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FOREWORD
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Chief Air Force Test Director, VKF Acting Director of Test
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ABSTRACT

The report summarizes the pressure disLributions obtained or, the
lower surface of the orbiter and upper surface of the booster (adjacent
model surfaces) during possible staging and abort maneuvering positions
and also for various proposed launch configurations of the space shuttle
vehicles. The results were obtained with and without booster and orbiter
plume simulation at nominal free-stream Mach numbers of 2, 3, and 5.
The report also concains a brief summary of the results obtained for the
calibration of the nozzles used to generate the plumes for the power-on
simulation. Results demonstrate the importance of plume simulation
on the aerodynamic loading of a vehicle and, in particular, suggest that
plume simulation is needed to evaluate properly the aerodynamic coeffi-
cients on the space shuttle vehicles during the staging and .h:.bort maneu-
vers of these vehicles. The Appendixes of this report contain additional
comparisons of the pressure distributions.
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SECTION I
INTRODUCTION

For the abort and normal staging of the space shuttle vehicles, the
mutual aerodynamic interference and plume impingement load ng must
be evaluated so that an assessment of the separation of the vehicles can
be made. The pressure tests described in this report were conducted
to assess the nature of the interference loading on the upper surface of
the booster and the lower surface of the orbiter; that is, on the adjacent
surfaces of these two vehicles during a separation maneuver. The test
objectives were to evaluate: (1) the aerodynamic interference between
the two models with variations in the proximity and attitude of the two
models, (2) the effects of booster and orbiter plume simulation on the
interference loads, (3) the Mach number effects on the interference
loading, and (4) the influence of an external stream on the simulated
plhme impingement loading. MAso, possible launch configurations with

* the booster and orbiter mated were investigated at nominal Mach num-
bers 2 and 5 to examine the interference load distributions generated on
the booster and orbiter.

Slightly modified 0. 0055-scale models of the McDonnell Douglas
(MDAC) booster and orbiter configurations were used in this investiga-
tion. The booster model was basically that designated by MDAC as the
19A configuration; however, the vertical tails were modified and re-
sembled those of the Number 17 configuration. The high cross range
orbiter configuration was used. The aft sections of both models were
modified so that nozzles could be installed to generate a plume which
simulated a particular thrust setting of the vehicle propulsion system.
Booster and orbiter engine thrust levels of 0, 50, and 100 percent were
simulated during the test program.

The plume simulation was generated with cold (about 5600R) airflow
through an annular type of nozzle. The nozzles were designed with a
variable-area-ratio capability so that the plume simulation of the full-
scale vehicle could be varied, depending on the external stream condi-
tions.

The tests were conducted in the 40-in., Supersonic Wind Tunnel (A)
of the von Ka'rman Gas Dynamics Facility (VKF) at nominal Mach num-
bers 2, 3, and 5 and free-stream Reynolds numbers (Ref), based on
the booster length, from 1. 5 to 8. L million. The angle-of-attack range
was ±10 deg, and the relative angle between the orbiter and booster was
zero, except for a few test points that were obtained at a relative angle
of incidence of 5 deg. The relative position between the moment

1
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reference points of the booster and orbiter was varied axially from
Ax/L of -0. 391 to 0. 520 and vertically from a Az/L of 0. 11 to 0. 91.
For decreasing values of Ax/L, the orbiter moved downstream toward
the booster base region. The test results consisted of model surface
pressure measurements, nozzle chamber and exit pressure measure-
ments, and some holographic interferograms.

This report contains a brief summary of the power-on and power-
off interference effects on the orbiter and booster pressure distribu-
tions and also on the nozzle plume calibration results used to define
the proper plume simulation for each rocket thrust level and free-
stream Mach number condition.

A complete set of pressure data will be published under the
SADSAC Space Shuttle Aerothermodynamic Data Management System.

SECTION II
TEST EQUIPMENT

2.1 WIND TUNNEL

Tunnel A is a continuous, closed-circuit variable-density wind
tunnel which has an automatically positioned, flexible-plate-type nozzle
with a 40- byi 40-in. test section and a model injection system. The
tunnel can be operated at Mach numbers from 1.5 to 6 at maximum
stagnation p"e-sures from 29 to 200 psia, respectively, and stagnation
temperatures •up to 750OR (MD = 6). Minimum operating pressures
vary from about one-tenth to one-twentieth of the maximum at each
Mach number•

2.2 MODELS

The 1/180-scale models of the McDonnell Douglas (MDAC) booster
and orbiter configurations were specified for this investigation. The
booster model shown in Fig. la is basically the booster configuration
designated by MDAC as 19A. The vertical tails on this booster con-
figuration correspond to the tail designed for MDAC configuration 17.
The orbiter configuration is shown in Fig. lb.

2
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The pressure models were made 'of brass and fabricated by the in-
vestment casting technique employed by NASA at the Langley Research
Center. The models were bored out and cut in sections so that three,
48-port S-type ScanivalvesO could be installed inside. One Scanivalve
was placed in the orbiter model, and two scanivalves were placed in
the booster model. Most of the pressure taps were located on the
adjacent surfaces of these bodies; that is, 38 pressure taps were located
on the lower surface of the orbiter and 77 taps on the upper surfaces of
the booster. Also, several additional taps were located in the base
region and on the opposite surfaces near the model base of each model,
as shown in Fig. 1. Boundary layer trips consisting of approximately
0. 2-in. -wide strips of No. 28 Carborundum Grit for the MA = 5 tests
an-] No. 60 for the M(, = 2 and 3 tests were applied as shown in Fig. 2b.

2.3 NOZZLE AND MODEL SUPPORT SYSTEMS

The orbiter and booster models were supported on individual stings
attached to a remotely controlled dual-sting support mechanism, as
shown schematically in Fig. 2a and photographically in Fig. 2b. The
model support mechanism provided movement of the orbiter relative to
the booster, 17 in. in the axial direction and 15 in. in the vertical
direction. An automatic control systern allowed programming the
orbiter mechanism to move to preselected axial and vertical positions
relative to the booster during a test run. As indicated in Fig. 2, these
displacements were referenced to the orbiter and booster moment refer-
ence point. The relative angle of incidence (i) between t0e two models
was set manually. The entire dual-sting support mechanism was
mounted on the tunnel sector fo provide pitching the two models as a
unit from -10 to +10 deg.

A concentric, annular, variable-area-ratio supersonic nozzle was
furnished as an integral part cf the upstream section of the model
support strings, as shown in Fig. 3. High-pressure air flowed through
the hollow sting into the nozzle chamber region and then expanded
through the annular nozzle, generating a plume which enveloped the
sting. The sting nozzle designs were similar in that the outer cylindri-
cal sleeve (see Fig. 3) could be moved relative to the contoured nozzle
centerbody section of the hollow string. The inner surface of this outer
cylindrical sleeve was tapered so that the nozzle-to-exit area ratio of
the orbiter nozzle could be varied from about 10 to 100, whereas the
booster nozzle area ratio could be varied from about 3 to 20. The
nozzles were designed to operate at a maximum chamber pressure of
1500 psia.
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The nozzle area ratio was set by locating the outer cylindrical
sleeve relative to a reference block positioned on the sting by a pin hole
in the sting. This gap setting was positioned to within ±0. 0005 in., and
the ratio of the nozzle exit static pressure to the nozzle chamber pres-
sure was used to check experimentally the repeatability of the gap set-
ting. The correlation between this pressure ratio and the gap setting
was established during the calibration of the nozzles.

2.4 INSTRUMENTATION AND PRECISION

2.4.1 Orbiter and Booster Nozzle Plume Calibration

The model nozzles were calibrated at the VKF in the test section
of Tunnel C (a 50-in, hypersonic tunnel) where a low ambient pressure
could be maintained. The nozzle plume colibrations consisted of the
following measurements: nozzle mass flow rate, plume flow field sur-
veys with two 0. 093-in. 0. D. pitot probes and an unshielded 0. 093-in.
O.D. total temperature probe, nozzle chamber pressure, surface pres-
sure at the nozzle exit, and finally, the Tunnel C test chamber pressure
and temperature. The mass flow rate was obtained by using a standard
ASME long radius venturi metering nozzle installed according to ASME
specifications in the nozzle supply lines. The supply line pressure was
recorded with a vacuum-referenced 2500-psid transducer calibrated full
scale at 1500 psia. The differential pressure between the verituri throat
tap and the supply line pressure was recorded with a 50-psid and a
200-psid transducer. Based on periodic comparisons with secondary
standards, the precision of these transducers is estimated to be ±0. 2
percent based on the calibration range selected for the transducer.
The jet gas temperature was recorded with a copper-constantan
thermocouple located near the venturi mass-flow meter to an estimated
precision of ±2°F. A summary of the estimated uncertainty of the nrass
flow results, assuming a Taylor series error propagation, is given in
Table I.

