
COMPUTER SYSTEM MANUAL
CSM PSM 9A.67

NATIONAL VOLUME H, PART B

MILITARY 29 FEBRUARY 1972

COMMAND
SYSTEM N

SUPPORT
CENTER

NCSSCTHE NMCSSC
QUICK-REACTING

GENERAL WAR GAMING
SYSTEM
(QUICK)

PLAN GENERATION SUBSYSTEM

DEFENSE
COMMUNICATIONS PROGRAMMING SPECIFICATIONS
AGENCY MANUAL

lTHIS DOCUMENT HAS BEEN D D'-C,41i
:PROVED FOR PUBLIC p11

I RELEASE; DISTRIBUTION NATIONAL TECHNICAL

UNLIMITED. INFORMATION SERVICE

-F-

\ ,~ \

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

ES1111CR 0O NOT
ODLJUC'., E2 GIB• ' •'

THIS DOCUMENT CONTAINED
BLANK PAGES THAT HAVE REPRODUCED FROM

BEEN DELETED BEST AVAILABLE COPY

Security cII.!Irlicatlon

DOCUMENT CONTI-OL DATA. R &
(Socaffilt clac,•licf iontl oft itle, bo•dy of mfh~tra¢t $net hitlexlrig -no~tationt mun? be enlt,,Ped ý',hen 1114 (,ecAll tePUfftoI rlovslitefq-.

1. ORIGINA I iNr AC TIVI T Y (C~ttporat c htO T EC RIYtlA WIAel;)_ '

National Military Command syton Supiport Conter

Defense Communicat ions Agency (DCA)
The PentagonQW •hiTll[ton, DC 2 3_1 •

3. REPOR4T TITLC

The NhICSSC Quick-Reacting Oneral War Gaming System (WUICK)

Programming Specifications Moioal, Volume II, Plan Generation Subsystem

4. OC$CAIPTIVC NOTK$ (rype olrep.•'r and Incl-mive dnt.•)

N/A
S. AU THORIS) (bFull name, middle ,nlWl14, Ite'S nr,,ro)

NheSSC: Robert R. liardiran Lambda Corp: Paul D. Flant,grin

Yvonne Mapily Patricia V. Parish

Donald F. Webb Jach A. Sa'sseen J
6. HEPORT DATE 7a. TOTAL, NO. OF PAGi$S 71, H10. OF Hers

29 February 1972 1133 4
60, CONTRACT OfR GRANT NO. On. ORIGINATOFS RHEPORT N'VlIDICI")

DCA 100-7(I-C-0065 NMCSSC

b. PROJECT No. KMCSSC Project 631 COMPUTEIR SYSTEM MANUAL CSNI PSM 9A-6i7

*b. OTHER :1'CRT NO(S) (Al.y other •itaibers Lttl may be aalg d

stle report)

d, None
10. DISTRIBUT ION STATMENT

This document is approved for public release; its distribution is unlimiited.

II. 1UPPLLL4LNTARy NOILS 12. SPONSO IT MILITARY ACTIVITY

u'tional Military Command System Support
Center/Defense Communications Agency

The Pentagon, Washington, DC 20301

1,1. ABSTRACT

This is one of three volumes cdoseribizig computer programs of the Qj]CK-Reacting

General War Gaming System (QUJICK). These volumes complement other 1?;'SSC Computer
Systema Manuals onl QUICK by discussing the programs from a computer pr'oL.rammnj,p poj~t

of view. This volumo, in six parts, concentrates on the Pl]ar, Generation Subsystuef of

QJICK. Other volumes are available for the Input Subsystem and Simulation Subsystc:m.

Collectively, these volumes provide a good basis for maintenance activity on the QUICK

System.

Based upon a suitable data base, and user control parameters, QUICK will genernte

individual bomber and missile plans suitable for war gaming. The goenerated plzons are

of a form suitable for independent review and revision. Subsequently, execution of

the planned events can be sjirulatcd. Various statistical sum.aaries can be pro'Jiccd

to reflect the results of the war game. A vpriety of force postures asd strategic-,

cbn be accomiinodated.

QUICK is documented extensively in a set of Coi;puter System M1arIS•kl-. (Series; 9-67)

published by the National Military Coum.and System Support Center (NMCSSC), Defense

Corammunications Agency (1CA), The Pent agon, Wiashivigton, DC 20301.

.R P N LA,:k1 00 Ph(IrON t474. I JAN 04. W it

.1 olf 4 7 ONSOLEITE FOR ARMY Usti.

I11s N-Culity iassiftsaUo.,

NATIONAL MILITARY COMMAND SYSTEM SUPPORT CENTER

Computer System Manual Number CSM PSM 9A-67

29 February 1972

TfE NMCSSC QUICK-REACTING GENERAL WAR

GAMING SYSTEM

(QUICK)

Programming Specifications Manual

Volume II - Plan Generation Subsystem

Part B (Chapters 6 through 11)

Submitted by:

Major, USAF
Project Officer

REVIEWED BY: APPROVED BY:

R. E. HARSHBARGER (eBRUC
Technical Director Colonel, USA
NMCSSC Commander. NMCSSC

Copies of this document may be obtained from the Defense Documentation
Center, Cameron Station, Alexandria, Virginia 22314,

This document has been approved for public release and sale; distribution
unlimited.

ACKNOWLEDGMENT

This document was prepared under the direction of the Chief for Develop-
ment and Analysis, NMCSSC, in response to a requirement of the Studies,
Analysis and Gaming Agency (SAGA), Organization of the Joint Chiefs of
Staff. Technical support was provided by Lambda Corporation under
Contract Number DCA 100-70-C-0065.

ii

CONTENTS

Chapter Page

I INTRODUCTIOON 1

2 PROGPAM PLANSE 10

3 P.ROGRAM PREPALOC 94

4 PROGRAM ALOC 182

5 PROGRAM ALOCOUT 371

PART B

ACKNOWLEDGMENT.

A~BSTR.ACT.. xv

6 PROGRAM FOOTPRNT 453 j
Purpose 453
Input Files 454
Output Files 454
Concept of Operation 455
Common Block Definition 461
Program FOOTPRNT 477
Subroutine ADDRV 493
Subroutine ASSIGN 498
Subroutine BOOSTIN. 500
Subroutine BOOSTOUT. 506
Subroutine CHKSEQ 508
Function CRSTODWN 510
Subroutine EVAL 512

(Entry REVAL)
Function FLYDIST517
Subroutine FOOTEST 519
Subroutine FUELSAVE 530
Subroutine GOPRINT 532
Subroutine HITIT 545

(Entry MISSIT)
Subroutine IMPROVE 548
Subroutine INITASGN 554
Subroutine INPOT 556

(Entry OUTPOT)
Subroutine LOADREAD. 559

(Entry PRNTLOAD)

iii

Chapter Page

Subroutine LREORDER 560
Subroutine NEWCOOR 562
Subroutine OPTBOOST 565
Subroutine PRINTSET 574
Subroutine PRNTREQ 576
Subroutine RDCARDF 579
Subroutine REMOVE 585
Subroutine SETDATA 587
Subroutine TABLINPT 590

(Entry PRNTABLE)
Subroutine TEST 597
Subroutine TRANSFER 599

(Entry INITRANS)
Function UPTODOWN 601
Function VALF 603

7 PROGRAM POSTA!,)C 606
Purpose 606
Input Files 606
Output File 607
Concept of Operation 611

Raid Generation in POSTALOC 615
Setup for Sortie Optimization 619
Sortie Optimization 620
Development of Missile Plans 621
Program Conventions for Indexing and Bookkeeping . . 623

Common Block Definition 626
External Common Blocks 626
Internal Common Blocks 626

Subroutine CENTROID 651
Subroutine CHGPLAN 653
Subroutine CORRPARM 657
Function DIF 662
Subroutine DUMPSRT 664

Subroutine EVALB 666
Subroutine EVALOA 679
Subroutine EVALOB 682
Subroutine FLTPLAN 687

(Entry FINFLT)
Subroutine FLTROUTE 709

(Entry FLTPASS)
Subroutine GENRAID 715
Subroutine GETGROUP 718
Subroutine GETSORT 720
Subroutine INITOPT 725
Subroutine INPOTGT 728
Subroutine MISASGN 731

iv

-i "-

Chapter Page

Subroutine NEXTFLT 737
Subroutine NOCORR 740
Subroutine OPTRAID 743
Subroutine OUTPOTGT 746
Subroutine OUTSRT 748
Subroutine POSIT 751
Subroutine PRERAID 753
Subroutine PRINTIT 756
Function PRNTF 758
Subroutine REFABORT 760
Subroutine SETFLAG 764
Subroutine SORTOPT 766
Subroutine TGTASGN 775

8 PROGRAM PLNTPLAN 779
Purpose 779
Input Files 779
Output Files . 781
Concept of Operation.. 793

Block 10: Program Initialization 798
Block 15: Control Loop 798
Block 20: Determine Type of Plan 799
Block 24: Initialize Plan 799
Block 25: Post Launch Event 799
Block 26: Post Refuel Events 799
Block 27: Initialize Plan with Respect to

GOLOW Range 800
Block 30: Process Precorridor Legs and Apply

GOLOW-. 802
Block 31: Post'Corridor Events 804
Block 40: Adjust /OUTSRT/ for ASM Events 804
Block 50: Apply GOLOW-L' Before First Target . . . 807
Block 60: Post Depenetration Events 807
Block 80: Read Next /OUTSRT/ Record, Convert

Last One 807
Block 90: Process Final Plan and Write'on EVENTAPE. 808
Block 100: Program Termination 809

Common Block Definition 853
External Common Blocks 853
Internal Common Blocks 853

Subroutine ADJUST 871
Subroutine BOUNDARY 884
Subroutine CHKSUM 895
Subroutine CLINDATA 897
Subroutine DECOYADD 898
SubrouLine DISTIMIE 908

v

F=

Chapter Page

Subroutine FINDZONE 912
Subroutino FLYPOINT 916

(Entry POSTFLY)
(Entry PREFLY1)
(Entry PREFLY2)

Subroutine INITANK 918
Subroutine LAUNCH 920
Yibroutinp LNCHDATA 927
Subroutine PLANTANK 932
Subroutine PLANTMIS 939
Subroutine POST 945

(Entry POST4)
(Entry POSTS)
(Entry POST8)
(Entry POST15)
(Entry POST17)

Subroutine POSTLAUN 947
Subroutine PRNTAB 949
Subroutine SNAPCON 951
Subroutine SNAPIT 955
Subroutine SNAPOUT 957
Subroutine SWTCHALT 961
Subroutine TIMELNCH 963
Subroutine VAM 966
Subroutine ZONECROS 978

9 PROGRAM EVALALOC 982
Purpose 982
Input Files_..982
Output File 982
Concept of Operation 983
Common Block Definition 986

External Common Blocks 986
Internal Common Blocks 987

Subroutine BOMRPAKR 999
Function DIST 1002
Subroutine EVALPLAN 1004
Subroutine EVAL2 1008
Subroutine MISLPAKR 1014
Subroutine PACK 1016
Subroutine SEARCH 1021
Subroutine SSSPCALC 1023

(Entry INITPROB)
Subroutine TGTMODIF 1026
Subroutine UNPACKER 1031
Subroutine WPNMODIF 1034

vi

Chapter Page

10 PROGRAM INTRFACE 1036
Purpose 1036
Input Files 036

Output Files 1036
Concept of Operation 1046
Common Block Definition 1047
Subroutine FINDTIME 1056
Function IGETHOB 1058
Function IPROB 1060
Function KNOBLANK 1062
Function LATBT 1064

(Entry LONBT)
Function LATS 1067

(Entry LONS)
Function NOBLANK 1070
Function NOFFSYS 1072
Function NOP 1074
Function NPLNETYP 1076
Function NTIME 1077
Subroutine PRNTOFFS 1079
Subroutine YLDFRWC. 1081

11 PROGRAM TABLE 1084
Purpose 1084
Input File 1084
Output File 1085
Concept of Operation 1085
Common Block Definitions 1086
Program TABLE 1093
Subroutine HELP 1100

APPENDIXES
A. QUICK Attribute Names and Descriptions 1102
B. Entry Points for QUICK Utility Routines 1113

DISTRIBUTION ... 1117

DD Form 1473 1118

Part C

Program Listings
PLANSET 1119
PREPALOC 1253

vii

Part D

page

Program Listing
ALOC 1415
ALOCOUT 1720

Part E

Program Listings
FOOTPRNT 1853
POSTALOC 2073

Part F

Program Listings
PLNTPLAN 2347
EVALALOC 2597
INTRFACE 2701
TABLE 2782

viii

Fi

ILLUSTRATIONS (PART B)

Number Page

81 Block Diagram of Program FOOTPRNT 458
82 Hierarchy of Major Subroutines of Program FOOTPRNT . . 462
83 Program FOOTPRNT (General Flow) 484
84 Program FOOTPRNT (Detailed Flow) 485
85 Extra Re-entry Vehicle Allocation Example 495
86 Subroutine ADDRV 496
87 Subroutine ASSIGN 499
88 Subroutine BOOSTIN 503
89 Subroutine BOOSTOUT 507
90 Subroutine CHKSEQ 509
91 Function CRSTODWN S. l
92 Subroutine EVAL 514
93 Function FLYDIST 51F
94 Subroutine FOOTEST 523
95 Subroutine FUELSAVE 531
96 Subroutine GOPRINT 536
97 Subroutine HITIT 54:.
98 Subroutine IMPROVE 55()
99 Subroutine INITASGN 55")

100 Subroutine INPOT 558
101 Subroutine LREORDER 56[
102 Calculation of Launch Azimuth 563
103 Subroutine NEWCOOR 564
104 Subroutine OPTBOOST 569
105 Subroutine PRINTSET 575
106 Subroutine PRNTREQ 573
107 Subroutine RDCARDF 582
108 Subroutine REMOVE 586
109 Subroutine SETDATA. 589
110 Subroutine TABLINPT 595
III Subroutine TEST 598
112 Subroutine TRANSFER 600
113 Function UPTODOWN 602
114 Value Function Implemented in VALF 604

115 Function VALF 605
116 POSTALOC Calling Sequence 612
117 Program POSTALOC 613
118 Illustrative Curvilinear Functions 617
119 Configuration of Missiles in a Typical Group 622
120 Subroutine CENTROID 652
121 Subroutine CHGPLAN 655
122 Transformation of Coord4.iates (TLAT, TLONG) to (X, Y) 660
123 Subroutine CORRPARM 661

ix

i'-,

Number Page

124 Function DIFF 663
125 Subroutine DUMPSRT 665
126 Subroutine EVALB (Macro Flowchart) 671
127 Subroutine EVALB (Detailed Flowchart) 673
128 Subroutine EVALOA 681
129 Subroutine EVALOB 684
130 Illustration of Attrition Rates Assumed by FLTPLAN . . . 690
131 Subroutine FLTPLAN (Macro Flowchart) 696
132 Subroutine FLTPLAN (Detailed Flow) 698
133 Subroutine FLTROUTE 711
134 Subroutir. GENRAID 717
135 Subroutine GETGROUP 719
136 Subroutine GETSORT 721
137 Subroutine INITOPT 727
138 Subroutine INPOTGT 729
139 Subroutine MISASGN 734
140 Subroutine NEXTFLT 739
141 Subroutine NOCORR 742
142 Subroutine OPTRAID 745
143 Subroutine OUTPOTGT 747
J44 Subroutine OUTSRT 749
145 Subroutine POSIT 752
146 Subroutine PRERAID 755
147 Subroutine PRINTIT 757
148 Function PRNTF 759
149 Subroutine REFABORT 761
iS0 Subroutine SETFLAG 765
151 Subroutine SORTOPT. 768
152 Subroutine TGTASGN 777
153 Program PLNTPLAN (Macro Flowchart) 94
154 Path of T)yical Bomber Sortie 797
155 Acceptable Locations fut Refuel Area 801
156 Example of Precorridor Legs 803
157 Illus;,tration of ASM Event Adjustment 806
158 Program PLNTPLAN - Block 10: Program Initialization . 810
159 Program PLNTPLAN - Block 15: Control Loop 812
160 Program PLNTPLAN - Block 20: Determine Type of Plan . 813
161 Program PLNTPLAN - Block 24: Initialize Plan 814
162 Program PLNTPLAN - Block 25: Post Launch Event 815
163 Program PLNTPLAN - Block 26: Post Refuel Events 816
164 Program PLNTPLAN - Block 27: Initialize Plan with

Respect to GflLOW Range 821
165 Program PLNTPLAN - Block 30: Process Precorridor Legs

and Apply GOLOWI. 822
166 Program PLNTPLAW - Block 31: Pest Corridor Events 825
167 Program PLNTPLAN - Block 40: Adjust /OUTSRT/ for ASM

Events 829

x

Number vage

168 Program PLNTPLAN - Block 50: Apply GOLOW2 Before
First Target 833

169 Program PLNTPLAN - Block 60: Post Depenetraiion Events 838
170 Program PLNTPLAN - Block 80: Read Next /OUTSRT/ Record,

Convert Last One 839
171 Program PLNTPLAN - Block 90: Process Pinal Plan and

Write on EVENTAPE 849
172 Program PLNTPLAN - Block 100: Terminations 852
173 Increasev in Low-Altitude Flight 875
174 High-Altitude Adjustment 876
175 Low-Altitude Adjustment 876
176 Subroutine ADJUST I 877
177 Example of a Zone Crossing 885
178 Example of Crossing for a Non-Co3ivex Zone ... '......... 885
179, Example of Zone Boundary Description 886
180 Subroutine BOUNDARY 888
181 Subroutine CHKSUM 896
182 Subroutine CLINDATA 897
183 Subroutine DECOYADD 901
184 Distance Adjustments for Zone Crossings 909
185 Subroutine DISTIME 910
186 Subroutine FINDZONE 913
187 Subroutine FLYPOINT 917
188 Subroutine INITANK_ 919
189 Determihation of ASM Aim Point 923
190 LAUNCH Procedure Outline 924
191 Computation of Flight Path Aim Point 925
192 Subtoutine LAUNCH 926
193 Subroutine LNdHDATA 928
194 Subroutine PLANTANK 935
195 Subroutine PLANMIS.S 941
196 Subroutine POST 946
197 Subroutine POSTLAUN 948
198 Subroutine PRNTAB 950
199 Subroutine SNAPCON 953
200 Subroutine SNAPIT 956
201 Subroutine SNAPOUT 959
202 Subroutine SWTCHALT 962
203 Subroutine TIMELNCH 965
204 Subroutine VAM 970
205 Subroutine ZONECROS 979
206 Program EVALALOC 984
207 Location of Packed Values in Subroutine BOMRPAKR 1000
208 Subroutinb BOMRPAKR 1001
209 Function DIST 1003
210 Subroutine EVALPLAN 1006
211 Subroutine EVAL2 i..1010

xi

Number Page

212 Subroutine MISLPAKR 1015
213 Subroutine PACK 1018
214 Subroutine SEARCH. 1022
215 Subroutine SSSPCALC 1025
216 Subrout~ine TGTMODIF 1028
217 Subroutine UNPACKER 1033
218 Subroutine WPNMODiF 1035
219 Program INTRFACE 1048
220 Subroutine FINDTIME 1057
221 Function IGETITOB 1059
222 Function IPROB 1061
223 Function KNOBLANK 1063
224 Subroutine LATBT 1065
225 Function LATS 1068
226 Function NOBLANK 1071
227 Function NOFFSYS 1073
228 Function NOP 1075
229 Function NPLNETYP 1076
230 Function NTIME 1078
231 Subroutine PRNTOFFS 1080
232 Subroutine YLDFRAC 1082
233 Target List (Program TABLE) 1087
234 Vehicle Characteristics List (Program TABLE) 1088
235 Weapon Characteristics List (Program TABLE) 1089
236 Missile Base List (Program TABLE) 1090
237 Bomber Base List (Program TABLE) 1092
238 Program TABLE1095
239 Subroutine HELP 11...................... 01

xii

r!

TABLES (PART B)

Number Page

23 Format for MIRV Group Records on ALOCGRP File 456
24 Program FOOTPRNT External Common Blocks 463
25 Program FOOTPRNT Internal Common Blocks 466
26 List of Initial Settings of Variables 475
27 Format for Assignment Data Scratch File 481
28 Data Blocks Used in Print Requests 534
29 Format for Print Requests 577
30 Footprint Parameter Data Transmission 588
31 Format for Footprint Parameter Data Scratch File . . 588
32 STRKFILE Format (Missile Record) Written From

Array EVTDATA 608
33 STRKFILE Format (Bomber Record) Written From

Common OUTSRT 609
34 Program POSTALOC External Common Blocks 627
35 Format of Array EVTDATA in Common Block /3/ as Used

by Subroutine MISASGN (the Missile Record to be
Output to STRKFILE) 636

36 Program POSTALOC Internal Common Blocks 638
37 List of Admissible Input Events by Type and

Information Relevant to Each 780
38 Bomber Events Recognized by PLNTPLAN 782
39 Format of EVENTAPE Records (Bomber Plan Record) 784
40 Format of EVENTAPE Record (Missile Plan) 785
41 Format of EVENTAPE Record (Tanker Plan) 786
42 Format of EVENTAPE Record (Time Dependent DBL

Destruct Event) 787
43 Format of EVENTAPE Recovery Tables 787
44 Format of PLANTAPE Record (Bomber Plans) 788
45 Format of PLANTAPE Record (Missile Plans) 790
46 Format of PLANTAPE Record (Tanker Plans) 792
47 Program PLNTPLAN External Common Blocks 854
48 Program PLNTPLAN Internal Common Blocks 860
49 LAUNCH PRIORITY 900
so Tanker Input Record 934
51 Tanker Plan 934
52 Arrays TDATA/ITDATA and BLOCK/LOCK Used in

PLANTMIS and TIMELNCH 940
53 Possible Values of a and b *...952
54 Program EVALALOC External Common Blocks 989
55 Program EVALALOC Internal Common Blocks 994
56 Format of Strike Card on STRIKE Tape 1038
57 Format of Strike Card on STRKRJST Tape 1040
58 Format of "A" Card on Sortie Specifications Tape

(ABTAPE) 1042

xiii

Number Page

59 Format of "B" Card on Sortie Specifications Tape
(ABTAPE) 1043

60 Program INTRFACE Common Blocks 1052

xiv

* ~ABST1RACT:

ilie,~~l~i~f e t %ed tlic k-React Iil) (etteral War~ (.mi ing Synteml iii (QUICK will
11i.Uelt iiljltt dat a, aiit olilat .ica % 11)' i ratt(LtI global st nateg ic noel eat', war.
Iplalts , s im111111 vt t he p1l aimled eVenlt S, MidIId 1 rvie ita ~t i St i Cal IOutput
sI 11111a v i vs. . 01CK has liven propraituied iii FORTRAN for use onl Ihe NM1CSSC
Cilt 38010 complit er !;y;t em.

The QUI ICK I' rag raitin)I:t Spec i Vikat imois Maitia 1 (PSM) eons ist s of, till-cc
VO Ittte 1 \1C I time111 I , [iAt a I1111tt Subshstvi. Im:Vol timei II, Pl an Gwie rtat iOil
stihls)'s em. \vo itnit., Ill , Si tnt lit joilt alld Pat a oiitipit SiSVteis.EThe
P tor ra111ittill'. o Spec i ca i oils Manital IComplIemen ts illhe othle r QUICK I (Cinpo i cv
Systeml Manwia I to tac i lit at f ma iiit eila;ce atoefr iil ~gssLi
Thit SVOI iitw , Voll ile 11 , P t-oYides the withrgant /a aI's viI it t echnitIcal
le SC Vp1 i oil 0 V the puirpos e, hut ct i on s, gene raI p roceditre s , anld P rog ratittit ill'g
t echin iic ques pp Iikcable to t he ptog ramls of tit P1 111 Cezi e rat ion slils ys terVll
Thits S ollumle i s ill six~ pa rt.F : Plaits A and B prov ide a desevi pt ion of
thet p rol r alnt wit i1 cit L maiell t he Subsyvstemll Patrt s C thItrough i: coitatill
t he as soc at ed p rog ratil list inigs. Comnpaniiont doctieivi t s itrc:

I (i~Ni~~AI Pi-SR IPT ION
Computitr Systvem Manual1 CSM GDi 9A-0i7
A ntontIechnitical description for seit jor moniatvgittilt personnel

2. ANALYTICAL MANIIAI,
Cotiptite r Systemt ManualI CSM AM !)A-(,7 (titree vo mnines)
PrIov ide's a de"C clipt'l (it' o the sys-teml me1t hodo 1ogy for the non1-
p rogi,.Jime1vr anla h's tt

3. 1lIISHVS MANUlAL
Camiputitr Syst em Manuial CSM tIN 9l-o7
P rov i deos de t aile IOi il ts it ru kil jlS for app1 Ii cat o tis ot, thle syst Vil

4 . OPERATOR'S MANUtAL
Coluiptit er ~se Mainual CSM 0M ')A-07
Piov ide's inist ruo i oils and prokcdulres for thte cotllitet 'I oplerat ors

xv

CIHAPThR 6
PROGRAM FOOTPRNT

PURPOSE

The purpose of program FOOTPRNT is to divide the set of targets assigned
to a MIRV group into subsets, each of which is assigned to one booster
in the group. This division is constrained by the limitations of the
MIRV systems so that the acceptable booster assignments lie within a
geographic pattern known as a footprint. The program is divided into
two modules, the test module and the assignment module.

The test module receives as input a potential booster assignment. Using
footprint constraint parameters supplied by the user, this module
determines if the target set is a feasible footprint for the MIRV system.

The assignment module attempts to assign as many targets as possible to
a booster within booster loading constraints specified by the unar.
Various loading options give the user flexibility in deterKs•:,g the typte
of loading to be employed.

This program receives the TMPALOC file from program ALOCOUIT and prepares
the ALOCGRP file. This latter file contains the weapon-target allocation
ordered by weapon groups. Program FOOTPRNT processes only those groups
with a MIRV capability. The target assignments to those groups are
divided into subassignments, each of which is a feasible MIRV booster

assignment.

There are two types of user input, algorithm control and footprint assign-
ment parameters. The first type controls the performance of the heuristicalgorithm which com~prises the assignment module. (These parameters are
discussed in Volume II of the User's Manual, Chapter 3, Plan Generation
Subsystem, Program FOOTPRNT, Input.) The footprint assignment parameters
define the nature of feasible footprints. These parameters define the
fuel used in delivering a series of re-entry vehicles and decoys in a

specific geographic pattern. The required user-input parameters are a set
of coefficients to equations used to model the physical MIRV systems.
(These equations are discussed in the Analytical Manual, Volume II, Plan
Generation Subsystem, Basic Sortie Generation - MIRV Missile Plans.)

In addition to the parameters which define feasible footprints, the user
specifies one of three options for loading the boosters. The first option,
free loading, allows the algorithm to load the booster subject only to a
maximum load (number of re-entry vehicles) constraint. The second option
forces the algorithm to attemp to meet a minimum load constraint as well
as the maximum load constraint. The third option requires the algorithm
to meet both the minimum and maximum load constraints.

453

02 546 (

INPUT FILES

There are three basic sources of input to program FOOTPRNT: the TMPALOC
file, the BASFILE file, and the user-input parameter cards. The TMPALOC
file is produced by program ALOCOUT. This file contains the assignment
of weapons to targets, ordered by group and corridor. That is, all
targets assigned to weapons from the same group are placed together on
the TMPALOC file. Within each group, the targets assigned to the same
corridor are also placed together. Common /STRKSIJM/ on this file
describes the ordering of corridors and strikes for each group. For
missile groups, only corridor 0 is used, so this latter ordering by
corridor has no effect. Program FOOTPRNT processes only those missile
groups Aith a MIRV capability.* Therefore, all information on the
'TMPALOC file which does not deal with MIRV weapons is merely copied
verbatim to the ALOCGRP file. For MIRV weapons, FOOTPRNT reads from the
'INPALOC file the information contained in common blocks /STRKSUM/ and
/3/ as output by ALOCOUT. These data are transferred to common blocks
/STRKSUNI/, /RAIDATA/, and /4/ in program FOOTPRNT. This information
defines the possible targets which can be assigned to the weapons in
each MIRV group. Program FOOTPRNT performs the assignment of targets to
individual boosters and outputs the information on the ALOCGRP file in a
form such that program POSTALOC can prepare the basic sorties for each
MIRV missile booster.

The data retrieved from the BASFILE include: plan size information
(//MASTER/), file information (/FILES/), weapon group information (from
blocks /PAYLOAD/, /WPNTYPE/, /WPNGRP/ on BASFILE), and excess weapon
assignment information (from /EXCESS/ on BASFILE).

The user-input parameters define the program control variables and the
footprint constraint definition variables. The former set of variables
governs the performance of the assignment module of the program. The
latter set of wvriables defines the footprint constraints to be applied
in the test module.

OUTPUT FILES

Program FOOTPRNT produces the ALOCGRP file. (This file is written using
the QUICK filehandler. The description of those routines describes the
format of the physical makeup of this file.) The file is output to the
CDC 814 disk unit for use by program POSTALOC. If there are no MIRV weapons
in the plan, program FOOTPRNT copies the TMPALOC file onto the ALOCGRP
file. If there are MIRV weapons in the plan, the information for those
groups without MIRV weapons is copied verbatim onto the ALOCGRP file.

* See program FOOTPRNT in Subroutines section of this chapter.

454

For those weapon groups with a MIRV capability, the data on the TMPALOC
file are read into core. The program creates the individual booster
assignments and outputs the strike information onto the ALOCGRP file. ForMIRV groups, the data are organized as follows (see table 23). The index
number of each target that receives the first re-entry vehicle (RV) from
a booster is set negative. The strikes are ordered such that targets
which receive successive RVs from the same booster are listed in that
order. (See also following section: Concept of Operation.)

CONCEPT OF OPERATION

Program ALOCOUT prepares the TMPALOC file on which information concerning
target assignments is sorted by group. For those groups with a payload
containing multiple independently-targetable re-entry vehicles (MIRV),
program FOOTPRNT performs further processing. The inclusion of a MIRV
capability into the QUICK system is based upon the assumption that the
MIRV weapons can be allocated to targets without regard to the "footprint"
constraints. (These constraints define the geographic area into which the
ordered set of re-entry vehicles from a single booster must be targeted.)
This design approach considers that if a certain amount of extra or
excess strikes are included in the allocation, the footprint constraints
can be imposed later without the loss of payoff. Since imposition of the
constraints may show that a certain number of strikes contained in the
unconstrained allocation are not capable of inclusion in a feasible
footprint, the extra strikes are added so that the final assignment
contains the correct number of strikes.

This program prepares the ALOCGRP file for use by program POSTALOC. This
file is very similar to the TMPALOC file. For those weapon groups with
a MIRV capability, the data set on ALOCGRP differs from that on TMPALOC
in the following ways:

1. The "extra" strikes have been removed

2. The index number (INDEXNO) of the target which receives the
first re-entry vehicle (RV) from each booster is set negative

3. The strikes are ordered such that:

a. Within each booster load (i.e., between minus signs) the
strikes are ordered in order of their delivery by the missile

b. The booster loads are ordered by decreasing value (as
defined by the sum of the relative damage values (RVAL)
for all targets assigned to the booster).

455

Table 23. Format for MIRV Group Records on ALOCGRP Pile

ASSOCIATED VARIABLE
COMMON OR ARRAY LENGTH DESCRIPTION

STRKSUM KGROUP 1 Group number

NTSTRK 1 Total number of strikes for
this group

NCORR 1 Number of corridors for this
group (=1)

STRKSUNL NSTRK 30 Number of strikes assigned
to each corridor

RAI)ATA NT 1 Total number of targets
assigned to group

JGROUP 1 Group number

JCORR 1 Corridor number (=0)

INDIX NT Index numbers of targets
(negative if first target
assigned to booster)

TGTLAT NT Target latitude (degrees)

TGTLONG NT Target longitude (degrees)

RVAL NT Relative value of strike

DLAT NT Offset latitude (degrees)

DLONG NT Offset longitude (degrees)

RAIDATA LLFIX (NT/32)+l Fixed assignment. indicator

DESIG NT Target designator code

TASK NT Target task code

CNTRYLOC NT Target country location code

4 FLAG NT Target flag code

456

j

The only other data file required by program FOOTPRNT is the BASFILE.

