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AN ANALYSIS OF THE STABILITY OF THIN LIQUID FIIMS IN

HYPERSONIC ENVIRONMEN’I'S‘r

by

John Starkeﬁberg*

Polytechnic Institute of Brooklyn
Preston R, Bassett Research Laboratory
Farmingdale, New York

ABSTRACT

The stability of thin liquid £ilms adjacent to high speed gas flows

has been examined to determine its effect on the coolant requirements

of hypersonic vehicles. 'The analysis is also applicable to surface films

in high energy exhaust flows. Classical hydrodynamic stability. theory

was applied to the liquid film with boundary conditions corresponding

to both supersonic and subsonic external streams., Instability

mechanisms which coupled the disturbance motion of the gas to the

disturbance motion of the ligquid were of primary interesc¢ and those

involving energy transfer from the basic flow were specifically excluded.

o

Numerical solutions as well ag exact and approximate analytical solutions

were developed.

It was determined that there eiists a minimum value of the film

Reynolds numbexr below which no instabilities may occur in the supersonic

case, while in the subsonic case the flow will either be stable or unstable

for all coolant Reynolds nunbers depending on the value of other flow

parameters.
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speed of sound

skin friction coefficient
Froude number

acceleration due to gravity
£film thickness

pressure coefficient

wave number

coolant mass flow rate
disturbance pressure

static pressure

liquid £ilm Reynolds number
surface tension

disturbance velocity component
total velocity component
interface velocity

external flow velocity
disturbance velocity component
total velocity component

Weber numbexr
non-dimensionalized wave number
boundary layer displacement thickness
wave amplitude

phase lag

viscosity

kinematic viscosity

density

shear stress
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Yot . * ¢ 1. INTRODUCTION
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T, 3

The 'stability of thin liquid films adjacent to slender bodies in

- high speed gaelﬁlows is examined, Maintenance of such films on the

t

‘external surface of hipersonic vehicles is highly desirable from the -

' i ! .
_ standpoint of thermal protection from aerodynamic heating during the

feLentry from iﬁterp;anetary missions. Such a thin cooling film may be

establisﬁed by aliowing liquid injected in the stagnation region of the’

. body to be swept ‘downstream coverlng the surface. The coolant mass flow

’. rate requlred to effect protect;on of ‘the vehlcle w111 depend on the

surface area and on mass loss due to droplet entralnment and vaporlzatlon.
The interaction of the gasullquld interface leads to the formation of
isurface waves in the liquid film., Depending on the flow conditions,
these waves wzll elthar be damped (stable film) or will grow with time
(unstable lem) Iin the event that the wave.amplivudes are not
suff1c1ently gecreased with tlme, droplet entrainment w111 become ‘the
dominant mechanism of mass ioss te on extent that an integral layer of
%iquid wi}l no lohger be maiptained on the surface,

Ccupled;with ttc effect on the ;}quid film, the presence of waves
én tte sur:face alsolaffectslthé gaseous boundary layer, The flow of &
ga3a over a wavy ar "pebbled” surface is similar to flow’over a rough
surface. Thpse corditions ‘give:rise to an ipcrseze i: the tXansport of
masa,‘momentum, and energy in the boundary layer and hence an increase
in heat transfer aﬁd shear stress. The evaporative mass transfer may be
considered to c%nsist of the sum of that contribution which would
result if£ the gas-liquid interface were perfectly smooth andithe
additionai contribution due to ‘the effect of the surface roughness,
Gater and L'E:cuyerl have, indicaled that this latter effect is independent
of the mase flow rate. Thl?, however, ignores the fact that the surface

roughneas, whick js related to the wave amplitude, may be a function of

"
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the mass flow rate. Thus, the effect or changes in the mass flow on the

behavior of the interface cannot be disregarded even in attempts to

B . predict mass.traqsfer due to evaporation. .

2 The liquid film éooling phenomenon has been characterized by the
e.idigsience of a region in which heat is either abscorbed by the liquid

2ili, or used to effect a change to the vapor phase, and a region in which -

cooling i's accomplished by heat transfer. to the vapor in the boundary

S

%, layer after the film has been totally vaporized. The effect of an

ingtability occurring at some point on the surface of the vehicle would

ity s

be to prematurely bring about the reduced cooling effect associated with
the total vaporization region.

