
1     Il"' ———,  n 

NPS55LU7112U M 

00 

o 
cc 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

D n r* 

w 
üi 

RECENT RESULTS  IN THE STATISTICAL ANALYSIS 

OF UNIVARIATE POINT PROCESSES 

by 

P. A. W. Lewis 

Deceanber 1971 

Approved for public release; distribution unlimited. 

To appear in "Stochastic Point Processes:  Statistical Analysis, Theory 
and Applications," P. A. W. Lewis, ed. John Wiley and Sons, New York 

V.!"'^/« Rnptoducod  by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

SprmgOold, Va      22151 

^ 

\ ^ 

mmiumJimMmmmtvitimmmm^iitm*«^ ■Mmm,mli,^-iiulM-m- "'■^'•^'•'■•'■'-•■■"^'"•~ JJ"-^'-- —■■ ' '■--— 



H') 

UNCLASSIFIKU 

OOCUMIMT COMTIOL DATA I & 0 
(t—^itf tt—tilHtttm »4 <»)*•   »»<» »« —»»«»  ' —< ■«^»...f mmttgmm ■—' »» ii_: 

NMVAI  Postgradual«  School 
Monterey.  California      9)940 

Urn 1 «o» 1 f 1 r '. 

M    •••v* 

i nun ••Tki 

Recent   Results   In   the  Statistical   Analysis  of   Unlvarlate  Point   Processes 

OKcai'Ti«! MS Tit (Trpm »I m^mi »<!«. <-•(.. —im 

Technical Report, Deceaber 1971 
fl   ii>1*U,iUIUl mm». mUM, U.UI U; m^Zr,  

Peter A.   W.   Lewis 

T U>UV o.rl  

December 1971 
B nBfvxmwTRNfMr 

».   »HOJICT NO 

)•.   TOTAL  NO    Or »••■■ 

92 84 

«(■i 

MI« Mpw«; 
>!•( C4nr «MM wMifw Ci —r B matl0—4 

10. miTMISUTION tTATBMINT 

Approved for public release; distribution unlimited. 

fwrmr 

11.  ■FONSORINO MILITANV   ACTIVITY 

Results on the statistical analyses of series of events published 
subsequent to the monograph by Cox and Lewis on this subject are surveyed. 
Special emphasis is given to tests for renewal processes, a considerable 
amount being now known about the distributions of some of the test sta- 
tistics involved, and to testing the functional form of a trend in a 
nonhomogeneous Poisson process, as well as the point process model itself. 
A survey of work in special processes such as cluster processes and 
doubly stochastic Poisson processes is also given. 

65/irJ47i  ^ t) 

tm •i«i*te7*«in 
UNCLASSIFIEn 

*-tt«N 

^"   1-AA.L M-a'^lt»'' I ■' tit^^^ttl ^ 
»**^*-**^—-^^   —-■—■ —--^ ^.:-^-. ,.- ....-..„. ..»„.-«.t>„a.,.l-.^.^J..L.^ . . .iitn.ii.miMtiili.r-ii   n-rr r n; Ml<ij 



■* 

• • • . • . 

Si «l 1 at leal .1 ..i ; , n 1.1 

i'ulnt proceaaea 

Renewal proceBses 

Poisson processeB 

Serial correlation 

DD .^..1473 *™ 
S/N  OIOI-IOT-MII 

..- ■^^-...... I  

UNCLASSIFIED 
Security ClaiiUlcatten 

■mnain SSSTE 

»-J140» 

■ii-nriiiiiTgi 



NAVA". POSTCRADUVTE SCHOOL 
Monterey, California 

Rear Admiral A. S. Goodfellow, USN 
Superintendent 

M. U. Clauser 
Provost 

APSTRAC 

Results on the statistical analyses of series of events published 
subsequent to the monograph by Cox and Lewis on this subject are surveyed. 
Special emphasis is given to tests for renewal processes, a considerable 
amount being now known about the distributions of some of the test sta- 
tistics involved, and to testing the functional form of a trend in a 
nonhomogeneous Poisson process, as well as 'e point process model itself. 
A survey of work in special processes such as cluster processes and 
doubly stochastic Poisson processes is also given. 

Prepared by; 

:\.üJ 
P.  A.   V.   Lewis 
Department of Operations Research 

and Administrative Sciences 

Approved by: Released by; 

^L 
J i id Worsting,  Chairman 
Department of Operations Research 

and Administrative Sciences 

d. ? 
C.  E.  Menneken 
Dean of Research Administration 

NPS55LW71121A 

 -   - 
-^-—- ■  



;   I 

1,     INTRODUCTION 

The object of thla paper !■ tu aurvey  rer cnt  result« in the ■tfttlatl- 

cal analysis of univariate point proceasea (eeriea of eventa).     The aurvey 

is personal   reflecting my own present interests,  and is not comprehensive. 

For convenience,  I have taken "recent" tj mean    anything published since 

Cox and Lewis (1966).    I have also mentioned pome topics and results 

whic'i were omittedä for reasons of emphasis or ignorance, from that 

monograp.i.    Finally, I point out areas where further work is required. 

A survey of work in this field is not so difficult as a survey of, 

say, the theory of poini; processes because the advances in the statisti- 

cal analysis of point processes are, by comparison with the theory,  few. 

This may reflect the relative difficulties of these areas,  but that thought 

may be a personal bias. 

Some of the shortcomings of the Cox and Lewis monograph were, 

in hindsight,  the following: 

(i) Not enough consideration of grouped data.     In some cases where 

point events occur,   such as epidemiology,   recording limitations or the 

volume of data force one to work with numbers of events in fixed inter- 

vals whose width may or may not be controllable in advance.    I have 

touched on this problem recently (Lewis,   1970)j    separate «pectral 

L  
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«nalyaea of the tnt«rv«la *nd of the counting procea« (JUrtlrtt,   1963) 

are,   for example,   not potalbie.    One haa to uae a  apectral analyaia of 

the grouped counta   (i. e. ,   number of eventa In a fixed time interval), 

which ia very nonatandard in ita diatributlon theory,  but in which well 

known problema of aliaaing ariae.    Reaulta of Cox (1970) may be uaeful 

here,  and Cox (^SS) has considered some other aspects of the analysis 

of grouped events. 

Interesting examples of this type of problem are found in physics 

and optics.    For example (Helstrom,   1964; Karp and Clark,   1970) 

photon or other particle emissions are known from physical consider» 

atbna to be generated by a doubly stochastic Poisson process and it is 

required to determine parameter values of the driving process from 

counts of the number of photons emitted in successive periods.    Here 

it is prohibitively costly to record exact times of occurrence.    However, 

the recording interval can be determined in advance by the experimenter. 

Problems of grouped Poisson counts (McNeill,  1971) are also common. 

(ii) Very little emphasis was given to sequential methods.    While this 

was to deliberate to save space,  it is also true that most data I have come 

across is presented for analysis in toto.    This may change as better  re- 

cording methods are introduced and,  hopefully,  as statisticians are called 

in before the fact.    There is still a problem in that simple sequential 

-    - ■ 



  

methods are known only for Poisson processes   {homogeneous or non- 

homogeneous)   and also that rather unsmooth inhomogeneities occur in 

practice which make the application of formal sequential methods based 

on very definite assumptions quite hazardous. 

Less formal sequential methods are useful;   in particular,  an 

analysis of the data in successive sections is very useful,  both to cut 

down on computation time in,   say,   spectral analyses   (Lewis,  1970) 

and to examine the time «volution   of the process. 

As an example,   consider a series of arrivals at an intensive 

care unit in a hospital.    This data will be used for illustration through- 

out the paperj it was supplied by Dr.   A.   Barr,  of the Oxford Region- 

al Hospital Board,  England. The first r-ction,   consisting of 

n»251   arrivals in   t    « 409   days   (4 February,   1963 -18 March,  1964), 

was analyzed in Chapter 1 of Cox and Lewis   (196 6).     Later on,  the 

arrivals up to   6 February,   1968   were received.    Three subsequent 

sections of length   t    * 409   days were taken from these later arrivals 

for comparison and their statistics,   as well as those for the total 

record,  are shown in Table 1. 

♦   These times-of-arrival were exceptionally well recorded.    Of the 
1468 arrivals in the   1420-day period from   4 February,   1963    to 
6 February,  1968,    only one time-of-day was not recorded.    Nine tied 
arrivals occurred.    Generally,   recording times »eemed to be at the 
five-minute intervals of the hour,   although other times do occur.     The 
data to   18 March,   1964   is given in Cox and Lewis (1966,   p. 255);   the 
rest in Lewis   (1971). 

MMMIMaMlüllliM^iii  - -- ' • —— 



Table 1.    Arrival« at an Intensive care unit (no ties) 

Period 1 Period 2 Period 3 Period 4 Total 

4 Feb '63-       19 Mar '64-     3 May '65-     16 June '66- 4 Feb 'öS- 
18 Mar '64       2 May '65 15 June '66     29 July '67 6 Feb '68 

n 251 350 
'o 409 409 
IXdays) 218.47 218. 53 
U 1.874 2.222 
m- N/tn 0.614 0. 856 

372 316 1458 
409 409 1829 
183.69 197.20 954.25 
-3.399 -1.099 2. 874 
0.910 0. 773 0.797 

n 
The statistic   U =   S   t./n,    where the   t.   are the times to events and 

i«l i * 

a   the number of events in the period of observation of length   : ,    is the 

centroid of the   t 's   and is used to test   (Cox and Lewis,  1966, p. 47) 

for the trend parameter   ß    in a nonhomogeneous Pols son process with 

rate 

Mt) ■ exp(ff + pt)» X.   exp(ßt). (1.1) 

In testing for   ß ■ 0   against   ß ^ 0,    or   is a nuisance parameter with 

sufficient statistic   n   and the test is based on the distribution of   U, 

given   n.    The normalised statistic   U   in line three of TabU 1     shouxd 

be distributed approximately as a   N(0, 1)   variable.    There was fairly 

strong evidence of a monotone trend at the end of the first observation 

period   ( P* 7 percent level),    but later on in the series,  as in Section 3, 

there is a definite decreasing trend.    However,  the total arrival procest 

gives fairly strong evidence of an increase in   \ (t),    the value   U ■ 2. 874 

SMM^M———^-^M..   i    .. !.        ■■ ...     ■  —r...~. 
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being significant at about a 2 percent level.  For Period 1  and Period L combined, 

U  was found to be 4.492 whicb is significant at a level much smaller than 1 percent. 