The program reads from this file:

1. Plan size information (/MAS'IER/)

2. Logical file units (/FILES/)

3. Weapon group information (/WPNGRPX/ in FOOTPRNT; /PAYLOAI)/,
/WPNTYPE/, /WPNGRP/ on BASFIIF)

4. Excess assignment information (/EXC"SS/ oni BASFILU).

The program operates on a group-by-group basis. Each group is considered
independently of all other groups. Hence, the discussion of all sub-
roptines except the main program will consider only the operations required
for the current group. For non-MIRV weapon groups, the TMPAI,OC data are
copied onto ALOCGRP. For MIRV groups, further processing is required.

The program consists of two modules, the assignment module and the testingmodule. The assignment module determines the ordered subset of the total

strike set that is to be assigned to each booster. The testing module
determines the feasibility of any single booster asc.ignment. The assignment
module calls the testing module many times during construction of the
subsets. Figure 81 displays a functional diagram of this program.

The card input data for each module are discussed in detail in the
subroutine section (subroutine RDCARDF for assignment module, subroutine
TABLINPT for testing module). The assignment module data include control
information on which groups to process, the degree of effort expended in
forming footprints, the booster loading option, and other parameters which
govern the operation of the heuristic algorithm which subsets the target
list. The testing module data describe the footprint constraints. These
data contain information on fuel loads, maximum ranges, fuel consumption
rates, and distance ratios.

In essence, the operation of this program is a reordering of a list. The
input is an unordered list of strikes assigned to the group. The required
processing is to subset and reorder this list such that each sublist is a
feasible booster assignment. Since much of the processing involves lists
of various kinds, it is useful here to describe some of the basic lists
that are involved in processing (input, RAIDATA, POTENT).

The first list is the input data, contained in common /RAIDATA/ and common
/4/. The data consist of several lists, each containing one element for
each target assigned to the group. The lists contain index number
(INDEXNO), target latitude (TG'c'LAT), target longitude (TGTLONG), relative
damage value (RVAL), offset latitude (DLAT), offset longitude (DLONG),
fixed assignment indicator (LLFIX), target designator code (DESIG), target

457

START

Bring in______

k O~iC Group Data

A~s inment Module

Do For All Done

Boosters rite Plan

I ~0

Load
IPotential

arget Arrays

S~Test Module

Generate

Footprint &sTestn I
Akssignment I

B ooster

Fig. 81. Block Diagram of Program FOOTPRNT

458

"Aý/

task/subtask code (TASK), target country location code (CNTRYLOC), and
target flag code (FLAG). Most of these data are not needed after the early
calculations, so the data are written out onto a scratch file.

The geographic data are then converted to polar coordinates centered on the
group centroid with axis passing through the North Pole. The range and
launch azimuth from centroid to each target is computed and stored. The
data are then reordered according to increasing value of launch azimuth.
(The sequence array required for this ordering is also written on the
scratch tape.) The reordered targets are then arbitrarily assigned to
boosters in order of increasing azimuth. This initial assignment is made
without consideration of footprint feasibility. It merely provides a
starting point.

This processing has created the RAIDATA lists, contained in commons
/RAIDATA/ and /2/. (In the remainder of this chapter, the RAIDATA index
refers to the index of the target in the RAlDATA lists.) These lists
comprise, for each target, the range (R) from the weapon group centroid,
the launch azimuth (THETA), the relative damage value CRVAL), and the various
pointers. The pointers for each target are defined as follows:

IFOR: A forward pointer. This is the RAIDATA index of the
target which will follow in the footprint. If this
target is not assigned to any footprint or if it is the
last target in the footprint, IFOR = -1.

IBACK: A backward pointer. This is the RAIDATA index of the
preceding target in the footprint. If this target is
not assigned to any footprint, TBACK = -1. If this
target is the first target ih the footprint, then TRACK
is set to the negative of the RAIDATA index of the
target in the footprint with the greatest azimuth.

ISTATUS: A status indicator, defined as follows:

= -2 - Not assigned to any footprint and not in potential
target list (see below)

= -1 - in the "lost" target list

= 0 - In potential target list

> 0 - Number of booster to which this target is assigned.

There are also two arrays in the RAIDATA lists which are indexed by booster.
They are:

459

* * " ~ .

IBOOST: The RAIDATA index of the first target assigned to this
booster

NTB: The number of targets currently assigned to this booster.

Although tie RAIDATA list provides the basic data base for footprint
construction, it would be inefficient to perform detailed calculations on
all the targets in the list for every booster in the group. A subset of
this list, named the potential target list, is created for each booster.
The assignment to a booster can be formed with only the targets present
in the potential target list for that booster. Detailed intertarget
calculations are performed only on targets in this list. This list is
contained in common blocks /POTENT/, /1/, and /3/. The index to targets
in this list is called the POTENT index.

Within the POTENT list there is a further division. The hit list (IHIT)
contains those targets which define the current footprint. The miss list
(MISS) contains all those targets in the potential list which are not on
the current hit list. The booster assignment is comprised of the last
hit list constructed by the footprint construction subroutines.

The major arrays which comprise the POTENT list are:

IPOT: The RAIDATA index of the target.

INVERSE: A pointer to the hit and miss lists. If positive, it
is the target's position on the hit list. If negative,
it is the target's position on the miss list.

AGE: A factor related to the number of boosters processed
while the target has remained in the POTENT list.

VALFIRST: The worth of using this target for the first re-entry
vehicle delivered in a footprint.

JAFTER: The POTENT index of the target which would immediatcly
precede this target if it were added to the footprint.

IHIT: The POTENT index of targets in th,? hit list.

TOFLY: The equivalent downrange distance between consecutive
targets in the hit list.

COSTEFF: The worth of not deleting this target during the improve-

ment phase.

MISS: The POTENT index of targets in the miss list.

VAL: The worth of adding the target to the current footprint.

460

NDEXVAL: A sequence array containing the order in which targets
in the miss list will be tested for inclusion in the
footprint.

IFREE: An array containing the indices of cells in the POTENT
list which have no targets assigned to them. NFREE is
the number of available cells. IFRiE(NFREE) always
contains the index of the next available cell.

LOST: The RAIDATA index of targets geographically close to
the targets assigned to the current booster. These
"lost" targets are awaiting entry into tho miss list.

Common /3/ contains several arrays which store detailed data on the
potential targets.

The details of the processing of elements in all three of these lists is
contained in subsequent sections of this chapter. Figure 82 shows the
hierarchy and function of the major subroutines of this program.

COMMON BLOCK DEFINITION

This program references external common blocks /MASTER/ and /TAPES/ from
the BASFILE. In addition, certain information for common block /WPNGRPX/
is read from the BASFILE blocks /'PAYLOAD/, /WPNGRP/, and /WPNTYPE/.

Tables 24 and 25 define the variables in each common block. Table 24
describes the external common blocks (those transferred on files to or
from other QUICK programs), and table 25 describes the internal common
blocks (those used internally to program FOOTPRNT). Table 26 lists
these variables and their initial value. Those variables marked with
an asterisk are given new values during executio;,.

461

ParmeerInut

Main Processor 'IwrARDF '

L FOIOTPRNT TABLNF-

linitijl Data Setu Fie1,utOtu

Sh DAAI uu Fleha ~dier
NINTPSGN

ýPoten~tial Target Footprint Generation Booster Assignmeht

P Array Setup
UPTBOO'iT

Liý'. Manipulation Evaluation Assignment Testing

INP'/OUT/Ourp

Pig. 8 . Heacyo aorSbotnso Porm FOP

L HITIT/'?SS462

I:.
Table 24. Program FOOTPRNT EXternal Common Blocks

.• (Sheet 1 of 3)

•.! INPUT FROM BASFILE

BLOCK VARIABLE OR ARRAY* DESCRIPTION

MAS1TER IHPkTE Date of run initiation

IDENTNO Run identification number

ISIDE Attacking side

NRTPT Number of route points

NCORR Number of penetration corridors

NDPEN Number of depenetration corridors

NRECOVER Number of recovery bases

NREF Number of refuel areas

NBNDRY Number of boundary points

NREG Number of command and control
regions

NTYPE Number of weapon types

NGROUP Number of weapon groups

NTOTBASE Total number of bases

NPAYLOAD Number of payload types

NASMTYPE Number of ASM types

NWHDTYPE Number of warhead types

NiANKBAS Number of tanker bases

NCOMPLEX Number of complex targets
NCLASS Number of weapon classes

(two)

NALERT Number of alert conditions
(two)

NTGTS , Number of targets

NCORTYPE Number of penetration corridor
types

*Parenthetical values indicate array dimensions. All other elements are
single word variables.

463

Table 24. (cont.)
(Sheet 2 of 3)

BLOCK VARIABLE OR ARRAY DESCRIPTION

MASTER NCNTRY Number of country codes on
(cont.) defending side

FILES TGTFILE(2)* Target data file

BASFILE(2) Data base information file

MSLTIME(2) Fixed missile timing file

ALOCTAR(2) Weapon allocation by targets file

TMPALOC(2) Temporary allocation file

ALOCGRP(2) Allocation by group file

STRKFIL(2) Strike file

EVENTAPE** Simulator events tape
PLANTAPE** Detailed plans tape

WPNGRPX*** NWPNS (200) Number of weapons in group

NVEHGRP(200) Number of vehicles (boosters) in
group

WLAT(200) Latitude of group centroid

WLONG(200) Longitude of group centroid

ITYPE (200) Weapon type

IPAY (200) Payload index

ICLASS(80) Class number

ISIMTYPE(80) Hollerith name of weapon system

IMIRV(40) MIRV system identification number

* First word is logical unit number; second word is maximum file length
in words. These files are all on disk.

** Logical tape unit number. These files are on magnetic tape.

*** From blocks /WPNGRP/, /WPNTYPE/, and /PAYLOAD/ on BASFILE.

464

Table 24. (cont.)

(Sheet 3 of 3)

INPUT' FROM TMPALOC AND OUJTPUJT ON ALOCGRP

BLOCK VARIABLE OR ARRAY DESCRIPTION

STRYSUM KGROUP Group number

NTSTRK Total number of strikes assigned

NCORR Number of penetration corridors
used

NSTRK(30) Number of strikes assigned to each
penetration corridor

LSTRKSUM Length of STRKSUM record

RAIDATA* NT Total number of strikes

JGROUP Group number

JCORR Penetration corridor

INDEX(1500) Target index number

TGTLAT(1500) Target latitude

TGTLONG(1.500) Target longitude

RVAL(1500) Relative value for target

DLAT(1500) DGZ offset latitude (degrees)

DLONG(1500) DGZ offset longitude (degrees)

LRAID Length of /RAIDA'TA/ block to this
point

NTMAX Maximum number of target assign-
ments for one group

LLFIX(1SOO) Fixed assignment indicator
(logical type variable)

4 DESIG(1500) Target designator code

TASK(1500) Target task/subtask code

CNTRYLOC(1500) Target country location code

FLAG(1500) Target flag code

* This block is redefined for internal use - see internal common block

/RATDATA/ in table 25.

465

Tt& 10 25. Program FOOTPRN'l Internal Comimon Blocks
(Sheet 1 of 9)

BLOCK VARI AB L1 OR ARRAY IW'scurI TION

RAI DATA NT Total number of strikes

J(UlOUP, Group number

JCORR Penetration corridor

INDEX* (1500) Target index number

R(1500) Distance from group centroid to
IXGZ (n1aut iell mlilIes)

TIIETA(1500) Launch azi~muth of weapon from
ccntroid to DGZ (radians)

RVAL(l500) Relative value for target

I FOR(1500) Forward pointer for booster
assignments

TBACK(1I500) Backward pointer for booster
assignments

LlA 11) Length of /RAIDIATA/ Mlock to this
pot 3it

NTMAX Maximium number of target assign-
ments for one group

ulpT (50) Fixed assignment indicator
(logical type variable)

CONTROL NV Numbeor of boostors inl group

NARV Average nunitir of targets per
booster in initial ass ignment

N E XTRA Namber C'~ ", b0oosters. With inlitial
asssi gnient s containing (NARV + 1)
re-entry vehicles,

PE1N'RA** Fract ion of total strikes that arc
excess strikes added by PI'REALOC.

NPASS Processing pass number

*Array I PUM, used for input/out temporary storage equiva loened to
this array.
Fro 1tOncommhion hilock /ECS/onl lASFILF.H

.106

Table 25. (cont.)
(Sheet 2 of 9)

"BLOCK VARIABLE OR ARRAY DESCRIPTION

CONTROL FRACLOOK Fraction of next booster load
(cont.) for look-ahead

MAXFOOT Input parameter governing degree
of effort expended in subroutine
OPTBOOST

DELAGE Multiplier for AGE in potential
target arrays

PURGE Fraction of targets in potential
target arrays removed in BOOSTIN

PN Weighting factor for worth function

EXTRAB* Number of extra booster loads
added in PREPALOC

NOK Actual number of correct strikes
to be assigned

IGSTART First group to process

IGEND Last group to process

DSQUARE CD2 Square of CROSSDWN

UD2 Square of UPDON I see co mon
/RANGmE/

DEL2 Square of DELMIN

DZ2 Square of DZ see common

VMIN =VALF(DELMIN/DZ,TNZ) VALPARM/

EARTH RADIUS Radius of earth (Nautical miles)

DEGTORAD Conversion factor for degrees to
radius

PI Pi

PIDIV2 Pi/2

FOOTIO MAXRV Maximum number of re-entry vehicles
allowed in one assignment

ISYS System identification number

NTAR Number of re-entry vehicles
currently assigned

* From common block /EXCESS/ on BASFILE.

467

mw.i

Table 25. (cont.)
(Sheet 3 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION

FOOTIO RIN(20) Range to target (nautical miles)
(cont.) THIN(20) Azimuth to target (radius)

IFEAS Number of targets that can be
reached within fuel constraints

DELRSTRT Maximum additional flying distance
allowed if first target in footprint
is to be changed (nautical miles)

DELRAFT(20) Maximum additional flying distance
allowed if new target is to be
added after this target in
footprint (nautical miles)

FUELEFT Fuel left after completion of
weapon deliveries

in first footprint

NIIITOLD Number of targets in first
footprint

VHITOLD Sum of RVALs for targets in first
footprint

IF2SAVE(20) Potential target index of targets
in second footprint

N2SAVE Number of targets in second
footprint

INDEX JINR RAIDATA index of target to be
entered into potential target
arrays

JINP Potential target index of target
to be entered

JOUTR RAIDATA index of target to be
removed from potential target
arrays

JOUTP Potential target index of target
to be removed

JSAVE(20) Potential target index of targets
entered by look-ahead

468

..............

Table 25. (cont.)
(Sheet 4 of 9) 44

BLOCK VARIABLE OR ARRAY DESCRIPTION

INDEX NJSAVE Number of targets entered by look-
(cont.) ahead

JSAVOPT Look-ahead flag

LOADATA LOADOPT Booster loading option

NRVADD(1500) Number of extra re-entry vehicles
added to this target

NADDED Total number of extr.' RVs added
in a pass

NTOADD Number of RVs to be added to
current footprint

NONTAR(20) Total number of RVs on each target
in assignment

NADDOLD Number of extra RVs added in
first pass

PARAMETR MAXSYS Maximum number of systems allowed
in footprint parameter table

IHNAME(40) Hollerith name of MIRV system

MINLOAD(40) Minimum number of RVs per booster

MAXLOAD(40) Maximum number of RVs per booster

DSPACE(40) Minimum spacing (nautical miles)
between consecutive DGZs in footprint

THROWMAX(40) Maximum distance between consecutive
DGZs in footprint (nautical miles)

MTYPE(40) Footprint constraint functional
form designator

IDATA(40) Index to footprint parameter data
set

PERFORM NASGN Total number of targets assigned
to boosters in current pass

VALASGN Sum of RVALs for all targets
assigned in current pass

TVAL Sum of RVALs for all targets

NOLD Number of targets assigned in
first pass

469

4112 O - 72 3

Table 25. (cont.)
(Sheet 5 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION

PERFORM VALOLD Sum of RVALs for targets assigned
(cont.) in first pass

POTENT MAXPOT Maximum number of potential targets

MA)HIT Maximum number of targets in hit
list

IPOT(50) RAIDATA index of potentia) targets

NHIT Number of targets in hit list

IHITC20) Hit list - potential target index

TOFLY(20) Distance (nautical miles) between
successive targets in hit list

NMISS Number of targets in miss list

MISS(50) Miss list - potential target index

NFREE Number of available spaces in
potential arrays

IFREE(S0) Potential target index of available
spaces

NLOST Number of "lost" targets

LOST(S0) RAIDATA index of "lost" targets

INVERSE(50) Index to position in hit or miss
list

AGE(50) Factor related to number of
boosters processed while target
remains in potential target arrays

RANGE CROSSDWN Ratio of downrange to crossrange
distance

UPDOWN Ratio of downrange to uprange
distance

DELMIN Minimum spacing between consecutive
DGZs in a footprint

DEFAULT Minimum spacing allowed for
computation

TSCRATCH ISCR Logical unit number for assignment
data scratch file

470

Table 25. (cont.)
(Sheet 6 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION
TSCRATCH ITABL Logical unit number for footprint
(cont.) parameter dats scratch file

VALPARM DZ Maximum distance between consecutive
DGZs in footprint

TNZ Intercept for value line (deter-
mined by PN in /CONTROL/)

SLZ Slope of value line

WPNTGT IPOTGT Potential target index of target
to be added or deleted from hit
list

JAFT Potential target index of target
after which new target is to be
added ini hit list

JTGTD RAIDATA index of taiget to be
removed from a booster assignment

NUMBOOST Booster number currently being
processed

VAL(S0) Worth of target if added to
footprint

JAFTER(50) Potential target index of target
preceding new target in footprint

VALFIRST(50) Worth of making target first
target in footprint

COSTEFF(20) Inverse of additional fuel needed
to reach this target

D(50,50) Distance computation matrix

2 MAXBOOST Maximum number of boosters allowed
in one group

IBOOST(500) RAIDATA index of first target
assigned to booster

NTB(500) Number of targets assigned to
booster

ISTATUS(1500) Target processing status

NDEX(S100) Temporary index storage

471

Table 25. (cont.)
(Sheet 7 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION

3 RP(5O) Range of target

TP(50) Azimuth to target

RVALP(50) Target relative value

SINES(50) Sine of azimuth

COSINES(50) Cosine of azimuth

AVRP Average range of all potential
targets

AVTHP Average azimuth of all potential
targets

RHIT "ange to first target in footprint

THIT Azimuth to first target in footprint
SINAV Sine of AVTHP

COSAV Cosine of AVTHP

SINHIT Sine of THIT

COSINHIT Cosine of THIT

THOLD Azimuth used to compute entries
in distance matrix

DEBUG IOTA Index to last entry in ICAMFROM
array

ICAMFROM(20) Hollerith names of subroutine
calling sequence

PRINT ICALL Print request number

IMUST Error condition indicator

Filehandler* See section in this manual on
filehandler

FLAG NFLAG Maximum number of print options

IFLAG(100). Active print indicator

NC Number of print requests

* ITP, TWORD, MYIDENT, NOPRINT, IFTPRNT, FILýIEL, MYLABEL

472

F3

Table 25. (cont.)
Sheet 8 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION

FLAG IPRNT(60) Print option number
(cont.) IFG(60) First group to be printed

IFP(60) First pass to be printed

IFB(60) First booster to be printed

ILG(60) Last group to be printed

ILP(60) Last pass to be printed

ILB(60) Last booster to be printed

MYPRT(60) Mode by which print was requested
(DEFAULT, INPUT, or REMOVED)

IDUMP Print number to abort run with
memory dump

The following blocks contain the parameters which define the footprint
constraints. The descriptions of subroutines TABLINPT and SETDATA contain
more detailed information.

FOOTDATA GAS(2) Fuel available for footprinting

(long-range RX(2,2) Basic range extension coefficient
sys tern) RAXX(2,2) Added range extension coefficient

TOSSCl(2,2'2) Fuel consumption parameters

TOSSC2 (2,2,2)l

TEONE(2,2) Fuel consumption exponents

TETWO(2,2)

TDENOM(2) Distance scaling factor

RBASIC(2,2) Basic maximum booster range

RADD(2,2) Added maximum booster range

EONE(2) Downrange-crossrange ratio

ETWO(2)ý exponents

DENOM Distance scaling factor

473

Table 25. (co
(Shet)

BLOCK VARIABLE OR ARRAY DESCRIPTION

POOTDATA CONE (2,2) Downrange-crossrange ratio
(cont.) CTWO(2,2)1 coefficients

LLNGDAT Length of this block

SHRTDAT ALPHAZ (16)(short range
system) ALPHA1 (16) Fuel consumption parameters

ALPHA2 (16)

BETAZ (16)

BETA1 (16) Fuel load parameters

BETA2 (16)

MAXRBOST(16) Maximum booster range

GTWO

GONE Downrange-crossrange ratio
parameters

GZERO

DONE Downrange-uprange ratio
DZEROI parameters

LSHTDAT Length of this block

PENADD TOTFUEL Total fuel available for spacing,
(additions release, and footprinting
for pene-
tration aids) SRFC1(2) Spacing and release fuel

SRFC2 (2)1 coefficients

SRFEXP1 (2) Spacing and release fuel

SRFEXP2 (2) exponents

SRFDEN Distance scaling factor

LPENDAT Length of this block

474

Tablo 26. List of Initial Settings of Variables**
(Sheet 1 of 2)

An asterisk flags variables whose values are changed during processing.

INITIAL
VARIABLE BLOCK VALUE REMARKS

AGE* POTENT 0.0 Length of time target has
remained in potential target list

AZDIFF .01 Used by subroutine REVAL to
determine necessity of recomputing
distance matrix

AZOLD* 10-9 Used by subroutine FOOTEST to
determine necessity of recomputing
fuel consumption parameters

DEFAULT RANGE 1.0 Minimum spacing of DGZs required
for computation

DEGTORAD EARTH .0174532 Conversion factor-degrees to
radians

EPSILON* 10 Same use as AZOLD

IERR* 0 Error counter in subroutine
FOOTEST

ILASTL* 0 I Used by subroutine SETDATA to
ILASTP* 0 determine if new footprint data

ILASTS* 0 are required

IMUST* PRINT 0 Error condition indicator

ISCR TSCRATCH S Scratch file logical unit
(assignment data)

ITABL TSCRATCH 6 Footprint data file logical unit

LLNGDAT FOOTDATA 57 Number of. words in long-range
system data set

LPENDAT PENADD 67 Number of words in penetration
aids system data set

LRAID RAIDATA 9003 Length of /RAIDATA/ block

"**This list does not include the default values of the user-input parameters

which are described in subroutine RDCARDF.

475

Table 26. (cont.)
(Sheet 2 of 2)

INITIAL
VARIABLE BLOCK, VALUE REMARKS

LSHTDAT SHRTDAT 11.7 Length of short-range system
data set

LSTRKSUM STRKSUNM 33 Length of /STRKSUM/ block
MAXBOOST 2 500 Maximum number of boosters pcr,

group
MAXIIIT POTENT 20 Maximum number of *RVs in one

footprint
MAXPOT POTENT 50 Maximum number of entries in

potential target list
MA(RV FOOTIO 20 Maximum number of RVs in

I footprint that can be tested
MAXSYS PARAMETR 40 Maximum number of systems that

"can be considered in one run
NFLAG FLAG 100 Maximum number of print options

NTI•AX RI\IDji'A 1500 Maximum number of targets per
group

PDIFF .001 Used by subroutine FOOTEST to
determine necessity of fuel
parameter recomputation

PI EARTH 3.1415927

PIDIV2 EARTH 1.5707963

RADIUS EARTH1 3437.746 Nautical miles

T•OILD* 3 10+300 Azimuth used for distance matrix
XOLD i0-9 Same as AZOLD

476

PROGRAM FOOTPRNT

PURPOSE: Thiis is the main program. It acts as a control
/driver for the rest of the sub.-outines. It'is
.the interface subroutine between this program
and the remainder of the OUICK system.

ENTRY POINTS: FOO`1'PRNT

FORMAL PARAMETERS! None

COMMON BLOCKS: MASTER, FILES, TSCRTClt. WPNGRPX, STRKSUM, RAIDATA,
4, CONTROL, DSQUARE, EARTH, FOOTIO, FOOTSAVL,
INDEX, LOADATA, PARAIvLTR, PERFORM, POTENT, RANGE,
VALPARM, WPNTQT, 1, 2, 3, DEBUG, PRINT, Fi'lehandler
(ITP, MYIDENT,. NOPRINT, IFTPRNT, TWORD, FILABEL,
MYLABEL)

SUBROUTINES CALLED: STORAGE, Filehandler (INITAPE, SETREAD, RDARRAY,
RDWORD, SETWRITE, WRARRAY, TERMTAPE), RDCARDF,
PRINTSET, SKIP, INITRANS, GOPRINT, TRANSFER, VALF,
SETDATA, NEWCOOR, INITASGN, BOOSTIN, OPTBOOST,
BOOSTOUF, ORDER, REMOVE, REORDER, LREORDER

CALLED BY: Operating System; this is a main program

Method

The functioning of program FOOTPRNT can be divided into five parts; the
flowchart and the following description are similarly divided. The
parts are: the initialization of the program control variables, readingthe strike data and determining the groups with.the MIRV capability,

setting the control data for each individual MIRV group, generating the
footprints for each booster in the group, and finally selecting, for-
matting, and writing the final plan. The majority of the file reading
and writing is accomplished in this program and the specific cases are
discussed in later paragraphs.

Part I - The Initialization of Control Variables

The functioning of this part of the program is quite straightforward
logically. The program begins by calling subroutine INITAPE to initialize
the filehandler. Subroutine RDCARDF is the~n called to read and interpret
the user-input parameters. These parameters include the print requests,
program control variables, and footprint parameter data tables. The use

477

ri

of these parameters is described under subroutine RDCARDF. Subroutine
PRINTSET is then called to initialize the print function flags. Then
the majority of the basic weapon group information is read from the
BASFILE. Commons /MASTER/ and /FILES/ are filled from the blocks of the
same name on the BASFILE. Common /WPNGRPX/ is filled from BASFILE blocks
/PAYLOAD/, /WPNGRP/, and /WPNTYPE/. Finally, the variables EXTRAB and
PEXTRA (in common /CONTROL/) are read from block /EXCESS/ on the BASFILE.
This part finishes by initializing the TMPALOC and ALOCGRP files and
requesting the preliminary prints.

Part II - Reading of the Strike Data and Determination of Groups with a
MIRV Capability

This section merely determines the data to be read from the TMPALOC file
and places the data in core for processing by the remainder of the program.
(For groups which do not have a MIRV capability, the data are copied from
the TMPALOC file onto the ALOCGRP file for use by program POSTALOC.)
This section begins by reading the data for common /STRKSUM/ from the
TMPALOC file. This record contains the group number, the number of
corridors for which strikes are planned, and the total number of strikes in
each corridor. If the value of the group number is equal to an end-of-
file marker (3HEOT) or if this value is greater than the user-input
parameter IGEND read by subroutine RDCARDF, then the program goes to a
termination block which finishes processing. (The termination block
merely sets an end-of-file marker on the ALOCGRP file, terminates all
the files, prints a termination message, and returns control to the
system monitor.) If the end of processing has not been reached, the
program determines the length of the fixed assignment indicator record.
This record is a logical array which has been constructed by program
ALOCOUT to show which weapons in the group were set by the fixed assign-
ment capability of program ALOC. This indicator is used by later proces-
sors so that if various constraints require deletion of certain weapons,
those weapons whose assignments were fixed by the user in program ALOC
will not be among those deleted. Since the CDC 3800 computer system
packs logical arrays with more than one element per computer word,
the program must determine the length in words of this logical array
which must be read for further processing. The program then determines
it the current group has a MIRV capability. The first test is on the
number of corridors in the strike data. If the number of corridors is
greater than one, then the group must have bomber weapons since a weapon
group with only missile weapons will send all its strikes to the same
corridor, labeled 0. If the current group is a bomber group with more
than one corridor for its strikes, the data are just copied out onto the
ALOCGRP file and control returns to the beginning of this part to read
the block of data for the next group. If only one corridor is assigned
for the strikes of the group, the program reads the first three words
of the /RAIDATA/ block. These words contain information on the number of

478

r!

the corridor to which these strikes are to be assigned. If the corridor
4b number is not a 0, then again it is a bomber group and the data are merely

copied out onto the ALOCGRP file. If the corridor number is a 0, it is
a missile group and the program determines if the group number is greater
than the user-input parameter IGSTART read by subroutine RDCARDF. If
the group number is too low (that is, less than IGSTART), the data for
the missile group are copied out onto the ALOCGRP file. The next test
checks the payload table to see if the attribute IMIRV has a value
greater than zero for this group. If so, this missile group does have
a MIRV capability and is a candidate for further processing. The final
test that is made before going on to the next part is to check for
sufficient room in the arrays for the strikes assigned to this group.
If there is not enough room, an error message is printed, the data are
copied out onto the ALOCGRP file without further processing, and control
is returned to the beginning of this part. If there is sufficient room
to enable the later subroutines to process the data, control is trans-
ferred to Part III.

Part III - Setting Control Data for the Individual Group

Certain data must be preset before processing can begin on the MIRV group.
Processing in this part is relatively straightforward. First, the
Hollerith name of the weapon type is tested to see if there is agreement
between the name input with the footprint parameter constraints and the
name used by the QUICK system. If the names do not match, a warning
message is printed and processing continues as usual. The program then
sets up the minimum intertarget distance; that is, the minimum distance
in nautical miles between consecutive desired ground zeros for targets
assigned to the same booster. The program then sets up the value line
for function VALF.

A determination is now made of the actual number of re-entry vehicles
that are to be assigned to all the boosters in this group. Program
PREPALOC added some extra re-entry vehicles so that the allocator would
assign an excess of targets to the group. These extra re-entry vehicles
were added to simplify the processing in program FOOTPRNT. Program ALOC
does not consider footprint constraints when allocating weapons to targets.
It is possible, therefore, that some of the targets assigned by the
allocator cannot be put into a feasible footprint. Therefore, the
excess of weapons allows for these targets to be ignored when generating
the assignments for each booster without producing a total assignment
which underutilizes the weapons. Thus this part of the program must
determine the actual number of re-entry vehicles to be assigned. These
data are stored in the variable named NOK.

Since the majority of data in the /RAIDATA/ block will be reordered and
modified by later processing, it must be saved so that the correct data

479

ri

may be written out on the ALOCGRP. Therefore this part writes onto a
scratch file, ISCR, the data that were read from the TMPALOC file into
common /RAIDATA/. Table 27 displays the format of this scratch file.
This part then calls three subroutines, SETDATA, NEWCOOR, and INITASGN.
These subroutines, respectively, set up the footprint testing algorithms
with the correct footprint parameters, convert the geographic information
from latitude and longitude to range and launch azimuth from the group
centroid, and perform the initial assignment of targets to the boosters.
The function of these subroutines is discussed later. Finally, this
part initializes all the arrays which make up potential target lists.

Part IV - Construction of Footprints

This part is divided into two passes. In the first pass the boosters
are considered individually in order of increasing launch azimuth. In
the second pass they are considered in order of decreasing azimuth.
This method is used so that any potential target will be investigated
by boosters whose initial assignment falls on either side of the launch
azimuth of the potential target. Because the majority of the processing
of footprints is done by subroutines BOOSTIN, OPTBOOST, and BOOSTOUT.
the sole function of this part of program FOOTPRNT is to call these
subroutines in their proper order. The only logically complicated section
of this part involves the deletion of excess weapons from the assignment.
As was mentioned earlier, it is possible that the program may be able to
form feasible footprints for a number of re-entry vehicles which is greater
than the actual number that the group has. This is caused by the excess
weapons which are added in program PREPALOC. Therefore, if the number
which has been assigned is greater than the number which the group really
has (i.e., NOK), then certain targets must be omitted from the assignments.
(This function is performed by the 3000 series statements in the program.)
The targets are ordered by increasing marginal damage, RVAL, as determined
by program ALOCOUT. Thus the first targets to be omitted from the
assignment are those with the least marginal damage (i.e., lowest RVAL).
The program considers the targets in value order until it reaches a
target which is assigned to the current set of footprints, has not been
allocated by the fixed assignment capability of program ALOC, and is
assigned to a booster with at least the minimum load (if the free-booster
loading option is not in effect). If a target meets all these conditions,
then it can be removed from the assignment. This process continues until
a sufficient number have been omitted so that the total number assigned
to all the boosters in the group does not exceed the actual number of
re-entry vehicles which are available to the group, Control then passes
to the fifth and final part of this program.

