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ABSTRACT 

The formulation of the Grüneisen coefficient based on the velocity 
doubling approximation is used to define a normalized Grlineisen coefficient. 
A new integral formulation for the free surface velocity is then written in 
terms of this normalized coefficient.    On the assumption that the specific 
energy of the solid at 0 "K is a known function of the specific volume and 
that the bulk sound speed in the uncompressed state is a known quantity, 
the Hugoniot of the solid is chosen to be that curve,  among a family of 
curves lying on a Mie-Griineisen constraint surface, which maximizes 
the free surface velocity.    A differential equation for the resulting Hugoniot 
is determined and its solution is approximated by the first three terms of 
a series expansion.    This expansion furnishes a quadratic expression for 
the shock velocity in terms of the particle velocity all of whose coefficients 
are given by formulas involving physically meaningful quantities.    Calcu- 
lations have been made in the case of aluminum and have been found to 
agree with the experimental data out to 340 kb very closely.    A preliminary 
check for sodium metal is also given. 
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THE HUGONIOT OF A SOLID DETERMINED BY MEANS 
OF A VARIATIONAL PRINCIPLE 

I.    INTRODUCTION 

A much used form of an equation of state for solids is the so-called 

Mie-Grilneisen relation, 

P-PC{V)=-^(E-EC(V))    . 

where p   and E   are the pressure and specific internal energy at 0 c K,  and rc c 
F,  the Gr'uneisen coefficient,   is a function of volume only.    One way of 

implementing this relation for arbitrary (p,  v,  E) states involves taking p, 

E to be known Hugoniot states p   ,   E   ,   noting that p    = -E   (v),  and taking 
H        H c c 

for F one of the several formulas available from the theory of lattice 

dynamics (Slater     , Dugdale-MacDonald     ,   Zubarev-Vashchenko      ), 

which express P in terms of E   and its derivatives.    The resulting nonlinear 

differential equation is then solved for E .    With p ,   E   and T then known 
c rc       c 

functions of v,  the Mie-Grilneisen relation can be used to describe off- 

Hugoniot states. 

The shortcomings and inconsistencies of these lattice-dynamical 

formulas for the Gr'uneisen coefficient,  and an account of what this implies 

in geophysical calculations relating to the internal structure of the earth, 
(4) 

have been given by Shapiro and Knopoff     .    Considerable interest there- 

fore attends the possibility of determining the Gr'uneisen coefficient by an 

independent approach.    In the work reported here, based on a variational 

principle,  an equation is derived which relates the cold energy function E 

and the Hugoniot,  so that knowledge of one yields the other and hence the 

Gr'dneisen coefficient.    This result is illustrated in the case of aluminum, 
(5) 

where an analytic formulation for E   due to McKenna and Pastine       is 
c 

used to derive the Hugoniot function.    The latter function is found to agree 

with available experimental data very closely up to 340 kb.    An interesting 
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by-product in this regard is a quadratic expansion in the particle velocity, 

which approximates the shock velocity; the coefficients of this expansion 

are simple formulas involving physically meaningful quantities. 
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II.    ANALYSIS 

As was shown recently by Heyda       the temperature-independent 

Grüneisen coefficient of a solid,  r(u),  may be expressed in the form 

r(u) = r*(u)G   , (i) 

where r*(u) is the form which T takes on the basis of the approximate 

doubling of the particle velocity u behind a planar shock wave moving 

through the solid with speed D and arriving at a free surface parallel to 

the shock front.    The function r*(u) was found to be 

r.(u)=    (D-u)(D + uD')D'       i (2) 

where the prime indicates differentiation with respect to u.    The function 

G,  which can be regarded as a normalized Grüneisen coefficient, 

G = r(u) / r*{u)     . (3) 

was shown in turn to be given by 

r r 

G = I -^ J      I ! " —T I   + —T    • (4) 

where u    = u,    - u and u,   is the free surface velocity. r        fs fs ' 

Solving Eq.  (4) for u     and integrating with respect to u,  we may 
r 

write 

u=r/II 
r   Jo       *   1 . e 

2^ 
e  

2G 
du    , (5) 

where 

e = uD'  / D     . (6) 
i 



It is convenient to change tuv  jj/Hependcnf variable trom u to c    au.-y 

to regard u,  G,   u   and D as functioi     of f..    If e should be kRown from ^n 
r 

independent source as a function of u,   t^.e it!ation   b' ma/ be inck^r. up- 

as a differential equation for the detertmi ^.lio i of the Hugomot function 

D(u).    Making this change we can rewrite Eq,   {^) '    tKr form 

r   ^o ▼   i.? 