TABLE I
UNCERTAINTY IN MASS FLOW MEASUREMENT PARAMETERS,

PERCENT (±)

Po T C

Venturi Nozzle 0.33 0.36 0.55 ---
Booster Nozzle 0.20 0.36 1.23 1.74
Orbiter Nozzle 0.20 0.36 9.39 9.41

9
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The flow-field pitot pressure system used contained 500-, 100-,
and 15- psid transducers, all referenced to a near vacuum of 15 to
25 prig. The probe position was remotely controlled and digitized so
that it was known to within ±0. 001 in. in the coordinate normal to the
plume axis and to within ±0.01 in. in displacement from the nozzle
exit. The nozzle exit static pressure was recorded with a 50-psid
transducer, and a 15-psid transducer calibrated full scale at I psid
was used to record the test chamber pressure. The precision of these
transducers is estimated to be ±0.2 percent of full scale of the range
being used. The estimated uncertainty in the flow-field properties of
the plume are summarized in Table IL.

TABLE I1
UNCERTAINTY OF PLUME FLOW-FIELD PROPERTIES

Nominal Ratio percent (±)
Probe Location Pz/Pb Pz/Pb Pz /P'

At Sting 300.0 1.2 0.6 0.6
At Plume Boundary 1.2 5.1 1.0 3.0

Near the stings, the Mach number calculations were based on p z/Poj

(normal shock Mach number), whereas, near the plume boundary where
the local Mach number decays to zero, the Mach number was based on
pZ /pb (Rayleigh Mach number). For the uncertainties listed in Table II,

the Taylor series propagation of individual uncertainties was used with
the appropriate ideal gas Mach number relationships.

Single-plate, double-exposure holographic pictures were made of
the plume flow field. These exposed holograms were later recon-
structed to produce shadowgraphs, schlierens, conventional interfero-
grams, and Hilbert transform pictures of the flow-field image. These
photographs provide a simple method of defining the plume boundaries.

2.4.2 Model Surface Pressure Measurements

The Tunnel A stilling chamber conditions were recorded with a
150-psid transducer with an estimated uncertainty of ±0. 2 percent of
full scale of the calibrated range. For this test, these calibration
ranges were 10, 50, and 150 psid. The tunnel total tempera+ure was
recorded with a copper-constantan thermocouple with an estimated un-
certainty of ±10F. By taking into account the repeatability and uniform-
ity of the test section flow (M. distribution) during tunnel calibrations,

10
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the estimated uncertainty in the fl.6w-field properties, using a Taylor
series error propagation, is summarized in Table III.

TABLE III
UNCERTAINTY OF TUNNEL FLOW-FIELD PROPERTIES

Nominal Percent (±)

Mach No. Reý x 106 MW Po pM Re.

2.0 2.3 0.5 0.27 1.58 0.57
3.0 2.2 0.4 0.88 1.83 1.05
5.0 1.5 0.3 0.45 1.76 0.87
5.0 8.6 0.3 0.20 1.77 0.77

The nozzle chamber pressures in the models were recorded with
transducers calibrated full scale at 1500 psia. The estimated uncer-
tainty of these pressure measurements was less than ±3 psia. The
nozzle exit pressure was measured with a 15-psid transducer having
a variable reference pressure. This reference pressure Vwas varied
from a near vacuum (15 to 25 prig) to atmospheric pressure, depend-
ing on the magnitude of the nozzle exit pressuire.

Three Scanivalves, each with a 25-psia (absolute) transducer, were
used to record the model surface pressures. In general, the precision
of measurement of these transducer-s, bascd on VKF calibrations, was
not expected to be any better than ±0. 3 percent of the full-scale range
of the transducer; that is, no better than ±0. 07 psia (Lhis is better than
quoted by the manufacturer). Actually, the calibration of the transducer
located in the orbiter appeared to be considerably better than this and
better than the two transducers located in the booster.

This conclusion is based on the fact that the orbiter test data
obtained at the maximum and minimum test Reynoldo number (i. e., at
8. 6 x 106 and 1.5 x 106) were in fairly good agreement (also indicating
that the Reynolds number effects were negligible). In the case of the
booster, this change in Reynolds number caused a change in the level
of the pressure ratio distributions, although the change was within the
quoted precision, the pressures recorded by the two transducers in
the booster were consistently higher than the pressure sensed by the
tranoducer in the orbiter when both models were exposed to the same
subatmospheric pressure in the tunnel without tunnel flow.

If it is assumed that the orbiter transducer is more reliable, it is
suggested that the booster pressure ratios should be adjusted as shown
in Fig. 4. Note that, although these corrections are within the quoted

11



AEDC-TR-72-46

40

20

0,8 10

S 8

o• 6

Cd M - 2 (poo " 0.96 p31a)S 4 -..

•, 1.0 - Mo - 3 (P.o - 0.31 psia)_

0o.8 - M= - 5 (p. - 0.27 psia)_

0.6 -

IJ -M• 5 (P,= - 0.043 psIO•

S,2

01.0 -/ 14- p .1 s

0.2 -

0.1 0.2 0.4 0.6 1 2 4 6 10 20 40 60

Plotted Pressure Ratio, P/pao

Fig. 4 'The Estimated Correct Booster Pressure Ratios versus the Plotted Ratios

in the Figures of Appendix 11

uncertainty of the transducers, this adjustment in the booster -pressure
ratios makes the booster data slightly more consistent with the orbiter
data. In this report, the figures in Appendix II are plotted in terms of
the originally computed pressure ratios, but the booster pressure ratio
data in the text of the report have been adjusted by the factors given in
r-ig. 4.

Based on the transducer precision determined by calibration, the
estimated maximum uncertainty in the basic data is as follows:

Uncertainty in Pressure Ratio
MO p., psia p/ p

2.0 0.96 5 0. 07

3.0 0.31 ±i0. 22
5.0 0.27 ±0. 26
5.0 0.04 21. 60

12
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Relative to the booster model, the orbiter model could be automati-
cally driven from oinc position to the next in the horizontal and vertical
directions with a repeatability of within ±0. 006 in. of a desired location.
Although attempts werc made to attach strain gages to the orbiter and
booster stings to monitor sting deflections due to aerodynamic loading,
the installation of the high-pressure flexible gas supply line adversely
influenced the strain-gage outputs. Therefore, the uncertainty in the
vertical position of the orbiter was considerably larger than the un-
certainty associated with its horizontal position. The vertical displace-
ment factor (Az/L) is therefore rounded off to the nearest hundredth,
while the horizontal displacement factor (Ax/L) is rounded off to the
nearest thousandth. The sector angle-of-attack repeatability is ±0. 1
deg.

SECTION III
PROCEDURE

3.1 TEST PROCEDURE

The sector angle of attack, the vertical and horizontal travel of the
orbiter relative to the booster, the operation of the model Scanivalves,
and the recording of the model pressure transducers were all pro-
grammed electronically for automatic operation. Once the data taking
sequence was initiated, the data were recorded in the following pre-
scribed manner. At each angle of attack, all three Scanivalves, each
containing 48 pressure ports, were simultaneously actuated, and the
pressures were automatically recorded. Once the Scanivalves had com-
pleted scanning all 48 pressure ports, which took less than 30 sec, a
signal from the Scanivalves was used to actuate the sector to move to
the next angle-of-attack position. After the sector reached the next
preselected position, the Scanivalves were again automatically actuated.
This operation was continued until all preselected angle-of-attack posi-
tions were obtained. At this point, the orbiter support system was pro-
grammed to move automatically to the next preselected axial station.
This sequence of operation continued until all angle-of-attack and orbiter
axial stations were satisfied, and then the orbiter was programmed to
move automatically in the vertical direction to the next preselected Az
location. At the new vertical position, all the axial and sector angle-
of-attack positions were repeated with the pressures being recorded
from all. three Scanivalves at each new model position. The automatic
sequence of operation continued until all preselected sector angles of
attack were satisfied at all preselected orbiter axial and vertical posi-
tions.