480

Table 27. Format for Assignment Data Scratch File

BLOCK LENGTH VARIABLE DESCRIPTION

1 NT INDEX Target index number

2 NT TGTLAT Target latitude

3 NT TGTLONG Target longitude

4 NT RVAL Relative damage value

5 NT DLAT Offset latitude

6 NT DLONG Offset longitude

7 NT NDEX Sequence array for reordered
data

8 NT IFOR Forward pointers for first
pass

9 NV IBOOST First target for booster in

first pass
10 NV NTB Number of targets assigned

to booster in first pass

11 NT NRVADD Number of RVs added to
each target in first pass

NT = Number of targets input from TMPALOC

NV = Number of boosters in group

481

Part V - The Selection, Formatting, and Output of the Final Plan for the
Group

This part begins by retrieval of the group data which were put on the
assignment data scratch file while the footprints were being processed.
Then the program determines the better plan, the plan constructed in the
first pass or the plan constructed in the second pass. The method used to
select the better plan is to construct a weighted sum of the actual number
of targets assigned to the boosters and the number which were added to
meet the minimum load constraints in those cases where the free booster
loading option was not in effect. This weighted sum is equal to twice
the number of the actual targets assigned to the boosters plus the number
assigned to meet the minimum load constraints. The plan whose weighted
sum is greater is selected as the plan to be output for later programs.
If the weighted sums for the two passes are equal, then the plan with
the greater value assigned is selected. The value of a plan is the sum
of the marginal damage values, RVAL, of all the targets assigned to the
plan. If the first plan is selected then the program reLrieves the
pointers to the lists which were output onto the scratch tape. This
destroys the pointers for the second plan.

The later programs in the Plan Generation subsystem expect the plan for
missile groups to be in order of decreasing value of the booster
assignments. That is, if we define the booster value to be the sum of the
RVAL values of all the targets assigned to the booster, then the later
processors expect these booster values to be decreasing as the lists
are output onto the tape. This part of program FOOTPRNT, therefore,
computes the value of the strikes assigned to each booster. It then
reorders the total target list so that the strikes are in order not only
by booster value but by order of delivery by the MIRV equipment. This
function is done by assigning to every strike a "sequence" index which is
defined as follows:

SI = (100O*NBBV)+ND

where SI = sequencing index

ND = order of delivery from booster
(= first, 2 = second, etc.)

NBBV = order of booster value
(1 = most valuable booster, 2 second most valuable, etc.)

Thus once every strike has been assigned a sequencing index, a simple
operation to order the strikes by the sequencing index will put them into
correct sequence. The program then negates the index numbers for those
strikes which are the first strike to be delivered from each booster and
prepares the plan for output onto the ALOCGRP file for program POSTALOC.

482

The most complicated section of this part involves the addition of the
extra re-entry vehicles which were placed on the booster in order to
meet the minimum load constraints. The method to make these additions
is as follows. When a target has been reached which has an extra number
of RVs allocated to it, then the data (such as the target latitude,

S' longitude, and relative value) for this target are saved. The program
then looks through the RAIDATA list to find a target which has not been
assigned to any booster. This position in the list is then used for a
re-entxy vehicle which has been added. The data which had been in
this list previously for the strikes are removed and the saved data for
the target to which the re-entry vehicles have been added are placed in
this position in the list. The sequencing index is also placed in ai
array so that the added re-entry vehicles will follow the first re-entry
vehicle allocated to the target.

Finally, the data are written onto the ALOCGRP file and control returns
to the beginning of Part II where the strike data for the next group are
read.

Program FOOTPPRNT is illustrated in figures 83 and 84.

483

"-J

START

Initialize

Program
l Control

Variables

Part 11
TALOC Read Strike3- -- - Data And -- -

Find MIRV
Groups

MIRV
Groups /
Only

Part III i

Set Group
- Control.- •" . Data /

As Esi grnnent Dat
SCRATC

•" / Part IV |

Part TV

//

\4 oSele ct And

Output Finalf

Fig. 83. Program FOOTPRNT (General Flow)

484

ISTART

Call INITAPE
To Initialize

Filehandler

Call RDCARDFl
o Read User-Input

Parameter Cards

al PRINTSET To
Iitialize Print

U Request Flags

Call S.TREAD

To InitializeWAF ILE

C ~ orWricteN Prints

Fig. 84. Pr a oga FilPe (eale lw

BASFIL f/MASTER/, /FILES/,

"If~_ý /iV;PNGRtPX/ And

S EXTPAB and PEXTRAJ

S.'-------

Call TE~rWAPE

!•i" To jerminat e

To Initialize
TMPAL.C To•-d

To Initialize Initial s

AIOCGRP To Write Pit

Fig. 84. Program FOOTPRNT (Detailed Flow)
Part 1: Control Variable Initiation

485

4GL] "54r. 0 72 -4

so

so
Read/STRKSIR4/

Record

File Marker?

70
No

D;e t a rm I n *eL a n g t h

i

n a gt

t

h

r
j 9

Of Fixed'd
AAssignment

'nRIndicator Rouard
90

Ya.*

Copy 06t /STRKSLIM/

'o

More Than Yes Coll TRANSFER To

One Corridor? From TMPALOCetirm C py Information
To ALOCGRPriNo

W r . 0

100 1

Read First Three
ords Of
U I D T

/RAIDATA/

110

No Copy Out /STRKSUNI/

Corr or? And First Three Wo/rds
Of /RA7DATAj; Call

TRANSVER For Transfer

as Of Remainder Of Data

130 120 160

Yes Should No Copy Out /STRKSUM/
MIRV ? Processing And TicANSFERAll'R"'

1'.ýNo egin? Remaining Date
Ycs

te

140
T

Enough No Print Error
170 Room? Message

Yes

150

Fig. 84. (cont.)
Part 11: Read Strike Data and Find MIRV Groups

486

170

117171
Print

Do Hollerith No Warning
Name-; Match? MessagQ

Yes172

Set Up Minimum 7
lIntertarget Distance

Too Many
ISO Vehicles?

180
No

Set Up Value Line
For VALF; Detemine
Actual Number Of
RVs Available (NOK) A

Read Remainder Of
-/RAIDATA/ Block
and /4/ Block

/ Write Out
Assignment

/RAIDATA/ Block SCRATCH 5

220 Retrieve Footprint
Data (SETDATA),

Clear All Transform Coordinates
Potential (NEWCOOR),
Target Make Initial
Arrays

Assignment (INITASGN)

A

Pig. 84. (con t,

Part III: Set Group Control Data

487

NIS -=I-,Set Prints (PRINTSET),
Enter Targets Into

Do For All Boosters Potential Arrays
In~~ ~ ~ Ore f0BOOST! N),

Increasing 1999 Generate Fýootprints
Azimuth(OPTBOOST),

Make Assignments,
Done L (BOOSTOuT)

200n wtc 00

2000PO

Iment4- ave First Pass
~SCRACHS/H Pl Van On Tape

Pa rdrt of: ConstrutU Footprints

Dcesn 488 9--- sI Ps n

DtrieNumber
ToB mitted

N ArSet ufIndex t YT

302 e 34

FgI8.ncaemnt.)age

PatV xesTarget Removalt (Detail

489ex?

4000

4000

Retrieve Group
Data Fromn Tapo

Assigmn - •- And Reorder It
Assignment DaaFo Tp /

SCRATCH 5

!Select Better
Plan By Number
Assigned And

I [Value Assigned

Retrieve 7i
Pointers Which/ For! / Pass \ Plan Is

Assig entBetter?/

Second Pass
\ 030

Determine Order Of
"Boosters According

To Sum of Výlue
Of Assigned T4rgets

4080,4090
S|~Order Strikes Within
48 Each B0'os'e~r]

" i ~Assignmen~t

4071

Add ExtraRVs Needed
To Meet MINLOAD
(See neit sheet)

4110 £
"I IPEoRDER,'RAI DATA/DATA -

5000

/Write Out Pr6cessed
\ Data COLn ArLOCGRP -- -V -..... C L Pa

Fig. 84. (cont.)
Part VI: Select and Output Final Plan

'490

L1

L et "amber Neede
To Add CNTOADD)I
01d 8 AIDATA IndxI

OBs~ic Tar e t

4080 ' o47

The 1 Bacsi Tore

Pa o VFIr DAl foIdigRsRqie
ton Meret MI~nLnDCnta

49AAA o11

9000

Set End-.
Of-File J ALOGRP

Marker 2

[Terminate

All
Files

9001

FPrintermination
Message

STOP

Fig. S4. (cont.)
Part VIII: Termination Block

492

SUBROUTINE ADDRV

PURPOSE: This routine determines the placement of
re-entry vehicles added to a booster assignment
solely to meet a minimum load constraint.

ENTRY POINTS: ADDRV

FORMAL PARAMETERS: None

COMMON BLOCKS: 3, DEBUG, FOOTIO, LOADATA, PARAMETR, POTENT,
PRINT

SUBROUTINES CALLED: FOOTEST, GOPRINT

CALLED BY: OPTBOOST

Method

If the free booster loading option is not exercised (i.e., LOADOPTtO),
then the program may require that some target points in a footprint
receive more then one re-entry vehicle (RV). If so, this subroutine is
called to assign the extra RVs to the targets already assigned to the
booster.

This subroutine computes the number of RVs to be added, NTOADD. It
then sets up an array, NONTAR, which specifies the number of re-entry
vehicles assigned to each target in the current hit list. The testing
arrays in common /FOOTIO/ are filled by referencing both the hit list and
the NONTAR array. In this fashion, the feasibility of adding the extra
RVs is tested.

The subroutine begins by adding NTOADD re-entry vehicles to the first
target in the footprint. If this allocation is not feasible, ADDRV
decrements the number of RVs added to the first target until it reaches
a feasible allocation. There is no further processing for this alloca-
tion since, if a re-entry vehicle cannot be added to the first target ofa footprint, it cannot be added to any later target.

If the total number of added re-entry vehicles could be added to the first
target, the subroutine searches for an alternative allocation with less
variance in the number of RVs allocated to each target poInt. (The
optimal allocation would have the same number of vehicles assigned to each

493

target in the footprint.) The alternative allocations are constructed by
examining the number of vehicles on each target. The targets are
examined in order of delivery of their RVs by the final stage of the
booster. At the first target where this number decreases (a decreasing
step), a vehicle is removed and placed at the last target which has a
number allocated less than the preceding target. Figure 85 demonstrates
the construction of a series of alternative allocations. If at any,
time an alternative allocation is infeasible, the subroutine reduces
the number of targets to be investigated for addition of RVs and con-
tinues processing,

Subroutine ADDRV is illustrated in figure 86. .

I

i

494i

STEP 1

8

6
Number

on Target 4 •
(NONTAR) 2 ¢'

2 12

1 2 3
Target

STEP 2

6

NONTAR 4

1 23

Target
STEP 3

NONTAR 4

2 -- - -

1 2 3

Target

Fig. 85. Extra Re-entry Vehicle Allocation Example

495

Are There Any NoSTART Targets In
Footprint?

5 Yes

Initialize
Variables

10 900

RV,
0

?.

s

Do More RVs Move Data 1000
N rd0eNeed To To PAIDATA RETURNeM d de

Y

3e Added? List

Do

't
r

T

u.
Toeq

i,

e
20

Yes
2

rge t I n Fo tre

A

E a F I
Add All Required
Extras To First

so
Target In Footpririt

Set ICANT Flag
And Decrement

?
0No

Number To Be Feasible?

Added By One

60 Yes

[ESxe Up NONTAR Array 900

of E t:
ich Shows Allocation

ra RV's To Targets

Were.All
Required RVs No

Added?

Yes

Are There
Any Alternative No

Allocations?

Yes

90

Fig. 86. Subroutine ADDRV
(Sheet 1 of 2)

496

90

Set Last Target
To He Checked

100

Do For All Done
10 Targets To 900

Be Checked
ý11 0

Do 150
In easing Print
Increasing Print,a Npne Step? cr Error

Messa a

120 Decreasing
'o

Save gIndex0ý j fy ISOAnd Modify
Array

in Reverse
Ode or All Do

t ne Reltl,.9
Targe s To . - 'y

Do C

--ý`
Array

Be Checked

None step? Increas- 150
ing

140 Decreasing

Does
It Change No

Allocation?

ISO Yes

Set Up No
Test Arrays 200 1

Reduce Number Checking
Of Targets To Any Targats?

Yes Feasible? No Be Checked

04
Pes

Fig. 86. (cont.)

(Sheet 2 of 2) A

497

SUBROUTINE ASSIGN

PURPOSE: This routine assigns the entire hit list to the
current booster, NUMBOOST.

ENTRY POINTS: ASSIGN

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, PERFORM, POTENT, WPNTGT, 2, DEBUG,
PRINT

SUBROUTINES CALLED: GOPRINT

CALLED BY: BOOSTOUT

Method

This routine retrieves the RAIDATA index of each target in the hit list
and modifies the pointer in the IFOR, IBACK, IBOOST, and NTB arrays in
the RAIDATA lists. It also increments the total number of targets
assigned, NASGN, and the total value assigned, VALASGN.

Subroutine ASSIGN is illustrated in figure 87.

498

m

Se A ll Pointers_In The Fit List?

100 Yes

Set All Pointers
For First Target

In Hit List

1 0 D o o r A l R m i ni n P o i n t e r ; In c r e m e n t b O t o aa~ tt Number 0Of pioa
Target s As si gned Pit

For Targets RETURN

Fig. 87. Subroutine ASSIGN

499

SUBROUTINE BOOSTIN

PURPOSE: This routine determines the set of potential targets
for each booster and computes detailed intertarget
parameters for all targets in the potential torget
list.

ENTRY POINTS! BOOSTIN

FORMAL PARAMETERS: None

COMMON BLOCKS: RATDATA, 4, CONTROL, DSQUARE, FOOTIO, INDEX,
PARAMETR, POTENT, RANGE, VALPARM, WPNTGT, 1, 2,
3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, ORDER, OUTPOT, INPOT, CRSTODWN, UPTODOWN,

VALF

CALLED BY: FOOTPRNT

Method

This routine is called once each pass for each booster. Its purpose is
to set up the potential target arrays for the booster. Its functions
are:

1. Remove targets from the potential target arrays

2. Search for unassigned targets in the neighboring geographic area
and place them in potential target arrays

3. Enter targets currently assigned to the booster into the

potential target arrays

4. Compute intertarget distance matrix

5. Determine worth of maintaining each target in the array for the
next booster processed

6. Compute the worth of starting the footprint with each target.

Processing begins with the search for "lost" targets. These are targets
which are currently unassigned to a booster and not in the potential
target arrays. This search is done only on the second pass since the

500

.....

initial assignment generated by subroutine INITASGN contains every
target. The geographic area to be searched is determined by targets
currently assigned to the booster and also the targets assigned to the
next booster to be processed. The backward pointer (IBACK) of the first
target in each footprint is set to the RAIDATA index of the target with
the largest launch azimuth in the footprint. Thus BOOSTIN uses this value
of IBACK for each of the two boosters to determine the area of the RAIDATA
list to investigate. Any targets in this area which are neither
assigned nor in the potential target arrays (i.e., ISTATUS - -2) are
placed in the lost target list (LOST) and ISTATUS is set to -1.

The routine now determines which targets in the potential target arrays
should be removed to make room for the targets to be entered. The worth
of maintaining a target in the potential list is always stored in the
diagonal elements of the distance matrix D. The worth of maintaining
the target whose POTENT index is J is saved in D(J,J). The number of
targets to be dropped is determined by the input parameter PURGE. First
the routine computes the number of targets in the POTENT list which were
not entered in the list by the look-ahead feature of subroutine OPTBOOST.
If this number is less than the average number of targets per booster,
no targets are removed. Otherwise the routine omits the fraction, PURGE,
of these targets. The targets are omitted in order of increasing worth.
If this fraction removed does not leave sufficient room for the current
assignment, targets are removed singly until there is sufficient room.
The routine then enters the current booster assignment into the listý
Finally, as many of the lost targets as possible are entered.

Two sets of intertarget parameters are now computed. First, the
intertarget distance matrix is computed. The entries in this array, D,
are defined as follows, for targets whose POTENT indices are i and j:

Square of actual downrange distance from
target i to target j (this quantity is set i < j
negative if j is uprange of i)

D(i,j) =
Worth of maintaining target in potential list i j

Square of actual crossrange distance from i > 5
target i to target j

The off diagonal terms are computed first by simple geometry. For this
calculation, the downrange axis is defined to have the average launch
azimuth of all the targets in the list.

The diagonal terms, the worth of maintaining the target in the list, are
computed next. In order to keep targets in the arrays for at least two
boosters, a target that has just been entered is given an artificially

501
462-546 (3- 72 - 5

-,aiI

high value. For the other targets, this worth is computed according to
the formula given in the Analytical Manual.*

The second set of intertarget parameters is the worth of making each
target the first target in the footprint. This worth will be used by
subroutine OPTBOOST to initiate footprint generation. When computing
the equivalent downrange distances, the downrange axis is defined by
the launch azimuth to the target currently being considered for selection
as the first target. The booster load is assumed to be the average
number of targets per booster. Multiple calls on function VALF are
"made for each target. The Analytical Manual shows the formula which
defines this worth.*

Subroutine BOOSTIN is illustrated in figure 88.

*Volume II, Plan Generation Subsystem, Chapter 2, Analytical Concepts
apd Techniques, Basic Sortie Generation, MIRV Missile Plans, Value
of Assigning a Target to a Booster.

.5

502

..............................

.....

START

10 20 30
No

Pass? Last First es Set Begin
Booster? Booster? S ,arch To

100 F

Determine Number Yes 0___
Of Targets To Set Begin Scare

Be Dropped From To Target With
Potential Arrays Largest Azimuth

On This Booste

45

Yes Is SearchMiss List t Withsmpty?
Azimuth

105 No
Booster

S:t Flag To
Savo T rgets Enterod

On Look-Ahead Done Do For All 80
1')/) t Targets Within

rmine Or Search Bounds
Of Do

17ROmoval
130 Is No

Target
Unassigned?

Do Por Number Yesis That Must
Be Dropped 60 5 70

Do Print No Room \ Yesl Add To
Warning In L 5t Lost ArrayArr

Was This
Targot Entered Yes

By
Look-Ahead?

170
No Print 7

Error STOP
44- A Remove Targe message

L-From Lis t
No 180

Is T ere Sufficient No Can More Targets es Drop oneRoom For Next
Booster AssiEnment? Be Dronned? More

Yes

200
130

Fig. 88. Subroutine BQOSTIN

(Sheet I of 4)

503

rt

200
Reset Look-
Ahead Flags

j2220
Do For All Do Enter Targct
Targets In et rinto Potential

Next Booster . Tagt ras]

\AssignmentTagtArs

Done 250

oDor llDetermine Oder
Do Ttor All Of Targets In

240 Targets In Miss List According

Lost Target To IncreasingLi st] P o ent a l In dex

, Do '

230 iN

Add Target To
Potential Target1SList .

Fig. 88. (ccnt.)
(Sheet 2 of 4)

50 3A

I I

A
Compute Ord er Of
Targets By Rarge]

And Azimuthj

310

Compute Average
Range, Azimuth,

Sine, iMd Cosine
Of Azimuth

Compute Values
And Squares Of

Doorange/Uprange And
Domrange/Crossrange

Ratios

D o For -
320 11 Aliagts Dore

Dn Miss tasn0en

Di-o e. Do For All
STargets In Miss

[List With Higher
"=|Pten Indices

; Do"

SCompute Downrange

[Distance And
SSave Square in

Distance Matrix

312
Wa Negate Value:

DeY In Distance(UprangeMatrix

,314 , _o

Compute Crossrange[
Distance And

Save Squaie In
Distance Matrix

SFig. 88. (cont.)

(Sheet 3 of 4)

Preceding page blank 504

B B

Initialize

Worth
of

D:rg Do Maintaining Target

I Miss List In Potent Arrays
To ýIigh Value

Done

_Y s Z Has Target Been

One Booster?

-4ý<In

Array
For

Only

324 No
321,322,323

Comput:, Square
r Ajnl Of Tnt target

: 0, t. Equivalent Down
I Hiss List Range Distance

ýOone 330

h

Tar' e ts I n

I)one

3

Set Value Equal Accumulate-sum

S 0 f Rec pr..al s

Do

'or

A
1
1

Div -ded By Age
To Swa Of Reciprocalsi Of Reciprocals
To S. Va 1-e q--l

Divided By Age Of Square
Of Distance

34 0
340

Increasecre..
A e

F Compute Range

Do For All Do Ratios As
nTargets In If This Were

DoMiss List
First Target

350,360,370,380

Tar

Do For All Compute Equi)oalent

o 0 , et .
From First Target

D'- .
1 Targets In Do Downrange Distance

Mls
s L i s t

DoF

,

der Targets Mir's Listrr
By Value Of

r 1. Of
To This One

Starting Done 390
Footprint

400 Call VALF For

Set Va-lue Worth Of Target

of Making This And Increment
RETURN Target Firs 't ;n Value For First

4rF pr - t Target
ootprint Into

TRST- 11-ot IýVALrTRST Array

Fig. 88, (cont .

(Sheet 4 of 4)

505

SUBROUTINE BOOSTOUT

PURPOSE: This routine processes the hit list to assign
targets to boosters and returns potent indices
for use.

ENTRY POINTS: BOOSTOUT

FORMAL PARAMETERS: None

COMMON BLOCKS: POTENT, 1, 3, DEBUG, PRINT

SUBROUTINES CALLED: ASSIGN, GOPRINT

CALLED BY: I OOTPRNT

Method

Subroutine ASSIGN is called to assign the entire hit list to the booster.

Subroutine BOOSTOUT then resets all the indices and pointers in the
potential arrays for each target in the hit list. For each of these
targets, the number of available positions in the POTENT list (NPREE) is
incremented by one and the POTENT index of the target is placcd at the
end of the available list, IFREE.

Subroutine BOOSTOUT is illustrated in figure 89.

506

Call ASSIGN To
Assign Targets

In RAIDATA
List According
To Hit List

10 Do For All Targets Done Cloar
In Hlit List Hit P T R

List

Reset Potential
List Entry And
Return Slot To
Available List

Fig. 89. Subroutine BOOSTOUT

507

SUBROUTINE CHKSEQ

PURPOSE: This routine determines if a reordering of the hit
list will reduce the total fuel used and, if so,
reorders the list.

ENTRY POINTS: CHKSýQ

FORMAL PARAMETERS: None

COMMON BLOCKS: FOOTIO, POTENT, WPNTGT, 1, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, FLYDIST, MISSIT, HITIT, TEST

CALLED BY: EVAL

Method

This routine tests the sequence of targets in the hit list. It takes
each consecutive pair of targets in the list and determines if the total
equivalent downrange distance for the assignment would decrease if the
order of delivery to the pair were inverted. If so, then it tests the
fuel use of the inverted target ordering. if the new order uses less
fuel than the old order, the new order is retained. Otherwise, the old
order is restored. After checking the sequence of all consecutive pairs,
the routine checks the number of inversions performed in the last test
of all consecutive pairs. If any inversions were made, the process is
repeated. This continues until no further improvement is possible.

Subroutine CHKSEQ is illustrated in figure 90.

508

S START

*TAR

9More T an NN o
RETURNOne Target D

In Hit List?

0 lo Yes

Set Number Of
Changes to ero

Yes

Do For All Done Any No
70 Targets In Changes

Hit List Made?

Do

Compute Distance
Saved If arget
Order Inverted

Is
No Inverted

Distance
Less?

Yes
6-1-

Have Arrays No Print
Been Printed At Arra

Least Once?

Yes
65
Fncrement Numberl-
I Of Changes

A
Invert Target Order

67
lAnd Test For

Fuel__Usel

r Print yes Was
otq New Fuel

L QrdeL_/ aved?

e

s No

g66
Restore Old Target
r D
rder And Decrement
Number 0jF rhh-a,----

Fig. 90. Subrotitine CHKSEQ

509

FUNCTION CRSTODWN

PURPOSE: This routine computes crossrange-downrange ratios.

ENTRY POINTS: CRSTODWN

FORMAL PARAMETERS: I = System type index (MTYPE)

R = Range to first target (nautical miles)

AZ = Launch azimuth to first target

N = Number of re-entry vehicles carried

CONMON BLOCKS: FOOTDATA, SHRTDAT, PENADD

SUBROUTINES CALLED: None

CALLED BY: BOOSTIN, EVAL, FOOTEST

Method

This function simply applies the crossrange-downrange ratio equations
whose parameters were input in subroutine TABLINPT. The formal parameters
are the system type number (MTYPE), the range and azimuth to the first
target, and the number ot re-entry vehicles currently on board.

Function CRSTODWN is illustrated in figure 91.

510

S~lf)1T 1200

D etemn SysV r

IndiTapo dicato

20000

______________Set_-Appry

Shorý)t! ~ ongRangeSinIdcao
Formula --Positveuala

RETU11N ~ ETUNeaie 1TR

C: E

SUBROUTINE EVAL

PURPOSE: This routine recomputes the value arrays for each
change in the potential target list. Entry REVAL
is used to recompute the intertarget distance matrix.

ENTRY POINTS: EVAL, REVAL

FORMAL PARAMWTERS: None

COMMON BLOCKS: RAIDATA, 4, CONTROL., DSQUARE, FOOTIO, PARAM'TR,
POTENT, RANGE, VALPARM, 1, 2, 3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, CRSTODWN, UPTODOWN, CHKSEQ, FLYDIST, VALF,
ORDER, REORDER

CALLED BY: OPTBOOST, IMPROVE

Method

This routine has three functions:

1. To determine placement in the hit list of each unassigned
target if it were placed in the current footprint

2. To calculate the worth of adding each target (individually)
to the current footprint

3. To recompute the intertarget distance matrix if necessary.

The determination of the correct placement in the current footprint of an
additional target uses an approximation to a minimal increased fuel con-
sumption criterion. A target is placed in sequence so as to require the
minimum increase in fuel use. The procedure for this calculation is exer-
cised once for each target in the miss list. Every possible footprint is
tested to determine the placement of the target in the footprint with the
"maximum ratio of remaining available distance to maximum allowable distance
in the list.

Assume a test on the placement of the new target K between targets J and L
of the current footprint. Previous operations in subroutine FOOTEST have
defined the following variables.

DELRAFT(J) - The maximum increased equivalent downrange distance
that could be traveled after target J (and before
target L) that would still allow completion of the
footprint within fuel constra4 nts.

512

TOFLY(J) - The equivalent downrange distance from target J to
target L.

Function FLYDIST is defined as follows:

"FLYDISTr(a,b) = Equivalent downrange distance between targets a and b.

For example, in this case TOFLY(J) = FLYDIST(J,L).

Then, the remaining available distance for insertion of target K
between targets J and L is defined as follows:

DLEFT = DFIRAFT(J)-[FLYDIST(J,K)+FLYDIST(K,L)-TCFLY(J)]

The ratio which EVAL tests is

DLEFT/DELRAFT(J).

The placement with the maximum value of this ratio is selected as the best.
Note that these equations are suitably modified for the cases of placement
as the first or last target in the footprint.

After selection of the proper sequence for a target, this routine computes
the worth of adding it to the footprint. This procedure for each target
requires a call on function VALF for each target in the miss list. As
explained in the Analytical Manual,* this function returns a value related
to a ratio of distances and a distance weighting function. The ratios
input by EVAL when evaluating target K are

F LYDIST (K,M) /DMAX

where M is the index of a target in the miss list and DMAX is the
maximum available remaining distance (DLEFT) determined previously for
target K. This ratio is computed for each target on the miss list, and the
results of the VALF calls multiplied by the relative target values RVAL
are summed to provide the total worth of adding the target to the footprint.
Before returning to the calling program, subroutine EVAL coimiputes tile
order of targets in the miss list according to decreasing total worth.
This ordering is stored in the NDEXVAL array.

The REVAL entry point is used whenever the first target in a footprint
has been changed. If the launch azimuth for this new first target is
significantly different (>.Ol radians) from the launch azimuth of the
previous first target, then the downrange axis is redefined and this part
of the subroutine recomputes tile intertarget distance matrix.

Subroutine EVAL is illustrated in figure 92.

*Vohume II, Plan Generation Subsystem, Chapter 2, Analytical Concepts
and Techniques, Basic Sortie Generation, MIRV Missile Plans, Value
of Assigning a Target to a Booster.

513

Entry EVAL

I Gp 9000000
-e No

Z.7f-,7110rý RETURNgn,,' laýl-s?

Yes
1005 1020

Is 11get A Yes Use Range And
Current . print? Azimuth To

First Tar et

1010 No 1030
Use Average Retrieve DistanceRange

05 1020R a t T iv s

Set Up Dist-.11-7
Weighting Parameter

1040

Compute Reciprocal
Of Maximum

Distances Possible
(DEN)

Check Sequence
Of Targets In

Hit List (CIIKSLQ)

Yes Is 1liere A Do Do For Determine
Do All Targets Done Orde r Of

Current Footprint' TargetsIn Miss List By Worth

No
1200 1100

c . at
Set acerflo t 1190

Index To -g. 17 A-1-1

irs t Tý t Values In
Be First Target lValue Arra
1265 J280

Store NegativeDo For Of Total1265 All argets
liss, List t1270j Worth In

844a
Value Array

Do

Compute Ratio
Of Intertarget

Distance To Remaining 12680

Available Distance

Call
VALF,

Multiply

I

By RVAL, And Increment
Total Worth

Fig. 92. Subroutine EVAL

Part 1: Entry EVAL

514

..........

Q0 0
nitialize PI Aýcecnt

Index To _I

Find Additional
Distance Traveled

If This Target
Made First

1210

east Percenta 9111ý- Yes
L

- o-F! 2 I..irt 1,
-uel Use So Far. 3 arjzet

NUt No
Sav PercLntage

ual Used
"vtFAndAnd Remaining

vailable Distanct

0 Do F. r Alt

1220'uc'sI

1 220Do For All IFind Additional Distance
124 0 C

In Current Footprint Traveled If'NewIn Cu rren I la rg,r, L', t

-Wý
FootprintExrent Las Target Made Lastr"g

Do Least Percentage No
Fuel Use So Far?

Find Additional
Distance Traveled Yes

If New Target 1250

Added After 11iis Set Placement IndoxI
Tor ct In F ot rint To Be Last Targetor c,, In cot rint,

Save Romain'n,
No Least Percentage Available DistaneL

Fuel Use So Far?

1260
Yes
Yes

1230 In JAF1230 fSave Placement Index

av.

Pý

r',

A

TER Array
Set Placement I dex

To Be Afte Initialize Total
This larpccr Worth To Zero

R
Save Percentage Fuel Was
Used And J;Zcmaining Yes Placement No
Available Distance I G26 Index 1280

Set?

Fig. 92. (cont.
Part Il Determination of Target S(,qLlO1lCe

;2

DItnc aotprixt?

Yes

101

Is ~ ~ Prsn Azmt

rk

FUNCTION FLYDIST

PURPOSE: Thii routine computes equivalent downrange distance.

ENTR/Y POINTS: FLYDIST

FORMAL PARAMETERS: N - POTENT index of first target

M - POTENT index of second target

CONMON BLOCKS: DSQUARE, RANGE, 1

SUBROuTINES CALLED: None

CALLED BY: CHKSEQ, EVAL

Method

This function uses the intertarget distance watrix D to compute the
equivalent downrange distance from the target with POTENT index N to the
target with POTENT index M. It assumes that functions UPTODOWN and
CRSTODWN have already been called to load the correct range ratio para-
meters into common /DSQUARE/. This function mercly manipulates tile data
in the distance matrix to provide the calculations for equivalent down-
range distance as described in the Analytical Manual, Volume II, Plan
Generation Subsystem, Chapter 2, Analytical Concepts and Techniques,
Basic Sortie Generation, MIRV Missile Plans, Equivalent Downrange
Distance,

This function is called an extremely large number of times in any run of
program FOOTPRNT. Up to 15' of the total execution time may be spent in
this function and in the SQRTI" function called by this function. It is
therefore very important that the execution time efficiency of this
function be mainitained.

Function FLYDIST is illustrated in figure 93.

517

save
Trgt

IndiLc 5

D) = D(1,J)

D2 = D(J, I)

10 30
DOWN=Dl DOWN=-D2

C1ROSS=D2 'CI)2 COS C

Dista3 Pnct nPLDS

To 18im

C RETUR

.......

SUBROUTI NE FOOTEiST

PURPOSEi T1his routine tests footprint feasibility.

