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ABSTRACT 

Explicit receiver structures for the optimum detection of M-ary orthogonal 

signals in impulsive noise environments typical of ELF are determined. 

The resulting optimum structures, while shown to bear some resemblance 

to that which would have been obtained in the presence of Gaussian noise 

alone, exhibit an interesting nonlinear behavior. The difficulties in the ac- 

tual implementation of this receiver are discussed, and several definitely 

suboptimum yet computationally superior structures are suggested. The 

results are felt to be applicable to a much broader class of channels char- 

acterized by impulsive interference. 

Accepted for the Air Force 
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OPTIMUM   DETECTION   OF   M-ARY   ORTHOGONAL    SIGNALS 

IN   ELF   NOISE    ENVIRONMENTS 

I. INTRODUCTION 

In previous work,   a model for ELF noise was presented which consisted of the sum of a 

low-density shot process and white Gaussian noise (WGN).    In the present report,  we consider 

the structure of optimum receivers for the detection of M-ary orthogonal signals in background 

noise as described by this model.    While it is not the intent here to suggest that the optimum de- 

tector structure should actually be employed in practice (generally it is quite complicated),  in- 

stead the reasons for studying optimum processing structures are twofold: 

(a) To provide a benchmark against which the performance of suboptimum schemes 

can be compared, 

(b) To provide insight which may suggest computationally superior yet reasonably 

efficient suboptimum structures. 

The binary detection problem has been considered previously.     We shall treat a more gen- 

eral situation where the channel signaling alphabet consists of M orthogonal equi-energy wave- 

forms.    The approach to be used follows closely the optimal dynamical filtering results associated 

with the names of Kaiman and Bucy,   Kushner, '    and Wonham. 

II. PRELIMINARIES 

The received signal is assumed of the form 

r(t) = s(t) + n(t)      , (1) 

where s(t) is one of the a priori known signal waveforms s.(t),   i - 1, 2, . . . , M satisfying 

\      s.(t) s.(t)dt = E 6.. (2) 
JQ     

1        J l-> 

with <5.. the Kronecker delta,  and T  the observation interval.    The additive signal independent 

noise n(t) appearing in Eq. (1) is a sample function of a non-Gaussian noise process of the form 

n(t) = y(t) + w(t)       , (3) 

where w(t) is a zero-mean WGN process with variance a     - N  /2 and N    the double-sided noise r o o' o 
spectral density in watts/H/.. The process y(t), on the other hand, is a low-density'* shot process 

obtained by exciting a finite-state linear dynamical system by a random impulse train. In partic- 

ular,  y(t) is described by the state equation 

x (t) = Ax (t) + bu(t) (4) 

and the output relation 

y(t) = <c,x(t)>       , (5) 

where A  is a constant n x n matrix,  b and c are n-vectors (specifically column vectors) and 

<• , •>   represents an inner product.    The state vector x.(t) is itself an n-vector while the quantity 

♦By "low-density" we mean that the average inter-arrival times between exciting impulses is greater than any 
system time constants. 



u(t) appearing in (4) is a scalar impulse process independent of w(t) and of the form 

N(t) 

u(t) -     £    11.6(1-t.)       . (6) 

i = l 

Here { N(t),  t > 0} is a counting process    with arrival times t., t2, . . .  assumed Poisson distrib- 

uted with intensity A   events/second,  and {u.} is a sequence of zero-mean independent and iden- 

tically distributed (i.i.d) random pulse amplitudes with common univariate probability density 

function (p.d.f.) f(-).    In Ref. 1,  two different amplitude distributions were considered:   the double- 

sided power-Rayleigh distribution with p.d.f. 

f(u) =    —- exp HRH ;        0<CV<2 (7) 

o 

and the double-sided lognormal distribution with p.d.f. 

„,  >               1                    1    In   lull ,0i f(u) =    exp 7  (8) 
2^/2Ta|u| '     2a        ' 

2 s with a    the variance of a zero-mean Gaussian random variable  g for which u = e. 