13
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A schematic of the control system used to record the data for this
test matrix is shown in Fig. 5. As indicated in the figure, a "system
control unit" coordinated the operation of the "scanner control," which

was used to record the data, and the control panels were used to oper-
ate the mechanisms which pitched the models and moved the orbiter
relative to the booster.

Scanner Scanner
Control Position

Readout

System
ictro ControlU nit I

Asth odetls ove Cuomaticaly thrug thDes atioo

Selection thedtet matru

Position Construc nd Drive
Selection Readout System

Position Control and Drive
Selection Readout •-System

Fig. 5 The Automatic Data Recording and Model Positioning Control System

As the models moved automaticaly through the test matrix, holo-
grams were made at selected poirts in the test matrix. By using a
reference bologram of the tunnel flow with the model removed, these
test holograms were used to reconstruct double -exposure, double-
plate interferograms of the flow field. Most of the re constructions
were made with the models at zero angle of attack, and a few pictures
were made at ±10 deg angle of attack.

3.2 NUMERICAL INTEGRATIONS

The primary purpose of the test program was to evaluate the pres-
sure loading existing on the adjacent surfaces of the orbiter and booster
configurations during the abort staging maneuvers. An attempt was

14
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also made to integrate these limited pressure distributions and examnine
the distributions of the local normal force coefficients along the wings
and body axes of the booster and orbiter. In addition, the net change in
normal force and pitching moment coefficients produced by the interfer-
ing flow fields of the two bodies was evaluated from the pressure data
and compared with the corresponding changes noted in the force mea-
surements of Pef. 1.

The following numerical techniques were adopted and programmed
Lo integrate the pressure distributions. In some cases, a pressure in
a distribution was missing or known to be incorrect along a particular
array of pressure taps involved in a particular line integral. A simple
three-point Lagrange interpolation formula was used to estimate these
missing pressures in a distribution. A three-point unequally spaced
numerical integration subroutine was used to evaluate the integrals.
This numerical scheme is based on an expression formulated from a
Lagrange curve fit of three unequally spaced points. The integration
is evaluated from the first point to the intermediate point of the group
of three points. A next group of three points is selected, starting with
the intermediate point and using the next two points, and the integration
scheme is reapplied. This process is completed over the whole interval
of the integration, and the last three points are simply evaluated over
the entire three-point interval. This numerical scheme is outlined
below:

Yn+l m=n Ym+l

fx(dy) I f x(dy) (1)
SYo ,11o Ym M.

and

Yn+ 1 2

f dyn 6 ~H 732xn + ( 1 ) xin+1 I- I~I2i))xn+2j (2)

where

H =Yn+2 - Yn

H, Yn+l - Yn

H2 =H - HI =yn+2 - Yn+l

3.2.1 Orbiter Integrations

At each pressure tap station along the centerline of the lower sur-
face of the orbiter body, an integration of the pressure diste-ibutions

15
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was made normal to the body axis in the spanwise direction; that is
k /

•y
L.E. (3)

CNx Cp(dy)
0

where cNx is the local normal force coefficient per inch and YL. E. is

the local span of the orbiter at any given model station. The pressure
coefficient associated with the leading edge of the orbiter (i. e., at

Y = YL. E. ) was estimated as follows:

. E. ) = CPN Cos 2 0L. E.

where .C0  is the pressure coefficient based on the measured orbiter

nose tap pressure and 0L. E. is the local sweep angle of the orbiter

leading edge.

The normal force and pitching moment coefficients associated with
the pressure distribution on the lower surface of the orbiter were then
defined as follows:

1

CNx 21 .CNx(d(x/A)) (5)
0

where I is the overall length of the orbiter, and

Cm -2R f CN[(x-4. 92)/1] d(x/A) (6)

0
A check on the uniqueness of these normal force and pitching

moment coefficients was made by reversing the order of the numerical
integration. At each of the six spanwise locations containing an array
of pressure taps, the distributions were integrated in the axial direction:

XT.E.

C s Cp(dx) (7)
XL. E.

edge and trailing edge locations relative to the orbiter nose. This
coefficient (CNy), when plotted as a function of the span coordinate (y),

would represent the spanwise distribution of the local normal force

16
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coefficient. The resultant normal force and pitching moment coeffici-
ents are defined by the following expressions:

1

CNy = 2b CN y(d(y/b)) (8)

where b is the semi-span of the orbiter trailing edge wing surface.
• 1

Cm 2b Cmy (I(y/b)) (9)Cy o

where
x .E

cm f; x- 4.92)/i] dx
. 'L.'E.

Theoretically, the coefficients CNx and CNy and similarly Cmrx

and C should be equal. Actually, the difference in the normal force

coefficients (CNx, CN y) was, in most cases, less than 0.01, as corn-

pared with an overall variation in this coefficient CNx of 0 to 0. 8. The

difference in the pitching moment coefficients (Cm, Cm y) was about

0.005, as compared with an overall variation from -0.67 to 0.02.

3.2.2 Booster Integrations

The booster normal force and pitching moment coefficients were
obtained by integrating separately the pressure distributions on the
booster body, canard, and wing surfaces and then summing these results.
All body and wing leading edge surfaces were evaluated in the same
manner as adopted for the orbiter. In fact, the CP'N value used for the

booster was set equal to the value used for the orbiter, since the booster
did not have a true nose pressure tap. The normal force and pitching
moment coefficients associated with the booster body were evaluated as
follows:

cN 1 f Cp(dy) (10)
0

1.0
CN x =2Rf CNx(d(x/.C)) (11)

0

17
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1.0
Cmx 2•? CNx [(x - 7.53)/M] d(x/I) (12)

0

The wing loading was obtained by integrating first in the axial di-
rection at each of the five wing span stations and then integrating in the
spanwise direction.

XT.E.

CNy -=s Cp(dx) (13)
Y L. E.

XT. E.

Cmy = -i f Cp [(x - 7. 33)/1]dx (14)
XL.E.

The spanwise integration covered the interval from the junction of the
wing plan form and the booster body to the junction of the wing tip with
the vertical tail section (see Fig. la).

4. 780
CN = 2f cNy(dy) (15)

S 1. 195

4. 780

Cm 2f cm y(dy) (16)
Cmy 1.195

A simple trapezoid approximation was used to estimate the loading
on the canards, since the canard contained only four pressure taps. The
resultant normal force and pitching moment coefficients on the upper
surface of the booster were obtained by simply summing these results;
namc) y,

CN = CNx (Body) + CN (Canard) + CNy (Wing) (17)

Cm = Cmx (Body) + Cm (Canard) + Cm (Wing) (18)

Since these coefficients (CN 01' Cm) only represent the loading on
either the upper or lower surface of a body, these values cannot be com-
pared directly with the force measurements. However, the incremental
change in these coefficients between the interference-free results and
the results obtained when the interference exists may be compared with

18
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the corresponding change in the force measurements. Therefore, the
following delta coefficients were also defined for use in this report:

ACN = CN (Interference) - CN (Interference Free) (19)

ACm = Cm (Interference) - Cm (Interference Free) (20)

3.3 TEST CONDITIONS

3.3.1 Plume Calibration

The variables in the plume calibration involved the nozzle gap
setting which varied the nozzle area ratio, the nozzle chamber pres-
sure, and the test cell pressure. The overall variation in the test
parameters for this calibration is listed in Table IV.

TABLE IV
NOZZLE CALIBRATION

Nominal Nominal Survey .ake
Ep, in. A/A'" Poj/Pb Location1 , in.