ENTRY POINTS: FOOTEIST

FORMAL PARAMETERS: None

COMMON BLOCKS: FOOTIG, PARAMETIZ, POTENT, RANGY, 1, FOOI'DATA,
SHI'VAT, PFNAOD

suBROUI' NES CA LLED: CRS'IODIVN, UPTODOWN. A.BORT

CALUDIJBY : AD)RV , TFST

Method

Most of the input/output for this subroutine is contained in common
/POOTIO/. Data on the target set to be tested are contained in thle
arrays RIM and THIN (for range andi launch azimuth, respectively).
Sulbrc,, t ino FOOTEST1 computes thle equival cnt downrange distance between each
successive target in thc footprint. It then determines the number of RVs
that can be delivered to thle target sot without violating the fuel consump-
tion constraints. If an RV can be delivered to eachi target in the sct,
then this subroutine computes the effect of using the toto 1 remaining fuel
load to deliver one more RV. It Outputs thle maximlum equivalent downrange
distance that the remaining fuel will allow from each~ point in the
footprint.

Figure 94 displays the proccss ing flow for this routine. Since the methods
used to test footprints are essentially the same for both long-range and
short-range systems, only the long-range method will be described, Thel
short-range system method differs only in thle details of processing.

P'art I : Distance Computati on

Before testing the footprint for feasibility, thle routine calls functions
CRST1Ol)NN and tJP,,rnjlOWN -to retrieve, thle correct downrange-crossrange and
downrange-uprangoe ratios,. Then it co1mnuLte's the equivalent down-range
distanlce betweenl succe,,ssive targets; in the r-ootprint . These distinces aore
placed in array DIT, wh ic ci s equ ivol enc ed to array TOFOLY .in comiion
/) pr I E NT . Thiii SLsubrout inc does not use funct inn F LYb 1ST for the dlistance
eompuLtit tion, Mut rat her compu~tes thle equjLivaClet d istance from the 1) asic

range and azimuth data. There are two reasons for this independent cal-
culation. First, this subroutine can test any data contained in common
/FOOTIO/, without considering the data in the potential target arrays.
Second, the footprint testing subprograms, FOOTEST, CRSTODWYN, UPTODOWN,
SETDATA, and TABLINPT, which comprise the testing module, were designed
to be as separate as possible from the other subprograms. This modular
design allows for modification of either the assignment module subprograms
or the test module subprograms without excessive manipulation of the
interface between the modules.

Part II, Sheet 1: Long-Range System

In the following discussion, a "leg" of a footp:.'int refers to the line
between two successive targets in the footprint. The Jth leg will be
the line between target J and target .1J+1. The length of these legs (in
terms of equivalent downrange distance) determines the feasibility of the
footprint.

The testing algorithm (for the long-range system) begins with a determina-
tion of the number of re-entry vehicles in the footprint. A number
indicator JRV (NRV for short-range) is set to specify the correct set
of footprint parameter constraint equations to be used. These equations
will vary according to the number of RVs on board the bus. In order to
save processing time, FOOTEST precomputes all the necessary fuel consumption
and booster range parameters and stores them in a set of temporary arrays
(e.g., RSAWV, REXSAVE, and CSAVE). These parameters will change only if
there is a new first target in the footprint with a significantly different
range (or azimuth for the long-range system), Thus, on each call to
FoorTEST, the range and azimuth of the first target are tested against the
previous values for these factors. If either factor differs from the
saved value by an amount greater than or equal to PDIFF (a preset test
variable), then the range and fuel parameters are recomputed. The larger
the preset value of PDIFF, the fewer times these parameters will be
recomputed.

If the long range system has a full load of penetration aids (i.e.,
MTYPE = 3), then the fuel load at booster separation is computed by a
special set of equations (statement 3000).

The main testing algorithm begins at statement 1308 (2008 for short-range)
with a calculation of the total fuel load available for footprinting and
the maximum booster range. If the range to the first target exceeds the
maximum booster range, some of the fuel is used for range extension.
This range extension fuel is subtracted from the total load available for
footprinting. If this subtraction results in a negative fuel load then
the subroutine returns with the feasibility indicator, IFEAS, set to 0.

520

II

This variable contains the number of targets in the footprint that canp be reached within fuel constraints.

Part II, Sheet 2: Long-Range System (continued)

If there is some fuel left for use on the legs, the feasibility indicator
is set to 1 and the number of re-entry vehicles to be delivered NTOGO is
set to the original number minus one (since one RV has been delivered to
the first target point). FOOTEST then computes the fuel use on each leg.
It retrieves the correct fuel consumption rate for the current load and
the equivalent downrange distance for the leg. A division gives the amount
of fuel used on the leg. If there is not sufficient fuel left for that
leg, the fuel remaining indicator FUELELT is set to 0 (statement 1.365),
and the routine returns control to the calling program. If there is
sufficient fuel for the leg, the fuel remaining is decremented by the
fuel used on the leg, the feasibility indicator is incremented, and the
number of RVs on board is decremented. Then the next leg is tested.

When all the legs have been tested the fuel left after footprinting
FUELEFT is saved (statements 1390 to 2060). If the booster is currently
carrying the maximum allowed load, control returns to the calling program.
if more re-entry vehicles can be added, the best use of the extra fuel is
calculated (starting at statements 1396 or 2070).

Part II, Sheet 3: Long-Range System (continued)

This section begins by resetting the initial load indicator to show the
potential addition of another re-entry vehicle to the original payload.
(If necessary, the number indicator, JLV or NRV, is reset.) The same
computations as were done previously to test the footprint are repeated
with the increased load. This time, however, the difference in fuel use
between the original load and the increased load is saved in array EXTRA.
The value of the element EXTRA(J) is the amount of extra fuel that would
be needed on leg J (from target J to target J+l) to carry one more RV.
These computations are performed in the "do loop" ending on statement
1420 (or 2100 for short-range).

Then, this extra required fuel is subtracted, cumulatively, from the fuel
left after completion of the footprint ("do loop" ending on statements
1430 or 2110). The elements of the array EXTRA are changed to contain
the successive results of these subtractions. The contents of EXTRA(J)
now contain the fuel that would be available for further footprinting if
a new target were added to the footprint between target J and target J+l.
The algorithm assumes the extra re-entry vehicle is carried on the bus for
the deliveries through target J. Then the extra re-entry vehicle is
delivered to another target and the bus proceeds as Before. The amount

521

.

of fuel that could be used for the extra flying distance created by
insertion of a new target is now contained in the EXTRA array.

This extra fuel available for further footprinting is now converted into
a maximum allowable distance. The testing algorithn assumes that all the
extra fuel would be used by the bus to deliver the added re-entry vehicle.
(Note that the fuel needed to complete the footprint after that delivery
is reserved and cannot be used for the addition.) Thus, the extra fuel
for each leg is multiplied by the saved consumption rate for each leg, CR,
to calculate the maximum extra flying distance allowed on the leg. This
distance is stored in array DELRAFT in cormon /FOOTIO/. Subroutine EVAL
uses this distance to determine the worth of adding a new target to the
footprint. Since other subprograms divide by these distances, the values
placed in the array are increased to a minimum nonzero value (EPSILON,
preset to .00000001) to allow that division. This completes footprint
testing and control returns to the calling program.

522

r)

START1

Clear Output
Arrays

Retricve Distance
1 iRatios0

Done Do For All oargets R
Rn In Assignment•Do

Compute Square
Of Down-

Pange * Distance

To Next Target
• 20

Target . Ye Downrange
Up an e Ratio

30 4 No
Compute Square,

Of Crossrange
Distance ToT
Next Target

40
Compute Equiva-
lent Downrange
Distance For
This Leg

System Type >?
Number?
(MTPE)

Long-. Short- Long-Range
Range Range With Penaids

Fig. 94. Subroutine FOOTEST

Part 1: Distance Computation

523

1110 1120

set :5 2 How 3 Set
JRV Many RVs? JRV 2

1200

Set Azimuth
Indicator 44
Positive

1210

Is Set Azimutlýzimuth
Negative? Indicator

Negative

No .4

Has
301

Range 0 Recompute
Yes Footgrdln;

Azimuth Ch ed Range Uel
Significa I ?

Parameters

1308 No

Does
Compute Maximum No System
Booster Range, [lave Penetra-

Total Fuel Load tion Aids?

1310

Is Range ToCompute No First Target 300
Fuel Needed To
Lxtend Range Within Booster

Range? Recompute Fuel

1350 Yes
Load

Subtract Fuel
Parameters

Used For Range
Extension

9999 No Fuel es 1360Left?

Fig. 94. (cont.)

Part II: Long-Range System

(Shoot 1 of 3)

5 24

Initialize
Feasibility
Indicator
I FEAS

Initialize
Number o~f M 139

On Board
(NTOGO)

Do For Legs Doe Save Fuel This Maxi-

Fin Footpr nt LeftmuLod

DoI Y Yese
Partev Fue(clt.
(Shestm2pofo3

52te

Add One RV
To Total Load

1397
RVs Yes Increase

_-O, Injcreasc
Now? JRV

CowNo
398.98

c.mputc MaximumBo.rtLr Range And -od
Remaining Fuel

1400

an

n
L

Compute Fucl Is R go To
No

'r

Needed To First Target
'te ýuc I No

t
Extend Range WJ thin Maximum

Booste ange?

Yes1410 s

Retrieve Fuel

ýd
Rang

4

Compute Excess Consumftion
Fuel Before Rate or

First Delivery -Load

DoDo Use To Fly
1430 Do For All Logs Distance To

In Footprint Compute incre-
Subtract Increment. montr.1 Fuel UseDoneal. Fuel Use Fy..om Do ITotal Fuel Left Do For All Legs
To Detennine Excess In Foutprint

Decrement
Fuel After Number OfEach Target Done RVs On Board

w.
Compute Maximum

AllowableDistance FBeforeDan'' m
First Target

1450 1440

Multiply Excess Fuelase All Distances 4Done Do F r Ail Do
w Minimur.i Value cgs By Mileage Rate To

ncr. I n' Footprint Determine MaximumLCEPSILON) To That Valu(Allowable i)istance
After Each Target.

1"ig 94 (cont

Part 11 : (collt
(Shoet 3 of 3)

526

20005

H~Compute Ie To

Fuel Do c Do For All I) Laonl AntI
Load Pcsýuiblc co

2010ng Parameiters

Computeia Fuci

Us20I30 I Ran e T01Sorgt Fosbeyotd lýIc~ar,-L

OnBoost rd1i

Exen ion 9. (cn,
Sutart RIang r-eno ysc

(SotIf of2

20527

SetUp Al parameters
orOne Extra RV

EChmptaret opt iu

yes~Mutil /xcIs Fuelo 1oFrtTag
Fuel~~etrmn Usd rete TanMjtm

Leg RnantgneAlwal isac
Aftere EaciT'rgo

Exoepute Maium22

Subtrlow Miuim Used i

DoaFrt All: Do ReriveCtsup)o
(utges hI oot prn 2ae

Comp2)

Don InrmntlFelUe

I

11000

Print Error
Message For

Illegal System

Increment
Error

Occurred?

19999 RETURN

Fig. 94. (cont.)
Part IV: Error and Termination Blocks

529

SUBROUTINE FUELSAVE:

PURPOSE: This routine computes thc fuel saved by the omission
of each target in the footprint,

ENTRY POINTS: FUELSAVE

FORMAL PARAMUETERS: None

COMMON 111OC KS: FOOP 10, POTE~NTI, WPNTCI', 1 , OEIUC , PRITNT

SUBRO~LTINES CA LL13) GOPR TNT, IET, MISS IT, I 1111'T

GALLUD) BY: IMPROVE

Method

This Subroutine takes the current hit list and callis subroutine '[ES'] to
compute the fuel remaining after compl et.i on of the weapon deliveries.
Then, FPlJELSAVE mo1d ifi cs the hlit list by the removal of the first target.
TE"ST is cal led again and FIFELS,1AVE calculates the difference inl fiuel used,
The omitted. tarpct is returned to the hit 1list inl the same11 posit ion aind
the next targect is omittcd. ibis process of omission and test ing is
cont~inued until the deletion of each target is tested.

The reciprocal of the fuel savcd by the deletion of' each target is Stored
in array COSITEF in conunon /1/ . The values in this array are Used by
!MPROVE to determine the order in which targets will he deleted during the
improvement pha se.

SuIrout inc FEtILSAVIý is illustrated in f igure 95.

r%

STAR

F al I TEST
To Relieve Initial

Fuel Figures

[Save FelI
Left After
Footprint

ToCompute Fuel

Saved By
Omitting Target

[Call HITSIT

To Return Target

From Hit List

i
T Compue Fuel

Omitn Target

Fig. 95. Subroutine FUELSAVE

531
462- 546 0 72 - I

SUBROUTINE GOPRINT

PURPOSE: This routine prints data at various stages of
processing.

ENTRY POINTS: GOPRINT

FORMAL PARAMETERS: IX - Data block number

COMMON BLOCKS: MASTER, WPNGRPX, STRKSUM, RAIDATA, 4, CONTROL,
FOOTlO, FOOTSAVE, INDEX, LOADATA, PARAMETR,
PERFORM, POTENT, RANGE, VALPARM, WPNTGT, 1, 2, 3,

FLAG, DEBUG, PRINT

SUBROUTINES CALLED: PRNTABLE, PRNTLOAD, ABORT

CALLED BY: FOOTPRNT, ADDRV, ASSIGN, BOOSTIN, BOOSTOUT, CHKSEQ,
EVAL, REVAL, FUELSAVE, HITIT, MISSIT, IMPROVE,
INITASGN, INPOT, OUTPOT, NEWCOOR, OPTBOOST, REMOVE,
TEST, TRANSFER

Method

This is the subroutine which does most of the printing in a run of the
program. Each subroutine that desires a print sets the print request
number, ICALL in common /PRINT/, and calls GOPRINT with a data block number
as a formal parameter. These data blocks are sets of data of similar
size and function that are printed to display processing results. Table 28
shows the data block definitions.

Upon entering GOPRINT, the error flag IMUST in common /PRINT/ is tested.
If it is greater than zero, a print is produced regardless of the print
flag setting. If there is no error (IMUST = 0) then GOPRINT tests the
flag for the print request number* ICALL. If this flag was set true by
subroutine PRINTSET, the print is produced. Otherwise control returns to
the calling program with no further action by 6OPRINT. If the flag is
set true, then a computed GO TO statement directs processing to the print
of the data block requested in the formal parameter.

Two special subroutines, PRNTABLE and PRNTLOAD, are used to print the
footprint parameter tables and the booster loading data, respectively.

At the end of printing, GOPRINT determines if the print request number
is the same as the dump number, IDUMP in common /FLAG/, set by

*Also called "print option number."

532

subroutine RDCARDF. If so, subroutine ABORT is called to produce amemory dump. Otherwise control is returnod to the calling progr".

Subroutine GOPRINT is illustrated in figure 96.

533

.: .-

Table 28. Data Blocks Used in Print Requests
(Sheet 1 of 2)

NUMBER COMMON DESCRIPTION

1 WPNGRPX Group data read from BASFILE

2 PARAMEFR MIRV system general parameters

3 Detailed footprint parameter tables

4 Detailed booster loading tables (not used)

5 STRKSUM Gross strike data block

6 RAIDATA Detailed strike data block
4

7 Range and launch azimuth of target set
(includes index according to azimuth)

Status array, pointer arrays, booster
loadings and pointers

9 RANGE Uprange/downrange, crossrange/downrange ratios

10 DEBUG List of chain of subroutine calls

11 POTENT Potenijal target arrays; includes hit, miss,
1 lost and free lists as well as age and value

arrays

12 CONTROL Control parameters for program

13 FOOTIO Input/output data for footprint tester

14 PERFOR.M Gross performance parameters

15 Same as number 11, /POTENT/ and /l/

16 WPNTGT Indices for moving targets between hit and
miss lists (includes target to booster
assignment indices)

17 3 Temporary storage of various parameters for
RANGE all targets in potential target arrays.

(includes common /RANGE/, number 9)

534

Table 28. (cont.)
(Sheet 2 of 2)

NUMBER COMMON DESCRIPTION

18 INDEX Indices for adding and removing targets from
potential target arrays; includes indices
of targets added on "look ahead"

19 FOOTSAVE Indices of targets in footprint saved during
processing in OPTBOOST

20 Intertarget distance matrix for potential

targets

21 Final plan

22 Distribution of re-entry vehicles to boosters

23 VALPARM Program control parameters

24 LOADATA Booster loading control information

535

START

Is 71iis An Yes
Error Print?

0

No Is Print
Active Now?

Ye

N' 2 Print tH,,ding

Yes
For Print
For Print

C Block For

To Pr
See

orrect Print Succeeding
According To
.ra amParameter Parts

900

Yes Is This An
Error Print?

No

910

920

10

No

92
Is This Print Yes CallCode For Memory

DUMP? ABORT

jNo

1000

RETURN

Fig. 96. Subroutine GOPRINT

Part 1: Main Processing

536

rr

Data Block I

Data Block 2 2

•o~~o For •All• Doo

Djta Block 4

Data Block S

Prn Sav 67-0111ntIs

10 Heading WeaonSTCKSUHas A"-i

Fig. 96. (cont.)
Part II: Data Blocks 1,2,3,4,5

537

Print

Data Block 6

60 Print PrintHeading Contents Of

'L/I RAAI)AA

Data Block 7

Azimuth Data

Data Block 8

Hedn Targ/etOf An9 0oosters -0 900

Data Block 9

Data Block 10

Prn100 ~Cont ants of 'o
/DEUUG/f

Fig. 96. (cont.)
Part III: Data Blocks 6,7,8,9,10

538

110

110

Print150 Heading

Do For All Slots DoneIn Potential Target 900
List

Do
112

Is There A Lost Yes Print LO st

1-T arget In This Slot? Target Data

114

Is There A Free Yes Print Free
Index In This Slo t? Space Data

No
Iva- 99

117 1- 118
Is There A Miss'n Yes Print MissList Entry In L't"? List DatjaThis Slot?

INo

151 152
Is There A flitList Entry in Print D 1-1i

In YesC This Slot?? Yes List ata 7
1____

Print Basic
Potential Target

Data For This Slot

Fig. 96. (cont.)
Pý,rt TV: Data Blocks lllS

S39

Data Block 12

Data Block 13

'-N Of /FOOTlO/

Data Blbck 14

Data Block 16

160 Of /WPNTGT/

Data Block 17

10Print Contents Print Index __

Data Block 18

Data Block 19

1 90 ~ /FOOTSAVE/ For FCTAEFo90

Fig. 96. (cont.)
Part V: Data Blocks 12,13,14,16,17,18,19

540

intading

r rint11 Sl"tr Save Targeter.,A Yes t,
Do For All Slots ITsarget

ILis t
in Potentia arge in PDtent Index

is Sl t? OK rra
s ný

nTt nde;'et t Sl: ? 1i IOX ArrayTarget List This
ne

Determi N..beK
Of Blocks Of 10
To Print (NTIMES)

205 Done Increment Are Thtre No
Do NTIMES Target Targets maining 900

T e P I ?
Do 9920 Yes

Determine Fir3t Print
And Last Index H ading
For This Block

Do For

Print Al! DONE
Heading Potenla,

Targets

Dý P r All
Do

ential Save RC)w
Targots Inje X (10

TOO 208
ve Row

no Fol All -dex (IC) W-4s-vo Distance Data
Remaining In DTEMP Array

Tarjzlýets
207

one
Do or Al Do

09 D
Target. I5 81 oc t.nv
7b ri - t Distance Datak _ Done From tDTEMP A y

205 'W-L EýIF rrj
Print Dis D., t a]

4--FFrc,' DTLý"Ar,,y

Fig. 96. (cont.)
Part VI: Data Block 20

541

210

Print
Heading

Initialize
Target And

Booster Counters

212

Increment Target
Counter j

< Have- All Targets Yes
Been Processed?

INo
21

213

Negative? Counter

I • / Print Booster

Increment Delivery H n
Order Counter7

i •]Initialize Deliveryl

Save Absolute Order Counter
Value Of Index

Number

Print Target /

Fig. 96. (cont.)
Part VII: Data Block 21

542

Initialize Counter
And Maximum-Load

222
Do For Al I Words DO
In IOK Array To Clear Word

Be Used To Zero

one

Do For All Boosters IDone Print
I n Th Group Heading

Do

Sav N umb 11 AnOf RVs
-dg ' rTo This Booster Cle'T

T 222

-;V.W-re Any \ AN. UWse Last
s , igned __a.] Ord Tn

\-To This Boost I IOK Array
es

223 C
Increment Number
of 8.0 t''s WithLoaThis ding

225
Print

Values For Yes Did Any Booster
No 1oad Have No Load?
Booýsters No

Do FovAll

29 Possible Dond

Loadings E)
Do 227

No Did Any Boos-te-r--\ Yes Compute
Have This Loading? I- Percent Of B . osters

Loaded This Way

Print Values For
This Loadi gn 7

Figý. 96. (cont.

Part VITI: Data Block 22

543

Data Block 23

Print
230 Contents Of s- oo0

/VALP ARM/

Data Block 24

Print
240 Contents Of 900

/LOADATA/.

Fig. 96. (cont.)
Part IX: Data Blocks 23,24

544

SUBROUTINE HITIT

PURPOSE: This routine enters and removes targets from hit
and miss lists.

ENTRY POINTS: HITIT, MISSIT

FORMAL PARAMETERS: None

COMMON BLOCKS: POTENT, WPNTGT, 1, DEBUG, PRINT

SUBROUTINES CAL-LED: GOPRINT

CALLED BY: C11KSEQ, FUELSAVE, IMPROVE, OPTBOOST

Method

This routine performs the list manipulation operations required to move
a target between the hit and miss lists.

The first entry, HITIT, is used to move a target from the miss list to
the hit list. The required data for the move are contained in common
/WPNTGT/ as follows:

IPOTGT - Potential target index of target to be moved

JAFT - The position in the hit list after which the target is
to be added.

If the added target is to be the first target in the hit list, JAFT is set
to 0. This subroutine resets all the indices and pointers to move the
target to the hit list.

The second entry, MISSIT, is used to move a target from the hit list to
the miss list. The target whose potential target index is IPOTGT is re-
moved from the hit list and placed at the end of the miss list. The
entries which followed the removed target on the hit list are moved up on
that list.

Both entries use the INVERSE array to determine the position of the target
on the respective lists. If INVERSE (IPOTGT) is greater than zero, the
value is the position of target with potential index IPOTGT in the hit
list. If the value is negative, it is the position in the miss list.

Subroutine HITIT is illustrated in figure 97.

545

I

Entry
STAR~T ItITIT

Save POTENT Index
And Position Of

Target T'o Be Added

No 10Ne g at
Set Placement

fs Target Position Yes Pointer (IHVRE)Zero? / -T'o 1 For First

No o Target20 ' '

Determine Target's Current D U
Position in Miss List; Decrement, S n
Number of Targets In Miss List L

Do Fo 1 1Do Move Target
Succeeding Targets • Daa30nIn Miss List 44Slot In Miss

Done

Do From Placement D Insert New Target
Pointer To End Of Data In Proper RETURN

Hit List Slot In flit List

Move Target Data 1
Down One Slot In

flit List

Fig. 97. Subroutine HITIT
Part I: Entry HITIT

546

S) I:11t i'y

STARTSS I

Save P(II"•NI"
l1dCx (Of Tlarget
To lie Removed

rom IHit I,ii t

InremOIt lNiNlbv

01 Tl'z go:, In Miss

Add Now Target's I)Dit.ai
To I nd of' Miss List

Decrement Nutmbhe Of 1
Tl:1irgets III Hit List

; I~~~o F~or Al 1 Tl''igets In I n, '

1101

:.~~ lo P il oit oll'n
10Hit ist All(I I wi ig~I

Tal':i og t T1o Bet IRelno\,ed

Move TIarget Dlt a 1111

SOne Slot In lit list j

Fig. 97. (cont .
Part II: I Entv M1 SS1T

5,17

SUBROUTINE IMPROVE

PURPOSE: This routine improves the footprint by removing
the target that uses the most additional fuel
and adds other targets if possible.

ENTRY POINTS: IMPROVE

FORMAL PARAMETERS: None

COMMON BLOCKS: CONTROL, FOOTIO, PARAMETR, POTENT, WPNTGT, 1, 2,
3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, IITIT, MISSIT, TEST, FUELSAVE, EVAL, REVAL,

CALLED BY: OPTBOOST

Method

This subroutine attempts to improve the best footprint provided by sub-
routine OPTBOOST. It investigates minor modifications to the footprint
to determine if more targets (or targets of greater value) can be added
to the footprint. If there is only one target in the footprint, IMPROVE
assigns to the footprint the most valuable target that is feasible. (See
part II of figure 98.)

If the footprint input from OPTBOOST contains more than one target, IMPROVE
.* determines the best target to remove temporarily from the footprint. (See

part I of figure 98.) Subroutine FUELSAVE is called to determine the
marginal fuel use of each target in the footprint, The target with the
greatest fuel use is removed from the hit list.

The processing shown in part III of figure 98 determines the best target
(or targets) to add to replace the temporarily omitted target. Subroutine
EVAL (or REVAL) is called to determine the worth of adding each target to
the footprint. IMPROVE attempts to add each unassigned target (excluding
the temporarily removed target) to the footprint in order of decreasing
worth. This process continues until either all unassigned targets have
been investigated or until the booster has been assigned its maximum
load. The routine then determines if more than one target has replaced
the omitted one. If so, the cycle repeats with a new determination of
the best target to remove temporarily. (Note that if the target selected
for removal was the last target added in the improvement phase, the sub-
rcutine will return control to the calling program without removing the
target.)

546

The 1mprovmemat, Ite ltds whenl IUIROVE cantot add more thtui oie target
aft.t'e removintg the t. a rge t with Imxi,114a m l'ul .O (sov part IV of figure

S 98) . I f lio tairgct could he added, IMIPR'Low retuirns thi omittoid target to
.the footprint. If only o0e target Was a•dded, IMPROVY determinies which
t arget, the tremoved or tihe added, Is no re va IInbleIC. Tihe 1110re l VIII) le'
target Is then used ill tihe footprint to thv exclusion of tile other, V.

Itf I MPROVE hias return'd the omiitted target, to til 'ofootprint, its t feasi-
hi lity Is checked once Lagiln,. II' tihe foot print is not 'efoasible the tar-
j,.ets have be'en Shul'i l1d dur'ing processing. The sub rout i ne will pri'int
MI rrr III',tSage to thiS Ci't'ect and iCttt'll rCon tr'ol Ill tihe normal t'Ashlion•

Note thaut INII'RONT never attempt,: to ret urn tile omitted tia'get darhig,, the
imprOVem'Ient phase shown ill l pa t Ill of f'ig•gre 98. This procedure assutimes
th at Ol"'IOOSiT hlas previously i nvest igalted all the possible f'ootp rint"
containing that target. and it is morc effi civiCt for I MPROVUI to i gnonre
those poss ibilities.

II

START

Are There No ____

Unasignd RETURN 9999

Only
One Targt YC5Ye
I n Foo-e
print? Was Savod Target

No ReevaAuatd Tostaste

F ig.98 SbruiniIPRV
Partce ReReovlofe Targe with

550

10

Save Value
Of Target;

Remove Target
From Hit List

Add Single
soDo For All Most Valuable

Unassigned Feasible Target
Targets Saved

Is Value Of \
SThi4s Target Greater

TThan The Saved Value?

Yes
20 i

Add Target To
Hit List And

Test Feasibility

Ye ,.Save Valuie
Feasible"(- And Index

?l Of Target
40

_. Remove Target
-" From Hit List

Fig. 98. (cont.)
Part 11: Single Target Improvement

551

Increment Pointer
200 To Miss List

es
TY

re More Thitn
LWtn signed No One Tar et

Targets? Added

Yes
210 No
Datemine Next

Most Worthy
Target To Assign 560

........ ...
Yes Was This

gt.t..q.v'ý D\-LR. ;oved?
Jd

?
250 No 310

5 T ' st

Yes

Determine
PT,-Ce -e It

Reevaluate
In Hit List Distance

I Matrix

No Potentially
New FirstFeasible?

ý$
A

Target?

270 Add Target T 320 No'Y *s
Hit List And Test, Evaluate Wo7thý-l

Feasibilityo F.,7:f .ý
Each Targe

Addition To Footprint F

280

,.e. Trgc],,

330,340Remov 'Fe No Yes Initialize Pointer ToFrom it ist Feasible? Miss List And Determine
Seqljeice of Investigation

Booster At Yes
Maximum Lo-,A?

Fig. 98. (cont.)
Part III: Determination of Best
Replacement Targets

552

t?

360

370

Were Any Yes Is Added Target More
Targets Added? Valuable Than

That Omitted?

No
390 SNo

Return Omitted 380
Target To
Hit List Remove Added Target,

Test Feasibility,Reevaluate Distances

AndWorth

Test Feasibility
Of Current
Footprint

Fesile Yes

400 N

Message

Fig. 98. (cont.)
Part IV: Check Improvement

553

ri

SUBROUTINE INITASGN

PURPOSE: This routine performs the initial assignment of

targets to boosters.

ENTRY POINTS: INITASGN

PORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, CONTROL, PERFORM, POTENT, 2, DEBUG,
PRINT

SUBROUTINES CALLED: GOPRINT

CALLED BY: FOOTPRNT

Method

This subroutine performs the list manipulation required to assign all the
targets to the boosters in an initial assignment. This assignment, whose
feasibility is never tested, serves as a starting point for later processing.
At the time INITASGN is called the targets are ordered by increasing
values of launch azimuth. The data used by INITASGN to assign the targets
are contained in common /CONTROL/ and are as follows:

NV - Number of boosters

NARV - Ratio of number of targets input (NT in /RAIDATA/)
to the number of boosters (truncated to largest integer
less than or equal to value.)

NEXTRA- Number of boosters which must carry one more RV than the
average number (NEXTRA = NT - (NARV*NV)).

After INITASGN assigns the targets, NEXTRA boosters will be assigned NARV
+ 1 targets and the remaining boosters (NV-NEXTRA) will be assigned NARV
targets. (The first NEXTRA boosters in order of increasing azimuth will
each be assigned the extra target.)

The assignment method is straightforward manipulation of the RAIDATA list
pointers, IFOR, IBACK, IBOOST, and NTB. In addition the number of targets
currently assigned, NASGN, and the sum of the relative values (RVAL) of
the targets currently assigned, VALASGN, are incremented as each target is
added to the initial assignment. The targets are assigned in serial order
to each booster.

Subroutine INITASGN is illustrated in figure 99.
554

lO,20

Clear Assignment]
Arrays In /2/
And /RAIDATA/:

Do For Each RE-U RN

Boosterh 2J010
,D;

Increment Target 1
Pointer (IP

[Assign This Target As
First Target On Booster

_ 2 4 /No _
100 Do For Second Done Are There Extra

Tn NARV Re-entry Vehicles To Be
Vehicles Assigned?

DoYe

Increment Decrement Number

Target Pointer Of Extra Vehicles
(IP) To Be Assigned

A.s.sign This
Tairget AsNext IIncrement Target

Target On Booster Pointer (IP)

m This Target
To bocster As

Last Target

Fig. 99. Subroutine INITASGN

555

SUBROUTINE INPOT

PURPOSE: This routine adds and deletes targets from the

potential target arrays.

ENTRY POINTS: INPOT, OUTPOT

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, CONTROL, INDEX, POTENT, WPNTGT, 1, 2,
3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, REMOVE

CALLED BY: oOOSTIN, OPTBOOST

Method

Entry INPOT removes a target from the RAIDATA lists and enters it in the
potential target arrays. If the target is currently assigned to a booster,
subroutine REMOVE is called to remove the assignment. Entry OUTPOT
removes a target from the potential target arrays and returns it to the
RAIDATA list in an unassigned state. (Subroutine BOOSTOUT is used to
remove targets that are assigned to a booster.) The data which controls
this subroutine are contained in common /INDEX/ as follows:

JINR - RAIDATA index of target to be entered into potential
target arrays

JOUTP - Potential target index of target to be removed from
potential target arrays.

During processing, the following indices in common /INDEX/ are also defined:

JINP - Potential target index for target entering potential
arrays (=IFREE (NFREEJ)

JOUTR - RAIDATA index of target to be removed (=IPOT (JOUTP)).

To save time in processing by reducing the number of references to variables
in common storage, the following substitutions are made for these indices:

JR JINR (in INPOT)

556

JR = JOUTR (in OUTPOT)

JP JINP (in INPOT)

JP JOUTP (in OUTPOT)

The processing of this subroutine is very straightforward, as displayed
in figur 100.

557

START Entry
INPOT

110 Find Next Available

Save Target .11 And Decrement 9999
I ndiý x R..ber Of Available

Yes Cells By One RETURN
100 Already in

Assigned Potential 9000
Is Ibis to Booster

Look-Ahead rarget Status? Print Error'

Option? Message

No Unassigne
200

Call REMOVE,
Set Indi CesTo Remove To Add Target

Assignment To End of
Miss List

L 'oad Ta
I

rgot Da a
Intu Potentia
Computation Arr ys

Entry OUTPOT
VOtOnt-Ine /KAIDAT

IDATA/'Detor"'Ten1I Index

Is ý-rget
In Potential

List?

