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FOREWORD

This Technical Report presents results of research carried out
by Procfessor 8. Malin, Colgate University, and Dr. M. Carmeli, General
Physics Research Laboratory, Aevospace Research Laboratories. Dr.

Carmeli's work was accomplished on Project No. 7114,
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AB3TRACT

Recent developments in the theory of represcntations of the Lorents
group, in which all in{inite-cdimensicnal representations of the group were

expressed in spinor-like forms, are reviewed.
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1., INTRODUCTION

Infinite-dimensional representations of noncompact lie groups
are currently of interest and are being studied in describing the
physics of elementary particles.l Of particular importance in this
class of groups is SL(2, C), the group of all 2x2 complex matrices with
determinant unity. This is the covering group of the restricted Lorentsz
group describing homogeneous lorentz transformations that are ortho-
chroneous and proper.2 This group plays an important role in relativistic
quantum mechanics, quantum field theory, S-matrix theory and axiomatic
field theory.

The theory of representations of the Lorentz group is of particular
interest in connection with recent developments utilizing infinite-
component wave equations to describe particle properties. This approach
was originally attempted by Majorana (1932), who suggested an infinite-
dimensional wave equation whose form is analogous to Dirac's spinor
equation. It turns out, however, that Majorana's equation generates
an unphysical mass specturm. The theory of infinite-component wave
equations, which are generalizations of Dirac's equation, was sub.
sequently developed by Gel'fand and Iaglom (1948).

Recently, Nambu, Barut, Fronsdal, and others3 developed more complex
types of equations based on the Lorentz group and showed how to describe

particle properties within this framework. Barut end his co-workers,

in particular Kleinert and Conigan, have alsc developed an approach




in which particle propertics (maas spectrum, magnetic moments, form
factors, ctc.,) are dircctly expressced in terms of operators in a glven
infinite~dinecnzional represaontation, without using wave cquations,
Varlous aupzects of the theory of Ainfinlte-component c-number
wave-functlons and weve equations were also investigated by Behm
(1967, 1963), Lan (19638), Miyazaki (1968a, b), Takabayashi (1967) and many
others.u The relationship Letween Regge's theory and Lorentz invarlance
was investigated, 2ad equaticns which reproduce Regge mass spectira
Were propo;,ed.5 The provlen of second quantization of such theories,
which raised some deep difficulties, were extensively investigated
(Grodsky and Streater 19%8; Abers, Grodsky, and Norton 1947; Feldmann
and Mattheus 1967a, b; Fronsdal 1967¢; Crsak and Toderov 1469, 19703
Miyazaki 1970b, ¢). The relationship betwean infinite-dimenslional
wave~funcilons and the foundations of quantum mechanlcs was invesfigated
by Barut and ¥alin (1948a, b, 1971). Infinite-dimensional
representations were used In relatlon to the problem of representing

pny

the algsbra of currert density (Dashen and Gell-Mann 19%5; Zebie

and Lantwyler 1987; Lentwyler 1968; Tell-¥ann, Horn and Weyers 1967;
Barut and Komen 1970; Hazprect and Kleinert 1969; Kleineri, Corrigan,
and Hamprect 1970; Cocho, Fronsdal, and White 1969; Fronsdal and
Harun-Ar Rashid 1963; Chang, Dashen, and O'Raifeartaizn 1969a, b
Katz and Noga 1970). Tne applications of infinlte-dimensional

ol ihe Lorent

(&)
|8

1 7]

represeniation sroup to particle physics were recently

[$aY

reviewed by Hiyazakil (1970%)e” A1l these problems are very complex

foth puysicaily and mathemaiieslly.

!




As far as the mathematieal theory of represeniitions of the Loronts
group s concernecd, there ave easentlally t+0 approachest (1) the
infinitesimal avproach, in which one tinds the macriens carvesponiing to
infinitesimal pgenerators in a plven represantation anl expresses natrices
corresponaing to finlte proup clements as exgonantial Junetions of ihe
genera._ors (Bargaann 1947)3 and (2) the global apnruach, in whlch the
reproesenlations are realized as operalors defincd over an abstrecl space
of functions (Gel'land and Naimnrk LG, 1947).

Recently, the auchors (Curmeli 1970; Carneli and dalin 1971, 1972)
introduced a generalized Fourier transformatlion which enabled ihen Lo

use the global approach for expressing infinite-dimensional nretions
o - (=]

in terws of watrices, gzaeraiizing lhe spinor7 form of finfie~3icinsion:d
representation to the infinite-dimenzional ecase., Waile the usual spinor
representations are non-unitary, this new form descrite: btoth aniiary
and noa-unitary representatlons.
The purpose of the present review is to summarize these recent
developnents in the theory of representations of the Loreatz group.
Sections 2 and 3 include raviews of the infinitesimal approsch and of
the finite-dimensional repressniations of the zroup 3L(2, 3). The conient
of thes¢ sections is wa2ll known, but is given hern for completenzss and to
establish the notation. The principal, complementary, and conplete series
of represcntations ars then discussed in Sections &, §, and &, respectively,

Throughout the paper we 2dopt the now standariised noiation and

terninology of Naimark (1$&4).



2. THE INFINITESIMAL APPROACH

A. Infinitesimal Lorontz Matrices

A linear transformation ¢ of the variables X1s ¥ x3 and %, which
leaves tha form x12 + x22 + x32 - xu2 invariant i1s called a Lorentz trans-

formation. The aggregate of all such linear transformations g provides a
group which is called the Lorentz group. If By 2 1, the transformation is

called orthochronecus. The aggregate of all orthochroreous Lorentz trans-

formations provides a subgroup of the Lorentz group. The determinant of
svery Llorentz transformation is equal to either +1, in which case the
transformation is called proper, or to -1, in which case it is called improper.

The aggregate of all proper, orthochronecus lorentz transformations also forms

a group which is a subgroup of the Lorentz group.8 Throughout this paper we

will be concerned with the group of all proper orthochroneous Lorentz

—— —

transformations. This group is denoted by L.

Rotations al(Y), az(v), aB(Y) and Lorentz transformations bl(w),

bz(v), bB(?), around and along Oxl, Ox2, Ox3 can then be written explicitly.9

The infinitesimal matrices a, and br of the group L are defined byio

da_(v)
— r - dbnng
ar_[ dy :] = br—[ Iy }Y=O (2.1)

y =20

and satisfy the commutation relations
[ai’ "“j] % 43k%
[bi, bj] e sty (2.2)

[ai’ bj] =gy




Bs Infinitesimal Operators

We donote an arbltrary linear representation of the group 1L in a Banach

space B by g - Tg and for cons snience we put11

5

Ar(Y) = Tar(W), Br(W) = Tbr(Y)o (2.3)

The basic infinitesimal operators of the one-parameter groups Ar(v)

and Br(w) are then define? by12

\

,Ar - [ da (v) ] ’ 5 =‘[dB§i\y) ] ’ (o)

S .
¥ Ty=0 y=0

if the repre§entation is finite-dimensional. If the rgpresentation g~ Tg .
is‘infinite-dimensional, however, the operator functioﬁs Ar(Y) and Br(v) |
might be non-differentiable, but there may still exist a vector x for which
Ar(w)x and Br(Y)x are differentiable ve’ctor-function's.13
& representation g = Tg ofvthe group L is completely determined by
its infiﬁitesimal operators Ai and Bi’ i=1, 2, 3. The determination of
' the irreduciblé representations of the group L 3s based on the fact that the

basic infinitesimal operators of a ropresentation satisfy the same commutation

relatiors that exists ame..g the infinitesimal matrices a, and br:

(4 Aj]z ©1 kM

kX Bj] =85 kM (2.5)
(45 B5] = oy 5By

Defining now the operators
He =14 1Ay, Hy =il ; ‘

— & -2 l 2.6)
Fy = 1Bl 1By, F3 = 1B3, (



ona finds

(o) =2my T, u]) =

[:F;, Fj] =% 1y, [Fp F} = -2l

oy
=
e

[
]