Booster 0.389 3.5 1400 to 1780 1.53, 2.24, and 3.06
0.411 3.8 1390 to 1660 1.53 and 2.24
0.426 4.1 760 to 2000 1. 52, 2.28, and 3.03
0.452 4.7 1390 to 1730 0. 71 and 1.52
0.504 6.5 1540 to 1730 0. 71 and 1. 52
0.542 9.3 1560 to 1730 0.71, 1.72, and 2.28
0.592 15.7 1430 to 5200 0.71

Orbiter 0.478 15 1590 to 4600 0.47 and 0. 94
0.495 20 1590 to 4600 0.47
0.512 28 1590 to 4760 0.47 and 0.94
0.545 63 1590 to 4600 ---

1This location refers to the distance downstream of the nozzle
exit plane. All plume flow-field surveys were made at a nominal
pressure ratio (Poj/Pb) of about 1600 to 1780.

The nozzle area ratios were based on the nozzle exit area and the mea-
sured mass flow rate. The mass flow rate measurement was used to
define a nozzle throat discharge coefficient which, in turn, could be
used to define an effective nozzle area ratio listed in Table IV.
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3.3.2 Model Test Program

A summary of the test conditions is given in Table V. At Mach
number 5, one sequence of data not listed in the table was obtained
without power simulation to evaluate the effects of the booster canard
and the boundary layer trips on the booster and orbiter pressure dis-
tributions. The effects of the boundary layer trips were found to be
negligible or fell within the repeatability of the pressure data. The
test results obtained in the absence of an external stream (M. = 0)
were used to evaluate the orbiter plume impingement loading on the
booster, and these results were obtained with the tunnel test section
pressure at 0. 48 psia and also at 0. 86 psia, as shown in the table.

TABLE V
TEST SUMMARY

Plume Power
To, P0o, P. 1, Range of Variable Simulation, percent

AM 1net x 106 0
R psIa psia deg a, deg Ax/L Zz/L Booster Orbiter

2.00 2.4 580 7.5 0.96 0 ±10 -0.39 to 0.52 0.12 to0.91 0 0
0 -0.39 to 0.52 0. 12 to0.91 50 100
5 -0.14 to 0.23 0. 15 to 0.23 0 0
5 -0. 14 to0.23 0. 15 to0.23 5b 100
0 0.04 to 0.17 Launch 0 0

0.04 to 0.17 Launch 100 0
S* -0.18 Launch 100 100

3.00 2.2 11.4 0.31 -0.39 to 0.51 0. 12 to 0.91 0 0
3.00 2.2 11.4 0.31 -0.39 to 0.51 0. 12 to0.91 50 100
3.00 2.2 • 11. 1 0.11 0.04 to 0.17 Launch 0 0
4.97 1.5 590 22.1 0.043 -0.39 to 0.52 0.11 too.91 0 0S-0.39 to 0. 52 0. l11 to 0. 91 50 100

5 ±5 -0.1.1 to 0.23 0.15 to 0.23 0 0
5 110 -0. 14 to 0.23 G. 15 to 0.23 50 100

0 ±10 -0. 18 to 0.17 Launch 0 0
0 ±10 -0.18 to 0.17 Launch 100 100

5.04 8.6 640 149 0.27 0 0 -0. 1.1 to 0.52 0. 12 to 0.91 0 100
t0.48

0 No Tunnel Row and 5 0 -0. 14 to 0.35 0.15 to 0.23 0 100
10.86,

The test matrix which covers all. the positions of the orbiter rela-
tive to the booster are shown schematically in Fig. 6. At the maximum
Az/L value of 0. 91, the orbiter bow wave missed the booster with the
orbiter located over the booster base; that is, the booster pressure dis-
tributions are interference free. Similarly, the forward orbiter posi-
tion produced orbiter pressure distributions which are not influenced
by the booster bow wave. Most of the interference data was obtained in
a matrix area lying between Az/L values of 0. 11 and 0. 23 and Ax/L
values of -0.39 to 0.35.
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The variations in the launch positions are shown in Fig. 7. Origi-

nally, the orbiter was supposed to be located on the forward section of
the booster, but some consideration is also being given to the possibility
of a dual burning base launch position where Ax/L ca -0. 180. At nominal
Mach numbers 2 and 5, pressure distributions were obtained with the
orbiter located in the dual base burning position.

Nominal Launch Positions
Dual Burning

Ax/L - 0.1651 Base Launch

= 0.104 Az/L = 0.105 Position,bxlL~ - 0180
=0.042. 7 /

"--- Moment Reference
Locati.-ns at the
OrbitLr and Booster

Fig. 7 The Variations in the I.aunrn ("ositions

22



AEDC-TR-72-46

The plume power simulation was produced with the following
booster and orbiter nozzle settings listed in Table VI. The basis for
this plume power simulation is described in Refs. 2 and 3.

TABLE VI
PLUME POWER SIMULATION

a. Booster

MW Altitude, p•, Percent of Power Gap Setting, Poj,

Nominal km psia Simulation Ep, in. psia

2.0 18.4 0.96 50 0.560 7482.0 18.4 0.96 100 0.522 1200

3.0 28.5 0.31 50 0.519 694
5.0 46.4 0.043 50 0.491 648
5.0 46.4 0.043 160 0.473 1200

b. Orbiter

mo Altitude, p0,, Percent of Power Gap Setting, Poj,
Nominal km psia Simulation Ep, in. psia

2.0 18.4 0.9 100 0.502 1200
3.0 28.5 0.3. 100 0.490 1200
5.0 46.4 0.043 100 0. 471 1200

SECTION IV
RESULTS AND DISCUSSION

4.1 NOZZLE CALIBRATION RESULTS

The booster nozzle sting and later the orbiter nozzle sting were
each mounted to the Tunnel C sector and injected into the 50-in,-diain
test section where an ambient (M = 0) pressure of about 0. 30 psia was
maintained for nozzle plume calibration. During the calibration, most
of the test results were obtained at a ratio of nozzle chamber pressure
to test section pressure (Poj/Pb) of 1600 to 1700; some additional data

were obtained at ratios up to 5200. The purpose of the calibration was
to establish the sting nozzle operating conditions and the plume size
generated in a quiescent environment. The assumption was made that
if the nozzles generated a plume which properly simulated the full-scale
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plume size in a quiescent environment, then the simulation would also

hold in the presence of an external stream.

4.1.1 Booster Nozzle

Interferograms similar to the ones shown in Fig. 8 were used to
evaluate the size and initial turning angle of the plume generated by the
booster nozzle. These are single-plate, double-exposure holographic
interferograms of the flow field. The figure also contains a Hilbert
transform (Fig. 8b) of the holographic image which, in many respects,
is similar to the interferogram in Fig. 8a. The Hilbert transform of
the holograph represents changes in the density gradient through the
flow field, whereas the conventional interferogram represents simple
changes in the flow-field density. Both pictures clearly locate a nozzle
shock generated by the booster nozzle at this particular gap setting.
The presence of the internal shock located just inside the plume bound-
ary causes a shift or blip in the interferogram fringes, as shown in
Fig. 8a. Decreasing the gap setting (Ep) enlarged the nozzle throat
area; that is, decreased the nozzle area ratio which caused the plume
size and initial turning angle to increase as indicated by comparing
Figs. 8a and c. Also, the internal noz2!le shock disappeared as the

nozzle area ratio decreased (Fig. 8c).

-i'l

nlot

I1111iI 11'1

a. Interferogram, Nozzle Gap Setting 0.542 in., poi/pb = 1700

Fig. 8 Plume Generated by the Booster Model Nozzle in a
Quiescent Environment (Pb -: 027 psia)
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b. Hilbert Transform, Nozzle Gap Setting 0.542 in.,
Poi/pb = 1700

P,. 11 BPUI Oc~Undcai.y ShockIc. Inte 'rferogram, Nozzle Gap Setting 0.452 in.,
Po1 IPb =1780

Fig. 8 Concluded

25



AEDC-TR-72-46

The computed mass flow through the nozzle was compared with the
actual mass flow to determine the effective nozzle throat area. A com-
parison of the nozzle area ratio based on this effective throat area with
the geometric nozzle area ratio (the theoretical value) is given in Fig. 9a.
In general at a given gap setting, these results indicate that the actual
or effective nozzle throat area (A*) was significantly larger than the
designed geometric nozzle throat area. This difference in nozzle area
ratio for the worse case corresponds to 0. 0017-in. error in nozzle
throat gap or a shift in nozzle coordinates; that is, in the axial position
of the inner sting nozzle contour relative to the outer nozzle sleeve con-
tour of 0. 050 in., or some combi~lation of these two effects. When the
complexity of the fabrication problem and the machining tolerances are
considered, this calibration result was quite reasonable.

