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FOREWORD

This Technical Report presents results of research carried out

by Professor S. Malin, Colgate University, and Dr. M. Carmeli, General

Physics Research Laboratory, Aerospace Research Laboratories. Dr.

Carmeli's work was accomplished on Project No. 7114.
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ABSTRACT

Recent developments in the theory of represcntatlon: of the Lorentz

group, in %hich all infinite-dinensional representations of the group were

expressed in spinor-like forms, arc reviewcd,
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1. INTRODUCTION

Infinite-dimensional representations of noncompact Lie groups

are currently of interest and are being studied in describing the

physics of elementary particles.1 Of particular importance in this

class of groups is SL(2, C), the group of all 2x2 complex matrices with

determinant unity. This is the covering group of the restricted Lorentz

group describing homogeneous Lorentz transformations that are ortho-

chroneous and proper.2 This group plays an important role in relativistic

quantum mechanics, quantum field theory, S-matrix theory and axiomatic

field theory.

The theory of representations of the Lorentz group is of particular

interest in connection with recent developments utilizing infinite-

component wave equations to describe particle properties. This approach

was originally attempted by Majorana (1932), who suggested an infinite-

dimensional wave equation whose form is analogous to Dirac's spinor

equation. It turns out, however, that Majorana's equation generates

an unphysical massspecturm. The theory of infinite-component wave

equations, which are generalizations of Dirac's equation, was sub-

sequently developed by Gel'fand and Iaglom (1948).

Recently, Nambu, Barut, Fronsdal, and others3 developed more complex

types of equations based on the Lorentz group and showed how to describe

particle properties within this framework. Barut Lnd his co-workers,

in particular Kleinert and Conigan, have also developed an approach
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in which particle properties (mass spectrum, magnetic gomrnnts, form

factors, etc.) are directly expres.sed in terms of operators in a given

infinite-dimcnýionl rcpresc'.ntation, without using wave cquations.

Various aipects of the theory of infinite-component c-number

wave-functions and wave equation:- were also investigated by Bonhm

(1967, 1963), L:i.:r, (1966), Miyaz*ki (19 68a, b), Takabayashi (1967) and many

others, T1he relationship between Regge's theory and Lorentz invarlance

was investigated, end equations which reproduce Regge mass spectra

were proposed. 5 The problem of second quantization of such theories,

which raisud some deep difficulties, were extensively investigated

(Grodsky and Streater 1968O Abetrs, Grodsky, and Norton 1967; Feldnann

and iatthows 1967a, b; Pronsdal 1967c; Cksak and Todorov 1969, 1970;

Miyazaki 1970b, c). The relationship betwoee:n infin1te-dimensional

wave-functions and the foundations of qu.antum mechanics was investigated

by Barut and Ma'in (19 6 8a, b, 1971). Infinite-dimensional

representations were used in relation to the problem of representing

the algebra of current density (Dazsh.en and Cell-Mann 1966; Eebie

and Lentwyler 1967; Lent'yler 1968; Cell-Mann, Horn and Weyers 1967;

Barut and Komen 1970; Ha:.prect arid Kleinert 1969; Kleinert, Corrigan,

and Hamprect 1970; Cocho, Fronisdnl, and White 1969; Fronsdal and

Harun-Ar Rashid 1969; Clang, Dachen, and 0'Raifeartaigh 1969a, bi

Katz and Noga 1970). The applications of infinite-dinmensional

represen:itIor.ns of the LorentZ r-u up to p'rticle physics were recently

reviewed by Xiyaat (1970b).c All these problems are very complex

YoLL. y.njcail4 arun ateaicly
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Au tar a3 thu mat~hemat~ical thuory of rpenttnsof thu(- Lo~r,.ntz

Group Is concerne-d, there a'.re s tcal t.;o amoco; 1

intl ni tesimal approach, in whiich orn t' flrjg,, t~he ai 'Cu "rn' tt o

%nfiniteaimial r~eijcrator.s in , U 'ivun raprn:-G-ntation -anlIeQusSntie

corrosponoing to f~i.ite gcou;; Watns a.; exinn-ential. -£unctionz; of the

genra~or (JL-nahI1947); and,) (2) the g10obal apul.in "hI on the

repre-sentations; are. realized -:i: operratorc, dcefined ovier Lanl abs~tv-zc'. SpaCe

of funct-ions (ooui'fand and. Ijainark .91-), 1947).

Recently, the au-Lhorn3 (Carri~eli 1970; Carineli and eialin 1971i, 19?2)

introduced a g-eneralized Fourier transforma-tion xhichi ena-.bled them to

use the global approa.ch for expressing i.iiedmninlr~eerir

iLn terui;.* of ',Iatricea, geeai i% he spiiior7 Cairn offiieIuxiv2

representation to the inf~in-ite-dinensional case. Tiethe uulspinor

reproesentations ar"e non-un-itary, this new form descri. te: both untitury

and non-unitLary representations.

The purpose of the present revieW is to summariZe these rý,eent

developments in the theory of representations of the Lorcota group.

Sections 2 and 3 include reviews of the infinitesimal approach and of

the finite-t~imcnsional. representations of the group K.(2, "). arhe contenit

of these sections is well known, but is given hero For cormpletlenzass and. to'

establish the notation. The principal, com-lernentary, and complete series

of representat ions -are then discussed in Sections 4, 5, and 4 e;etwly

Thr~oug:hout th'e paper we aýdopt the now stand~ar~izrd:C notati-on anld

terminology of Naimark (96)
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2. THE INFINITESIMAL APPROACH

A. Infinitesimal Lorentz Matrices

A linear transformation g of the variables X.9 x2, x3 and x4 which

leaves thi form x 2 + x22 + x2 - 2 invariant is called a Lorentz trans-

formation. The aggregate of all such linear transformations g provides a

group which is called the Lorentz group. If g44>_. 1, the transfomnation is

called orthochroneous. The aggregate of all orthochroneous Lorentz trans-

formations provides a subgroup of the Lorentz group. The determinant of

every Lorentz transformation is equal to either +1, in which case the

transformation is called proper, or to -1, in which case it is called improper.

The aggregate of all proper, orthochroneous Lorentz transformations also forms

a group which is a subgroup of the Lorentz group. 8  Throughout this paper we

will be concerned with the group of all proper orthochroneous Lorentz

transformations. This group is denoted by L.

