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ABSTRACT

The stability of thin liquid films adjacent to high speed gas flows

has been examined to determine its effect on the coolant requirements

of hypersonic vehicles. *The analysis is also applicable to surface films

in high energy exhaust flows. Classical hydrodynamic stability theory

was applied to the liquid film with boundary conditions corresponding

to both supersonic and subsonic external streams. Instability

mechanisms which coupled the disturbance motion of the gas to the

disturbance motion of the liquid were of primary interesc. and those

involving energy transfer from the basic flow were specifically excluded.

Numerical solutions as well as exact and approximate analytical solutions

were developed.

It was determined that there e3:ists a minimum value of the film

Reynolds number below which no instabilities may occur in the supersonic

case, while in the subsonic case the flow will either be stable or unstable

for all coolant Reynolds numbers depending on the value of other flow

parameters.
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1. INTR±btdIUTNU

The'stability of thin liquid films adjacent to slender bodies in

high spevd gas flows is examined. Maintenance of such films on the

external surface .of hypersonic vehicles is highly desirable from the.

standpoint of thermal protection from aerodynamic heating durin( the

reLentry from interplanetary missions. 'Such a thin cooling film may be

established by ao.lowing liquid injected in.,the stagnation region of the'

* body to.be swept' ownstream covering..the surface. The coolant mass flow

rate required to effect protection •of the vehicle will depend on the

suriace area and on mass loss due to droplet entrainment and vaporization.

The interaction of the gas-liquid interface leads to the formation of

,surface waves in the liquid film. Depending on the flow conditions,

these waves will either be damped (stable film) or will grow with time

(unstable film). In the event that the waveamplitxdes are not

sufficiently Oecreabed with time, droplet entrainment will become:the

dominant mechanism of mass loss to .n extent that an integral layer of

S•iquid will no lohger bp mai'ntained on the surface.

Couplednwith the effect on the iiquid film, the presence of waves
I f

on the sur:Eace also affects the gaseous boundary layer. The flow of a

ga3 over a wavy or "pebblerV" surfarie is similar to flow' iver a rough

surface. Those conditions give rise to a cre'n • the t=7nsport of

ma•pa, momentum, and energy in the boundary layer and hence an increase

=' heat transfer and shear stress. The evaporative mass transfer may be
'I 1 3

considered to consist of the sum of that contribution which would
result jf the gas-liquid interfacue were perfectly smooth and the

additional contribution due. to 'the effect of the surface roughness.

Gater and L'EcuyerI haveindicated that this latter effect is independent

of the 'ase flow rate.! This, hawever, ignores the fact that the surface

roughness, w1ich. Js rslated to the wave amplitude, may be a function of

I' '!
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the mass flow rate. Thus, the effect oL changes in the mass flow on the

behavior of the interface cannot be disregarded even in attempts to

predict mass transfer due to evaporation.

The liquid film cooling phenomenon has been characterized by the

ej.•sLnce of a region in which heat is either absorbed by the liquid

2Ah or used to effect a change to the vapor phase, and a region in which

cooling :Vs accomplished by heat transfer. to the vapor in the boundary

layer after the film has been totally vaporized. The effect of an

instability'occurring at some point on the surface of the vehicle would

be to prematurely bring about the reduced cooling effect associated with

the total vaporization region.
If an analysis of the stability problem is to be applicable'to a

given flow system, the probable instability mechanisms of tthe system

must be known so that equations and boundary conditions consistent with

these-mechanisms may be formulated. The instability mechanisms are of

two basic types: those arising due to energy transfer from the basic

flow of the'gas or liquid, as in Tollmien-Schlichting instabilities and

those arising due to energy transfer from the perturbation of the normal

and shear stresses induced by the wave formation, such as the pressure

perturbation (Kelvin-Helmholtz) and shear perturbation instability

mechanisms.

Waves capable of exhibiting the former type of instability were

possibly observed by Marshall and Saric2 in flows of very thin films at

relatively high liquid Reynolds numbers. In this case, the wave speed

was less than the interface velocity (slow waves) which is a necessary

condition for Tollmien-Schlichting instability according to Miles 3.

Most waves observed, however, have not been in this regime.

