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THE ENERGY CRITERIA FOR STABILITY OF STRUCTURES

by Gerald Wempner
Member ASCE

ABSTRACT

The energy criteria of Trefftz and Koiler, for the critical load upon an elastic system and for
the stability of the system at the critical load, are presented. The presentation empioys geometrical
interpretations and simple examples to exhibit the essential features of the criteria and the related

behavior of the structural system.

INTRODUCTION

If the load upon a structure attains a critical value, the structure buckles. The buckling may
entail a gradual, albeit excessive, deflection as the load exceeds the critical value. Otherwise, the
buckling may mean an abrupt collapse, so-called snap-buckling. The former occurs if an elastic
system is stable at the critical load and the latter if it is unstable. From a practical viewpoint, the
snap-buckiing is the more dangerous phenomenon. Moreover, the structure which exhibits

snap-buckling is also sensitive to imperfections; that is, the snap-buckling ot a real (imp2rfect)
structure may occur at loads much less than the critical load of the ideal structure.

The phenomenon of snap-buckling is especiail, prevalent in thin shells and, curiously, the most
efficient shell-like structures are the most susceptible to such catastrophic faiiure. Consequently, as
our attention turns increasingly to thin shells, to reduce costs and weight and to achieve structural

and esthetic aims, the questions of stability and imperfection sensitivity are paramount.

The determination of the critical load by a stationary criterion upon the potentia! energy was

1

given by Trefftz® in 1933. However, the question of stability at the critical state and the subsequent

behavior remained unanswered.

A most significant work on the questions of stability at the critical load, post-bucklini |
behavior and imperfection sensitivity, was the thesis of W, T. Koiter? in 194b. By employing a
variational approach and the criteria for a minimum of the potential energy, Koiter developed
stationary conditions for stability at the critical load. In addition, he examined the effects of small
geometrical imperfections and showed how such imperfection can drastically reduce the buckling

loads upon real structures.

Professor, The University of Alabama in Huntswille
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Although Koiter’s thesis is now available in an English translation3, the rigorous character of
the work seems %o inhibit a widespread appreciation and usage. By appealing to various geometrical
interpretatic s, the following presentation offers a simple introduction to the essential features and

- the consequences of Koiter's work. For simplicity, the ideas are developed here for the discrete

mechanicai system, but are readily extendecd to the continuous system.
PRINCIPLES OF STATIONA ND MINIMUM POTENTIAL ENERGY

If a discrete conservative mechanical system has N degrees-of-freedom, the configuration is
determined by N generalized cocrdinates q; and the potential energy is a function of the

coordinates:

V= V(ql."- qN)' 1

Throughout our development, the forces are assumed continuous with continuous derivatives, and

so, the potential is also assumed continuous with continuous derivatives.

The principle of virtual work asserts that a state (g;) is a state of equilibrium if the potential V

. (ﬁi) is stationary; that is, a small displacement (q, — §,), produces no change of first-degree in the
potential:
oV -
Avl“é‘q'i"(qi"qi)'o 2

where the bar (—) signifies evaluation in the reference state (Eii)

The motionless system is in a state of stable equilibrium if and only if the potential V is a

4

proper minimum®™; that is, the state (q;) is a state of stable equilibrium if, and only if,

AV = V(qp. -~ an) — V(@ -an) > 0 3

for all displacements (q, — ﬁ,). sufficiently small. The qualification, sufficiently small, s added to
emphasize that we require only the local minimum. For example, a ball resting in a shallow valley s
° in a stable configuration, strictly speaking, but a small jolt may kick the ball over the adjoining hill

and into a lower valley (a more stable position).

