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THE ENERGY CRITERIA FOR STABILITY OF STRUCTURES

by Gerald Wernprier

Member ASCE

ABST RACT

The energy criteria of Trefftz and Koiter, for the critical load upon an elastic system and for

the stability of the system at the critical load, are presented. The presentation employs geometrical

interpretations and simple examples to exhibit the essential fea.ures of the criteria and the related

behavior of the structural system.

INTRODUCTION

If the load upon a structure attains a critical value, the structure buckles. The buckling may

entail a gradual, albeit excessive, deflection as the load exceeds the critical value. Otherwise, the

buckling may mean drn abrupt collapse, so-called snap-buckling. Trhe former occurs if an elastic

system is stable at the critical load and the latter if it is unstable. From a practical viewpoint, the

snap-buckling is the more dangerous phenomenon. Moreover, the structure which exhibits

snap-buckling is also sensitive to imperfections; that is, the snap-buckling of a real (imp:irfect)

structure may occur at loads much less than the critical load of the ideal structure.

The phenomenon of snap-buckling is especia0, prevalent in thin shells and, curiously, the most

efficient shell-like structures are the most susceptible to such catastrophic failure. Consequently, as

our attention turns increasingly to thin shells, to reduce costs and weight and to achieve structural

and esthetic aims, the questions of stability and imperfection sensitivity are paramount.

The determination of the critical load by a stationary L.riterion upon the potentia! energy was

given by Trefftz1 in 1933. However, the question of stability at the critical state and the subsequent

behavior remained unanswered.

A most significant work on the questions of stability at the critical load, post-bIucklri

behavior and imperfection sensitivity, was the thesis of W. T. Koiter 2 in 1945. By employing a

variational approach and the criteria for a minimum of the potential energy, Koiter developed

stationary conditions for stability at the critical load. In addition, he examined the effects of small

geometrical imperfections and showed how such imperfection can drastically reduce the buckling

loads upon real structures.

I -- ____ ___Professor, The University of Alabama in Huntsville



Although Koiter's thesis is now available in an English translation 3, the rigorous character of

the work seems to inhibit a widespread appreciation and usage. By appealing to various geometrical

interpretatic is, the following presentation offers a simple introduction to the essential features and

the consequences of Koiter's work. For simplicity, the ideas are developed here for the discrete

mechanical system, but are readily extended to the continuous system.

PRINCIPLES OF STATIONARY AND MINIMUM POTENTIAL ENERGY

If a discrete conservative mechanical system has N degrees-of-freedom, the configuration is

determined by N generalized coordinates qi and the potential energy is a function of the

coordinates:

V V(q1, --, qN)-

Throughout our development, the forces are assumed continuous with continuous derivatives, and

so, the potential is also assumed continuous with continuous derivatives.

The principle of virtual work asserts that a state (4i) is a state of equilibrium if the potential V

is stationary; that is, a small displacement (q, - q produces no change of first-degree in the

potential:

AV 1 = ý-V(qi --- ) =0 2

where the bar (-) signifies evaluation in the reference state (qi)

The motionless system is in a state of stable equilibrium if and only if the potential V is a

proper minimum 4 ; that is, the state (•i) is a state of stable equilibrium if, and only if,

AV E V(ql,--, qN)-- V(q,.-. qN) > 0 3

SI for all displacements (q-c), sufficiently small. The qualification, sufficieiitly small, is added to

emphasize that we require only the local minimum. For example, a ball resting in a shallow valley 1b
in a stable configuration, strictly speaking, but a small jolt may kick the ball over the adjoinin hill
and into a lower valley (a more stable position).

