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Formulation of the Problem

Ammeg s

Yie shall consider a system consisting of n elements, Assume that the :
probability of failure in a definite time period is known for each element
and equals q;. In addition to the basic element, there are z; spare
elements (zj is the number of replacements), It is assumed that the spare
5 elements function in parallel with the basic olement, or that they can be
v . instantaneously connected with the system when the main element fails.
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A particular element of the system is considered to have failed during
: the one-time failure of the basic element and all spare elements. Then the
i ’ probability of failure during a definite time period equals, for the ith
element, qjl*2i where the number of spares is zj.

.

2 e o e

Suppose that the failure of any of the n elements leads to the failure
of the complete system, Then the probability that the system will not fail
during a definite time period equals
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where x; = 1 + z3.

The quantity ¢ can be considered as a quantitative indicator of the 4
degree of reliability of the system. From here on, for brevity, we shall call ‘i
this quantity the reliability of th¢ system,

Every ith element of the system is characterized by definite dimensions:
weight, cost, etc., which are expressed in terms of the coefficient ajij (jth
characteristic of the ith element). Assume that admissible dimensions, weight




and other similar charactoristics of the system by, are given. Then the
optimal replacement problem can be formulated as follows. To determine

| max® - T (1 — g2 @) |

(57}

with the conditions

n

Vaz by (o= 4.2, m) (3

fea '

where x; » 1 are integers. (4)

In the context of the problem, xj must be integers, since these
represeni the number of elements. Here the optimality criterion ¢ is a
concave function of the variables xj. Thus the optimal replacement program
is formulated as a concave integer programming problem. At the present time,
direct methods for solving problems of this class do not exist. 1

Problem (2) through (4) can be replaced by the problem of finding
n

min (-1n ¢) = min ¥ - In(1 - q*i) = min L ¢, (x.)
i=1 1 i=1 +*

=

subject to restrictions (3) and (4).

Here ¢; (x3) = -In(1 - qixi) is a counvex function (see the figure, curve 1).
The objective function for this problem has the property that it is a sum of
convex functions, each of which depends only on a single variable. A procedure
for reducinf this problem to a linear programming problem is described in the
literature.: The optimal solution for the latter problem is an integer solution.

f)

L]

1 D.B. Yudin and Ye.G. Goldstein, '"Problems a1d Methods of Linear
Programming,'" Sovetskoye Radio, Moscow, 1961,
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However, a practical application of this method is difficult because of
the high dimensionality of the corresponding linear programming problem. The
same remark also applies to dynamic programming methods, the application of
which to problems (2) through (4) has been studied.l

An important special case of the optimal replacement problem is the case
when the dimensions of the system are restricted only to one paramocter, for
example, weight or volume. Then the number of restrictions of type (3) equals
one (m= 1),

In this case, the problem can be solved efficiently by the following
method.

We will consider the problem:

"

min }_‘,tp‘ (zy) min FX. (5) : : .

T
with

2 a‘zi < bc (6)

im]

where X; » Xj, can assume only discrete values

7
Tio -k kb, (k=1,2,...) e

Here ¢;(xj) are convex, monotonically decreasing functions of a single
variable; h > 0 is the discrete step size, b>0 and a; >0 (i = 1,..., n).
For the all-integer case, Xjg =1, and h = 1. Generally speaking, the
discrete step size can be different for various variables: h = h(i).

This case is easily reduced to the case h = const by introducing new
variables of the type x'; = kx; and is the case considered here.

Suppose that for all i, xj = Xjg. It is clear that in this case
inequality (6) is satisfied, sincc in the contrary case a solution does not
exist, We will determine a decrease in the objective function (5) by increasing
each of the unknowns by h: ¢;(xj) - ¢1(xjg +h) > 0(x = 1, 2, ..., n). We remember
that ¢; are monotonically decreasing functions.

Dividing this quantity by a;, we obtain §&; -- the decrease in the
objective function per unit weight. In the general case, by weight we mean a

1 R. Bellman and S. Dreyfus, "Applied Dynamic Programming,'" Nauka, Moscow,
1965,




property which can be expressed by the coefficient b where the unit weight
of each variable x; equals aj.

Among all unknowns we find that unknown which insures a maximum decrease
in the objective function per unit weight, i.e,, we find

]
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We .increase the value of x) by h and verify condition (6). If it is
satisfied, then for xy we have a new value which has been increased by h
in comparison with the previous value. We again compute the quantities (8),
but here, instead of xkg we take the new value xyg + h. We notice that
the quantity (8) must be computed only for 1 = k, because for all remaining
i values it remains unchanged. This considerably shortens the computational
effort. We again detcrmine

max P, (-"() - 'N ("( 4-m - @, "",) —®, (7',. - h)
i

1
4y a,

and if condition (6) is satisfied, we increase x, by h. The computation
continues until either the inciease of the current x, by h leads to:

a) attainment of equality in (6) (then the value x, is replaced by x, + h,
and the computation terminates), b) the violation of condition (6).

We then determine Xj, for which the quantity

@; () — @ (r; - h) N
__”)—__ =

9;

assumes a value which is next to

max P (f,)—-‘P‘ (‘T{+/’) .

i a;

If, while increasing this x; by h condition (6) is satisfied, x;
is replaced by Xj + h and the calculation continues. If among all xj ~there
is no xj which can be increased by h without violating condition (63, compu-
tation terminates.

It can be shown that the method shown above gives an exact solution to
problems (5) through (7) if it terminates in attainment of equality in (6).

If for the solution X* which was obtained condition (6) has the form
of an inequality, then the solution, generally speaking, need not be optimal,
In this case let X,pt be the optimum solution. Then F{X*) 3 F(Xopt)°

We will determine a solution x which will be obtained when condition (6)
is violated for the first time, and without regard for this, the corresponding x;

-4-
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are increased by h and the computation is considered terminated. Clearly
then the inequality F(X*) 3 F(Xopt) » F(X) will hold,

From here we have an estimate for the constructed solution
F(X*) - F(Xope) & F(X*) - F(X).

For the optimum replacement problem,

o s Sl —wnin  ~laa- -t g 1—g
e 3 = 5 =g in

1-—q:‘ '

In addition to problems (5) through (7), the above method is applicable in the
following cases.

1, &;(xjp) > 0 and ¢;j(xj) are convex functions which are not

necessarily monotonically decreasing (curve 2). In this case, every time
after increasing the current x; by h, one must verify the sign of

§; (x4 + h). In addition to the usual condition for terminating the
calculation, in this case, each xj can be increased only until

the condition §&; » 0 takes place.

2. ¢3(x;) are monotonically increasing convex functions, with
8ixi0) < 0 (line 3) and condition (6) has the form

" (6"
EB(J:( > b,

ln[

3. ¢3(x;) are convex functions and condition (6') holds. In this case,
for xjp we can take some quantities which exceed considerably their optimum
values and for which 6;(xjg) < 0, and condition (6') is satisfied. The move-
ment takes place in the direction of decreasing Xxj.

4, Problems (5) through (7), in the case of continuous change of variables.
For a sufficiently small step, an optimum solution can be attained with

arbitrary, preassigned precision. To reduce the amount of computation, the
step size need only be decreased sufficiently near the optimum.
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