~2 
^  dV    , (7) 

G(e) 

where now the prime indicates differentiation with respect to :. 

For e arbitrary but fixed it is natural to regard u   H u  ifZ> ul as ?. 
r       r " 

functional defined on the set of functions G and u and to consider e^t>*e'mzing 

u [G, u] over a family of curves G = G(e),   u = u{e) lying on some c: .'- 
r '   

straint surface g = g{e, G, u) = 0. 

To obtain a suitable function g we refer to the Mie-Grlineisen form 

of the equation of state of a solid,  namely, 

PCM=^[E-EC(V)J      . (8) 

where v is specific volume and p,   E denote pressure and specific energy, 

respectively; the subscript c indicates pressure and specific energy at 

0oK.    Taking p,   E along the Hugoniot of the solid centered at the normal 

conditions 

PH = 0.  EH   =Ec(vo)+Eo    , (9) 

where v    is the specific volume of the solid at T = T  ,   p = 0, and E   is 
o ' o    r o 

the specific thermal energy of the solid at these same conditions,  (in our 

calculation 

may write 

calculations of the aluminum hydrostat we shall take T    = 300 0K),  we 
o 

—      E-El-p+p=0     . v    L   c        H J       rc      rH (10) 
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Since 

and 

c c (11) 

I 
I 

EH = EH +-r(vo-v> • 

v/o can,   upon making the definition 

(12) 

£*  (v) - ^   (v) - E  (v ) - E      . C       i       c v   c     o o 
(13) 

rewrite Eqj (10) as 

v   L    c        2       o J 
(Vo-v)J+Ec(v)+pH = 0 (14) 

^rom the Hugoniot relation (for a derivation of the Pankine-Hugoniot 

relations,   see Ref.   (7)) 

we obtain 

v = v 

V 

dv 
du 

('-*) 

vo(l.c) 

(15) 

(16) 

so that 

dE 
 c 
dv 

dE 

v   (1 - e)     du 
o 

or,  in a less accurate but more convenient notation/ 

*       1 
E       v) = - r E      u      . 

c v   (1 - e)      c (17) 

Recalling that 



% \ 

\   PH
=P

O
DU

'    PH
(V

O-
V)=U2

'    
P
O
=1/V

O    ' (18) 

\ ' 
1 ■ 

we find,  upon substituting from Eqs.  (15),  (17),  (18) into Eq.  (14),   that 

(19) 
r   / *   i   2\    E;^ 

DTT VEc-2u j-rrr + u = 0 • 
I 

From Eqs.   (1) and (2),   however,   it follows that 

^= e(l+e)G(e)//u    . (20) 

which,   substituted into Eq. (19),  yields the desired form of the constraint 

surface g = 0,  namely. 

g(e,  G, u) = e(l + e)G(e) - «vJ.  e) = 0    , (21) 

\ 

where the function H is defined by 

„(u,r[^.^]/[E:-i^ . (22) 

i. In the space of the variables e,   G,   u the equation (21) constitutes a 

surface passing through the curve G = G (e),   u = u(e).    For each choice of 

the function G,   there is determined a corresponding function u(e). 

, Assume then that the functional u  [G,   U] has an extremum for the curve 

''      ; 

G = G(e), i u = u(e)    . (23) 

Then since g    and g    do not vanish simultaneously at any point of the 

surface (21),  there exists (see Theorem 2,   p.  46 of reference (8)) a 

function X(c) such that the curve (23) is an extremal of the function 

/       [F + X(i)g ]  di      , 

6 



where F is defined Dy 

F = u (e) 4f — 
e2G(E) 

(24) 

the necessary conditions for which are given by 

FG + XgG = 0'     X*u = ^Fu'     • 
(25) 

Eliminating X in Eqs.  (25) and,  for convenience,  letting 

^ c2G 
(26) 

we obtain the single equation 

u P^H   = e(l + e)    P    + G 
G   u e [P

e
+G'PGl     • 

However,   from Eq.  (21) we have 

e (1 + e) G' + (1 + 2e) G = H u   + H 

(27) 