Craik4 classified the types of waves observed with an incompressible

external air flow which occurcred at different values of the film

thickness. He found that instabilities may occur for very thin films

2



while they do not .c=,•r for thicker films despite the relatively- high

damping effect at lo& eynolds numbers. He concluded-that the dominant

mechanism of these instabilities, was, the action of the shear perturbation

which was-in phase with the wave slope and tended to pile up liquid at

the wave crests.

If the external air flow is compressible, the instability mechanisms

related' to the pressure disturbance are of different form depending on

whether the flow is subsonic or supersonic. For subsonic flow, the

disturbance pressure is 180° out of phase with the surface wave

amplitude; hence, minimum pressure occurs at the crests and maximum in

the troughs, thus drawing liquid to the crests of the waves. However,

for supersonic flow, the pressure perturbation is in phase with the wave

slope. Chang and Russell5 and bachtsheim6 , 7 have demonstrated in this

case that the dominant mode of energy transfer between the external flow

and the perturbations of the liquid flow is through supersonic wave drag.

Chang and Russell performed the stability analysis for a gas-liquid

interface including the effects of the perturbations imparted to the gas

motion. However, the liquid layer they considered was infinitely deep

and initiallyquiescent. Nachtsheim considered the type of waves

observed by Larson and Mateer in the melt layer o: a re-entry vehicle,

He carried out the analysis for three-dimensional disturbances in thin

films adjacent to supersonic flows and showed that the equations may be

19 reduced to two-dimensional form if the wave number and Mach number are

appropriately defined. in eddition, the experiments of Marshall and

Saric suggest that two-dimensional waves. occur at intermediate Reynolds

numbers. Nachtsheim's work, however, was primarily concerned with the

highly- viscous melt layer and he concentrated on solutions for vanishingly

small Raynoldsnumbers° in addition, the results he produced were not

consistent with any particular external flow but rather were obtained

by allowing the non-dimensional parametors in the governing equations

3



to vary independently.:

The present investigation considers thin films at moderate -film

Reynolds numbers with high speed external ;flbwý, typical of 'conditions-

arising, for liquid/films inr 7ntry environments. While the• 'ree stream

'Mach numbers in such;environments are generally hypersonic, both'

supersbnic and subsonic gas :flows are tused to provide the perturbation

,pressure condition at the interface, the -former corresponding to a

boundary. .aydr much thinner than the disturbance wave amplitude and' the

latter to a boundary layer which is thick compared t 6 the disturbance

amplitude.

4 For the analysis, instability mechanisms which couple the disturbance

motion of the gas to the disturbance motion of the liquid are included,

while those involving energy transfer from the basic flow through the

action of shear perturbations at the interface or through the action

of body forces (Rayleigh-Taylor instabilities), are specifically

excluded. Thb analysis of Nachtaheii is generally followed except that

the equation of mqtion is arrived at from a two-dimensional standpoint

and consideration of the vanishingly small Reynolds number regime is

excluded, Analytic solutions are also developed. Results based on the

numerical and analytic solutions to the equation are presented.

II. ST1ABILITY ANALYSIS

(A) The Basic Plow

Liquid Film

For the flow of a thin liquid film over a flat solid surface

adjacent to a supersonic gas stream and in the absence of perturbations,

a very nearly linear velocity profile will be establ'ished provided the

film is sufficiently thin. The equilibration of shear stress at the

interface imposes a velocity on the surface of the liquid film which is.

4



held• constant in time .and space precluding any energy transfer from the

basic. flow t,6 the perturbations.,

A two-dimensional cartesian coordinate system is introduced such

that the x-axis lies in the plane of the interface and the y-axis is

perpendicular to that -plane and pointing away from the solid wall (see

Fig. 1). Whe basic flow of the liquid is then given by

-=U (1 + y/h)

V, 0 -h y:S (i)

P Pe P gy

where U., the surface velocity, is subject to the condition

Pt = Tg1y=O (2)

The gravity vector here is assumed to act in the negative y direction.

This is consistent with the linear from of the velocity profile. It

should be pointed omt, however, that for thin films, the deviations from

the linear profile will be small when the gravity vector is arbitrarily

directed. Hence, the neglect df the error associated with the

application of the following analysis to the general case is consistent

with the approximation in the subsequemt linearization of the governing

equation. However, it must be stipulated that the gravity vector has

no component in the positive y direction, in order to preclude

instabilities of the Reayleigh-Taylor type.

