of n such vectors when k= 0, generalizing earlier work of Pearson
on the problem of random walks on the circle. The formal analogy of
(5.26) with the periodogram (3.5) should be clear. Watson and
Williams (1956) generalized these distributional results, using results
for sufficient statistics, and found the conditional p. d.f. of the quantity
on the left of equation (5.22), which we denote by r, as

f(nI/Z

e n
r)=rl(kr) [ (T ()} T (rudu/fI_(K)}, (5. 27)
0 0 0 0 0
where JO( -) is the ordinary Bessel function of zero order.
It is not all apparent that (5.27) is more useful for computation
than the generating function, which is given, for example, for k=0

in Cox and Lewie (1966, Chapter 5) in the discussion of the distribution

of the periodogram at one point wor where w5 is of the form
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= 2wp, fcr p integer. However, Stephens (1969a, 1969b) has

to%o

used (5.27) to tabulate, among other things, the power of the test that

k =0 against alternatives k >0. The most complete discussion of these tests
for the von-Mises distribution {s given in Watson and Willilams (1956). The
function (k) is tabulated by Gumbel, Greenwood, and Durand (1953). Stephens

(1969b) has also discussed tests for 8 = 8 and joint tests for k and 0.

Ol
It is clear that problems involving cycles at two or three fixed

frequences, e.g., Wy © will arise in analyzing series of eventas,

O
For example, in the proolem of analyzing the arrivals at an intensive
care unit, a time of week effect and a time of year effect are distinct
pcseibilities. Surprisingly enough, there does not seem to be 4 strong
time of week effect in the data, but there {s not space here to go into
this.

Formal tests for more than one cycle follow from results in

Cox and Lewis (1966, Chapter 5) to the effect that at two different

and w, both of which 'vuen multiplied by t are 4w

frequencies w ) 0

0
times an integer, the correlation between the periodogram values 3
It (uo) and It (w,) 1s approximately (1 + n)-l. Thus, a test for a

0 0 !
time of week effect (wl), based on the conditional distribution of I(ul),

giventhe values of r\'(to) = n and It (wo), reduces in effect to an inde- }
0

pendent test at © based on (5.23). ]1

For the arrival data, considered over a period of 1456 dayey, |

we get for p = 208 (wp = 2w /7), or a period of one week, the value

T b i oy ST . -




————

2
zlt (W)= = ( 2 + :’ } = 0.467.
o P 0 0

Thus there is no formal indication of a time-of-week effect.

5.3 The spectrum of counte and cyclea of unknown (requency ]

In the previcus subsection, we showed the connection between
tests for a cyclic component at a known frequency 1n a nonhomogeneous
Poisson process and the periodogram, the periodogram being the basis
for estimation of the (second order) spectrum of counts g‘(u).
Clearly, one might want to look for cycles at unknown frequency and
this will, intuitively, be based on the spectrum of counts. More pre-

cisely, it will be based on the periodogram

1 (@)= (1wt ) (AL (@ + B (). (5. 28)
0 0 0

The analogous problem in ordinary time-series analysis is the
classical problem of hidden periodicities, discussed at length by Hanman
(1970, p. 463). This problem has not been tackled in point proceases,
and is more difficult for two reasons. First, the periodogram points
are not quite uncorrelated, as we saw in the previous section, and aleo
the spectrum is, in theory, not limited in the frequency domain. (There
will always be some band limiting due to jitter; see Lewis, 1970,)
Thus, itis a problem how to use the distribution theory for the spectrum

given in Bartlett (1963) and Cox and Lewis (1966, Chapter 5) and how to
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pick relevant partes of the spectrum from which to estimate the unknown

frequency.

As an example, we give in Figure 8 the spectrum of the arrival
data of Section 1. The peak for the day effect at p = 1829 (up =2n) is
evident, but it would be difficult to read into this spectrum anything but
a conclusion that {t is a nonhomogeneous Poisson process with a single
fixed cycle (day-effect). There {s poasibly a harmonic at p = 3658
and some inhibition at low frequencies, but all the pointas (except for
p » 1829) are within 1 percent confidence bands for individual values,
and would be within bands for the maximum of the periodogram values
(Bartlett, 1963).

The spectrum of counts is generally a useful tool, and even more
particularly #o for non-Polssonprocesses, buthas found very limited
acceptance amongst applied workers. This is partly due to confusion
with the spectrum of intervals, with which neurophysiologista for example,
are much more familiar,

Lewis (1970) has given a heuristic justification for the spectrum
of counts and discussed computation and smoothing. Bartlett (1967) has
discuseed finer points in this type of analysis.