P . If an analysis of the stability problem is to be applicable to a
given flow system, the probeble instability mechanisms of the system

must be known so that equations and boundary conditions ccnsistent with

these  mechanisms may be formulated, The instability mechanisms are of’

S

e . two basic types: those arising due to energy transfer from the basic

, flow of the 'gas or liquid, as in Tollmien-Schlichting instabilities and
those arising due to energy transfer from the perturbation of the normal
and shear stresses induced by the wave formation, such as the préssure
peréurbation (Kelvin-Helmholtz) and shear perturbation instability

g mechanisms,

Waves capable of exhibiting the former type of instability were

% possibly observed by Marshall and Saric2 in flows of very thin films at
7 relatively high liqﬁid Reynolds numbers.. In this case, the wave speed
was less than the interface velocity (slow waves) which is a necessary
condition for Tollmien-Schlichting instability according to Miles3.
Most waves observed, however, have not been in this regime.
if Craik4 classified the types of waves observed with an incompressible
external air flow which occurred at different values of the film

thickness, He found that instabilities may occur for very thin films




while they do not cécur for thicker films despite the relatively high
damping effect at low Reéynolds numbers. He concluded that the dominaant
mechanism of these instabilities was: the action of ‘the shear perturbation
which was- in phase with the wave slope and tended to pile up liquid at
the wave crests, '

If the extexnal air flow is compressible, the instability mechanisms
related to the pressure disturbance are of different form depending on
whether the flow is subsonic or supersonic., For subsonic flow, the
disturbance pressure is 180° out of rhase with the surface wave
amblitude: hence, minimum pressure occurs at the crests and maximum in
the trougﬁs, thus drawing liquid to ‘the crests of the waves, However,
for supersonic flow, the pressure perturbation ig in phase with the wave
slope. Chang and Rugsells and Machtshein® 7 have demonstrated in this
case that the dominant mode of energy transfer between the external flow
and the gertufbations of tﬁe.liquid flow is through supersonic wave drag.

Chang and Russell performeé the stability analysis for a gés-liquid
interface including the effects of the pexturbations imparted to the gas
motion, However, the’liquid layer they considered was infinitely deep
and initig}ly'quiescent. Nachtsheim considered the type of waves

8 in the melt layer of a re~entry vehicle.

opserved by Larson and Ma%eer
He carried out the analysis for three~dimensional disturbances in thin
films adjacent to supersonic flows and showed that the equations may be
reduced to two-dimensional form if the wave number and Mach number are
appropriately defined., 1In addition, the experiments of Marshall and

Saric suggest that two~dimensional waves occur at intermediate Reynolds
numbers, Nachtsheim's work, however, was primarily ccncerned with the
highly viscous melt layer and he concentrated on solutions fox vanishingly
small Roynolds numbexs, In addition, the results he produced were not

consistent with any paxticular external f£low but rather were obtained

by allowing the non-dimensional parametors in khe governing equations
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to vary independently.

The present lnvestlgatlon cons;ders thin £ilms at moderate film
Reynolds numbers with high ‘speeqd externa] ‘£lows: typical of conditions

aris1ng-for llquid-films in » antry envirbnments. .While the: frée stream

" ‘Mach numbers in such; env1ranments are generally hypersonic, hoth’

supersonlc and subsonlc gas flows are used to provide the perturbation
pressure condition at the~1nterface, the former correspondlng to a
bounoary “ayer nmuch thlnner than ‘the disturbance wave amplltude and the
latter to a boundary layer whlch is thick compared to the disturbance
amplitude.

‘FPor the anaiysis, instabslity mechanisms which couple the disturbance
motion of the gss to the disturbance motion of ;the-liquid are included,
while those involving enérgy transfer from the basic flow through the
action of shear perturbations at the interface or through the action
of hody forces (Rayleigh-Taylor instabilities), are specifically
The analysis of Nachtsheim is generally followed except that
the equation of motion is arrived at from a two-dimensional standpoint
and consideration of the vanishingly small Reynolds riumber regime is
excluded, Analytic solutions are also developed. Results based on the

numerical and analytic solutions to the equation are presented,

II. STABILITY ANALYSIS

(A) The BRasic Flow

Liguid Film
For the flow of a thin liquid film over a flat solid surface
adjacent to a supersonic gas stream and in the absence of perturbations,
a very néarly linear velocity profile will be established provided the

fllm is sufficiently thin. The equilibration of shear stress at the

1nterface imposes a velocity on the surface of the liquid fllm which is,




»

held: constarit in tiwe .2nhd' space precluding -any energy transfer from the
basic flow to the perturbations..