External Gas Flow

The basic flaw in the gas is uniform and given by

V.=Ue
v=0

* y 0 (3)

P= Pe

The boundary layer is assumed to be very thin compared to the liquid

I5
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film depth and, its effect "s confined to the satisfaction of Eq. (2)

The value of the shear stress at the interface may be determined from a

boundary, layer analysis.

(B) Disturbance Motion

Liquid Film

A component of a general harmonic disturbance is now introduced to

the motion of the liquid film. The wave-like form of this disturbance

is illustrated in Fig. 1. If the x-axis is directed perpendicular to the

wave fronts, perturbations normal to the x-y plane will vanish and the

total velocity and pressure are given by

= U I(lt+y/h) + u (y)el(kxwt)

v(y)e i(kx-wt) (4)

p= j- pgy+ p (y) ei (kx-wt)

The wave number k is assumed to be a real dimensional constant,

while the parameter w is taken to be complex. The wave length of the

disturbance in the direction of the wave normal is 2W/k. The real part

of w is the frequency of the disturbance and the imaginary part is the

time amplification factor. Hence, the criterion for neutral stability

(waves that do not grow or decay with time) is that the imaginary part

of w vanish.

External Gas Flow

A similar disturbance is introduced into the gas flow

S= U +u(y)ei(kx-t)
e

= v(y)ei (kx-wt)

v~y i (5)u~
p = Pe + p(y) e

S= Pe + p(y)ei(kx't)

6



(C) Disturbance Equations

Liquid Film

The equations governing the disturbance amplitude functions are

obtained by introducing the velocities and pressure including the

perturbation terms into the Navier-Stokes and continuity equations and

disregarding non-linear terms in the perturbation quantities on the

assumption that the disturbances are small.
-iWu +- U ( h iu + h -p + V (u'-k u) (6)

-iwv + U (l+y/h) ikv = - ,+ vv(v"-k 2 v) (7)
ItP

iku 4v' = 0 (8)

Primes here indicate differentiation with respect to y.

Eliminating p then u from Eq. (7) leads to the Orr-Sommerfeld

equation for the liquid film

v iv-2k2 v + k'v--= [U• (l+y/h) -w I (v "-k-Iv) }. (9)

and eliminating u from Eq. (6) leads to the following expression for the

disturbance pressure in terms of v and its derivatives
w U% V

p = l-L U .r(1+y/h.Jvr~v Z~j1 -(v/-kav') (10)

The disturbance shear stress in the film is

7 P t v"+ ikv) (11)

External Gas Flow

The equations of motion for the gas flow are derived in a similar

manner, The velocities, pressure and density are introduced into the

inviscid momentum equations and the continuity equation for a compressible

fluid. Non-linear terms are again neglected.

(Ue-w/) u = -ae'P (12)

IPe

Vi7



a 3

(Ue-WA) V e P (13)

(Ue - wA) i p = Pe (iu-v'k)- . (14)

Elimination of p and u from the governing equation leads to the

following equation

v"+k2 e( -2 vw (15)ae

Eliminating u from Eq. (12) and using the relation p=amp yields the

following expression for the pressure

i Pe (Ue-w/) v'
p = (U e_ W k)a, , (16)

Se _l-1k[ 
ae 

i]The shear stress in the gas is zero. The specification of thisA

condition rules out the shear stress instability mechanism.

*: Now for Ue >> wk

v" + k 2 (M 2 - 1)v = 0 (17)

The supersonic solution to this equation is valid for Me > 1.

(D) Boundary Conditions

The boundary conditions to be imposed on the equation for the

liquid film at the interface are that the discontinuity in normal stress

be equilibrated by the surface tension and that the tangk Mtial stress

be continuous. The no-slip condition is imposed at the wall.

The conditions in the gas may be determined analytically from

Eq. (17). The boundary conditions for Eq. (17) are the kinematic

condition at the interface and that the velocity remain finite as y-.