AN EXAMPLE OF STRUCTURAL INSTABILITY

The system depicted in Fig. 1 is composed of two rigid links AB and E(_:, joined by a

2

-5

PEFAPSETSRIESPARSYT: - £ SN

£2 e T e L BTG i, e AW AR

LAY L TREDE

R




O TE e g, -
BT T N L ey emnigonnn sy

frictionless pin at B and constrained by a linear extensional spring k and torsional spring . The
extensional spring resists lateral displacement W with a force F = kW and the torsional spring resists
the relative rotation (26} with a couple C = 3{20). The top A is constrained to move vertically while
the bottom C is pinned to a fi;tad support. Consider the equilibrium of this system under the action

of an axial force, P = constant, applied fo the end A:

,..
<

2Lcos©®

7
RN # NS

Fig. 1

Our system has one-degroe-of-freedom. The configuration is determined by the kinematic

variable  and the total potential energy of the system is

ki2
V== sin20 + 2602 + 2PLcos0 4

By the principle of stationary potential energy, the system is in equilibrium if

kL2 sin 0 cosd + 480 ~— 2PL sin0 = 0 5
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Evidently, 6 = 0 determines an equilibrium configuration as it satisfies (5) for all choices:k, L,
i

B, P. Now, we ask: Are there other solutions 8 # O which satisfy (5)? If so, we can divide (5) by 2L

\

sinf and obtain

kL 26 0 . ;
P =——cosf§ +— — 6
L sing

Some plots of {6) trace the solid lines in Fig. 2. The ordinate is the diménsionless load P/P_ where

1

P =-E£‘—+£q ! 7
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At the point labeled 0 in Fig. 2 there is a bifurcaztion; one branch is the vertical line 8 = 0 and
another b'ranchE is the curve of (6). 1 '

Let us consider the system when kL2 = 88 and examine its behavior-as the lead P is gradually
‘applied. The 'load-deflection curve ‘is the solid curve 'of Fig, 3; the dot'ged curves are
energy-deflection curves for P = PcandP=08P. :
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The system can and does sustain the load in the straight configuration 0 = 0 until the load reaches
the critical value P = Py For loads P ~ P the configurations 0 = C are unstable. At the critical
state 0, a slight additional foad will cause the system to snap-thru to the configuration of point Q,
. because the total potential energy at Q 15 less than at 0; point Q’lies below point 0% Moreover,
every intermediate configuration has a lower energy level. In particular, the configurations adjacent
to 0 = 0 have less potential energy and, consequently, the system tends to move from the straight

configuration. This is apparent from the energy curve near 0’in Fig. 3.

Now consider the same system as the load is gradually applied until P = 0.8 P.p The system

sustains this load in the straight conviguration of point A in Fig. 3. At this load the potential energy
follows the curve A'B'C’ with rrlative minima at A’ and C’ and a relative maximum at B’. The
configurations of A and C are stable while that of B is unstable. If some energy were supplied to the
system in configuration A, the system could be kicked over the energy hill A’B’ into the valley at C*
corresponding to C on the load-curve. The configuration of A s less stable than that of C because a

slight disturbance can cause a violent snap-through from A to C.

P

Notice that the curve OS in Fig. 2 has a positive slope everywhere. It represents stable /
configurations. However, because the deflections increase rapidly with load, a structure of this kind )
may be unusable for loads beyond the critical value, 1.e. P -~ Pere A column, for example, 1s said to

buckle when the load exceeds the critical value of the bifurcation point.

At the critical load the unbuckled configuration {0 = 0} may be stable or unstable; that is, the
system may sustain additional load accompanied by a gradual increase in deflection {curve OS of
Fig. 2) or it may snap abruptly to a severely deformed configuration at the slightest disturbance
(curve OQ of Fig. 2). From a practical viewpoint the question of stability at the critical load 1s
extremely important. In the present example, the question is easily resolved by examining the
load-deflection function P = P(0). However, we are expressly concerned with the energy critena and

so we examine the conditions for a minimum of potential energy.

In the neighborhood of the reference state, the potential V of (4) can be represented oy the

series expansion:

kL2 1 PL
" V = (—=— + 2§~ PL)0 24— (— = k1204 + - b
. 2 6 2

=V2+V4 + . 8b
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where V) denotes the term of degree N in the variable . Notice that the odd powers are absent
because the structure is symmetrical; equal deflections to the rignt or left produce the same change
of potential. !f V2 £ 0, then V2 dominates and, sufficiently near to the reference state § = 0, the
stationary condition (5) can be replaced by

d{V,) kL2
=2 +28—PL)9 =0 9
do (- *2#—Ph

The “equilibrium’ condition (9) has a nontrivial solution 0 # 0, if and only if the parenthetical
factor vanishes, that is, if the load has the critical value (7). The stationary condition upon the

second-degree term Vo is the criterion of Trefftz.