= 0, r113, F;] = 0, {_Hi, Ppl = +2F,

fLHi, Fy] =, LR, Byl =¥ (2.7)

The problem then reduces.to the determination of H,, HB,'F+, F3 satisfying the

econditions  {(2.7). 3
Now, since the three-dimencional pure rovation group O3 is a!subgreup
of the proper, orthochroneous lorentz group L, obviously every representation
of L is also a representation of 03. élearly, if a given representation of L
is irreducible it need not be irreducible when considered as a representation of 0
In fact, any lnflnltg\yepresentatnon of L, when regarded ac a representation of 3°
_3, is highly reducible; it is equivalent to a direct sum of an infinite numbenr
of irreducible representatioﬁs. The space R of any irreducible representation
of the group L is, therefore, a closed direct sum of subspaces Mj, where Mj
is the (23+1>-dimensional space in which the irreducibl§ representation of
weight j of the‘grOUp O3 is realized.
Following the standard convention, one chooses the 2j*l normalized eigenvectors
of the operato# H3 as the canonical basis for the subspace ﬁj. Let these
base vectors be denoted as fg, where m = «j, -j*l, ..s, J; the superscript j
indicates the subspace to which fg belongs,lb and the subscript is the eigen-

value of the operator HB. A detailed investigation of the commutation relations

(2.7) in terms of the canonical basis fg leads to the following conclusions: .

6




(a) Each irreducible representation of the group L is characterized by
& pvair of numbers (jo, ¢), where jo is integral or half-integral, and c is
& complex number.

(b) The space R (jo, ¢) of any given irreducible infinite-dimensional

representation of the group L is characterized by the integer or half-integer
o+l

jo such that R(jo, e) = Mjo € Mjo ® «se o Tho whole space R(jo, e) is
spanned, therefore, by the set of base-vectors fg, where j = jo, jo+l, jo+2,
seey and m = =3, J*l, easy jeo If the given irreducible representation is
finite-dimensional than the direct sum of the subspaces M's terminates after
a finite number of terms.

(c) A given representation is finite-dimensional if and only if 2 =
(jo + n)z, for some natural number n.

(d) The irreducible representation corresponding to a given pair (jo, c)
is, with a suitable choice of basis f£ in the space of representation, given
by the formulasls

1 .
Hti‘g=l_(j:m+l) G w ]

i

J
m fm

b 5

R£) =[G m Gpoed) fop gl
<G m) (GEn+1) J% As fjtl
Pt m+ ) (G Z)J% Cir1 fi;%
Rl (G- e oy el o e
< Gtm+ D) (G-m+ 1)J% i1 f$+l (2.8)
7




1 ES P
Here 4, =i ¢ jy / § (J+ 1), ande=i(32-J§ )@ (52—0?) ¢ 5 (b3 -1)%.

J
(e) To each pair of numbers (jo,c), where j, is integral or half-inlegral
and ¢ is complex, there corresponds a representation g — Tg of the group I,

whose infinitesimal operatnrs are given by Egs. (2.8).

Ce¢ Unitarity Conditions

If the representation g — Tg of the group L is unitary}6’17 then Eqs.
(2.8) satisfy certain conditions which are summarized below.

Let A be an infinitesimal operator of a unitary representation g — Tg

of the group L. Then A(t) = Taes is a unitary operator and therefore its
1t <1 . =
adjoint18 [A(tﬂ T= (a(t)] ™ = 4 (<t).  Accordingly (A(t)f, g) = (f, A(-t) g).

Differentiating both sides of this equation with respect to t we obtain for
t = 0,
(af, g) = - (£, Ag). (2.9)

Using this relation one then easily finds that

(H.,_fa g) = (£, H_g)s (HBf’ g) (f, ng):

(2.10)
(F,f, g) = (£, F_ g), (Fst g) = (f, F38)~
A systematic use of Eq. (2.10) in (2.8) then leads to the following: If the

irreducible representation p - Tg of the group L is unitary then the pair'GO,c)

characterizing it satisfies either (a) c¢ is purely



imagzinary and jo is an ardbitrary non-nejative integral or half-integral
numbery or (b) ¢ is a real number in the intervals 0 4 ¢ <l and Jg = Os

The reprosentations corresponding to case (a) are called the

brinedpal series of renresentations and those corresponding to case (b)

are called tho compleomentary series,




3+ SPINOR HEPRESENTATION OF THE LCRENTZ GROUP

A+ The Group SL(2, C) and the Lorentz Group

In what follows we will use the fact that elements of the prover,
orthochroneous, Lorentz group L can be described by means of elements of
SL(2, €), the group of all 2x2 conplex matrices with determinant unity. Thoe
relation between these two groups can be established as follows.

Let x  and xg, withx, =1, 2, 3, 4, describe the coordinates of two
Lorentz frames, related Ly

(3.1)

x.

m=g&pr3’

where gaﬁ € J. One assoclates with each coordinate system x4 2x2 Hermitian

matrix Q defined by

Q=x9, (3'2)
P
where ¢, k = 1,2,3, are the Rauli spin matrices,
o 4 0 5) 1 o
4 3. . b
o- = (' o)' g «{ 0 2 o (U . (3'3)

and 04 is the 2x2 unit matrix. In terms of the Q's one demands that the

coordinate transformation (3.1) be expressed as

Q' =aQ a*,

(3.4)

where a is an element of SL(2, G), Q' = xéccﬁ and al is the Hermitian
conjugate of a. One then finds that the relation between ae SL(2, C) and

g € L ars given by19

10



g«p =} rr(o%aofst), (3.5)

It thus follows that the group L is homomerphic to the group SL(2,C)
such that to every element g € L therc corrospond two matrices + a € SL(2, C)
and, conversely, to every a ¢ SL{2, C) there corresponds some element g € L,
Accordingly, the description of the representations of tho group L 1is equivalent
to that of the group SL(2,C); a representation g - Tg of L is single- or

double-valued according to whether cor not Ta is equal to T-a or note.

B. Spinor Representation of the Group SL(2, ¢)

We now construct the spinor representation which contains all the
irreducible finite-dimensional representations of the group sL(2, ¢).

We denote by P the aggregate of all polynomials p(2,2) in the variable
z and its complex conjugate z of degree not exceeding m in z and n in z, where
m ard n are fixed non-negative integers determining the representation, The
space P is 2 linear vector space where the operation of adlli'i. nd
multiplication by a number are defined in the usual way for polynomials.

An element of the group SL(2,C) will be denoted by

a b \
3 = (c o/ (3.6)

where a, b, ¢, and d are complex numbers satisfying the condition

ad ~« be = 1.
Define the operator Tg in Pmn by

&3“#& Zj+¢

T? F(g,j) = (b;,-wl) (Ej-rd) P(m) ET‘:) (3.7

11



The correspondence g = Tg is a linear representation of the group SL(2,C)

as can be easily verified. This is the spinor representation of SL(2,C)

of dimension {m + 1) (n+1).

In order to relate this representation to the 2~-component spinors, cne

realizes it in a somewhat different way.

One considers all systems of numbers f symmetrical in

Al oooAle ...Xn,
, ¢

both the indices A1"°°Am and in xl,...,xn taking the values 0 and 1.
The set of all such systems of numbers provides a linear space, denoted by
Spn? of dimension (m + 1)(n + 1).