The suitability of this model for representing ELF noise environments is discussed in some 

detail in Ref. 1 and need not be repeated.    The significant parameters which must be specified 

then are: 

(a) The p.d.f. f(-) of the pulse amplitudes, 

(b) The intensity A  of the Poisson process, 

(c) The linear system dynamics,  i.e.,  the quantities^,  b,  and  c in Eqs. (3) and (4), 

(d) The ratio y  of the rms value of the shot component to the Gaussian background 

component. 

It is significant that these parameters can be adjusted quite easily to match observed ELF noise 

recorded at various geographical locations.    Observe that the choice of background noise I 
2 

a     is somewhat arbitrary and amounts to a trivial rescaling of the n(t) process. 

III.   OPTIMUM RECEIVER STRUCTURE 

It will be assumed that the receiver bases its decisions upon the relative likelihood thai a 

particular signal has been sent and resulted in the observation r„ T where,  in general, 

r„     ^ {r(-r),   0< T < t).    In particular,  the decision strategy is given by:   announce signal  i  as 

having been transmitted i = 1, 2, . . . , M iff 

P [r0 T|i] =      max     p [rn T|j]      , (9) 
1<J<M 

where p [rQ T|jJ is the probability (likelihood) of having received rQ T given that the jth signal 

j = 1, 2, . . . , M had been transmitted. It will prove convenient to normalize the likelihoods and 

in fact to base decisions upon the logarithm" of the normalized likelihoods so that the modified 

decision rule becomes:   announce signal  i as having been transmitted i = 1, 2, . . . , M iff 

'Actually any monotonic function suffices. 



where* 

X.[rQT;T]=      max     \[r0T;T]      , (10) 

Plr0f|j] 
A[r     ;t]£ln        £*   ]        ;       j = 1,2, . . . , M (11) 

J    u.t P0L   0,tJ 

and pnI'] is the probability distribution of the WGN process w(t).    Note the explicit dependence 
8 of the log-likelihoods A.[-;t] on the time t.    Using some recent results of Kailath,   the log- 

J 
likelihoods assume a particularly convenient form.    More specifically,   under the assumption 

J '
T 2 

E{y(t)} dt < oo      , (12) 
0 

where E{-} represents the expectation operator,  Kailath demonstrates that 

A [rn   ;t] = f   h (T) drj(r) - f (    h2(r)dT       ;       j = 1, 2, . . . , M       , (13) 
J     U»L JQ    J ^  JQ    J 

/s 
where drj(t) = r(t) dt,  and h.(t) represents the least mean-square estimate of the signal plus shot 

noise process h(t) = s.(t) + y(t).    In particular,  due to the additivity of the expectation operator, 

h\(t) = Sj(t) +<c,x(t|j)>      , (14) 

where 

x(t|j) = E{x(t)|rot,j}      ;      j = l,2,...,M (15) 

is the least mean-square estimate of the state vector x (t) given that signal j  has been transmit- 

ted and has resulted in the observation rQ , = (r(r),   0 <; r ^ t}.    The first integral in (13) must 

be interpreted with care as a stochastic integral — an Ito integral to be precise.    Nevertheless, 

the practical interpretation of this integral is as a cross-correlation operation between the re- 

ceived process and the least mean-square estimate of the signal plus shot noise component.    The 

resulting receiver structure is illustrated in Fig. 1 which would be identical to the optimum de- 

tector for known signals in Gaussian noise were it not for the presence of the estimators required 
/\      . 

to recover the (h.(t)} from the received data.    Indeed,  from (14) if there were no shot noise pres- 
A J 

ent,  h.(t) = s.(t) independent of the received data and the detector reduces to the familiar correla- 
J J 

tor or matched filter receiver.    The presence of the shot noise component,  on the other hand, 

requires explicit computation of the estimates (h.(t)},  or equivalently,  {x(t|j)},  and complicates 
J 

the receiver implementation considerably.    The remainder of this report will be concerned with 

the development of computational algorithms for generating the least mean-square estimates 

(x(t|j)} from the noisy received data. 