Rotations al(T), a2 (y), a3 (T) and Lorentz transformations bl(y),

b2 (Y), b3 (T)t around and along Ox1  O Ox2 1 Ox3 can then be written explicitly. 9

The infinitesimal'matrices ar and br of the group L are defined by1 0

ar[ = ' b(*)r [dv) T

r 0 o L 0 o(2.1)

and satisfy the commutation relations

[a., aj] = ijkak

[b,, bj] -'•ijk'k (2.2)

4



B. Infinitesimal Operators

We donoto an arbitrarly linear representation of the group L in a Banach

space B by g - T and for con,. 3ience we put

T () B Tb (y), (2.3)
r a r(y'), r bry)

The basic infinitesimal operators of the one-parameter groups A r(Y)

rrand Br(V~) are then defined by 1 2

d.A Y) d (T)(2.4)
I y jY= 0 B r0

ifthe representation is finite-dimensional. If the representation g - T

is infinite-dimensional, however, the operator functions A (T) and Br(Y)

might be non-differentiable, but there may still exist a vector x for which

A (T)x and B (')x are differentiable vector-functions. 13
r r

Arepresentation g - T of the group L is completely determined by
9

its infinitesimal operators Ai and B., i = 1, 2, 3. The determination of

the irreducible representations of the group L 5.s based on the fact that the

basic infinitesimal operators o'f a representation satisfy the same commutation

relations that exists amo-.g the infinitesimal matrices ar and br

[Ai, Ajl ijkAki

Defining now the operators

H; =iA +A2, H 3  iA3

F•; iB 1 + B2 , F 3  iB 3 , (2.6)

3 3



one finds

[11; 11i ? , i~ I 2113.

[F,, F] +1~ [F+, F] 211~

Fii+, F] 0, ru, F 0,CH, , +t2F3

fH+, F3] *F FF H I7 ýF+. (2.7)

The problem then reduces to the determination of H1, H3 , F,_ F3 satisfying the

conditions (2.7).

Now, since the three-dimenrional pure roI6aticn group 03 is a subgroup

of the proper, orthochroneous Lorentz group L, obviously every representation

of L is also a representation of 030 Clearly, if a given representation of L

is irreducible it need not be irreducible when considered as a representation of 0
In fact, any infinite,'epreentation of L, when regarded as a representation of
0 is highly reducible; it is equivalent to a direct sum of an infinite number

of irreducible representations. The space R of any irreducible representation

of the group L is, therefore, a closed direct sum of subspaces M , where Mi

is the (24+l)-dimensional space An which the irreducible representation of

weight j of the group 03 is realized.

Following the standard convention, one chooses the 2jtl normalized eigenvectors

of the operator i as the canonical basis for the subspace MD. Let these

base vectors be denoted as f where m = -j, -j+l, .e, j, the superscript j

indicates the subspace to which fj belongs, and the subscript is the eigen-m

value of the operator H 3 A detailed investigation of the commutation relations

(2.7) in terms of the canonical basis fJ leads to the following conclusions:

6



(a) Each irreducible representation of the group L is characterized by

"a pair of numbers (J., c), where Jo is integral or half-integral, and c is

"a complex number.

(b) The space R (Jo, c) of any given irreducible infinite-dimensional

representation of the group L is characterized by the integer or half-integer
Jo sch tat (Joc) J0o j0+

Jsuch that R(j, c) = M J N ... . The whole space R(Jo, c) is

spanned, therefore, by the set of base-vectors fm, where j , Jo , Jo+I' jo+2,

... , and m = -J, j+l, ... , j. If the given irreducible representation is

finite-dimensional than the direct sum of the subspaces M's terminates after

a finite number of terms.

(c) A given representation is finite-dimensional if and only if c 2

(Jo + n)2 , for some natural number n.

(d) The irreducible representation corresponding to a given pair (jo, c)

is, with a suitable choice of basis 0 in the space of representation, given

by the formulas
1 5

=M LO t m + 1) (jMinj +

H3 f inmf

= M

F+- LO ; ri M+l

- L(J m) (J + m + 1) j2 A r il

+L -a + 2)j2 0 C I
+' (j + m + 1) (j + j+fl in+1

F f - m)(j+ in C

Lf$ 1  (2.8)- LO + m + 1) (J - m + 1)12 j+7



Here A= i c J0 / j Q + 1), and C. = i (j o . i )2 (j2 - c?) 2 /j (43 j).

(a) To each pair of numbers (jO,c), where JO is integral or half-intogral

and c is complex, there corresponds a representation g - T of the group L,g

whose infinitesimal operators are given by Eqs. (2.8).

C. Unitarity Conditions

If the representation g - T of the group L is unitary, 6 e1? then Eqs.g

(2.8) satisfy certain conditions which are summarized below.

Let A be an infinitesimal operator of a unitary representation g -Tg

of the group L. Then A(t) Ta(t) is a unitary operator and therefore its

adjointI [A(t)J t= [A(t)] -l= A (-t). Accordingly (A(t)f, g) = (f, A(-t) g).

Differentiating both sides of this equation with respect to t we obtain for

t = 0,

(Af, g) - (f, Ag). (2.9)

Using this relation one then easily finds that

(H+f, g) = (f, HI g), (H f, g) (f, Hg),

(2.10)

(F+f, g) = (f, F_ g), (F 3 f, g) (f, F3 g).

A systematic use of Eq. (2.10) in (2.8) then leads to the following: If the

irreducible representation g - T of the group L is unitary then the pair Ooc)

characterizing it satisfies either (a) c is purely

8



imaginary and j0Is an arbitrary zion-neGrti.ve inte,~ral or haf-Integra).

numb~ari or (b) p is a real number in tho Intorvals 0 < c 4. 1 and j 0 10

Thc reprosentation-s corre.sponrlink, to cace (a) are called thu

11icia verito of rott~zand tho.se corresponding to c:tsc (b)

aro called tho c.ompemntary spries.



3. SPINOR RPRESENTATION OF THE LORENTZ GROUP

A. The Group SL(2, C) and the Lorentz Group

In what follows we will use the fact that elements of the proper,

orthochroneousp Lorentz group L can be described by means of elements of

SL(2, C), the group of all 2x2 complex matrices with determinant unity. The

relation between these two groups can be established as follows.

Let x, arid x;, withx, 1 1, 2, 3, 4, describe the coordinates of two

Lorentz frames, related by

f = 01
xk g al x ~,(3.1)

where g ý e . One associates with each coordinate system x a 2x2 Hermitian

matrix Q defined by

Q = (3.2)

where ct, k 1,2,3, are the Pauli spin matrices,

a, -- ( ,) -f ) (3.3)

and c is the 2x2 unit matrix. In terms of the Q's one demands that the

coordinate transformation (3.1) be expressed as

Q' = a Q at,

(3.4)

whore a is an element of SL(2, C), Q' = x'ca, and at is the Hermitian

conjugate of a. One then finds that the relation between at SL(2, C) and

g e L are given by 1 9

10



g =4 Tr(&%Oat), (3.5)

It thus follows that the group L is homomorphic to the group SL(2,C)

such that to every element g c L thero oorrosponA two matrices ; a 6 SL(2, C)

and, conversely, to every a c SL(2, C) there corresponds some element g 6 L.

