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ABSTRACT

The formulation of the Griineisen coefficient based on the velocity

doubling approximation is used to define a normalized Gruneisen coefficient,.

A new integral formulation for the free surface velocity is then written in
terms of this normalized coefficient. On the assumption that the specific
energy of the solid at 0 °K is a known function of the specific volume and
that the bulk sound speed in the uncompressed state is a known quantity,
the Hugoniot of the solid is chosen to be that curve, among a family of
curves lying on a Mie-Gruneisen constraint surface, which maximizes

the free surface velocity, A differential equation for the resulting Hugoniot
is determined and its solution is approximated by the first three terms of

a series expansion. This expansion furnishes a quadratic expression for
the shock velocity in terms of the particle velocity all of whose coefficients
are given by formulas involving physically meaningful quantities, Calcu-
lations have been made in the case of aluminum and have been found to
agree with the experimental data out to 340 kb very closely. A preliminary
check for sodium metal is also given,
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THE HUGONIOT OF A SOLID DETERMINED BY MEANS
OF A VARIATIONAL PRINCIPLE

I. INTRODUCTION

A much used form of an equation of state for solids is the so-called

Mie-Grineisen relation,

I'(v)
p-p (V) = (E-Ec(v)) :

where P, and Ec are the pressure and specific internal energy at 0 °K, and
I', the Gruneisen coefficient, is a function of volume only. One way of
implementing this relation for arbitrary (p, v, E) states involves taking p,
E to be known Hugoniot states Py’ EH, noting that P, = -E'C(v), and taking
for I' one of the several formulas available from the theory of lattice

dynamics (Slater(l), Dugdale-MacDonald(z), Zubarev-Vashchenko(3)

)s
which express I in terms of EC and its derivatives. The resulting nonlinear
differential equation is then solved for EC. With P Ec and [' then known
functions of v, the Mie-Gruneisen relation can be used to describe off-

Hugoniot states,

The shortcomings and inconsistencies of these lattice-dynamical
formulas for the Gruneisen coefficient, and an account of what this implies
in geophysical calculations relating to the internal structure of the earth,

f(4). Considerable interest there-

have been given by Shapiro and Knopof
fore attends the possibility of determining the Grineisen coefficient by an
independent approach. In the work reported here, based on a variational
principle, an equation is derived which relates the cold energy function Ec
and the Hugoniot, so that knowledge of one yields the other and hence the
Gruneisen coefficient. This result is illustrated in the case of aluminum,
where an analytic formulation for EC due to McKenna and Pastine(s) is
used to derive the Hugoniot function. The latter function is found to agree

with available experimental data very closely up to 340 kb, An intcresting

3
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by-product in this regard is a quadratic expansion in the particle velocity,
which approximates the shock velocity; the coefficients of this expansion

are simple formulas involving physically meaningful quantities,
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II. ANALYSIS

(6)

As was shown recently by Heyda' ° the temperature-independent

Griineisen coefficient of 2 solid, I' (u), may be expressed in the form
F(w) =T* (WG , (1)

where I‘*(u) is the form which I" takes on the basis of the approximate
doubling of the particle velocity u behind a planar shock wave moving
through the solid with speed D and arriving at a free surface parallel to
the shock front. The function I'*(u) was found to be

I (o) = (D-u)(lz+uD)D , (2)

D

where the prime indicates differentiation with respect to u. The function

G, which can be regarded as a2 normalized Griineisen coefficient,
G=C(u) /T*(w) , (3)

was shown in turn to be given by

2
D 1 !
G=(uD') [1' ,z]+ 2z (4)
r r

whereu =u, - uandu, isthe free surface velocity.
r fs fs

Solving Eq. (4) for u'r and integrating with respect to u, we may

write
2
a i-
" f — au , (5)
r v 1-¢ G
where
¢c=uD /D . (6) ‘

.
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It is convenient to change tu. independent variable trom uto v and
to regard u, G, u and D as functior - of &, f ¢ shou'd be krown from un
independent source as a function of u, t..e sclation ‘»* may be lockad up..-
as a differential equation for the determii 2tic : i the Magoniot {function

D(u). Making this change we can rewrite Eq. {5, = thke form

. .
~ l1-¢ , -
u =f ul (e) __—2_ d( . (l)
AN 8 1-%
where now the prime indicates differentiation with respect to .

For € arbitrary but fixed it is natural to regard ur = urL";,. ulas 2
functional defined on the set of functions G and u and to consider e.#r s nizing
ur[G, u)] over a family of curves G = G(e), u = u(e) lying on some cu.:-

straint surface g = g(e, G, u) = 0.