Let us first recall from the definition of x(t|j) the explicit assumption that the j      signal was 

transmitted and resulted in the observation rj   .,   i.e.,  from (15) 
x0# 

x(t|j)=\       xp{x;t|r j} dx       ;       j = 1, 2 , JRn tQ,t M      , (16) 

* The fact that we are using the variable  X to designate the intensity of the Poisson point process and {Xj}to des- 
ignate log-likelihoods should cause no confusion. 

f Note that we have explicitly assumed \Q = 0 above. 



ESTIMATOR/CORRELATOR BRANCH 

Fig. 1.    Optimum detector structure. 

Fig. 2.    Generation of least-squares estimates. 



where the conditional probability density function p{x;t|r.    ., j} represents the probability of 

th        ° observing the state x (t) = x at time t  given that the j      signal was transmitted and has resulted 

in the observation r     ..    The integration in (16) is over the n-dimensional Euclidean space R 
tQ,t 

with volume element dx.    Note that we again explicitly include the time t in the conditional prob- 

ability expression to emphasize its dependence upon time.    It follows that 

p{x;t|r j} =p{x;t|v.(T), tQ < T < t}       ;       j = l,2,...,M      , (17) 

where v.(t) = r(t) - s.(t) since,  given that the j     signal was transmitted and resulted in the ob- 

servation r.    ,,  it is only this difference representing the additive noise process n(t) which is 
0 

relevant to the determination or estimation of the state vector x (t).    Thus,  the estimators x.(t |j), 

or equivalently h.(t),  j = 1, 2, . . . , M can be implemented as illustrated in Fig. 2.    Here the quan- 

tity xJt) represents the least mean-square estimator of the state vector x(t) given observations 

on the additive noise process n(t) in the interval [tQ,t],  i.e., 

xn(t) = E{x(t)|n.      }      . (18) 
u XQ,X 

Observe that the input to the estimator x Q(t) in Fig. 2 is actually v.(t) which will be equal to n(t) 

only if the j     signal was in fact transmitted.    If,  instead,  the i     signal was actually transmit- 

ted, then v.(t) contains in addition to the noise process n(t) a bias term equal to the difference 

between the i     and j     signals.    It will be convenient then to let v(t) = n(t) represent a generic 

input to the estimator in Fig. 2 which will equal v.(t) in the j     estimator branch.    Similarly,  we 
J 

will drop subscripts in describing the estimator x ~(t) given by (18) and proceed then to evaluate 

x(t) = f n xp{x;t|v.    .} dx (19) 
JRn t0,i 

or more precisely the conditional probability density p{x;t|v       }.    In the following section we 

will derive a modified Fokker-Planck equation which governs the time evolution of this condi- 

tional density.    In particular,  it will be shown that 

9p(x;t|vt jt} 

 8t = L+p{x;t|vto)t} +ao-2p{x;t|vtot} 

x[v(t)-<c,£(t)>] [<c,x(t)> -<c,x(t)>]      , (20) 

where L {■} is the forward differential generator of the shot process given in this case by 

/3Ax(t) {•}> /9Ax(t){-K 
L
^-> 

= -Tr[-^n—) ~x(t) E
IV->J ' (21) 

where Tr represents the trace of a matrix, A^ is the n X n matrix described in (4) and the sequel, 

A(t) is the intensity* of the exciting Poisson point process.    The expectation in (21) is with re- 

spect to the pulse amplitude distribution with generic random variable u,  and finally A {•} is 

the difference operator defined for any continuous functional on Rn by 

Au{g(£)} = g(x)-g(x-bu)      , (22) 

* Note that we are allowing the intensity to be possibly a function of time. 



where b has been defined in connection with (4).    Equation (20) describes the complete time 

evolution,   subject of course to appropriate boundary conditions,  of the conditional density 

p{x;t|v,     .} and hence the h.(t),  j = 1, 2, . . . , M from Fig. 2.    The operator portion L {•} repre- 
V J 

sents the Fokker-Planck equation for the shot process alone while the second term in (20) is due 
9 

to the effect of noisy observations on the state x (t).    This expression is quite similar    to that 

which would have been obtained if the point process u(t) were WGN except for different interpre- 
tations of the operator L, {•}.    The expression given by (20) can be used to obtain the explicit 

A A 

structure of the estimator x(t) and hence the h.(t), j = 1, 2, . . . , M. 