A one~to-one linear mapping between the spaces Pmn and Smn can easily

% €S, there corresponds the

be establisheds To each system ¢ A%k
%...ml...n

o lynomial

AR 4 Anm _ )'(‘-f“, + ).(.,

$3,3) vAZm Af""""“ % % 3 3 (3.8)

Xi,...s ¥u

RN

of degree not exceeding m in z and n in z, and therefore p(z,z) € Poe On

the other hand every polynomial
- v
(A SENPIS S (3.9)

in P can be written in the form (3.8) if one relate the §'s and p's by

nmeans of

4
dA...AA,., X, X'_ - mlnl P"’ (3.10)

With A *eeet A =1, and % 4ot X = s,

12




€

A second form of the spinor representation is then obtained if cne

applies the polynomials (3.8) in Eq. (3.7). Ono obtains

—_ / A."',.+Ah~__ '.+, . '"
T; p(},}) - ZA¢A,...A,, X ¥ & 3 rotx (3.11)
Ay A

LIRS

where we have used the notation

= Za aAnt”‘ q’\u&"l ax‘ty’..“ ax’“ *" ¢B|"'ﬁ"" y"“'yh (3.12)

¢I

A P Ko X
] » i M ‘B.,,,'B‘M
Yp"' YA
and where a;, = &y 8,5 = by a5 = ¢, and a = d.

The quantity ¢ is a spinor, symmetric in its m undotted

Mot yonds
indices and in its n dotted ones, whereasz Eq. (3.12) expresses its trans-

formation law under the matrix a ¢ SL(2,C).

C. Infinitesimal Operators of the Spinor Representation

Ly

We now find the infinitesimal operators H, H , HB’ and F, T_, F3
of the spinor representation discussed in the last subsection.

The one-parameter subgroupsof SL(2,C), corresponding to the one-parameter
subgroups a, (t) and B (t) of the group L, can easily be obtained using

the formula (3.5).°° In terms of the infinitesimal matrices a_ and b of

the group SL(2,C) they can be written as

a (t) = exp(t a,), b (t) = exp (t b ), (3.13)

R - gk /A . . . N
where a, = iok /2 and b =0 /2, and where o are the Pauli spin natrices given

by Eqs (3.3). Using the matrices a (t) and b (t) in (3.7), differentiating
13




both sides of the obtained equations with rospoet {o the variable i, and putting

t = 0, gives the expressions for tho operators A, and B,, from which one

then obtains the operators H's and F's:

Hy = - ‘%—3“%+m’j

Ho = 3,‘59} + 5 omy

Hy= -3 53}4( jj‘i + £ (m-n)
Gy )
F. = ‘(‘}laa}‘*a%+m})

14



4, PRINCIPAL SERIL3 OF REPRESEMTATIONS OF SL(2,C)

A+ The Hilbort Spaces 135 (S1,) and Q.fs.

In its global form the principal series of representations was introduced
(Naimark 1964) as a set of oporators ovor the Hilbert space of functions
I,?S(SU‘,), a sub-space of Ig(SU,), dofined as follows.

The Hilbert space Ia(SUy;) is defined as the set of all functions

¢ (u), where ueSU;, which are measurable and satisfy the condition

!
[ 1) edu < o2 (4.2)
The scalarproduct is defined by

(¢, ) = [ #,(u) ¢ (w) e (4.2)

Corresponding to any integer or half.integer c we now define a Hilbert

space I.,ZZS(SUE )y which is a sub-space of IQ(SUZ), as follows:
¢ (u) e Lgs(SUZ) if ¢ (u) € L,(SU,) and

'islr
¢([u} = € ¢(u) "

where )" € SU2 is given by
("L*/J &) )
r= ( o e/ (4t

The scalar product is again given by Eq, (4.2).
L2(SU2) is the direct sum of all the spaces LSS(SUE), for all inlegral

values of 2s. 15




The generalized Fourier transiormation, te be introduced at the end of
the section, transforms ecach Hilbort space LES(SUZ) into a Hilbert space ﬂgs,
which is defined as follows (Cammeli 1970):

Consider all possible cystems of numbors ¢£, where m = -3, .j + 1,

sses; Jand j = fsf’ lsf + 1, fs[ + 2500e With the condition

- i,
Z‘(ljv")zll‘Pi’ < o (1 5)
J:lﬂ ey
The aggregate of all such systems #) forms a Hilbert space, denoted by {2°,

where the scalar product is defined by

o0 J .
Z(zJH)Z'c,b: v

J':|5l (4.6)

for any two vectors ¢£ and Yi of QES.
Lot us show now that for any integral or half.integral value of s the

& are ‘sometric, and derive the trans-

two Hilbert spaces Lgs (SUZ) and 3

formation between them.
Let Tgm (u) be the matrix element of the irreducible representation of
the group SU, corresponding to the eigenvalue j(j + 1) of the Cosimir operator

J2. The functions Tgm (u) satisfy (Naimark 1964)

. J sy )
Tsw« ()"") =€ TIL () (47)

and for a fixed value of s they provide a complete orthogonal set for the Hilbert
space Iés(SUZ) as m = «j, «3* lyeesy, Jand J=1sl, sl + 1, |sl +2,.4.

(Carmeli 1969). The functions Tgm (u) satisfy the orthogonality relation

(LA)&LA

H

RERREY,

o (254075, 8. (4.8)

Jj s T

16




Consoquently, any function Pu) € LS’YSUz) can be uniquely expanded in the form

»

plow) = 2 i) 2ol T (s

& (4a9)
where
¢: _ f¢(u) Tl (w) cbe, (4.10)

It can be easily shown that the system of numbers ¢£ satisfies Eg. (M.5) if and
only if the corresponding function (u) satisfies Eq. (4.1). The Hilbert spaces
lés(SUz) and.Qgs are, therefore, iscmetric and the mapping between them is given

by the "generalized Fourier transformation" (4.9) and (&4.10),

B. Realization of the Principal Series of Representations in the Spaces Lzs:SUo)

We are now in a position to introduce the realization of the principal

of
serbeY%epresentations of the groun SL(2, C) in the Hilbert space Lgs(SUz).

To this end we proceed as follows.22
Let us dsnote by K to aggregate of all elements k of the group SL(2,C)
where k has the form
ko (41
T le 2 (4.12)
with A, u complex numbers and A # O. One can easily verify that the set K forms
a subgroup of the group SL(2, C).
We now construct the set of right cosets of the group SL(2, C) with respect
to the subgroup K.

Each right coset consists of all the element kg', where g' is a fixed

element of SL(2, C) and k varies over the subgroup K. Each coset will be
17



denoted oither by Kg' or by Kg* = § whoro g is an arbitrary element
bolonging to the cosot Kg's
It can be eazily shoun that every element g € SL(2, C) can be represonted

in the form

g = ku; keK; uve SU,. (4.12)

It follows from Eq. (4,12) that if an element g ¢ SL(2,C) belongs to a given
cosot E, then k“lg Tue SU2 slsc belongs to the same coset. Therefoure each
coset § contains elements of the group SUZ’

Forthermore, the decomposition (4.12) is not unique since g = ku = k'u';

ks k' ¢ X; u, u' € sU, (4e13)
where

k' = kY w =y h (4o1h)

with Y an arbitrary element of the subgroup I't
e-o.w J
r r= ( 0 e ] w rned. (4.15)

Therefore each coset ¥ contains a oneparametric set of elements belonging
to SUZ'
Let us denote by ug an arbitrary element (matrix) of the coset g = Kug

which belongs to SU It can be proved (Naimark, 1964) that any principal series

20
representation ccrresponding to the pair of parameter (s, J 4 }y where s is an

integer or half-integer, and f is real,can be formulated as follows: to every

element g € SL(2, C) there corresponds an operator V_ defined over the space

g
zS
L; (sU,) by

18




'

ot (wg)

i o XM ) »
Vy plu) TTe é(ug L (ka6)
T \
for all ‘;I C/(“-) ¢ Lr a (5vs) s obnd o s given by ‘, .
| (4:17)

Ia'f - 25-2

lyg) = lg,, 5:

: \ \
for an arbitrary g'e SL(2, C). ug is an clement of tﬂe right coset Gg defined
above,.