Finally, Brillinger (1972) has given a general theory for spectral

analysis of point processes, and has defined higher order spectra

(cumulant spectra of order k} for point processes, These are gener-

alizations of the cumulant spectra of order k of continuous time series.
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Figure 8. Arrival of patients al an inteneive care unit,

Spectrum of counts for the complete record: 4 February 19¢) to 8 Febraury 1968,
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Brillinger's work is based on a general spectral representation for N(t),
the counting process Of the point process, and provides an asymptotic
theory for the spectral estimates of order 2 (periodogram) considered
in this paper. Brillinger's paper is far too extensive to do justice to
here. The problem of whether cumulant spectra of order higher than 2
will be useful in practice remains open and should be explored.
Brillinger'e spectral decomposition may provide an answer to whether
spectral analysin can be useful as a representation in real systems; l.e.,

neurons.

5.4 Mixed models

The arrival data considered in Section 1 has been shown to have
a long term trend which can be represented by the exponential quadratic
function (5.5) and a strong day cycle. A combined model for this data

could be a nonhomogeneous Poisson process with rate A (t) of the form

2
A (t) = expfa + Pt + yt + k sin{w b+ 8) ). (5. 29)
t
This is difficult to handle because MY = f X (u)du is not tract-
0
able. However, in the context of the arrival data the evolutionary trend
changeas little within a cycle and an approximation in which the linear

and quadratic terms are assumed constant over the period of each cycle
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A
i
4

yields a tractable model, The estimates of k and 6 arc then simply (5, 20)

and (5.22), y and P are estimated from (5.8) and (5.9) and \ is

AT

given by (5.7) with TO(k) multiplying the term in the denominator,

el

For the arrival data, we obtain the following values:

]
1

>

= 0.4792;

0. 654;

= !
L}

3.519;

o !
"

0. 0009788,

>
]

’

-0. 4481 X 10'6.

<
"

Clearly, mixed models such as (5 .29) will be needed in many

cases for the analysis of real data.

5.5 Residual analysis of point processes

Many observed point processes have rate functions which are
clearly not easily representable by simple, tractable models such as
those discussed in the previous section. For example, it is cormmon
in observing arrivals of jobs in a computing center to find (roughly)
the rate increasing sharply throughout the morning, dipping around
lunch time, picking up slightly in the afternoon, and then dipping off

sharply at night. The situation is fairly simple in this example, since
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many days observations are available, showing similar variations,

and careful pooling gives a smoothed tabulated estimate of the rate.

This rate is needed to model scheduling algorithms for the computer.

In general, the problem of smoothing the point process to obtain
an estimate of \(t) is, in my opiniun, open, despite the work on doubly
stochastic Poisson processes cited in Section 4, which chould be applic-
able. It is generally connected with the statistical problem of curve
smoothing, and will not be considered further.

Both in the case where \(t) is obtained by smoothing or from a
specific model, say exp {a + pt}, it will often be necessary to test the
adequacy of both the trend model and/or the assumption of an underlying
nonhomogeneous Poisson process.

For example, an intensive care unit is a service facility, and to
provide adequate service, one must know something about the arrival
process; it might be very regular if all arrivals are from surgical
operations, or exhib.t clustering if all arrivals are from the emergency
room. The form of the underlying process will also affect the test for
cyclic trend given in (5.23), the attempt to estimate the spectrum and
filter out the spike usually being a selfdefeating process (Bartlett, 1967;
Lewis, 1970).

Both formal and informal methods, usually graphical, are re-

quired for this question, analagous to the similar problem in regression

analysis which is usually appi ~nached by examining the residuals a‘ter
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estimating parameters for the mean value in the model.

While keeping in mind that there are many ways to approach
this in different situations, the following proposal seenis to offer a
systematic approach to examining such questions (Lewis, 1970). It is
weli known that on the transformed time scale

t
= [ \(udy, (5.30)
0

a nonhomogeneous Poisson process with rate function \ (t) becomes a
homogeneous Poisson process of rate 1. Thus, we proposed to examine

the residual process {Ti} where

b s
T = foik(u)du, ' (5. 31)

and )\ (t) is some estimate of \ (t).

There are a number of ways of looking at this transform.

1) If A (t) is very smooth over periods compared to the mean time

between intervals, we can write

X,=7, =7

(T T CTig v M x. (5. 32)

Then a logarithmic transformation reduces this to standard regression
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models, and the exponential trend functions discussed above are appealing
since we have (approximately) standard linear regression methods.
These are considered in Cox and Lewis (1966, Chapter 3).