The equation of the interface is

i= ce(kx-wt) (18)

8



and .the kinematic condition is

-•='+ •.(19)

In terms of perturbation quantities

v = ikUeC (20)

The solution to Eq. (17) subject to boundary condition (20) is

v = ikUege e- (21)

.Now c may be determined from the kinematic condition for the liquid

at the interface

v = ikA(U-wA)e

Then the disturbance pressure in the gas, Eq. (16) reduces to
PwUe•V

p = (UwA/k) e•=6_T (22)

in the supersonic case and to
p = . . . (23)

(U ---- T

in the subsonic case.

Thus, the condition on the normal stress at the interface in the

supersonic and subsonic cases are given, respectively, by

v + C(Ug-w/k)-3iv.kIv'--- v (24)

1 (+ikpU 2

&(Tk2 +pg+ e e UV

and

-v - + [(U -w)/k-3ivk]v'- -L v (25)

. (TkO+ ptg-kee)

If the disturbance shear stress in the gas is neglected, the

boundary condition becomes

9



V' +kv =0 at y =0 (26)

The condition at the wall i'* that the velocity vanish

v - v' =0 at y=-h (27)'

(E) Dimensionless Form of Equations

The variables may be non-dimensionalized as follows

S= y/h

§01) = v (y)/UjI

Equation (9) and the boundary conditions (24), (25), (26) and (27)

are transformed to

@iv- 2a2 = i aR[(l+ -c) (@"a2) (28)

at 1=0

i,,+[(l-c). _ - ,_ t (x+ I-+H) (29)ciR

0 (30)

at i= -1

= =0 (31)

where primes now denote differentiation with respect to r and

c 2/_kZ
U

a=kh
U h

R = ---
vt

c -gy
hýFPe Ue2

U
F = - --

W = UILFj

H = .. (supersonic) H = .... (subsonic)

10



If the function c is defined such that

cp(r = On()/A (0) = v(y)/v(0) (32)

the equations and boundary conditions will retain their same form as

follows:

piv-2ct " + 61 Cp = itR[(l+ -c) (Cp"- Cze) J (33)

at ='O
i" ,, 3i•xc, - a!", I,(1-C -.. ,ft+F- +H A (34)

( P= 0 (35)

at T) = -

= = 0 (36)

with the additional condition that

SM 1 at n = 0 (37)

Noting that the combination (n)_,(n-2, appears repeatedly in the

equation, a new function 4 may be defined

'= #" - CC (38)

The equation may now be reduced to a system of two sv-zond-order

"equations

(39)

and the boundary conditions

at = 0

4" 2c~e'~i CR~+F 2  C- (40

S+ 2a 2cp = 0 (41)

= p' =C 0 (42)

1l.



The above equations and boundary conditions constitute an eigenvalue

problem. *The eigenvalue consists of Re'cj, the non-dimensionalized wave

speed and Imfc}I, the time amplification .actor. If the eigenvalue is

correctly chosen, the honogeneous boundary ccndition (40) will be

satisfied indepehdent of the choice of the initial value of CP. This is

illustrated by the fact that the equati6ois retain the same form under

the transformation (32) which is equivalent to the choice of initial

condition (37).

For a given liquid and gas, the problem is completely specified by

the geometry, mass flow rate, and the balance of shear stress for the

basic flow. Geometric considerations, in general, lead to an expression

for the mass flow of the form

mc = mc(U -th) = f(geom)R

and from the condition on the shear stress
U•

-n_=0 t f(-) = cfPeUe

.Thus, the interface velocity and film thickness are specified for a

given mass flow and external gas flow.

(F) Analytic Solution for Small Values of a

If the boundary condition (40) is to remain well behaved at c=l,

then a must be equal to zero for c=1. Hence, solutions are sought for

vanishingly small a with c near 1. The parameter c and the dependent

variables ; and q are expressed as a series in powers of a

c l +c~a+c~a2 +c3 a
3 +,,,,,

i •~~~P = •P+ •a + cp• +c•pW + .........

= + ý, 1 a+ (l ea2 + q8t + ..........