300
Yes'e

300

Determine ListDetermi
ne ListPosition Of Target

Which
Lis t? Hit
List?

Miss
3105

Reset rarget

Reset Miss List Data In
Indices To Potential List

Remove TargetHComput;ý'tion Arrays

Fig. 100. Subroutine INPOT

558

SUBROUTINE LOADREAD

PURPOSE: This routine reads and prints booster loading
data.

ENTRY POINTS: LOADREAD, PRNTLOAD

FORMAL PARAMETERS: None

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: GOPRINT (PRNTLOAD), RDICARDF (LOADREAD)

Method

This subroutine is currently a dummy routine. Its purpose will be to read
data on variable booster loadings within a group and also to print that
data. The dummy routine merely reserves the entry points for later ex-
pansion of the program to include a variable booster loading option.
(LOADOPT *VARY* = option 2)

559

SUBROUTINE LREORDER

PURPOSE: This routine reorders the elements of a packed
logical array.

ENTRY POINTS: LREORDER

FORMAL PARAMETERS: ISEQ - A sequence array to control reordering
N - Number of elements to be reordered
LOGAR - A logical array to be reordered

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: FOOTPRNT, NEWCOOR

Method

This subroutine uses the same method as the utility subroutine REORDER.
This extra routine is required for logical arrays on the CDC 3800 com-
puter system. Logical arrays are packed 32 elements to one computer word
on this system and the word manipulation code of subroutine REORDER would
not correctly reorder a packed array.

The ISEQ array is a sequence key array of the type produced by subroutine
ORDER. It contains the indices of the array LOGAR in the order in which
they are placed. That is, ISEQ(l) contains the index of the element in
LOGAR that is to be placed first, ISEQ(2) contains the index of the
element that is to be placed second, and so on. The parameter N deter-
mines the number of elements to be reordered. At the end of the sub-
routine, the elements of LOGAR have been reordered.

LREORDER stores one element from LOGAR in a temporary location. It then
reads from ISEQ the element which should go in that position (which may
now be considered empty) and moves it, filling the position and creating
a new empty cell. Each new empty cell is filled with its proper contents
as soon as the original contents have been removed. When the element in
temporary storage is required, LREORDER finds another clement which is
not already in proper sequence, puts it into temporary storage, and con-
tinues as before. This process continues until no elements are out of
sequence. The contents of ISEQ are returned to the calling program un-
changed so that the sequence key can be used again.

Subroutine LREORDER is illustrated in figure 101.

560

START

10
Initialize Cell

Pointer, 1 80

Increment Cell
20 Pointer (1)

Is This Cell In Ilic Yes
Correct Sequence?

No No30 1
This Cell Been Yes 70 Is This Last Cel

viously Filled? To Investigate?
'0

No
40

90
Save Cell Pointer

(ITEMP) Do For All
And Logical Value Entries In

SequLnce RETURN

so i Ari7ay

_,.F GL7tNcxt,, Position DOTo 8, L.To Be Loaded (NEXT) no

Re t u rn Ent7y
-iginal

Flag Current Po5ition LWO
As Previously Filled

Fill Current
Position

i
Set Current Position

Pointer (1) To
Next Position (NEXT)

No Is Current Position(I
The Saved Position

(ITEMP) ?
Yes

60

Flag Current Position
As Previously Filled

Fm current Position
M

With S,,, d Value

Fig. 101. Subroutine LREORDER

561

r

SUBROUTINE NEWCOOR

PURPOSE: This routine converts target coordinates from
latitude and longitude to range and azimuth from
weapon group centroid.

ENTRY POINTS: NEWCOOR

FORMAL PARAMETERS: IG - Group Number

COMMON BLOCKS: FILES, WPNCRPX, RAIDATA, 4., EARTH, 2, DEBUG, PRINT,
TSCRATCH, Filehandler Blocks (ITP, MYIDENT, TWORD,
NOPRINT, FILABEL)

SUBROUTINES CALLED: GOPRINT, ORDER, REORDER, LREORDER, WRARRAY, DISTF

CALLED BY: FOOTPRNT

Method

This routine converts the target coordinates for use by the footprint
generation subroutines. It is called once for each group.

For each target, NEWCOOR adds the target point offsets (DLAT, DLONG)
to the target coordinate (TGTLAT, TGTLONG). The range from the weapon
group centroid to the target point (RANGE) is then computed by a call
on the distance function, DISTF. The position of the group centroid is
given by the variables WLAT and WLONG in common /WPNGRPX/. The formal
parameter IG is used to retrieve the correct position.

The calculation of the launch azimuth uses spherical trigonometry. First
all the latitudes are converted to radians by the factor DEGTORAD in
common /EARTH/. The range is normalized by dividing by the radius of
the earth (RADIUS in common /EARTH/).

The computation of the launch range is performed as follows. Define a
spherical triangle with vertices at the group centroid, North Pole and
target. (See figure 102.) Let angle A (the launch azimuth) be the angle
between the line connecting the centroid and the North Pole and the line
connecting the centroid and the target. Measure the distances between
the points in terms of the number of radians subtended by the connecting
lines. If distance a is the distance between target and North Pole, b
is the distance between centroid and target, and c is the distance
between centroid and North Pole, then:

562

-4

a = 1/2 - (TGTLAT*DEGTORAI))

b = RANGE/RADIUS

c 7r/2 - (WLAT*I)EGTORAD)

Using the law of cosines for spherical triangles, then:

cos a - (cos b . cos c)
cos A= sin b . sin c

The difference between the target longitude and the centroid longitude
is then used to determine the sign of the launch azimuth.

After all launch azimuths have been computed, the target data are reordered
according to increasing value of launch azimuth. The sequence array used
for this reordering is written on the assignment data scratch file, ISCR,
for later use.

Subroutine NEWCOOR is illustrated in figure 103.

North Pole

Tar getI
Centroid- •Tre

Fig. 102. Calculation of Launch Azimuth

41:!-!",]I (1 72 -,

Calculate Longit IdQ
Limits Of Hetnlispliero Of
Which Target Longitude

Is Mtid Point

100 v._ Do For Eaclh -Sol- Determine Order Of
Targe t Targets by Increasing

Do Al

AdTarget OFfsets
To Loc,'ti toion

/ Array On Assignment 1C

Call !JISTF
To Compute Range

From Centrold To Target

Call RILORDER To-T Reorder Target Data

Determine Number 0f Arrays According

Radians Subtended byfCac To Azimuth

Call LRFORDHR To
Compute Cosine Reorder Fixed

Of AzmuthMissile Indicator

Set~B AziuthNegtiv

IsMgitud o03 SubroutinesN3CO

4564

SUBROUTINE OPTBOOST

PURPOSE: This routine generates the basic footprint(s) for
each booster.

ENTRY POINTS: OPTBOOST

FORMAL PARAMETERS: None

COMMON BLOCKS: STRKSUM, RAIDATA, 4, CONTROL, FOOTIO, FOOTSAVE,
INDEX, LOADATA, PARAIWTR, PIOI'ENT, WPNTGT, 1, 2,
3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, HITIT, TEST, MISSIT, EVAL, REVAL, IMPROVE,
ORDER, INPOT, ADDRV

CALLED BY: FOOTPRNT

Method

This subroutine generates the footprint assignment for each booster. The
routine creates the footprint by an incremental method. That is, targets
are added to the footprint until either the booster is carrying a full
load or no more targets can be added without violating the fuel con-
straints. Subroutine IMPROVE is then called to investigate possible
improvements.

The primary user-input parameters which affect processing in OPTBOOST are
MAXFOOT and FRACLOOK. The former controls the degree of effort to be
expended by OPTBOOST in footprint generation. The subroutine will generate
up to two separate footprints from the potential target list. The better
footprint will be selected for improvement and later processing. The
absolute value of MAXFOOT determines the number of footprints generated.
(MAXFOOT must be -2, -1, +1, or +2.) The smaller absolute value saves A
processing time but limits the number of distinct footprints generated.
The sign of MAXFOOT determines the use of the "look-ahead" feature. If
MAXFOOT is negative, no targets are added to the potential list after
subroutine BOOSTIN. If the variable is positive, OPTBOOST retrieves tar-
gets from the RAIDATA list and has them entered into the potential list.
The targets to be retrieved are those assigned to the next booster to be
processed, This look-ahead feature allows the consideration of targets
with similar launch azimuths which are assigned to a later booster. The
number of targets entered is controlled by FRACLOOK. This variable is the
fraction of the next booster assignment which is entered.

565

'i1

The subroutine can be divided into five parts as shown in
figure 104.

Part i: Determination of Best Initial Point

This part determines the best starting point for each footprint. It begins
by ordering the target potential indices by decreasing value of worth (VAL).
An index, JONE, is kept to point to the target currently under considera-
tion as the initial point. The targets are considered in order of de-
creasing worth. The routine evaluates the feasibility of each target
until a feasible target is obtained. If no feasible target can be iound
(and the first footprint for the booster is being processed) the routine
exits after printing an error message. When the best initial point is
found, the distance and value matrices are recomputed by subroutine REVAL.
OPTBOOST then redetermines the order of targets by decreasing worth.

Part II: Addition of Targets

This part is the heart of subroutine OPTBOOST. It attempts to add as
many targets as possible within the fuel constraints. The processing
operates as follows:

1. Retrieve index to next target

2. If all unassigned targets have been investigated, go to im-
provement section

3. Test feasibility of adding this target

4. If infeasible, return to step 1

S. Reevaluate matrices and reorder unassigned target indices
according to decreasing worth

6. Return to step 1 unless booster is carrying maximum load.

The improvement phase follows the addition phase. Subroutine IMPROVE
is called to determine the benefits of minor changes in the footprint.

Part III: Selection of Best Footprint

According to the absolute value of MAXFOOT, either one or two distinct
footprints are generated from the potential list. The two footprints
are distinct in that no target is assigned to both footprints. The
processing in this part involves saving and retrieving the indices of

566

the targets in the footprints. A second footprint is considered only if
the number of unassigned targets in the potential list is not less than
the number of targets in the first footprint. Only then car. the second
footprint be an improvement over the first.

After both footprints have been generated, the routine determines the
better one. This decision is made by selecting the footprint with the
greater number of targets. If both footprints have the same number of
targets, the routine selects the one with a higher sum of target values
(RVAL).

During this phase, the target indices are stored in temporary storage.
Array IFOTSAVE in common /FOOTSAVE/ is used for indices for the first
footprint. Array IF2SAVE in the same block is used for the second foot-
print.

After selection of the best footprint the routine checks the sign of
MAXFOOT. If positive, the look-ahead feature is implemented.

Part IV: Look-Ahead to Next Booster Assignment

This feature allows OPTBOOST to consider targets assigned to the next
booster to be processed. On the first pass, thes3 are the targets with
the launch azimuths next larger than those in the current footprint. In
the second pass, these are the targets with next smaller launch azimuth.

In order that targets added on look-ahead not be immediately removed by
subroutine BOOSTIN before processing the next booster, the save indicator,
JSAVOPT, is set to 1 before the targets are entered into the potential
list. This indicator directs subroutine INPOT to place these target in-
dices into the JSAVE array in common /INDEX/. BOOSTIN will not remove
targets whose indices are in the JSAVE array.

The number of targets added is determined by the user input, FRACLOOK,
which is the fraction of the next booster to be added. In any case, the
number added cannot exceed either the total assignment to the next booster,
or the number of available cells in the potential target arrays.

After the targets are entered, the distance and value matrices are com-
pletely recomputed so that all data for the new targets are added. The
target indices are reordered according to decreasing worth, and control
returns to Part 11, Addition of Targets.

Part V: Termination

There are two parts to this section. The first retests footprint

567

feasibility. Processing by IMPROVE may cause the target sequence to be
jumbled. If this perturbation affects feasibility, an error message is
printed at this point, but processing continues. The second part tests
for fulfillment of the minimum load constraint. If the free load option
(LOADOPT = 0) is not in effect and the assignment has not met the minimum
load, subroutine ADDRV is called to increase the number of re-entry vehicles
assigned to the booster.

568

START

9000
Any No Print Error Set ErrorUnassigned

Targets? Message Indicator

Yes
10
Order Target Indices

10 By Decreasing Worth 9999

Initialize Investiga-
tion Indox(JONE) To 0

03 _0

Increment Investiga-
t tiion Index

Retrieve Target Index
And Add To Footprint 60

Call REVAL To 6S

Yes Reevaluate. Order Target
Feasible? Distance Matrix Indices By

And Worth Decreasing
Parameters Worth

*No
40

Remove Target
From Footprint

arg"t
es U

More

F rom

FootPL

M.
re

'move

T
T . t?

Unas5igned
Targets?

r

in

t
so No

51
190 No First Yes P r, týýýý 's,

Footprint For Message 1111o
Booster?

Fig. 104. Subroutine OPTBOOST

Part I : Deterinination of Best

Initial Point

569

nent Investigation
Index (JADD)

More
Unassigned No

Targets

Y40 s
801*

ý Retrieve Target
Index

And Position Index

AddpTartet To Foot-
rn And Test

Vý 4 64 1

120

Remove
Target Feasible?Feasible?

J
,Re-ov-

No

L
7__,

From
.tprint

130,140,150So
Yes

Reevaluate Worth 170
(And Distance Which
Matrix If ý.,i nt
Necessary)

Foort ri ?

160
18 0

iý2
180

Initialize Investigation
Index And order Call IMPROVE To

Target Indices By
Decreasing Worth Improve Footpriatý 9999

No Booster At Yes
Maximum Load

Dy -es .1 Wh: ch >2
200 ootprint7

.2

300

Fig. 104. (cont.)
Part 11 Addition of Targets

570

Increment Footprn 230
NumberCall EVAL To

i Eivaluate Target
No Another F~ootpr1int Wo~rth

4No Can Secoond FootllrinN ULhiasigfled 190

More ~ ~ ~ B TaBt n o i e ttrres Tn'' argets ?n

Moe l ScodCalculate Sum Of Ra etundicrets InFootprintlue TfoTrgets 'rgtVue Inirasat FotpIntT
To 0 Mis Listsctn FootprintFis

More arg In Nr TagetsIn Ye Sav Ind cs O
Firs Fooc 0 l'Igt List

Cais 1.ornll TLT ndRLd F~ont'ts I" g'.ts"Targetsr

Yes L oo

Footr ýintParg ts IT: V SlectIon of Bes t Footprint T

To issLii Scod Fotp fit7is

Art. Any"' rg v .. ;t No
Ass ~igned Tv Foot lri t 2

Set Ta rget il'. Sv
lija to r (J:ý,\\kI'i y

Pv'to 1,1111 Inudex of
Next 11usqterl

Be Pi~'u sod (NII:'

Bloos tr cIiiiJoux No
With ii R~airw

Load RA IDAIA Iliid i co
rgv'iiits III Ne.jj

flu r'r Ass i jllilcnL
ItiOTIIISAVL. Ai'raY

InveI Ordur As.41 An Odr aondv.;
420 Yv0, IICD- Ps & ocrci~itlt Kuytt

ca I I~d (mm oZ t,) 4
Do ~ Pr tV LokAha til Ne1Vxt'(V. f1

I! st~ A;ssigAi A,

572l~t D~tac

42 And- -ot Array- l ,

A~9 9 99

Call T!FST T'o
Test Feasibility of

Current FOOtprinL

9996

Feasible? N

Ys
y9998q c

Request Print Se1Ero
Onl Op~tio Oi J niao

Reset Error

I n

9994

MINLOAD) Constraint To Add RVs
'I\=Rcquircd? >To Footprint

Fig. 104. (cont.)
Part V: Termination

5o73

SUBROUTINE PRINTSET

PURPOSE: This routine controls activation of print requests.

ENTRY POINTS: PRINTSET

FORMAL PARAMETERS: None

COMMON BLOCKS: STRKSUM, CONTROL, WPNTGT, FLAG

SUBROUTINES CALLED: None

CALLED BY: FOOTPRNT

Method

This subroutine is called once for each booster on each pass for each
group. It sets flags (array IFLAG in common /FLAG/) which control the
printing by subroutine GOPRINT.

The routine first sets all flags to false (zero) for no print requested.
The print requests read by subroutine RDCARDF are then examined to deter-
mine which requests are active for the current booster, pass, and group.
Each active request sets its flag to true (one) which will cause a print
to be generated. If print request 14 (subroutine call chain for all
subroutines) is activated, flags 16 through 35 inclusive are set true
since these requests are the call chains for each individual subroutine.
See subroutine RDCARDF for a discussion of the nature of the print
requests.

Subroutine PRINTSET is illustrated in figure 105.

574

Do For Each SDoFo
Print Request Value To

Flag caIs

-L-Fa I S

No es PasTULes

Than Maximum Grass Or DoFrslg
IsThere No Mximum?16Trogh3

Yes D

No Is Grooste Lreste
Than Minimum Brouptor Or ruIsThere No Mainimum ?

Yes
20

No / s 1oc Los
AThan Maim "um Boost Or I

--sTher No Nxsm

Y es

I-s or IS>

Fig. 1 05. Surutn rRITC

Tha NinmumB575r

SUBROUTINE PRNTREQ

PURPOSE: This routine prints the print requests.

ENTRY POINTS; PRINTREQ

FORMAL PARAMETERS: None

COMMON BLOCKS: FLAG

SUBROUTINES CALlED: None

CALLED BY: RDCARDF

Method

This subroutine is called by RDCARDF to display the print requests in
common /FLAG/.

Table 29 shows the format of the print requests. If any of the last six
variables in the table are blank or zero, no checking is done on that
parameter.

The meaning ef each print request is explained in the User's Manual,
Volume II, Chapter 3, Plan Generation Subsystem, Program FOOTPPRNT, Output.

Subroutine PRNTREQ is illustrated in figure 106.

576

Table 29. Format for Print Requests J;

USER-INPUT INTERNAL
PARAMETER VARIABLE

NAME NAME DESCRIPTION

PRINT IPRNT Print request number

NOPRINT Default request to be removed

GSTARTP IFG First group to activate print

PASSTART IFP First pass to activate print

BOOSTART IFB First booster to activate print

GENDP ILG Last group to activate print

PASSEND ILP Last pass to activate print

BOOSTEND ILB Last booster to activate print

577

START

Print
Ileading

3 Do For Each Done
Print Request ip rnTU

*DOF
rD

Print Values
Of Variabless,
In /FLAG/ For
Tj'his Request

Fig. 106. Subroutine PRNTREQ

578

SUBROUTINE RDCARDF

PURPOSE: This routine reads and interprets the user-input
parameter cards for the assignment module.

ENTRY POINTS: RDCARDF

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, CONTROL, FLAG, LOADATA

SUBROUTINES CALLED: GETVALU, ITLE, NUMGET, PRNTREQ, TABLINPT, LOADREAD

CALLED BY: FOOTPRNT

Method

The user-input parameter cards are in the QUICK free field format des-
cribed in utility subroutine GETVALU. This utility routine is used to
generate variable name-value pairs for the user-input parameters. The
user-input parameters are the print requests and the algorithm control
variables. The user-input parameters for print requests are displayed
in table 29. The print modifying parameters, GSTARTP, GENDP, PASSTART,
PASSEND, BOOSTART, and BOOSTEND, modify the immediately preceding print
request (PRINT) on the same card. That is, a print request and its
modifiers must be contained on one card. In order to remove a default
print request, the parameter NOPRINT is used to specify the request.

The program control variables are IGSTART, IGEND, LOADOPT, MAXFOOT,
FRACLOOK, DELAGE, PN, PURGE, and IDUMP.

The first two of these are used to determine the beginning and ending of
processing for program FOOTPRNT. The first parameter, IGSTART, specifies
the first group for which program FOOTPRNT will look on the TMPALOC file.
The latter parameter, IGEND, determines the last group that the program
will consider on that same file. These parameters are used when the user
wants the program to process only a subset of the total number of groups
output by program ALOCOUT.

The next parameter, LOADOPT, is used to determine the booster loading
option that the user desires for processing. When its value is FREE*,

*The values listed for parameter LOADOPT are the input parameter values.
Subroutine RDCARDF changes these internally as follows: ADDON to 1;
MINLDREQ to 3; FIVE (or otherwise) to 0.

579

the program will consider only a maximum load constraint on each individ-
ual booster. That is, any loading of re-entry vehicles to the booster
that does not exceed a specified maximum load will be deemed acceptable
by the program. A value of ADDON* for this parameter will cause the
program to attempt also to meet a minimal load constraint for each
booster. If the potential assignment for a booster requires a number of
re-entry vehicles that is less than the minimum load, the program will
attempt to utilize more re-entry vehicles on the booster by placing extra
re-entry vehicles on targets already included in the footprint. This
operation continues until the minimum load constraint has been met. If
the program determines it is unable to use enough extra re-entry vehicles
on the booster to meet the minimum load constraint, then the booster
assignment is output without meeting that constraint. If the value of
the parameter LOADOPT is equal to MINLDREQ*, then the program will not
output a booster assignment with less than the minimum load. If the
program is unable to assign a footprint to a booster with the minimum
required number of re-entry vehicles, then no assignment at all will be
the output for that booster. In all cases, the program will abide by
the maximum load constraint.

The next parameter, MAXFOOT, controls the amount of effort expended in
subroutine OPTBOOST in generating a footprint for each booster. If the
value of this parameter is negative, there will be no "look-ahead" to
later boosters to determine if targets previously assigned can possibly
be added to the current footprint. If the parameter is positive, the
fraction, FRACLOOK, of the targets assigned to the next booster to be
processed is added to the potential target arrays during OPTBOOST pro-
cessing. This look-ahead feature enables the subroutine to consider
targets which might be assigned to a later booster but can profitably
be added to the current one. The absolute value of this parameter,
MAXFOOT, determines the number of separate footprints which are generated
from the potential target arrays by subroutine OPTBOOST. If MAXFOOT is
equal to t i, then only ont footprint will be generated from these arrays.
If MAXFOOT is equal to ± 2 (which is the maximum absolute value that can
be assigned this parameter) then two separate footprints are generated
from the potential target arrays. The program then selects for further
processing the footprint with either the greater number or greater value
of targets assigned. If more than one footprint is desired from any
potential target array set, the program produces two footprints which
share no targets. The next parameter, FRACLOOK, :is the fraction of the
target assignments for the next booster to be processed that will be
added to the potential target arrays during the look-ahead function of
subroutine OPTBOOST. (The value of this parameter should not exceed one.)

Two of the remaining parameters on the control card deal with the deletion

of weapons from the potential target list. The first, DELA;E, is a factor

*ThL values listed for paramicter LOADOPT are the input parameter values.
Subroutine R)CARDF changes these internally as follows: ADDON to 1;
MINI.DR1iQ to 3; PIRFE ýor otherwise) to 0.

580

r2

which multiplies the variable AGE as each booster is processed. This
variable, AGE, is used to divide Lhe nominal worth of maintaining a
target in the potential target arrays. As the AGE of a target increases,
it becomes less and less valuable for retention in the potential target
arrays. AGE is modified as each booster is processed by multiplication
by the factor DELAGE. As DELAGE increases, targets will remain in the
potential target arrays for fewer boosters. (The value of DELACE should
always be greater than one.) Tiae other variable which controls the deletion
of weapons from the potential target arrays is PURGE. This parameter is
the fraction of the targets in the potential target arrays that are to
be removed at the end of the processing for each booster. Subroutine
BOOSTIN removes this fraction of the potential target arrays before
adding the targets which are assigned to the next booster to be processed,
If, however, the number of targets in the potential target arrays is less
than the average booster load, then no targets are removed. This feature
prevents an excessive value for the parameter PURGE from eliminating all
targets from the potential arrays except those which are in the previous
assignment. PURGE however should not be set too small, since the pro-
cessing time for the program is greatly affected by the number of targets
in the potential target arrays. As this number increases, processing
time increases according to the square of the number of targets in the
potential target arrays.

The factor PN is a weighting factor for the value line used in the function
VALF. As the value of PN increases, the value scheme gives more weight to
targets with many close neighbors. (That is, targets with many close
neighbors are deemed more worthy to be included in the current footprint.)
The specific function of this parameter is to determine the fraction of
the length from the minimum load (MINLOAD) to the number of average
targets per booster (NARV) which becomes the Y intercept of the value
control lines. This value control line is a straight line whose Y inter-
cept is determined by PN and whose X intercept is the maximum load value
(MAXLOAD). This line determines the input weighting factor to the
function VALF. The parameter IDUMP is used to abort the run with a
memory dump following the print.

After reading and printing the values of the user-input parameters, the
subroutine calls subroutine TABLINPT to read the footprint parameter
tables. These tables comprise the footptint constraints which are to be
imposed by this program. The format for these data is discussed in the
section covering subroutine TABLINPT. If the loading option is different
from the free load option (i.e., LOADOPTýO)*, then subroutine LOADREAD is
called to read any data on booster loadings that are required. (At present,
no further data are required and subroutine LOADRLAI) would return without
reading any further data cards. This subroutine is merely included to
provide for expansion to other booster loading options.)

Subroutine RDCARDF is illustrated in figure 107.

*Input value=FRHE

581

CfD
Set Uli Default

Values for 11%or-
Input parameters

.10

Do For All rossible Cleur I rint
Print Reque5tý Pota Arrays

none

I no set),a t a
Dc!f.,i,, , r, I. fall it

Req tic 5 t Request-

100
Done

Are There
_"!rl.,Pu PC ,)0.

Read Negt User- Yes t ý 0 N4.(-)
Input Parameter User-Input Pc,-:ra t D-r

Card Cardsl

1 110 Wne

Print User r ý Do For Each
Input Parawter parameter On 1000

Card Card

ALU T
call GETV 9 ave Name
or e all flown In out And Wcation

To Parameter ' Vilue
Pairl; -11 4

Call ITLE To
Deternine If

re There Any Yes Nam;,,'Atc'ers
Vserelnput Parameters A rametc

On vCard? .jr ISD

,ct Meode
aralne t,Is P arameter An YeYeAI,.ri t h ' C:(3ntroi2000 Parameter ?

Va I u,

p .r_
t r

To
T

L11.0 No 15 1

15

2
-
1
5.1Yes

3 Parameter
11

0 f p
'r

200 Set Value Of
Print Request? V. rweter ToSe t . of

No Input Value
1.10 According To

300 Yes Is llarmnetLr A Parameter Format
rint Cancellation'

P Pri nt "or

140 NoI' 'o

rint Error
le g.

Fig. 107. Subroutine RDCARDF
Part I: Initialization and Processing
of Algorithm Control Parameters

582

r

20 . I i
Request

Call NUMEI'To
Poetrmine Optio

Number

is Option 2-
Number Politi,ýe ?

Yes
210Ye

Incremsent Number
nf Print Requests

DR~emoen

YesReqesutst

2 i1 . 107 ;cn.