A,two-dimensional cartesian coordinate system is introduced -such
that the k%-axis lies in the plane of the interface and the y-axis is

pérpendicular to ‘that plane and pointing away from the solid wall (see

"Fig. 1). 7he bagic flow of the liquid is then given by

W= U, (1+y/h)
V=0 -h gy<0 (1)
P = DPe=p,gY

where UL,‘the surface velocity, is subject to the conditidon

MU /b= molig (2)

The gravity vector here ls assumed to act in the negative y direction,
This is consistent Wiyh)tha linear from of the velocity profile. It
should be pointed ont, however, that for thin f£films, the deviations from
the linear profile will be small when the gravity vector is arbitrarily
directed. Hence, the neglect '6f the error agsociated with the
application of the followiné analysis to the general case is consistent
with the approximation in the subsequent linearization of the governing
equation, However, it muét be stipulated“that the gravity vector has
no component in the positive y direction, in order to preclude
instabilities of the Ravieigh-Taylor type.

External Gas Flcw

The basic flow in the gas is uniform and given by

E‘zue
v=0
- >0 3
B=p, vy 2 (3)
P =,

The boundaxy layer is asgsumed to be very thin compared to the liquid
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film depth and its effect is confined to the satisfaction of Eq. (2).
The value of the shear stress at the interface may be determined from a

boundary layer analysis,

(B) Disturbance Motion

Liquid Film

A component of a general harmonic disturbance is now introduced to
the motion of the liquid film. The wave~like form of this disturbance
is illustrated in Fig. 1. If the x-axis is directed perpendicular to the
wave fronts, perturbations normal to the x-~y plane will vanish and the

total velocity and pressure are given by

i(kx=-wt)

£
]

U, (1+y/h) +uly)e

i(kx-wt) (4)

<

= v(y)e
i(kx~wt)

o] |
!

= Pe=p, 97+ P(Y)e

The wave number k is assumed to be a real dimensional constant,
yhile the parameter ®w is taken to be complex. The wave length of the
disturbance in the direction of the wave normal is 27/k. The real part
of w is the frequency of the disturbance and the imaginary part is the
time amplification factor, Hence, the criterion for neutral stability
(waves that do not grow or decay with time) is that the imaginary part
of w vanish,

External Gas Flow

A similar disturbance is introduced into the gas flow

T = Ue+ uly) ei (kx=-wt)
v = v(y)ei(kx-wt) (5)
B = p, +ply)et (Kx=0%)
T = o+ ply)et (x-0)
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(C) Disturbance Equations

Liquid Film

The equations governing the disturbance amplitude functions are
obtained by introducing the velocities and pressure including the
perturbation terms into the Navier-Stokes and continuity equations and
disregarding non-linear terms in the perturbation quantities on the
assumption that the disturbances are small,

ik

~iwa +U (l-ﬁs(,/lm)'iku +vU,/h= ===p+ v, (u'=k2u) (6)
4 ¢ Py 4
-iwv+UL(1+y/h) ikv = - —l'-*p’ + v, (v” =k2v) (7)
Py 1
iku+v’/ =0 (8)

Primes here indicate différentiation with respect to y.

Eliminating p then u from Egq. (7) leads to the Orr-~Sommerfeld
equation for the liquid film

viV-2kav” + kiv= EE{[U, (L+y/h) -0/ ] (v'k2v) } (9)
1
and eliminating u from Eq. (6) leads to the following expression for the
disturbance pressure in terms of v and its derivatives
Pt i w ' U'L \)44 IR
p = THil(E- U, (Ley/mN v 4v 5l (v 7=k2v )} (10)
The disturbance shear stress in the film is
_ i
Ty T B (v + ikv) (11)

Extternal Gas Fiow

The equations of motion for the gas flow are derived in a similar
manner, The velocities, pressure and density are introduced into the
inviscid momentum equations and the continuity equation for a compressible

fluid., Non-~linear terms are again neglected.