(28) 

so that u1 and G* can be eliminated simultaneously from Eqs.  (27),   (28) 

and no differential equation need be solved to obtain G (c) and u(e).    The 

result is 

1(1 + 26)0 - H   1 PG = e(l + e)Pe (29) 

When Eq. (26) is taken into account in Eq.  (29) and the resulting differen- 

tiations carried out,  we find the result 

2 - (1 - e)H 
G(e) = (30) 

1 - e + 2e 



From Eq. (22) we note that 

(1 - e)H   = H + *      1    2 
E    - -ru 

c     2 

= e (1 + e)G + _*      1    2 
E    - - u 

c     2 

so that Eq.  (30) assumes the final form 

G(e) = 
1 + 3e 

2       ,r* u    - E 
 c 

1 2     „* 
-u    - E 
2 c 

(31) 

where the function u = u(e) is obtained by eliminating G(e) between the 
ate Eqs. (21),  (31),  the function E    being assumed to be known.   Actually,   it 

is easier to obtain the function e = e (u).    We find that it satisfies the 

equation 

:
3hE*+u2 

+ 3e ''u    E' (u)-u   +e    3u2-2E*     +u    E^(u) - u    = 0.    (32) 

From the relation (17) we may readily show that 

uE^u) = (1 - e)(x -x^E^x)    , (33) 

where x = v/v _, and v   T,is the specific volume at T - 0 " K and p = 0. 
oK oK r 

With the relation (33) we may then recast the cubic equation (32) 

in the form 

(u2.E*)(l-e)2   =   (1 + 3e
2) (x - x ) E' 

L o     c C C 
(34) 

where a factor (1 - e) has been divided out.    Equation (34) can now be 

solved for e,  and hence for D ,  to get 



'•^h I 4Q - 3Q 
3Q 

T 

]■ (35) 

where 

Q = 
(x - x ) E* (X) - E* 

o     c ^ ' c 
2        IT* u   - E 

c 

Since 

E   (x) = -v „p 
c oKrc 

and 

x = x   (1 - —)     ,       x    = v  /v 
o D' o       o     oK 

(36) 

we may rewrite Q as 

v   up 
o   rc 

E   + 
Q = 

V 
u   - E    + E 

c        H 

upon using the relations (13) and (9). 

We note that Q -» 1 as u -»0.    Hence the minus sign in Eq.   (35) must 

be chosen in order that D   remain finite.    The indeterminacy in the right 

member of Eq.  (35) at u = 0 may be resolved by rewriting it in the form 

D 
u 

1 -Q 

V 1 +    V 4Q - 3Q' 

and noting that 

1 - Q 
u ■ 

v  p 
orc 
D 

2 
u   - E   + c ^ 



/) 

Since E   and p   are generally known as functions of x,  and x in turn 
c rc 

may be expressed in terms of u and D by means of relation (36), we see 

that the Hugoniot function D = D(u) may be obtained by solving the first 

order nonlinear differential equation 

D' =  /{u, D)     . (37) 
• 

where 

and 

/(a. D) =  ^ D^ =r (38) 
1 +   V4Q(u, D) - 3Q2(u. D) 

v  up 
o     c 

—r  -E+Eu uD-vp 
Q —^ c- ^-   .      R = -5 °-^-     . (39) 

u    - E   + EIT u    - E    + ETT c        H c        H 
o o 

subject to the initial condition 

u = 0, D = D(0)HC       . (40) 
o 

Since a closed form solution of Eq.  (37) appears unlikely, the 

solution D(u) must be obtained either through numerical integration or 

expansion in series.    If we denote the expansion for D through the 

quadratic term by 

2 
D = c    +8u + bu        , (41) 

o 

we find by putting u = 0 in Eq.  (38) that s is given by the simple formula 

8 = —2E         ' (42) 

o 

or cquivalently, 

10 



) 

x   E'   (x ) 

o 

Continuing, we find upon differentiating (37) with respect to u and then 

putting u - 0 that 

T^" ^v        c     - x     E    (x ) - 6 s   E 
b = 2-iOI =      0        "     C    0 2. . (44) 

Z 4E   c 
o   o 

It might be noted that the value of s given by forraula (43) will normally 

differ from tabulated values of the slope of the "linear" shock velocity- 

particle velocity relation since the latter represents an empirical fit to 

experimental data over a range of particle velocities well beyond u = 0. 