The initial turning angle computed on the basis of the experimentally
defined nozzle area ratio and the ratio of the nozzle chamber uressure
to the pressure in the test chamber compares favorably with the turning

angle measurements obtained from the interferogram pictures as indi-
cated in Fig. 9b. A simple isentropic perfect gas two-dimensional
analysis was used in computing this turning angle. This two-dimensional
analysis also provided an estimate of the nozzle exit to chamber pres-
sure ratio which agreed reasonably well with the measured pressure
ratio, as indicated in Fig. 9c. The measured nozzle exit to chamber
pressure ratio was subsequently used to verify that the nozzle gap size
was properly set during the test program.

Pitot pressure flow-field surveys were made at various stations
aft of the nozzle exit to check the nature of the internal gas dynamic
properties of the plume. An example of the results obtained from
these surveys is shown in Appendix I, Fig. I-1, for two nozzle gap set-
tings which correspond to the interferogram pictures shown in Fig. 8.
The measured pitot pressure was normalized by the quiescent pressure
existing in the test chamber and, therefore, as the probe approached
the outer boundary of the plume, this ratio should approach unity as
suggested in Figs. I-la and c. The profiles are displaced along the
x-axis of the plot to reflect the actual position of the flow-field survey
relative to the nozzle exit plane. The x and y coordinates of the survey
were normalized by the nozzle sting diameter, dc (the nozzle center-
body diameter).

An estimate of the plume boundary location and shape and the loca-
tion of the internal plume boundary shock are superimposed on these
pitot pressure plume flow-field distributions.
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As indicated in Figs. I-la and c, the internal plume shock produces a
discontinuity in the pitot pressure distribution near the plume boundary.
The abrupt reduction in the pitot pressure near the nozzle sting (y/dc-*0.5)
reflects the presence of the boundary layer growth along the sting.

An estimate of the Mach number distribution through the plume flow
field is given in Figs. I-lb and d. Between the internal plume boundary
shock and the maximum pitot pressure measurement obtained above the
nozzle sting, the Mach number is based on a ratio of the measured pitot
pressure to the nozzle chamber pressure. The assumption is made that
the total pressure of the plume flow field is equal to the nozzle chamber
pressure (poj). Above or beyond the internal plume boundary shock, the

Mach number is based on a ratio of the pressure in the test section (Pb)
to the local pitot pressure measurement (Rayleigh pitot pressure relation-
ship). Within the boundary layer on the nozzle sting, the static pressure
is assumed to be constant and equal to the static pressure existing where
the measured pitot pressure reaches a maximum value. The ratio of the
maximum pitot pressure to the nozzle chamber pressure defines not
only the local stream Mach number, but also the local static pressure
which is assumed to remain constant through the boundary layer. This
procedure for experimentally estimating the local Mach number distri-
bution through the plume flow field could be compromised by the pres-
ence of sting nozzle shocks which would significantly reduce the total
pressure associated with the expanding plume flow field.

The effect of the gap setting (that is, the nozzle area ratio) on the
location of the internal plume boundary shock and the Mach number dis-
tribution over the nozzle sting are summarized in Fig. 10. Increasing
the nozzle gap setting (i. e., increasing the nozzle area ratio) reduced
the plume size and shifted the internal plume boundary shock toward
the sting. This variation in gap setting increased the Mach number
along the sting in the immediate vicinity of the nozzle exit (i. e., for
x values less than 3 in.). The shaded symbols in Fig. 10b denote the
Mach number based on the local static pressure measurement made
near the nozzle exit and the nozzle chamber total pressure.

4.1.2 Orbiter Nozzle

All the interferograms of the orbiter nozzle indicate that a nozzle
shock exists in the plume flow field, as shown in Fig. 11. The pres-
ence of this nozzle shock indicates that the nozzle was not properly
shaped to cancel the formation of these compression waves formed
withfn the nozzle. These two interferograms also show the location of
the pressure probe and the thermocouple used to monitor the quiescent
conditions existing in the test chamber. Although not shown, a similar
set of measurements was made during the booster nozzle calibration.
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In comparison with the booster nozzle, the agreement between the
orbiter nozzle area ratio based on the measured discharge coefficient
and the computed (theoretical) geometric nozzle area ratio is signifi-
cantly better, as shown in Fig. 12a. Also, the designed orbiter nozzle
area ratio variation with gap setting is significantly larger.

The initial turning angle of the plume boundary, as defined by the
interferogram pictures, was evaluated for three nominal nozzle chamber
to test chamber pressure ratios (poj/pb), and the results are given in

Fig. 12b. As expected, increasing the nozzle to chanmber pressure
ratio (Poj/Pb) or decreasing the gap setting (i. e., decreasing the nozzle

area ratio) increased the plume size, as reflected by the increase in the
initial plume boundary turning angle. Superimposed on this figure is an
estimate of the initial turning angle based on the nozzle discharge coeffi-
cient and nozzle to chamber pressure ratio (poj/Pb) of 16100. In this

case, the two-dimensional estimate of the initial turning angle is greater
than the measured angle obtained from the interfe:-ograms. The nozzle
shock which existed in the plume flow field was not taken into account
when making these estimates of the initial turning angle and, therefore,
is most likely responsible for the discrepancy shown in Fig. 12b. Simi-
larly, the discrepancy in the measured versus computed nozzle exit to

chamber pressure ratio (Fig. 12c) is attributed to the effects caused by
this nozzle shock.

A sample of the pitot pressure surveys made through the plume
flow field is shown in Fig. I-2a for two nozzle gap settings. Although
the Mach number distributions based on these pitot pressure measure-
ments are also presented in Figs. I-2b and d, these Mach number
values may be too large in the region between the sting and the internal
plume boundary shock wave location because the influence of the nozzle
shock was not taken into account.

The variation with gap setting of the internal plume boundary shock
location and the estimated local Mach number distribution along the
nozzle sting is summarized in Fig. 13. As expected in comparison
with the booster nozzle results, the orbiter plumes are significantly
smaller, as reflected by the fact that the plume boundary shock is
closer to the sting. As in the case of the booster, the Mach number
tends to increase along the orbiter sting which simply reflects the
effects of the expanding nozzle plume.
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4.2 BOOSTER AND ORBITER PRESSURE DISTRIBUTIONS

Over 1450 pressure distributions were obtained during the test pro-
gram, and these results nave been condensed to 170 comparison plots
presented in Appendix II. The booster pressure distributions presented
consist of the data obtained from a row of taps lying along the centerline
of the upper surface of the booster body, the inboard row of pressure
taps on the upper wing surface, and the inboard row of two pressure
taps on the c,.rard. The orbiter distributions are represented by the
pressures obtained from the row of taps laying along the centerline of
the lower surface of the body and a row of taps running parallel with the
wing trailing edge at an x/. value of approximately 0.95. The purpose
of these distributions is to show the effects of flow-field interference
with and without power simulation on the pressure loading on the lower
surface of the orbiter and the upper surface of the booster. The test
variables include free-stream Mach number, angles of attack, the rela-
tive angle of incidence of the orbiter with respect to the booster, and
the relative location of the orbiter and booster. The text of the report
contains illustrations of the types of flow-field interference effects pro-
duced by the close proximity of the orbiter and booster on their pressure
distributions.

4.2.1 Mach Number and Reynolds Number Effects

The interference-free distributions in Fig. 14 were obtained with
the orbiter and booster displaced so that the flow-field disturbance pro-
duced by one model did not disturb the flow over the other model. The
gradients in the pressure distributions are due to the bluntness of each
of the bodies. For example, the orbiter which has a smaller blunt nose
produced a more severe surface pressure gradient over the forward
section of the body. Reducing the free-stream Mach number simply
reduced the pressure gradient over both body nose sections.