(U ~e/k)u = 2 e’p .oa2)

S S——

Pe
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(U'e-(”/]{)v = -]Jz'- —op-e;- p’ (13)
P
(U, - w/k)ip = -p (iu~v k) P (14)

Elimination of p and u from the .governing eqﬁétion leads to the
following equation

(U ~w/k) 2
2

e

vy ka[ - 1] v=0 (15)
Eliminating u from Eq. (12) and using the relation p=a2p yields the

following expression for the pressure

ip, (U ~w/K)v!
@ _-0/K) 7 " (16)

-1]
ae3

p=

The shear stress in the gas is zero. The specification of this

condition rules out the shear stress instability mechanism.,

Now for U, >> w/k

v’ + k*’(Me3 -1v=0 (17) )

The supersonic solution to this equation is valid for Me > 1.

(D) Boundary Conditions

The boundary conditions to be imposed on the equation for the
liquid film at the interface are that the discontinuity in normal stress
be equilibrated by the surface tension and that the tang. .itial stress
be continuous. The no~slip condition is imposed at the wall,

The conditicns in the gas may be determined analytically from
Eq. (17). The boundary conditions for Eq. (17) are the kinematic

condition at the interface and that the veloccity remain finite as y-w,

The equation of the interface is

Yy = ge (1.8)




and -the kinematic condition is

T-X,7X
vEaEt Y (19)
In terms of perturbation quantities

v = iku_e (20)

The solution to Eq. (17) subject to boundary condition (20) is
v = ikUeeéi]'““ﬁe -ly (21)

" Now ¢ may be determined from the kinematic conditim for the liquid

at the interface

v = ik(UL-w/k)e

Then the disturbance pressure in the gas, Eq. (13) reduces to
PUe°V

P = (U -u/k) 2T (22)

in the supersonic case and to
imeeav

p =
(U L—w/k)vl-Mez

(23)

in the subsonic case.

Thus, the condition on the normal stress at the interface in the

supersonic and subsonic cases are given, respectively, by

iv, v, .
- v+ [(UL-w/k)—Biva]v' -5V (24)
ikp U 2

ee)

( g=ai)
WgEeT VoWE

1
= ( Tk3+ +
= p&( P9

and
iv 1]
L~ -w/k)-3i - X
= v+ [(UL w/k) 31va]v' v (25)
: ko U ?
1 e e v
p& ‘t/ A/l-Medl (U'{: wik)

If thes disturbance shear stress in the gas is neglected, the

boundary condition becomesa

TR e LT F SR R Y TS
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¥ | v/ +k®v = 0 aty =:0 - (26)
; The condition at the wall igthat the velocity vanish
vavi=0 .  aty=-h @
.1
(E) Dimensionless' Form of Equations
The variables may be non~dimensionalized as follows
S’;v
b n=y/h
B
;- ¢(n) = viy)/u,
2 '
Equation (9) and the boundary conditions (24), (25),(26) and (27)
."- are transformed to
$1V_2028 448 = iaR[(1+n~c) (§“~a?8) ] (28)
r,} _é._ " 3ia 13 = _q_-?_ __l__ __?__
S l(1mc)w SHRIE -8 = (Tmt Fr+H) 1o (29)
t v
. 874 028 = 0 (30)
at = -1 ]
bl §=3'=0 (31)
4 where primes now denote differentiation with respect to # and
&
g\ 4
'g a = kh
3 R
3. R =
- Ve
. Ce= 2HLUL2
E: £ hpeUe
i U
F= ;—-L
.'{ gh
A =y VR
. W= UV
* H= =2 (supersonic) H o= et (subsonic)
: cghitle™~l Ggfi-Ne
‘ 10
‘




If the function ¢ is defined such that
o(n) = &(n)/3(0) = v(y)/v(0) (32)

the equations and boundary conditions will retain their same form as

follows:
@ V=206209” + atp = LaR[(1+m-c) (0“~a2e) ] (33)
at =0
Lo [(1-c)- 3E8)plmg= (S5 +5+H) (34)
aR R P ~¢ We F2 1-C .
¢'+arp =0 - (35)
at = -1
p=¢' =0 ) (36)

with the additional condition that

=1 at n =0 (37)