An actual sequential test of   ß * 0   against   fW 0   rejects the null hypo- 

thesis at a   1 percent   level after    550   days.    The sectioned analysis of 

four periods suggests a long cycle or quadratic term in the exponential 

trend   (1. 1).    The nonhomogeneity is confirmed very strongly by a dis- 

persion test   (Cox and Lewis,  1966, p. 232)   applied to the numbers of 

events in the four sections.    This has value   26.74;   its distribution is 

that of a chi-square variable with   3   degree! of freedom which has a 

0. 9999   point equal to   21. U. 

A plot of the times-to-events   t.   against serial number   i   is 

given in Figure 1,  and a plot of the average values of successive sets 

of twenty intervals between arrivals is shown in Figure 2.    Again the 

long cycle or quadratic trend is quite evident graphically.    We return 

to this example later in the paper. 

(iii)        Sectioning brings up in some ways the analysis of replicated 

point processes,  which again was not considered in detail by Cox 

and Lewis (1966).    This replication can occur quite commonly in exper- 

imental situations, for instance in neurophysiology where experiments 

can be repeated many times.    Here the signals are trains of very narrow 

spikes of apparently fixed height,   so it is appropriate to analyze the 

times of occurrence of the spikes as a point process.    Observation over 

>*. . 
~- ■   ■    ■ „ ., , ■' '   ii «< 
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200 400 600 800 1000 1200 1400 1600 1800 
TIME TO ARRIVAL IN DAYS 

(EVERY 10) 
Figure 1.    Arrival of patient« at an intensive care unit. 

Complete record,  4 February 1963 to 8 February 1968.    Number of arrivals   (n) 1468   in 
period of   t   ■ 1829 day«.    Arrival number v«.  time to arrival,    m » n/it    « 0. 7972. 
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Figure 2.    Arrival of patients at an intensive care unit. 
Averages of successive groups of 20 inter-arrival times.    Number of arrivals   (n) 1458 
in period of   tn - 1829 days.    Overall average is 1. 264 days.    Homogeneity of variance 
statistics . s 18. 000 (x^: mean 71, <r = 11.92). 
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too long a. period can be deceiving,   becauie of physiological deterioration, 

and replication it sometimei preferable.    Of courie,  care must «till be 

taken that physiological or experimental conditions have not changed. 

Comparison of rates and trends,  mainly in Poiison processes, 

was discussed in Cox and Lewis   (1966).    See also Qureishi   (1964)   for 

the comparison of rates in two Weibull  processes.    General problems 

of multiple point processes   (multivariate point processes)   are discussed 

in Cox and Lewis   (1972)   and Perkel,  Gerstein and Moore    (1967b),   but 

are beyond fhe scope of this paper.     Lewis   (1970)   discussed estimates 

of the spectrum of counts from sectioned data,  as well as pooling and 

comparison of the spectra. 

(iv)        Although trend analysis was discussed in Chapter 3 of Cox 

and Lewis (1966),   I don't believe it received enough emphasis. 

Also, problems such as the analysis of cyclic trends were barely 

touched upon.    These and other problems in trend analysis are 

discussed in more c'atail later in the paper. 

(v) Finally,  perhaps more emphasis could have been given to graph- 

ical methods.    These were discussed in Chapter 1,  but no reference was 

made to probability plot ing,  for example,   in later chapters      See,   for 

example,   Wilk and Cnanadesikan   (196 8). 

■ -   - ■ -    - —■■-  "« 
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The field where moat use has been made of techniques for the 

analysis of point processes is in neurophysiological work on the signals 

occurring on nerve fibers.    A summary of techniques for this type of 
i 

analysis given in Perkel, Gerstein and Moore   (1967a, 1967b)   largely 

parallels Cox and Lewis   (1966),    with more information on the special 

problems of neurophysiology.    For later work and applications,   see, 

for example, Moore,   Segundo,  Perkel and Levitan   (197 0)   and the 

references given in that paper.    It would be impossible to try to sum- 

marize all of this work here;   some of it will be touched on later, but 

there is virtually no statistical methodology given in them which is not 

given in Cox and Lewis   (1966). 

Another interest'   a field of application is to the study of the 

occurrence of «earthquakes.     While strictly not a univariate point pro- 

cess,  an approximation to the earthquake process as a univariate point 

process yields uneful insights.     For such analyses,   see Vere-Jones, 

Turnovsky and Eiiyy   (1964),    Vere-Jones and Davies   (1966),    Vere-Jones 

(1970),  and Shllen and Toksoz (1970).    The discussion of Vsrs-Jonss (1970) 

contains extensive comments on the problem of analyzing earthquake oc- 

currence data. 

Computational problems in the spectral analysis of point processes 

have been discussed by Lewis   (1970).     By spectral analysis here and in 

the rest of the paper we mean Bartlett's spectral analysis of the counting 

process, N(t)   of a point process    (Bartlett,  1963;   Cox and Lewis,  1966, 

-^^O^^^^^^.^^.^-^.     ^..-^ ^ . : ...-^ .^.^ -....-  
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Chapter 5).    T'ie spectral analyiia of the Intervall between event« in a 

point process has been greatly facilitated by the availability of the fast 

Fou-ier transform algorithm;    see Cooley and Tukey (1965) and Cooley, 

Lewis and Welch   (1970)   for details. 

Most of the statistical methodology for the analysis of univariate 

series of events given in Cox and Lewis   (1966)   has been implemented in 

a computer program called   SASE IV.    For details,  see Lewis   (1966) 

and Lewis,   Katcher and Weiss   (1969).    SASE IV   is a large   FORTRAN 

program with graphical output which is availablt from the   IBM Program 

Information Department, 40 Saw Mill   River Road, Hawthorne, New York 

10532,    as Program No.  360 L 130001. 

In subsequent sections of this paper we discuss first two central 

problems in the statistical analysis of point processes,  namely tests 

for renewal processes and tests for Poisson processes.    Then techniques 

for specific non-renewal processes, such as doubly stochastic and cluster- 

ing Poisson processes are discussed.    The inability to write down a 

likelihood function makes the formal analysis of non-renewal point pro« 

cesses difficult;   it is only for the important doubly stochastic Poisson 

process that techniques are beginning to appear. 

The final    sections deal with trend analyses, mostly of non- 

homogeneous Poisson processes;   first we consider the case of monotone 

trends,   then the case of cyclic trends and their relationship to the 

spectral analysis of point processes.    Following this,  some general 
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problems of trend analysis are considered;   these include tests for particular 

rate functions and the nonhomogeneous Poisson process model per se,  and 

the definition of "residuals" in the analysis of nonhomogeneous Poisson 

models. 

! 
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2. TESTS FOR RENEWAL PROCESSES 

3.1 Markov interval proceiaes and serial correlation coefficients. 

A natural extension of the renewal proceat model is to processes 

with first order dependence of interval«   (Wold, 1948;   Cox,  1955).    The 

naturalness may be only mathematical   since point processes 

of this type have not been commonly found in applications, although 

they have recently been postulated in neurophysiological contexts 

(Lampard,    1968}   Walle, et al,    1969).    In the process of Walloe 

et al   (1969),    the first order Markov interval property depends 

on the input to a neuron being a Poisson process.    However,   since the 

input is the superposition of an unknown number of fairly regular neuron 

signals,  the hypothesis is tenuous.    A drawback in the use of the first 

order Markov interval process as an approximate model for serial 

dependence in series of events is the difficulty of obtaining analytical 

results on,  for example,  the spectrum of counts or the variance-time curve. 

This difficulty is closely related to the fact that there are no regenera- 

tion points in the process. 

Another problem with the model is the dearth (until recently) 

of useful bivariate distribution models. Cox (1955) used a bivariate 

exponential of the form 

f       (x; x.   = y) = K (y) exp{-\ (y)x>, (2. 1) 
i+1 

rnr-i,;'l.»r- ---nfc  ^ i--—.-h.,-,:  - - -■ „■ ,   -„■ ., .  
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where 

My) » ^ 0{i + Xj x) > o. 

which had the drawback of nonlinear reatriction« on the parameter. 

Another widely used model for bivariate gamma diitributions which 

arises quite naturally has been discussed by Moran   (1967a),  Vere-Jones 

(1967),   Lampard (1968), and Caver (1970).    (See also Griffiths,  1969, 

for general properties of bivariate gamma distributions.)     These bi- 

variate distributions all have positive correlations.    Bivariate exponen- 

tials with negative correlation have been derived by Gaver (1973   and 

bivariate, negatively correlated intervals have been observed in a 

neurophysiological context by Walloe et al (1969). 

For statistical analysis,  one of the most important theoretical 

results on bivariate exponential distributions is that of Moran (1967a), 

who showed from more general resulcr that the serial correlation 

coefficient   (or order   1)   for bivariate exponential distributions is 

always greater than   -0.6649; 

E{(X.  - E(X))(X       -E(X)} 
p-    1 —ili     * 1-  fir   ■ -0.6649.      (2.2) 

1 var (X ) 6 

Estimates of the serial correlation and tests of the renewal 

hypothesis against a first order Markov interval process are based on 

mtua&sM'mi* 
"-— ' - MMM-lto^... rai|||i||||1|     r, , „..,, ..„,..,,.„..., ,. 
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the sample serial correlation coefficient    p*.    defined as follows. 

For simplicity,  assume observation starts with an event and 

end« with an event,   there being   n   observed intervals between events 

-1 „x, ...,x      with mean   x«n     Sx..    Let   z. = x.  - x.    Then 
l    £, n ill 

n-1 
£    z   z 

n     i»l 
h*   Z3       n (2.3) 

2    z. 
1.1     1 

Before discussing theoretical results on tests for renewal pro- 

cesses based on   p ,    consider its distribution for renewal processes, 

a great deal about which is now known. 

The expected value of   p     under the renewal hypothesis,  for any 

distribution of the intervals   x,    is (Moran,   1967b) 

E^-  -^T' (2.4) 

and while its variance ia known to be asymptotically   n       if   p  «= 0,  the 

kij.ä.ct variance depends on the distributions of the   x.   (Moran,   1967b): 

2 Lz ~-       n   -n + 1 n+1        _, var(p ) ■   -=  -   -—r    E( 
1        n2(n-l) n(ll-1) 

i 

(2 Zj) 
)s n-2 

n(n-l) 
(2.5) 

Moran (1967b)   obtained an approximation by replacing the expectation 

by the ratio of the expectations of the numerator and denominator.    This 

result is exact for normally distributed   x.'s,    giving 

JllliiiiiMiMiir-- - -...-.. ^ - - .-..-^-.^--.^ ^ ^..»„ir^^M-ti,.,,,.,, 
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var(p) »   i-^ 
n  (n-1) 

(2.6) 

For exponentially diftributed x   ,    the Moran approximation give« 

var(p1) -_-_+  —   _+.. 
n n n 

(2.7) 

:   i 

Moran (19*7 0)   compared his approximation to lampling result! obtained 

by Cox (1967)   and a brief summary of their results on the variances 

follows. 