TheHugoniot formulation (38) will in addition reflect passage through a 

minimum point on the curve E    = E   (v) at v = v  „ as v decreases from r c        c oK 
v ,  i. e. as u increases from u = 0. 

o 

Additional coefficients beyond D (0)/2 may be calculated by the 

same procedure.    However existing analytical formulations for E   (x) 

do not offer sufficient accuracy in the values of E   '     (x ) beyond n = 2. 
CO 

Anticipating that such formulations may become more accurate in the 

future we have calculated one additional coefficient: 

D'^O)       x 3 E'" (X ) - 248E c   D" (0) - 8E s3 + 2KC 2 

, OCO OO O O , ATK h   =     . (45) 
6 12E   c 

0    O 

The Gr'üneisen coefficient r(u) is now readily available from 

Eqs. (2), (3), and (31).    We find 

2 fü'(u)-el  (1+e) E  +u2 -   TE   - E   (v )] 
r/ . I      *  '      i  * )       o I   c       c '  o'J   . , r(u)= 1   p-—  )   .    (46) 

1 + 3e I E   +~ u   -   E   - E   (v ) 
I        o    2 L   c       c     o J 

11 



or,   equivalently, 

r(u) = (D -u) 

E   (u) 
c 

1 -€ 

_♦      I   2 
E    - -u 

c     2 

(47) 

The initial value of T turns out to be r(0) = 2s,  whence from Eq.   (43) we 

obtain 

r(0) = 28 = 
x E   (x ) 

o   c     o fG(0) = 2J       . (48) 

a result which follows directly from the Mie-Grtineisen relation (14) by 

putting v = v . 

That the extremal (23),  where G(e) and u(e) are defined by the 

relations (31) and (32),  maximizes the functional u [C, u] is evident from 

the fact that for the choice G s 1 (which corresponds to taking T in accord- 

ance with the velocity doubling approximation) we obtain u    = u,   whereas a 

three term expansion of the integral in Eq.  (5) yields the result 

u + 
6c 2 

o 

(49) 

which in view of the result (48) shows that u   > u.   Indeed,  with c    assumed 
r o 

to be known and with D « c    + su,   the D function (or,   equivalently,  the G 

function) which maximizes u   is that for which s[r(0) - s],   considered as 

a function of s,  is a maximum.    This occurs evidently for r(0) = 2B,  in 

agreement with relation (48). 

The approximate relation (49) is of interest in its own right as it gives 

good agreement with tabulated values of u /u for many of the metals studied 
(7) r     * 

by Rice,  McQueen,  and Walsh     .     Using the T   and s values listed there, 
o 

we find the comparisons for copper,   24 ST aluminum,   silver,   and zinc 

shown in Table I. 

12 



TABLE I 

COMPARISON OF VALUES FROM EQ.  (49) 
WITH THOSE GIVEN IN REF.  7 

Copper 

p(kb) u(cm/uBec) ur/u[Eq.  (49)1 

100 0.0263 1.001 
300 0.0681 1.004 
500 0.1025 1.010 

24 ST Aluminum 

100 0.0580 
300 0.1465 
500 0.2145 

ur/u[Ref.7l 

1.001 
1.005 
1.012 

1.002 1.003 
1.013 1.015 
1.028 1.030 

Silver 

100 0.0256 1.002 1.001 
300 0.0658 LOU 1.010 
500 0.0992 1.024 1.022 

Zinc 

100 0.0378 1.003 1.004 
300 0.0925 1.019 1.022 
50Ü 0.1373 1.043 1.042 

13 



III.    EXAMPLE FOR ALUMINUM 

For aluminum we employ the analytical formulation given by 

McKenna and Paatine in Ref.  5, 

V'>''oKte)['2ß,,-xl'3,-^(1-xl/V|' ™ 
where 

v ., = 0. 366 cc/gm,    v    = 0. 371 cc/gm, 
oK o 

A = 0.6271 Mb,    ß = 3.772 

E    = .00164 Mb cc/gm,      c    = . 5404 cm/|i8ec,     T    =300oK. 
o o o 

Substituting into formulas (43),   (44),  and (48) we obtain 

8=1.171, b = 1. 303 usec/cm, T   =2.342, 
o 

so that the Hugoniot function D is approximated by the three term 

expansion 

D = 0. 5404 + 1. 171 u + 1. 303u2        . (51) 