(n) --O.ncp(n-2'

Noting that the combination ¢ appears repeatedly in the

equation, a new function } may be defined
QI . wll - aam (38)
The equation may now be reduced to a system of two se~cond-order
‘equations
o" = a®9ty
(39}
¢’ = o®y = LaR(l+n-c)y

and the boundary conditions

at n =20

y' = 2a2¢'-ia{[R(‘%§+ i,%m)] E%_‘—_-,—_--R[(c-l)q>'+l]} (40)

it
(=]

¥+ 202¢ {41)

and at n = =1
=9’ =0 (42)

12




The above equations ana boundary conditions constitute an eigenvalue
problem, The eigenvalue consists of Re{b}, the non~dimensionalized wave .
speed and Im{c}.‘tﬁe time amplification factor. If the eigenvalue is
correctly chosen, the homcgeneous boundary ccndition (40) will be
satisfied independent of the choice of the initial value of ¢, This is
illustrated by the fact that the equations retain the same forﬁ under
the transformation (32) which is equivalent to the choice of initial
condition (37).

7 For a given liquid and gas, the problem is completely specified by
the geometry, mass flow rate, and the balance of shear stress for the
basic flow., Geometric considerations, in general, lead to an expression

for the mass flow of the form

m, = mc(U{h) = f(geom)R

and from the condition on the shear stress

UL

= A 2

Tn=0" “L(h) CePele : ’
Thus, the interface velocity and fiilm thickness are specified for a

given mass flow and external gas flow.

(F) Analytic Solution for Small Values of a i

If the boundary condition (40) is to remain well behaved at c=l,
then a must be equal to zero for c=l, Hence, solutions are sought for
vanishingly small o with c near 1., The parameter ¢ and the dependent

variables v and | are expressed as a series in powers of a

c=1+01Q+CQaa+caas+oooo.eo-oo
°p=CPO"‘COIQ‘*'Q)aaa'*‘waaa‘Fo.....-..
¢= ‘Yb°+¢1a+¢aqz+¢3aa+oon.ooc.o

Substitution into the differential equations yields to zeroth

ordexr in a

12
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Far== ey

%" = Vo
oo (43)
with the boundary conditions
at n=0 .
9, =1
o =0 ' (44)
wo’ = cfg'
at 1 =‘-1
%o = O (45)
qo’ =0
the solution for LR and ¥, are
0, = =%n’+¥am+ 1 (46)
Vo = =31
and from the extra condition at n =0
o = FHF (47)

retaining first order terms in ¢ leads to the following equations and

boundary conditions in the supersonic case

1 = h
(48)
42" = ~3iRn?
at n=0
¢, =0
b, = 0 (49)
1C.R
-] 2 s
WI ! = b ey iR
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_’_-iRs iR 3 , iR !
1 = 370"."48" *80 _ ;

st e S

-iR H iR i !
1 = =F=n* = Fn .
.

i . |
i and again from the extra condition at n=0 ,

3 ! i
» et 2

E Ca = nagw 4 T ' (52)
b 3c M, %=1
k. . L1
ot 1f second order terms in‘a are retained, the following solutions

| ! ! b '

: ) result !
, |
f‘ _ _R3 .9 RY 1 ,.R® na i ! 1
®s = T3006" ' 38807 20‘6F5 L)+ R 3) i .

& a2 16811 43 611 +6( —3)n"+’Kn-2 ¥

k: where
‘.‘ l ‘ . >
3 ' : VR | 1 OR? 12

-y 2— *
X = (153 504 R~ Tor? P _ ;

S,

P
¥
~~
w
S
~—

l H

1 1 1 1 R2 3 ,
L = (750 * 1008 ~ 1344 ~ 384 R°~ 13077 ~10
A ]

[

and
1
1l 2 R2 '1 . 13 7 .
Ca= J~R“4536 3671 5?5')57'3;\1'5‘*30F=+72cf2'23e’-1lJ ' a

s
R
.‘l
%
"
>
o
b
=
g
W

3

Thus ’ 1 : | N

R ——

iR -?E‘Q;~ * 1 )ae' H
€ : {s6) !