(a)       The variance of   p.   tends to be smaller than that for the normal 

case for positive random variables with long tails. 

I 

(b) Moran's approximation works reasonably well with gamma dis- 

tributions with shape parameter   k ^ 0,    n ^ 50,    or   k 2: 8,    n i 10. 

Outside these limits the approximation underestimates the variance 

(k = 0   is the exponential distribution). 

(c) For the exponential distribution,  a partial reconstruction of 

Table 1   from Moran (197 0)   using sampling r«suits from Goodman 

aiid Lewis   (1972) follows. 

-— — ' «nniirrT  ;^.^!..^m..: 
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■    '                          x — 

Observed 
Sample variance .Moran's Difference/ 
size   n (simulation) approximation Difference Observed 

20 0. 0419 0. 0371 0. 0048 . 115 
50 0. 0182 0. 0176 0. 0010 . 055 

100 0. 00945 0. 00935 0. 00010 . 011 
450 0. 00219 0. 00221 0. 00002 0 . 009 

(a) For very skewed distributions,  a better approximation t:o   varjp.) 

is needed.    This is apparent from Table 3    for random samples where 

the   x.   have a Weibull distribution with shape parameter "r (— WiebuU) 

A random variable with this Weibull distribution is the square of a random 

variable with a unit exponential distribution. 

Table 3.    Variance of   p      in   1/2 Weibull random samples 

Observed 
Sample variance Moran's Difference/ 
size   n (. nulation) approximation       Difference      Observed 

50 0. 01410 0. 00058 0. 01352 .96 
100 0. 00782 0. 00054 0. 0072 8 .93 
450 0, 00201 0. 00047 0. 00154 .77 

Returning to the distribution of   p ,    Moran (197 0b)   showed that 

1/2^ 
n      p     converges in distribution to a unit normal variate if the first 

four moments of the   x,   exist.    Cox (1966)   examined the distribution 

by synthetic sampling for the case where the   x.   had a normal distri- 

bution, and also distributions of the form 

.j,,,,,.,,,.,,.,,,..^.^-..^.^..--..^...^.^,.^.^^^-.^ lüMBflBÜMäiiil ^jBMItetffrfc ^g^^g^ 
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r{k+i) 
1        e"X xk. (x = 0). (2. 8) 

with   k= 24,   8,  1,   0,   - 1/2,    a rectangular distribution,   a double 

exponential distribution and a Cauchy distribution.    The first two 

moments and coefficients of skewness and kurtosis were examined. 

For the positive random variables,  the distributions were generally 

positively skewed with convergence to normality apparently fairly 

rapid. 

These results have been extended for the case of   x.    exponen- 

tially distributed in large scale nimulations reported in Goodman and 

Lewis (1972). 

Figure 3 shows a c imputer plot of the estimated mean (*), 

standard deviation (x)   and coefficients of skewness (+) and kurtosis 

(A)   of   p    as a function of   n   (RHO(l, N))   for n - 11(1) 120,   130,  140, 

150.    The simulations involved at least   3, 000, 000   replications for 

each   n,    so that the sampling variances of the estimates are small. 

The curves have not been smoothed.    Note that the skewness is positive, 

with a maximum value of about   0. 32   at   n* 35,  after which it starts 

back   toward its asymptotic value of zero.    The l.urtosis is small, 

going from positive to negative at about   n « 35   and then going back 

toward its asymptotic value of zero very slowly. 

The departure from normality   (positive skewness)   is seen 

much more clearly in Figure 4,  where the computer plot gives esti- 

•^■'■■-■■m<-iia\u-aMialMm'!-"--~^*-'^"^-'-^'~'- -....     '  
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mated normalized values of,  from top to bottom,  the quantlles at 

levels   0.001,   0.002,   0.005,   C. 010,   0.020,   0.025,   0.050,   0.100, 

the estimated mean plus   (n-1)' ,    and the quantiles at 

levels   0.900,  0.950,   0.975,   0.980,   0.990,   0.995,  0.998,   0.999 

These should converge to the corresponding quantiles 

of the unit normal distribution. 

Note two things: the departures from normality are relatively 

small for the inner quantiles and convergence to the normal quantiles 

is very slow. 

More detailed results from which the departure from normality 

and the slow rate of convergence can be assessed are shown in Table 4. 

The quantiles and moments of   p     (called   RHO(l, N)   in the computer) 

for   n ■ 450   are shown in the rows nr.rked exponential.    Of these 

rows,   the first row is the actual estimated value of the moment or 

quantile,  the bracketed quantities in the next row are the estimated 

sampling standard deviations of the estimates   (5 degrees of freedom), 

and the third row is the quantile minus   p.,    all divided by   v.     x'his 

row illustrates the departure from normality,    x       _      being   2. 039 

instead of   1. 96 0. 

Much more serious departures occur for the quantiles of   p 

from random samples with   1/2 Weibull intervals.    These are given 

in the rows marked   "1/2 Weibull"   in Table 4.    Thus,  not only is 

Moran's approximation poor,  as seen above,  but the normal appioxi- 

■ 
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mation is considerably off.    The simulation results for the   1/2 Weibull 

case are discussed more fully in Goodman and Lewis (1972). 

Moran (1967b) showed that tests for independence againsi first order 

serially correlated intervals with exponentially distributed marginals 

based on   p     are asymptotically most powerful.    He also conjectured 

that this is true for Gamma distributed intervals.    More formal results 

have been reported ly Yang (197 0). 

Moran (1967b) also proposed two modifications of the serial corre- 

lation coefficient.    One is obtained (see also Cox,   1955) by replacing the 

estimate of the variance in the denominator of (2. 3) by the square of the 

estimate of the mean (the mean and the standard deviation are equal for the 

exponential distribution).    The other modification is due to Ogawara. 

Moran (1967b,   1970) gives the first two moments of these test statistics 

and shows that asymptotically they involve no loss of efficiency against 

the first-order Markov interval process.    However,  Moran's conjec- 

ture that the distribution of Ogawara statistic converges rapidly to the 

normal is not correct   (Goodman and Lewis,   1972);   in fact,  its distri- 

bution is very similar to that of   p     in the null exponential case. 

An interesting application of serial correlation statistics in 

examining neurophyslologlcal models is given by Walloe et al (1969). 

There Is very evident negative correlation between successive inter- 

vals; given the known structure of the neuronal process, first order 

Markov dependence would have been expected if the Input to the 

neuron had been a Polsson process,  and this was tested by checking 
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\ 

~  2 
if   (p.)    ~ P2*    Unfortunately,    (personal communication)   p     was esti- 

mated by averaging together estimates obtained from successive sections 

of length ?0t  and the bias (2. 4) accounts for a large part of the observation 

that for several experiments   (p   )    was systematically significantly larger 

«w 1 
than   p   .    A jackknifed estimate (Quenouille,  1956) could have been used, 

or a correction for bias introduced.    There probably still is real higher 

order dependence in this data accounted for by the fact that the input to the 

neuron is a superposition of a finite number of inputs and therefore not quite 

a Poisson process. 

2.2 Product moment score statistics 

An alternative to the serial correlation coefficient is obtained 

(Cox and Lewis,  1966,  pp. 166-7)    by replacing the actual interval 

values   x.   by their ranks   r.   or exponential scores     e(r.;n)    (Cox 

and Lewis,  1966, pp. 26-27),  and computing a first order product 

moment statistic 

n-i 
RJn) =   S   e(r ;n)X   e(r      ;n). (2.9) 

1 isl       1 i+l 

A test for serial independence is then based on the null distribution of 

R (n)   under a permutation hypothesis. 

An advantage to using   R.fn)   is that it controls outliers in the 

series of events;   i. e. ,  missing points.    Its distribution has been tabu- 

irtÜBltfMUliÜHfltiiM^ iiiiTin   if      -   ^-•'llVVrnilMniliiliiTiiii iiiiiii-'--J''',,-",'-riin    -     -   ■      --"  
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lated by Lewis and Goodman   (1969,  197 0) for ranks,  exponential scores, 

scores from gamma populations with parameter   k « - 1/2   and scores 

from Weibull populations with shape parameter   1/2   (1/2 Weibull). 
i 

The distributions for these pi'oduct moment rank statistics are 

similar to those for the ordinary serial correlation coefficient   p.   from 
i 1    ■ 

the equivalent parent population;   positively skewed and very slow to 

converge to the asymptotic normal distribution. The distribution of the 

normalized exponential score product-moment statistic does in fact 
\ 

converge to the distribution of   p     when the series length is   n « 10,000; 
1 i 
quantiles are shown for   n s 450   in Table 5 and should be compared 

with the exponential values in Table 4.       ' , 

Table 5.    Normalized exponential score product-moment statistic; n * 450 

/%/ AW /■*/ ^ 
X0, 001 X0. 002 X0. 005 

x 

-2.799 -2.623 -2.370 m 

x. 
0.010 0.020 

2.159       -1.929 

0.025 0.050 0.100 

•1.648       -1.567        -1.240 

X0. 900      X0. 950      X0.975      x0, 980 

1.270 1.656 1. 994 2. 096 

c0.990      X0,995      x0. 998      X0.999 

2.395 2.669 3.009 3.245 

The sampling error in the values in Table 5 is approximately   0. 0G1. 

, i 

Note that the idea behind these tests is similar to that for the 

technique of random shuffling described in Perkel et al (1967a) and 

apparently commonly used in neurophysiological work.,   The use of the 

■ - ■ ' ■: - 

mi ■■ 
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product-moment statistic is more sophisticated and does not require a 

computer to do the shuffling. 

. 

'■  t: 

: 

2. 3 Tests of serial independence based on the periodogram 

The first serial correlation coefficient   p    can be used as a test 

for serial independence for alternatives other than the first order 

Markov interval process,  but has certain drawbacks.    In particular, 

for the more common alternatives such as clustering processes,   there 

is no imperative for looking at just the first serial correlation and tests 

combining serial correlations of several orders present difficulties be- 

cause of the correlation between these statistics. 