AN EXAMPLE OF STRUCTURAL INSTABILITY

The system depicted in Fig. 1 is composed of two rigid links AB and BC, joined by/ a
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frictionless pin at B and constrained by a linear extensional spring k and torsional spring #. The

extensianal spring resists latera! displacement W with a force F = kW and the torsioral spring resists

the relative rotation (20) with a couple C = 0(20). The top A is constrained to move vertically while

the bottom C is pinned to a fi:.ed support. Consider the equilibrium of this system under the action

of an axial force, P = constant, applied to the end A:

A

L

W 2LcosO

L /

Fig. 1

Our system has one-degree-of-freedom. The configuration is determined by the kinematic

variable 0 and the total potential energy of the system is

V = - sin 20 + 20002 + 2PLcosO 4
2

By the principle of stationary potential energy, the system is in equilibrium if

kL 2 sin 0 cos0 + 4(0 2PL sinO = 0 5

3
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Evidently, 0 = 0 determines an equilibrium configuration as it satisfies (5) for all choices~k, L,

3, P. Now, we ask: Are there other solutions 0 • 0 which satisfy (5)? If so, Vwe can divide (5) by 2L

sinO and obtain

kL 23 0
P - coso +- - 6

2 L sin0

Some plots of (6) trace the solid lines in Fig. 2. The ordinate is the dimensionless load P/Pcr where

kL 2(0 7
cr 2 L2 L

s/I

1.1 / 1.
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At the point labeled 0 in Fig. 2 there is a bifurcation; one branch is the vertical line 0 = 0 and

another branch is the curve of (6).

Let us consider thq system when kL 2  8/3 and examine its bel~avior.as the load P is gradually

'applied. The 'load-deflection curve is the solid curve 'of Fig, 3; the dotted curves are

energy -dflection curves for P P and P 0.8 P
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The system can and does sustain the load in the straight configuration 0 = 0 until the load reaches

the critical value P =Pcr" For loads P P" Pcr the configurations 0 = C are unstable. At the critical

state 0, a slight additional load will cause the system to snap-thru to the configuration of point Q,

because the total potential energy at Q is less than at 0; point Q* lies below point 0V Moreover,

every intermediate configuration has a lower energy level. In particular, the configurations adjacent

to 0 = 0 have less potential energy and, consequently, the system tends to move from the straight

configuration. This is apparent from the energy curve near 0Win Fig. 3.

Now consider the same system as the load is gradually applied until P = 0.8 Pcr' The system
•,• sustains this load in the straight coniiguration of point A in Fig. 3. At this load the potential energy

follows the curve A'B'C' with relative minima at A' and C' and a relative maximum at B'. The

configurations of A and C are stable while that of B is unstable. If some energy were supplied to the

system in configuration A, the system could be kicked over the energy hill A'B' into the valley at CI

corresponding to C on the load-curve. The configuration of A is less stable than that of C because a

slight disturbance can cause a violent snap-through from A to C.

Notice that the curve OS in Fig. 2 has a positive slope everywhere. It represents stable

configurations. However, because the deflections increase rapidly with load, a structure of this kind
may be unusable for loads beyond the critical value, i.e. P Pcr" A column, for example, is said to

buckle when the load exceeds the critical value of the bifurcation point.

At the critical load the unbuckled configuration (0 = 0; may be stable or unstable; that is, the

system may sustain additional load accompanied by a gradual increase in deflection (curve OS of

Fig. 2) or it may snap abruptly to a severely deformed configuration at the slightest disturbance

(curve OQ of Fig. 2). From a practicdl viewpoint the question of stability at the critical load is

extremely important. In the present example, the question is easily resolved by examining the

load-deflection function P = P(0). However, we are exprcssly concerned with the energy criteria and

so we examine the conditions for a minimum of i)otential energy.

In the neighborhood of the reference state, the potential V of (4) can be represented oy thI.

series expansion:

kL- 1 PL
V (. + 2f - PL)0 2 +- (- - kL )04 +-

2 6 2

V + V +-- 8b

6



where VN denotes the term of degree N in the variable 0. Notice that the odd powers are absent

because the structure is symmetrical; equal deflections to the right or left produce the same change

of potential. If V2 A 0, then V2 dominates and, sufficiently near to the reference state 0 = 0, the

stationary condition (5) can be replaced by

d( 2 ) kL2
d 2(- + 2-PL)0 =0 9

dO 2

The "equilibrium" condit;on (9) has a nontrivial solution 0 0 0, if and only if the parenthetical

factor vanishes, that is, if the load has the critical value (7). The stationary condition upon the

second-deq~ree term V2 is the criterion of Trefftz.