Part Mode PrintRqes an
~~~Cancellation Poesn

2583



2000t

Call PRq'rRL1Q To

Print Requests

Load User Input
Algorithm Control

Parameters

2100
Do0

Do For hinch Print Parameter
Algorithm Cof tLrolI NaMe, Value,

I'aramoter And Setting Moade

Done

Call TABJINPT To
Read User-Input

Footprint Parameter
Tables

Oprt on FRETerminatione PFTRo sNg

5N4



SUB3ROUTINE RIEIIOVF"

PURPISSiý: This routine removes a target from itý booster
assignment. I

ENTRY POINTS: IzIMOVE

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, 1PJ!RFORM, WPNTGT, 2, DEBUG, PRINT

SUBROUTINES CALLE, 1: GOPRINT

CALLED BY: FOOTPRNF', INPOT

Method

This subroutine performs the list pointer manipulation required to remove
a targot from its booster a.s.ýgnmnnt in the RAIDWTA list. The targct:
whose RAIDAT'A index is in the variable JTGTD in common /NPNTGT/ is
removed. The Foi.ward and backward pointers are recalculated, the number
of targets assign'cd (total and by Looster) is decremented, and the maxi-
mum index indicator (by booster) is ppdated if necessary,

Sbibroutine RIMOVE is illus\trated in ti'gurc W1)8.

II
II

585



: STARTýD 900

Is Target Currently 7u-Lrr7- 7,:7-77
A55igned To Booster? And Set Lrror

y
ndi cator

-loo;Is -1:T, ýýt 
er7Reset Status, Forward

And Backward Pointers

Dccremcrit Perfonnance 110
Parameters (NASGN, VALASGN)1'erf n.,tG'No, V ý LSGN) 1 lc!-ý B0.7t-r

r-WI Pointe
L (NTB, ISOOST)

Was This Unly I
Target on Booster?

120 ýNu 130

I s Th is 1:1rst Yes Reset Booster

B setPýointersooster? :(NTB, I BOOST)

ISO No
Set Forward lio in t e r Lrror was his Tal ;ct

On Pic n Of-maximum Azliuth 180Tar ct
160 _ 1F o r nooster?

et Backward 140 No

Pointer on No Is I is Las t Set B aft r w a r

IFollowing Target 0 ster? inter On First

TargeL LýI:rget On Booster

Yes
1 999

Is Current Azimuth No CaIT77-7, r P"ints
Greater Than Previous And Reset

Maximi m? Hrror Indicator

Yes
180,190

180 COMpULý! NCIA, RFTUkN
Maximum Allimuth

Set Backward 'Pointer
Of First Target

On Booster

Fig. Subroutine RLmovE

586

A



SUBROUTINE SETDATA

PURlPOSE: This routine retrieves (from the ITABL file) and
loads the correct footprint processing data into
the footprint test arrays for use by subroutines
FOOTEST and GOPRINT.

ENTPY POINTS: SETDATA

FORMAL PARAMETERS: I - A system identification number, IMIRV

COMMON BLOCKS: PARAMETER, FOOTDATA, SIIRTDATA, PENADD, FILES,
TSCRATGH, Filehandler Blocks (ITP, MYIDENT,
TWORD, NOPRINT, FILABEL)

SUBROUTINES CALLED: ABORT, SKIP, SETREAD, RDARRAY, RDWORD, TERMWAPE

CALLED BY: FOOTPRNT, PRNTABLE

Method

This routine merely moves data from the footprint parameter scratch

file, ITABL, to the footprint test arrays. (See table 30.) As subroutine

TABLINPT reads the footprint parameter data, it writes them on the ITABL
file.

SETDATA first retrieves the system MfTYPE and IDATA from those arrays
in common /PARAIETR/, using the formal parameter I, as an index.

SETDATA then determines if the correct system data are already in the
footprint testing storage. If so, the routine exits. Otherwise the
ITABL file is searched for the correct data. (Table 31 shows the
Oormat of this file.) If the data are not found, the filehandler will
abort the run. Upon finding the data, SETDATA transfers them to the
appropriate array as listed in table 30.

Subroutine SETDATA is illustrated in figure 109.

587

Lr.



ri

Table 30. Footprint Parameter Data l'Iransm•ission.

FOOTPRINT FOOTPRINT TESTING
TEST INC COMMON

MTYPE SYSTEM ARRAY ARRAY LENGTH BLOCK

1 Long-Range ISLD LLNGDAT /FOOTDATA/

2 Short-Range ISSD LSIITDAT /SIJRTDAT/

3 Long-Range ISRFD /PENADD/
With Pene- ISLD /FOOTDATA/
tration Aids

Table 31. Format for Footprint Parameter'
Data Scratch File

Each unique system is output on the ITABL file in the following format:

VARIABLE LENGTH DESCRIPTION

MTYPE 1 MIRV system functional type

IDATA 1 MIRV system data set number

"LENGTH"* 1 Length of footprint parameter table
for this system

"TABLE"** LENGTH Footprint parameter table

*For MTYPE=l, LENGTH is LLNGDAT; Nf1YPE=2, LENGTH is LSHTDAT; MrYPE-3,

LENGTH is LPENDAT (see table 30).

"**For NH'YPE=1, TABLE is the ISLD array; NITYPE=2, TABLE is the ISSD array;

MTYPE=3, TABLE is the ISFRD and ISLD arrays (see table 30).

588



C D
Call SETREAD To

tialize
H1. File TA 11000

Ini 
". 

I.81.'T , To

10000 D- rm inc And Save Valu Print
1- 0 f W)'PE And ID Error

KIM Error Message A
Yes LONG

Is This Syste Go To System Processing
Already Tn Co c? AccordinR 10 MWE KI)TI! w 3 ABO T

No ý"Pl' = 2 LONG RANGE
1100 SHORT PLNI:TRA:rION

Sys t 7,. 2000 11 .1000 AIDS
A Yes Yes s System

Is his System 10000
<Air'-ady 'in Cor Iready In Core'

No 0
2200 .12100

save System ýave System
DATA 9000 TDA:rA

Read MPE
From ITARL

Is It Positive? No 11000

Yes
90030

Does It Match yes Read IDATA
Requested HrYPE7 From ITABL 7

No
90010

Skip Word No Does It Match
On ITABL Rcqueste IDATAI

90020 Yes
90040

Read Length 
Read Un gOf Table From Of Tab'le Fthm

ITABL ITABL

1200,2200, * 3200
Call SW To R:.dpT.bl, 1,.,to

ropri.Skilp Ovcr Tahle 
ApOn ITABL rray In Czre_

10000

Call TERP7APE
To Termi tc -0- =Rblm
ITABL ý,j,,

Fig. 109. Subroutine SETDATA

589



rI

SUBROUTINE TABLINPT

PURPOSE: This routine reads and prints the footprint para-
meter tables, and saves them on the ITABL file.

ENTRY POINTS: TABLINPT, PRNTABLE

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, PARAMETR, FOOTDATA, SIIRTDAT, PENADD,
FILES, TSCRATCIt, Filehandler Blocks (ITP, MYIDENT,
TWORD, NOPRINT, FILABEL)

SUBROUTINES CALLED: NUMGET, SETI)ATA, SETWRITE, WRARRAY, WRIWORD,
TE RMI'APE

CALLED BY: RDCARDF (TABLINPT), GOPRINT (PRNTABLE)

Method

This routine reads the footprint parameter tables and stores the data in
commnon block /PAPAlE-I"R/ and outputs the data on the footprint paramioter
data scratch file, ITABL. Entry PRNTABLE calls subroutine SETDATA to

transfer the data from the ITABL file to the footprint testing parameter
arrays (in /FOOTDATA/, /SHRTDAT/, and /PENADD/) and then prints the data.
Common /RAIDATA/ is used as temporary scratch storage by this subroutine.
The local array IGOT is used to store the IMIRV numbers of those systems
whose parameters have been read. NGOT is the number of system data sets
that have been read.

Each MIRV system with a unique IMIRV number must be defined with a system
title card.* The data on this card are stored in common /PARAMEITR/.
(See table 25 for definitions of the variables in this block.)

The data required for each data set depend on the system type number,
MTYPE. This variable defines the system to be long-range, short-range, or
long-range with penetration aids. (See table 25) Within each type, there
may be many different data sets identified by the data set number, IDATA.
(The values of this parameter need be unique only within each MTYPE value.
T'he values need not be consecutive.) As each data set is read, it is out-
put on the ITABL file according to the format shown in table 31. A data
set need he read only once regardless of the number of systems that use
it. If the values of MTYPE and IDATA read from a system title card ma'.ch
values already read, then the routine merely reads the next title card.

*Vor each value of the attribute AI1RV, there should be one title card.
The Hollerith name of the system (IIINAW, in common /PARAMEITR/) is used
only to identify the system in the print of the footprint parameter
tables. It has no affect on footprint generation.

590



Entry PRNTABLE retrieves the data for each defined system and prints the
data,

Each formula's data cards are preceded by one system title card requesting
that formula, The reading of data is terminated by a title card with a
zero or negative IMIRV value. The systems can be input in any order.

If more than one IMIRV value refers to a specific formula for footprint
test (see below), then the data for that formula must follow immediately
the first occurrence of a system title card requesting the use of that
formula. Succeeding title cards with the same formula definition need no
data following them.

A formula for footprint testing is defined by two variables input on the
system title card. The first, MTYPE, references the functional form of
the formula to be used. If HTYPE 1, the exponential functions of the
long-range system are used, MTYPE 2 requests the short-range functions.

MTrYPE = 3 requests the long-range system with a full load of area pene-
tration aids. Within each type, there are data sets for the parameters
used in the function. Thus, formula definition requires MTYPE, the
functional form indicator, and IDATA, the index to the parameter set.
For example, if two long-range systems are desired there would be two
formula definitions: MTYPE = 1, IDATA = 1; MTYPE =1, IDATA =2.

The formulae and data for both long-range and short-range systems have
been taken from "Strategic Offensive Weapons Employment In The Time
Period About 1975 (U)", (TOP SECRET) Weapons Systems Evaluation Group
Report, R-160, August 1969, Volume VI, Allocation of MIRV Systems.

Long-Range System -- MTYPE=-

The long-range system can have either one, two, or three re-entry
vehicles on a booster.

The system functions are defined by a series of regression coefficients
which, when applied to these functions, produce results which fit the
actual physical characteristics of the MIRV system. These coefficients,
(e.g., RBASIC, RADD, etc.) have no names in the aforementioned document,
but since the form of the equations is the same in this program and in
the document, a correspondence between the two is easily determined.

The system functions are as follows:

1. Fuel Load at Booster Separation (Pounds): Constant with number of
RVs.

2. Maximum Booster Range (RM in Nautical Miles):

U1M RBASIC + RADI) * SINE(AZIMJTII)

591



ri

RBASIC and RADD are function-- of the number of WVs and the sign
of the azimuth.

3. Ran e Extension Consumption: number of Nautical miles traversed
per pound of fuel

NM/FUEL = RX + RAXX * SINE(AZIMUMII)

RX and RAXX are functions of the number of RVs and the sign of
the azimuth.

4. RV Toss ).Equations: nautical miles per unit fuel

NM/FUEL = G * (TOSSCI + TOSSC2 * SINE(AZIMUTII))

where

G = EXPF (TEONE * RM-R **TETWOR
(TDENOM/

where

RM = maximum booster range (nautical miles)
R = range to initial target (nautical miles)

TOSSCI and TOSSC2 are functions of number of RVs originally
on board, number of RVs currently on board, and sign of launch 1
azimuth.

TEONE and TETWO are functions of number of RVs originally on
board and number currently on board.

S. Crossrange to Downrange Multiplier (CROSSDWN):

CROSSDWN = G * (CONE + cTWo * SINE(AZIMUTIA))

where

G = EXPF EONE * DENOM )
CONE and CTWO are functions of the number of RVs currently on
board and the sign of the azimuth.

EONE and ETWO are functions of the number of RVs.

DENOM is a constant.

592

-. . - - - - - - -



Short-Range System -- MTYPE=2
4

This system does not consider launch azimuth. It considers configurations
containing from 1 to 16 RVs on board. The system functions are as
follows: (Lct R be the distance in nautical miles from the launch base
to the initial target in the footprint.) The parameters for this type are
also coefficients calculated by a curve fit to observed physical data.

1. Fuel Load at Booster Separation:

TF = BETATWO * R2 + BI'TONE * R + BETAZ

The parameters are functions of the number of RVs on board.

2. Maximum Booster Range: This is a parameter, MAXRBOOST, as a
function of the number of RVs carried to the first target.

3. RV Toss Consumption Equations:

NM/unit fuel = ALPHIATWO * R2 + ALPHAONE * R + ALPIIAZ

Those parameters are functions of the number of RVs on board.

4. Crossrange to Downrange Multiplier:

CROSSDVN = GTWO * R2 + GONE * R + GZERO

These parameters are constant.

5. Uprange to Downrange Multiplier:

UPDOWN = DONE * R + DZERO

These parameters are constant.

Long-Range System With Penetration Aids: MITYPE=3

This system is similar to the long-range system CMTYPE-1-). The equation
forms are the same except for the first set, fuel load at booster
separation. All the other constraints have the same functional form as
the previous type.

Calculation of the fuel load at booster separation is as follows:

la. Fuel Available for Footprinting: (FAFF in pounds)

FAFF TGAS - SRF

593



TGAS - Total fuel load on board last state (pounds)
SRF - Fuel required to space and release penetration aids and

re-entry vehicles

lb. Spacing and Release Fuel: (SRF in pounds)

SRF = G * (SRFCI + SRFC2 * SINE(AZIMUTTH))

where

G + EXPF SRFEXPI * SRFDEN

where

RM = maximum booster range in nautical miles
R = range from launch base to first target in footprint.

TGAS and SRFDEN are constants.

SRFCl, SRFC2, SRFEXPl, and SRFEXP2 all depend on the number
of RVs initially on board the booster.

Note: The long-range system with MTYPE=l is a special case of this type.
For the former system, the spacing and release fuel is considered to de-
pend only on the number of RVs initially on board. Thus the detailed
computation of this fuel is unnecessary.

Subroutine TABLINPT is illustrated in figure 110.

5

594



START Entry
SAT TABLINPT

Call SETWRITE ToL -Initialie
ITABL P3.1 'o

rSet Nutier Of Systems1[ Read To Zero j
1

F Road Next
System Title

Card-

9999

Is IMIIRV Value N Wrte Zeo CelTRM1TAPE
NPositive? ord On ToT mi nate RETURN

Yes Pl
2 o-

Increment Number

O f' Systems -Read 
T B

Save System

Parameters

Do For Each Done I DATA On ITAIIL

Read Approriet

[Ta~ble And Write Out ~
Yes Does IDATA No On ITABL File

Mat ch?

Fig. 110. Subroutine TABLINPT
Part I: Entry TABLINPT

02-4,0 -72 - 1 595



1

SSTART ENTRY

PRNTA B LE

lteading

20000 d Do For Each

w[ System Input

•Do

Parameters Frnm
Title Card

m

Retrieve Footprint
Parameter Table

1500j2500)3500

- • ,,,
SPrint Footprint /

SPa•'ameter Tables

Fig. 110. {cont.]
• Part II: Entry PRNTABLE

596

i



SUBROUTr INE TEST

PURPOSE: This routine sets up the test arrays in common
/FOOTIO/ for footprint testing.

ENTRY POINTS: TEST

FORMAL PARAMIETERS: None

COMMON BLOCKS: FOOTIO, LOADATA, PARAMETR, POTENT, 1, 3, DEBUG,
PRINT

SUBROUTINES CALLED: GOPRINT, FOOTEST

CALLED BY: CIIKSEQ, FUliLSAVE, IMPROVE, OPTBOOST

Method

This subroutine is the interface between the assignment section of the
program and the testing section. It loads the RIN and THIN arrays in
common /OOTIO/ from the data in the hit list (IHIT in /POTENT/) and the
temporary data arrays (RP and TP in /3/).

The only logical complication to this routine is the result of the
booster loading options that require that the minimum load constraint
must be met by every booster; i.e., LOA10PP"Te3*. In this case, if
there are not enough targets in the hit list to meet the requirement,
subroutine TEST adds the needed RVs to the first target in the list.
Since it uses the same method to add RVs as subroutine ADDRV, this
addition guarantees that no footprint will be declared feasible unless
it can contain at least the required minimum load. The number of RVs
added is stored in the local variable NOFFSET. This variable is used
to manipulate the data arrays to show the correct entries for each real
target in the footprint. If the footprint with the added vehicles proves
feasible, one of the added vehicles is removed and FOOTEST is called

again. This second call is required to load the correct values in the
DELRAFT and TOFLY arrays.

Subroutine TEST is illustrated in figure 111.

* Input value=MINLDREQ

597



CýD
[LRV.Added (NOrrS[:T)

To 0

20
D br-r OfIs Booster Loading Yes N um., _I.. d 'I'o M etOption MINLDREQ? Minin mum Lea I

No I
NC21 Are Any Additiona

Add Target 1 RV Needej?
Data To Do For All Targ ts Yes

fo For A11T

40 
od 

RV9 N ' '

I. 
''itFOOTIO In Hit List

" 
L' 

An
Arrays Set NOHSET To

Done Nwmber Added

S:t Number Of
Targ ts To Be Tested Done Do For Added

RVs
u

Clear FeasibilityF Indicator 7ý Fill FOOTIO
Arrays With
Data For Mrst

Tar get III
Request Optional Print.% Hit List

4 so

Call 1720TEST To Save N.Zbe-73777
S a 

N
t i F asible Target

T;:. , 1, 11 -!-1
Foasi 

0 
'

No C 
We re Any RV-

No Were Any RVs Added7ve u7

Request Optional Prints] Yesý:Lý

0
< Was Footprint Feasible?

Is Booster Loading Yes 51 Yes

Option MINLDREQ?
Remove One Of

70 No h - Added RVb

Request Optional Prints

RETURN
Restore Feasibility Cutuiter

And FOOTIO Arrays

Fig. 111. Subroutine TEST

598



SUBROUTINE TRANSFE.R

PURPOSE: This routine transfers blocks of data •iom the
TMPALOC file to the ALOCGRP file.

ENTRY POINTS:' TRANSFER, INITRANS

FORMAL PARAMETERS: N - See below

COMMON BLOCKS: RAIDATA, 4, DEBUG, PRINT, Filehandler Blocks
(ITP, MYIDENT, TWOR), NOPRINT, FILABEL)

SUBROUTINES CALLED: QOPRINT, RDARRAY, WkARRAY'

CALLED BY.: FOOTPRNT'l"

Method

These two entries are used to transfer data from the TMPALOC file to the
ALOCGRP file.

Entry IN I TlN S

The formal'parameter N is the logical unit number of the file to whichdata are to be transferred. This unit nfimber is saved in. variable
IWRITE, and control is returned to the calling program.

Entry TRANSFER

For this entry, the formal parameter N specifies the number of wo-ds of
data that are to be read from file ITP (or IREAD) and written on logical
file number IWPITiE. The words are merely transferred from one tape to
the other. TRAdS FER assumes subroutine SETWRITE has been called for

Ifile IWRITE. ,

Note: The length of common /RAIDATA/ from ihe beginning to LRAID is
stored in LRAID. Since TRANSFER us1es this length in determining the
size of temporary storage, changes in common /RAIDNrA/ should be
reflected in this variable.

Subroutine TR4NSFER is illustrated in figure 112.

599



Entry
TRANS FER

ISave Read

1Uni t

20 30)

<W ords Fit n-iFrom Read On Write
RAIDAT, Block? F/ i le File

Block Must Be Filled (N'IMI'S) Restore Read

And Number Of Words Left m
Over (NEX) ,';•

Il

60 Done Read , EX c/R

S; Do Re ad F ile/

Read Words To Q7
__From Read File/ Wlords On UniRetorembead

!/ Write Wqords [
/From /RAII)ATA/ l ) Entry

[STo Write File START INITRANS

Unit Save Write
Numb c r th i t Numble r

Fig, 112. Subroutine TRANSFER

600

i " ~- _ _ _ _



IJUNCTI ON UPTODOWN

PURPOSE: This function computes thu multiplier by which
uprange distance must be multiplied to calculate
equivalent downrange distance.

ENTRY )O1rIS : UPTODOWN

FORMALPARAMi'IIRS: I - System type - ML'YP"II
R -Range to first target (nautical miles)
AZ - Launch azimuth of booster (radians)

N - Number of rc-cntry vehiclcs carried

COMMION BLOCKS I'O'TDATA, SIIRTDAT, PENADD

SUBROUI'rNES CALLED: None

CALLED BY: BOOSTIN, EVAL, FOOTEST

Method

This function computes the uprange -to -downrange distance multiplier for
use by the footprint testing subroutines. It uses the equations displayed
in the discussion of subroutine TABLINPT. This function merely uses a
computed GO TO statement to direct processing to the correct equation.
The system type (formal parameter I) determines which equation is used.
The remaining formal parameters provide the data for the multiplier
calculation.

Function UPTODOWN is illustrated in figure 113.

601



(With Or Without Ys LargeI

Peetaion Va13. FuctonUPOD

Aids)02



FUNCTION VALF

PURPOSE: This function provides intertarget values for use in
in the worth calculation.

ENTRY POINTS: VALF

FORMAL PARAMETERS: X - A ratio of distances
FN - A weighting parameter

CON-.ON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: FOOTPRNT, EVAL, BOOSTIN

Method

This function merely computes values for the following equation:

(I - X)/(l + (X * FN)) X×1
VALF=

0 X>l

Figure 114 displays representative curves for this function for three
values of FN.

The formal parameter X (usually called ALPHA in the calling program) is
a ratio of intertarget equivalent downrange distance to a maximum feasible
equivalent downrange distance. The formal parameter FN is a
weighting pararietor. As FN increases, the valuC declines morc rapidly
with increasing values of X. Increasing FN has the effect of increasing
the worth of targets with many close neighbors.

Function VAL1 is illustrated in figure 115.

603

]i' ll"]! lW'i ... •IP •/ I=rl ....I~l ir qil " =[ ... l•-1 ...!["" •]•-••'••'J



1.0

];N=O

VALF PN=2

FN= I

1.0

X (Distance Ratio)

1-X
VALF =

1+X*FN

Fig. 114. Value Function Implemented in VALF

604



STA RT

10
Is Distance Yes

Ratio Greater Set Value

Than 1. 0? To 0.0

2 2()

I Nos 
t 

a'1c 

e

0

'r 

aý RLTURN
Calculate ValueLIC

Using Value
1,:quation

W.;' RN

EFU

rig. 115. Function VA!,F

605



CHAPTER 7
PROGRAM POSTALOC

PURPOSE

The purpose of the post-allocator, program POSTALOC, is to write missile
and bomber delivery plans from the weapon-to-target allocations developed
by the allocator, program ALOC. In the case of missiles, this is a
simple process since the missile flight plans (as required by the Sinmula-
tor) are completely determined once the target and launch coordinates are
known. In the case of bombers, the process is more complicated. The
development of bomber sorties requires the association of several strikes
in a single sortie. Moreover, it is necessary to associate each sortie
with specific launch and recovery bases and to select a flight profile
which specifies where low-altitude capability should be used. Since the
allocator does not distinguish between bombs and air-to-surface missiles
(ASMs) carried by the same aircraft, it remains for the post-allocator to
determine which targets should be targeted with bombs and which with
air-to-surface missiles.

INPUT FILES

POSTALOC uses two input files: BASPILE and either ALOCGRP or TMPALOC.
BASFILE is written by program PREPIALOC. If MIRVs are present, POSTALOC
uses the ALOCGRP file which contains the target allocation from ALOC, as
rearranged and rewritten by programs ALOCOUT and FOOTPRNT. If no MIRVs
are present, POSTALOC uses the TMPALOC file which is output by program
ALOCOUT.

Subroutine GETGROUP reads the following data from the BASPILE:

1. Common /MASTER/, containing basic information a]',mut the data
base, such as number of weapon groups, number of penetration
corridors, number of targets, etc. (See table 31 for a
complete description of this and all other common blocks.)

2. Common /FTLES/, containing the logical unit numbers of all
the files in the Plan Generator.

606

:1" {



3. Common /CORRCHAR/, containing the general characteristics of
each penetration corridor.

4. Common /ASMTABLE/, containing the characteristics of each of
the ASM types.

5. Common /PAYLOAD/, defining the payloads of the various bomber
types.

6. Common /DPENREF/, containing the coordinates of the depeietration
and refuel points.

Subroutine GETGROUP skips subsequent BASFILE data until it reaches the
word of Hlollerith Z's which marks the beginning of the weapon group data.
It then reads for each weapon group common /GRPDATA/, containing basic
data about the weapon group and its bases, and common /GRPTYPE/,
containing type characteristics of the bomber or missile.

The reading of ALOCGRP or TMPALOC for missile groups takes place in
subroutine MISASGN. For bomber groups, subroutine PRERAID reads common
/STRKSUM/, which is a summary of the weapon allocation by penetration
corridor. PRERAID makes a call on subroutine GENRAID to process each
penetration corridor, and GENRAID reads from the ALOCGRP common /3/, which
contains the data on all the targets assigned through the given penetration
corridor.

OUTPUT FILE

The output file for POSTALOC is the STRKFILE, the format for which is
shown in tables 32 and 33. Subroutine OUTSRT writes one record for
each bomber sortie, describing the sortie plan and characteristics, and
subroutine MISASGN writes the missile event plans.

The file contains one record for each bomber and missile flight plan
generated. In the case of bombers which refuel, two records are present:
the first for the primary, refueled plan and the second for the
alternate plan to be used in the event of a refuel abort.

The end of data on the file is signalled by a dummy bomber record which
has a group number of 201.

607



Table 32. STRKFILE Format (Missile Record)
Written From Array EVTDATA

WORD DESCRIPTION

I Side

2 Command and control index

3 Group index

4 Time of launch

5 Payload index

6-8 Zero

9 Missile typo

10 ICLASS=1

11 Launch region

12 Alert status

13-16 Zero

17 Number of missiles

18 Number of targets

19-36 Missile indices

37-54 Site indices

55-72 Target indices

73-90 Offset latitude

91-108 Offset longitude

109-126 Flight times in hours

127-144 Weapon site latitude

145-162 Weapon site longitude

163-180 Target latitude

181-198 Target longitude

199-216 Designator code of target

217-234 Task code of target

235-252 Country code of target

253-270 Flag code of target

608



Table 33. STRKFILE Format (Bomber Record)
Written F'om Common OUJTSRT

WORD DESCRIPTION

1 Sortie index

2 Group index

3 Corridor index

4 Vehicle index

5 Refuel index

6 Depenetration index

7 Payload index

8 Base index

9 Weapon type

10 Base latitude

11 Base longitude

12 Number of targets

13-22 Type of target

23-32 Latitude of target

33-42 Longitude of target

43-52 Latitude of weapon offset

53-62 Longitude of weapon offset

63-72 Index of target

73-82 Designator code (DESIG) of target

83-92 Task code of target

93-102 Country code of target

103-112 Flag of target

609



Table 33. (cont.)
(Shoot 2 of 2)

WORD DESCRIPTION

113-122 Local attrition

123-132 Cumulative survival probability

133 Low-altitude range (precorridor legs)

134 Low-altitude range (before first target)

135 Low-altitude range (after first target)

136 Speed at low altitude

137 Speed at high altitude

61

610



ri

CONCEPT OF OPERATION

The sortie definitions developed by POSTALOC are generated by weapon
groups, one penetration corridor at a time. '[hey consist of an ordered
list of the targets to be struck by each sortie, a specification of
which targets to strike with ASMs, and an estimate of the low-altitude
range allotted for use before, versus after, the first target (and in
any legs preceding the corridor origin). The sortie definition does not
include the actual coordinates for the events. Thus for the bomber
events it remains fcr PLNTPLAN to add those coordinates, calculate
release points for /SMs, and compute time of entry into defense zones.

Figure 116 shows the relationship among the various major subroutines in
the post-allocator. The arrows in the figure point from each subroutine
to the subroutines it calls. Ilius the arrows illustrate simply the
calling sequence hierarchy.

The basic driver program POSTALOC, see figure ]17, serves only to
define the order in memory of all common blocks in the program. The
actual processing begins with CIETGROUP, which initializes all files,
reads in the basic reference data, and then sets up the reference data
for the first (or next) group to be processed (BASFILE). At this point,
the processing splits. If the group is a missile group, a call is made
on MISASGN which handles all the rest of the processing for the group.
If the group is a bomber group, PRERAID is called. PRERAID then remains
in control throughout the processing of the group.

When MISASGN is called, it reads ALOCGRP or TMPALOC to obtain all the
strikes assigned to the group. Thiese strikes are then assigned to
specific missiles in the group. ,n effort is made to assign the strikes
so that each base and each squadron in the group will have a fair share of
both high and low priority strikes. The resulting assignments are then
formatted as starting events for the Simulator, and appropriate launch
times are assigned.

When PRERAID is called, the process is considerably more complex. Like
MISASGN, PRERAID reads in the strikes assigned to the group. However, it
reads them one corridor at a time; and after the strikes for a corridor
have been read in, it calls GENIZAID to process the raid in that corridor
before proceeding to the next.

Thus at the level of GENRAID, the processing deals with a single raid
consisting of aircraft from one group by way of not more than one corridor.
It is useful to think of the remaining subroutines as being divided into
two major sets:

611

-rj;.b U ? -



rg Aiw .7% A r

Spec (it Ie Orde tE lr Of ,unen I

By A ,Rllr i~ In Cfo.-p

Crr ablri -F ore, o 11cr ri e Of A.. II -I; Oii rile

Aind K. A ~ Tr, I cilrOderts Arid 5
e,,ro lie

i -11 -ii o l HOr Geni e r ý' tr Ie o ei Of Ii I h

IS~~li ur i er Sele-ts Targvr~t, iter to ierr

o o d t n o I FU ll) d ud 1 .1 1 ll1 u O r T o Fli g hj t O f C v t r d o r f o
t i iie Oe~r~u der Of to reS Be Aosljrrd To Each Il I, ]iit

ADI rgIirluIeA- 1oh r, O pcf te 
1
lovrlntiiArire

Ale1o1' (r Herr S or to" Of taerr ror PcI S tir

Arrlin Rrtrt Filght_1,1 !rrr i fi 'vl d rliiglt

F o r O I A1 l )11 nI0 1 ii i P r l ~
Doe Inil ,rai, 1. u IRliiil e-~t"'; IuI 'k. oae o Iote CoICls. (of RefoeligFodfe Ii..l9.lo C, I trr.

Vat 0Of-5L1c kee I

Opserr-psrc sonril

S~tv -gii ArasA'ift o

2r 1



S TA RT

'I Cn3LIct

Axiiinnnt 01 Core
UsI~ed

Ca I TI 'MEM:i
(-0)!1o TniLintize

Ti iln ULontin 1

T(YFA= I]

Enter POSTALT

To 1st Position
Of IcAktu[Z0.kV Arrayl

ci all SELv I.AflAG
Toli c ad I - n 1 t.
RuqICs t Cmrds

TCALL= 122'

L R ZI I- ARAYS ~1 1L Ic su~ I mt 22

'Ib I s su P r i nE ~ t~ I



1. GENRAID and all the subroutines it calls directly or indirectly,

with the. exception of

2. OPTRAID and all the sub-outines it calls directly or indirectly.

The first sot of subroutines deals with the raid as a whole and is
concerned with a rough division of the strikes in the raid among the
available vehicles and bases.

Subroutines in the second set are concerned with one sortie! at a time.
'hey'deal with each sortie In considerable detai.1, taking into account
range, estimated attrition rates, low-altitude capability, and the option
for use of ASMs or bombs on specific targets. During this process,
provision is made to omit strikes that seem unprofitable. E"ach strike
omitted may be picked up in processing later sorties, so that some refiine-
ment of the initial rough division of the strikes usually takes place in
this phase.

From a design point of view, this division of POSTALOC was d4 ctated by
computer memory considerations. The computer memory is entirely
adequate to deal with a complete representation of any single sortie, but
would be totally inadequate to deal with such a representation of all
sorties at once. thus where one must deal with an entire raid, the
sorties are represented in al1 very skeletal form. When any specific
sortie i.s being processed in detail, the skeletal form is expanded and
used to fill out a more detailed rcpresentation.

Perhaps the most important single consideratiop in the above approach iLs
the problem of evaluating distances between targets. '['he relevant
distances for a sortie are used over and over again in the optimization
of the sortie. It would be too imne-consuming to recompute each
distance. Conversely, it is clearly impracticul to provide space to store
and retrieve all distances between all targets. In the QIJTCK system,
space is provided to store all distances between all targets (and other
route points) considered to be relevant to a single sortie. Each distance
is computed by the function D)IFF only once (the First t.inc it is used).
'rherearter it is simply retrieved from storage. However, such intertarget
distances are retained only for the currently relevant set of- route
points.

'llTc following discussion of PO.TALOC" is divided into thie :zections:

1. Raid glenerat ion

2. setup for sortie optimization

3. Optimiization of sorties

(0 14,

'• .................. ..:.. ........................,i......... i . ..... i. . .. . .. ,i.......... I-.......... II



4. luvovlopment of missile p~lan~s

5. Program conventions for indexing anld bookkeeping.

Raid Generation in POSTALOC

'1110 uiltimallte control of processing 1by POST1ALOC, always resides with
subroutine GlITGROUP (Soo thle calling sequence hierarchy, figuire 110)
H owever, this subrOult inC actutally does nothing but control the(- sequencing
from one weapon groulp to thle neOxt.

The significant processing of bomber sortics is done at thle level of the
raid , rather than at that of the group.,* A secondary seqluencing subroutine
PRIiRAID has been suppl~ied to sequence the processing between separate
raids fer thle same group of bombers, PRUiRAII) uses the strikc summ-ary
informationl, supplied by ALOCOUT, to determine what share of thle group's