To facilitate practical applications of the representétion formula
(4.16) we derive nou (a) an explicit expression for tﬁe matrix ug in terms of\the |
métrices U e SU2 apd g ¢ SL{2,C). The expression will involve a phase factor

which canﬁbe chosen arbitrarily; (b) the ratio g&ggl appearing in formula (4.16)

‘ o(ug)
for two cases of particular interest: (i) g is unitary; (ii) g is of the form
i
g0 0
d7 o is,, ) (4.,18)

where €on is real. .
(a) Let us denote the matrix ug by u's Thon u' can be written as

) ’ ’ ' ) 4
, Ui Up ol I ,
u’ & ’ ! = - oy
U, U —/" o' ' (4.19)
with the conditicn .

1 1

#
=~

a4 g (4.20)

19



According to Eq. (4.12) ug can be written in the form ug = k.u§ = ku!
whére k ic a matrix having the form given by Lq. (4.11). IIf one denotes now

ug by g',’ then one has g' = ku', or explicitly

’ PR 37 o ’
Jo I ) K f (4.21)

gu i o A ) \=pH

This gives

|

g“ = -Aﬁl J 3:1. = 1 °77 (4.22)

from which one obtains .
\

\

)

\

| | , . - .
I &= ?_:‘-‘ p'= - -5-,‘1-. (4423)
2 i

v f
i
!

Furthermore, using the conditiop (4.20) one obtains

/ 2 ’ .2'
1a1™ = g5l + gl . (4.24)
But g' » ug. Let us denote u by 1
Uy Ua {( <« f ) .
w = ( U, Uz, ,.l,’l = J (L"025)

20




and g by
34{ 34&
g = ( ) , (4426)
j‘" jl-l.

then

414 411 °“£1u+ ) LG, t /f}j“
(58] [ )
3;) 31.‘; "‘[’ju '045” =Pt ®Gu )"

if we write now A = |2 exp (i A), where A is some real number (phase), then one

finally obtains for (4.23) and (4.24)

- - VA
L= (= Fnt ge) 3 e
— - NPT
ple (p gy - wga ) ATE (1.28)
and
— - 2 - — 2
l’Hz: '{33«: 'dg-;'l + ,",ﬂj“_**“‘,_.,’ (4.29)

Hence, ug is determined by means of u and g up to an arbitrary phase factor,

21




(b) (1) lot g be a unitary matrix u, with determinant unity:

U, = (_i" P") ;o el st = 4 (%430)

Then one obtains from Egs. (4.28), (4.29)

- A

b= - . + Kal, ) &
oLl = (=fp e,
pl= (g + pe) € (431)
Jal = 4

and, accordingly
o (uu,) 205 A
oL (W, ) .

(i1) g is the matrix given by Eg. (4#.,18). One then obtains

CA
A (4:33)

ol o £, 12l €

’ -t

p= poin 217 e

2 2 -2 . _*
'kl = ’1'I Z).a. + ’d/ E.'.a.
| [ (lh235)
and
oL () (-2 ‘s A
=L f i
<z = Il e . (.35)

22
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C. Realization of the Principal Serius of Reprosuntations in the Space Q;s.

Using the goneralizod Fourier transformation, introducéd in Sec. 44,
we oxpress now the ropresentations belonging to the principal series as infinite-
dimensional matrices, the oloiments of which will be explicitly given as integral
over the group SU,. One first notices that Tim(u) is an element of the Hilbert
space LES(SUZ). Therefore Eq. (4.16), which expresses a given principal series
representialion can be applied to Tgm(u) to yield
& (wg)

; = ——— v
Vs Taw (00 = Ty Tl 5l (436

From Eqs. (4.9), (4.16), and (4.36) we have

2y - pd % (“é) oo d -
Vy ¢(u) = JZ(‘J*" 24l Leg T (wj). (w37)
Since 2Lug) Tgm (ug) is a vector in the Hilbert space L§5(8U2) it

alug of thae
can be expanded as a series‘fdﬁm (4.9). One obtains

£lug) o y i (s e
) T (wj) = ZT_ (ay'e1) 2 V.0 (52500 T () () o

where, because of Eqe. (4.10)

X \ «leg) ;T
VJJ (3} s, 1) = 3 ——e 1’i (uj) r;i'L“)‘L“

N""I d (uj) (u'39)

Combining Eqs. (4.37), (4.38) one finally obtains
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Vy ¢ (1= 2020 2 g7 Tl () (4.40)

where

w o, .
NI I YRR AR CPI D I A (b b1)

Jelsl ™y

Thus the operator Vg of the principal seriss of representations of SL(2, C)
in the space,lgé is the linear transformation determined by Eq. (4.41) describing
the law of transformation of the quantities ¢g where j = |s |, |s] +1, |s] + 2,...
and m = <3, <3+ 1, vesy J» The coefficients Vﬂi: (g; sy p) are functions of
g € SL(2, C) and p and s, where p is real and 2s is an integer. These functions
are the matrix elements of an infinite-dimensional matrix, whose rows are labeled
by (j, m) and columns - by (j*, m'). They are given by Eq. (4.39) as integrals
over the group SU2.

It will be noted that the gquantities ¢£, whose transformation law is given
by Eqs (4.41), were obtained from the representation formula (4.16), in analogy
with the way 2-component spinors, transforming acecording to Eq. (3.12), both
being coefficients appearing in the spaces of representations.

D. Comparison with the Infinitesimal Approach

We have seen in the present section that all the irreducible representations
of the group SL(2, C) belonging to the principal series are characterized by a
pair of numbers (s, f ) where s is an integer or half-integer and p is real.

If the representation is given in a global form, the space of the representation
depends on the value of s (see Sec. 44) and the operators depend on both s and f

(Eqs. (B.16), (4.17)).
24



The principal seriss was already defined in torms of the infinitesimal
operators in Secs 2Cs It was found to depend on a pair of papameters (jé, c)
where jo takes the values O, 3 1, 3/2,e4s and ¢ is pure  imaginary. The values
of these parameters occurred in the formulae for the infinitesimal operators

(Eq. (2.8)).

By aspplying the global form of a given representation to infinitesimal
elements of the group SL(2, C) one can calculate the infinitesimal operators
of the representation, By comparing the infinitesimal operators thus obtained
with the results of Sec. 2 one establishes the relationship between the pairs of

parameters (s, i1p) and (jo’ ¢). The result is as follows:

For jo =0, onz obtains
5= 0 c=+18 (4olt2)
) MY
and for J, ¥ 0, one obtains
j, = s ¢c=-i2irs>0
o -1z if s
(4.43)
i = = .E.'
J ~ 8 c=1zifs<0-
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5. COMPLEMENTARY SERIES OF REPRESENTATIONS OF SL(2 C)

A. Realization of the Complementary Series of Representations in the Space H.

In Secs 4 the principal series of representations which is unitary and
irreducible, was realized as sets of operators on the Hilbert spaces lés (SUz).
The scalar product was given simply by Eq. (4.2) and the operators were defined by
Egse (4.16), (4.17).

The principal series of representations, however, do not realize all

irreducible unitary representations of the group SL(2, C). Rather, every irreducible

unitary representation of the group SL(2, C) is unitarily equivalent to a

representation of either the principal series or the complementary series of

representations.,

Formally, the complementary series of representations formulae can be
obtained from that of the principal series formuale (4.16) if one takes f = iC and
s = 0 in the latter and assume that now 9 is real and has the values 0<g<2
(Nairmark 195). Unfortunately, the operators thus defined are not unitary
in the scalar product (4.2): Eq. (4,16) defines a unitary operator if and only
if a(g) is defined by Eq. (4.17) with P real.