Accordingly, the description of the representations of the group L is equivalent

to that of the group SL(2,C); a representation g - T of L is single- org

double-valued according to whether or not Ta is equal to T a or pot.

B. Spinor Representation of the Group SL(2, C)

We now construct the spinor representation which contains all the

irreducible finite-dimensional representat"tons of the group SL(2, C).

We denote by P?= the aggregate of all polynomials p(z,z) in the variable

z and its complex conjugate E of degree not exceeding m in z and n in 2, where

m and n are fixed non-negative integers determining the representation. The

space Pmn is a linear vector space where the operation of a&-!... nd

multiplication by a number are defined in the usual way for polynomials.

An element of the group SL(2,C) will be denoted by

C (2 (3.6)

where a, b, c, and d are complex numbers satisfying the condition

ad - be = 1.

Define the operator T in PMn by

11



The correspondence g - T is a linear representation of the group SL(21C)

as can be easily verified. This is the spinor representation of SL(2,C)

of dimension (m, + l)(n+ 1).

In order to relate this representation to the 2-component spinors, one

realizes it in a somewhat different way.

One considers all systems of numbers OA, ... AmX* xn symmetrical in

both the indices A1,...AM and in Xi,***.Xn taking the values 0 and 1.

The set of all such systems of numbers provides a linear space, denoted by

SmD, of dimension (m + l)(n + 1).

A one-to-one linear mapping between the spaces Pmn and Smn can easily

be established. To each system "" Rc S there corresponds the

.)Clynomial

~' (j)" Z AcA.. Y. . A..,..4A ~(t.+ X. (3.8)
gA..., ..

of degree not exceeding m in z and n in i, and therefore p(z,ý) e Pmn* On

the other hand every polynomial

IF, S

in Pmn can be written in the form (3.8) if one relate the O's and p's by

means of

OA----- (3410)

with Al +...+ A = r, and XI +...+ X = s.

12



A second form of the spinor representation is then obtained if one

applies the polynomials (3.8) in Eq. (3.7). Ono obtains

A. +. (3.11)
A A,... A.

where we have used the notation

L a~~9. ~i. 1  (3.12)

A/.D. Y'

and where all a, a,, b, aol = c, and a 0 d.

The quantity 0. is a spinor, symmetric in its ra undotted

indices and in its n dotted ones, wherea, Eq. (3.12) expresses its trans-

formation law under the matrix a e SL(2,C).

C. Infinitesimal Operators of the Spinor Representation

We now find the infinitesimal operators H+, H, H3 , and F+, F_, F3

of the spinor representation discussed in the last subsection.

The one-parameter subgroupsof SL(2,C), corresponding to the one-parameter

subgroups a%(t) and b (t) of the group L, can easily be obtained using

the formula (3-5). In terms of the infinitesimal matrices ar and br of

the group SL(2,C) they can be written as

a,(t) = exp(t ak ), •(t) - exp (t b•, (-3

where a. = iuk/2 and bk = k/ 2 , and where 0y are the Pauli spin r.;atrice5 given

by Eq. (3.3). Using the matrices a,(t) and b(t) in (3.7), differentiating

13



both sides of the obtained equations with respect to the variable t, and putting

t 0 0, gives the expressions for the operators A. and B•, from -hich one

then obtains the operators H's and F's:

+
H- .

+ •k ,+).

14



4. PRIaCIPAL SML"i3 OF REPREL.ITATIONS OF SL(2,C)

2sA. The Hilbert Spaces (S) and

In its global form the principal series of representations was introduced

(Naimark 1964) as a sot of operators over tho Hilbert space of functions

IS(Sun), a sdb-space of 4(SU,), defined as follows.

The Hilbert space ke(SUQ) is defined as the set of all functions

S(u), where ueSU2, which are measurable and satisfy the condition'2

The scalarproduct is defined by

Corresponding to any integer or half-integer c we now define a Hilbert

2sI
space L2 tSU ), which is a sub-space of I4(SU2 ), as follows:

¢ (u) e L25 (SU2) if • (u) e L2 (SU2 ) and

0 (3 -).0C (4.3)

where r c SU2 is given by

' " 0 E Zý/' ( (4.4 )

The scalar product is again given by Eq. (4.2).

L2 (SU 2 ) is the direct siLm of all the spaces L2S(SU) for all integral

values of 2s. 15



The generalized Fourier transformation, to be introduced at the end of

the section, transforms each Hilbort space L• (SU 2 ) into a Hilbert space #2s

which is defined as follows (Caimjeli 1970):

Consider all possible systems of numbers 00, whore m -j, *.j + 1,

... , j and j = is[, jsj + 1, Isl + 2,... with the condition

5*j ( ~ . i . I(4.5)

The aggr'egate of all such systems OJ forms a Hilbert space, denoted by 2S
m 2

where the scalar product is defined by

jr is) (4.6)

i o 2s

for any two vectors • and 'I" of

Let us show now that for any integral or half-integral value of s the

two Hilbert spaces 2s kSU2) and 2 are Isometric, and derive the trans-

formation between them.

Let TJ (u) be the matrix element of the irreducible representation ofsnl

the group SU2 corresponding to the eigenvalue j(j + 1) of the Cosimir operator

j * The functions Tj (u) satisfy (Naimark 1964)sm

and for a fixed value of s they provide a complete orthogonal set for the Hilbert

space L•(SU2 ) as- m = -j, -j + 1,..., j and j Is, Is + 1, I s) +2,..,

(Carmeli 1969). The functions Tj (u) satisfy the orthogonality relation
sm

T LL (LA dA.A L ji < S. (4.8)

16



consequently, any function 0(u) c L2s(SUt) can be uniquely expanded in tho form

where

= $U-'~ j~ ~(!0.10)

It can be easily shown that the system of numbers OJ satisfies Eq. (4.5) if and

only if the corresponding function 0(u) satisfies Eq. (4.1). The Jlilbort spaces

L2Su 2 ) and L2s are, therefore, issmetric and the mapping between them is given

by the "generalized Fourier transformation" (4.9) and (4.10).

B. Realization of the Principal Series of Representations in the Spaces L2S 3u2)

We are now in a position to introduce the realization of the principal

seri°&lrepresentations of the groun SL(2, C) in the Hilbert space L2 S(sU2 ).
222

To this end we proceed as follows.2

Let us dznote by K to aggregate of all elements k of the group SL(2,C)

where k has the form

(4.11)

with X, p complex numbers and X 4 0. One can easily verify that the set K forms

a subgroup of the group SL(2, C).

We now construct the set of right cosets of the group SL(2, C) with respect

to the subgroup K.

Each right coset consists of all the element kg', where g' is a fixed

element of SL(2, C) and k varies over the subgroup K. Each coset will be

17



denoted either by Kg' or by Ig' = - whoru & is an arbitrary element

belonging to the cosot Kg'.