At the critical state, V2 = 0 and

The system is stable according to the principle of minimum energy, if

V4 ~ 0 10a

In accordance with (7) and (8) the system is stable if

3kL2
kLT <) 10b

a
If the system of Fig. 1 is imperfect, say the linkage has an initial angle 0, then a lateral
deflection W accompanies the initial increment of load. As the load increases, a plot of load versus
deflection traces the dotted curve of Fig. 2 and approaches the solid trace of the perfect system. If
the system exhibits the snap-through characteristic, then the load-deflection curve has a negative
slope, as OB, and the crest of the actual (dotted) curve falls below the line P = P... This suggests

that struciures exhibiting the snap-through phenomena _are also_sensitive to imperfections.

Experimental evidence confirms our suspicions.

STABILITY OF ADISCRETE MECHANICAL SYSTEM
The essential features of the criterion® for a critical load and the criteria? for stability at the
critical load are exhibited most clearly by a discrele mechanical system, The underlying concepts

apply to a continuous system so that the criteria are readily extended. The characteristics and
behavior of our system follow:
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All loads upon the system are assumed to increase in proportion and, therefore, the magnitude
is given by a positive parameter A. A configuration of the system is defined by N generalized
coordinates g;(i = 1, --,N). As the loading parameter is increased from zero, the equilibrium states

. trace a path in a configuration-load space. For example, a system with two degrees of freedom (q;,
q,) follows a path in the space (ay. goi) of Fig. 4a or Fig. 4b.

P LA S 8 IR s e I NN A iy

T

The point P of Fig. 4a ur Fig. 4b is a critical state characterized by the existence of
neighboring states which are not uniquely determined by an increment of the load. At the critical
point P of Fig. 4a the path OP forms two branches, PR and PQ. The branch PQ may ascend or

descend, ¢~ the tangent W may be normal to the A axis. At the point P of Fig. 4b, the smooth curve

Gl w2 ¥l oA

has a tav_ent W normal to the A axis. Then, if ¢ denotes arc length along the path, the path PQ at P

A 3t hiam

is characterized by the condition d\/de = 0; in words, the system tends to rmove from P with no
increzse of load.

The critical state of Fig. 4a occurs at a bifurcation point; two paths of equilibriurn emanate from P.

However, the path PR represeats unstable paths which can not be realized. Actuaily, the system

FEURBT T o o Fe e

tends to move along PQ. If PQ is an ascending path, then additional loading is needed, and the
3 system is said to be stable at the critical state. In actuality, a very slight increment 15 usually enough
. . to cause an unacceptable deflecticn and the system is said to buckle. If the curve PQ is descending,
the system collapses under the critical load \*.

The path of Fig. 4b is entirely smooth, but reaches a so-called limit point P. The state of P s
; again critical in the sense that the tangent W is normal to the \ axis. At P the sysiem tends to move
under the critical load A *. It tends to buckle, but it is theoretically stable if PQ IS. an ascending
curve. It collapses if the path PQ descends.

RS AU o

By our remarks, instability is signaled by the advent of excessive deflections which are

produced by a critical load A*. However, the stability of a conservative system can be characterized

PP iz,

by an energy criterior: The conservative_mechanijcal system is in stable equilibrium_if the potential

YT
2%

enerqy is a_proper min;mum, unstable if any adjacent state has a lower potential. Let us apply the
energy criterion at the critical state: ;

s e ww tnr
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TREFFTZ CRITERION FOR THE CRITICAL STATE

We presume that the potential energy can be expanded in a power series about the critical
state. 1f (q;ix) defines a state of equilibrium, u; = Aq; defines a displacement from the reference
state, and V the change of potential caused by the displacement, then

1 1 1
VvV = Aiui { é’AijUiuj + uuu, b Ain' UinUKu' P 1

3 Akl

where

12

oe =

Ci 1 A hxte S €

PR e
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Since the state is a state of equilibrium, in accordance with the principle of virtual work,
A -0 13

If the quadratic term of (11) does not vanish identically, then it dominates for small enough

displacement,. It follows that the state is stable if

1 .
V2(l||) = EA”uluJ 20 14
The state is critical if
l_A -0 15
2 i]u'uj ‘ o

In words, the state is critical, if there exists one {or more), non-zero displacement(s) u; which causes

the quadratic term to vanish, i.c.