Tests based on the periodogram were advocated by Bartlett (1954) 

and described in Cox and Lewis   (1966, p^ l68-17C|and Durbin (1969). 

Denote the finite Fourier transform of the   n   intervals   x, x     by 1 n 

H  (u)  ) = 
n 
S    x    e 

isu 

n    P (21rn)1/2       -=1     ' 
u    = Zirp/n, 

P 

p. 1.2,.., [1/2 n] = i 

and the periodogram by 

yw)=  |Hn(w)r 

T'.ie test is essentially for a   "flat"    spectrum using the distribution 

immmmmmmmmmmmm^^m, määmmmmmmimimimmiitm .—-..■.■J.;....JI:::.'..::...,ü:.; ;..:.M..^...:_...^'jrrrv.-^.-a-^ 
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theory for the   I (w ),8.     The theory states that the   I  (w )'B   are 
n     p ' n     P 

approximately independent,   exponentially distributed random variables, 

the result being exact  for   x x     independent and identically normally 

disnibuted. 

This hypothesis of a    "flat"   spectrum can be tested using a modi- 

fied homogeneity of variance statistic,   or the cumulated periodogram 

values 

U r  i (w ) /  i   i (* ) 
p-» 

n     p 
P-l 

n     p P •  1.2 1-1 

can b.  •«••!•<! as order  eiatlsllcs frum a uitlform distribution.     Bartlett 

shewed thai the dlstrlbutluo theory Is essentially independent of   k  , 

the third cumuiant of thn intervals between event«,   b.tt it can be sho<vn 

to be sensitive to   k  ,     the fourth cumuiant. 

Again,   results have been obtained by synthetic  sampling by 

Goodman and Lewis (1972).     Thedstributicn of the maximum values 

of the periodogram is shown in Table 6,  the values for normally dis- 

tributed   x 's   being exact,   those for exponential and half Weibull being 

taken from a large simulation.    The deviations from the normal case 

for exponential   x '•   is small;   for   1/2 Weibull   *,'■.    which have a 

coefficient of kurtosis of   84. '20,   the departure is dramatic. 

In Figure 5,   for exponential varieties,   we give a computer plot 

of the dietributlon of the modified Kolmogorov-Smirnov statistic 

jUferjU —    r' in n i- iiU^ittHL^^d&i^^'Qk-i r 
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KSTWO(N) =  s/n   C    =   NÄ       max |U,it - i/l 
l^iil-1        (i) 

in the form of computer printed plots of sixteen quantiles as a function 

of   n,    the length of the series,    (n * N   in the plot and the statistic id 

called   KSCTWO(N)).    The quantiles are a little smaller than for the 

normal case in which the upper   (asymptotic)   5 percent   and   1 percent 

points are   1.358   and   1.628,    respectively.    Note that for   N = 140   the 

statistic is based on   i = 69     U     's,    so that the convergence of the 

quantiles is faster than it appears to be in the figure,  although not as 

fast as in the normal case.    Of course, it is not known that the dis- 

tribution based on the spectrum for non-normal variates converges to 

the distribution for normal variates,  but it is likely if the first four 

moments exist. 

    -- "-■— ■ -  i iiilin in in ■■'    - - - 
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3.    TESTS FOR POISSON PROCESSES 

We will discuss here primarily tests for the Poisson hypothesis 

against stationary alternatives, trends being discussed in Section 5.    We 

assume as before that   n   events are observed at times t < t, < . . . < t 
12 n 

in the fixed interval   (0, t  ].    Intervals between events are denoted by 

x., x..... . x  ,    and it is convenient to denote the residual interval at the l    c n 

end of the period of observation by   x     , « t- - t . r 7     n+1       0       n 

There are four major categories of tests. 

a) Tests based on the   t.'s,    conditional upon   n * I^t   ), which is a 

sufficient statistic for the nuisance parameter    \,    the rate in a homo- 

geneous Poisson process.    Since the   t.'s   are   (conditionally)   the order 

statistics from a uniform distribution,  the empirical count function   N(t) 

(see Figure 1)   is proportional   to the empirical cumulative distribution 

function for the uniformly distributed samples.    The intervals   x.    are 

than Just the gap statistics for the sample. 

Tests based on the maximum deviation between N(t) and   t/t 

(Kolmogorov-Smirnov statistics and modifications)   or other metrics 

(Anderson-Darling statistic)   have well known distribution theories   (see, 

for example,  Durbin,   1967),    but are sensitive mainly to trend departures 

from the homogeneous Poisson hypothesis.    In fact,   Lewis   (1965)    showed 

for the special case of gamma renewal alternatives,   that the test is not 

consistent.    Those results can probably be extended by results on 

— ■ ■ ■-  -  - j' -■  
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empirical processes for renewal processes reported in Pyke (1972). 

The most important thing to note here is that while the distri- 

bution theory of these tests is well known because of the identity with 

the problem of testing,in a random sample of size   n,    a distribution 

FJt)   against an alternative   F (t),    the distribution theory under 

alternatives is completely different.    In the one case   F    (t.)   are order 

statistics from nonuniform random samples;   for point process other 

than   (homogeneous or nonhomogeneous)   Poisson process,  both the 

uniformity and the randomness   (independence)   disappear. 

Note that the dispersion test for Poisson variates   (Cox and 

Lewis,  1966, p. 158)   is equivalent to testing the uniformity of the   t 'o 

with a chi-square goodness of fit statistic   (Lewis,  1965). 

b) The gap statistics for the   x.'s,    1=1,..., (n+1),    which,  under 

the Poisson hypothesis,  are a random number   n   of independent exponen- 

tial variates,  are formed from the order statistics of the   x 's   as 

Dni = (x(i) " X(i.l))(n + 2 " ^ 
(x0» 0.    i « 1, .. .,n+l).   (3.1) 

These are again a random number of independent exponentials 

(Cox and Lewis,  1966.   p. 26)   with sum   t  ,    and the statistics 

« 

- ,.   



-'.  iii>i>ii»ww»r 
pUiHl|l.Wil|ili|il.l|l ,,„.l.ll|l|llWHJ|IW1H'   !■  MJ  i]Hi|..»,P|>mipiyT,iWiWP,l"",'iU'." Jn»l im#wi."l>'>l»H""""-"'W^^i^H^^f^l 

32 

t;«   ED. 
1     j=i   n3 

(x(1) + x{2) + • • •   + (n + 2 - i)x(i) }/t0     (i . 1, . . . , n)       (3. 3) 

are,   conditional upon   n,    order »tatiitica from a uniform    (0, 1)   distri- 

bution   (see Cox and Lewis,   1966,  p. 154   for a more complete derivation; 

the conditioning upon   n   and the fixed total   t     is very subtle). 

A great deal is now known about the null distributions of test 

statistics based on the gaps   D    ,    or on the ordered   x 's,    and the 

reader is referred to the excellent review articles by Pyke   (196 5,  1972). 

Also,  r.gainst renewal alternatives,   a good deal is known about asymptotic 

and,  in some cases,   small sample power.    Alternatives are generally 

specific distributions on those in which the distribution is limited by 

specifying that the intervals have,   say,  distributions with monotone increas- 

ing or decreasing failure rate   (Proschan and Pyke,  1967).    Again see 

Pyke   (1972)   for a summary,   and specifically Jackson (1967),   Bickel 

(1969),  and Bickel and Doksum (1969). 

Empirically and from a common sense point of view it is 

quite clear that against stationary alternatives tests for Polsson 

processes based on the   t."s   are more useful than tests based 

the   t 's.    This has been observed in using the SASE program. 

on 

_ . . _. 
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In which the uniformity of the   t "•   is tested using both one-sided and 

two-sided Kolmogorov-Smirnov statistics and the Cramer-von Mises 

statistic (Cox and Lewis,   1966, p.   147). , 

More information about the power of these procedures,  especially 

against cluster alternatives would be valuable (Lewis,   1969; Vere-Jones, 

1970). 

c) There are also specific tests against renewal alternatives. 

The Moran test   (Cox and Lewis,  1966, p. 161)   is an example. 

d) A useful test can be based on the empirical spectrum of counts, 

as pointed out by Bartlett   (1963).    Thus,  let the finite Fourier-StUUIes 

transform of the sample function   N(t)   be 

Ht (u)« (irt0) 
0 

i/2   ro    itu 

^.o 
e"w dN(t) (3.4) 

* (wtn)'1/2{   Z  cos(t1w) + i   S   «in^u)} (3.5) 
j-l 

= (»tj'1/2{A   (w) +iB    (u)}, 
0 'o 0 

and the periodogram 

I    («)-   M/MA* (w) + B2(w)}. 
l0 0 l0 

(3.6) 

»— ^-*.i ,   , ,   - . -t- -  
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We will refer again to the distribution theory  of   I    (w)   later. 

Noting,    however,  that for   wt    = p2iT,    I    (u)   is approxin itely 
o t0 

exponentiaUy distributed with mean     XTT,    and that for an<   two such 

frequencies the correlation between the periodogram points is    ~l/(l+n), 

we can see that the spectral test for independence   (Section 2)   can be 

applied here to test for a Poisson process. 

The main drawback here is that while the spectrum of intervals 

is limited to approximately   n/2      periodogram points,  the count spectrum 

is not limited in such a way.    Since there are roughly    n/2     degrees of 

freedom available,  it is a problem as to which    n/2     points of the 

periodogram with frequency of the form    ut    « 2irp to use.     Using more 

would invalidate, for example,  use of standard distribution theory of 

Kolmogorov-Smirnov statistics to test the cumulated periodogram. 

This is a point that needs considerably more work.    The tests 

are still useful in an informal way,  particuarly since the shape of the 

spectrum can suggest physical reasons for departures from a Poissoi- 

process.    In neurophysiology   (Pe rkel et al,  1967), the tendency has 

been to use the estimated intensity function   (Cox and Lewis,  1966,  p. 121) 

rather than the spectrum of counts to assess departures from the Poisson 

hypothesis.    This is because many of the neurophysiological processes 

causing departures are more simply expressed in time than in frequency. 