Substitution into the differential equations yields to zeroth

V order in a

12



(43)
=0

with the boundary conditions

at n=0

CP =1

0o = 0 (44)

' •O ' =iR

to -IF T

at =-i

rpo 0(45)
=10

0the solution for •oand *•o are

o = 3½3 + 3/ 2  + (46)

0 = -3,

and from the extra condition at r = 0

c,= R (47)

retaining first order terms in a leads to the following equations and

boundary conditions in the supersonic case

C = 1
(48)

= -3iRnl

at Tj=0

cp1 = 0

,•= 0 (49)

ic 2R iR

13
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at ,i-1

ep1  0

and the solution
C,-i ' i 6 _ iR R

1-0 l20 48~ 80T,

-iR -- 4 jR(51)q iR 4  iR 8!

St I

and again from the extra condition at n= 0

C2 7R2 + 1 (52)

I *1

If second order terms in a are retained, the following solutions

resultI

R gR2 a 6 1 -LR 1 3i6 +
= 20-96 288 20 +(i-6)'n 8  2(~~r)+

I(.53)'

where

3cI I1

1 1 2_ 9R? 12

L 1 + 1 1 1 1)R2 R

401008 1344 384 20Fl

I I

and

I a

13 1 2 R2 'l 13 7
43 i( 5 3 6 + 3 6 -4-F)F -3 W-- 4 30-F- + 72cf4i e -1

Thus, , • i

f'Se (56)c~l-iR ___ R__•

+ 4 II2 R2 ,+ 13 +4 5 3 6 3 6 45FF W 07c iT

~'2' 2  8 1 . 6- 1 0 1
1 1 (57)

R2 9 RD 6+1 RD t l +

I I

I

+hr +r gF + 1(++ na' +
I12;7 T8 -8 T16

14{.•
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If the same7 procedure, is carried out in the subsonic case, the resulting

expression fo' c .is

I , •iR , •7R?.- -F a, 7- 3c).•
3ccF

• .I 158)•
, 4•6 2 Rs 1 1~3 _ 7R c72CfJl41e

, ,iR[( -+ -L + -5=Fz 31f 1_~ e 3--T I-- ,

with no change 1n the expression for p.

Note that the expression foi c indicates that a7=O corresponds to

neutral 'stability in either case.

(G) Exact Subsonic Solution

In the subsonic case a simple analytic solution giving the cut-off

wave numbers (for which Imlc=O) may 6 obtained whciE neutral stability

implies c=l. In the subsonic case,H is real and negative. Hence, the

term in brackets muitiplying 1/(c-l) in the boundary condition (40) may

vanish and must do so as c approaches, unity. Therefore, the cut-off

wave' numbers may be determined from the expression'

SI CN (59)

W•CiRlIMe 2

Thie following values of 0N are obtained

2c2
W W

(H) Remarks on the Applicability of Subsonic and Supersonic Solutions -
Boundary Layer Effects

II a

While the present investigation is concerned exclusively with"a I I

'situations in which th6 external gas stream is supersonic, the subsonic

solutions may also be of interest. Nachtsheim has suggested that the

basic flow in the gas may be regarded as a "suitable mean" of an actual

boundary layer, flow. However, the presence of the gaseous boundary

layer will influence the -phase lag of the pressure perturbation at the
* a . I

-, I i

* I-15
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interface ds well as 'the appropriate Values of the Mach number and

"free stream" velocity. Indeed, the subsonic solution maybe valid for

a flow with a supersonic external stream when- the boundary layer is

thick enough to attenuate the pressure perturbations in the subsonic

region.

In the limit of an infinitely thin boundary layer with a supersonic

external stream, the pressure perturbation is seen to exhibit a 900 phase

lag with respect to the surface wave amplitude while the Mach number

appropriately assumes the free stream value. In the opposing limit,

as -;he boundary layer thickness becomes large compared to the wave

amplitude, the external flow may be regarded as subsonic for which a

1800 phase lag occurs. Hence, as the ratio of boundary layer thickness

to wave amplitude varies between the two limits, it is to be expected

that the phase lag will vary between 900 and 180°0. This behavior has

been amply demonstrated experimentally by Muhlstein and Beranek9 .