IV.   DERIVATION OF MODIFIED FOKKER-PLANCK EQUATION 

Of the various approaches to the derivation of the modified Fokker-Planck equation given 
4 5 by (20),  the approach taken here will follow where possible one first given by Kushner, '    which 

9 10 has by now become fairly standard. '        The derivation proceeds in two steps.    First,  we assume 

the conditional probability density p{x;t|v.    .} is given and proceed to determine the effect on 

this quantity of an incremental change in the conditioning or observation process v(t).    Then the 

effects of an incremental change in the state x (t) are considered leading finally to the modified 
Fokker-Planck equation described by (20).    It will prove convenient at this time to replace the 

conditioning upon the v(t) process by conditioning upon the process z(t),  defined by dz(t) = v(t) dt, 

which is possible due to the one-to-one relationship between them.    In particular,  we have 

Pfe;t|vto>t+dt}=p{x;t|zto#t.dz(t)} (23) 

which allows us to proceed with Step 1 of the derivation. 

Step 1:   It follows from application of Bayes rule that 

p{dz(t)|z      t,x(t)} p{x;t|z       } 

p{x;  t|zv,dz(t)}= p{dz(t)|zt    t) 

p{dz(t)|x(t)} p{x;t|z.      } 
0» 

(24) 
/      p{dz(t)|x(t)} p{x;t|z       } dx 

Rn i0,i 

where the integration is over the n-dimensional real Euclidean space R   and we have made use 
of the fact that 

p{dz(t)|z.        x(t)} = p{dz(t)|x(t)} (25) 

since conditioning on z.    . given x(t) can give no new information about dz(t). 
t0't 

Since 

dz(t) = n(t) dt = [<c,x(t)> + w(t)] dt      , (26) 

it follows that given x(t),  dz(t) is Gaussian with mean 

E{dz(t)|x(t)} =<c,x(t)> dt (27) 



and variance 

var{dz(t)|x(t)} = a2 dt      , (28) 

where a    is the variance of the WGN process w(t) as described previously.    Thus, 

p{dz(t)|x(t)} = 1    exp \  [dz(t) -<c,x(t)> dt]2 . (29) 
L      2~ 2a     dt 
/27ra     dt ' o 

Now defining 

p{-;tiztn,t+dt> 
y[d»(t),dt;t] =      p(2L;t[ } , (30) 

it follows from (24) together with (29) after canceling common factors in both the numerator and 

denominator that 

exp{a "2 dz(t) <c , x (t)> - 0.5CT "2 <c ,x (t)>2 dt} 
y [dz(t),dt;t] = Z2"2 2 ^      • <31> 

/       expla     dz(t)<c,x>- 0.5<r       <c , x>   dt} p{x ; t |z.     A dx J
Rn      r^   o \_»—*- 0     x_ —s       >  i-«._»   i   t^,t^    — 

Now expanding y [dz(t), dt;t] in a Taylor series about dz(t) = dt = 0 it can be shown by fairly 

standard arguments  *      that up to terms* o(dt) 

y [dz(t),dt;t] = 1 +~Y [dz(t) -<c,x(t)> dt] -[<c,x(t)> -<c,x(t)>]      , (32) 
ao 

where x_(t) is the conditional or minimum mean-squared estimate given by (18) or equivalently 

(19).    Substituting this result into the defining equation (30) for y [dz(t), dt; t],  we have 

p{x;t|zt  Mdt) = p{x;t|zt  jt} + dq [x;t]      , (33) 

p{x;t|zt   t) 

dq [x;t] =  2~^~ tdz(t) -<£,x(t)> dt] '[<c,x(t)> -<c,x(t)>]      . (34) 
a o 

The expression given by (33) then represents the incremental change in the conditional density 

p{x;t|z,    ,} (or equivalently p{x;t|v     ,}) due to an incremental change in the observation alone. l0' V 
The derivation of the modified Fokker-Planck equation is completed in Step 2 by determining the 

effect upon p{x;t|z      ,} of an incremental change in the value of the state vector x(t). 