A realization of the complementary series representations in terms of unitary
operators is, however, possible on the Hilbert space of H0 to be defined as
follows,

Lot H denote the set of all bounded measurable functions $(u), where u is

an element of SUZ’ satisfying the condition
plyu) = #(u), (5.1)

and where ye SU, is given by Eq: (4.4). {The condition (5.1) is in fact identical

2
with (4.3) for the casa s = OJ Introdice in H the scalar product
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<Bps 8> =7 Jj K (u* u L) B, (u') 4, (u**) du® du" (5.2)

for ., §, ¢ B Hero K (u’ u™1) 15 a kernel function defined by

K () = | w7 (5.3)

where 0 < ¢ < 2 and the integral on the right hand side of Eq. (5.2) converges
absolutely., The space H can be shown to be Eticlidean, whose completion (which is
a Hilbert spacezj) we denote by Hc.

In the Hilbert space Ha’ the operators Vg of a representation of the
complementary series, defined in complete analogy with the principal series, are

unitary. BExplicitly, the definition of Vg is as follows:

v, fu) = LEEL gug) (54)

&Auz

where @ ¢ H and o(g) is given by

a (e) = |yl °72 (5.5)

for any g € SL(2, C) and 0 < 0 < 2, The representations thus defined are

irreducible and unitary.
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B. Orthogonal Set in the Space H
We now define a set of functions which provides an orthogonal basis in

the space He It is given by

tg(u_» =5, 1 (4) (5.6)

J “om

for 3 =0, 1, 2, 3ees and m = =3, =J + 1, ovs, J, where the Tgm(u) were defined

in Sec. 4C and N, is a real normalization factor whose value is given by

Ny = {nj K(2) T3 (u) au 1'% (5.7)

The integration involved in the definition of Nj can be carried out to
yield an expression of the normalization constants as a finite sum of Euler

B - functions. The result is (Carmeli and Malin 1971)

- J jem |, 3
N2 e PO B @, 55w (5.8)

m=o

2L

B (xy) = L0 (5.9)

where

To show that tg indeed provide an orthogonal basis in H we calculate the

scalar product
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1}

<fi$..fit> m [ K Gt £ (ur) O (o s

(5.10)

it

N v Uk(wu“') f’ﬁ‘(u-)dw T_‘:j: (Q'") cha

By waking the transition u' = u' u" in the integral (5.1.0) one obtains

J1 4
t te2
< ] m2>

=N [ KT () et T ) e
Jy J‘ oM, (5.11)
Using the relation
T (wiwn = o T (w T () (5.12)
! v - Jl
in the last integral we obtain
<t s
m, ‘
J ) j — -
e, B KT e [T ) T
' 3 eey [ [aeR?
(5.13)
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Using now the orthogonality relation (4.8) that the matrices Tj satisfy, we
obtain

J J
< tYl, t2 >

o] 2
. 5."‘};8""‘0”‘1
= N ! ’) TJ' ! (/(AA'} e+ o
TN N, { j K Cuwrd T 7 (w) 2], +1 (5.14)
which, by virtue of Eq. (5.7) gives
: §d1dp  guym2
ctdl, the, o 22X Z (5.15)

1 2 23, + 1

C. Realization of the Complementary Series in the Space h
In ardlogy with the generalized Fourier transformation, introduced in Sec.

LA, betwsen the space LES(SUZ) and Qés, there exists for the complementary

series & transformation from the BEuclideon space of functions H(@nd its completion,

the Hilbert space Hb) to a Euclideon space of systems of numbers h (and its

completion, the Hilbert space ha) (Carmeli and Malin 1971).

The Euclidean space h is defined as the aggregate of all systems of numbers

?g, where m = ~j, -3+ 1y Seay jand j =0, 1, 2, «ss, satisfying

J '
Z (2j+1) /\/J"‘1 2:;—4' "-}’,ilz < o
J

(5.16)
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The scalar product is defined by

. .-2 ¢J‘ L,UJ

for any two vectors ¢£ and Wg in h. The coefficients Nj are defined by Eg.

(5.7).
In analogy with Egss (4.9) and (4.10) relating tre space LSS(SUZ) and Qgs

the correspondence between H and h is given by

la)= Z (2fe) W T @il 0 g
J (]

and

j | .
b= N (4t > (5.19)

u

where tg was defined by Eq. (5.6). Comparing

Kdop> = L (jr) w7t 2 o) v (5.20)

J ~ B
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with Eq. (5.18) wo see that $(u) ¢H if and only if the corresponding ¢£ eh

1f we denote now by ho the completion23 of the Euclidean space h, then
the isometric mapping (5.18), (5.19) of H on h can be extended in a uniquec way
by continuity to an isometric mapping of Ho on hc’ The operators Vg of a
representation of the complementary series in the space Hc pass over into
operators in the space ha’ which are also denoted by Vg and whose explicit
expression we find below.

hpplying Eq. (5.4) to the tJ gives

x ()

v, t, («) = w(ws) 2 (wg) (5.21)

Using this result in Eq. (5.18) yields

Vy ¢ (w) = Z(z)u) Z ¢’ -) 6,{ (w§) (5.22)

Expanding o E—g))- trJn (ug)in the series (5.18) we obtain

Vy ¢ lu) = (5.23)
= Z_(Z_J'.fi) gc‘bi :2_-_: (2)'t1) A/J/" g V::, (J;o‘) t:, (u)
J

where, because of Egs. (5.19) and (5.2)

VI G e A ) TR ) B et ke

J
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Accordingly, Eq. (5.23) has the form . [

\

. WAL ) ! ) I
Vy g lwr = D Gjen) 57 240 ()
! J
whoere
| , B :
1y’ z . J .;J, ) !
¢ 2 T (1) Z Vol lgic) gl . (si26)
~! . -
).".o ey )

\
! ‘
Eqe (5.26) defines a linear transformation in the space h, corresponding
ll' L
to the operator V_ of the complementary series. VJJ, (gs o) which are given
P g : e,
by Eq. (5.24) as double integrals over the group SUZ’ are functions of g € SL(2,C)

and 9 where 0 < @ < 2. fThese functions are the matrix elements of an infinite-

dimensional matrix, where rows are labeled by (Jj, m) and columns - by (3', m').

D. éomparison with the Infinitesimal Approach
\ \
The compiementary series in its glotal form, as defined in this%section,
is characterized by a parameter ¢, whose range of variation is 0 < é < 2. The
)
value of ¢ determines the Ecalar product (Eqse. (5.2) and (5.3)) in the Hilbert
space of representations and also the operators of the representations (egs. (5.4)

and (5.5)7).
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| \

fha complementary series was defined inISec. 2 through the infinitesimal
approach. All the irreducible representations of the group SL(2, C) were
characterized in Sec. 2 by & ?air of numbers (jo, ¢), where J, takes the
values 0, %, 1 3/2,e4s and ¢ fs complex. The complementary series
representations were characterized by jo =0, 0 <cecxl,

To establish the relationship between fﬂe parameters o and ¢ one
applies the global form of a given representation to iafinitesimal elements of

1 the %roup SL(2,C? and compares the infinitesimal elements thus obtained with

the results of Sec. 2. The result is \ !

\

dbo= 0 ¢
|

+ (d/2)s (5.27)
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6. COMPLETE SERIES OF REPRESENTATIONS OF SL(2, C)

A+ Realizations of the Complete Series in the Spaces LSS (sU,) andﬁgs.

As has already been pointed out in Sec. 5 all the unitary representations
of the group SL(2, C) are included in either the principal or the complementary
series.®? Gol'faund and Naimark (1947) and Naimark (1954, 1964) have
shown that all the completely irreducible26 representations of SL(2, C)

(i.0. not necessarily unitary) are included, up teo equivalence, in a series

of representations known as the complete series.z?