To obtain a suitable function g we refer to the Mie-Grilneisen form

of the equation of state of a solid, namely,
. IO g
p-p M==2|E-E ™| . (8)

where v is specific volume and p, E denote pressure and specific energy,
respectively; the subscript c indicates pressure and specific energy at
0°K. Taking p, E along the Hugoniot of the solid centered at the normal

conditions

=0, Ey =E_(v)+E_ , (9)

where Yo is the specific volume of the solid at T = To' p=0, and Eo is
the specific thermal energy of the solid at these same conditions, (in our
calculations of the aluminum hydrostat we shall take To = 300 °K), we

may write

; ]
. [EC-EH -p tPy=0 . (10)

[

”
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Since g = 1 |

ne T " J:.c(v) (11)
and \
\ : PH 12
N B - B S, =W ()
|

w= can, upon making the definition.

|

. o5 .‘,‘,\ -7 - - . ‘ 1
\ B AU E (v) - E, (13)
! . ,
rewritc Eql (10) as
Lige o ]+¢ - |
- Ec- 3 (v(‘.o-v) +Ec(v)+pH—0 : L (14)
\
. From the Hugoniot relation (for a derivation of the Pankine-Hugoniot
|
. relations), see Ref. (7)) \ ‘
: ; \ \
v-vo(l-D) : (15)
\. \
we obtain '
_ dv v, (1-¢) ; l'-b
\ du D ’ (8.6
so that \l
\ ' dEc i D dEC . |
dv ~ ° v (I-€) du !

or, in a less accurate but more convenient notation, '

'

4 V | \

. » 1 i D 1 :
r | v F_.c(v)---————v (1-0 Ec(u) 5 (17)
! o
N Recalling that



2
=0 Du, pylv_-v)=u’ p_ =1/v (18)

|
we find, upon substituting from Egs. (15), (17), (18) into Eq. (14), that

\ : E'(ui :
T * 1 2 c _
Doa (EC-Zu )_l-e +u=0 . (19)

\
!

From Egs. (1) and (2), however, it follows that

DI:u=e(l+§)G(e)/u : (20)

which) substituted into Eq. (19), yields the desi;ed form of the constraint

\

surface g = 0, na.meAly.

| jge G w=c+aG(e) - AW =0 (21)
\

where the function H is defined by !

uE' (u) '
H‘\’[T—Z] [=2-327] | (22

In the space of the variables ¢, G, u the equation (21) constitutes a
surface passing through the curve G = G(e), u = u(e). For each choice of
the function G, there is determined a corresponding function u(e).

Assume then that the functional ur[G, .u] has an extremum for the curve

\

| G=G(), iu=zu(e) . (23)

Then since g and B, do not vanish simultaneously at any point of the
surface (21), there exists (sce Theorem 2, p. 46 of reference (8)) a

function A (€) such that the curve (23) is an extremal of the function

€
f [F+x()g]) ae ,
[0}

:

———— T




e —

where F is defined by

1 2 ‘
Feu @y 25— . (24)
1-¢ G{e)

the necessary conditions for which are given by

= = — . 25

1 ez
P= — (26)
l1-¢G
we obtain the single equation
] - 1
uPGHu-e(l+e) [P€+GPG] . (27)
However, from Eq. (21) we have
e(l+e)G'+(l+Ze)G=Huu'+H€ ; (28)

so that u' and G' can be eliminated simultaneously from Eqs. (27), (28)
and no differential equation need be solved to obtain G (¢) and u(e). The

result is

[(l+2e)G-He] PG=e:(1+e)P€ A (29)

When Eq. (26) is taken into account in Eq. (29) and the resulting differen-

tiations carried out, we find the result

2-(1-¢)H_

1-e+2€2

G(e) = (30)



From Eq. (22) we note that

(l-e)He=H+

=e(l+e)G+

so that Eq. (30) assumes the final form

2
G (¢) = AL — . (31)
1 + 3¢

where the function u = u(c) is obtained by eliminating G (¢) between the
Egs. (21), (31), the function E”; being assumed to be known. Actually, it
is easier to obtain the function ¢ = ¢ (u). We find that it satisfies the

equation

3 % 2 2 ' 2 *1 1
e | 2E% +u” 43¢ u [E (w-u+e 2a -ZECJ+u E (0)-ul=0 (32

From the relation (17) we may readily show that

uE'c(u)=(1 - e)(x-xo)E'c(x) , (33)

where x = v/vOK and voklis the specific volume at T = 0°K and p = 0.

With the relation (33) we may then recast the cubic equation (32)

in the form
(UZ-E:)(I-G’,)Z = (l+3ez) [(x-xo)E;(x)-Et] 5 (34)

where a factor (1 - €) has been divided out. Equation (34) can now be

solved for ¢, and hence for D', to get




RV e
u

1 -3Q
where ! N
(x - xo) Ec (x) - Ec
Q= 3 .
u - E*
c
Since
'
E:c feg) = “VoKPe
and
u
x-xo(l -D) , xo-vo/voK (36)
we may rewrite Q as
v _up
0 G
-E +
Q- D c EHO .
2
u - Ec + EH
o

upon using the relations (13) and (9).