It can be eastily shown that every element g e SL(2, C) can be represented

in the form

g = ku; keK; uc SU 2 . (4.12)

It follows from Eq. (4.12) that if an element g c SL(2,C) belongs to a given

coset •, then k' g = u C SU2 also belongs to the same coset. Therefore each

coset g contains elements of the group SU2#

Furthermore, the decomposition (4.12) is not unique since g = ku = k'u';

k, k' £ K; u, u' c SUt2  (4.13)

where

k' = kY uO = y-lu (4.14)

with Y an arbitrary element of the subgroup r:

r~ (g(~J~ t)£4 tOJ.(4.15)

Therefore each coset Z contains a one-parametric set of elements belonging

to SU2

Let us denote by ug an arbitrary element (matrix) of the coset i% = Kug

which belongs to SU 2 * It can be proved (Naimark, 1964) that any principal series

representation corresponding to the pair of parameter (s, y ), where s is an

integer or half-integer, and 9 is realI can be formulated as follows: to every

element g c SL(2, C) there corresponds an operator V defined over the space

L2 (SU 2 ) by

18



for all 1 -5 (S x i gnd is
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Sg _ • 4- ,- g5v.i (byaT

for an arbitrary g ' SL(2, C). ug is an clement of the right coset Tg defined

above.

To facilitate practical applications of the representation formula

(4.16) we derive now (a) an explicit expression for the matrix ua in terms of\ the

matrices u c SU2 and g e SL(2,C). The expression will involve a phase factor

which can 'be chosen arbitrarily; (b) the ratio Z appearing in formula (4.16)
Qe~ug

for two cases of particular interest: (i) g is unitary; (ii) g is, of the form

o •2• '(4.18)

where £22 is real.

(a) Let us denote the matrix ug by u'. Then u' can be written as

(4.19)

with the condition

J 4'I1- I[i,'1 I (4.20)
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According to Eq. (4.12) ug can be written in the form uý = k.uj = ku'

ihdre k is a matrix having the form given by Eq. (4.11). If one denotes now

ug by g', then one has g' = ku') or explicitly

This gives

from which one obtains

(3 -(4.23)

Furthermore, using the condition (4.20) one obtains

12 1" + "5 I• (4.24)

But g' m ug. Let us denote u by

(a -1 -(4.25)
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and g by

then

((4.27)

If we write now /I ! exp (i A), where A is some real number (phase), then one

finally obtains for (4.23) and (4.24)

((3 - (4.28)

and

.+ ' (4.29)

Hence, ug is determined by means of u and g up to an arbitrary phase factor.
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(b) (i) lot g be a unitary matrix u. with determinant unity:

S= -/.(4.30)

Then one obtains from Eqs. (4.28), (4.29)

e'I = ~(%3.4 e4 o.

( C . 4 + ) (4.31)

and, accordingly

(ii) g is the matrix given by j-E. (4.18). One then obtains

(4.33)
, . L -I eA

(4.34)

and

0<C (4-35)
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C. Realization of the Principal Series of Representations in the Space-os

Uaing the goneralizod Fourior transformation, introduced in Sec. 4A,

we oxpress now the ropresentations belonging to the principal series as infinite-

dimensional matricos, the elements of which will be oxplicitly given as integral

over the group SU One first notices that Tj (G) is an element of the Hilbert
2- cm

space L )S(SU). Therefore Eq. (4.16), which expresses a given principal &sriesspc 2 (S2

representation can be applied to TO (u) to yield

V2 *~j~(ts)= L(4.36)7(1

From Eqs. (4.9), (4.16), and (11.36) we have

Since o( TJs (u2) is a vector in the Hilbert space L2S(SU2 ) it
a(u) tm ,

can be expanded as a serie-sform (4.9). One obtains

;--T-(Aj -r. <) = -; 2)J+' ý v"'' I• 's -,•
(jA,) (4.38)

where, because of Eq. (4.10)

V$, (,; s, = --- (� (r ,(A (4.9)

Combining Eqs. (4.3?), (4.38) one finally obtains
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z I

where

z (241) i v~j ' 54)4Z.(4. 41)

Thus the operator V, of the principal series of representations of SL(2, C)

in the space Z2s is the linear transformation determined by Eq. (4.41) describing

the law of transformation of the quantities $J where j = Is I , Is + 1, I sl + 2,...

and m = -J, .j + 1, ... , j. The coefficients vJl'j (g; s, 0) are functions of

g c SL(2, C) and p and s, where f is real and 2s is an integer. These functions

are the matrix elements of an infinite-dimensional matrix, whose rows are labeled

by (j, m) and columns - by (j', m'). They are given by Eq. (4.39) as integrals

over the group SU2.

It will be noted that the quantities 0J, whose transformation law is given

by Eq. (4.41), were obtained from the representation formula (4.16), in analogy

with the way 2-component spinors, transforming according to Eq. (3.12), both

being coefficients appearing in the spaces of representations.

D. Comparison with the Infinitesimal Approach

We have seen in the present section that all the irreducible representations

of the group SL(2, C) belonging to the principal series are characterized by a

pair of numbers (s, p ) where s is an integer or half-integer and is real.

If the representation is given in a global form, the space of the representation

depends on the value of s (see Sec. 4A) and the operators depend on both s and

(Eqs. (4.16), (4.17)).
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The principal series was already defined in terms of the infinitesimal

operators in Sec. 2C. It was founO. to depend on a pair of papameters (J 6 , c)

where Jo takes the values 0, j 1, 3/2,... and c is pure imaginary. The values

of these parameters occurred in the formulae for the infinitesimal uperators

(Eq. (2.8)).

By applying the global form of a given representation to infinitesimal

elements of the group SL(2, C) one can calculate the infinitesimal operators

of the representation. By comparing the infinitesimal operators thus obtained

with the results of See. 2 one establishes the relationship between the pairs of

parameters (s, ip) and (jo0 c). The result is as follows:

?or Jo 0, one obtains

0 C + i 2 (4.42)

and for jo o , one obtains

0 = c--i-if s > 0

(4.43)
p

jo s c =i-if s < 0o 2
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5. COMlLE•24NTARY SERIES OF REPRESENTATIONS OF SL(2 C)

A. Realization of the Complementary Series of Representations in the Space H.

In Sec. 4 the principal. series of representationý, which is unitary and

irreducible, was realized as sets of operators on the Hilbert spaces L25 (SU3;).

The scalar product was given simply by Eq. (4.2) and the operators were defined by

Eqs. (4.16), (4.17).

The principal series of representations, however, do not realize all

irreducible unitary representations of the group SL(2, C). Rather, every irreducible

unitary representation of the group SL(2, C) is unitarily equivalent to a

representation of either the principal series or the complementary series of

representations.