-

TR S R® 1 .13 7
+ 3RL(""4—536"* 36 ""45'F"§’)§=' + 3OF3 + 72 fvﬁ JQS‘F ea 9
= L a3 AR md ny .
o(n)=-5n"+ ' n+l 8 vet & ~10 @ 1
! ! : | (57)
+[ R e+ '}"('—"g'R'
12096" 2880" 20°'6F
i

o]
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1f the same, procedure is carried out in the subsonic case, the resulting
- ~ B STty S

w7 .
: .

expression for c.is ‘:
!

’4

. ! AR TR? i 8 v
T c = 1h 3Ff'“*‘7§F?f‘32‘755§§§=*“ .
LT ’ (58)

, + IRUgEgg + 36 + 7777 - v * 30F5]"72cf4_‘31-me A

with no change in the expression for ¢.
' ' .
Note that the expression for ¢ indicates that o=0 corresponds to

neutral stability in either case, .

I v '
(G) Exact Subsonic Solution

In the subsonic case a simple analytic solution giving the cut-off
wavelnumﬂers (for whic? Im{c}?O) may be obtained when neutral stability
‘implies;c=1. In the Subsonic‘case,H is real and negative. Hence, the
term'in bracﬁets muitiplying l/(g-l) in the boundary condition (40) may
van%éh and must do so as ¢ approaches, unity. Therefore, the cut-~off

;
wave nupbers may be determined from fhe expression

o 1% _ (59)
- W omimg

S .
The following values of oy are obtained

2 -
- ¥ (%) (60)

: * . e
e . aNl,a 2chJI-Me= j\/<2ch,,/l-Me5>

| Y .
(H) Remarks on the Applicability oé Subsonic and Supersonic Solutions -
Bour:dary Laver Effects
' 1] 0
Whil? the present investigation is concerned exclusively with
i .
situations in which thé external gas stream is supersonic, the subsonic

solutions may also be of interest. Nachtsheim has suggested that the

basic floy in the gpé may be regarded as a "suitable mean" of an actual

boundary layer: flow., However, the presence of the gaseous boundary

layer will influence the .phase lag of the pressure perturbation at the
' ' ! ‘ e .
' i

B ' 15

1 ' !
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inéeffaég as well as thé‘apﬁropriate values of thé Mach number and
;free stream" velocity. Indeed, the subsonic solution nay ‘be valid for
a flow with. a supersonic external stream when- the boundary layer is
thick enough to attenuate the pressure perturbations in the subsonic
fegion.

In the limit of an infinitely thin boundary layer with a supersonic
external stream, the pressure perturbation is seen to exhibit a 90° phase
lag with respect to the surface wave amplitude while the Mach number
appropriately assumes the free stream value., In the opposing limit,
as :he boundary layer thickness becomes large compared to the wave
amplitude, the external flow may be regarded as subsonic for which a
1800 phase lag occurs. Hence, as the ratio of boundary layer thickness
to wave amplitude varies between the two limits, it is to be expected
that the phase lag will vary between 90° and 180°. This behavior has
been amply demogstrated experimentally by Muhlstein and Beranekg.

In order to take this effect into account, the pressure

coefficient at the interface, H, could be expressed as follows:

Q eie
egRyTMT-1]

where 3 is the pHase lag. This clearly reduces to the supersonic case

H =

when é=90° and to the subsonic case when 6=180°. Here 0, Ce and Mg
would be functions of 6*/e. The difficulty in applying this approach
lies in making an appropriate choice for the parameter values. The
results of Muhlstein and Beranek indicate that it is scmetimes reasonable
to use the limiting values of § (particularly in the subsonic case) when

*
6 /e, e and M_ are not very near their limiting values,

g
Therefore, the approach here will be to employ the strictly
supergsonic and subsonic phase lags in the analysis. The problem of

choosing parameter values is not clearly resolved, although reasonablu

16
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choicés may be made, .. .

g . 1IT, -NUMERICAL PROCEDURE

- . ) . . : .
Since the parameters R, Cer F, W, and M, are specified for a

q ven. 1iquid mass flow and given external flow, it is neéessary to

Y 4

determlne the eigenvalue c as a function of a satlsfylng the equatlons

1

”and boundary conditions, Thus, for any a, a numerical procedure may be

2

used to determlne the values of c for which Eg. (39) has solutlcns
satlsfying the boundary conditions (40)-(42).