Step 2:   It is here that we depart from the Kushner derivation which depends heavily upon 

the higher order nature in dt of the higher order moments of dxjt).    Such is not the case for the 

low-density shot processes being considered here.    As an alternative,  we present an approach 
2 

suggested by Snyder.     In particular,  observe that 

p{x;t ♦ dt|zv+dt} dx = Pr|x,t + dt)  £ I>to_t+J        , (35) 

where 

* By the notation o(dt) we mean a quantity such that     lim     [o(dt)/dt] = 0. 
dt^O 



where I    is a region of volume dx centered at the point x_ in R .    Let us assume that dt is so 

small that the probability of more than one impulse occurring in the interval (t, t + dt) is o(dt). 

Then up to higher order terms in dt we have 

Pr|x(t + dt) , £Ko>t+dt| = H - Mt) dt] Pr|x(t + dt) e I>v+dt, dN(t) = o| 

+ X(t) dt Pr|x(t + dt) e l"|zt   t+dt. dN(t) = ll       , (36) 

.* where as before A(t) is the intensity of the driving Poisson point process'  and dN(t) is the num- 

ber of impulses which have occurred in the infinitesimal interval (t, t + dt).    Observe that if 

dN(t) = 0, 

x(t + dt) = *(dt) x(t)      , (37) 

where *(T) = exp{Ar} is the state transition matrix associated with the linear system generating 
~~ — 11 

the shot process.    Since $(T) is nonsingular 

Pr|x(t ♦ dt) « 0^oMdv dN(t) = o| = Prjx(t) , »"'(dt) £l«,o>t+dt|      . (38) 

where by the symbolic notation *    (dt) I     we mean the set {£, e R  :$(dt) £ * I   }.    Similarly,   if 

dN(t) = 1, 

pt+dt 
x(t + dt) = *(dt) x (t) + \ *(t + dt — a) bu(cr) der 

Jt 

= *(dt) x(t) + u*(t + dt - T) b      , (39) 

where r  is the time of occurrence of the single impulse with t < T < t + dt,  and  u  is a generic 

random variable with probability density ^ f(-) representing the random amplitude of the exciting 

pulse train.    Since 

2 
*(T) = I + TA -f ^7- A_   +. . .       . (40) 

with  1 the n x n identity matrix,  it follows that it is possible to write (39) as 

x (t + dt) = £(dt) x (t) + b u + O(dt) (41) 

so that finally after retaining terms up to* O(dt) 

Pr|s(t + dt)cl^|zv+dt. dN(t) = l) 

= (       Prjxjt) t |_1(dt) [I^-bu]|zt    t+dt| f(u) du      , (42) 

where again by *    (dt) [I    -bu] we mean the set {£ e R  :*(dt) | + bu e I   }.    Thus up to higher 

* Observe that the driving point process need not be Poisson for the development to follow. 

t We will restrict attention to f(-) described by either (7) or (8). 

± By the notation O(dt) we mean a quantity such that     lim     fO(dt)/dt] < oo. 
dt-0 



order terms in dt we have obtained 

p{x;t + dt|zt    t+dt} dx - [1 -A(t) dt] Prjx(t) € £_1(dt) l"|zt    t+dt| 

+ X(t)dtl       Pr|x(t) e j>_1(dt) (I^-buj|zt    t+dt|f(u)du (43) 

from which it follows that 

p{x;t + dt|zt    t+dt} = [1 -X(t) dt] det_1J(dt) p{|_1 (dt) x ; t |zt    t+dJ 

-1 f°° -1 
+ X(t) dt det    *(dt) \       p{*    (dt) [x-bu];t|z. , } f(u) du      , (44) 