The Reynolds number effects (which in most cases fall within the
quoted repeatability of the data) are negligible on the orbiter and also
on the booster body, but the booster wing data indicate a stronger
Reynolds number effect. At the higher free-stream Reynolds number,
the booster wing distributions indicate that the flow expands further
over the aft section or trailing edge surfaces of the wing. This trend
is also present to some degree over the aft portion of the booster body
where there is an increase in the surface pressure ratio gradients at
the higher Reynolds number. According to Fig. 14b, the increase in
free-stream Reynolds number reduced the orbiter base pressure ratio,
which suggests that the boundary layer in the base region of these
models is becoming more transitional or turbulent at the higher free-
stream Reynolds number.
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4.2.2 Flow-Field Interference Effects

Examples of the type of holographic reconstructed interferograms

obtained in this test program are shown in Fig. 15. In both figures, the

orbiter and booster are in close proximity to each other with plume

simulation present for both models. Some of the more obvious features

of the flow-field disturbance are pcnted out in these two pictures. The

plume-induced external stream shock wave, shown in Fig. 15a, simply

denotes the presence of a compression wave generated by the interaction

of the orbiter nozzle plume with the local external stream. The plume

boundary is identified in Fig. 15b and corresponds to the location of the

internal plume boundary compression wave described early in the plume

calibration results (see either Fig. 8 or 11). The booster canard gener-

ates a strong'bow wave and a fairly strong trailing edge shock which in

these pictures intersects the lower surface of the orbiter. The imping-

ing and reflecting bow waves of the booster are also fairly evident in

these figures. The impinging orbiter bow wave is considerably weaker

than the booster bow wave, as indicated by the magnitude of the shift in

the fringe lines of the interferograms. In Piig. 15b, the orbiter plume

has expanded enough to clearly impinge on the booster and form a com-

pression wave or a plume-induced shock wave.

Plu~n|-InducdU('( Etr,× rll|

Stream Shock Wave

Plume Boundary

Bose ow Wave Rellectioni

Boos t'o"

- - Canard Tr1ailing Edge
Caard Bow Compression Wave

"* a. M_ = 2.0, p- = 0.96 psia, and ReQ = 2.3 x 106

Fig. 15 Interfering Flow Fields with 100-percent Orbiter Power Simulation and 50-percent

Booster Power at Zero Angle of Attack, Ax/L = 0.227 and Az/L = 0.12, a = 0,
(Holographic Reconstructed Interferograms)
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Fig. 15 Concluded

The flow-field interference effects oii the orbiter and booster pres-
sure distributions shown in Fig. 16 correspond to the interferogram re-
sults in Fig. 15. In each case, the axial coordinates of these distribu-
tions were normalized by the model length (.M) which was 10. 72 in. for
the orbiter and 16. 12 in. for the booster. The Reynolds number in the
figures is always based on the booster length and not the orbiter length.

In the Mach 'umber 2.0 results of Fig. 16a, the booster bow wave
intersected the orbiter at an x/M of 0. 20, causing an abrupt increase
in the surface pressure, and then reflected back onto the booster at an
x/e of -0. 12. The reflected booster bow wave had a stronger effect on
the booster pressure distribution than did the impinging orbiter bow
wave which intersected the booster an an x/1 of about 0.03. The booster
canard also generated a bow wave which would hypothetically intersect
the orbiter at an x/1 of 0. 73. Actually, the three-dimensional aspccts
of the expanding canard bow wave caused this bow wave to intersect the
orbiterý centerline row of pressure taps (the plotted values in Fig. 16)
at a larger x/M value of about 0. 80. Similarly, the canard bow wave
and trailing edge shock also wrapped around the booster and caused
two additional pressure peaks in the booster distributions, as shown in
Fig. 16a. Similar pressure peaks produced by the model bow waves
and the booster canards are present in the pressure distributions ob-
tained at Mach number 3. 0 and shown in Fig. 16b. In Fig. 16c, the
Mach number 5. 0 distributions suggest that the canard influence on the
pressure distributions were absent for this particular location of the
orbiter relative to the booster..
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The presence of the orbiter and booster power simulation does not
noticeably alter the Mach number 2.0 orbiter pressure distributions,
shown in Fig. 16a. The orbiter plume produced a small change in the
pressure distribution over the aft section of the booster (i. e. , ;for
booster x/1 values greater than 0. 80). At Mach numbers 3 and 5, the
booster and orbiter power simulation influenced both the orbiter and
booster pressure distributions. In the case of the orbiter, th•4 plumes
must influence the interfering flow fields between the two models because
the pressure distribution still reflects the presence of the booster bow
wave, but the distribution seems to be altered by the presence of the
power simulation. In the case of the booster, the orbiter plume im-
pinged on the booster, producing a typical plume impingement pressure
distribution which at M., = 3 (Fig. 16b) appeared to conteract the influ-
ence of the canard on the booster pressure distribution.
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Fig. 16 Interference Effects at Ax/L = 0.227 and Az/L = 0.12 on the Centerline
Booster and Orbiter Pressure Distributions with and without Plume Power
Simulation Effects, af = 0
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4.2.3 Mach Number 5.0 Power Simulation and Plume Impingement Effects

In general, the power simulation effects were stronger at the higher
free-stream Mach number. The influence of the vertical displacement
on the aerodynamic interference effects with and without power simula-
tion on the booster and orbiter centerline pressure distributions at Mach
number 5.0 is shown in Fig. 17. As expected, the interference effects
on the pressure distributions diminished and moved downstream as the
vertical separation between the two models increased.

A comparison of the orbiter pressure distributions obtained with
and without power simulation (in Fig. 17a) clearly shows that the power
simulation tends to reduce the interference loading on the orbiter. For
example, in the launch configuration with the orbiter and booster touch-
ing, the power simulation reduced the peak pressure ratio from about
25 down to 11. In the launch configuration, without power simulation,
the reflected booster bow wave intersected the booster at an x/f- of -0.21,
and actuating the power simulation reduced this peak pressure point. A
possible explanation for this effect of the plume on the aerodynamic body
interference loading is that the plumes probably act as an ejector when
the two models are in close proximity to each other. This plume ejector
effect would tend to accelerate the flow by scavensing flow from between
the two bodies which would in turn reduce the angle of impingement and
strength of th2 booster bow waves.

A close examination of the interference-free distributions obtained
with and without plume simulation indicates that a little plume-induced
separation was generated over the aft portion of these models. On the
orbiter, the plume-induced separation apparently began at an x/M of
about 0.8 and on the booster at an x/. of 0.95. The plume-induced
separation refers to the condition when an expancding plume from the base
of a vehicle acts as a blunt body trailing the vehicle and causes the
boundary layer to separate from the vehicle surfaces.

The orbiter plume impingement loading on the booster is clearly
evident in the booster pressure distributions shown in Fig. 17b. At this
particular axial location of the orbiter relative to the booster, there is
no booster plume impingement loading on the orbiter. In the launch con-
figuration (the orbiter and booster touching), the peak plume impinge-
ment pressure ratio cn the booster exceeds the free-stream Rayleigh
pitot pressure ratio which corresponds to the maximum nose pressure
ratio existing on the booster or orbiter models in a Mach number 5. 0
free-stream flow. As the displacement between the two bodies increased,
the plume impingement point on the booster moved downstream, and the
peak pressure decreased because of the reduction in the plume boundary
flow impingement angle un the booster surface.
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A comparison of the effect of an external Mach number 5. 0 stream
on the plume impingement flow field and loading is shown in Figs. 18,
19, and 20. Nozzle chamber pressure (poj) is constant for this compar-

ison. Superimposed on the orbiter plume generated in a chamber with-
out external flow (Fig. 18a) are the boundaries of a plume produced in
the presence of a Mach number 5. 0 stream (Fig. 18b). The plume
generated in the presence of the external stream is only slightly larger,
and in fact, near the nozzle exit, the difference in the plume boundaries
appears to be only 5 or 6 percent. Although the ambient pressure for
the no-external-flow case is more than ten times larger than the ambient
pressure in the Mach number 5.0 stream, the plumes are nearly equal
in size. In both pictures, the orbiter angle of incidence (i) relative to
the booster is 5 deg, and in both cases the orbiter plume corresponds
to a 100-percent power simulation at M, = 5. 0.