- .
V2(U|) &= é’/\ijuillj "0 16

The displacement Gi 15 a buckling mode.

A minimum is characterized by a stationary condition. Here, the required mimimum of Vo(u;)

is determined by the stationary criterion of Trefftz: For an arbitrary variation duy,
(')V2 - Aijuihuj =0 17
It follows that the buckling mode Gi is a nontrivial solution of the equations:
/\”lll -0 18

The homogeneous system has a non-tiivial solution, 1if and only 1f the detetminant of coelhicient

vanishes

| AGR) |-- 0 19

1he least root of (19) determines the critical load A *.

10
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U, = W 20
where W_, are components of the unit vector in our N-dimensional space of g;, i.e.
WW, =1 21

The parameter ¢ measures the magnitude of an excursion from the critical state and Wi defines the

direction of the buckling.

DIFFERENTIAL GEOMETRY OF A PATH FROM THE CRITICAL STATE

Let us consider a movement along the path emanating from the critical point P. In the piane of

(a3, q2), we see a path as shown in Fig. 5.

In Fig. 5, p denotes the curvature of the path PQ at P, W is the unit tangent at P and V the unit

normal. The displacement from P to Q can be expressed in the form u = EW + 11\7 or, if ¢ denotes

arc-length along PQ,

If we accept an approximation of second-degree in the arc-length ¢ then

. . c2
e om= 22a,b

2

in the N-dimensional space, as in the 2-dimensional space, one can define an arc-length ¢ along

a path stemming from the critical state, i.e.
dujdu, = de?

A component of the unit tangent is

_— 23
Pode ’

=)

11

T T T TV o R P S L PO B Do e L O G 0

N ‘@M\w&ﬂt&‘i&gﬁ e

T R ot s e i O s a2 e

b~




T es Toril e e B i e e RS R R s SN o W
- oy =

EY

R,

PUETRI S TE THTT

e

w v w o B . T RN b 2 N R A A

Y T e A B T s T T T Y L T S I e L R O R e T e

R
ci

q,

A component of the unit normal is

dzu-
.= ——d
KV, o2 24
The displacement along a smali segment is
dui 1 d%y ,
U, & =g + = —px ¢ + ... 25
P g T2 e €
2

)

cWi + -;'—:cVi + ...
2

Here V; is normalized in the manner of (21).

KOITER'S CRITERIA FOR STABILITY AT THE CRITICAL LOAD

A small displacement from the critical sta.e is given by (25). The buckling mode Wi 15

determined according to (18), (19) and (20). Now, we seek the normal V, and curvature « which

12
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(25) and simplifies accuiding to (13), (16) and (18):

63 o 64 (:'4
7 A AW

- V= iVivit oA

necessary condition for stability follows:

EARER S A IR S R

l
3!

FE Saets

WWWK

R

A3 12

e R

unstable. The minimum of (26) is stationary, i.e. 8(V)

ExEbs it

conditions follow

Aljl\'Vj = A

&3
O N T o

ERSREE ol sty

displacement V

condition:

If follows from (28) that

V- - oAy WY

i 2
Au i Aijx

simplified by means (27} and (30):

where

13

determine the curved path of minimum change V. The change of potential follows from (11);and

ijat Wi ijxwl o

initial (cubic) term can be positive or negative, depending on the sense of the displacement Wi' a

=0 27

tf Az vanishes, as it usually does in the case of a symmetrical structure, then the sign of V rests

WW .

ot t0(e)

The potential change corresponding to the displacemnt u, -

e
%
\ 3
H

H

! 1

A
i 8

\

- ravm By o

64 v trees 5
4 WWV,+O(e ) 26

0 and ¢ is sufficiently small, the initial term of (26) is dominant. Since the sign of the

with the terms of highar degree. If V is negative for one displacement V| then the system is :
= 0, for variations of V;. The stationaiy

e ren

281

:

e gl

+ 0(e)