In order to carry out a numerical integration of the eguations
starting at =0, an initial guess for the eigenvalue c and two additional
conditions are required. The initial conditions may be expressed in the
form

®(0) =
®’(0) =B

As prevxously noted, solutions satisfying the boundary conditions

(61)

are completely 1ndependent of the choice of the initial condition on ¢,
'therefore, A is taken to be 1 as iq the analytic solution., The value
of B, therefore, must be determined from the boundary conditions, For
small values uf a, BEq. (57) differentiated with respect to n and
evaluated at =0 may be used to obtain an initial guess for B anq

Eq. (56) or Eq. (58) may be used to find c¢. The formulated initial
conditions (40) and (41) may tuen be written inh terms of the assumed

initial condition as follows:

¥ = =202
2a38+ia§[R( +Fg'+ H ] gZp+ RU(e-1B+ 1]} (62)

The equations are then integ'rated from n=0 to n=-1 and the
solutions are checked to see if the conditions at the solid surface are

satisfiea. Since @ and ®’ must both vanish at n=-1, the sum of their

7
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.absélgte valugs‘cénstituies the error corrésponding to any gﬁess for ¢
and.B. f the~boundary conditions are not satisfied to within the
accuracy of the integration, ¢ qnd.B must be adjusted accordingly.

_ In order to facilitate the rapid convefégpce‘to a satisfactory
solution, it is helpful to know how o and mi vary with B and c at y=-~1,
Differential equations for gy, @', @, and @ ', where subscripts indicate
«differentiation, may be obtained by differentiating the Egs. (39) and
initial conditions (6l) and (62) with respect to B and c¢. The resulting

equations and initial conditions are:
%" = 0w + ¥y
"o N2 s - .
bg" = P + LaR (147~ )iy

”=(‘n' '
P Vo, t+ Ve

Yo" = qawc+-iaR(l-+rr-C)Wc—iﬂRW (63)
at\n=0
g = 0
o' =1 :
Vg = O |
¥g ' =207 - iaR(c-1) ' - (84)
. mc‘r 0
s cpc, =0 '
.y’c=.0_‘
. ‘¢c'=-i.a*[§(%4%;.+ﬂ)]£‘i')‘é+RB} - (65)

The'gdjustments‘AB‘and'Ac to the ith guess are obtained from the

]
H

Mewton-Raphson equations: g T .
0y .5 (=1) = 0, (=1) + g (<) 2B + @ “(=~1) Ac =0
. i+l . 2 . q’Bi c{i ) (66)
®i+l, (=) = coil-(-jil.) +_QB;(~1) OB + q;cj'.(-:'l,) Ac = 0

18
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“A program ‘incorporating the above numerical approach-was run on

the‘IBM'360/50:éompqteraa£:the‘Polyﬁéchnic Institute -of Brooklyn and

.on 'the .remote terminal of-the .(DC 6600 computer located at the Preston

‘R:,Basgett’Résearqh Laboratory. e

The :numerical dntegration was carried .out using the fourth order
Runge-Kutta subroutine, RKGS, 'taken from the IBM .system/360 Scientific
Subroutine Package. This subroutine allows the programmer to- specify
the tolerable integration error and adjusts the step size until this
specification is met. 1In ordér to make use of this subroutine, it was
necessary to recast the equation in terms of real variables and reduce .
them to first order. This led to a system of twenty-four first order
linear differential equations, The sigenvalue and initial conditions
were adjusted by the Newton-Raphson technique until thé error defined
by the sum of -absolute values of o(~1l) and ¢’(~l) was zero to within the
accucacy of integration. This usually meant less than 5 x 10-8.

After this technigue had converged to an eigenvalue, o was
incremented and the corresponding new eigenvalue was obtained. This
procedure was continued using a second degree extrapolation to predict
the new eigenvalue and initial condition.