Formally, the complementary series of representations formulae can be

obtained from that of the principal series formuale (4.16) if one takes f = io and

s = 0 in the latter and assume that now C is real and has the values O<o<2

(Nairmark 195)1. Unfortunately, the operators thus defined are not unitary

in the scalar product (4.2): Eq. (4.16) defines a unitary operator if and only

if a(g) is defined by Eq. (4.17) with P real.

A realization of the complementary series representations in terms of unitary

operators is, however, possible on the Hilbert space of H to be defined as

follows.

Let 1i denote the set of all bounded measurable functions 0(u), where u is

an element of SU2, satisfying the condition

O(Nu) = 0(u), (5.1)

and where ye SU32 is given by Eq. (4.4). [The condition (5.1) is in fact identical

with (4.3) for the case s = O.J IntrodLee in H the scalar product
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<01, 02> = 1 if K (u u, -1 } (u,) 02 (u}) du, dull (5.2)

for Oil 02 £ H. Here K (u' u"'I) is a kernel function defined by

K (u) Iu 21i- (-3

where 0 < a < 2 and the integral on the right hand side of Eq. (5.2) converges

absolutely. The space H can be shown to be Elclidean, whose completion (which is

a Hilbert space ) we denote by H a

In the Hilbert space Ha, the operators V of a representation of the

complementary series, defined in complete analogy with the principal series, are

unitary. Explicitly, the definition of V is as follows:

Vg 0(u) = eU (ug) (5.4)

where 0 c H and a(g) is given by

a (g) = 19221 c-2 (5.5)

for any g c SL(2, C) and 0 < a < 2. The representations thus defined are

irreducible and unitary.
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B. Orthogonal Set in the Space H

We now define a set of functions which provides an orthogonal basis in

the space H. It is given by

t N(u) = N TJ (u) (5.6)

for j =0, 1, 2, 3... and m = -j, -j + 1, ... , j, where the Tj (u) were defineeom

in Sec. 4C and N is a real normalization factor whose value is given by

Nj n K(u) Tj.u) du 3a(5-7)
0

The integration involved in the definition of N can be carried out to

yield an expression of the normalization constants as a finite stun of Euler

B - functions. The result is (Carmeli and Malin 1971)

Nj2 = () 3 j-m (J)2 B (m + lj+ ) (5.8)
mo0

where21t

13 XY =r (X) r (5-)
B (x,y) = y " (5.9)

To show that tO indeed provide an orthogonal basis in H me calculate the
In

scalar product
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04, J lu, (5. 1o)

--" " K.J ffi(•,',"-') -r"3 ' (,M)d 4 A' r- .• .

By making the transition u' u' u" in the integral (5.10) one obtains

< th tJ2 >

4 f, K(u (5.11)

Using the relation

JeT ,T ,(- T (51,q-r4  (We,'~o)_ 2: "Ta' {o T a' ) (5.12)

in the last integral we obtain

< tJl tj
i,,tJ2 >

m2

IT f, f sri

(5.13)
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Using now the orthogonality relation (4.8) that the matrices TJ satisfy, we

ob.tain

ml '2

Co f K I (5.14)

which, by virtue of Eq. (5.7) gives

< th , th6jlJ2 61P2 (-5

1 2 2jl + 1

C. Realization of the Complementary Series in the Space h

In aralogy with the generalized Fourier transformation, introduced in Sec.

4A, between the space L2s(SU2 ) and 0 2s, there exists for the complementaryS•, b2e e

series a transformation from the Euclideon space of functions H(and its completion,

the Hilbert space k) to a Euclideon space of systems of numbers h (and its

completion, the Hilbert space h.) (Carmeli and Malin 1971).

The Euclidean space h is defined as the aggregate of all systems of numbers

where m = -j, -j + 1, ... , j and j 0, 1, 2, ... , satisfying

j (5.16)
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The scalar product is defined by

(5.17)

for any two vectors Oj and TJ in h. The coefficients N. are defined by Eq.mn J

(5.7).

In analogy with Eqs. (4.9) and (4.10) relating the space L4S(sU2 ) and ,2S

the correspondence between H and h is given by

j

and

j 1' (5.1-9)

where was defined by Eq. (5.6). Comparing

< k,~> = 2.j -t I) A.Va (5.20)
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with Eq. (5.18) we see that O(u) cH if and only if the corresponding 0J ch.
2m

If we denote now by h the completion23 of the Euclidean space h, then
0

the isometric mapping (5.18), (5.19) of H on h can be extended in a un~quo way

by continuity to an isometric mapping of H on h a The operators V of a

representation of the complementary series in the space H-a pass over into

operators in the space h , which are also denoted by V and whose explicit

expression we find below.

Applying Eq. (5.4) to the tMj gives

rA dL.5 ) t- ý(-1

Using this result in Eq. (5.18) yields

Expanding tj (uj)in the series (5.18) we obtain
Expaning lu) m

V2 =- (5.23)

j .il'

where, because of Eqs. (5.19) and (5.2)

(5.24)
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Accordingly, Eq. (5.23) has the form

V , - !-.J (LA (5.25)

where

t j.' (5.26)., J ':,..,•

Eq. (5.26) defines a linear transformation in the space h corresponding

to the operator V of the complemdntary series. V. o) which are give
by Eq. (5.24) as double integrals over the group SU2, are functions of g e SL(2,C)

and a where 0 < a < 2. These functions are the matrix elements of an infinite-

dimensional matrix, where rows are labeled by (j, m) and columns - by (j', m').

D. Comparison with the Infinitesimal Approach

The complementary series in its global form, as defined in this. section,

is characterized by a parameter a, whose range of variation is 0 < cr < 2. The

value of a determines the scalar product (Eqs. (5.2) and (5.3)) in the Hilbert

space of representations and also the operators of the representations (eqs. (5.4)

and (5.5)).

33



The coroolemontar-y series was defined in Soo. 2 through the infinites'anal

approach. All the irreducible representations of the group SL(2, C) were

characterized in See. 2 by a ýair of' numbers, (j0, c), where JO 'Lakes the

values 0, 1, 2./2*#*. and o is complex. The complement~ry series

representations were characterized by j0 0, 0 <~ c < 1

To establish the relationship between the parameters a and c one

applies the global form of a given rebpresentation to i-ifinitesaimal elements of

the ýroup SL(2,c) and compares the infinitesimal elements thus obtained with

the results of Sec. 2. The result is

jo-0, c + -(d/) (5.27)
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6. COtPIZISrE SElIES OF REYRESENTATIONS OF SL(2, C)

A. Realizations of the Complete Series in the Spaces JL2s (SU) and 2s2 2"

As has already been pointed out in Sec. 5 all the unitary representations

of the group SL(2, C) are included in either the principal or the complementary

series.25 Gel'faund and Naimark (1947) and Naimark (1954, 1964) have

shown that all the completely irreducible2S representations of SL(2, C)

(i.e. not necessarily unitary) are included, up to equivalence, in a series

of representations known as the complete series.27

We define here the complete series and its realization in the spaces

L22 (SU2) and 4 2s.