' If the terms of higher degree are neglected, then equations (28) constitute a hinear system in thr»

In accordance with {23) and (24), the solution V ts to satisfy the orthogonal:tv

30

.2

oWl + ‘2,\'\}'| is obtained from (2‘()) and
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The system is stable if '
A4 >0 33a

; The system is unstable if
! Aq <0 33b
Es‘ In a system with one degree of freedom, Vi = 0 and the final term of (32) vanishes.
: i EQUILIBRIUM STATES NEAR THE CRITICAL LOAD
z“ §
i
:: In our preceding view of:stability at the critical load A*, we examined the energy increment :
) i upon excursions from the critical state, but assumed that the load remained constant. Such '
3, § excursions follow the path of minimum potential on a hyperplane (A = A*) in the configuration-load ;
I i space (qi;h). To trace a path of equilibrium from the critical state requires, in general, a change in
% the load. Let us now explore states of equilibrium near the reference state of equilibrium (q;A*).
, : To this end, we assume that the potential V(q;:)) can be expanded in a Taylor's series in the load A,
s * as well as the displacement u;. Then, in place of (11), we have :
- s
i } 1 1 N 1. . |
; V = (AlU' +—2~A'iu'uj +"§!AinUinUK ...) + (A.U' + —Z-AUU'UJ +5 inUinuK +LA=AN)+ 34 -
: |
: ?J
3 ; Here the prime signifies a derivative with respect to the parameter X and each of the coefficients ;
: : (A;s A, etc.) is evaluated at the critical load.
- |
: Along a smooth path from the reference state in the configuration-load space, the
3 “"displacement’’ includes a component in the direction of X, as well as the direction of g;. In place of
r (25), we hava
E Ui = eui + "2—th + ... 35a
' 62

- A —=A*)=ex"' +—:?-uu +... 35b

Here, the vector (u;: X) is the unit tangent and (Vjiu) is the principal normal at (q;: A*) of the path
which traces equilibrium states in the space of configuration-load (q;i ).

14
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Upon substituting ( 35a,b) into ( 34), we obtain

1 ’ 0 , o,
V= G(A'U:) + 62('2" A”uluj + Alu|)\') + .. 36

The principle of stationary potential energy gives the_equations of equilibrium at the reference

state:

A =0 37

In view of (37}, the quadratic terms (62) dominate (36). The stationary principle 6 (V) = 0,
gives the equilibrium equations for statles very near the reference state:

A'Ju] = ""Ai>\ 38
Now, the reference state is critical, if
AN =0 39

In words, either A’ = 0, which implies the existence of an adjacent state at the same levei of loading,
and/or A{ = 0, which holds, as (37), if the reference configuration is an equilibrium configuration

for A # A*. Then, the equilibrium equations of the neighboring state follow:

Equations (40) are the equations (18) of the Trefftz condition (17). The solution of (40) is the
buckling mode

up =W, 41

Suppose, firstly, that Af =0 in (39) and A\’ # 0. Then, according to (37), (40) and (41), the
potential of (34) and (36) takes the form:

V = e3(Ag+ AN +..) +0(ch) 42
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where

S
Ag =3 Ajj WiW W
1 —_—
s _ 2 e
Ky = > MWW,

We accept the indicated terms of (42) as our approximation and, therefore, set
€N’ = A —A*
Our approximation of ( 42) follows:
vV = e3A3 + ezA'z(}\ — %)

The principle of stationary potential provides the equation of equilibrium:

v
— = 32A3 + 2eA5 =A%) =0
€

or

»

2A
¢ = ==2 2%
3A,

The state is stable if the potential is a minimum, that is, if

v . o

or, in accordance with (47b), the system_is stable in the adjacent state if

—A5 (A =A%) >0

a— i P 1 » 2l ==
V2(W,)s 'é" A'] + Aij()\"‘}\*) + EA'J(}\ ‘A*) ] W'Wl

16

43

44

45

46

47a

47b

48a

ish

In accordance with {34), (40} and (41), the quadratic terms of V in the buckled mode fotlow:
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Since V,(W;) = 0 at the critical load, we expect that V,(W;) > 0 at loads slightly less than the

critical value and that V?_(W—i) < 0 at loads slightly above the critical value. Therefore, we conclude
that