However, the distribution theory for the estimated intensity function is 

difficult.   Cox (1965) has discussed the distribution theory for the Poisson 

case. 

iMMIIWIMMMa^E^ito^i^i.i^a^ .■,.!!,...._.,.    .......  ,.....-.._..J,M..J„... -..,,.^...,....^, .;.w1v.M 
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4.    STATISTICAL ANALYSIS 
OF NON-RENE WAL POINT PROCESSES 

We consider here several non-renewal point processes which are 

of great practical importance.    For the most part,  however,  the struc- 

ture is too complicated to write down a likelihood function so that 

estimation and testing is   ad hoc.     Examples of such analyses are cited. 

4. 1 Cluster point processes 

Cluster point processes (branching point processes) are 

important because they arise naturally in practice and have in- 

teresting mathematical properties (Lewis,   1969; Vere-Jonert 

1970). 

Briefly, a main process   (usually a Poisson process)   generates 

at each point a sequence of subsidiary events.    In Vere-Jones (197 0) the 

main processes are initial earthquake shocks,  the subsidiary or cluster 

events are aftershocks.    The processes of subsidiary evens are inde- 

pendent and can, in general,  be arbitrary point processes which 

terminate with probability one after a finite number of events occur. 

Two Important special cases arise: 

a) The subsidiary events are generated cumulatively as a finite 

renewal case.    This is known as the Bartlett-Lewis process. 

jhaMaJMIiiiii^^ iKimitiinnrnimi   
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b) The ■ubaidiary event» are generated additively,  each one of the 

random number of events being independently displaced from its   (main) 

generatinp event.    The resultant subsidiary process is generally non- 

stationary and the complete process is called a Neyman-Scott cluster 

process. 

Computer failure patterns generated by this type of mechanism 

have been analyzed by Lewis (196 4),   and earthquakes by Vere-Jones (1970), 

Vere-Jones and Davies (1966),  and Shlien and Toksöz 0970).    A fairly good 

ad hoc   analysis can be given for the Bartlett-Lewis process since the 

marginal distribution of intervals is known (Lewis,  1964),  as well as the 

spectrum of counts and in some cases the spectrum of intervals   (Gilles 

and Lewis,   1967).     The Neyman-Scott process does net yield a simple 

expression for the interval distribution and it is not yet known if the 

coefficient of variation of the intervals is greater than one,  as it is 

for the Bartlett-Lewis process. 

These cluster processes are overdispersed relative to a Poisson 

process and the variance time curve has an asymptotic form which is 

independent of the fine structure of the subsidiary processes.    This is 

a help in analyzing the data;   basically for large time periods the counts 

of events N(t) behave as though the subsidiary events were concentrated 

at the main,   generating event,    i. e. ,    like a bulk Poisson process. 

.Hit,, -.. ■..  
- ■■■ - ■- - 
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I 

Despite these points,   the situation with regard to cluster processes 

is unsatisfactory;    questions such as the discrimination of Bartlett-Lewis 

and Neyman-Scott processes arise in practice and are not solved   (see       ' 

the discussion in Vere-Jones (197 0)). 
i 

When the cluster process has clusters with only one event,  the pro- 

cess is equivalent to an infinite server queue.    For Poisson main events 

{parameter   X)   the process of subsidiary events is,  in equilibrium,  a 

Poisson process and the delay distribution cannot be determined. 

An important special case occurs when the main process is regu- 

lar and each event is independently delayed.    Appointment processes are 

very often of this type and the determination of the delay distribution from 

observation of the subsidiary events   (arrivals)   has been considered in 

detail by Govier and Lewis (1967)   for several delay distributions.    Since 

the variance-time curve has a finite limit,  they have called these pro- 
\ 

cesses with controlled variability. 

4.2 Superposed processes 

Statistical analysis of processes which are superpositions of 

point processes is important,  particularly in neurophysiological contexts, 

and usually hinges on questions of estimating the number of contributing 

processes or, when this is known,  identifying the structure of the com- 

ponent processes. 

■■"••- — '"''■■■-■ -—•«"-          - -■—^ 
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These are difficult questions whose solution has not progressed 

much beyond the basic work of Cox and Smith reported in Cox and Lewis 

(1966,   Chapter 8).    Without specific assumptions;   i. e. ,   that the com- 

ponent processes are renewal processes with,   say,  gamma distributed 

intervals,  very little can be done to estimate the number of processes. 

The problem of Walloe et al (1969) is of this kind,  the nature of the 

input processes and the neural mechanism being well known,   the main 

question being how many inputs impinged on the neuron. 

Identifying the component processes is again,  difficult,  without 

specific assumptions.    Work such as that of Ross /1970) on identifying 

the interval distribution in a known number   k   of superposed processes 

is rather technical;   note that the variance time curve and spectra of 

counts are additive;   e. g. ,   the spectrum of counts of the superposed 

process is   k   times the spectrum of the individual processes.    Thus, since 

the spectrum of counts of a renewal process is simply related to the Laplace 

transform of the probability density of the intervals,    f*(8), 

v«, f*(-l«) . 1». x x 
f*(iw) 

«x(u)'(ff^'{1 + iTf*(ür)   +   i-%(-u)} (4.1) 

where    ^   is the mean of   x,    the spectrum of the superposed process 

g  (u>) m kg (u)    and it is natural,  and probably efficient,   to use the 

estimated spectrum or the estimated covariance density to estimate 

f (x).     Convergence follows from results of Brillinger (1972). 

nn.^m—I*MI i>   —>-.-> d^..., »i <■—>*■ 
 ,.—^.■i-^--. .^...    .   - 
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Nonhomogeneoua supeipositiona also occur   (Blumetithal,  Green- 

wood,   and Herbach (1971)), but as in the homogeneous case,  when the 

number of contributing processes is large,  the resultant process over 

realistic periods of observation is almost indistinguishable from a 

(homogeneous or nonhomogeneous)   Poisson process. 

4. 3 Doubly stochastic point processes 

Let   A(t)   be a real valued,  nondecreasing stochastic process. 

A doubly stochastic point process is a generalization of the nonhomo- 

geneous Poisson process in which the integrated intensity function is 

replaced by   /it).    Thus,   given a realization of   /it),    the point pre cess 

is a nonhomogeneous Poisson process.    Generally   /it)   is differentiable 

and   X. (t) = //(t)   might be a stationary stochastic process,   a determin- 

istic trend or a combination of both.    The process was introduced by 

Cox (1955);    see Bartlett (1966,  p. 325),   Cox and Lewis (1966,  p. 179), 

and Grandell (1970) for details.    Gaver (1963) considered the case where 

X (t)    changes level at random times and called the process a random 

hazard process. 

The doubly stochastic mechanism in a point process is very 

realistic and probably quite common.    Thus computer failure processes 

depend to some extent on temperature,  humidity,  etc.    Unfortunately, 

analytic properties of the process when   X (t)   has a stochastic element 

are very difficult to derive;    see Lawrance (1972).    If   X (t)   is a stationary 
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stochastic process with mean   X,    variance   o       and autocorrelation 

function 

p(T) « l/?Tr     j"   P(T) e"iUTdF(w), 
- 00 

(4.2) 

where   F(w)   in the integrated apertrum and   f(u)) =F,(u,)   when it exists, 

then several useful results can be obtained   (Cox and Lewis,  1966, 

p. 179-183).    In particular, the covanance density    y (t)   of the doubly 

stochastic Poisson process is 

V+(t) = *x  p(t). (4.3) 

and the spectrum of counts 

g+{w) =   X/TT   +2f(u)). (4.4) 

Also, in general,  the index of dispersion is 

2       o0 

I(oo) = 1+2 > '     /     p(u) du, 
X. o 

(4. 5) 

so that the process is overdispcrsed relative to the Poisson process. 

There has been a great deal of interest in the doubly stochastic 

Poisson process in physics,  optics,   and engineering,  and some work 

ÜÜHülliiMi     ■-: :-.v.   
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on the eatimation problems. 

a) In physics phot^-  emission is a well understood physical process, 

and It is known that the process modulating the Poisson emission is,  for 

instance,   an Ornstein-Uhlenbeck process.    The parameters of this 

process are physical parameters which it is of interest to estimate, 

and attempts have been made   (e. g. , Pu«ey,   1971, Jakeman, Fyke and 

Swain,  1971, and Koppel,  1971) to do this via the spectrum and the 

relationship (4. 4).    Again, laser light is deliberately focused on a physical 

system and the resultant intensity fluctuations in the scattered light re- 

flects rates of molecular motions and interactions In the system. 

In most cases the number of photon counts in these experiments 

is very large and it is convenient,   and very often necessary to cumulate 

counts.    There are problems of determining the best sampling interval, 

a problem which is often made simpler by detailed knowledge of the 

modulating process. 

Perhaps because of the large amount of data involved and the 

fact that the   X. (t)   process is fairly well understood, physicists rarely 

bother about details such as the efficiency or optimality of estimation 

procedures.    Moreover,  the spectral estimation is very often automated 

and done digitally. 

iiiiiiiiliiigliiiliiiiii m   — - -- 
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b) In engineering,  two area» are involved.     One ia biomedical 

engineering in whid\ for example,  radioactive substances are injected 

into the blood stream and the counts of the radioactive emission are used 
i 

to estimate a decay function which is related to a physical process of 

interest   (Snyder,   1971). 

A second area is optics,  where modulated light is used to trans- 

mit information   (Reiffen and Scherman, 1963;   Bar-David,  1969; Karp 

and Clark,  1970;    Clark and Hoverstenf  1970).    Here   X. (t)   is very often 

a signal changing levels,  a possible problem being the discrimination 

of several   X. .(O'a    from photon counts of the noise.    Very often a 

stationary   "noise"   element is also present;   see Bedard (1966) for the 

physical considerations. 

In all of this engineering literature,   there is much concern 

with optimality,  in some sense,  and procedures are based on likelihood 

ratios,  Bayesian posterior statistics and maximum likelihood detectors. 

It is a difficult literature to penetrate and my overall impression is that 

there are many hidden assumptions involved,  one being that samples 

are large, the other a normality assumption which may be quite incorrect. 

Moreover,  most explicit results are for very simple situations such as 

mixed Poisson processes of one type or another,  or rates (Reiffen and Sherman, 

1963; Snyder,   1972) changing at known times.   The latter problem is very simple 

and straightforward,   especially when compared to the case of unknown change 

points which gives a true doubly stochastic Poisson process and an 
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inference problem similar to the difficult change point problem. 

c) Grandell (1971,  197<i) has considered inference in doubly stochastic 

processes from the viewpoint of mathematical statistics,  his motivation 

apparently being primarily problems in actuarial work.    His approach is 

quite different from that in the engineering literature,  cited above,  and 

he has considered,  for example,  optimum estimates of   E(\(t)}   based 

on linear combinations   >f the data.    The problems are related to the 

general problem of curve estimation from random data and,  while 

Grandell (1972) gives specific examples,  much remains to be done. 