We note that Q -1 as u=+0. Hence the minus sign in Eq. (35) must
be chosen in order that D' remain finite. The indeterminacy in the right

member of Fq. (35) at u = 0 may be resolved by rewriting it in the form

D 1-Q

u 1+ v 4q - 302

and noting that

u_vopc
1-Q D
u )
u-EC+EH



Since Ec and p,are genecrally known as functions of x, and x in turn
may be expressed in terms of u and D by means of relation (36), we see

A that the Hugoniot function D = D (1) may be obtained by solving the first

A order nonlinear differential equation
D'= f(u D) , (37)
]
where
R (u, D
f(u D) = e D) , (38)
1+ V4Q(u, D) - 3Q%(u, D)
and
' v up
-E +E uD - v
H P
Q= D2 c o , R = > o' ¢ . (39)
u-E':+E:H u-Ec+EH
o o
subject to the initial condition
u=0 , D=D(0)sc:o (40)
Since a closaed form solution of Eq. (37) appears unlikely, the
solution D (u) must be obtained either through numerical integration or
expansion in series. If we denote the expansion for D through the
quadratic term by
2
D=c0+su+bu ’ (41)

we find by putting u = 0 in Eq. (38) that s is given by the simple formula

ve.(v)
=m0, (42)
o

or equivalently,

10
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N

B = ——— . (43)

Continuing, we find upon differentiating (37) with respect to u and then

putting u = 0 that
2 2 v 2
= D"(O) i R Ec(xo) -6s Eo

2 4E c
oo

. (44)

It might be noted that the value of s given by forraula (43) will normally
differ from tabulated values of the slope of the ""linear' shock velocity-
particle velocity relation since the latter represents an empirical fit to
experimental data over a range of particle velocities well beyond u = 0.
The Hugoniot formulation (38) will in addition reflect passage through a
minimum point on the curve EC = EC (v)at v = VoK 2V decreases from
vy i.e. as u increases from u = 0.

Additional coefficients beyond D"(O)IZ may be calculated by the
same procedure. However existing analytical formulations for Et (x)
do not offer sufficient accuracy in the values of Et(n) (xo) beyond n = 2.
Anticipating that such formulations may become more accurate in the

future we have calculated ore additional coefficient:

D"(0) x E" (x ) - 24sE c D" (0) - 8E s> + 2sc °
- [o] C [o] 0O 0 (o] 0o
h = - > . (45)
6 12E ¢
[o I o)

The Gruneisen coefficient I' (u) is now readily available from

Eqs. (2), (3), and (31). We find

2 [D'(u)-e] (1+¢) Eo+u2- [EC-EC(VO)]
2 1 2

1+ 3¢ E°+-2- u -[EC - Ec (vo)]

I'(u) =

v (46)

11
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or, equivalently,

['(u) = (D -u) X . (47)

The initial value of ' turns out to be ' (0) = 28, whence from Eq. (43) we
obtain

X Ec (x )
F(0)=Zs=—°—-E-:——°— ’ (G(O):Z) ' (48)
o
a result which follows directly from the Mie-Grlineisen relation (14) by

tti =V,
putting v = v _

That the extremal (23), where G(¢) and u(¢) are defined by the
relations (31) and (32), maximizes the functional ur[G. u) is evident from
the fact that for the choice G = 1 (which corresponds to taking I’ in accord-
ance with the velocity doubling approximation) we obtain u =u whereas a

three term expansion of the integral in Eq. (5) yields the result

t.1=u+—-(—)——la[r°'s e ,
r 2
6¢

(o]

(49)

which in view of the result (48) shows that u > u. Indeed, with <, assumed
to be known and with D = <, + su, the D function (or, equivalently, the G
function) which maximizes u is that for which s{I'(0) - 8], considered as
a function of 8, is a maximum, This occurs evidently for I'(0) = 2g, in

agreement with relation (48).

The approximate relation (49) is of interest in its own right as it gives
good agreement with tabulated values of u /u for many of the metals studied
by Rice, McQueen, and Walsh”’. Using the ‘I‘o and s values listed there,
we find the comparisons for copper, 24 ST aluminum, silver, and zinc

shown in Table 1.