It was found that an increasingly accurate initial guess was
required to insure convergence to the proper eigenvalue as o was
increased. As a consequence, it was necessary to keep the increment of
a very small, A highly accurate initial guess is also desired since the
integration procedure is time consuming and less rapid advancement in
o is preferable to permitting numerous iterations of the integration,
In addition, the possibility of convergenée to an extraneous eigenvalue
exists if care is not taken in selecting the first approximation to the
eigenvalues and initial conditions. The behavior of the eigenfunctions
for two values of o is illustrated in Fig. 2, Typically, the cucvature

of these functions increases with increasing o and thus the computation




1%
Pl

M;f : ‘time: becomes .significantly greater. In some :cases this curvature was
sufficiantly large that :an inordinately small :step size was required and
'the. integration procedure failed. When these cases were rerun with a
relakation'ip the accuracy criterion, such that the solution could be
zob;ained,Lit appdared that the .eigenvalues obtained were relatively

insengitive to ‘the .accuracy requirement.

IV, PRESENTATION AND DISCUSSION OF RESULTS

(A) Flow Conditions

The- exteinel flow conditions used .are given in the following table.

) ] Mg | c¢ Cef[M2 -1]
Free Stream 2.00

Supersonic Case | 2.00 | .0115 | .020
Subsonic case | 0.25 | .0264 | .02C.

The Weber and Froude numbers consistent with a surface shear stress

of .005 psi are given by

A o i e e brmn

W = .04958R3/4

23.793rM/4

o}
]

(B) Supersonic Case

The behavior of c as a function of a is plotted in Fig. 3 for
several values of the Reynolds number. There are characteristically
two cut~off wave numbers other than a = 0, It is possible to use

Eqd. (56) to determine the first cut-off wave number, Gy o when the
1

coefficient of a® is positive.

In Fig. 4 the cut~off wave numbers are plotted versus Reynolds

number. Most striking about their behavior is that there exists a

- ~ minimum Reynolds number below which no instabilities occur for any wave
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nurbér, This can be attributed -to that fact that for small Reynolds
nurber the stabilizing effect of the surface tension becomes dominant.
That is, in the boundary condition (40) the term o2/M° §ominéteglfo;
small R, Further, since the stabilizing term 1/F2? dominates for large
R, it might be expected that there exists a maximum Reynolds number
above which all wave numbers are stable. However, it has not been

possible to demonstraté that here. 'Results obtained in previous

‘publicatioﬁs,Whiéh ignéred the necessary R dependence of F and W have

predictéd su¢h a maximum Reyholds number, but these results must be
régarded as inapplicable to real systems. Flows for which there are no

values of & for which Im{c}$()méy be regarded  as generally stable.

(C) Subconic Case

Comparison of the analytic and numerical solutions indicates that
the former is exact for all values of R. The numerically obtained plot
of amplification factor versus wave number is displaved in Fig. 5 from
which the two characteristic cut-off wave numbers are evident, In
addition, the wava speed is seen to be smaller than unity in the unstable
region., This behavior isc also clear in Fig. 6 where c is plotted in
the complex plune, For all values of R, c=1l at neutrally stable values
of &, ¢ <1l at unstable values of g and ¢ >1 at stable values of a. As
& is increased, starting at the first cut-off, the branches are traversed
in a counter-clockwise manner, This effect rather than the Tollmien-
Schlicting instability mechanism may explain the slow waves observed by
Marshall and Saric. It is notable that these waves were observed only
in the thinnest films considered for which the ratio of boundary layex
displacement thickness to wave amplitude was greatest.

The o~R diagram presented in Fig, 7 indicates that no finite
maximum or non-zero minimum Reynolds numbers exist beyond which there

are no unstable wave numbers, This is generally true for values of

21
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3} below some maximum as indicated in Fig, 8. Thus, such flows are

generally unstable when 2} lieés below the maximum and stable when 3}

lies.'above the maximum,

Ve CONCLUSIONS

The following general conclusions may be drawn from the present

results when the pressure perturbation instability mechanism is

predominant. For some values of the Reynolds number, no instabilities

will occur when the phase lag is 180°. For boundar& layer flows where

o
§ is less than 180° the effect of approaching 6=90 may be regarded as

stabilizing., As the unstable slow waves grow in the boundary layex, the

effect is to retard the appropriate phase lag and stabilize the motion

for certain values of R. 1In this manner, steady amplitude, fast or slow

wayes may be produced without non-linear effects.
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