In order to take this effect into account, the pressure

coefficient at the interface, H, could be expressed as follows:

H = , C Lei
cfRJJIe'i r[

where a is the phase lag. This clearly reduces to the supersonic case

when 0-90° and to the subsonic case when 0=18 0 °. Here 0, cf and Mg

would be functions of 8*/e. The difficulty in applying this approach

lies in making an appropriate choice for the parameter values. The

results of Muhlstein and Beranek indicate that it is sometimes reasonable

to use the limiting values of e (particularly in the subsonic case) when

6 A/, cf and M are not very near their limiting values.
Therefore, the approach here will be to employ the strictly

supersonic and subsonic phase lags in the analysis. The problem of

choosing parameter values is not clearly resolved, although reasonablu

16
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choice6a may be made.

ZIII. -NUMERICAL PROCEDURE

Since the parameters R, cf, F, W, and Me are specified for

Sgiven liquid mass flow and given external flow, it is necessary to

determine the eigenvalue c as a function of a satisfying the equations

and boundary conditions. Thus, for any a, a numerical procedure may be

used to determine the values of c for which Eq. (39) has soluticrns
satisfying• the boundary conditions (40)-(42).

In order to carry out a numerical integration of the equations

starting at T=0, an initial guess for the eigenvalue c and two additional

conditions are required. The initial conditions may be expressed in the

form

cp(0) = A (61)

CP'(O) =B

As previously noted, solutions satisfying the boundary conditions

are completely independent of the choice of the initial condition on c.

Therefore, A is taken to be 1 as in the analytic solution. The value

of B, therefore, must be determined from the boundary conditions. For

small values of a, Eq. (57) differentiated with respect to n and

evaluated at i=O may be used to obtain an initial guess for B and

Eq. (56) or Eq. (58) may be used to find c. The formulated initial

conditions (40) and (41) may then be written in terms of the assumed

initial condition as follows:

V'=2a'B+i{[R(.+ .+H)) 1 4R[(c-l)B4•l) (62)

The equations are then integrated from i-•0 to n =-l and the

solutions are checked to see if the conditions at the solid surface are

P satisfied. Since cp and cp' must both vanish at n=-l, the sum of their



absolute values, constitutes the error corresponding to any guess for .c

and B. I"f the boundary conditions are not satisfied to within the

accuracy of the integration, c and .B must be adjusted accordingly.

In order to facilitate the rapid convergence to a satisfactory

solution, it is helpful to know- how cp and cp vary with B and c at tl=-l.

Differential equations for c, c' c and c" ' where subscripts indicate

differentiation, may be obtained by differentiating the Eqs. (39) and

initial conditions (61) and -(62) with respect to B and c. The resulting

equations and initial conditions are:

cPB 0op+ ýB

ýB" 62 *B + inR (1+ TI- C)B

PC" =('00c + ýc

c 2 c + iaR(1 + TI- c) -i'R (63)

at 0=

= 0

B=0

B 2a: - i R (ci-l) (64)

0
TC

' 2c =0.

a (R6 (F5 + H) -p +)

The adjustments AB ,and AC to the ith guess are obtained from the

Newton-Raphson equations:

" •i+i (-1) =i (-1) + (-I) ,6B + c,'(-l) Ac = (i ' (66)

.. % f -• = p"(-I) + cp (-I) M + cpc '(- )Ac =

LA1



'A program incorporating the above :numerical. approach was 'run on

the IBM 360/50ý computer ,at 'the .Polytbchnic Instiýtute ,of Brooklyn and

on :theremote terminal, of--the .-C 6600 computer located at the :Preston

'R. Bassett 'Research Laboratory.

The tnumericai integration was carried out using the fourth order

Runge-Kutta subroutine, RKGS, taken from the IBM •system/360 Scientific

Subroutine Package. This subroutine allows the programmer to specify

the tolerable 'integration error and adjusts the step size until this

specification is met. In order to make use of this subroutine, it was

necessary to recast the equation in terms of real variables and reduce

them to first order. This led to a system of twenty-four first order

linear differential equations, The eigenvalue and initial conditions

were adjusted by the Newton-Raphson technique until the error defined

by the sum of absolute values of •(-l) and c'(-l) was zero to within the

acct.:acy of integration. This usually meant less than 5 x 10-

After this technique had converged to an eigenvalue, a was

incremented and the corresponding new eigenvalue was obtained. This

procedure was continued using a second degree extrapolation to predict

the new eigenvalue and initial condition.