- J_oo ~ lQ' 

where det$(dt) represents the Jacobian of the transformation relating x (t + dt) to x(t).    At this 

point some approximations are in order.    By expanding the first conditional probability on the 

right-hand side of (44) in a Taylor series about the point x,  we have 

ap{x;t|zt Mdt] 

p{f_1(dt)x;t|zt  Mdt} =p{x;t|zt  )Udt}-{Ax}T  ^^  dt+o(dt)      , (45) 

where the superscript T  denotes transpose.    Similarly,  we have 

p{*_1(dt) [x-bu];t|zt   t+dt) =p{x-bu;t|zt    t+dt} +0(dt)      , (46) 

where O(dt) represents a quantity such that 0(dt)/dt — Ma nonzero constant as dt — 0.    Finally, 

after observing that 

det_1*(dt) = 1 - Tr{A} dt + o(dt)      , (47) 

it follows that upon substituting these results into (44) and grouping together terms in dt 

p{x;t + dt|zt    t+dt} = {l-[X(t) +TrA] dt} p{x;t|«t  Mdt) 

-{Ax}T^P{x;t|zv+dt}dt 

+ X(t)dtl       p{x-bu;t|zt    t+dt) f(u) du + o(dt) (48) 

which is more compactly written as 

p{£;t + dt|zto#t+dt} =P{x;t|Ztoit+dt}-Tr(^Axp{x;t|zv+dt})  dt 

-X(t)dtj        [p{x;t|zt    t+dt} -p{x-bu;t|zt   >t+dt}]   f(u)du+o(dt) (49) 

Finally,  defining 

dp{x;t|z       } ^PU;t+dt|z dt}-p{x;t|z       }       , (50) 



we have upon neglecting higher order terms in dt 

dpfx ; 11 ^      }  = dq [x ; t] - Tr (^ A X p{x j 11 «^t*«))* 

-A(t)dtJ^[p{x;t|zvt+dt}-p{x-bu;t|zvt+dt}jf(u)du      . (51) 

At this point it is possible to divide both sides of this last expression by dt and pass to the limit 
as dt —- 0 with the result 

9p{x;t|vt   t} 
 ^-^  = L+p{x;t|vv} +ao-2p{x;t|vv) 

x [v(t) -<c,£(t)>] [<c,x(t)> -<c,£(t)>]      , 
4 

(52) 

which is the desired result [Eq. (20)].    The operator L   which represents the forward differential 

generator of the shot process has been defined previously in (21) and the sequel. 

V.    LEAST-SQUARE  ESTIMATOR EQUATIONS 

Differential equations for the least-squares estimator x (t) given by (19) can be readily ob- 

tained from the results of the preceding section.    In particular,   if we multiply both sides of the 
modified Fokker-Planck equation (51) by x and integrate over R    we obtain,  as shown in Appen- 

dix A, 
-2T x (t) = Ax (t) + m  bA(t) + a     K(t) c{v(t) - <c ,x(t)>} 

Here the gain matrix K (t) is given by the variance of the estimation error 

K(t) = E|[x(t) -x(t)] [x(t) -x(t)]T|v.     .1       , 

(53) 

(54) 
'(>• 

and m    = E{u) is the mean of the pulse amplitudes - actually zero for the distributions described 
by Eqs. (7) and (8).    Figure 3 illustrates the implementation of the estimator x (t) under the 

j,0,     "TIM^IL 

2 K(t] /   (-)dT 

<£.'>     < 

">x(D 

Fig. 3.    Minimum mean-square estimator. 