vehicles and warheoads should be allocated to each raid. PRERAJI) also
sorts the launch bases for the group onl tne computed distance from e,-achi
base to the entry point of the corridor being processed. Thlus, in thle
case of a retaliatory strike when launchies are simultaneous, thle vehicles
available for the raid are p~rocessedl ii oirder of their utmie of arrival at
tho corridor.

Tntl aeo tcia obr or nava bombers (i.e., bombers assigned

doin ditane clcuatinsstri~ke assignments, etc. , so that the
appropriate SUbst itutiton-- aire made in thle method of processing. in this
case, time of arrival is no longer of obvious relevunce to thle order of
processing. The launch bases for this case are !sortcd in thle samei way as
thle targets, as dlescribed below.

Program ALOC is, set to assign a few extra strikes to oach group of bombers
in eIxcess Of the nubrof warheads available. The surpl us ass~ignmont
)rovi des flexibility for sortie generation and assures the availability

of targets for the last bomber in a raid, even when thle strike., assigned
t.) the corridor do not comc out to anl integral numbei of bombers . 1o a
first approximation, thle numllber of warheads assigned to each pehietrat inn
corridor by PRFRAID is preporti onri I to tile num111ber of str~ikes ISS-igniCd

"kAc tual 1y , Jprogi'im A~l,()( tends to conlcentri.ate the weimpoiis train each group
inl smal 11 umber of- raids in the most e ffici ent corr.idons for thle group,
hut l'GS'AWC: must he pirepared to deal w ith en se s i n which al nmaiber of'
ra ids i ulI dffoWi'ent corr idor is are ,eu rae Iwth sa ru

01i5



(by AWOC) inl each corridor. H10owver, if'* this num111ber Of' warhecads does licit
cor'responcd to anil ln-tegrai number of' do livery vehicles, the necessary
acd i ti anal warheads r-cqtli red to produce an inlteg~ral num111ber of deli very
Vehiiciles arc ass.i gned to e"ach c orrI. dorý as ['t i s processed . Si nce thle
corriday's a~re dcli vered ror, processing in order o-)C docreas lag number1)21 Of'
strikes is si gned , this rule puLts a sligIh tl h) iigher ratio of bombers to
targets inl corr idors with 1largo ra ids. In thiis way, bombers ass igned to
Corridors, where there are few other bombers will have more Elexibiliity to
select f'rom the geograiphic~ally sparse target set ass ignied . Inl thle extreme
Case wilere a Corr idor happenls to hanve Only 0110 or twvo isailated strikes
ass ign'd , thle corridor Will 110 prlaiy lesip`)edC inl tile assignmellnt of
bomberols from the group, So 1th1i: ico I ated iud \'1di~ia 10 bomber2s areT less
l ikel1), to he ass-i gned t o stic I a COrrid'or-.

The0 llxt. Ji-.esa iw r tas;k i s to() ass ipi Js"7 : Lo is w it h1i n1 t lie i'a iI I 1o i iid i v i dualI
sort i 0es , i 'I' s ro(Ip i ri's the as S i goifllot of uh ind xi duna1 we a Pills to I midi v dnau'1
tairgets ilIl accordance wi th tile location of thle. targets' cl ati ye to tile
poelhJI1'i ti on Corridor'. lbhe ass i. gimunt i s accompli shed thrloughl tile 1use of
ciirvi Ihiaret coord i nato' sys te.ins chosen to para Ie]I typ) i ca I f Igligt pat hs

*~wi thiln the pcinetiati101 corridor.

S[ Fi giui' ii S i 11 st rates two eramlpl, losfii the Coordi']nate Sy'st em cilp I oyod 1. 11
11iflili liP. Cl'i'idni' pene1tiri i ois. The coor'di nate sys;temi shown is establ ished

w it tilte x":(), N-0 1Pos it ion cori'espiiiidiiig, to thle I. ast rioute poinit 01' or igill
oft tile peoiitrat ion (-orridor. '[ble Y' aixis is parallel to the coii'idol' ax is

* do f10inC bycV tile 01' ijll 11nd tile coorci i;.tesi of the corr idcot~l. pnil (or t11e
* fiend of3 the Cornidori arrow.)

Ill tile tarit ion or navala I lboder c~ase, the x=0), y=0) po i.t ion corresponds
* ~to ai oinit iwihichl iS chos'Žlii 11 foiilows,-: centi'oids aire coiiputitd for tile

gl'Oiif) 01' I,11~ aunchi baesr1d Ci' tilie 11,-1.11 Or torigC't . Lot thle di strilee
* bohtw~oei these,; ceiiti'oick 1) P15G. flie dcs irodl po ilt of o1'igin is1 tile
* 110 ~pilnt on il t' Iill noranjim.1, tiiioligfi1 boill eiitroi- ds , at a;Isac fhSt

Crl'ii tile base'C ct'roiit'' 1, go i up. ;Wi)'a Iroin the targets. This alr ilow~s us to
Sdcf~i lie a Qoorci iiiafc sx's1ll oni whiiich we trill locte'llc the bases riM well, avS

tile triiv'qts.

The f, (f'iil ) Locodid rates (1 inesý ()F constan~lt x'aiti0 of.2,' are roughlyp
flora1o licoLi tile type of' ftiglit paths oiicr0tt'rittiiii huou111)llcISshotild Lise(.

* fiaS, ;I il 11mol bomf'erl shoul.d be as.s iiecf to tresthalt firiVo 'uhl' tHe

* ~~'llie two w;p. s i'Lif l fowii coi'i'O-sol~iic to dfci leront vrilutes 01' 1 le 'ila imeftel'
if' itiw ais KOR~S'f iF ill ihic Frtr~on ) anld iii or 'rte somec of, th le f'lex ib ii t v

o ,iii tii'fecd. A : 1 ý-Iiig vo Il a o C~ 1 i S aprifiopi ri;1towe reic'' silt ni't mool of de fenses
is k.j red w i Ic ci 1I I 1ow1 va I tic' i S ipP i'ii i :I ite C.i f. renlt ei' i ii1iiol't 10c? i S
illt rCefic Ilo ii1i ill i 111 tW 1110 dii it tll~c' 1-o 1 fItk' targe~t S. Fcoi triti ic oa or

* ~im v' o iiic'' , for ins1ý t a cec, K is s ci e to I.

(110



Il

_________________________________________________________________________________________________

:jg I~ I Iti~tr~~vc .llvi Iilili izili iIP-

Ljno



GENRAID rearranges the strikes in order of increasing value of PIIl. The
rearrangement is accomplished by calling subroutine CORRPARM, which computes
values of PIlI and JUIO for each target, and then calling ORDER and REORDER,
which sort the strikes, together with their associated target data, on
the value of P1l1.

After the reordering is complete, the assignment of strikes is simple.
Subroutine FLTROUTEi call.s subroutine NEXTFLT to determine the number of
vehicles to be assigned to the next flight and calls subroutine 'I'CTASGN to
make the initial assignment of targets to vehicles in that flight. When
a penetration corridor is used, PLTROUTH processes launch bases (previously
sorted by PRERAID) in order of their distance from the corridor's entry
point, so t.1at the vehicles are processed in order of their time of
arrival,

T'o provide an approximation of saturation and roll back tactics, each
flight is assigned as a unit either to one side of the corridor or the
other. 'Tim first flights are usually aosigned to shallow targets (for
which the absolute value of 4 is high) while later flights are assigned
to deeper targets (for which the absolute value of q, is low). Even if
the density of strikes on the two sides of the corridor is quite different,
the flights going to opposite sides are kept roughly in balance by compar-
ing the value of 4 before deciding to which side to assign the next
flight. In order to maintain this balance, it is desirable to have at
least five or six flights. Thus if there are four or fewer bases, two
flights are sent from each base.

If there is no penetration corridor defined, the launch bases are processed
in order of their absolute values of ý alternating from one side of the
coordinate system to the other, in an attempt to make the sortie paths
approximate as closely as possible the direction of the P1Il lines.

Within each flight, strikes are assigned to one sortie at a time working
through the list of unassigned strikes. Before any strike is assigned,
however, it is checked against all strikes previously assigned to the
sortie to be sure it would not duplicate a previously assigned target
(where multiple strikes may be allocated to the same target). If such
duplication would occur, the strike is skipped, and later strikes on the
list are processed to get the specified quota for the sortie. Processing
for the next sortie in the flight always begins with the fi rst unassigned
strike and continues from there. Strikes actually assigned to each sortie
are always arranged in the sortie in order of increasing RHO. TIbis gives
the initial time order or sequence of the strikes which is uz~ed as a
starting point for the optimization of the sortie.

The principal subroutines used for raid generation are PPERAII), GLNlRAIl),
CORRIPARM, FLTRO'I TIi, NI XTFIT. I'(, G'I'ASGN. and NOCO RR.

6Z18



Setup for Sortie Optimization

Before describing the optimization of individual sorties, it is necessary
to describe briefly the way the information is structured during the
optimization,

During the optimization of a sortie, all targets relevant to the sortie
are entered into a detailed computation array. Thiis array (common
/SORTYTGT/ -- targets for this sortie) includes not only the targets or
strikes originally assigned to the sortie but also any targets omitted by
prior sorties that may be relevant as target alternatives. The SOIrTYTr(T
arrays include not only the index to the targets in the hasic target
list, but also the coordinates, value, and defense characteristics for
the targets together with temporary scratch-pad data, used in estimating
the value of the sortie. Common /SORTYTrT/ has a capacity for 25
separate target entries.

The index positions in the SORTYTGT array that do not contain targets are
said to be "available" and are listed in a file named "IAVAIL." The
remaining positions in the SORTYTGT array will contain points of the
present sortie listed in a file named "'IHITT" and possible alternative
targets listed in a file named "IOMIT." Actually, positions 1, 2, and 3
of the SORTYTGT array are reserved for nontargot points in the sortie.
Position 1 (IORIG = 1) is used to represent the origin of the penetrotion
corridor. Position 2 (IRECOVE.R = 2) is used to represent the recovery
point. Position 3 (II)ITCHI - 3) is used to represent termination of the
miss ion.

These conventions make it possible to define a sort. with a simple list
of numbers. This sortie definition is contained in ,ammon block
/CURSORTY/ (current sortie). The following table illustrates such a
sortie definition.

1 2 3 4 5 6 7 8

I VFLY 1 7 7 8 5 5 2 3

IIT 1 7 -9 8 -5 -4 2 3

IOMIT 6 13

IAVAIL 10 it 12 1s 14

Illustrating Definition of Sortie (Colmmon /CURSORTY/)

619



ri

By convention, a negative number -in the MIT list indicates axi ASM, and a
positive number indicates a bomb, Thus the IFLY, MIT table 1ijustrated
represents the followi.ng operati.ons:

1. Leave origin of corridor

2. Bomb target listed in position 7

3 From the vicinity of 7 launch an ASM at 9

4. Bomb target listed in position 8

5. Fly near S to hit 5 with ASM

6. Strike 4 with ASH launched from vicinity of S

7. Recover

8. Iind of mission.

The omit list indicates possible alternative targets listed in positions
6 and 13, while the avail list indicates five empty colls that could 1e
used if needed.

Using this structure, the sortie can be modified at will simply by chang-
ing the sortie definition. Changes in the sortie -- for example,
replacement of target 8 with 0 in the sortie definition -- would not
require any rearrangement of these largets in the SORTYTGT array.
Moreover, any distances between targets already computed for targets in
the SORTYTrT array are still valid and do not even have to be re-indexed.

*When the sortie is first set up by TGTASGN, all elements in the 1IllT list
are positive. Later decisions during optimization are necessary before
some targets are flagged with the minus sign to he struck with ASMs,

The principal subroutine used when setting up for sortie optimization is
OPTRA] 1).

Sortie Optimization

Sorties are optimized by a heuristic programming technique. For each
sortie a value VAI,SORTY is calculated; the dcfinition of VALSORTY is
given in the description of subroutine FLTPLAN. All decisions on the
modifi cat ions of the sortie definition are based on the estimated effect
the chang.-s wiIl Iproduce in the value of VALSORTY.

02()



The has ic controlling subroutine for the optimi~zation is subroutine
SORTOPT. On the first callI of SORTOPT for any sortie, the initial sortie
defi-nit-ion may not be feasible. It may reqiuire too miany warhIeads; it
may require too much irn-ngc; or It may speuify all b~ombs whereas thc
aircraft may carry ASMs;. '1huts the task of SORTOPT is to revise the sortie
definition to produce a feasible sortie with the highest possible exp~cct(,ed
vatluec of VALSORTY. TIo iccomnplisih thlis, SORTOPT makes use of:

1. FLUPLA. - A subroutineQ which accepts any sortie definition,
select-, an optimnal or near-optinial flight profile (low versus
high altitude for legs of the mnission) , and then evaluates the
expected value of the sortie, VALSORTY.

2. CI IGPLAN - A subroutineC Whi Cl is ca lied when chancpes in the sortie
definition aire rCciUired. CIIGPLAN can he called to add or delete
either a bomb or an ASM from thc sortie dje-•'initioa. Specif ical ly,
it transfers targets between thr hit and omit lists of the sortie
definition, CURSORTY.

3. The EVAI, rout ines , which estimate the probabl ICchange In the
vale o asorieif hages are made inl the Sortie de finlitio.01f,. Thei spec~ifi c routines used are:*

* PVAT,13, which estimates t~he contributionl of each bomb to
the valuo of the sortio.

* EVA! .uA, which estimates the contribution of each ASM
now in the sortie anld the p)otentiall contri but ion of each
omnitted target aU o. potential ASM tairget.

* IVALOI3, which estimiates tho potential contri bution of
each omi tted target as a potential target for a bombl.

The estimated chan~ges in VAI.SORTY by the IiVAL routine-s are b~ased onl
extrapolation of derivatives and thus are considered only% U., approxi miat.i ons
wh ich jinust. be recomputed by FLii'LAN before thecy arcacceptedl as f inal.

Development of Missile PlInns

SubroutineC MISASGN carries out the ass ignment of speci fic strikes to
spec~ifi c deli very yvehicl es w i thi n a weapon group. Fl gu re IN ill u~st rates,
the structure of a typ~ical group that I SASIIN is dos ignood to han'.! e. 'TI c
group may in clude severa 1 squadrons (two shown) and a sclua tron many 1 1W 1 od
Several s iteus (f-ouri per squad ron shown1) Fa C b1! i Le 11a1% have one0 or more11
veh i cles (three shown) . Veh ici es are considered te on-cup\' the same11 sit(-
if they nre so C 100 ogohe that tnev wouild haeto hv t ir1"tvkty aIS '



r3

Squadron 5

ite 1 Site 33

Vehicles Vehicl es
1,5,9 3,7,11Suadron

Site 2 S' 4 4L4

ite I Site

Vehicles Vehcles
2,6,10 4,8,12 c

Vehicles Vehicles
1,5,9 3,7,11.

Site 2 Site 4

ehices Velhicles
2,6,10 4,8,12

® Vehicles in Group

X Vehicles not in Group

N.9PERSQN = Total Vehicles in Squadron.
NBASE = Number of Bascs (or Squadrons) in Group.
NWPSITE = Number of Weapons per Sit:e.
ISTART = Lowest Vehicle Index in Group for Each Squadron.
NWPNS = Total Vehicles in Group.

Pig. 119. Coilfiguratioii cf Missiles in a TypFical Group

622



single element target, For example, the Polaris squadron of 16
missiles on one submarine is considered to occupy one site, while the
Minuteman squadron of 50 missiles occupies 50 separate sites.

On the other hand, any nonalcrt missiles in a squadron will constitute
a separate weopon group, Since the vehicle indices within a squadron
may not start from one, the starting vehicle index ISTART for each
squadron is supplied as an input to the missile assignment phase. This
and the other input parameters defining the available weapons for the
program are shown in the figure. The strikes assigned to the group by
prog'ram ALOC are placed in order by decreasing values of RVAL. 1'he C
strikes are then assigned in this order beginning with the vehicle index
ISTART for the first squadron. The next strike goes to the next squadron
until all squadrons have one strike assigned. Then the vehicle index
is incremented, and strikes are again allocated to all squadrons until
all weapons are used.

For efficiency in the Simulator, all the missile launch operations from
a single squadron are packed into one Simulator event -- unless the
capacity of 18 strikes per event would be exceeded. In this case, more
than one event is required for each squadron.

A description of MIRV processing is given under Subroutine MISASGN.

Program Conventions for Indexing and Bookkeecing

'The list of targets and associated data are input to P"OSTALOC from the
ALOCGIRP file, which is the output from program POO'1'PRNT, or from the
TMPALOC file, which is the non-MIRT output from prcgram ALOCOIY'.

When read in, the targets are in a meaningless order for the purpose of
POSTAILOC. CORRPARIM is celied by GF"NRAAI.D to compute the curvilinear
coordinates WIW and PIll for each target (as discussed in the earlier
section on Raid Generation in 1PQSTALOC). The target data in common. /3/
(elsewhere referred to as the RAIL)STRK arrays) are then sorted and
reordered by ascending value of Pills. Throughout POSTALOC, it is the
position of the target in these arrays, to be referred to as the RAIDSTRK
index, which is used to identify the target, rather than INDI3XN0.

It is the function of TC'JTASGN, after process ing has begun for a given
corridor of a given group, to divide tip the entire list of targets in the
RAIDSTRK list among the sorties assigned to that corridor. It does this
by assigning the closest targets to the earli.est, flights, alternating
sides of the corridor, and working back to the farthiest targets for the
last f I ight s Thii s is accomp I ished by taking targets from both ends of
the list and working townards the m1iddle. The RAII '1RK iladicces [*or the
targets are placed in a Cdoublv diinensiuned array known as the J'IT a rray

023



in conunmon /CURRAlII/ . This array permits 111 to ten- targets to bu assigned
to each sortie.

The10re will Occasionally he more targets initi ally issigned to a
sortie in this array than there are warhevads onl the vehicle. ThI'!s
is because the numhor of weapons allocated is always slightly
larger than it should be, to allow for seome flexibili ty in thle sort ic
plans produced by POSTALOC.

Ilie array MYASLIN (common /CIJRRAII)/) , with dimensions and index ing cores -
ponlding? to thle RAIDSTRK arrays, (common /3/), givos the ass I gnmenlt of
each target . (Because of its dimensions, NIYASG-N is included in tile
RA IDSTRK debugging print rather thon thle CURRAI p1)rirn t.) The val1ues

L ~that MlYASGN may assume are as follows:

-1 Initial value; not yet looLked at by '1'(;lAS(;N

() Looked at by TCTiASGN; not assigned to sortie

IAssigned to sortie; not currently in SOR'1'Il'IT array

2 Assigned to sortie-, currently in SORNTYTCIY arrays.

WVheni the individual sortie. processing begins, OiiTSORr moves the target
asi~gned to the sortie .iunt a "potential target" urray. It dves this by
calling INPOTGT for each target it wants brought in. lNI'OTG'1 enters the
RAIDSTRK index of thle targct in the first ivailable call of MYPOIlGI,
which is a list of targets to be considered for thi.i. orie

Array IAVAIL in common /CURSOitTY/ supplies the next available in1dex of
the MYPO'TOTl array at any time. This arm~y originally conta~ins, all the
i ndi ces o~f MYPOTGI' ( i..e, , I through MAXPr, the ma1,ximu111munuber Of'
potolitia] targets, stored in reverse order).

NA\'AI , the number of available spaces, is original ly set to MAXPT.
Eachb time a target enters or loevc's the NPIPOTG'l array, NAVAl l is .i cre-
1wontetd Or decromented respelctively. Thus , at amy time, lAVAT L (NAVAIl )
contains tile next avcmilabo cell1 of NMYPOTGIT.

After tho RA I IS'IRK nTiex ha~s been ent ered in the NIYPOTG1 a rray thle
target is i dentii i fld by posi tion in the MYTOUIGT array; this pan it ion1
will be c~alled the SORTYTGT index.

* Pachl tairget in the M1YI0T(J liist is al1so .in oi ther thle [MIT oi- the c ].
* array, heren Ftc-r referred to as the M~it or omit 1ists, After enitering

aI t, A r inl the MY11OTG1, list , I NPOTIýT enters i ts SORTYIG dx kh
omi I list. Thor(. is a varliable NcOM]T wh ic mconitains theý nam11ber of,

* targets in the oend t list at any time.



Ani additional array, LKNITITT, provides a cross -refecrence betwveen indices
of the MYPCI'G'l array and the. lilt and omit lists. For each cell of the

* MYPOTGT array containing atarget (i.e., each cell not inl the IAVAIL
array), thle co-rresponding ceil of the LKHITMNT array contains thle index
of the target in the hit or omit list. If the target is in the hit
liSL, thiS liUlibel' is p)ositive:- if in the omit list, it Is negative.

11hc first cell of thle hilt list always conta ins I, representing the origin
of thle corridor (as the first route point). The last fiIlled cell alwajys
contains 3, represeniting the point at which thc bomber wiill land. The
next-to- Inst coil may or may not contain a 2, dependinrg onl whether or
not recovery is pilanned. If recovery is not planned, this, 2 wvill ha~ve
b)een moved to the omit list. It is only inl thil, event that thle last
cell (containing 3) becomes si gilficint , sin~ce it indicate., landing
without recovering, or ditching. Hereafter, the 3 will he referred t~o
as thle ditch polint. Uinlike the recovery poinlt , the or ig in and d itch

pointsc. arc always in the lilit l ist, never in the omit list,

After TINPT'rT has brought thle target into the MYPOTGT array and the, omit
list, (IETSCIRT calls CIIGPLAN to move it into thle hilt list. ClIIPLAN may
lie cal led with any of thle following opLions: OTI'l, to miove a target from
the omit list to the hit li st as a bomb target; 0TA, to move a target
from the omit list to thle hit list as anl ASM target ; 13T0, to move a bomlb
t-arget from the lilt list to the omit l.ist; ATO, to mnove an ASM target
from thle lilt list to thle omit list,

If thle target is to be, hilt with anl ASNM, its SORTYTHI' index inl the hilt
list will lie negative, ais Opposed to being po-,-tiv yeorc a bo0mb. All'
targets are inserted after thle orig in (1) , and before thle recovery, (2)
oir ditch point (3) . The target~s are stored inl this arraly inl tile order
that thO \'ehicle expec~tS to Fly.

There i s a compani on array to the hit liist callecd I PLY. Thiiis a r ray
coat ains the SOR'l'YTIGIl' index of the "'fly point'' at w'hi ch thle weapon i s
relcased. Tr the wonpoii is a bomb, the fly ponint 51, thle target itself.
It' the weapon I is an~ AS, the fly poinot is the earliest hoimib target wh i ch
is with in range of tile ASM target. (Thiiis rule is -suiffi ci ent forý calcuila-
t ions ~ind boonkkeep ingp ini STAI OC . PINUPITAN ;tac tn 1 picks the opt imal
launich point for Clie ASM later.) If' thereo is no bomb11 target withinl range~
thle bomber will have to Ciy w ithl i raupec oth the target . in thiis event,
the target itself.' is u.ose ;is' ýts fly poinit

Thl'e ie 011 onoth1r array- used in the target bookkoup ug . ThiiIs is the
LOSTI'('1 (lost t aegot ) array,. Fori mcli s-oit i c GI lSOI'Lh sumirchos5 tie ia i1ge
suirrounffd i op the t aige t s as sigiied , in the MYAS(;N a cray, to s-ou if* there
were anly targeots whiich welore c iCeted 01' dr-01oppe (i .e. *,if' MYNSGN Ci For

alytarlgets) I Uo thalt talrget isbogt 1tth10!11

0~25



MYASGN is set to 1. Then if space rumains, as many lost targets as
there is room for are brought into the potential target arrays.

As each sortie is processed, half of the targets remaining in the omit
list from the last sortie are dropped by cal'ling O01ITPOTGT. The least
valuable targets are selected and OUTPOTUT removes each target frotm the
omit list, puts its SORTYTGT index back into the IAVAIL list, And sets
MYAS(N = 0.

COMMON IILOCK DIEFINITION

lxternlal Comnmon Blocks

The common blocks used by program POSTALOC in processing input/outlput
(1/0) files are shown in table 34.

Since the input m issile record does not use all of comrnion block /3/,
subroutine MISA.SU;N redefines that common block and stores its output

record there (i n array IiVTI)ATA). In t ha I s LI b tout i ne, a I1 elemen ts of
this array IVII)ATA after the 180 -U'U OqUiVlaInced aIs shown in tabIC 35.

Internal Common BIlocks

IIn addition to the co0t1miton blocks associated with I/O operaItiors, the
cottititon blocks described ill table 36 are used intermillv by program
IPOSUTAI,0C.

(,2U



Table 34. Program POSiALOC External Common Blocks

(Sheet I of 9)

INPUT DATA FROM BASFILE

BLOCK** VARIABLE OR ARRAY* DESCRIPTION

/ASNrrABLE/ ASM characteristics

IWIIDASM(20) Warhead index

RANGEASM(20) Range

RELASM(20) Reliability for ASMs

CEPASM(20) CEP

SPEEDASM(20) Speed

/CORRCHAR/ Cori-idor characteristics

PCLAT(30) Latitude of corridor point

PCLONG(30) Longitude of corridor point

PCZONE(30) Defense zone in which corridor
origin is located

RPLAT(30) Latitude of corridor origin

RPLONG(30) Longitude of corridor origin

ENTLAT(30) Latitude of corridor entry

ENTLONG(30) Longitude of corridor entry

CRLENGTH(30) Distance from corridor entry to
corridor origin

KORSTYLE(30) Parameter to adjust mode of
corridor penetration

ATTRCORR(30) Hligh-altitude attrition per
nautical mile urnsuppressed

ATTRSUPP(30) High-altitude attrition per
nautical mile suppressed

, ILOATTR(30) Ratio low- to high-altitude
attrition (less than 1)

*Parenthetical values indicate array dimensions. All other elements are
single word variables.

"**Ordered alphabetically, not by position in core.

627

Il,2.', r ( 72 I4I

ill..... •l:: i~qll• ': irliqilil =•:"ll~il"F -i~*•ji~l l'i:•<l•]qi]'Q j



Table 34. (cont.)
(Sheet 2 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION
/CORRCHAR/ DEFRANGE(30) Characteristic range of

(cont.) corridor defense (nautical miles)

NPRCRDEF(30) Number of attrition sections
this corridor

DEFDIST(30,3) Distance of each precorridor leg

ATTRPRE(30,3) Attrition in each precorridor leg

NDATA Number of words in common
/CORRCIIAR/

/DPENREF/ Depenetration and refuel points

DPLINK(50) Depenetration point link

DPLAT(50) Depenetration point latitude

DPLONG(50) Depenetration point longitude
REFLAT(2O) Refuel point latitude,
REFLONG(20) Refuel point longitude

/FILES/ Logical unit number and maximum
length for all Plan Generator
files

TGTFILI (2)* Target data file

BASFILE(2) Data base information file

MSITIME(2) Fixed missile timing file

ALOCTAR(2) Weapon allocation by targets file

TMPALOC(2) Temporary allocation file

ALOCGRP(2) Allocation by group fiJ.

STRKFIL(2) Strike file

*In two-word arrays, first word is logical unit number; second word is

maximum file length in words. Single variables are logical unit
numbers.

628



Table 34. (cont.)
(Sheet 3 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/FILES/ EVENTAPE * Simulator events tape
(cont. PLANTAPEI * Detailed plans tape

/GRPDATA/ Characteristics of weapon gvoJlls

IGROUP Group number

NWPNS Number of weapons

NVE!-IGRP Number of vehicles

I REG Region

ITYPE' Weapon type

IALERT Alert status

IREFUEL Refuel code

YIELD Yield

ISTART Starting weapon index

NBASE Number of bases

IBASE(150) Base index number

BLAT(150) Base latitude

BLONG(150) Base longitude

IPAYLOAD(150) Payload index

VONBASE(150) Number on base

/GRPTYPE/ Characteristics of weapoi, types

ISIMTYPE Hollerith type name

RANGE Range

CEP CEP

SPEED Speed

ALERTDLY Alert delay

NALRTDLY Nonalert delay

RANGEDEC High/low altitude fuel con-:-.imptio,
ratio

*These files are output on magnetic tape.

629



Table 34. (cont.)
(Sheet 4 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/GRPTYPE/ ICLASS Weapon class
(cont.) NOPERSQN Number per squadron

SPDHI High-altitude speed

SPDLO Low-altitude speed

SPHASII Dash speed

RANGREF Refueled range

NMPSITE Number per site

IREP Reprogramming index

IRECMODE Recovery mode

IPENMODE Penetration mode

FUNCTION Function code

/MASTER/ Run ID, and quantity of QUICK
entities

IHDATE Date of run initiation

IDENTNO Run identification number

ISIDEM Attacking side

NRTPT Number of route points

NCORRM Number of penetration corridors

NDPEN Number of depenetration corridors

NRECOVER Number of recovery bases

NREF Number of directed refuel areas

NBNDRY Number of boundary points

NREG Number of command and control regions

NTYPE Number of weapon types

NGROUP Number of weapon groups

NTOTBASE Total number of bases

NPAYLOAD Number of payload types

NASMTYPE Number of ASM types

NWHDTYPE Number of warhead types

630



Table 34. (cont.)
(Sheet 5 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/MASTER/ NTANKBAS Number of tanker bases(cont.) NCOMPLEX Number of complex targets

NCLASS Number of weapon classes
(presently two)

NALERT Number of alert conditions
(presently two)

NTGTS Number of targets
NCORTYPE Number of penetration corridor

types

NCNTRY Number of distinct country codes
/PAYLOAD/ Payload description tables

NOBOMBI(40) Number of type 1 bombs
IWHDI (40) Type 1 warhead index
NOBOMB2(40) Number of type 2 bombs

IWHD2(40) Type 2 warhead index
NASM(40) Number of ASMs

IASM(40) ASM index

NCM(40) Number of countermeasures

NDECOYS(40) Number of terminal decoys

NADECOYS(40) Number of area decoys

IMIRV(40) MIRV system identification
number

/PLANTYPE/ Type of plan, and coordination
parameters

INITSTRK Indicator for first or second

strike
CORMSL Coordination time parameter for

missiles
CORBOMB Coordination distance for bombers

631



Table 34. (cont.)
(Sheet 6 of 9)

INPUT DATA FROM ALOCGRP FILE

BLOCK VARIABLE OR ARRAY DESCRIPTION

/SrRKSLIM/ KGROUP Group number

NTSTRK Total number of strikes for this
group

NCORR Number of corridorT. for this
group (=1)

NSTRK(30) Number of strikes assigned to

each corridor

/FIXALL/ IJFIX(II00) Logical data for bombers

IJFIXR(1I00) indicating fixed weapon
assignment

IKFIX(25)

/3/* NT Number of strikes in corridor

JGROUP Group index number

JCORR Corridor index number

INDEXNO(100) Target index numbers

TLAT(llO0) Target latitudes

TLONG(1IO0) Target longitudes

TIMEPREM(1lO0) "COMPLEXD" target indicators

IDEPEN(1I00) Depenetration corridor indices

DISTOUT(II00) Distances from targets to
depenetration corridors

DISTREQC(1O0) Distances from targets to recovery
points

ATTRLOC(lI00) Local target defense potentials

RVAL(IlO0) Relative values of targets

[)ELAT(llO0) Target offset latitudes

D)ELONG(IIO0) Target offset longitudes

"\s uscd whcti precessing a bomber record

632



Table 34. (cont.)
XSheet 7 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTIOI!

/3/* DPSIG(1lO0) Target design;.,or codes

(cont.) CNTRYLOC(IIO0) Target country location codes

FLAG(ll00) Flag codes for targets

/3/** NT Total number of targets assigned
to group

JGROUP Group number

JCORR Corridor number ( =0)

INDEXNO(llO0) Index numbers of targets
(negative if first target

record assigned to booster)record

from TLAT(1I00) Target latitude (degrees)
ALOCGRP TLONG(l100) Target longitude (degrees)
or
TMPALOC INTOT(l1.00) Not used

file RVAL(lI0O) Relative value of strike A
DLAT(IIO0) Offset latitude (degrees) i

DLONG(l100) Offset longitude (degrees)

DESIG(ll00) Target designator code

TASK(ll00) Target task code

CNTRYLOC(IIO0) Target country location code

FLAG(IIO0) Target flag code

FTIME(18,50) Flight time matrix

EVTDATA(270) Missile record as output to
STRKFIL. (see discussion of
STRKFILE output for redefinition
of this array)

DUM(32 30) Unused

*As used when processing a bomber record
**As used when processing missile records

633

A -* .III



Table 34. (cont.)

(Sheet 8 of 9)

OUTPUT DATA FOR STRKPILE*

BLOCK VARIABLE OR ARRAY DESCRIPTION

/OUTSRT/ IOUrTSRT Sortie index

MYGROUP Group index

MYCORR Corridor index

INDVEH Vehicle index

JREF Refuel index

JDPEN Dopenetration index

KPAYLOAD Payload index

LNCHBASE Base index

ITYP Weapon type

BASELAT Base latitude

BASELONG Base longitude

NHAP Numbr of targets

HAPTYPE(lO) Type of target

OBLAT(lO) Latitude of target

OBLONG(1O) Longitude of target

DLAT(1O) Latitude of weapon offset

DLONG(10) Longitude of weapon offset

IOBJECT(IO) Index of target

DSIG(IO) Designator number of target

TSK(1O) Task number of target

CNTRLC(1O) Country code of target

FLG(10) Flag of target

ATTROUT(10) Local attrition

SURVOUT(IO) Cumulative survival probability

*The bomber records only are written from common block /OUTSRT/; the
missiles are handled separately.

634



Table 34. (cont.)

(Sheet 9 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION/OUTSRT/ DSTLOW1 Low-altitude range
(cont.) 

(precorridor legs)
DSTLOW2 Low-altitude range (before

first target)
DSTLOW3 Low-altitude range (after

first target)
SPDLOW Speed at low altitude
SPDF1IGH Speed at high altitude
RANGEX Range of vehicle without

refueling
RANGEREF Range of vehicle with refuelingDELAY 

Delay before takeoff
IRG 

Regional index
ILRT Alert status
IDBOMBER Bomber identification
AVLOW Available low-altitude range
RNGDC Range decrement at low altitude

635

' 'j



Table 35. Format of Array EVTDATA in Common Block /3/ as
Used by Subroutine MISASGN (the Missile Record