A’2 <0 49

According to {49) the numerator of (47b) is always negative, but the denominator of (47b) is a
homogeneous cubic in Wi and the sign is reversed by a reversal of the buckling mode. In this case, an
adjacent state of equilibrium exists at loads above (A > A*) or below (A < A*) the critical value. In
view of (49) and (48b), an equilibrium state above the critical load is stable and a state below is

unstable,

Mow, suppose that
)\' = A3 =0 50

Then, in view of {37}, {40), (41) and (50), the potential of (34) and (36) takes the form:

K2 K 1
V=t (—A VIV += AL VW, += A
8 I 17) 4 e "1 K 4l

1
te = AGNT +..) +0(c) 51

The underlined term of (51) dominates if u # 0 and if ¢ is sufficiently small. The term is odd in
Wi and, therefore, always provi<es a negative potential change at any load X # A*. A condition for

the existence of stable states at noncritical values of load follows:
AW =0 52

However, the bucking mode Wi is independent of the coefficients A;. Therefore, equation (52)
implies generally that

A;=0 53

Now, we accept the remaining terms indicated in (51) as our approximation. Also, in view of
(509,

K .
62§u=)\'—)\* b4
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Our approximation of (51) follows:

1K i

Y s K S L T 1 Ry .
VEA(T AN o A VI, -4 A W W ) + (62 5 AW 0 —2%) 55

Again, we require a stationary potential for variations of the displacement V;- The gquations of !

equilibrium follow:

2 = —r2n. W
€ I(AijVj" [ Aijh’ijk

Let kV; denote the solution of (56). Then, it follows that

form:
V =ctag + 62 - an)AY

where A'z is defined by (44) and

The solution of (56) determines the unit vector \7; which renders V staﬁonar.y, but still

57

If the solution « Vi and (57) are used in {55), then our approximation o|f the potential takes the

dependent upon the distance ¢. The principle of stationary potential gives the equilibnum

condition:
dv 3 ,
P 4¢ Ay + 2e(N —A¥}A5 =0
or
AI
2 ... 12 Y
= N -Ar)
27,

60

01

Accordin: to (33a,b), (49) and (61), a stable adjacent state of equilibrium can exist 'onlyl at loads

above the ciitical value (A ~'A*) and a state below the critical value 1s unstable.
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IKoiter provides rigordus arguments for the conditions (53) and (49) if the critical
conflguraflon is a stable equilibrium configuration for loads less than the critical value. For
examp|e the two- dlmensmnal system has equnllbrlum conflguratcons which trace a line parallel to
the A axis, as shown in Fig. 6. The portion OP represents; stable states, the bifurcation point P the

critical state, PR represents unstable states of, the reference configuration and PQ the stable
H . B

amran

postbuckled e('quilibrium statbs. Here, the pri‘nciple of‘staticmary énergy in the critical configuration

at any load,leads to the equation (53) and the principle of minimum energy in the stable states of
OP (X < 1*) leads to the inequality (49)."

i 1

. !
- If the cubic term of V does not’vanish, then equilibrium siates trace paths with slope A’ at the
4

critical load, as shown in Fig. 6a. If the cubic term vanishes. then A’= 0 and the equilibrium states

; trace naths as shown in Fig. 6b. In each flgure the solid lines are stable branches and the dotted
lines are unstable.
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Practically speaking, many structural systems display the instability patterns of Fig. 6, that is,

the prebuckled configuration of the ideal structure is an equilibrium state under all loads. Notable

examples are the column under axial thrust, the spherical or cylindrical shell under external pressure

. and the cylinder under uniform axial compression. Essentially, each retains its form until the load

* %1’3\‘1 AT

reaches the critical value and, then buckles. In the case of thin shells, initial imperfections cause

pronounced departures from the initial form and often cause premature buckling (A <~ A¥).