10 



assumption m    =0.    The structure is exactly that of the Kalman-Bucy filter operating on Gauss- 

Markov data,  the only difference being in the way the gain matrix IC(t),  or equivalently the error 

covariance matrix,  is obtained.    As in the Kalman-Bucy theory,  a differential equation for the 
error covariance matrix can be obtained from the results of the preceding section.    In Appen- 

dix A it is shown that the error covariance matrix K (t) satisfies the matrix differential equation 

K(t) = AK(t) + K (t) AT - X(t) [a^ + m*] B - cT"2K(t) CK(t) 

+ ao"2 [v(t) -<c,x(t)>] EJ[x(t) -x(t)] [x(t) -x(t)]T 

X[x(t) -x(t)]Tc|v.     .1       . (55) 
l0' ' 

T T 2 Here B = bb   ,   C = cc   ,  and cr    is the variance of the pulse amplitudes which excite the linear 
dynamical system to obtain the shot process.    Observe that if the Poisson point process u(t) were 
replaced by a WGN process the last term in (55) vanishes since odd moments (in this case the 

third) of Gaussian zero-mean variates are identically zero.    In the case we have treated,  these 
odd moments need not vanish and the gain matrix K(t) depends explicitly upon both the input data 

and the current estimate x (t) through this last term.    This results in a nonlinear receiver struc- 

ture and considerably complicates the receiver implementation since now the gain cannot be de- 
termined a priori before observations are taken.    Indeed,   determination of K(t) from (55) requires 

evaluation of third moments of the estimation error.    It can be shown that differential equations 
can be obtained for the third and higher order moments which will be found to depend upon still 

2 
higher order moments of the estimation error as well as the noisy observations.    Snyder    has 
suggested that truncation of this dependency on higher order moments at some point will result 

in a reasonable suboptimum detector structure.    Such questions are objects of continuing 
investigations. 

VI.   SUMMARY AND CONCLUSIONS 

We have explicitly defined the optimum detector structure for reception of M-ary orthogonal 

signals in ELF noise environments.    This structure has been shown to bear some resemblence 
to that which would have been obtained in the presence of Gaussian noise alone.    The presence 
of the low-density shot component has been shown to severely complicate the receiver implemen- 

tation.    Studies in progress will be concerned with the implementation and performance of sev- 
eral suboptimum versions of this structure obtained as described in the preceding section by 

truncating the dependency of the gain matrix on higher order moments at some level.    Also under 

study are techniques for obtaining exponential error bounds on error probability performance 
over the ELF channel and adaptive identification techniques for determining the linear system 
dynamics and the time-varying intensity of the Poisson point process from observations.    Another 

area which has been under continuing study is that of the evaluation of the relative performance 
of various suboptimum nonlinear detector structures of the limiting variety.    These results will 
be described in a later report. 
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APPENDIX A 

DERIVATION OF LEAST-SQUARES ESTIMATOR EQUATIONS 

Here we desire to develop a differential equation for the least-squares estimator x (t) given 

by (19).    First define the quantity 

dx(t) £x(t + dt) -x(t) 

= \       xdp{x;t|z      .} dx (A-l) JRn t0,t- 

so that from (51) 

dx(t) =§ nxdq[x;t]dx-dt^   n x Tr (ßg Axp{x ; 11 z%  >t))dx 

-A(t)dt(   nx_K       [p{x;t|zt    t}  - p{x-bu;t|zt    t}]f(u)du    dx       .        (A-2) 

Now evaluating each of these integrals separately it follows first from (34) that 

\       xdq [x;t] dx = a2K(t) c{dz(t) -<c,x(t)> dt}       , (A-3) JRn o_ 

where K (t) is the covariance of the estimation error given by 

K(t) = (   n [x-x(t)] [x-x(t)]T p{x;t|z.    ,}  dx — JRn t0,t 

= EJ[x(t)-x(t)] lx(t) -x(t)]T|zt    t|       . (A-4) 

Similarly,  if we let {Ax}, denote the i     component i = 1, 2, . . . , n of Ax,  then under the assumption 

x.{Ax}. p{x;t|z       } = 0      ;       i = l,2,...n      , (A-5) 
l —     l tQ,i 

whenever x. = ± «>,  it follows after integration by parts that 

IRniTrfe^P^;t|V})d- = _4Ä(t)       • <A"6) 

Finally,  after some algebra it can be shown that the last integral in (A-2) can be expressed as 

{   nxK       [p{x;t|z      ,} -p{x-bu;t|z       ) 1 f(u) du    d x = -b m , (A-7) 
J R        lJ-«> l c0' 0'    J J U 

where m    = E{u) is the mean value of the exciting pulse amplitudes.    Thus, the expression 