We define here the complete series and its realization in the spaces
12° (s0,) and Q25

All the representations of the complete series can be characterized by a
pair of numbers (s, p) where s is an integer or half-integer anc p satisfies
02 £ (ls\ + k)z, k =1, 2, 3, +ss and is otherwise an arbitrary complex
number. The pairs (s, p) and(-s, =p) define the same representation.

All the representations of the complete series can be realized in the
spaces Lgs (SU2>’ defined in Sec. HA« The space of realization depends
therefore, oan s alons and is independent of P, A given representation corres-
ponding to a pair (s, p) is realized in L%S(SUz) by a set of operators Vg,

g ¢ SL(2, C) defined by

L (ug) -
Vy $) = A (6.1

for ¢ (u) ¢ L%S(SUE), where s

(p-25-2

«(5) = 91 19l (6.2)
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and ug was defined in Sec. 4B,
These formulas are the same as Eg, (4#.16) and (4.17) for the prineipal
soeries; the difference is that now p can take complex values, while in Egs,

(4.18) p is roals It can be shown that the operators V_ defined by Eqs. (6.1),
[

(6.2) are unitary if and only if P is real.

In complete analogy with Sec. 4C the generalized Fourier transformation,
introduced in Sec¢s 4A, can now be utilized to obtain a realization of the

complete series in the spaces‘ﬂgs. The result 1s

¢/{'= 2: (?j+l) Z:' V:i,(j;s,f) ¢: (6.3)

Ll j:lsl Me-

where
. .t o((u_}) _; _ _:__,._:__’_______. .
V,:i, (9151f) = j.o-(—&(;j—) T‘_: (g._j ) ["MJ’ (“) rtq. ( . )

which is again the same as Egs. (4.39), (4.41) except insofsr as the definition

of @ (g)(Eqe (6.2)) is extended to include complex values of p.
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Bs Relation to the Principal and Complementury Seriocs

Tho complele series describes all the infinite-dimensional comploiely
irreducible representations, to within equivalence, of the grovp SL(2, C).
The meaning of equivalence here is such that the spaces of two equivalont
representations need not be isometric, but it is the formulas which are
essential for the representations and not the norm of the space. In the
present subsection we define equivalence of representations and show that the
representations belonging to the complementary series are, from this point
of view, equivalent to representations contained in the complete series.

The definition of equivalence between representations realized in
Banach spaces requires some preliminary mathematical definitions:

(1) the group ring X. Let X deonte the set of all infinitely differentiable

functions x(g), ge SL(2, C), which vanish for all the matrices g satisfying

1344,L+ lﬁft’l+ /9;,/14- 13“}" s C (6-5)

for a big enough number C which may depend on the function x(g). This set

forms a ring if addition and multiplication by complex numbers are defined

in the usual way and multiplication of ring elements is defired as follows:zs

JL1~13 (5).: Ix1(j') .)c,(jl"s) (f(j' (6.0)

(ii) Conjugate representations. Given a Banach space B, whose elements
are deonted by € , its conjugate space B is defined as the space of all

bounded linear functionals f (£) :in B. 37



Givon an operator T in B its conjugate operator T' is defined in B' as
T'f (E) = £(1€) (6.7)

Noq’given a representation in terms of operators Vg on a Banach space B wo

define

v =v (6.8)

as the conjugato representation in the Banach space B'.

(4i1) Tie set Q corresponding to a given representation in a Danach
space B is defined as the aggregate of all finite linear combinations of the
vector VXE (Vx is defined in footnote &) where § ¢ MJ (see Sec. 2) for any
valus of j, and x ¢ X. The set corresponding to the conjugate representation
is denoted by Q'.

Following Naimark (1964) we now define two representations Vé, Vz on
Banach spaces Bl, 82 as equivalent if there exists linear operators Al and
A2 from Bl to 82 and from B2 to Bl respectively, whoso domains of definition

hod
are Ql, ¢ and domains of variation 02, Q'zrespectively, satisfying, for all

§en,feﬂ'2,

-ﬁ(Ai;)= A fUE) (6.9)

1f A1€ = 0, Azf = 0then§ =C, £ =0,
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o2 ,
A'V, € = VAL (6.10)
. ,
Az‘\‘/xz =V A" L, (6.11)

It is noteworthy that for the representations to be equivalent the Banach
spaces need not be isometric.

In the previous subsection the complete series representations were
characterized by a pair of paremeters (s, p) where s in an integer or half-
integer, and p is a complex number. We will now show that the complete series
representations characterized by s = 0 and p satisfying 0 < - ip < 2 are
equivalent to the complementary series representations.

The space of representations of the complete series representations
corresponding to s = O was defined in the previous subsection as the Hilbert
space Lg (SU2). The space of representations of tho complementary series was
defined as the Hilbert space i ,. These spaces correspond to Bl, B2
respectively in the definition of equivalence. Now, the crucial point is
this: if Vé is a complementary series representation corresponding to a value
¢ of the parameter,and Vz is a complete series representation corresponding
to the values s = 0, p = 10, then the representation V;, V: are given in the
two Banach spaces by the same formula (Eq. (6.1), (6.2) and Eqs. (5.4), (5.5)
respectively). It follows now that the sets Ql, 02 corresponding to a given

and
representalion in the Banach spaces Lg(SUéfjﬁig are thy same, because both
consists of all the finite linear combinations of the vectors ng where §
is any of the functions Tgm(u). (Vx was defined in footnote 25).
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The operators Al, A2 in the definition of equivalence are trivially
defined now as the identity operators in Ql = 02 and Q'i = Q'z respectively.
One can easily check that they satisfy Eqs. (6.9) - (6.11). Therefore any
complementary series representation, corresponding to a value ¢ is equivalent

to the complete series representation characterized by the pair of parameters

s = 0, P = 10,

40




Cs Relation to Spinors
In introducing the complete series we restricted the values of its
parameter (s, p) by excluding the representations for which

Pz=-“’(ls‘ +k)% k=1, 2y 3y ees (6.12)

We now consider the representations corresponding to Eq. (6.12) and show 1hui:

(1) the representations realized by the general formula for the
complete series, Eqs. (6.1), (6.2), are not irreducible if Eq. (6.12) is
satisfied;

(11) when the general formulas (6.1), (6.2) of the compleie series
apply to a finite-dimensional linear space of polynomials over SUz, instead
of an infinite-dimensional Hilbert space, they realize the spinor
representations;

(i11) the generaliged Fourier transform of these polynomials is
related te the standard form of 2-component spinors by a linear transformation,
which is explicitly derived.

(i) To see that indeed when 92 =uh (sl + k)2 the representation  (6.1)

is not irreducible we proceed as follows.

n

-2i{ | s| + k) and denote by P

Suppose that p o the set of all homogeneous

1
polynomials in Usqys Unys Ups and Uynt

A (6.13)

with the conditions
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oé—ﬂ-*f-s-_—zs (6.14)

AL A Ay +S = 2ls| + 2k -2
s s 5 (6.15)

where Xk = 1, 2, 3, sess One can easily see, using Eq. (6.1%4) that

f(X‘*)"’ 6“’&;((—4) (6.16)

where Y is given by (4,4). Therefore PMN is a subspace of the Hilbert space

LSS (SU,)e We show that P,

of Eqs (6.1)s To this end one writes

is invariant with respect to the operator \1g

g = ueu,, (6.17)
whare Uyy U, € SU2 and ¢ is given by

(6.18)

with €, @ real number. Since V_=1V Ve Vu s 1t is sufficient to show

u,
1 2
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that P,,,, is invariant under each of the operators V., V. and V.« Now
MN u,’ '€ u,

b

o (Ul

Vi, Pl = plui) (6,19)

o (il )

It is shown in Sec. 4B that o (uul) | « (hﬁl) is equal to exp ( 2 is A),
where A is an arbitrary real number. Also, a direct calculation, using Eq.
(4.31) shous that