At the critical state, V2 = 0 and

V=V 4 . .....

The system is stable according to the principle of minimum energy, if

V4 .-• 0 10a

In accordance with (7) and (8) the system is stable if

3kL2 10b
40

If the system of Fig. 1 is imperfect, say the linkage has an initial angle 00, then a lateral

deflection W accompanies the initial increment of load. As the load increases, a plot of load versus

deflection traces the dotted curve of Fig. 2 and approaches the solid trace of the perfect system. If

the system exhibits the snap-through characteristic, then the load-deflection curve has a negative

slope, as OB, and the crest of the actual (dotted) curve falls below the line P = Pcr" This suggests

that structu-es exhibitinn the sna.-throu h ._henomena are also sensitive to 1imnerfectiori,.

Experimental evidence confirms our suspicions.

STABILITY OF A DISCRETE MECHANICAL SYSTEM

The essential features of the criterion1 for a critical load and the criteria 2 for stability at tho

critical load are exhibited most clearly by a discrete mechaniLal system. The underlying concepts

apply to a continuous system so that the criteria are readily extended. The characteristics and

behavior of our system follow:

7



All loads upon the system are assumed to increase in proportion and, therefore, the magnitude

is given by a positive parameter X. A configuration of the system is defined by N generalized

coordinates qi(i = 1, --,N). As the loading parameter is increased from zero, the equilibrium states

trace a path in a configuration-load space. For example, a system with two degrees of freedom (q],

q2 ) fo!lows a path in the space (q1 , q2 ;X) of Fig. 4a or Fig. 4b.

The point P of Fig. 4a ur Fig. 4b is a critical state characterized by the existence of

neighboring states which are not uniquely determined by an increment of the load. At the critical

point P of Fig. 4a the path OP forms two branches, PR and PQ. The branch PQ may ascend or

descend, r'- the tangent W may be normal to the X axis. At the point P of Fig. 4b, the smooth curve

has a taW,.nt W normal to the X axis. Then, if c- denotes arc length along the path, the path PQ at P

is characterized by the condition dX/de = 0; in words, the system tends to move from P with no

increase of load.

"The critical state of Fig. 4a occurs at a bifurcation point; two paths of equilibrium emanate from P.

However, the path PR represeats unstable paths which can not be realized. Actually, the system

tends to move along PQ. If PQ is an ascending path, then additional loading is needed, and the

system is said to be stable at the critical state. In actuality, a very slight increment is usually enough

to cause an unacceptable deflection and the system is said to buckle. If the curve PQ is descending,

the system collapses under the critical load X*.

The path of Fig. 4b is entirely smooth, but reaches a so-called limit point P. The state of P is

again critical in the sense that the tangent W is normal to the 1, axis. At P the system tends to move

under the critical load X*. It tends to buckle, but it is theoretically stable if PQ is an ascending

curve. It collapses if the path PQ descends.

By our remarks, instability is signaled by the advent of excessive deflections which are

produced by a critical load ?X*. However, the stability of a conservative system can be characterized

by an energy criterior: The conservative mech stem is in stable equilibrium if the potential

ener1 is a proper min-,mum unstable if any adjacent state has a lower potential. Let us apply thu

energy criterion at the critical state:

I5 8



Sq2 q 2
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q , q

\(ct)(b)

IFig. 4

TREFFTZ CRITERION FOR THECRITICAL STATE

We presume that the potential energy can be expanded in a power series about the critical
state. If (qi;X) defines a state of equilibrium, ui F Aqi defines a displacement from the reference

state, and V the change' of potential caused by the displacement, then

1iuu 1iluuu - j1 uiuju~ul

2 4

where

A ii .. A ij ... (N ) 12

A9



Since the state is a state of equilibrium, in accordance with the principle of virtual work,

Ai -0 13

If the quadratic term of (11) does not vanish identically, then it dominates for small enough

displacement. It follows that the state is stable if

1
V2(u~i) = 2 Aijuiuj > 0 14

The state is critical if

A uiuj 0 15

In words, the state is critical, if there exists one (loi more), non-zero displacement(s) ui which causes

the quadratic term to vanish, i.e.