12



TABLE I

COMPARISON OF VALUES FROM EQ. (49)
WITH THOSE GIVEN IN REF, 7

Copper
p (kb) u(cm/usec) u,./ul Eq. (49)]
100 0.0263 1. 001
300 0.0681 1.004
500 0.1025 1.010

24 ST Aluminum

100 0.0580 1.002

300 0. 1465 1.013

500 0. 2145 1.028
Silver

100 0.0256 1.002

300 0.0658 1.011

500 0.0992 1.024
Zinc

100 0.0378 1.003

300 0.0925 1.019

500 0.1373 1,043

13

up/u[Ref, 7]

1.001
1.005
1.012

1.003
1.015
1.030

1.001
1.010
1.022

1.004
1.022
1.042




llI. EXAMPLE FOR ALUMINUM

For aluminum we employ the analytical formulation given by

McKenna and Pastine in Ref, 5,

1/3 1/3
i 3A 2p(1-x "7 _ p(l-x )]
EZO =% o ( 2p) [ e e : (50)

where

VoK © 0. 366 cc/gm, VL= 0.371 cc/gm,

A =0.6271 Mb, B = 3,772

Eo = .00164 Mb cc/gm, €, = 5404 cm/usec, To = 300 °K.

Substituting into formulas (43), (44), and (48) we obtain
8 =1,171, b=1,303 usec/cm, I‘o= 2. 342,

so that the Hugoniot function D is approximated by the three term

expansion

D=0.5404r+l.l‘7lu+l.303uZ . (51)

This function is plo‘ted in Figure 1 and agrees with the experimental
data for 24 ST aluminum, given by Walsh and Christian in Ref. (9) «..d
Walsh, Rice, McQueen and Yarger in Ref. (10), remarkably well up to
u=0.165 cm/usec, which corresponds to a pressure of approximately
340 kb. Byond this point the curve diverges slowly from the data taken
from Ref. (10). An additional term in Eq. (51) would remedy this if
derivatives of Ec (x) of the third and higher orders were known at x =
with sufficient accuracy. This, however, puts too great a strain on the

empirical form (50).

14




IV. CONCLUSION

The tentative conclusion is that the aluminum hydrostat is deter-
minable from the variational principle proposed here and that the same
may well be true for other solids, Accepted as a general principle, the
procedure may be reversed and the cold energy may be obtained by
solving the linear differential equation (32) for EC with an accurate experi-
mentally determined Hugoniot as input, Calculation of the Griineisen
coefficient can then be made directly from the Mie-Griineisen relation (8),
thereby avoiding any use of formulas based on the theory of lattice

dynamics,

15
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APPENDIX

We list here some additional formulas of interest which are derivable

from those obtained in Section II.

First of all we may readily show that Eq. (32) may be converted to

the form

Py (A-1)

which relates the Hugoniot and the cold pressure in an interesting way.

Next by requiring this relation to hold in the limit as ¢ -+ 0, we obtain

2
2c¢ .
]
G'(e)l =0 , G"(e)| =-12+ °2 , (A-2)
€=0 €=0 I‘:os
and the limiting result
4poc:02
p(v)=- =-2p Es ., (A-3)
¢ o s| 12+ G" (¢) °°

=0

From Eq. (4), however, we find that

3 " 2
. 1 [ € 4 2(' -8)|c D (0)-s
G (0)=-3'(—0) ur( )(0) - O [30 ] :
s

so that in conjunction with relation (A-2) we obtain an additional term for

the series (49), namely,

18
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[c D" (0) - 8° ] u . (A-4)
3 o
4c :
. (o]
! \
. \\ i ~
Finally, by differentiating Eq. (3), taking note of Eq. (2), and }
again employing relati‘Fn (A-2), we find
I —-2—\‘[ D"(0) +s(s-1)1 . A-5
(vg) = 5~ [, D (0 +a(s-0] . (A-5)
' o
Close to x = X then, we have
. t
| \ : I
, I'(x) = I‘(xo) +T (xo) . (x-xo) 5 X= vo/voK . ,
|
Thus for aluminum, \
| i
(1) =T(1.01366) + 3.'714(1-1,01366)
; \ =\ 2. 300 \
I o '
This compares favorably with McKenna and Pastine(“), who find
(1) = 2.301. \ \

\ A final example \is the evaluation of I"o = 28 for metallic sodium.,

From Eq. (43} we have

1

[

_(1.0299)(0.00319 _,
= 70.002784 =1 '

o_

1
- on c(xo)
\

\ Eol

which compares well!with the value of 1, 15 obtained by Pastine in Ref, 11,
in which he evaluated the role of anharmonic cor;tributions in determining
r \__by a lattice dynamical approach. In this calculation we obtained

P, = - 00314 Mb by int\’lerpolating in Table I of Réf. (11). The value of to
was obtained from the Debye express;ion

\ \

|
1

3RT T
E=x i\T ) -
o

| ' \ i
'\ | 19 \
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where R = 8. 314 x 10-5 Mb cm3/deg, To = 300°K, A = 22.997 gm, and
Dl- is the Debye function with argument 6(x ) = 140 ° K obtained from an

14
approximate formula given by Pa.stine(l 1 0

. The value of Dl(ﬁ) turns
out to be 0. 85578, \
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