All the representations of the complete series can be characterized by a

pair of numbers (s, p) where s is an integer or half-integer anc p satisfies
p2 p -4 (Is + k)2, k = 1, 2, 3, ... and is otherwise an arbitrary complex

number. The pairs (s, P) and(-s, -p) define the same representation.

All the representations of the complete series can be realized in the

spaces L22s (SU 2 ), defined in Sec. 4A. The space of realization depends

therefore, on s alone and is independent of P. A given representation corres-

ponding to a pair (s, p) is realized in L2S(su) by a set of operators V

g e SL(2, C) defined by

VL4.;) (6.1)

for e (u) w h2S(su ere
2 23

wC~) as(6.2)
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and ua was defined in Sec. 4B.

These formulas are the same as Eq. (4.16) and (4.17) for the principal

series; the difference is that now p can take complex values, while An Eqs.

(4.18) p is real. It can be shown that the operators V defined by Eqs. (6.1),

(6.2) are unitary if and only if P is real.

In complete analogy with Sec. 4C the generalized Foarier transformation,

introduced in Sec. 4A, can now be utilized to obtain a realization of the

complete series in the spaces 12so The result is

J*=J

'•= £ (2.j~~- 2_. v•j1, (; S,f) €; (6.3)

where

which is again the same as Eqs. (4.39), (4.41) except insofar as the definition

of y (g)(Eq. (6.2)) is extended to include complex values of p.
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B. Relation to the Principal and Complementary Series

The complete series describes all the infinite-dimensional completely

irreducible representations, to within equivalence, of the group SL(2, C).

The meaning of equivalence here is such that the spaces of two equivalent

representations need not be isometric, but it is the formulas which are

essential for the representations and not the norm of the space. In the

present subsection we define equivalence of representations and show that the

representations belonging to the complementary series are from this point

of view, equivalent to representations contained in the complete series.

The definition of equivalence between representations realized in

Banach spaces requires some preliminary mathematical definitions:

(i) the group ring X. Let X deonte the set of all infinitely differentiable

functions x(g), ge SL(2, C), which vanish for all the matrices g satisfying

1 / + I J1 ) + + IJ,) > C (655)

for a big enough number C which may depend on the function x(g). This set

forms a ring if addition and multiplication by complex numbers are defined

in the usual way and multiplication of ring elements is defired as follows:V

(ii) Conjugate representations. Given a Banach space B, whose elements

are deonted by ý , its conjugate space B is defined as the space of all

bounded linear functionals f (M) in B. 37



Given an operator T 1h B its conjugate operator V is defined in B' as

T'f (0) - f(Tt) (6.7)

Now ) given a representation in terms of operators V on a Danech spaco B we

define

:. V (6.8)

as the conjugate representation in the Bannch space B'.

(iii) The set 0 corresponding to a given representation in a Danach

space B is defined as the aggregate of all finite linear combinations of the

vector Vxt (Vx is defined in footnote 2e) where ý c MJ (see See. 2) for any

value of j, and x G X. The set corresponding to the conjugate representation

is denoted by n'.

Following Naimark (1964) we now define two representations VI, V2 ong
12 1

Banach spaces B , B2 as equivalent if there exists linear operators Al and

2 1 2 2 . 1
A from P1 to 13 and from B1 to B respectively, whose domains of definition

are nl, 02 and domains of variation 02 O'respectively, satisfying, for all

g a •, f£ e

.f (A Aa [ );(6.9)

if A 1 =0, A 2f = 0 then 0, f 0)
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g 2 (6.11)

A2V f = V1 'f(.1

It is noteworthy that for the representations to be equivalent the Banach

spaces need not be isometric.

In the previous subsection the complete series representations were

characterized by a pair of paremeters (s, p) where s in an integer or half-

integer, and p is a complex number. We will now show that the complete series

representations characterized by s = 0 and p satisfying 0 < - ip < 2 are

equivalent to the complementary series representations.

The space of representations of the complete series representations

corresponding to s = 0 was defined in the previous subsection as the Hilbert

space L0 (SU2 ). The space of representations of tho complementary series was

defined as the Hilbert space H *. These spaces correspond to B1, B2

respectively in the definition of equivalence. Now, the crucial point is

this: if VI is a complementary series representation corresponding to a value
9

o of the parameterand V2 is a complete series representation corresponding
g

to the values s = 0, p = i then the representation Vg, V are given in the

two Banach spaces by the same formula (Eq. (6.1), (6.2) and Eqs. (5.4), (5-5)

respectively). It follows now that the sets 1l, 1 2 corresponding to a given

representation in the Banach spaces L (SU2- or are tho same, because both

consist of all the finite linear combinations of the vectors V X where

is any of the functions Tm (u). (V was defined in footnote 25).
cm X
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The operators A1, A2 in the definition of equivalence are trivially

defined now as the identity operators in 01 02 and (Vi 0 2 respectively.

One can easily check that they satisfy Eqs. (6.9) - (6.11). Therefore any

complementary series representation, corresponding to a value C is equivalent

to the complete series representation characterized by the pair of parameters

s = O, P = ico.
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C. Relation to Spinors

In introducing the complete series we restricted the values of its

parameter (s, p) by excluding the representations for which

=4 (I s + k )i k = 1, 2, 3, ... (6.12)

We now consider the representations corresponding to Eq. (6.12) and show ih~t:

(i) the representations realized by the general formula for the

complete series, Eqs. (6.1), (6.2), are not irreducible if Eq. (6.12) is

satisfied;

(ii) when the general formulas (6.1), (6.2) of the complete ser3.es

apply to a finite-dimensional linear space of polynomials over SU2 , instead

of an infinite-dimensional Hilbert space, they realize the spinor

representations;

(iii) the generalized Fourier transform of these polynomials is

related to the standard form of 2-component spinors by a linear transformation,

which is explicitly derived.
2

(i) To see that indeed uhen p2 -4 (I sl + k) 2 the representation (6.1)

is not irreducible we proceed as follows.

Suppose that p = -2i( Isl + k) and denote by P1 the set of all homogeneous

polynomials in u 21, u2 1 ' u2 2 and u2 2 :

UL (6.23)

with the conditions
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IsI + Zk -2 (6.15)

where k 1, 2, 3, .... One can easily see, using Eq. (6.14) that

pio e 
(6.16)

where Y is given by (4.4). Therefore PMN is a subspace of the Hilbert space

2s (SU 2 ). We show that P is invariant with respect to the operator V
L 2M

of Eq. (6.1). To this end one writes

g u ulC u 2 , (6.17)

where U1 , U2 C SU2 and e is given by

( aa ? ) (6.18)

with e22 a real number. Since Vg = VU i V V Vu2, it is sufficient to show
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that PMN is invariant under each of the operators Vu1, V. and Vu * Now

VAPC = r("z-) (6.19)

It is shown in Sec. 4B that o (uu 1 ) / c (uil) is equal to exp ( 2 is A),

where A is an arbitrary real number. Also, a direct calculation, using Eq.