The centerline pressure distributions on the booster for the condi-
tions shown in Fig. 18 are given in Fig. 19. In the case when no
external flow was present, the booster pressures wefre normalized by
the test chamber pressure (pb); whereas for the case of an external
stream, the test 3ection static pressure was used to normalize the
pressure data. In both cases, a scale reflegting the absolute pressure
distribution e:xsti7,g on the booster is included for eachfigure. Also,
the pressure loading in the absence of the plume is superimposed on the
figures in the form of a dashed line.

The plume impingement point on the booster moves upstream slightly
with external flow, but the absolute peak pressure ,ralue in the distribu-
tion is only slightly affected by the presence of the external stream. The
region of influence of the plume impingement (that is, the footprint of
the orbiter plume on the booster) is considerably larger when the exter-
nal stream is present. For example, the row of wing taps located
1. 95 in. off the booster axis were not disturbed significantly when the
external stream was absent; but when the external stream was present,
these taps were strongly influenced by the plume.

The size and shape of the plume impingement loading was estimated
from the pressure distributions and is presented schematiually in Fig. 20
in the form of isobars. A comparison of Figs., 20a and b shows that the
plume impingement loading extended out over the wing surfaces of the
booster when the external stream was present. In the absence of the
external stream, the plume impingement region is confined to the typical
parabolically shaped load pattern. Apparently, the wake produced by the
flow over the orbiter and booster interacted with the orbiter plume and
expanded the plume boundaries laterally, that is in the yaw plane. The
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movement of the plume impingement loading upstream on the booster

when the orbiter was moved upstream (Figs. 20c and d) expanded the

loading region on the booster. The shaded areas in these figures

(Fig. 20) represent areas where the booster would probably sense a

downward loading because of the plume im.pingement. For both

orbiter locations shown, the external stream produces a condition in

which the downward component of loading extends over a significantly

larger region of the booster than for the case when no external stream

is present.

* I

a. No External Flow, 100-percent Orbiter Power Simulation, Pb 0.48 psia (Schlieren)

• '!ll!lfoll

i Ij I, " I!

b. External Flow, M- = 4.97 and p-. 0.043 psia with 100-percent Orbiter Power
Simulation and 50-percent Booster Power (Interferogram)

Fig. 18 Comparison of the External Flow Field Effects on the Plume Interference Flow

Field Produced by the Orbiter with 100-percent Power Simulation, i = 5 deg,

a = 0, Az/L = 0.15, and Wx/L = 0.103
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4.2.4 Comparison of Force Data with Integrated Pressure Data

Although the integrated pressure data represents only the loading
on the lower surface of the orbiter and the upper surface of the booster,
a comparison of these normal force and pitching moment coefficients
with the force measurements of Ref. 1 is given in Figs. 21 and 22 for
the interference-free condition at MD = 2 and 5, respectively. At posi-
tive angles of attack, the booster loading on the upper surface, as de-
fined by the integrated pressure data, contributes little to the positive
component of the booster normal force; whereas, at negative angles
of attack the upper surface loading is responsible for most of the nega-
tive component of the normal force, as shown in Figs. 21a and 22a.
Since the orbiter was instrumented on the lower surface, the integrated
pressure data should account for most of the positive component of

75 normal force at positive angles of attack, as shown in Figs. 21b and
22b. At Mach number 5. 0 and 10-deg angle of attack, the integrated
orbiter pressure data produced a normal force coefficient equal to the
value obtained from the force measurements (see Fig. 22b).

0.4 0.4

0.2 - 0.2 -

CN 0 0

-0.2'r -0.2
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0.1 C C=MI Pressure0, N' 0.2

Cu u C'

-0.1I -0.2

-0.216 I -0.4 , t !
-10 -5 0 5 10 -10 -5 0 5 10

0. deg a. deg

a. Booster b. Orbiter

Fig. 21 Comparison of the Resultant Force and Moment Coefficients with
Those Associated with the Loadings on the Upper Surface of the
Booster and Lower Surface of the Orbiter, Zero Power,
Interference Fe, M._ 2.0, and ReQ = 2.3 x 106
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0 Re2 .- 1.5 x 106

* Pressure Data, CNu, Cmu Re 1.5 x1
0, Repeat Pressure Data I

0.2 ( Pressure Data at Re, - 8.6 x 10 6  0.2

0.1 0.'
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0 0
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0.10.
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C'u Cm1

-0.1 A- - 1 -0.1
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Fig. 22 Comparison of the Resultant Force and Moment Coefficients with
Those Associated with the Loading on the Upper Surface of the
Booster and Lower Surface of the Orbiter, Zero Power,
Interference Froe, M_, = 4.97, and Rek = 1.5 x 106

As noted in Fig. 22a, the difference between the high and the low
Reynolds numbers integrated estimate of the normal force on the
booster can be associated with the probable uncertainty in measurement
associated with the transducers used in the booster model. Although
the calibration fell within the repeatability of the transducers, both of
the booster transducers read consistently high, as noted previously in
Section 2.4, and therefore, the magnitude of the normal force coeffi-
cient based on pressure data would tend to be higher by a fixed incre-
ment at all angles of attack; particularly, at the lower free-stream
Reynolds number at a nominal Mach number of 5. 0. Most of the inte-
grated pressure data results to follow are presented as incremental
changes between the interference and interference-free data, which
compensate for this probable error in the integrated booster pressure
data.
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A comparison between force data and integrated pressure data of
the incremental changes in normal force and pitching moment produced
by the aerodynamic interference between the orbiter and booster models
is illustrated in Fig. 23 for Mach number 2 and in Figs. 24, 25, and 26
for a nominal Mach number of 5.0. At Mach number 2 (Fig. 23) and
except for the orbiter at a Ax/L value of -0. 14, the agreement between
the force and integrated pressure data is excellent. At Mach number
2. 0 when the two models are in close proximity to each other, the
smaller changes in normal force and in pitching moment coefficients
(i. e., ACN and ACm values less than ±0. 03) on both bodies occurs
between a Ax/L value of about 0. 1 and -0. 05. At a Ax/L value of zero,
the moment reference point of the booster and orbiter are in line, one
above the other. Between a Ax/L value of 0.4 and -0. 1, the orbiter
plume simulation had some influence on the booster normal force and
pitching moment coefficients, as shown by the force data in Fig. 23b
and suggested earlier in Fig. 16b. For the present range of relative
locations of the orbiter and booster, the plume simulation did not
significantly alter the interference loading on the orbiter at Mach num-
ber 2.0.

0.3

Power
SK Simulation Data

0.2 -0 o n Force
0 Off Force
UN 0 Off Integrated Pressure

50-percent Boolter Power,
100-percent Orbiter Power

A0.1

0 0

0 0 00.00
-o. -oco ,

-0. 0 005 1

0.6 0.4 0.2 0 -0.2 -0.4 0.6 0.4 0.2 0 -0.2 -0.4

Ax/L &%/L

a. Orbiter b. Booster

Fig. 23 The Variations with the Orbiter and Booster Interference
Loading with and without Power Simulation as Defined by
the Integrated Pressure Data and the Force Data, a = 0,
Az/L = 0.12, M. = 2.00, and ReQ = 2.3 x 106
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Increasing the displacement (Az/1) between the orbiter and booster
from 0. 12 to 0. 15 reduces the incremental change in loading on both
vehicles, as shown by the nominal Mach number 5.0 results in Fig. 24.
As shown in Fig. 25a, the power simulation tends to reduce the loading
on the orbiter by about 20 percent except at the locations where the
booster plume impinges directly on the orbiter which occurs when
Ax/L is less than -0.2 at Az/L of 0.12. For values of Ax/L greater
than -0. 1, the orbiter plume impinges on the booster, increasing the
negative component of normal force on the booster. In general, increas-
ing the displacement .,tz'.ween the r-•edels reduces tnt incremental
changes in force and Ditching moment coefficients and also shifts the
location where the peak changes occur in these coefficients.