('A("'d +/1'f+8)
) = 2: € aaprs

P(‘*Li4
“pikiE (6.20)

e —
x qu.); (uu.)ﬁ (uu.)zf (wuy),,

Hence, using the condition (6.14) one obtains

V, plud = p s (620

which shows that Py.. is invariant with respect to the operator V, (and,

Mii
of course, to Vu e

2
Similarily, PMN is invariant with respect to V., where

(6.22)

- , 1P o
In Secs 4B it is shoun that g(ue) / o(u€) is equal to exp. <2 is A) ]kll 2

where |A| is given by Eq. (4.34), Furthermore, one easily verifies that
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- (AN(-«+3-fex) - epes) -l - ¥
plud)« T &NCTE i e
ql{‘;rt:

®« A r -
d a‘&p"f Uy Uy Uy, YUay (6423)

Usirg the conditions (6.14) and (6.15) and the fact that p = =2i( |sl + k),

one finds

Vt pu) = Z fa:wwrﬁa‘”, wrnlwlal (6424)
“npt
This shows that V.p (u) is a polynomial in the space Pyys Hence Tyo. is
invariant with respect to the operator Vg, and therefore the representation
{6.1) is not irreducible when p = w2i( [s | +¥), k=1, 2, 3, veel
(i1) We now show that the operators defined by Eqs. (6.1), (6.2) which

realize all the infinite~dimensional irreducible representations of SL(2, C),
realize the spinor representations as well, if the space of the representations
is properly defined as a space of polynomials over SUZ’

Starting from Egs (3.9) let us denote p(z, z) by £(z) and letl

"

£ (g)+ 9.0 9. (6.25)

where

3!4 30;
3 ° \ 9u 9.

(6,26)

is an element of SL(2, C)., Equation (3.7) can then be written in the form

44



T, £G)= «39) f375). (6.27)

Here 2z denotes a complex variable and alsc the matrix

1 o (6.28)
e ()

and the matrix z*' = zg amounis to a transformation in which the variable 2z

goes over into the new variable

(6.429)

}I = 32,0 / 54: )

where the matrix g' e SL(2, C) is given by

, <' 314 3‘3 )
= = . (6.30)
AEes Judt Ju Gudt e >

So that the new variable z' , according to (6.29) and (6.30) is given by

5103- b j“ (6.31)

If now we write

= Tt f Q) (6.32)
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29

where u, 2, ¢ %, and z = uzl/uzz. then

L ]
plury=mm 2D poow,oun al i, (6.33)

ra=po 3°o

Hence § (u) runs through all polynomials which are homogeneous in Upps Ups
of degree m and in 521, 522 of degree n, and P, 3re related to spinors
by (3.10). Let ?’mn denote the set of all such polynomials. Then an is the

set of all polynomials homogeneous of degree m + n in Unys Upos ﬁ2l’ 522,

satisfying the condition

E(M”“)*A
¢(Y'u.)= £ ¢‘(h)) (6.34)

where v is given by Eq. (6414). The operators of the representation in the
space ;mn are then given by the formula
ol (Wg)

T. W) = ——— wF (6.35)
é ¢( d(uj) ¢( j) )

where $ (u) € P’mn and ug is a matrix of SU2 whose explicit expression is given

in Sec. 4B. Comparison of (6.25) with (6.2) gives

; (6.36)

M = f'fﬂ —'1 he — ¢ «pn~)
J

PE.—_



\

\
Weihave, in fact, obtained already this space of polynomial in part

(1) of the prosent section as that subspace of IéS(SUz) which is invariant
’ |

under the'representatiop. Indesd, using Egs. (6.14); (6.15) and (6.36) one

obtains -
5.
y= m- = h-. (6.37)

Eq..(6.13) can now be written as

\ 2% <]

; s K = et~ ep ,

P(‘*) = 4. Z..- “.{f; U, Uy Uy, 4, . (€438)

0 g 0 i

\ :
\ ‘.

s oz z i
is just n Prge Hence qu

V-~

Cdmparing (6.38) with (6.33) we see that qxﬁ

\
is related to spinors, by (3.10), by

; =7 ) ) A .
a = U ! ohn 2 R (6439
<5 ! ¢A..-. Am X1 X '

[

- with
I . R . -
At Apto * AL = o, X+ X oo+ X =/

and the representations (6.35) is indeed a realization of the spinor
representations#

\
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(13i) We are now in a position to find the connoction betwuen spinors
\ and tho generalized Fourier transform ¢£ in the finite-dimensional caso.
Since p(u) € L%S(SUQ), one can expand it into a finite series in Tg(u)

\

N . J _
pley= 27 (len) 30 g2 1) () (6.1:0)
N sy
\ |
whéré ¢£ is related to p(u) by
' T -
¢m = flj () rs»« (u) ‘4“' ‘ {6441)

\
!

Using' the expressisn {6,38) for p(u) in (6.41) one obtains

" : MO :
1 J j"‘ 2- ~ ..AI
¢ = C a
g lamn] o7 ¢ ‘f.U-Z
: oze Tze ™ vﬂ p (6 )
~3 A
where C;d; are some numerical coefficients,
S J‘ ) i —A yew o gen !
C’u.«/} - 7‘,.. (“) ula L(I' (4“_ L(“. 0("‘ (6.“3)

And in terms of 2- component spinors, by Eq. (6.39), one obtains
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.M .
8. =0 L o™ 4 . (6.44)

where

conN Y, | 2 MN (6.45)
" dp T MIN. C‘M-{/l
Here .Al"‘ ese +A“1=Q', Xl+ too+k,‘/:6t

The generalized Fourlier itransform ¢§ is, therefore, related to the

8 ¢ via a linesr transformation. given explicitly by
100 OA“IXIDO GXN

Eqse (6.43), (6.45) as an integral over the group SU

spinors ¢A

2.
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1.

3.

b,

S

FOOTHO

See, for exampln, tho scnsion on irfinite-dimensional reprecontalions
of particles in ‘agen, Guralnil, and Hathur (1967),
See, for example, tha moncsroph of Htreater a2ad Wighiman (1044),

See, Nambu (1944, 19472); 2arui and Kleinert (1967a, b); ‘nvut,

o

Corrigan, and Kleinert (19382, b); Fronsdal (1947, b); borm (1967);
Takabayashi (19%57); Atarbanel and Frishnan (1968); Chodos (1970);
Chodr s and Haymaker (1970); Humi and ¥alin (1989)3 Noga (1970):
Kursuanglu (1968); Aghassi, Roman, and Sanbilli (1970); Xomar and
Slad (1969); 3isiacchi, Colucei, and Fronsdal (1949),
One of the first zystens which was described by infinile-linmensional
wave equations was the non-relativisiic H-atem (Fronsdal 16
Chm

Barut and Kleinert 1847c, 4, e; Nanbu 1967b; Kleineri 1963). lMorz

recently, an eguation which deseribes the relativistic H-atom was

e

obtained by Rarut and Baiquni (1969a, ). The r2lation of the

Majorana ejuaticn to the two-dimensional Schrodir.er eguaticn wva
also investigated by Riederharn and Gievannini (1957), Morita (1979),
Barut and Duru (1971).
See, Domokos, Kevesi-Domokes, ard Mansouri (16702, b); Donokos,
or

Kovesi-Domokos, and Schonterg (1970); Haery and iluyts (1967);

Watanabe and Niyarvaki (1949); *atsumoto (1970); ilorita (167¢G); rars

and Gursey (1971).




£ o Seo also Barut's roview of hadron symmetries (Barut 21970). The
rolationship botweon curront algebra and infinito dimonsional
equations were recently reviewed by O'Raifeartaigh (1969) and

Nioderer and O'Raifeartaigh (1970).

7+ Spinors have also been of preat importance in goneral relativity
theory. For reviews of applications of spinors in general relativity

see Penrose (1960), Tirani (1965), and Carmell and ¥ickler (19072).