V2(5i) -AijLIj 0 16

The displacement uiu is a buckling mode.

A minimum is characterized by a stationary condition. H1e01, the I equiaed minimumL of V2 (ui)

is determined by the stationary criterion of Trefftz: For an arbitrary vai iation h ui,

hV 2  Aijuibu1 - 0 17

It follows that the buckling mode iii is a nontrivial solution of the equations:

AJi1i - 0 18

The homogeneous system has a non-tiivial solution, if .111d only if the detui minanit of .elliCieIll

vanishes

IAij(X) 0o 19

I he least root of (19) determines the critical load X\A*

10



Let

ui ewi 20

where Wi are components of the unit vector in our N-dimensional space of qi' i.e.

WiWi = 1 21
I

The parameter c measures the magnitude of an excursion from the critical state and Wi defines the

direction of the buckling.

DIFFERENTIAL GEOMETRY OF A PATH FRQM THE CRITICAL STATE

Let us consider a movement along the path emanating from the critical point P. In the plane of

* (qj, q2 ), we see a path as shown in Fig. 5.

In Fig. 5, p denotes the curvature of the path PQ at P, W is the unit tangent at P and V the unit

normal. Tho displacement from P to Q can be expressed in the form u =W + tiV or, if e denotes

arc-length along PQ,

du 1 2d 2u
U = E-+E. -+-...

(aE 2 dc 2

+ 2= W + ... V . .....
2p

If we accept an approximation of second-degree in the arc-length C then
S. c2

-- ? 22a,b

In the N-dimensional space, as in the 2-dimensional space, one can define an arc-length • atng

a path stemming from the critical state, i.e.

duidui dc 2

A component of the unit tangent is

w . 23
1d



q2 o

VV

A n

•I Fig. 5

•t •

I, A component of the unit normal is

-V d = 24
- de 2

The displacement along a small segment is

dui I d2 ui
u i  -- + - 2C. 25

dc 2 dce 2

+ 2

Here Vi is normalized in the imanner of (21).

KOITER'S CRITERIA FOR STABILITY AT THE CRITICAL LOAD

A small displacement from the critical sta.e is given by (25). The buckling mode Wi 1s

determined according to (18), (19) and (20). Now, we seek the normal Vi and curvature h which

12



determine the curved path of minimum change V. The change of potential follows from (11)'and

(25) and simplifies accurding to (13), (16) and (18): y
3 4 .4 4

V - Aij. WiWjWK + - K 2AijViV. + -AijK W 4 ij K WiW V + O(K5) 26
3! UKIiK 8 '1 4! 4j~ i W W I+ K A. K. Oe) 2

If Vi 0 and e is sufficiently small, the initial term of (26) is dominant. Since the sign of the

initial (cubic) term can be positive or negative, depending on the sense of the displacement Wi, a

Dn r'•v_.SlrLVdon for sta.il._y follows:

A3 3! AijK WiWjWK Z0 27

If A3 vanishes, as it usually does in the case of a symmetrical structure, then the sign of V rests

with the terms of higher degree. If V is negative for one displacement V, then the system is
unstable. The minimum of (26) is stationary, i.e. S (V) 0, for vaiiations of Vi. The stationary

conditions follow

AijKV = A ij•WW. K ... +O(e) 28

If the terms of higher degree aie neglected, then equations (28) constitute a lineaw system in the'

displacement V In accordance with (23) and (24), the solution Vi is to satisfy the orthogonalitq

condition:

ViWi - 0 229

If follows from (28) that

S2Aij i - - i$ ij •KWjV . O(4.') 30

4; _
The potential change coiresponding to the displacen,.it u - •Wi + K/ is obtained hom (2•6) and

2
* simplified by means (27) and (30):

V 4A4.

where

! •2
4 N2  A,1wVVA4  4! AiIliWIWWl 8AVV1

* 13



The system is stable if

A4 >0 33a

The system is unstable if

A4 < 0 33b

In a system with one degree of freedom, V. =0 and the final term of (32) vanishes.