(4-.31) shows that

asp#, r, If (6.20)

Hence, using the condition (6.14) one obtains

VUI ý(C) "= P ( 14LC') (6.21)

which shows that P,1 is invariant with respect to the operator Vul (and,

of course, to Vu ).

Similarily, P, is invariant with respect to V., where

p((L' (6.22)

In Sec. 4B it is shown that o((u¢) / a(uF) is equal to exp. <2 is A) I - 2,

where JX) is given by Eq. (4.y3). Furthermore, one easily verifies that
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Z'i e i A(-&e *fl-xtrJ cd *p.#/IrJ)0 -i .. + rt

Using the conditions (6.14) and (6.15) and the fact that p -2i( Isl + k),

one finds

41) r C. p . " -P r (6.24)

This shows that Vjp (u) is a polynomial in the space P14N Hence PrM is

invariant with respect to the operator V and therefore the representation

(6.1) is not irreducible when p -21( Is I + k), k = 1, 2, 3, .. 29

(ii) We now show that the operators defined by Eqs. (6.1), (6.2) which

realize all the infinite-dimensional irreducible representations of SL(2, C),

realize the spinor representations as well, if the space of the representations

is properly defined as a space of polynomials over SU 2 .

Starting from Eq. (3.9) let us denote p(z, 2) by f(z) and let

o41-& (6.25)

where
S(6.26)

is an element of SL(2, C). Equation (3.7) can then be written in the form
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Here z denotes a complex variable and also the matrix

/( 4 0 
(6.28)

, K 4))

and the matrix z' z• amounts to a transformation in which the variable z

goes over into the new variable

S/ (6.29)

where the matrix g' c SL(2, C) is given by

/ 14D
41ý + .1 5 I. (6 .30)

So that the new variable z' , according to (6.29) and (6,30) is given by

(6.31)

4-

If now we write
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whore u, z, C 2,> and z = u ,Iu,2, then'

t u) -7l2- e 4 ~a' U*1 Lp A (6.33)
r20 $

Hence 0 (u) runs through all polynomials which are homogeneous in u 2 1 , u 22

of degree m and in 52P' ý22 of degree n, and prs are related to spinors

by (3.10). Let 'mn denote the set of all such polynomials. Then Pmn is the

set of all polynomials homogeneous of degree m + n in u2 1, U2 2 , U21' 522'

satisfying the condition

ý r" C F #(") ( 6.34)

where y is given by Eq. (6.14), The operators of the representation in the

space PMh are then given by the formula

r T 0eh, (6.35)

where $ (u) £ r and ug is a matrix of SU whose explicit expression is givenmn 2

in Sec. 4B. Comparison of (6.25) with (6.2) gives

(6.36)
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We, have, in fact, obtained already this space of polynomial in part

(i) of the present section as that subspace of I2s (SU2) which is -InvariantI
under the representation. Indeed, using Eqs. (6.14); (6.15) and (6.36) one

obtains

- -(6.37)

Eq. (6.13) can now be written as

-Z Z-- . LA L " . (6.38)

Comparing (6.38) with (6.33) we see that CL is just T2 pr Hence

is related to spinors, by (3.10), by

L V , (6.39)
A, AtX X,,

with

A , + A 2 . + A . > , ), : + . . . + X )..

and the representations (6.35) is indeed a realization of the spinur

representations.
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(iiW) We are now in a position to find the connection betwuen spinors

"arid the generalized Fourier transform 0m in the finite-dimensional caso.

Sinco 1)(U) ., ) one can expand it into a finito series in T (u)2'

('i~t)

where ' is related to p(u) by

P. " (6.41)

Using'the expression '6.38) for p(u) in (6.41) one obtains

M IL

SL_ .- a. (6.42)

where C., are some numerical coefficients,

AN:.l •7 ' '"- N-/l
- f .j (~ ~(6.43)

And in tarmis of 2- componont spinors, by Eq. (6.39), one obtains
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A c. (6.4)

where

= MT ,! N ' (6.45)

Here A, + + A,= o, + ". +

The generalized Fourier transform OJ is, therefore, related to the

spinors 6  A via a linez.r transformationý -ven explicitly by

Eqs. (6.43), (6.45) as an integral over the group SU 2 °
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2. See, for exarnplc. th. ;ocr~ of Sltreiter sAidWihra(1b.

3. See, Naiabu (19(-A, l19(7a); ý>v-rut. and KUeirvert (196?aL, 11); 'w':tUt,

Corr*,an, a.-A ~ ot(19--,8a, b); F-onnhi (957l 0); m(16)

Takzahiyashi (1067.); Abarbare1. and F'ricshnan (1968); Cnodoý; (1970);

Chod~s and flayrn.ker (1970); Ifumi and 14aln (1969); Noga (.1970),'

Kursuno~glu (1968); Adhassi, Ron-an, and Sanbilli (0970); Koniar and

Slad (1969); M31sacchip Colucci, and Eronsdal (10!'9).

4. One of the first ,aystems which vias descrilbd by fit-icnoa.

wave eq'uations iwas '1t~e non-re2ativistlc H-atcn(irosm2.1~b

Ba~rut and Kleinert 197,d, e; Nanbu !967b; Kleminert 196.). 'ýorc

recently, an equation which describes the relativ~iatic H-a1.oim was

obtained by -Rarut and -:aiL.qIuni (10169a, b). Zoe rýýlation of' th~o

Majorana equati-en to the two-dimensional. 'achrodir.-er equatlon was

als-o investilvated by Beikernha3'n and Guiový.nnini (1967), I4ori.ta(19)

Barut and. Duru 17)

5. See, Dxqokos, K}-vcsi-Drmokos, and ~hsui(1,9?Oa, b); D-).oko~-:,

Kovezi-Ibmokos, and Schoncc,-rG (19,70); 11eacry and. :Tu-s(16)

Watanabe and lMlyaaki (1969); ~asuroto (19070); ~':orita (1970); 2axrs

and Gursey (1971).
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6 . See also barut's review of hadron sypuotries (Darut 1970). The

rolationship botwoon current algebra and infVnito dimonsional

equations were recently reviewed by O'Raifearta5,gh (1969) and

Niodoror and 0'Raifoartaigh (1970).

7. Spinors nave also boen of great importance in gonoral relativity

theory# For reviews of applications of spinors in general relativity

see Penrose (>960), PIrani (1965), aM Carptell and ;ickler (1972).