Our analysis of stability at the critical load is limited. The reader should note, especially, that

HIRAPRRETE

any of the various terms of the potential, e.g. Vo, V4. may vanish identically. Then, further

investigation, involving terms of higher degree, is needed.

A £ S A SO S S A T

EFFECT OF IMPERFECTIONS UPON THE BUCKLING LOAD

L S S 305
P

v
oA

g In the monumental work of Koiterz, an important practical achievement was his assessment of
% the effect of geometrical imperfections upon the buckling load of an actual structure. Here, we
& { outline the procedure and cite the principal results:

X *
¢ | ~
: i Under the conditions of dead loading upon a Flookean structurez, the energy potential V of f
1 "
F o : the actual structure is expressed in terms of a displacement u, from the critical state of the ideal
- structure and a parameter e which measures the magnitude of the initial displacements of the actual
E | unloaded structure:
?
A ~ |1 1 1 1

, V = |- (}\)U 5 Ain(}\)UinuK 4 Ijhl(h)ul jUKU| +e 8. (}\)U + B ()\)U u +...| 62
§ Here, the linear terms in u, vanish in the first bracket, because the reference configuration is an
§ ‘ equilibrium configuration of the ideal structure (e = 0) al any load.
|

: ; As before, the components u, and (A — \*) are e ~anded in powers of the arc length ¢ along
;S the ideal curve of Fig. 7. Here, we make an assumption that the initial deflection of the actuadl
F; structure is nearly the buckiing mode W, of the ideal structure. Therefore, we have the
;| approximation:

4

e
J— K
2
- . K
A =A%) 2 + (2 S 64
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In the present case, the second-order terms of (63} and (64) contain an unspecified parameter K,
because these terms do not represent deviations from the tanger. (eW) along the ideal path of Fig.

7, but represent the displacement (d} which carries the system to the actual path as depicted in Fig.
7,

Rt e A

A Upon substituling {63) and {64) into {62) and acknowledging (16), (18} and [20), we obtain

; ~ 3 bl a [l s K2 Ko wmy )
1 Ko 1 ey 8 ool a4 o2m Sy
2 :
; 's 3
i A |

X

WRIDRERT e BTV S

N a,

: Fig. 7
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where A3 and A'z are defined by (43) and (44), as before. Since the relative magnitudes of ¢ and e
are unspecified, we must suppose that the terms 0(63) and O(ec) dominate (65), if A3 # Oand A # 0.
Than, we have the approximation:

V 2 e3ag + e2A5(A —A%) + eeBW, 66
The stationary condition of equilibrium foltows:

dv -

i 3¢2A3 + 2eA%(\ —\*) +eBW; = 0 67
Now, recall that V is not the potential increment from the critical configuration of the actual

structure but the potential referred arbitrarily to the critical configuration of the ideal structure. An

equilibrium configuration of the actual structure is stable or unstable, respectively, if the potential

is a minimum or a maximum; therefore, the critical load ) of the actual structure satisfies the
conditions

a2V , \
)
> 0 => stability €9a
: < 0 = instability 69b

Observe that the distinction between stability and instability of a post-buckled state rests upon the
X same conditions, (69a) and (69b), as the ideal structure [see equation (48a)] and that the
1 conditions are independent of the imperfection parameter e.

If Ag # 0, then the imperfect structure deflects and reaches a critical state of equilibrium when
(67) is satisfied and (68) vanishes. If (A —X*} is eliminated from the two equations, then

3¢2A
e = XA 7
BW;
a The sign of *he sum BiWi is arbitrary, since a change of sign is effected by radeflining the parameter

e. Therefore, we can choose e so that B,‘v'v, has the opposite sign of A3. Then the condition (70j for
a critical state is fulfilled only if e < 0. From our observations, we know that an imperfect structure
tends 1o buckle in a preferred direction, depending upon the character of the geometrical

deviations. In the present case, if Ag < 0, a critical state occurs only if e < 0. A plot of load versus

22




deflection is depicted in Fig. 8a; here, a negative value e produces buckling in a negative mode (¢W

< 0) according to the curve 0'!‘5, whereas the positive value e produces only stable states along the
path OP.