Of course, in data such as the arrival data of Section 1, this
approximation is not possible, and the integral transformation must
be performed, perhaps numerically.

The real problem comes, of course, when \ (t) cannot be
assumed to be smooth over suitably short intervals and no simple

parametric form for \(t) is available.

2) If the analysis is based on the conditional distribution of the
ti's, given N(to) = n, then the transformation (5.31) is seen from (5, 2)
to be just proportional to the probability integral transform for the density

N (t)/ Alt) with estimated parameters.

3) There is also a possibility of looking at (5.31) as a filter in

the spectral domain.

Formal methods for analyzing the T, are difficult and will be
dAiscussed elsewhere. This is simplest for X(t;g) when sufficient
statistics for @ are available. The probability structure of the TS
process, given the sufficient statistics, is independent of 8. Of

course, in the simplest case of A(t) =\, with \ = n/to, itis well




known that the xi's are the gap statistics for independent uniform
random variables and are asymptotically exponentially distributed
and independent (Pyke, 1972). For small samples, they will gener-
ally be correlated random variables.

Informal, graphical methods are useful and are discussed in
the context of the arrival data given in Section 1. The first section
of this data was transformed, using (5. 31) and an exponential linear
trend, and discussed in Lewis (1970). No test for Poisson processes

performed in the SASE IV program gave significant indication of

h departure. The spectrum of the transformed data is shown in Lewis

(1970).

Clearly the (exponential) linear trend plus day cycle is not adequate
for the complete set of data, as we saw in Section 1. We examine its adequacy
further here. Figure 9 shows a plot of tne average nf successive groups of
20 Xi's after detrending with the (exponential) linear trend plus day cycle. The
model for A(t) is clearly {nadequate. Figure 10 shows the spectrum of
counts after the linear transformation. There is no spike corresponding
to the one day period and no indication of departure from a Poisson process.
Similarly, the tests discussed in Section 3 for Poisson processes do not give
any great indication of departures. However, the estimated asymptotic slope
of the variance-time curve is approximately 8, and since this quantity is re-
lated to the rate of change of the low frequency end of the spectrum, there is

again tn indication of inadequacy of the form of A(t) or the  ypothesis of a

nonhomogeneous Poisson process.
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A quadratic term was added to the rate \{t), giving the trans-

formation

L,

A A
) Y exp {& + pu + cuz + k sin(27wu + 3)}du, (5.33)
0

l i
where the 1 lues of the estimated parameters are given in Section 5. 4.

The lplot ~orresponding to Figure 9 is shoyvn for the (exponential)
quadratic detrending in Figure 1ll. This and other results give a much
clearer picture of a possible cycle or quasi-cycle in the data with period
of about a year and a hg.lf. Tile exampl\b is discussed in more detail in

Lewis (1971), where local smoothing is used to estimate X\ (t) for this

quasi-cycle and test thf nonhomogeneous Poisson hypothesis.
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Figure 10, Arrivhl of patients at an intensive care unit,
I .
Spect{um of counts for complete record after detrending with
A A

A A "
T =\ exp {a+ 3u+ k 8in (2ru+ 0) }du, where a, g, k, 0 are maximum
likelihood estimates, n = 1458 arrivals in 18729 days from 4 February 1963 to
8 February 1968, Bands are approximately 0,95 and 0, 99 confidence regions
for .ndividual values,
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Figure 11, Arrival of patients at an intensive care unit,
Averages of successive groups of 20 inter-arrival times after detrending with
f aAA A2 A A A A A A A
T =) exp {a+ fu+ yu+ ksin(2ru+ 8) } du, where a, B, v, k, 8 are maxi-
mumqikelihood estimates, n = 1458 arrivals in t_ = 1829 days from 4 February
1963 to 8 February 1968, Ov erall average after detrending:
Homogeneity of variance statistic; ( x%“: mean !ll, oc=11,92),
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6. CONCLUSIONS

}
3

Much further work is needed in the statistical analysis of series
of events. Particular areas that come to mind are the analogues of

the procedure= in Section 5 for modulated renewal processes. Likeli-

SRR R rl a5 w5

hood functions can be written down, but results are fairly difficult to
obtain from the expressions (see Cox (1972) for details), Both for these
processes and the nonhomogeneous Poisson process there is a great

deal of work to be done to justified estimation and testing procedures based
on random sample sizes, Some of these justifications have been given by

. Brown (1972),

Finally, it is hoped that new methods will be developed which will

allow some of the nonrenewal point processes to be analyzed in a more

systematic way,
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