EQUILIBRIUM STATES NEAR THE CRITICAL LOAD

In our preceding view of:stability at the critical load X*, we examined the energy increment

upon excursions from the critical state, but assumed that the load remained constant. Such

4 excursions follow the path of minimum potential on a hyperplane (A = X*) in the configuration-load

space (qi;X). To trace a path of equilibrium from the critical state requires, in general, a change in

the load. Let us now explore states of equilibrium near the reference state of equilibrium (qi;;*).

To this end, we assume that the potential V(qi;X) can be expanded in a Taylor's series in the load X,
S• as well as the displacement ui. Then, in place of (11), we have

V (Aiui +-Aijuiuj +-Aij.uiujuK ...) * (iui 3 uAi..uu. *. +-A.uiuu + (Xu -X*) + 34
21 31 3! 2JK UJ I''2 MI

Here the prime signifies a derivative with respect to the parameter X and each of the coefficients 4

(Ai, Ai, etc.) is evaluated at the critical load.

Along a smooth path from the reference state in the configuration-load space, the

"displacement" includes a component in the direction of X, as well as the direction of qi. In place of

(25), we havw

Ui= CU~ + 2K Vi + 3 5a2

C2

(Nk -- X*) ex P. + --C + . 35b
2

Here, the vector (uf; N") is the unit tangent and (Vi; p) is the principal normal at (qi; X*) of the path

which traces equilibrium states in the space of configuration-load (qi; X).

14



Upon substituting (35a,b) into (34), we obtain

V (Aiu!) + 62 A UM + A~ulx)+.. 6•

SJ I + 36

The principle of stationary potential energy gives the equations of equilibrium at the reference

s8ate:

Ai =0 37

In view of (37), the quadratic terms (c2 ) dominate (36). The stationary principle 5(V) 0,

gives the equilibrium equations for states very near the reference state:

A**uý 38'i

Now, the reference state is critical, if

A'= 0 39

In words, either X'= 0, which implies the existence of an adjacent state at the same levei of loading,

and/or Al = 0, which holds, as (37), if the reference configuration is an equilibrium configuration

for X t A*. Then, the equilibrium equations of the neiqhborinq state follow:

Aijui = 0 40

Equations (40) are the equations (18) of the Trefftz condition (17). The solution of (40) is the

buckling mode

ui =Wi 41i "
Suppose, firstly, that Ai = 0 in (39) and A' 0. Then, according to (37), (40) and (41), the

potential of (34) and (36) takes the form:

V = E3 (A 3 +AO2"...)+0(c 4 ) 42

15



where
1?

A3  A. W W.W 43

A2 2 Aijwiw 44

We accept the irdicated terims of (42) as our approximation and, therefore, set VI

45

Our approximation of (42) follows:

" 33 2A•
V 3 = + 2 A' 46

The principle of stationary potential provides the equation of equilibrium:

V 3e 2A3 + 2A2(X - *) 0 47avde

or

2A•
S= ... (; -- ; 7S3A 3 47b

The state is stable if the potential is a minimum, that is, if

d2V
- + 6 2A3  -A2A2 (X*) '0 48a

or, in accordance with (47b), the system is stable in the adiacent state if

--2Ž-* 0 18tb

In accordance with (34), (40) and (41), the quadratic terms of V in the buckled mode follow:

-- 1 + [ ,)21 j.i~j

V2 (Wi) _ A + Aij(X•-X*) + 2 Aij(; -)j

16
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Since V2 (Wi) = 0 at the critical load, we expect that V2 (Wi) > 0 at loads slightly less than the

critical value and that V2 (Wi) < 0 at loads slightly above the critical value. Therefore, we conclude

that

A2 <0 49

According to (49) the numerator of (47b) is always negative, buk the denominator of (47b) is a
S! homogeneous cubic in Wi and the sign is reversed by a reversal of the buckling mode. In this case, an

adjacent state of equilibrium exists at loads above (A > X*) or below (X < A•*) the critical value. In

view of (49) and (48b), an equilibrium state above the critical load is stable and a state below is

unstable

Now, suppose that

A=A 3 O 50

Then, in view of (37), (40), (41) and (50), the potential of (34) and (36) takes the form:

I}' V =,~4( _-AijViVj +K4Ai V +-Aij lWiWWWI +..)+3#_
iKV*W*WK +~ijKICWWI i (A.W.+...

+-- AijWiW .+ + 0(c5 ) 51

The underlined term of (51) dominates if p / 0 and if c is sufficiently small. The term is odd in

Wi and, therefore, always provides a negative potential change at any load X X . A condition for

the existence of stable states at noncritical values of load follows:

AiWi = 0 52

However, the bucking mode Wi is independent of the coefficients Ai. Therefore, equation (52)

implies generally that

Ai = 0 53

Now, we accept the remaining terms indicated in (51) as our approximation. Also, in view of

(50),

2 K

17
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Our approximation of (51) follows:
V I. v __ IJ IJIijK 1 AW_ 1

- AV.Vj - Ai ViWjWW + - Aij.I.iýW.WlW + (e2 2 A'jWiWj) (A X*) 55

Again, we require a stationary potential for variations of the displacement Vii. The .e,_tionis f

equilibrium follow:

C2KAijVj -c 2AijKWjWK 56
. I

Let KVi denote the solution of (56). Then, it follows that

C 2 K2AijViVj K2 Aij, WjW Vi 57

If the solution K V. and (57) are used in (55), then our approximation of the potential takes the
form:

V = A4  2(X _*)A' 58

where A' is defined by (44) and

A4  4! Aij IWiWi WK WI - 8-AijViVj 59
, I

The solution of (56) determines the unit vector Vi which renders V stationary, but still

dependent upon the distance c. The principle of stationary potential gives the equilibrium

condition:

dV 4c3A 60

de 4 22(X-X*)A',0 6

or

C 2 A.' (X IV,) 612A4

Accordin;7 to (33a,b), (49) and (61), a stable adjacent state of equilibrium (,an exist only at loads

above the crtical value (X -*'X*) and a state below the critical value is unstable.

18
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Ko'iter provides rigordus arguments for the conditions (53) and (49) if the critical

configuration is a stable equilibriumn configuration for loads less than the critical value. For

example, the two-dimensional system has equilibrium configurations which trace a line parallel to

the X axis, as shown in Fig. 6. The portion OP represents stable states, the bifurcation point P the

critical state, PR represents unstable states of! the reference configuration and PQ the stable
postbuckled equilibrium stat~s. Here, the principle of stationary energy in the critical corifiguration

at any load,'leads to the equation (53) and the principle of minimum energy in the stable states of

OP (? < X*) leads to the inequality (49).

If the cubic term of V does not vanish, then eqLilibrium :iates trace paths with slope A"at the

critical load, as shown 'in Fig. 6a. If the cubic!term vanishes, then V= 0 and the equilibrium states

trace paths as shown in Fig. 6b. In each figure, the solid lines are stable branches and the dotted

lines are' unstable.
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Practically speaking, many structural systems display the instability patterns of Fig. 6, that is,

the prebuckled configuration of the ideal structure is an equilibrium state under all loads. Notable

examples are the column under axial thrust, the spherical or cylindrical shell under external pressure

and the cylinder under uniform axial compression. Essentially, each retains its form until the load

reaches the critical value and, then buckles. In the case of thin shells, initial imperfections cause

pronounced departures from the initial form and often cause premature buckling ( '-. A*).

Our analysis of stabilit1 at the critical load is limited. The reader should note, especially, that

any of the various terms of the potential, e.g. V2 , V4 , may vanish identically. Then, further

investigation, involving terms of higher degree, is needed.