8. For details see Streator and Wightman (1964).

9. These matrices are given by

/1 0 0 0•

a ()=0 cosy' !~ "T 0

j0 sin C 00 )

and
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/(.ht0 0 A~~
0 0

0 0 0)

IO The ar and br are related to a r(Y) and b r(Y) by

ar (T) = exp ('ar), br (T) = exp (ibr),

and are given by

=0 -1 0 bl 0 0 0 0
al 1 0 0 '"' = 0 0 0 0 ..

0 0 0 0 1 0 0 0

ii. A rM) and B (')) are continuous functions of T and are called basic one-

parameter groups of operators for the given representation. They satisfy

the relations Ar(T 1 ) Ar(Ti2 ) = Ar(YI + T2 ), Br(T) Lry2) = Br(%1 + T2).

A (0) 2. 1, B r(0) 1. If the representation is finite-dimensional then

the operators A r() and Br(T) are differentiable functions of y. If

the representation is infinite-dimensional, however, these operators

might be non-differentiable (see footnote 1).

i. Ar (T) and Br(T') night then be expanded in terms of Ar and Br as Ar(y)
exp (YAr), Br(') = exp ('Br).

• In general, let A(t) be a continuous one-parameter group of operators

in a Banach space R, and denote by X(A) the set of all vectors x ; R

for which the limit of (A(t) x-x)/t, when t -( exists in the sense of
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tho norm in R. Obviously the set X(A) contains the vector x - 0.

Define now the operator A for all x c X(A) by Ax = liml(A(t) x - x)/t}

at the limit t - 0. The domain of definition, X(A), of the operator

A is a subspace of R, and A is linear, i.e., A(Xx X2x2) =

x1 A xI + X2 A x2 for xl, x2 e X(A). Such an operator A is called the

infinitesimal operator of the one-parameter group A(t). If A(t) =

Ta(t) is the group of operators of the representation g - Tg , corres-

ponding to a one-parameter subgroup a(t) of the group L, the corres-

ponding operator A is then called the infinitesimal operator of the

representation g - TIg

!L,. The supcrscript in fi specifics the subspaco uniquely since each irreducible

representation of 03 is contained at most once in any given irreducible

representation of the group L.

15. Eqs. (2.8), for unitary representations case and under certain assumptions,

were first obtained by Gel'fand (see Naimark (1964). p. 117); they

later were rederived by Harish-Chaudra (19 4 7a, 1947b), and by Gel'fand

and iaglom (1948).

16. For the physical significance of non-unitary representations see Barut

and Malin (1968.-
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I? • A ropresentation g - T of a group G in a space R is called unitary if
g

R is a Hilbert space and T is a unitary operator .".'r all g c G.

This implies that (Tgx, Tgy) = (x,y) for all g e G and all x, y e R,

where (x,y) denotes the scalar product in R.

. An 6perator B is called an adjoint to the operator A if (Ax, y)

(x, By) for all x, y e R.

19 . Compare the analoguous formulas for the rotation group given by Eqs.

(2.10) and (2.11) in Carmeli (1968). Eqs. (3.5) can easily

be proved by finding the value of the exoression (½) Tr (a ao a t)xJ

() Tr(cr ad at) x (P") Tr (a aQa ) (2) Tr (aPQ') = (½) Tr (o"IOx•)

20 . These matrices for the group SL(2, C) are given by

a 1.
C. c...s. 4

a2(t) 0 b2 (t)

= ( t ) b 3 (t) =()
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21. The integral in Eq. (4.1) and throughout this paper are invariant integrals

over the group SU2 which satisfy the conditions

f (uu1) du =j f 'u1u )duj f(u) du

for any uI c SU2 , and

f I' (u1) du ff (u) du
du = 1.

22. For a cUfferent form of realization of the principal series see e.g.

Gel'fand, Grae: and Vilen!;in (1966).

23. Every Euctidean space can be completed to a Hilbert space. See e.g.

Naimark (1959, 1964); Lyusternik and Sobolov (1951).

214. These functions were recently used by Veneziano (1968) for the construction

of crowing-symmetric, Regge-behaved scattering amplitude for linearly

rising trajectories.

25. It is interesting to not that the definition of the principal and

complementary series of representations can be generalized from the

group SL(2, C) to SL(N, C) for arbitrary N 5 2. However, for N > 2

there exist, in general unitary representations not contained in either

the principal or the complete series (Stein, 1967).
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26. The definition of complete irreducibility is as follows (Naimark 1964):

given a representation V of the group SL(2, C) on a Banach space B

one first defines a bounded linear operator C as admissible if it has

the form

nC•= fi ( el
i~l

where f f n e n' and a en c 0. The definitions of the

sets C, 0' are given in Sec. 6B. One then defines the represontations

as completely irreducible if for every admissible operator C in B

there exists a sequence xn CX such that (V ,) -F (C • •) as n -.
n

for all f C 02 e il' X is the group ring, defined in Sec. 6B, and the

operators Vx are defined in footnote 20. It can be shown that every

unitarj irreducible representation in a separable Hilbert space is

completely irreducible.

27. For a definition of equivalence of representations in the sense of the

present section see Sec. 6B.

23. This definition comes about as follows: given a representation of SL(2,C)

as a set of operators V one defines an operator V corresponding togx

every function x(g)eX as follows:

V j fx(g) V dSX 9

By straightforward calculation one finds that

V V =Vx .x2 ,xx2

if Xix2 is defined by Eq. (6.7). For further details see Naimrark (1964).
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29. The representation (6.1) is not irreducible also when p - 2i(j: ( + k),

where k - 1,, 2, 3,..., since the pairs (z;, j) and (-s, -- ) define the

saue completely irv.•,•ducible representation.

30. z is the set of all miarices kg, where g is an element of SL(2, C),

fixed, and k varies through the entire group of zr.atrices of the form

given by Eq.(4.11). For more details see Naimark (1964), r.!kO.
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LIZT Cit •Y:4i.CLJ

Symbol Leocription

C ijk Levl-Civita skew-zy!:lmetric tensor wzith f.123 - 1

F+, F , F Infinitesimal gcnerators of the Lorentz group

g Element of the Lorentz group L or the grcup SL(2, C)

H +,H InfinItesimal generators of the Lorentz group

H, h Fucliiean spaces

H, ho Hilbert spaces

L Proper orthochronecus Lorentz group

L2s (SU Hilbert space

L 2(U 2 ) Hilbert space

Hilbn-irt space

N. Real normalization factor3

03 Three-dimensional pure rotation group

SL(2, C) Group of all ?2x2 complex matrices with determinent unity

SU2 Group of all 2x2 unitary matrices with determinent unity

Tj (u) Matrix elements of irreducible -,:presentations of the
Mn

group SU2

tJ(u) OrLhogonal set of functions

T Operatorg

u Element of the group SU2

VA Operator

x1, x2, x3, x4 Space-time coordinates
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