This function is plotted in Figure 1 and agrees with the experimental 

data for 24 ST aluminum,  given by Walsh and Christian in Ref.   (9) t-«d 

Walsh,   Rice,  McQueen and Yargor in Ref.  (10),  remarkably well up to 

u = 0. 165 cm/usec, which corresponds to a pressure of approximately 

340 kb.    Byond this point the curve diverges slowly from the data taken 

from Ref.  (10).   An additional term in Eq.  (51) would remedy this if 

derivatives of E  (x) of the third and higher orders were known at x = x 
c o 

with sufficient accuracy.    This,  however,  puts too great a strain on the 

empirical form (50). 

14 



IV.    CONCLUSION 

The tentative conclusion is that the aluminum hydrostat is deter- 

minable from the variational principle proposed here and that the same 

may well be true for other solids.    Accepted as a general principle,   the 

procedure may be reversed and the cold energy may be obtained by 

solving the linear differential equation (32) for E   with an accurate experi- 

mentally determined Hugoniot as input.    Calculation of the Grüneisen 

coefficient can then be made directly from the Mie-Griineisen relation (8), 

thereby avoiding any use of formulas based on the theory of lattice 

dynamics. 

15 
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APPENDIX 

We list here some additional formulas of interest which are derivable 

from those obtained in Section II. 

First of all we may readily show that Eq.  (32) may be converted to 

the form 

1 - e + 2e 
2 2 

GJei. 
1 + 3e 

G(e) 
'H 

(A-l) 

which relates the Hugoniot and the cold pressure in an interesting way. 

Next by requiring this relation to hold in the limit as e -» 0,  we obtain 

G'(e) = 0      , 

e=0 

GV) 
2c 

= -12 + 

e=0 
E s 

o 
2 

(A-2) 

and the limiting result 

"c'V = 
4p  c 

o  o 

12 + G"{e)|     1 

le=oJ 

= - 2 p  E  s 
o   o 

(A-3) 

From Eq.   (4),  however,  we find that 

G  (0) = 
#)'- 

2(ro..)[coD>)..2] 
(0)  " 3 

s 

so that in conjunction with relation (A-2) we obtain an additional term for 

the series (49).   namely, 

18 



M 
3      j c^" (0) - s2  I u4 . (A-4) 

4c 
o 

Finally,  by differentiating Eq.   (3),   taking note of Eq.   (2),  and 
\ 

again employing relation (A-2),  we find 

r' (vo) =   ^- [ c^D" (0) + s (ay* 1) ] (A-S) 
o 

Close to x = x ,  then,  we have 

i r (x) = r (x ) + r' (x ) • (x - 

Thus for alunciinukn, 

(x) = r(x ) +r   (x ) • (x-x )     .       x = v  /v „ 
o o o o    oK. 

r{l) = r(l.01366) + 3.714(1 - 1.01366) 

= 2. 300 
r 

i 

This compares favorably with McKenna and Pastine       ,  who find 

r{l) = 2.301, \ 

A final example Is the evaluation of F    = 2s for metallic sodium. 
o 

From Eq.  (43) we have 

.i 

XoE c(Xo)       (1.0299) (0.00314) 
o ""   "     E \ "       0.002784       -*      "    ' 

which compares wellwith the value of 1. 15 obtained by Pastine in Ref.   11, 

in which he evaluated the role of anharmonic contributions in determining 

F py a lattice dynamical approach.    In this calculation we obtained 

p    =-. 00314 Mb by interpolating in Table I of Ref.  (11).    The value of E 

was obtained from the Debye expression 
\ 

i 

3RT 
E   = 

o 

\ i 19 
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5 3 
where R = 8. 314 x lo"   Mb cm  /dee,  T    = 300 0K, A = 22. 997 gm, and 

o 
D      is the Debye function with argument 6(x 1 = 140 0K obtained from an 

approximate formula given by Pastine       .    The value of D^—-r) turns 

out to be 0.85578. > 
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