(A-l) for dx(t) becomes 

dx(t) = Ax(t) dt + m   bA(t) dt + CT "2K (t) c{dz(t) - <c , x (t)> dt) (A-8) 

so that,  after dividing both sides by dt and making use of the fact that dz(t) = v(t) dt,  we arrive 

at Eq. (53) of the text. 
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where 

APPENDIX B 

ERROR COVARIANCE  EQUATION 

Let us first observe the vector-matrix identity 

[x-x(t)J [x-x(t)]T = [x-x(t + dt)J [x-x(t + dt)JT + dx(t) dxT(t) 

+ [x -x(t + dt)] dxT(t) + dx(t) [x - x(t + dt)]T      , (B-l) 

where dx(t) = 2L^ + dt) - x_(t). Now multiplying the right-hand side of this last expression by 

the left-hand side of (51), and the left-hand side by the right-hand side of (51), we obtain (see 

Kef. 9 for similar results),  after integrating over R  , 

dK(t) + dx(t) d£T(t) = - dt  (   n [x-x(t)] [x-x(t)]TTr/^-Axp{x;t|zt    udi}\ dx 

-A(t)dtj   n [x-x(t)] [x-x(t)]TE [Aup{x;t|zt   >t+dt}] dx 

+ <x~2 [dz(t) -<c,x(t)> dtj(   n [x -x(t)J [x -x(t)]T [<c,x(t)> o JRn 

-<c,x(t)>] p{x;t|z        }dx       , (B-2) 
l0fl 

K(t)=(       [x-x(t)J[x-x(t)JTp{x;t|z.     } dx 

= E{[X-x(t)] [x -x(t)]T|z        }       , (B-3) 
V 

and dK(t) = K (t + dt) - K(t).    Evaluating the first integral on the right-hand side of (B-2) by parts, 

again under similar assumptions as stated in (A-5),  it follows that 

\   n Ix-x(t)] [x-x(t)JT^rAxp{x;t|zt    t)\   d x = - [A K (t) + K (t) AT]       . (B-4) 

Similarly,   it can be shown easily that 

j   n [x-x(t)j[x-x(t)]TE [Aup{x;t|zt    t+dt}] dx = [au
2 +mu

2]B      , (B-5) 

where a     - var{u} is the variance of the pulse amplitudes represented by the generic random 
u j, 

variable  u and B = b b   .    Thus it follows 

dK(t) + dx(t) dxT(t) = (AK(t) + K(t) ATJ dt - A(t) dt [a2 + m2] B^ 

+ a"2 (dz(t) -<c,xtt)> dtj E|[X -x(t)J [x -x(t)]T [x-x(t)]Tc|z. . (B-6) 
° ' 0,t' 

Observe from (A-8) that after dropping obvious terms of higher order in dt 

dx(t) dxT(t) = a "4 (dz(t) -<c, x>dt]2 K(t) CK(t)       , (B-7) 
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T where C = c c   .    Furthermore,   since 

dz(t) = <c ,x(t)> dt + d£(t)       , (B-8) 

where  d£(t) = w(t) dt and £(t) is a Brownian motion process,  we have up to terms o(dt) 

dx(t) dxT(t) = ao"4d2Ut) K(t) CK (t) 

= ao"2 dtK(t) CK(t)      , (B-9) 

9 2 where we have made use of the fact    that the process d 4 (t)  is essentially deterministic and 
2 

equal to a     dt. 

Finally,  we obtain 

dK(t) = [AK(t) +K(t) AT] dt -Mt) dt [a2 + m2] B - aj2 dtK(t) CK(t) 

+ ao"2 [dz(t) -<c,x(t)> dtj   E|[x-x(t)] [x-x(t)]T [x-x(t)]Tc|zt    J       . (B-10) 

whereupon,  dividing both sides of this last expression by dt while passing to the limit as dt — 0 

and making use of the fact dz(t) = v(t) dt,  we obtain Eq. (55) of the text. 

IS 
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