EFFECT OF IMPMRFECTIONS UPON THE BUCKLING LOAD

In the monumental work of Koiter 2 , an important practical achievement was his assessment of

j the effect of geometrical imperfections upon the buckling load of an actual structure. Here, we

outline the procedure and cite the principal results:

Under the conditions of dead loading upon a I-Hookean structure2 , the energy potential V of

the actual structure is expressed in terms of a displacement u from the critical state of the ideal

structure and a parameter e which measures the magnitude of the initial displacements of the actual

unloaded structure:

V= [ ) Aj()uu + Aij()uiuju + AijKI()uiujuRuIl + e Bi(•)ui +.Bij(x)uiuj + .. 62

Here, the linear terms in ui vanish in the first bracket, because the reference configuration is an

equilibrium configuration of the ideal structure (e = 0) at any load.

As before, the components u1 and (N - X,1) are -' ;,anded in powers of the arc length ( along

the ideal curve of Fig. 7. Here, we make an assumption that the initial deflection of the actual

structure is nearly the buckling mode W of the ideal structure. Therefore, we have tho.

approximation:

"" ui CWi+2 K- Vi 63
2

X - X*) CX +0 64
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In the present case, the second-order terms of (63' and (64) contain an unspecified parameter K,

because these terms do not represent deviations from the tangent (eW) along the ideal path of Fig.

7, but represent the displacement (d) which carries the system to the actual path as depicted in Fig.

7.

Upon substituiing (63) and (64) into 1,62) and ack~nowledging (16), (18) a,16 (20), we obtain

r F .--... K2 K
3~ 1 A3 +'X'~ + C' Ai1 , 1W.W. W.+- .VjV + - A..x W W V

3 41 4 ] +K c2 6

KI

115EAL

'q1

Fig. 7
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where A3 and A' are defined by (43) and (44), as before. Since the relative magnitudes of e and e

are unsp-cified, we must suppose that the terms 0(e3 ) and 0(ee) dominate (65), if A3 t 0 and X t 0.

Than, we have the approximation:

,V 63A 2A1' * eB*W 6
3 + 62(X - X*) + 66

The stationary condition of equilibrium follows:

dV = 3e 2 A3 + 2eA'(N -- X*) + eBW. = 0 67

Now, recall that V is not the potential increment from the critical configuration of the actual

structure but the potential referred arbitrarily to the critical configuration of the ideal structure. An

equilibrium configuration of the actual structure is stable or unstable, respectively, if the potential

is a minimum or a maximum, therefore, the critical load "X of the actual structure satisfies the

conditions

d2V 6

7 3 + 2A2 (X - X*) 68

> 0 > stability 69a

< 0 -' instability 69b

Observe that the distinction between stability and instability of a post-buckled state rests upon the

same conditions, (69a) and (69b), as the ideal structure [see equation (48a)) and that the

conditions are independent of the imperfection parameter e.

If A3 t 0, then the imperfect structure deflects and reaches a critical state of equilibrium when

(67) is satisfied and (68) vanishes. If (A - X*) is eliminated from the two equations, then

e = ... 3  70S~BiWi

The sign of 'he sum BiWi is arbitrary, since a change of sign is effected by redefining the parameter

e. Therefore, we can choose e so that BA has the opposite sign of A3 . "Then the condition (70) for

a critical state is fulfilled only if e <- 0. From our observations, we know that an imperfect structure

tends to buckle in a preferred direction, depending upon the character of the geometrical

deviations. In the present case, if A3 < 0, a critical state occurs only if e < 0. A plot of load versus
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deflection is depicted in Fig. 8a; here, a negative value e produces buckling in a negative mode (eW ;
<0) according to the curve OP, whereas the positive value e produces only stable states along the

path OP. ihui

A real structure which behaves in the manner of Fig. 8a is the frame of Fig. 8b. If the vertical

strut is bent to the right or left the imperfection parameter e is negative or positive, respectively.