Yy

A real structure which tehaves in the manner of Fig. 8a is the frame of Fig. &b. If the vertical
strut is bent to the right or left the imperfection parameter e is negative or positive, respectively.
The rotation 8 of the joint serves as a generalized coordinate(0 = q) and plots of load versus rotation
take the forms of Fig. 8a. The frame under accentric loading has been studied experimentally by

Roorda5 and theoretically by Koitere. The latter computations show remarkable agreement with

the former experimental results.
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Now, let us turn to the structure of Fig. 6b, characterized by the conditions
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Now, terms O(e3) are absent from the potential of (65). The latter must be stationary with respect
to the displacement V;; for equilibrium,

2 = —2n.. WW —
€ KA”VJ = € AIJKWjWK 2eBi 72

If KV; denote the solution of (72), then

—— —

2 W V. =2kl V. — V.

In accordznce (64), (71) and (73), our approximation of the stationary value of (65) follows:

L d

V=e3 [eAg+ AD(h = 1%) | +ecBW, 74

As before, the potential V is still dependent upon the distance ¢, The stationary condition of
equilibrium follows:

o

dVv : ’ W
o T4eoAg3e2A50 =) +eB = 0 &

The stability of equilibrium depends upon the second derivative as follows:

d_ZSZ = 19,2 AT e K

d62 = 12¢ A4 + 6L~A2(7\ AR 76
-~ 0 = stability 773
< 0 = instability 77b

Again, the critical state of equilibrium is characterized by vanishing of the first derivative (75) and
second derivative (76). The elimination of (A — A *)} yields the resuli:

2¢3A
e = o4 78
BW,
Again, we note that the definition of e and the sign of W! are arbitrary and, therefore, we assume
that Wi renders the sum Biwi > 0. Then, the condition (78) for a critical load is attaned if Ay - 0,
e <0, in keeping with (33b). Now, the structure also exhibits instability at the critical foad if the

sign of the parameter e and the buckling mode are both reversed. A plot of load versus deflection is
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depicted in Fig. 9. The linkage of Fig. 1 and the curves ¢f Fig, 2 exempiify such structural systems.
The structure is symmetrical and can buckle in either direction depending upon the character of the
geometrical deviaticn. In either case, it is stable or unstable depending upon the sign of the constant

Ag- The critical load A of the actual structure may be much less than the critical load A* of the ideal
structure.

If the distance ¢ is eliminated from (67) and (68) = 0, or if ¢ is eliminated from (75) and (76)=
0, the critical load A = A is expressed in terms of the imperfection parameter (-e):
1

X=a*—| n(e)BW)-A)2| M1 aly(n-l) 79

Heren = 3if A3 <0,n=4if A3 =0and Ay <0, and e < 0. A plot of the actual buckling load
versus the imperfaction parameter has the appearance of Fig. 10. Since the curve is tangent to the

axis A at e = 0, small imperfections can cause considerable reduction of the buckling load.
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Fig. 10

2 THEORY FOR CONTINUQUS BODIES

The stationary criteria 1,2 were originally given for continuous bodies. The concepts are the

same, but the mathematical form is altered: Our discrete displacements u; are replaced by the
continuous field uj(x;) and the sums of (11) by integrals of the continuous field. The stationary
conditions of Trefftz} and Koiter2 apply to the integrals of corresponding degree, e.g. Treffiz
criteria is the stationary condition upon the homogeneous functional of second degree which

replaces the quadratic function V, of (14).

Koiter's theory has contributed most significantly to our understanding of instability,
snap-buckling and imperfection sensitivity of thin shells, The reader is referred to the work of
Koiter7; Budiansky and HutchinsonB, Hutchinsong, Hutchinson and Amazigolo, and B.
Budianskyu.

» Finally, we note that the continuous structure can always be approximaied by a discicte
system whereupon the foregoing equations are applicable. In particular, a shell can be subdivided
into finite elements, the deformation can be approximated by interpolation, and then, the
stationary criteria can be applied to the discrete mode! in the manner of Rayliegh-Ritz. The success

of such methods will depend greatly on the complexity of the continuous body, the buckliing mode
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