■ -■    ^-    - _. ...  .  
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5.     TREND ANALYSIS 
IN NON-HOMOGENEOUS POISSON PROCESSES 

V.> discuia now thm analysis of trends In non-homog«n«ous Pclsson 

procassss,  axtandlng thm rasalts of Cox and Lewis (1966,  Ch.   3).    Initially 

w« discuss results based on specific parametric models for the rate function 

\(t)   of the non-homogeneous Polsson process.    These results are based on 

the fact that the likelihood function for   n   observations in the fixed period 

(O.t  ]   at times   t^t^ <tn   is 

Lit, t  ,n;A)= n    X(t ; 0)   exp {-/     \(u;e)du}, (5.1) 
1 n      —     l = l       i "~ u — 

where £   denotes the vector of parameters in the model.    Moreover,  given 

that   n   events occur in    (O.1«!»    the times to events   t     are the order statis- 

tics from a random sample from the probability density function 

f(t;e) . Ail*) ^L.  o.t.v ^ 
;oOV(u;§)du        A(t0;Q) 

and the conditional likelihood is 

L(tl tn;n;0) = n| ^ Mt^*) I {A(t0:e)}n. (5.3) 

Later in the section we discuss procedures for examining the adequacy 

of ths model for   \tt)   and adequacy of the non-homogeneous Polsson process 

model itself. 

5. 1        Monotone and evolutionary trends 

The estimate of   Mt)  when there is no trend present i.e. X(t) = V.,    is 

n/t0. 

n^^^—^^^^j^.  ^^i—^-^—> ..„       ^ ...   . _ _  > 
-—— .  



■IP*"^" ' ■  '  ""J •• •—' ■'    '• *,'--~^mm^mm^^mi M\wmimfmm*~ < '~~*'^mmmmmrW****'*W* 

45 

In Cox and L«wl« (1966,.Chaptar 3) th« «xponantlal lln«ar trsnd 

X(t) = «xp (a^t)  - X.xp^t) (5.4) 

w»« dlscutsad and It was ahown, ualng (5. 1),   that   (n,£t()   wara a a«t of 

•ufflclant ataHatlca for   {a,ß).    A taat for  ^   0   agalnat  ßtO,   whara   a   la 

a nulaanca paramatar,   la baaad on tha distribution of   £t./n,    glvan   n.    Thla 

la an optimum (conditional) taat.    Tha maximum Ukallhood aatlmata of  ß 

waa alao glvan Implicitly,    but no small aampla propartiaa of the aatlmata 

ara known. 

Tha taat for  ß-0   waa appllad in Saction 1 to analyze a aaquanca of ar> 

rivala    at an intanalva cara unit (Tabla 1) and a aectionad analyala Indicated 

that tha trend waa not monotone,  although same overall incraaae in the  rate 

was preaant. 

An   exponential    quadratic trend uaea the model 

Mt)=axp{at+^t+Vt2)» Xaxp{0 t +Vt2}, (5.5) 

for which we get 

lnL(af,/I,v)= nln X. +^Ztt+"Y2:t2 (5.6) 

t 
- X /   axp (^u + yu )du. 

The maximum likelihood eatimatea of   X,, a,0    are given aa tha aolution of the 

aquationa 

t 
t . n/ {/0 •«? tfu+V)du}, (5.7) 

Zt /    u exp(/Ju +yu  )du 
—i- -   -^    =0, (5.8) 

/   axp^u+vu  )du 

MMiMlrtMlBlilliaiililllBieiaMaMaMflillMaMiiailiiii' iiiimiii inmiiMiniiiliiMiiii    i     i  
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it. r     u   •xpyuivu )du 
M ;0 

n ^o ? 
;o«xp(|u+^u )du 

0. (5.9) 

2 ' 
and It la cUar that   (%   Zt ,   It   )   ar« a act of aufftcUnt ataUatica for 

(•. ßf Y). 

Thara »re ■•varal Intaraatlng open question» h«r«. 

What ar« th« amall aampU propartlaa of tha «atlmatora and what ara 

their larg« «ampla propartlea?   Nota that th« usual theory for maximum 

Hk«llhood «atlmataa la not dlr«ctly appllcabl« b«caua« of th« random aampl« 

alz«. 

What •ff«ct doaa th« quadratic term (I.«. V / 0)  have on th« «atlmatas 

of fl   In the model (5. 4) ? 

For the arrival data the following eatlmatea were obtained. 

Linear modet X =   0.6342» i ■ 0. 000142Z| ^ . 
Quadratic model:        \*   0. 4792»        /}= 0. 0009788: \=-0. 4481al(r> 

Not« tile large difference In  ß   In the two caaea. 

Another problem of Intereat la to test for the  quadratic term in the 

trend.    It la clear from Table 1 that either a quadratic team or a long cycle 

1« neceaaary to adequately model the annual data from Section 1. 

A formal teat can be baaed on the idea that, for any given   \.    n   and   £t. 
I 

are a aet of sufficient atatlatlca for  atfi.   Therefore a teat for  y  la based 

on the atatlstlc   Zt    and Ita conditional distribution,  given   n   and   Zt .    This 

diattibutlon la difficult to obtain analytically,    Zt    being the aquare of the 

dlatance to the aample point,  which la conatralnod to lie in the   (n-1 )-dimen- 

aional hyperplane defined by   Zt  a C. 
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For Urg« «ampl«a this diitrlbutlon can be ohtainad from th« fact 

that   it /n   and   Lt  /n,    conditionad on   n,    ar« Jointly normally dlatrltuted 

for large   n,    and th« following exact moment reaults: 

^ =   Efrt^n) =t0/2;        a^ vmrdtjM^t^Un)'1; 

ji2 =   E{ LlJ/n) =  t20/3;       o^ = v»r { Zt^/n} - 4tJ (45n) 

p= corrfSl,  B} .   4-5 = 0.968. 
n n 4 

.1 

2 
Thua, ualng normal theory results we teat with   £t  /n  having a normal 

distribution with msan and deviation 

n 2 

<r '«Tj (1-p2)*. (S.H) 

For th« complst« sst of arrival data Lt /n = 954. 25,  giving ji = 1, 187, 783, 

I and   <r=6,530,    Z tj/n = 1, 161, 565,   giving   ( Zt^/n-ji)/<r =-4. 015   and   this 

la cl«arly a highly aignlflcant rejection of the hypothesis that   \ = 0. 

Boswsll (1966) and Boswsll and Brunk (1969) have considered tests 

of the hypothesis that   X(t)   is not constant but Is non-decreasing.    Using a 

likelihood ratio criterion,  conditional on the fixed value of   N(t0)«n,    he 

found the test statistic 

B     -   .-1 
{hXi)      ' (5.12) 

where 

1   ■■ 

mmmmm MM^MiiMl 
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Xl=   ijftfl    I^ftn   (K-J + I'/(tK+l-V* <5-13) 

th« null hypothtili being rejected for Urge values of the statistic. 

The statistic (5. 12) is not simple to compute,  but Bos-well gave an ' 

iterative procedure for the computation,  and same results on the limiting 

distribution of the statistic. 

It would be of interest to compare the power of this test against the 

power of the test based on   Lt /n   for the exponential linear trend.    Some 

results have been obtained by Mr.  Ian White of the University of Edin- 

burgh. 

5. 2   Cyclic trends of fixed frequency 

Cyclic time trends (as opposed to cycles on serial number) occur 

frequently in point processes but were treated only as an exercise in Cox k 

Lewis (1966).    An example of such a series is given in Forrest (1950), who 

was investigating thunderstorm severity in Great Britain and its effect on 

power lines.    He found a tendency for thunderstorms to occur in the morning 

(time of day effect) and of course a very strong time of year (seasonal)effect. 

The arrival data discussed in Section 1 might be expected to have 

such effects, although a time of day effect is by no means evident since there 

is only   about one arrival every day and a half.    In Figure 6 we show a 

collapsed plot of the numbers of arrivals in the successive hourly periods 

of all days of observation.    The plot should be compared to Figure 1. 8a in 

Cax lc Lewis (1966) for the arrivals from 4 February 1963 to 18 March 1963. 

IMIiiiiiiltiiiiiii'iiiiiM-i'iiiiTf •-' yiiniif-^'^^-•'--■"''■■-■"--*^ vnm.".».^.....' 
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Figure 6,    Arrival of patients at an intensive care unit. 
Collapsed hourly plot of number of arrivals to investigate "time-of-day" effect. 
Second period of observation:    19 March 1964 to 8 February 1968.    Total number 
of arrivals (including ties):    1216.    Observation time   t   = 1420 days; m •= 0.856. 
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Figure 7. 
Collapsed daily plot or arrivals 

Arrival of patients at an intensive care unit. 
All arrivals including ties.     Solid line Collapsed daily plot or arrivals.     All arrivals including ties,     aolid line 

is 2nd period,   19 March  1964 to 8  February 1968 (1216 arrivals in  1420 
days).    Dashed line is complete record.  4 February  1963 to 8 February 
1968 (1467 in 1829 days).        Z    (n   - n)V(n) - 12. 93,    Note th-t 
v^   „   ~ 12. 6. *lo95~12-6- 

——- 
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The plot for the complete period (4Febru*ry 1963- 6 February 1968) in 

Figure 6 is similar in shape to the plot for the earlier period and no formal 

statistical test is needed to conclude that there is a real time-of-day effect. 

As a model for the rate X(t)   in a non-homogeneous Poisson process 

with fixed frequency   u   =2ir /T     we take 

\(t) = exp   {cr+k    sin   "«t + kc   cos   u> t} (5.14) 

«   \ exp {k   sin(ü0t+e)}, (5.15) 

2    ,2,1      Q_4    -1 
here   k^+k^1,   6 = tan"    ( 1 ) ,  X = expiajxl  (k), 

k ■ 

and   In(k)   is & modified Bessel function of the first kind of zero order.    This 

reparameterization is used because 

T 
/        exp   {ksinCw-1 + e)}dt =   I   (k), (5.16) 

1 0 

so that if   t  ,    t^ie total period of observation is a multiple p of  T    (here one 

day),  we have 

t 
A(t0)=   ;0    X(u)du =\t0 »XpTo. (5.17) 

In effect we have separated out multiplicatively a linear growth from a 

cyclic effect which takes place only within periods of length    T . 