It was found that an increasingly accurate initial guess was

required to insure convergence to the proper eigenvalue as a was

increased. As a consequence, it was necessary to keep the increment of

a very small. A highly accurate initial guess is also desired since the

integration procedure is time consuming and less rapid advancement in

a is preferable to permitting numerous iterations of the integration.

In addition, the possibility of convergence to an extraneous eigenvalue

exists if care is not taken in selecting the first approximation to the

eigenvalues and initial conditions. The behavior of the eigenfunctions

for two values of a is illustrated in Fig. 2. Typically, the cu:cvature

of these functions increases with increasing a and thus the computation

3,9



-timeA •ecomes usignificantiy,-greater. In some cases this •curvature was

'sufficiant42y lafge .that !an inordinately 'small +step size .was required and

"+the integratio-n procedure failed. When these cases were rerun with a

relaxation in the accuracy criterion, such that the solution could -be

tobtained, it appiared that the ,eigenvalues obtained were relatively

insensitive to 'the ac: ra'ýy requirement.

IV. PRESENTATION AND DISCUSSION OF RESULTS

(A) Flow Conditions

The- extemil flow conditions used -are given in the following table.

M cf cslIMeel-I

ree Stream 2.00
upersonic Case 2.00 .0115 .020

ubsonic Case 0.25 0264 .020,

The Weber and Froude numbers consistent with a surface shear stress

of .005 psi are given by

W = .04958R3 / 4

F = 23.793R1 /4

(B) Supersonic Case

The behavior of c as a function of a is plotted in Fig. 3 for

several values of the Reynolds number. There are characteristically

two cut-off wave numbers other than a = 0. It is possible to use

Eq. (56) to determine the first cut-off wave number, j , when the

coefficient of a3 is positive.

In Fig. 4 the cut-off wave numbers are plotted versus Reynolds

number. Most striking about their behavior is that there exists a

minimum Reynolds number below which no instabilities occur for any wave

20IL__



number. This can be attributed to that fact that for small Reynolds

number the stabilizing effect of the surface tension becomes dominant.

That is, in the boundary condition (40) the term a 2/WA dominates for

small P.. Further, since the stabilizing term 1/F2 dominates for large

R, it might be expected that there exists a maximum Reynolds number

above which all wave numbers are stable. However, it has not been

possible to demonstrate that here. 'Results obtained in previous

publications which ignored the necessary R dependence of F and W have

predicted such a maximum Reynolds number, but these results must be

regarded as inapplicable to real systems. Flows for which there are no

values of a for which Irma c h>0 may be regarded as generally stable.

(C) Subsonic Case

Comparison of the analytic and numerical solutions in&icates that

the former is exact for all values of R. The numerically obtained plot

of amplification factor versus wave number is displayed in Fig. 5 from

which the two characteristic cut-off wave numbers are evident. In

addition, the wavw. speed is seen to be smaller than unity in the unstable

region. This behavior is also clear in Fig. 6 where c is plotted in

the complex plane. For all values of R, c=l at neutrally stable values

of a, c<1 at unstable values of a and c >1 at stable values of a. As

a is increased, starting at the first cut-off, the branches are traversed

in a counter-clockwise manner. This effect rather than the Tollmien-

Schlicting instability mechanism may explain the slow waves observed by

Marshall and Saric. It is notable that these waves were observed only

in the thinnest films considered for which the ratio of boundary layer

displacement thickness to wave amplitude was greatest.

The a-R diagram presented in Fig. 7 indicates that no finite

* maximum or non-zero minimum Reynolds numbers exist beyond which there

are no unstable wave numbers. This is generally true for values of

21



cf below some maximum as indicated in Fig. 8. Thus, such flows are

generally unstable when lies below the maximum and stable when cf

lies 0above the maximum.

V. COUCLUSIONS

The following general conclusions may be drawn from the present

results when the pressure perturbation instability mechanism is

predominant. For some values of the Reynolds number, no instabilities

will occur when the phase lag is 180 0 For boundary layer flows whereo o

8 is less than 1800 the effect of approaching 0=90 may be regarded as

stabilizing. As the unstable slow waves grow in the boundary layer, the

effect is to retard the appropriate phase lag and stabilize the motion

for certain values of R. In this manner, steady amplitude, fast or slow

wayes may be produced without non-linear effects.

2 -2
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