8. For details see Streater and Wightman (1964).

9+ These matrices ars given by

/1 0 o] 0 \

a,(¥) =)0 cosy -iiny O ,l
0 siny cosy 0 geeey
0 0 0 l/

and
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1%

11,

c.3hy O 0 sinhy

-1 0 0
bl(\y) O O ) s
3

nhy 0 0 couly

The a, and br are related to ar(Y) and br(Y) by
ar(W) = exp (War), br(v) = exp (Wbr),

and are given by

o 0 0 o0 o o0 o0 1

Wo=]0 0 a1 0 =0 0 0o 0

1o 1 0 o170 0 0 o)ttt
o 0 0 2 1 0 0 0

Ar(Y) and Br(Y) are continuous functions of Y and are called basic one-
parameter groups of operators for the given representation. They satisfly
+ ¥ = ' b4 : Yy = ¥
the relations Ar( l) Ar(YZ) Ar(Yl + 2), Br(Y) Ly 2) Br( 1 ¥ Wz).

Ar(O) ], Br(O) = 1. If the representation is finite-dimensional then

r

the operators Ar(w) and Br(w) are differentiable functions of v. If
the representation is infinite-dimensional, however, these operators

might be non-differentiable (sece footnote17).

Ar(w) and Br(w) might then be expanded in terms of A, and Br as Ar(Y) =

exp (?Ar), B.(¥) = exp (¥B)).

In general, let A4(t) be a continuous one-parameter group of operators

in a Banach space R, and denote by X(A) the set of all vectors x ¢ R

for which the limit of (A(t) x-x)/t, when t =( exists in the sense of
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tho norm in R. Obviously the set X(A) contains the vector x = 0,
Define now the operator A for all x ¢ X(A) by Ax = lim{(A(t) X - x)/t}
at the limit t - 0. The domain of definition, X(A), of the oporator
A is a subspace of R, and A is linear, i.9., A()\ix1 + lzxz) =

M A Xyt A, A X, for X, X, € X(A)e Such an operator A is called the
infinitesimal operator of the one-parameter group A(t). If A(L) =
Ta(t) is the group of operators of the representation g - Tg’ corres-
ponding to a one-parameter subgroup a(t) of the group L, the corres-

ponding operator A is then called the infinitesimal uperator of the

reﬁresentation g=- Tg'

[y

The superseript in fi specifics the subspace uniquely since each irreducible

1
L]

representation of O3 is contained at most once in any given irreducible

representation of the group L.

15. Eqgse (2.8), for unitary representations case and under certain assumptions,
were first cbtained by Gel'fand (see Naimark (1964). p. 117); they
later were rederived by Harish-Chazdra (1947a, 1947b), and by Gel'fand

and Iaglom (1948),

1€+ For the physical significance of non-unitary representations see Barut

and Malin (196& .
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17+ A representation g - Tg of & group G in a space R is called unitary if
R is a Hilbert space and Tg is a unitary operator .r all g ¢ G
This implies that (Tgx, Tgy) = (x,y) for all g ¢ G and all x, y ¢ R,

where (x,y) denotes the scalar product in R.

1Y, An Gperator B is called an adjoint to the operator A if (Ax, y) =

(x, By) for all x, y ¢ R.

19 + Compare the analoguous formulas for the rotation group given by Egs.
(2,10) and (2.11) in Carmeli (1968). Eqs. (3.5) can sasily
be proved by finding the value of the exvression (3 Tr (CJuz'ach-&at):c]3 =
(3) me(o®alxaty = (1) v (Maea®) = () Tr () = (3) 1w (TOPxp)

(%) Tr co‘oﬁ)x& = 5%yt = xt = g, Kgr

g T« p e

20 « These matrices for the group SL(2, C) are given by

(os ¢ ':Huf- Cosh g-' Sﬂ.‘\lwi_
al(t) = ( z 2 ) bl(t) = .
L5 ! y A3
(kk% oxf ﬁkk; OJLL
6 - é {I * . ¢
s 2 A L C‘I(‘ N '.JH.A }:
az{t) = ¢ ¢ Bp(t) = ~ € e |
A R -(anh Y ot :
13 ¢
et v €’ o
. _ { b = ¢
a3(t) = ( 5 c"?‘ , (1) o o
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21, The 3integral in Eq. (4.1) and throughout this paper are invariant integrals

over the group SU2 which satisfy the conditions

f T (uul) du = | f (ulu) du = j £ (u) du

for any Uy € SU2, and

‘f f (u"l) du = J £ (u) du

h n
‘}du‘“lc

™

« For a different form of realization of the principal series see e.g.

23]

Gel'fand, Grae: and Vilen:in (1966).

23+ Every BEuctidean space can be completed to a Hilbert spaces See edg.

Naimark (1959, 1964); Lyusternik and Sobolov (1951).

2%, These functions were recently used by Veneziano (1968) for the construction
of crossing-symmetric, Regge-behaved scattering amplitude for linearly

rising trajectories.

25« It is interesting to note that the definition of the prineipal and
complementary series of representations can be generalized from-the
group SL(2, C) to SL(N, C) for arbitrary N > 2. However, for N > 2
there exist, in general unitary representations not contained in either

the principal or the complete series (Stein, 1967).
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26, The dofinition of complete irreducibility is as follows (Maimark 1964):
given a representation Vg of the group SL(2, C) on a Banach cpace B
one first defines a bounded linear operator C as admissible if it has

the form

n
CE=L f, (£) o,
i=1 2 :

where fl’ csay fn ¢ 1' and @y ssey B € 0. The definitions of the

sets (:, ' are given in Sec. 6B, One then defines the represcntations

as completely irreducible if for every admissible operator C in B

there exists a sequence x eX such that (Vx £, M) = (CE M) as n = o0

for all € ¢ 0 T e Q' X is the group ring, dzrined in Sec. 6B, and the

operators Vx are defined in footnote 25. It can be shown that every
n

unitary irreducible representation in a separable Hilbert space is

completely irreducible.

27+ For a definition of equivalence of representations in the sense of the

present section see Sec, 6B,

28, This definition comes about as follows: given a representation of SL(2,C)
as a set of operators Vg one defines an operator Vx corresponding to
every function x(g)eX as follows:

V.= f x(g) Vg ds
By straightferward calculation one finds that

VY Vx B Vx X
B R 172

if Xlx2 is defined by Eqs. (6.7)s For further details sec Naimark (1964).
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29,

30.

The representatlon (6.1) is not irreducible also uhen p= 28(fsl + k),
where X = 1, 2, 3,444, since the pairs (s,Js) and (-s, 1p) define the
same completely irreduelble representution.

3 is the set of all matrices kg, where g s an element of SL(2, C),

fixed, and k varics through the entire group of matrices of the form

given by Zq.(4.11). For nore detalls see Naimark (1944), p.1%40.
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LIST QF SYMEQLS

Symbol Leceriplion

€ L3k lLevi-Clvita skew=-synmetric tensor with E123 =]

F+. r_, F3 Infinitescinal generators of the Lorentz group

g Zlement of the Lorentz group L or the grcup SL(2, C)

H+,!{_,}{3 Infinitesiral generators of the Lorentz group

Hy h Fuclidean spaces

HG" hu‘ Hilbert spaces

L Proper orthochronecus Lorentz group

Lgs(uUz) Hilbert spare

LQ(SUZ) Hilbert space

-Lgs Hilbart space

Nj Real normalization factor

O3 Three~-dimensional pure rotation group

sL(2, ¢) Group of all 2x2 cciplex matrices with determinent unity

SU2 Group of all 2x2 unitary matrices with determinent unity

Tgn(u) Matrix elements of irreducible ==presentations of the
group SU2

tg(u) Orthogonal set of functions

Tg Operator

u Element of the group SUZ

Vg Operaicr

xi, x2, x3, X Space-time coordinates
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