The reason for using the form 5. 14  rather than,   say, 

Mt) « * + k  .in (u t+e) (5. 18) 

is that Mt)   must be positive,  and to achieve this with (5. 18) requires k<a. 

-- ■ ^ 
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For   k « or   the two models are easentially the iame.    In 

addition,   the rate   (5. 14)   give» simple results based on sufficient 

statistics,  this being closely connected with the fact that the density 

(5 . 2)   belongs to the exponential family of density functions. 

An additional reason for using (5. 14) is that such nonsymmetrical 

cycles are probably more natural with series of events,  possibly because 

of the positivity of the rate function.    Professor J. W. Tukey has suggested 

a'model which is (5. 18) squared; this could be useful with data in which there 

are a large number of arrivals in each period,   so that regression techniques 

using the square root of the numbers of arrivals in fixed intervals can be 

used (Cox and Lewis,   1966,  Chapt.   3).    This model has also been used by 

Fisher (1953). 

In Lewis (1970) the following results were given for the non-homo- 

geneous Poissou process with the rate   \ (t) given in (5. 14). 

Using (5. 3) we find that the observations enter into the likelihood 

function only through 
n n 

n, Ak  (uj =   2   COSQ t, B^  (wj »   2    «in w t (5.19) 
^    0       i«l 0 1 ^    0        i«l 0 1 

and these are a sat of sufficient statistics for the parameters   a,   k 

and    k     in   (5.14).     Note that   A    (wj   and   B    (w )   are the components 
c ^   0 'o   0 

of the periodogram   (3.6). 

Maximum likelihood estimates of   V , 9,   k   are 

—J1-— ■■-   - 
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(5. 20) 

X  - n/t0. (5.21) 

and   k   is the iolution of the equation 

2 2 I 00 . 
(l/n)(A    (w)+B    (a,)}.J_x   ^k). 

^    0 ^    0 In(k) 
(5.22) 

where     I^k)   is the derivative of   I^k*   and   ^k)   increases monotonically 

from   0   to   1   as   k   goes from   0   to   oo.    This later fact allows one to 

uae the Neyman-Pearson lemma to show that,   conditional on the observed 

value   n   of   N(t0),     the most powerful test of   k = 0   against   M 0   is 

based on the statistic 

At0«V     BtS) 
(tn/n)  (-^    +    —   }.  (fft  /n)   I    (u  ). 

0 U ^ 
t. (5.23) 

Since,    or   k = 0,    21    (« )   has asymptotically   (Cox and Lewis, 
0 

1^66,  Chapter 5)   an exponential distribution,  the test for   k=0   reduces 

to accepting the hypothesis at,   say,    a   5%   level if 

2It   (w0) «   «S/ir)X(t0/n)=   |i/ir)X  m (5.24) 

The factor   6   arises because   prob {x** * 6} 95,    where  X-,   i» a 

— ■ ■■^i.inHTrf   M-    '■ -        iM^'-""" -" * i' '    ■■*■■■*■>■■* ■«■! 
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random variable with a chi-square distribution of two degrees of freedom. 

This teat applied in Lewis (197 0) to the first section of the arrival 

data gave a strong indication of the presence of the cycle at a period of 

one day. 

For the complete record of arrivals at an intensive care unit dis- 

cussed in Section 1 we get for the periodogram at   p = 1829   or    wn 
s 2tr, 

which is the day frequency,  since   t    = 1829   and   co    = 2-n-p/t 

21    (w ) = 27. 094   and   6m/iT  = 1. 52. 

This is,   not surprisingly,   highly significant.    For the first   409 

arrivals the  results are (Lewis,   1970) 

21    (w ) = 5. 0   and   6m/TT * 1. 10. 
'o 

Thus the periodogram component is increasing roughly in proportion to 

n,    as it should for a true cyclic component. 

When Lewis (197 0) was written,  the connection of this model for 

a cycle of fixed frequency with tests for directionality on the circle was 

not realized.    In fact,  the conditional test   (5.24)   is equivalent to testing 

that   n   observations on a circle   (here a   24-hour clock)   have the von Mises 

or circular normal distribution   (Gumbel,  Greenwood    andDurand,   1953) 

mmmmm^mmmm ■--■-■■     ■  ■ »«..l.,.,!,,.   „ , , 
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f(l) -    exp{k 8in(i + 9)} 
2ir I0(k) (0^ i^ Zir). (5.25) 

For   k = 0,    this is a uniform distribution;    otherwise,  it haa a mode at 

9,    the vector in the direction   9   being called the modal vector.    Green- 

wood and Durand (1955) obtained the distribution of the square of the 

resultant 

2 n 2 n 2 
R    = ( S   cos i.)    +   ( S   sin i.) 

i=l i i=l i 
(5.26) 

of   n   such vectors when   k r 0,    generalizing earlier work of Pearson 

on the problem of random walks on the circle.    The formal analogy of 

(5.26)   with the periodogram   (3.5)   should be clear.    Watson and 

Williams   (1956)    generalized these distributional results,   using results 

for sufficient statistics,  and found the conditional p. d. f.    of the quantity 

on the left of equation (5. 22),   which we denote by   r,    as 

CO 

f(n '   r) = rl0(kr)   /       (.yu)}    yrujdu/(yk)} , (5.27) 

where   J ( • )   is the ordinary Bessel function of zero order. 

It is not all apparent that   (5, 27)   is more useful for computation 

than the generating function,  which is given,   for example,  for   k = 0 

in Cox and Lewis   (1966,   Chapter 5)   in the discussion of the distribution 

of the periodogram at one point     GJ ,    where   w     is of the form 

iiw« a »i 
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t  oj    = Zirp,     fcr   p   integer.    However,   Stephens    (1969a,   1969b)    ha» 

used   (5. Z7)    to tabulate,   among other things,   the power of the teat    that 

k =0 against alternatives  k > 0.    The most complet« discussion of thes« teats 

for the von-Mlses distribution Is given In Watson and Williams (1956).    The 

function  i^k) is tabulated by Gumbel,   Greenwood,   and Durand (1953). Stephens 

(1969b) has also discussed tests for   9 = 9   ,     and joint tests for   k   and   9. 

It is clear that problems involving cycles at two or three fixed 

frequences,     e.g.,    OJ  ,  w.,  u?,    will arise in analyzing series of events. 

For example,   in the proolem of analyzing the arrivals at an intensive 

care unit,   a time of week effect and a time of year effect are distinct 

possibilities.     Surprisingly enough,   there does not seem to be a strong 

time of week effect in the data,   but there is not space here to go into 

this. 

Formal tests for more than one cycle follow from results In 

Cox and Lewis    (1966,   Chapter 5)    to the effect that at two different 

frequencies   w     and   to ,    both of which -vnen multiplied by   t        are   in 

times an integer,   the correlation between the periodogram values 

I     (u  )    and    I     (w )      Is   approximately    (1 + n) Thus,   a test for a 

time of week effect    (to ),     based on the conditional distribution of    I(to ), 

given the values of N(t   ) •= n   and   I    («n)i     reduces in effect to an inde- 

pendent test at    w    based on   (3. 23). 

For the arrival data, considered over a period of   1456   days, 

we get for    p * 208    (w    ■ in/T),    or a period of one week,   the value 
P 

^ ^^.„«„^__ 
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A^   (w  ) ßf (u)  ) 

21    (u ) -    -      (—^    +    —Ü  }    .   0.467. 
'o   p       " 'o lo 

Thu« there ia no formal Indication of a tlmo-of-week effect. 

5, 3 The epectrum of counte and cycle« of unknown frequency 

In the prevloufl aubeectlon,   we ahowed the connection between 

teata for a cyclic component at a known frequency »n a nonhomogeneous 

Puisaon proceaa and the periodogram,   the pcriodogram being the baaia 

for eatimation of the    (aecond order)    apectrum of counta    g   (u). 

Clearly,   one might want to look for cyclea at unknown frequency and 

thia will,   intuitively,   be baaed on the apectrum of counta.     More pre- 

ciaely,   it will be baaed on the periodogram 

I    M - (1/irt   )   (AZ (u) + B^ M) . (5.28) 
0 0 0 

The analogoua problerr in ordinary time-aeriea analyaia ia the 

claaaical problem of hidden periodicitiea,   diacuaaed at length by H.mnan 

(1970,   p. 463).     Thia problem ha a not been tackled in point proceaaea, 

and ia more difficult for two rraaona.     Flrat,   the periodogram pointa 

are not quite uncorrelated,   aa we aaw In the previoua  aection,   and alao 

the apectrum ia,   in theory,   not limited in the frequency domain.     (There 

will alwaya be aome band limiting due to Jitter;    aae Lewia,   1970, ) 

Thua,   it ia a problem how to ua« the diatrlbutlon theory for the apectrum 

given in Bartlett (1963) and Cox and Lewia (1966,   Chapter 5)    and how to 
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pick relevant parti of the  «pectrum from which to eitimate the unknown 

frequeacy. 

Ai an example,   we   ^ive in Figure H the  ipectrum of the arrival 

data of Section 1.     The peak for the day effect at    p ■ IHZH (w    ■ Zn)    ii 
P 

evident,   but it would be difficult to read into thii  0pectrum anything but 

a conclusion that it in a nonhomogeneout Poiiion procen with a  iingle 

fixed cycle    (day-effect).     There la poaaibly a harmonic at   p ■  36S8 

and aome inhibition at low frequencies,   but all the points   (except for 

p«  1829)    are within   1 percent    confidence bands for individual values, 

and would be within bands for the maximum of the periodogram values 

(Bartlett,   1963). 

The  spectrum of counts is generally a useful tool,   and even more 

particularly   »o for non-Poisson processes , but has   found very limited 

acceptance amongst applied worker«.     This is partly due to confusion 

with the  spectrum of interval«,   with which neurophysiologist^ for example, 

are much more familiar. 

Lewis (1970) has given a heuristic justification for the spectrum 

of counts and discussed computation and smoothing. Bartlett (1967) has 

discussed finer points in this type of analysis. 

Finally,   Brilllnger (1972) has given a general theory for spectral 

analysis of point processes,   and has defined higher order spectra 

(cumulant spectra of order   k)    for point processes.     These are gener- 

alicatlona of the cumulant  spectra of order    k   of continuous time  series. 

mmm* __ 
-■ 
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BrilUnger'a work !■ baaed on a general spectral representation for   N(t), 

the counting procesa of the point proceaa,  and provides an aaymptotlc 

theory for the apectral eatimates of order   2    (periodogram)   conaldered 

in this paper.    Brllllnger's paper is far too extensive to do justice to 

here.    The problem of whether currmlant spectra of order higher than   2 

will be useful in practice remains open and should be explored. 