The rotation 0 of the joint serves as a generalized coordinate(0 = q) and plots of load versus rotation

take the forms of Fig. 8a. The frame under eccentric loading has been studied experimentally by

Roorda 5 and theoretically by Koiter 6 . The latter computations show remarkable agreement with

the former experimental results.

Now, let us turn to the structure of Fig. 6b, characterized by the conditions

3 V'q0 71
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R 0 L

Q<

4 (b)
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(a) (b)
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Now, terms O(e3) are absent from the potential of (65). The latter must be stationary with respect

to the displacement Vi; for equilibrium,

e2 KAijVj 6 2Aij,( WK - 2eBi 72

If KVi denote the solution of (72), then

"e2 KA WjW, Vi =- 2 K2 AijVV - 2eKBVV' 73

In accordance (64), (71) and (73), our approximation of the stationary value of (65) follows:

=3 [eA 4 + A'(N -- A*)I + eeBiWi 74

As before, the potential V is still dependent upon the distance c. The stationary condition of

equilibrium follows:

dV 3 2
S= 4 c3A4  + 3e A2 (X -- X*) + eBiW i 0 75

The stability of equilibrium depends upon the second derivative as follows:

d2 V

= 12c 2A 4 + 6eA2(X -- •X) 76

- 0 =- stability 77a

0 c- instability 77b

Again, the critical state of equilibrium is characterized by vanishing of the first derivative (75) and

second derivative (76). The elimination of (N -AX*) yields the result:

e = 2cBA 4
B W.

Ii

Again, we note that the definition of e and the sign of W" are arbitrary and, therefore, we assume

J that Wi renders the sum BiWi > 0. Then, the condition (78) for a critical load is attained if A4 • 0,

e < 0, in keeping with (33b). Now, the structure also exhibits instability at the critical load if the

sign of the parameter e and the buckling mode are both reversed. A plot of load versus dieflec.ton is
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4 depicted in Fig. 9. The linkage of Fig. 1 and the curves of Fig. 2 exemplify such structural systems.

The structure is symmetrical and can buckle in either direction depending upon the character of the

geometrical deviation. In either case, it is stable or unstable depending upon the sign of the constant

A4 . The critical load X of the actual structure may be much less than the critical load X* of the ideal

structure.

If the distance e is eliminated from (67) and (68)= 0, or if e is eliminated from (75) and (76)

0, the critical load A X- is expressed in terms of the imperfection parameter (-e):
1 

i- * ni(-e)(Bi )(.-A)n-2 n-1 (.A")-(n-1) 79

Here n = 3 if A3 < 0, n = 4 if A3 = 0 and A4 < 0, and e < 0. A plot of the actual buckling load

versus the imperfection parameter has the appearance of Fig. 10. Since the curve is tangent to the
axis X at e = 0, small imperfections can cause considerable reduction of the buckling load.

4Q

Q Q
A

e>O e < 0
.7 1!

Fig. 9
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Fig. 10

THEORY FOR CONTINUOUS BODIES

The stationary criteria 1,2 were originally given for continuous bodies. The concepts are the

same, but the mathematical form is altered: Our discrete displacements ui are replaced by the

continuous field ui(xi) and the sums of (11) by integrals of the continuous field. The stationary

conditions of Trefftz1 and Koiter2 apply to the integrals of corresponding degree, e.g. Trefftz

criteria is the stationary condition upon tile homogeneous functional of second degree which

replaces the quadratic function V2 of (14).

Koiter's theory has contributed most significantly to our understanding of instability,

snap-buckling and imperfection sensitivity of thin shells. The reader is referred to the work of

Koiter 7 ; Budiansky and Hutchinson 8 , Hutchinson 9 , Hutchinson and Amazigo 1 0 , and B.

Budiansky 1 1  4

Finally, we note that the continuous structure can always be approximated by a disciote

system whereupon the foregoing equations are applicable. In particular, a shell can be subdivided

into finite elements, the deformation can be approximaied by interpolation, and then, the

stationary criteria can be applied to the discrete model in the manner of Rayliegh-Ritz. The success

of such methods will depend greatly on the complexity of the continuous body, the buckling mode
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