0.2 ORBITER sYl 6Z/_L MITER MIN

I0 2 Force 0 Force Data
0.12 Integrated 0 Integrated

011 eor0.11 Pressur e Data Pressure Data

i1 r O. _________ _ ._.___

0 I a

-0.10 [
BOOSTER BOOSTER1

-0.05I I I I

0.6 0.4 0.2 n -0.2 -0.4 0.6 0.4 0.2 0 -0 2 -0.4
Ax/L 6x/L

a. Az/L = 0.12 b. Az/L = 0.15

Fig. 24 The Variations in the Orbite nd Booster Interference Loading withc it
Power Simulation as DefineL / the Integrated Pressure Data and the Fqrce
Data, Power Simulation Off, a 0, Mo. = 4.97, and ReQ = 1.5 x 106
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Fig. 25 Comparison of the Integrated Pressure Data with the Force
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Orbiter Power, a 0, M,ý = 4.97, and ReQ = 1.5 x 106
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A comparison of Fig. 24b with Fig,. 26 shows that increasing the
relative angle of incidence to 5 deg between the orbiter and booster in-
creases the interference loading on these configurations. With power
simulation, the interference on the booster reached a peak value when
the orbiter was at a 5-deg angle of incidence and located upstream of
the booster moment reference point at a Ax/L value of about 0. 15. As
expected, increasing the orbiter angle of incidence also increases the
orbiter plume impingement loading on the booster and the booster plume
impingement loading on the orbiter (compare Fig. 25b with Fig. 26b,
respectively). Increasing the relative angle of incidence between the
two bodies increases the local angle of incidence of the plume stream-
lines on the adjacent body surface, which produces the increases in
local impingement loading (see Fig. 26b).

ORBI TER•! _• i1 5 deg----

0.1

01

-0.2

BOOSTER

6CN

-0.1 eg

ftS~y Data [ "
0 Force

0.05 L Integrated Pressure

0.6 0.4 0.2 0 -0.2 -0.4
Ax/L

a. Power Simulation Off
Fig. 26 Comparison of the Integrated Pressure Data with the Force

Data, i = 5 deg, Az/L 0.15, M.o = 4.97, and ReQ = 1.5 x 106
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The integrated ---essure data can also be used to estimate the local
load distributions along the body axes or along the wing span. An
example of the local loading coefficient distributions obtained from the
Mach number 5. 0 data is given in Fig. 27. The solid symbols repre-
sent the load distribution produced in the absence of power simulation,
while the open symbols correspond to the distributions obtained with
power simulation. The loading coefficient is simply the local normal
force coefficient per inch existing at a particular model station. With
the orbiter in the forward position ahead of the booster moment refer-
ence point (Ax/L = 0. 35), most of the interference loading on the
orbiter (Fig. 27a) occurs beyond a ax/Y? value of 0. 5. As the orbiter
moved aft, the peak interference loading moved forward on the orbiter,
and the maximum local loading occurred on the orbiter at Ax/L -0.391.

2 x

CNx x 100 AxIL -0.351

o

00

SAx/L - -0, 10

2/

xx

Ax /L - -0. 020
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CNX X 100 Open Symbols: Power O~n

2 Solid Symbols: Power offto

0.2 0.4 0.6 0.8 1.0

X12

a. Orbiter Dkirýwutions
Fig. 27 Variation in the Local Normal Force Coefficient with the

Axial Position (Ax/L) of the Orbiter Relative to the
Booster with and without Power Simulation, a =0,

AzL0.12, M0. 4.97, and Req= 1.5 x 106
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In the case of the booster loading (Fig. 27b), maximum loadings
occurred when the orbiter was in the forward position (Ax/L = 0. 351) and
the orbiter plume impinged on the booster. The maximum booster wing
loading occurred when the orbiter position was near a Ax/L of 0. 10
(Fig. 27c) and the orbiter plume impinged on the wing surfaces. In
Fig. 27c, the force coefficient represents the local wing chord normal
force coefficient per inch along the booster wing.

Open Symbols: . -- Fairing Based on the
Power On -Variation In the Pressure

xSolid S1ym..bols: Distributions with txll.,
-Nx xSO0 2 -o m SeeFig. 11-4c.
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0
2
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0 
t

0 0.2 0.4 0.6 0.8 1.0
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b. Booster Distributions
Fig. 27 Continued
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4.2.5 Interference Effects on the Booster and Orbiter Base Pressures

The effect of angle of attack, orbiter position relative to the booster,
and plume power simulation on the model base pressures are summa-
rized in Figs. 28, 29, and 30, respectively, for nominal Mach numbers
of 2, 3, and 5. In general, at Mach numbers 2 and 3 (Figs. 28 and 29),
these factors had relatively small effects on the base pressure ratio
(p/p4 ). At Mach number 2, one of the obvious effects occurred with
the launch configuration, where the booster base pressure ratios in-
creased from a nominal value of 0. 65 to 1. 00 when power simulation
was applied. At Mach numbe..: 5. 0 (Fig. 30), the power simulation had a
more pronounced effect on the base pressures and, in general, increased
the booster base pressure by at least a factor of two for most cases
shown. In the launch configuration, power off, the yaw plane base pres-
sures were much higher than when the two models were separated.

The effect of the relative position of the orbiter to the booster on
the booster base pressures is summarized in Fig. 31. The open sym-
bols represent the base pressure measured on the booster base, just
below the upper surface of the booster. The solid symbols correspond
to the average booster base pressure of the taps located in the yaw
plane of the booster base. At Mach numbers 2 and 3, the variation in
the orbiter position had little effect on the booster base pressure. At
Mach number 5. 0, there is a strong variation in the base pressure mea-
surement obtained just below the upper surface of the booster (Fig. 31f)

when the power simulation was on.

The variation in booster and orbiter base pressure at zero angle of
attack with free-stream Mach number is shown in Fig. 32. This figure
shows that the flow-field interference effects on the base pressures with
and without plume simulation increased with increasing free-stream
Mach number.
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Fig. 28 Angle-of-Attack and Power Simulation Effects on the
Booster and Orbiter Base Pressures, M- = 2.00 and
Reg = 2.3 x 106 (Typically 50-percent Booster
Power and 100-percent Orbiter Power Simulation)
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SECTION V
SUMMARY

This test program has demonstrated that plume simulation can
affect the aerodynamic interference on wind tunnel model configurations
used to simulate the staging of the space shuttle vehicles in a super-
sonic stream. Several significant effects were observed during the test
program:

1. When the models were in close proximity or in the
launch position, the aerodynamic interference (other
than the plume impingement loading) between the
orbiter and booster was altered by the plume simu-
lation, particularly at Mach numbers 3 and 5.

2. For altitude conditions simulated, plume impingement
loading on the booster was present at all free-stream
Mach numbers, but the maximum impingement loading
occurred at the highest free-stream Mach number
tested (MO = 5) with the relative angle of incidence
between the orbiter and booster equal to 5 deg. Also,
as expected, the maximum impingement loading occurred
when the models were in the launch position or in close
proximity to each other.

3. The plume impingemer.t effccts tend to override or
dominate any other aerodynamic flow field disturbance
produced by one body on another. In many instances,
the plume impingement loading remained unaffected
by variations in the model angle of attack, whereas
the interference data obtained without plume simulation
or upstream of the plume impingement loading were
strongly influenced by the angle of attack.

4. A comparison of plume impingement loading (with and
without an external stream) indicated at Mach number 5,
at least, that the lateral dimension of the plume impinge-
ment loading increased significantly when the external
stream was present, even though the size of the plume
in the pitch plane of the models was not significantly
altered.

5. At Mach number 5, some plume-induced separation
effects were observed on both models, but this separa-
tion was not observed at the lower free-stream Mach
numbers.
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The results obtained by integrating the pressure-distributions were
quite useful in evaluating the variations in the local loading coefficient
distributions on the space shuttle configurations produced by the aero-
dynamic interference between the two models and the plume impinge-
ment. In terms of the incremental changes in the resultant normal
force and pitching moment coefficients produced by the aerodynamic
interference and by the plume impingement, a fairly good comparison
was obtained between the integrated pressure data and the force and
moment data of Ref. 1.
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APPENDIX I
GRAPHICAL PRESENTATION OF PLUME FLOW-FIELD PITOT

PRESSURE AND CALIBRATION DATA
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APPENDIX II
GRAPHICAL COMPARISONS OF THE BOOSTER AND

ORBSTER PRESSURE DISTRIBUTIONS
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