Brillinger't  spectral decomposition may provide an answer to whether 

spectral analysis can be useful as a representation in real ayatema; I.e., 

neurons. 

5. 4 Mixed models 

The arrival data considered in Section I has been shown to have 

a long term trend which can be represented by the exponential quadratic 

function   (S. 5)    and a  strong day cycle.    A combined model for this data 

could be a nonhomogeneous Poisson process with rate   X (t)   of the form 

V(t) - exp(<i + ßt ♦ yt2 + k ain(Wot + 9)}. 
(5.29) 

This is difficult to handle because    /s(t) ■   /   X (u)du   is not tract- 
0 

able.    However,   in the context of the arrival data the evolutionary trend 

changes little within a cycle and an approximation in which the linear 

and quadratic terms are assumed constant over the period of each cycle 
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yields a tractable model.    The eitlmates of k   and 6   arc then ■imply (5. ?0) 

and (5, 22),     y   and   ß   are estimated from   (5.8)   and   (5.9)    and   X.    is 

given by   (5.7)   with   T
n(k)    multiplying the term in the denominator. 

For the arrival data, we obtain the following values: 

K a    0.4792; 

k »   0. 654; 

9 =   3.519; 

ß =    0. 0009788; 

V « -0. 4481 X  IQ-   . 

Clearly,  mixed models  such as    (5  29)   will be needed in many 

ca ses for the analysis of real dala. 

5. 5 Residual analysis of point processes 

Many observed point processes have rate functions which are 

clearly not easily representable by simple,   tractable model?  such as 

those discussed in the previous section.    For example,   it is common 

in observing arrivals of jobs in a computing center to find    (roughly) 

the rate increasing sharply throughout the morning,   dipping around 

lunch time,   picking up slightly in the afternoon,   and then dipping off 

sharply at night.    The situation is fairly simple in this example,   since 

 ..  
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many days observations ar« available,   showing similar variations, 

and careful pooling gives a smoothed tabulated estimate of the rate. 

This rate is needed to model scheduling algorithms for the computer. 

In general,   the problem of smoothing the point process to obtain 

an estimate of   X. (t)   is,  in my opinion,  open,  despite the work on doubly 

stochastic Poisson processes cited in Section 4,   which ohould be applic- 

able.    It is generally connected with the statistical problem of curve 

smoothing,  and will not be considered further. 

Both in the case where   \ (t)   is obtained by smoothing or from a 

specific model,   say   exp (or + ßt),    it will often be necessary to test the 

adequacy of both the trend model and/or the assumption of an underlying 

nonhomogeneous Poisson process. 

For example,   an intensive care unit is a service facility,  and to 

provide adequate service,  one must know something about the arrival 

process;   it might be very regular if all arrivals are from surgical 

operations,  or exhibit clustering if all arrivals are from the emergency 

room.    The form of the underlying process will also affect the test for 

cyclic trend given in   (5. 23),    the attempt to estimate the spectrum and 

filter out the spike usually being a selfdefeating process   (Bartleft,  1967; 

Lewis,  1970). 

Both formal and infoTmal methods,  usually graphical,  are re- 

quired for this question,  analagous to the similar problem in regression 

analysis which is usually appi cached by examining the residuals a'ter 

****—*—*>-*»-"-^ —      -— —  —^.- --.— -^-. 
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estimating parameters for the mean value in the model. 

While keeping in mind that there are many way s to approach 

this in different situations, the following propo sal 1een 1s to offer a 

systematic approach to examining 1uch questions (Lewis, 197 0} . It is 

well known that on the transformed time scale 

t 
T • I X. (u)du, 

0 
(5. 30} 

a nonhomogeneous Poisson process with rate function ~ (t} becomes a 

horr.ogeneous Poisson proc ess of rate 1. Thus, we proposed to examine 

the residual proc ess {T i} where 

ti -
T. • I X. (u)du, 

1 0 

and X. (t) is some estimate of X. (t). 

There are a number of ways of looking at this transform. 

(5.31) 

1) If X. (t) is very 111mooth over periods compared to the mean time 

between intervals, we can write 

Xi• T. - T . 1 ,.., )., (t. l):x.,i. 
1 1- 1-

(5. 32) 

Then a logarithmic tranlformation reduce• this to standard regression 
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modela,  and the exponential trend functions discussed above are appealing 

since we have   (approximately)    standard linear regression methods. 

These are considered in Cox and Lewis   (1966,  Chapter 3). 

Of course, in data such as the arrival data of Section 1, this 

approximation is not possible, and the integral transformation must 

be performed,  perhaps numerically. 

The real problem comes, of course, when X. (t) cannot be 

assumed to be smooth over suitably short intervals and no simple 

parametric form for   X. (t)   is available. 

2) If the analysis is based on the conditional distribution of the 

t.'s,    given   N(t ) = n,    then the transformation   (5.31)   is seen from (5.2) 

to be just proportional to the probability integral transform for the density 

X (t)/A(t)   with estimated parameters. 

3) There is also a possibility of looking at   (5. 31)   as a filter in 

the spectral domain. 

Formal methods for analyzing the   T.   are difficult and will be 

discussed elsewhere.    This is  simplest for   X. (t;9)   when sufficient 

statistics for   9   are available.    The probability structure of the   T. 

process,   given the sufficient statistics,  is independent of   £.    Of 

course,  in the simplest case of   X (t) » X ,    with  X  « n/t0>    ^ i9 wel1 

"—■-""'"'"---■ 
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known that the   X.'a   are the gap statistic« for Independent uniform 

random variables and are asymptotically exponentially distributed 

and independent   (Pyke,  1972).    For small samples,  they will gener- 

ally be correlated random variables. 

Informal,   graphical methods are useful and are discussed in 

the context of the arrival data given in Section 1.     The first section 

of this data was transformed,   using   (5. 31)   and an exponential linear 

trend,   and discussed in Lewis (1970).     No test for Poisson processes 

performed in the    SASE IV   program gave significant indication of 

departure.     The spectrum of the transformed data is  shown in Lewis 

(1970). 

Clearly the (exponential) linear trend plus day cycle is not adequate 

for the complete set of data,  as we saw in Section 1.     We examine its adequacy 

further here.    Figure 9 shows a plot of tne average of successive groups of 

20 X ' s after det rending with the (exponential) linear trend plus day cycle.   The 

model for X(t) la clearly inadequate.    Figure  10 shows the spectrum of 

counts after the linear transformation.     There is no spike corresponding 

to the one day period and no Indication of departure from a Poisson process. 

Similarly,   the tests discussed In Section 3 for Poisson processes do not give 

any great Indication of departures.      However,   the estimated asymptotic slope 

of the variance-time curve is approximately 8,  and since this quantity Is re- 

lated to the rate of change of the low frequency end of the spectrum,   there is 

again t.n Indication of Inadequacy of the form of X.(t) or th«    vpothesla of a 

nonhomogeneous Poisson process. 

■MM .  -  
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1 

A quadratic term was added to the rate   X. (t),    giving the trana- 

formätion 

wmm— 

t. A A   2        ^ 1 #A ^ A    ^ " A   . 
T . = J"     exp {or + ßu + -yu    + k sin(2Tru + 0) }du, 

1        0 
(5.33) 

where the v lues of the estimated parameters are given, in Section 5.4. 

The plot  .orresponding to Figure 9 is shown for the   (exponential) 

quadratic detrending in Figure 11.    This and other results give a much 

clearer picture of a possible cycle or quasi-cycle in the data with period 

of about a year and a half.    The example is discussed in more detail in 

Lewis (1971),  where local smoothing is used to estimate   X. (t)   for this 

quasi-cycle and test the nonhomogeneous Poisson hypothesis. 

ttM^^^^^imlM^a^M^^tM^-aMj^.^^,^-   |     ,_.„_...J.^,,,„.^..„„.,„.,..  !,. ^l^.. .._ 
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1 

1000 2000 3000        4000 
1-829        0.915 0.610       0.457 

p(Wp=27rp/t0) OR PERIpD T IN DAYS 

5000 
0.305 

Figure 10.    Arrival of patients at an intensive care unit. 
Spectrum of counts for compltte record after detrending with 

T  = I   exp {a + ßu+ k sin (2Tr u + 0) } du,  where   a,  ß ,  k, 0   are maximum 

likelihood estimates,    n « 1458 arrivals in 18?9 days from 4 February 1963 to 
8 February 1968.    Bands are approximately    0.95 and   0.99 confidence regions 
fo»- .ndividual values. 

m\ 

110 310 510 710 910 1110 1310 i 
SERIAL NUMBER OF MIDDLE ARRIVAL IN GROUP OF 20 INTER-ARRIVAL TIMES 

I 

Figure 11,    Arrival of patients at an intensive care unit. 
Average» of successive groups of ZO inter-arrival times after detrending with 

f' ,A*A2A A ^AAA/K 
T  -= \   exp  {o+ /Ju+ Y

U+
 k8in(2»ru+ 9)  } du,  where o,  ß ,  y,  k,   0   are maxi- 

mumlikelihood estimates,    n = 1458 arrivals in 
t. ■» 

1963 to 8 February 1968.    Overall average after detrending: 
Homogeneity of variance statistic: ^ X,,1 mean 71, IT - 11.92) 

0 " 1829 days from 4 February 

.^^.....^.„-.-.^^„^^  



fKCTMOTWnnWV "U  ""«JW ■ JJ    I I      11   ■!    ■       I » ■      -.»-^       ■ MM 

67 

6. CONCLUSIONS 

Much further work ia needed in the atatittical analyaia of aerlea 

of eventa.    Particular areaa that come to mind are the analoguea of 

the procedure? in Section 5 for modulated renewal proceaaea.     Likeli- 

hood functiona can be written down,   but results are fairly difficult to 

obtain from the expressions (see Cox (197 2) for details).     Both for these 

processes and the nonhomogeneous Poisson process there is a great 

deal of work to be done to justified estimation and testing procedurea based 

on random oample sizes.    Some of these justifications have been given by 

Brown (1972). 

Finally, it is hoped that new methods will be developed which will 

allow  some of the nonrenewal point processes to be analyzed in a more 

systematic way. 
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