to be Output to STRKFILE)
(Sheet I of 2)

WORD OF

EV[DATA DESCRIPTION EQUIVALENCED TO:*

1 Side None

2 Command and control index None

3 Group index None

4 Time of launch None

5 Payload index None

6-8 Zero None

9 Missile type None

10 ICLASS=I None

11 Launch region None

12 Alert status None

13-16 Zero None

17 Number of missiles None

18 Number of targets None

19-36 Missile indices KMISL(18)

37-54 Site indices KSITE(18)

55-72 Target indices KTGTIND(18)

73-90 Offset latitude XDLAT(18)

91-108 Offset longitude XDLONG(18)

"109-126 Flight times in hours FLTIME(18)

127-144 Weapon site latitude WLAT(18)

145-162 Weapon site longitude WLONG(18)

163-180 Target latitude XTLAT(18)

181-198 Target longitude XTLONG(18)

199-216 Designator code of target KDESIG(18)

*Parenthetical values indicate array dimensions. All other elements are
single word variables.

636



Tlab le 3s. (cont.)
<•"(Sheet 2 of 2)

WORD OF
"EVTDATA DESCRIPTION EQUIVAIXNH.i,
217-234 Task code of target KTASK(18)
235-252 Country code of target KCNTRYILq:C
253-270 Flag code of target KFLAG(18)

A3

r;37



Table 36. Program POSTALOC Internal Common Blocks
(Sheet 1 of 13)

BLOCK VARIABLE OR ARRAY* DESCRIPTION

/ARAYSIZE/ PIBASEPG Maximum number of bases (or
squadrons) per group (150)

MC Maximum number of corridors
(30)

NIT Maximum number of tnrgets per
group (I,IO0)

ML Maximum scparate defended zones
pro-entry (three)

MSTRK Maximum strikes per sortie
(10)

MSORTY Maximum sorties per group
(1100)

MSRT Maximum sorties per group per
corridor (100)

MFLY Maximum number of points in JIIIT
and IFLY lists (13)

MAXPA Maximum number of points
allowed by array size (25)

/CIIGPLAN/ (In effect, part of calling
sequence for subroutine CIIGPLAN)

JDO SORTYTGT index for target to be
added or deleted by CIIGPLAN

IAIM SORTYTGT index to flight point
for ASM launch

ISCAN Controls number of sortie points

scanned by EVAL routines

JAFT SORTYTG'F index to target tc
precede insertion

ATO, OTA, BTO, OTB Calling parameters for CIIGPLAN

/CONTROL/ EPSILON Set to 1001; used in tests of
significance

*Parenthetical values indicate array dimensions. All other elements are
single word variables.

638



Table 36." (cont.)
(Sheet 2 uf 13)

BIICK VARIABLE OR ARRAY DESCRIPTION

/CONTROL/ KýWALSRT ' Set to 1; not currently used
(cont.)

/CORRIDOR/ CLAT,` Latitude of corridor oridntation
point

rLONG Longitude of corridor orientation

point

CZONE Defense zone for corridor origin

PLAT Latitude 6f corridor origin
(route point)

PLONG I Longitude of corridor origin I-(route point')t)

ELAT Latitude of corridor entry point

ELONG Langitude of corridor entry point

CLENGT 1 Distance from entry to corridor
origin :

KORPWR Power of Y vs. X in calculation

of P1ll
!A

CORATTR Attrition of corridor with
unsuppressed defenses at high
altitude

CORSATTR Attrition of corridor at high

altitude with defenses suppressed

A',TRHILO Ratio of low- to high-altitude
attrition

RNGDEF Characteristic range of defense
operations

NPREDIAF Number of separate defended zones
prior to corridor

DISTDEF(3) Length of Ith defended zone

PREATTR(3) Attrition ir, Ith detended 2o-e

/CURRAID/ WIYBASE(100) Base index assigned to sortie

NASGN(100) Number of targets assigned to
sortie

(39



Table 36. (cont.)

(Sheet 3 of 13)

BLOCK 'ARIABLEI OR ARRAY DESCRIPTION

C. IJP!,'AI 0/ ITGT(ISTRK,ISRT) Index (IT) to target for ISTRKth
w. ,ith ISTRK = 10 strike in ISRTth sortie in present

ISRT = 100 raid; negative for ASMs

HYASGN(1l00) Assignment status of.target

IINI)UiXV II(100) Vehicle index assigned to sortie

(tj',UIIT Total targets hit b'y current
sortie plan

•JIJMBOMB Number of targets bombed

Number of targets hit with ASMs

" 'ftT Number of sortie points -- NUMHIT
+ (Origin, Recovery, Ditch)

!I-,Y(13) SORTYTGT index to Ith route
point or target

i i iIT(13) SORTYTGT index to Ith flight
point -- not the same as IMIT
for ASMs

'.\WrAY Sortie positi6n of last paying
sortie point, pre-ditch

L.AS;'rTGT Sortie position (=NUN2lIT + 1)
for last target

,'.•IT Number of targets in potential
target array not currently in
sortie

,.:IT(25) SORTYTGT index of l-ch omitted
target

O.AIL Number of spaces in potential
target arrays available for new
targets

"11.',\.(25) SORTYTGT index of Ith available

space

j ['1fiM'(25) Link for target J to sortie hit
list if'positive; omit list if
negat ivc

Pointer used in finding Jost
targets

64o)

- - . = • • • • m ml m [ i I 6 4mm)

S= ) = = m m



TabJe 36. (cont.)
(Sheet 4 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION
/CURSORTY/ LOSTTGT(25) SORTYTGT index to Ith lost
(cont.) target

NLOSTTGT Number of lost targets

NWHDS Number of warheads carried on
this sortie

NASMS Number of ASMs among warheads on
this sortie

RNGASM Range of ASMs this sortie
DSTB DISTB(IB) - distance from target

to entry point
/DATA/ IPRINTNO(60) Print request number

IFSTSORT(60) First sortie to activate print
LSTSORT(60) Last sortie to activate print
LPASS (60) Pass on which print is active

(I or 2)

LCORR(60) Penetration corridor on which
print is active

LGROUP(60) Weapon group on which print is
active

/FDEBUG/ IOTA Index to cell containing Hollerith
name of subroutine currently in
control

ICAMFROM(20) Array containing Hollerith
subroutine names in order of
calling hierarchy

/EVAL/ MINB The lowest payoff for a bomb in
the sortie, found by EVALB

JDELB The SORTYTGT index of the bomb
with lowest payoff, MINB

MAXDA The maximum payoff increment by
using ASM on omitted targets

JADD The SORTYTGT index of the target
with maximum increment MAXDA

641



Tjible 36. (cont.)
(Sheet S of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/EVAL/ MINDA The minimum payoff for an ASM in
(cont.) the sortie

JDEL The SORTYTCT index of the target
for ASM with minimum payoff,
MINDA

MA XOB 'Te maximum payoff increment for
a bomb on an omitted target

JADDB The SORTYTGT index of the target
showing maximum payoff, MAXOB

MAXDAB Maximum payoff increment obtainable
by use of ASM instead of bomb

JADDA The SORTYTGT index of bomb target
showing maximum payoff increment,
MAXDAB

VALSORTY Estimated total sortie value I
(=VALDONE (LASTPAY))

JAF Index of target to precede

insertion

KALC Signal to EVAL routines to skip
repetition of calculations

VALDIST "Value" per unit distance of
extra range as calculated by A
FLTPLAN

VALMAX Maximum possible valuc of sortie
as currently defined

JSEQERR Index of target in sortie showing
largest sequence error

ISFINPLN Not used

/FIXRANGE/ CENTLAT, CENTLONG Latitude and longitude of centroid
of launch bases in group

DISTC Distance between centroid of
launch bases in group and corridor
entry point

/FLAG/ IFLAG(200) Set to 1 if Ith print is active;
0 if not

642



Table 36. (cont.)
(Sheet 6 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/FLTPASS/ IFPASS Index of sortie processing pass
(limited to 100 sorties per pass)

JVEIILO Low-vehicle number, this pass

JVI'IltI Ifigh-vehicle number, this pass

NVF'IPASS Number of sorties this pass
(equals 100, or all remaining
sorties)

NPASS Total number of passes necessary

/IDUMP/ IDMPG Group on which to ABOR'iT

IDMPC Corridor on which to ABORT

IDMPS Sortie on which to ABORT

IDMPP Abort on primary (1) or alternate
(2) plan

IPLAN Indicates whether primary or
alternate in process

/INITOPT/ FLYLOW(3) Low-altitude distance flown in
Ith precorridor leg

IMPORTD(3) Order of importance of attrition
per mile in Ith precorridor leg

ATPDIST(3) Average attrition per distance
in Ith leg

DISTINK Distance from refuel point orentry point to corridor origin

TDEFDIST Total precorridor defended
distance

RNGE Range of vehicles in this group
(=RANGE or RANGREF)

/INDEX/ ISORTY Index to sortie currently
being processed

IORIG SORTYTGT index for corridor

origin (=I)

IRECOVER SORTYTGT index for recovery
point (=2)

643

412-5-u 0 7 14

: , -.



Tablo 36. (cont.)
(Sheet 7 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/INDEX/ IDITCH SORTYTGT index for ditch point
(cont.) (=3)

IT Target index

ICORR Corridor index

JTGTIN SORTYTGT index of the latest
target brought in by INPOTGT

/INPUTFL/ INPTFL Logical unit number for TMPALOC
or ALOCGRP file

MYIDINFL ID for TMPALOC or ALOCGRP file

/IREISRCH/ IRESRCH Flag for subroutine TGTASGN

/ISKIPTO/ ISKIPTO Group number with which POSTALOC
processing is to begin

/KEYS/ KEYSTART Keyword for retrieving ISTART

KEYVBASE Keyword for retrieving number
of vehicles/base

/MISPRNT/ LK Squadron number for current
event

LL Current event number

NEVTS Number of events to be generated

/NEXTFLT/ NTAILS Number of vehicles assigned to
next flight

JB Index of launch base of next
flight

SPLIT Equals 1 if less than 4 bases in
group; otherwise =0 (if 1,
causes each base to "split";
i.e., send flights down both
sides of corridor)

KB Marker for side 2

LB Marker for side 1

/PCALL/ IPASS OPTRAID pass in process (I or 2)

ICALL Print request number

644



_

Tamle 36. (cont.)
(Sheet 8 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/POLITE/ Parameters for interpolation
routines

S1 Latitude of first point

Ti Longitude of first point

S2 Latitude of second point
T2 Longitude of second point

FACTOR Fraction of distances to be
interpolated

SR Result: latitude of interpolated
point

TR Result: longitude of interpolated
point

/PRNTF/ ATLEGHI Not used

ATLEG Attrition on leg

RNGSURP Range surplus when whole flight
is high altitude

DISTANCE Total length of current flight
route

RSVLOW Amount of incremental range
reserved for low altitude prior
to the first target

AVAILOW Total amount of incremental low-

altitude range (i.e., surplus
high-altitude range converted to
the number of miles of potential
low altitude)

VALIT Value of sortie remaining, after
first target has been reached

FSTATTR Attrition rate at point where
sortie goes low on leg to first
target, or highest rate if sortie
does not go low

VALTOTT Total value of sortie

645

J



Table 36. (cont.)
(Shoot 9 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/PRNTF/ PRATRATE Attrition rate in current pre-
(cont.) corridor leg

VALONT Value of sortie from current leg
(after first target) to recovery

CURVAL Highest product of value-on and
attrition of areas competing for
low altitude; used in computing
value per unit distance of low-
altitude range

CRITATf Higher of the two products of
value-on and attrition for pre-
corridor legs and legs after
first target; used in determining
the amount of low-aititude range
(ADDLOW) to be put in the first-
target leg

ADDLOW Amount of low-altitude range
currently being allocated

JHONE SORTYTGT index of first target in
sortie

DISTSV Distance saved by omitting a
target JH

ATAREA Difference in area attrition if
a target J14 is omitted

ATLOCAL Local attrition of target Jl1

VALO Value of omitting target J|l, duo
to decreased attrition and range
saved

JX2 Index used in EVALOB for deter-
mining position of insertion for
new target

DISTAD Distance added by inserting
target JX in normal position

ADDTEST Distance added by inserting-I
target JX in alternative position

64

_6_6



K!
Table 36. (cont.)

(Shect 10 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/PRNTF/ ATIRNEW Attrition added by inserting
(cont.) target JX in sortie

ATNEWLG Estimated attrition on leg to new
target JX being inserted

DVALO Differential value of leaving new
target in the omit list rather
than inserting it

JXl Index used in [VALOB for deter-
mining position of insertion for
new target

DIST1 Length of leg preceding target JH3

DIST2 Length of leg from target JH to
next target

/PRINTOPT/ (Options used as calling para- .4
meters for subroutine PRINTIT
to produce the indicated prints)

!SRI'YTGT Common /SORTYT(;T/

ICURGRTY Common /CURSORTY/

ICURRAID Common /CURRAID/

IRSTKCPM Commons /RAIDSTRK/ and /2/(CORPARM)

IEVAL Common /EVAL/

IRAIDSHR Common /RAIDSIIR/

ICHGPLAN Common /CIIGPLAN/

IINITOPT Common /INITOPT/

IINDEX Common /INDEX/

ITGTASGN Common /'rGTASGN/

IGRPTYPE Common /G;PTYPE/

IGRPDATA Common /GRPDATA/

ICORCAR Common /CORRCHAR/

ISTRKSUM Common /S'rRKSUM/

ICORRSH1R Common /RAIDSHIR/

ICORIDOR Common /CORRIDOR/

647



Table 36, (cont.)

(Sheet 11 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/PRINTOPT/ INEXTFLT Common /NEXTFLT/(cont.) IDIEBUG Common /DEBUG/

JREFUEL Common /RELFUEL/

JOUTSRT Common /OUTSRT/

JPAYLOAD Common /PAY LOAD/
/RAIDS1IR/ NVEH Number of vehicles from current

weapon group assigned to raid
in this corridor

NRVEH(200) Number of vehicles in group on
Ith base which are still
unassigned

DISTB(200) Relative flight distance from
Ith base to corridor entry

NB Number of bases in group
VPRBASE Average number of vehicles per

base
NWPV(200) Number of warheads per vehicle

on Ith base
NWPC Total number of warheads to enter

by this corridor
TGTSPWHD Targets per warhead (=NT/NWPC)

NASMPV(200) Number of ASMs per vehicle on
Ith base

/RUNCHECK/ RUNCHECK VALSORTY accumulator

/SKIP/ VOLD Contains Hollerith IDENT of last
call on PRNTF

ISKIP Set to 1 to avoid printing
header between each line of the
same print

/SORTYTGT/ MAXPT Maximum number of points permitted
in potential target array

MYPOTGT(25) RAIDSTRK index of target J

648

.1, .5. .. . . ., ., • ••• -:



Table 36. (cont.)
(Sheet 12 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/SORTYTGT/ D(J1, J2) Flight distance from target
(cont.) where JI J2 = 25 (J1) to (J2)

VALB(25) Assumed value of bomb on target
J -- equals RVAL(J)

VALA(25) Assumed value (for defended
targets) of ASM versus bomb

V(25) Value of target as hit in sortie

RHOJ(25) Value of RHO(MHPOTGT(J)), for
target J

ATLOCHI(25) Assumed value of local attrition
to target (ATTRLOC(MYPOTGT(J)))

DISTLEG(25) Distance of flight leg to target
from preceding flight point

DISTLOW(25) Part of above distance flown at
low altitude

S(25) Estimated bomber survival probabi-
lity on preceding leg

SURV(25) Estimated total survival
probability to target

VALDONE(25) Estimated sortie value to and
including target J

VALON(25) Estimated sortie value target J
and beyond if SURV(J) were 1.0

DVALB(25) Estimated sortie value added by
bomb rlanned on target J

DVALA(25) Estimated sortie value added by
planned ASM on target J

DREC(25) Distance from depenetration to
recovery for target J as last
target

/TGTASGN/ TGTSASGN Cumulative targets now assigned
to raid

TGTLIM Value of TGTSASGN not to be
exceeded for sortie

649



Table 36. (cont.)
(Sheet 13 of 13)

BLOCK VAHIABLE OR ARRAY DESCRIPTION

/TGTASGN/ NTGT Number of targets allocated to
(cont.) raid -- equals NT

IFSTGT First target in list to be
processed on this call

ILASTGT Last target in list to be
processed on this call

IrSTVEH Index of first sortie to be
processed on this call

LSTVEH- Index of last sortie to be
processed on this call

ISIDE The corridor side to be flown
down

/VAL/ VALRECVR Ratio of recovery value to total
sortie value

MUSTREC Parameter card input; if >0 all
aircraft must recover

VUNLOAD Significance parameter for final
alterations in sortie if other
than default (.005)

/1/ X(1100), Y(ll00) Temporary storage for values used
in computing RHO and P1I4; reused
in subroutine GETGROUP for local
variables

/2/ (Formerly common /CORPARM/)

PHI(1100), RHO(l100) Value of curvilinear coordinates
PHI and ROO for Ith target

/4/ ISEQ(lIO0) Temporary storage used by
utility subroutine ORDER

650

'i • ': •" ' i '• I 1 1 " "[ ' .... | 1 ý ....-.........."... i'i i " "[ P • •[ '



SUBROUTINE CENTROIDI

PURPOSE: Computes the centroid of a given array of
latitudes and longitudes.

ENTRY POINTS: CENTROID

FORMAL PARAMETERS: NP. XLAT, XLONG, CXLAT, CXLONG

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: NOCORR, GENRAID

Method

'['his subroutine sums the NP latitudes which are in array XLAT, and
the longitudes in array XLONG, then divides both by NP to get the
average latitude CXLAT and the average longitudc CXLONG.

If the points being summed fall on both sides of the 3600 longitude,
3600 is added to all the longitudes less than 1800 before summing, and
subtracted out afterwards. If CXLONG is greater than 3600, then 3600 is
subtracted from it before returning.

Subroutine CENTROID is illustrated in figure 120.

651



CETART

(C-xvr, CXI.OTF-:

DU ) 00 Dolic Divid"
pal, N is 2 bp CXI.Al'By RETURN

To NP NIP
100 DO

Add
XLATtN) x XLO.NG(N)-(XLONG
To CY LýT OIF ABSF(X)

VIF

No
UIF LBO?

105

Reverse Sign Of S
DIF 360 DIF

DIF ý !'IF
N

CXLONG =
CXLONG (S x DIP)

30
20=0 >0 Yes Subtract>0 r Ye, ]tCUIDONG? C X 1. ONG > .16 0 30 From

"0 CXLONG
No

Add 360
To CXI.DNG

A

P-19, 120. Suhmltlne CENTROID

652



SUBROUTINE CHGPLAN

PURPOSE: To move a target from the omit list to the
hit list, or. from the hit list to the omit
list.

ENTRY POINTS: CHGPLAN

FORMAL PARAMETERS: lOP

COWtON BLOCKS: CHGPLAý, CURSORTY, DEBUG, GRPTYPE,.PCALL,
PRINTOPT, SORTYTGT

SUBROUTINES CALLED: DIFF, PRINWIT

CALLED BY: GETSORT, SORTOPT

Method:

CHGPLAN may be called with lOP equal to any Of the following four options:

Parameter Value Option

ATO 1 1 Move an ASM target from the hit
list to the omit list

OTA 2 Move a target from the omit list to
the hit list as 4n ASM Target

BTO 3 Move a bomb target from the hit list
to the omit list

OTB 4 Move a target from the omit list to
the hit list as a bomb Target.

The SORTYTGT index of the target to be moved is JDO in common /CHGPLAN/.
-If the target is being moved into the hit list, JAFT in common /CHGPLAN/
is the SORTYTGT index of the target in the hit list after which JDO is to
be inserted. If the target being inserted into the hit list is to be an
ASM strike, thc ý-riable IAIM in common /CIIGPLAN/ is set to indicate -the
launch point of the ASM.

653

hA



CHGPLAN makes the desired change in the hit list, then updates the
following variables in common /CURSCRTM/: NOMIT, NUMA.,SM, or NUMBQMB,
NHIT, NUMHIT, LASTPAY, LAS'ITGT, an"! LKHI.TMT(JDO).

Subroutine CIIGPLAN is illustrated i1j figure 121. Iheet 2 of the figure
carries notes to facilitate interpretation of the lowchart.

6S4



Set Index Of ANtl S't Itidex. (if A.'t' SVt ladcr, Of Set Index Oft

fie A~td-!d Be tRimoved

4. ihReduce Local F set Iocs 1
t
ove Itmrgets5 InnTa-ct

Attrition Uf A~ttritioc'n UmO1tI
Tare To Originalt Ao'n01it To Fill Gap LdO mtLs

Nt~g I i gen Arouuit

ILWOc Targets Ins Ad ige otlt Li T orgets k Iil Lint I"k
Ont Ls ack, tLs oi

To P11 apRoom For New Tagt To Fill COup

520 4

(love Target. Int f!ove Tairgets Ce wasTage
lile List To 5 ikeb Ililt 11,t Back, Inser~t -New Targ" t Removed From The- )c

RomFr o age oF IIGpInto (lilt list Recovery P'ointt

love co re;,, nage T t Wial lare c

Insert New Iag~ Nube (C Lt bddT bYmecrenr bt,
Into tilt 1.1st 'oovr N ,ierO ims

Inree t No Icr OfA.l~t Addedt Tf T , YsNm ffis
Number Of fSv ll t5, Reco etry IVS Rema hOf boml~

L21 Lat arrgetittý"re

I r i ott Prii V NI tree. t Th arget'

YNeo

I t 11(2 Incremient irlon, 'i-

mbe ~ ~ ~ ig 121 Subritutiber O~f [itRotLANLu
Los (SheevI I II.ut 1To ge2)itOrA

NO5



Notes:

1. Local variable JADD is set equal to JDO for use within subroutine
CHGPLAN. IADD is set to the position in the hit list which the target
will occupy. IS is set to the target's current position in the omit
list.

2. IHIT(IADD) is set to -JADD to indicate an ASM strike. IFLY(IADD)
is set to IAIM, the target closest to the launch point (to be determined
later in PLNTPLAN).

3. A normal exit (NORMAL = 1) is taken except when the ASM is being
reinserted with a new launch point as a result of the omission of its
former launch point from the hit list. (See BTO option.)

4. Local variable JDEL is set equal to JDO, and IDEL is set to the
position in the hit list from which JDEL is being removed.

5. A normal exit (NORMAL = 1) is taken except when the ASM is being
removed, to be reinserted with a different launch point as a result of
the omission of its former launch point from the hit list on a BTO call.

6. Since the recovery point CIRECOVER) has a value associated with it,
it may be removed or inserted into the hit lict in the same way as the
targets, in the attempt to increase the value of the sortie.

7. If EVALB finds that, in trading a bomb for an ASM on a target, the
sortie will still have to fly to (within range of) the target, it sets
IAIM negative as an indicator to CIIGPLAN that it need not relocate any
ASMs already being launched from the vicinity of that target, since
that point will remain in the flight route. In this case, TAIM is
reset positive and CHGPLAN exits.

8. If the fly point of the target which followed the deleted target
(i.e., now occupies that target's position) is the same as the deleted
target, it must be an ASM launched from that point. Since the launch
point has now been omitted from the flight route, the ASM target must
be deleted and reinserted if a new launch point can be found.

Fig. 121. (cont.)
(Sheet 2 of 2)

656



SUBROUTINE CORRPARM

PURPOSE: To calculate a curvilinear coordinate system
for use in assigning weapons to targets relative
to the penetration corridor,

ENTRY POINTS: CORRPARM

FORMAL PARAMETERS: KORA, TLAT, TLONG, IST, IFN

COMMON BLOCKS: CORRIDOR, 2, 1, PRINTOPT, DEBUG, PCALL

SUBROUTINES CALLED: DELLONG, DISTF, PRINTIT

CALLED BY: GENRAID

Method:

The new coordinate system has as its y-axis the corridor direction arrow,

with the corridor origin (PLAT, PLONG) serving as the origin of the

coordinate system. The corridor origin and the orientation point (CLAT,

CLONG) or the tip of the arrow, come to subroutine CORRPARM in common

/CORRIDOR/, which contains the characteristics of corridor KORR. IST

and IFN are the first and last indices of the targets for which the

calculations are to be done. The TLAT and TLONG arrays contain khe

coordinates for these targets.

The theory associated with determining the desired shape is given in

the general discussion of program POSTALOC.

The following equations define the new coordinates € and p (refer to

figure 118).

657



I• •=x/yk(1)

= y 2 + kx 2  (2)

If c exceeds 1.0 for a target, 4 and p are redefined as follows:

If x > 0:

= I + lxi i/k1y (3)

p lxi 2/k+ kx 2  (4)

If x <0:

+ (i +xj1/k _)

P=jxJ 2/k + kx2

CORRPARM begins its calculations by translating the latitudinal and

longitudinal coordinates of the earth so that the origin of the new

system is at the last route point of the penetration corridor. At the

same time, the longitudes are modified to conform to a planar model

(by multiplying longitudinal distance by the cosine of PLAT).

The translated coordinate system then is rotated so that the ordinate

is superimposed on the line connecting (PLAT, PLONG) and the corridor

point (CLAT, CLONG). This is accomplished through use of the formulas:

x = x' cos a + y' sin a

y = -X1 sin + y' cos ct

Referring to figure 122, wC see that

X ( B)-+ A () AD - BC
65 S

658



' Y --- (-C) + A = AB + CD
-~ ,T. ' S

3600
The constant F' =- where R is the characteristic range of defense2R

operations in nautical miles., is used to adjust the distance units.

F

The distance S is incorporated into this term, so that F = = 3600/2*R*S)

and

X = F*(A*D-B*C)

Y = F*(A*B+C*D)

After calculating X and Y, if Y is greater than zero, € is calculated

2
using equation (1) above, and R2 is set to Y . If the value of ý is

greater than 1.0, it is recalculated using equation (3) or (5) depending

on the sign X. R2 is set to i 2/k in this case. p is then calculated

using R2 as the first term in equation (2) or (4).

659
462"546 0 - ?2 - 15



LAT y

S A

(PA TPON)(CAC N)

LON

Fig.~~~~~ ~~~ 12.(asomtono oriae TLAT, TLONG) to(,Y

660-



6 - Distance From
Corridor Origin To Yes

Orientation Point
10 ooNNo

r D CL l (I I

Cos (PLAT) I ()I

I Lniu ina

F - 3600
2Y-I) R2 =[V()]

Done Do 403or . I Sur n No

[A PLATTLATl)6 RECN6B a PLAT-CL\T •"J

LongitudinalXI)C ? S
Distance From te

PLONG To TLONG(1) 32 Ye

Longitudinal 33
Distance From [ X1.RC•

PLONG To CLONG --

F*(A-D-B*C) 11
S~~SX(I,,YO-Y(1) ) ,

F" (A*B C*CD)
SR2 = YO2.

Fig. 123. Subroutine CORRPAP,\4

661



FUNCTION DIFF

PURPOSE: To retrieve previously computed distances between
potential targets from the distance array in
common /SORTYTGT/.

ENTRY POINTS: DIFF

FORMAL PARAMETERS: II, JJ

COMMON BLOCKS: CORRIDOR, CURSORTY, 3, DEBUG, DPENREF, INDEX,
PCALL, PRINTOPT, SORTYTGT, STRKSUM

SUBROUTINES CALLED: DISTF

CALLED BY: CHGPLAN, EVALB, EVALOA, EVALOB, FLTPLAN, GETSORT

Method

II and JJ are the SORTYTGT indices of the points between which the
distance is to be computed. DIFF tests the (II, JJ) cell of the array
(or the (JJ, II) t,-ll if II >JJ) to see if the distance has been
previously computed. The array is initialized to -10, so if the value
is negative, it has not been computed. DIFF uses the RAIDSTRK indices
(MYPOTGT(II) and (JJ)) to look up the TLATA and TLONGs and calls DISTF
(LATI, LONGI, LAT2, LONG2) to calculate the great circle distance. It
then stores the result in D(II, JJ).

Function DIFF is illustrated in figure 124.

662

- IJ



-A

START

6 72
Is Distance

RT*quested From yes Does Current Yeart i" Centel. D(IORM, INECOWR
Corrido Origin Sortie Con t &in

Target? Actual Distance
o Re ry ? Any Targets?

'ýN . S --
To 7S No
"'ýy

D(IORIG, IRECOVER)
20000

is 40

DST11,Qj? N DST)-0? No J.jj
Opi'll) J-11

10 Yes 
Yes

DST- 

No

D(11,JJ)

20

YesfDST),O? DIFF-DST

NoY.
so so

1-11 IT-wPoTEG-r(l)
J-jj WPOTGT(J)

DIFF-Distance

JT-
Between ITth
And JTth TLATTL(MLONG

60

D(rJ)-
RETURN IFF

Fig. 124. Function DIFF

663



SUBROUTINE DUMPSRT

PURPOSE: To record the final (optimum) sortie plan in the
JTGT array in common /CURRAID/.

ENTRY POINTS: DUMPSRT

FORMAL PARAMETERS: None

COMMON BLOCKS: CURRAID, CURSORTY, DEBUG, INDEX, PCALL,
PRINTOPT, SORTYTGT

SUBROUTINES CALLED: PRINTIT

CALLED BY: OPTRAID

Method

DUMPSRT essentially copies the hit list in common /CURSORTY/ into the
JTGT array for the current sortie in common /CURRAID/, changing the
relevant counters (NAVAIL and NASGN) and returning the SORTYTGT indices
to the AVAIL list. RAIDSTRK indices are used in the JTGT array rather
than the SORTYTGT indices used in the hit list, but negatives are used
in both places to indicate ASMs. NASGN is set negative if recovery has
been omitted from the sortie plan, and IRECOVER is then removed from the
omit list (GETSORT automatically reinserts it into the hit list for the
next sortie).

Subroutine DUMPSRT is illustrated in figure 125.

664



S....: 
START

Reccrd Final
Hit List In

JTGT Array

Set, NASGN -

Number Of TargetsIn Hit List

• 40

FlagN GBy Setting

Negative

IsiZ
Remove Recovery N

Point From Omit
List

Fig. 125. Subroutine DUNPSRT

665

NASG
Neatv

Reov .,ov



SUBROUTINE EVALB

PURPOSE: To estimate marginal values of bombs In the
sortie and the potential advantage of using
ASMs instead.

ENTRY POINTS: EVALB

FORMAL PAR METERS: None

COMMON BLOCKS: CHGPLAN, CORRIDOR, CURSORTY, DEBUG, EVAL, FIXALL,
GRFTYPE, INDEX, PCALL, PRNTF, PRINTOPT, SORTYTGT

SUBROUTINES CALLED: DIFF, PRINTIT, PRNTF

CALLED BY: SORTOPT

Method

Subroutine EVALB is called by SORTOPT to do one or more of the following
functions:

e To determine which targets assigned bombs should be converted
to ASMs when not all ASMs are assigned

* To determine which remaining bombs are of least value and should
be deleted if too many strikes are assigned

a To determine which route points (recovery or bomb targets) are
of negative value to the sortie and should be deleted,

The essential output of EVALB is stored in common /EVAL/. These outputs
include:

MiNB Marginal value of least valuable bomb (or recovery point)

JDELB Index to target whose value if MINB

JSEQERR Index to route point in wrong geographic sequence if non-zero

MAXDAB Largest estimated increase in value of sortie by changing
from bomb to ASM on a target

JADDA Index to target associated with MAXDAB

JAF Index to route point which ASM should follow in revised
sortie definition

666



EVALB does its processing in one large cycle over all route points in
succession, down to and perhaps including the recovery point. Three
indices JH1, JH, and JH2, are carried along representing three consecu-
tive route points. Local attrition is computed fortarget J11. DISTSV,
the distance saved by omitting target JI1, is then c4lculated. A check
is made at this point using previously computed disfances to see if the
distance traveled would be shorter if\JHl and JH were switched. Next,
using DISTSV, the area attrition reduction due to the omission of JH is
calcu~lated. An estimate is then made of the total value of omitting JH,
due to increased low-altitude range, and decreased attrition rate. If
there are ASMs which use the target JH as a launch point, an attempt is
made to relocate them. Finally, the differential value DVALB of a bomb
on target J11 is calculated. If this value is the least so far, *JH is
flagged. At this point, if there are no unused ASMs, the program recycles
to process the next target. I

If therd are available ASMs, the target JH is evaluated as a potential
ASM targeT-h- ,e differential value of the target for an •SM(DVALA) is
calculated, and then the maiginal improvement (DAB) if an ASM is used
rather than a bomb. The target with the greatest DAB is flagged for
SORTOPT.

Figure 126, in two parts, illustrates tho operation of the subroutine
via a macro flowchart. A detailed flow of EVALB is shown in figure 127;
sheets 5 and 6 of this figure are notes to facilitate reading of the
flowchart.

The processing of each route point is handled in two parts. In Part I
(figure 126) the marginal value of the route point as a target for a
bomb is evaluated. In Part II, the value of the same route point is
calculated as a potential ASM target and the marginal value of changing
it to an ASM target is estimated. Clearly when Part II of the program
is to be used, ISCAN must be. set so that the recovery point is not
included in the evaluation.

When all ASMý have been assigned, there may still be too many strikes
for the available warheads. The subroutine may be called again, still
excluding the recovery point, to select the least valuable remaining
bomb which couid be deleted. The subroutine is called once more with
ISCAN set to include the recovery point to be sure that all' route points
including the recovery make a positive contribution to the payoff.

Computational Metho•d Used in EVALB

Part I evaluates the marginal value of a route point. The value of
reaching the route point, multiplied by the probability of surviving to
reach it, is compared with the cost of doing so.

667



"This cost consists of two elements:

9 Change in the probability of reaching succeeding targets because
of local attrition, if any, at this target, or because of addi-
tional area attrition over the added distance required to fly to
this target

9 Reduction in the \imount of low-altitude flight available because
of the extra distance to the target, which in turn can affect
penetration probability to all targets.

In analyzing each target, EVALB considers an alternate flight route which
bypasses the targec and goes directly fýom the preceding to the succeeding
target. The effect of this route on the expected payoff for succeeding
route points can be directly evaluated. The change in attrition is known,
so the change in the cumulative survival probability SURV to the succeed-
ipg target cbn be computed and the value VALON of the remainder of the
sortie is available (having been computed by FLTPLAN).

The change AV in VALSORTY, due to change in available low-altitude cap-
ability, is only estimated. The estimate is based on the amount of
distance saved by skipping the target DISTSV multiplied by the quantity
VALDIST, the marginal value of distance as estimated by FLTPLAN. However,
where the saving in distance is very large, this'type of linear extrapola-
tion with a constant VALDIST can be quite misleading, and could even exceed
the full value of all targets in the sortie. Obviously, the value of the
sortie can never exceed the actual value VALMAX of all route points, and
with one target, k, omitted could not exceed VALMAX-V(k). Consequently,
the value, VALO, of omitting a target, k, cannot exceed POTVALO=
VALMAX-V(k)-VALSORTY. This quantity POTVALO is therefore used to establish
a limiting value for the value of saving distance. The quantity VALDIST
is used to give the derivative for small values of DISTSV. The actual form
used for estimating AV for distance saved is:

AV = POTVALO * [1.0 - 1.0/(1.0 + TEMP)]

where TEMP = VALDIST * DISTSV/POTVALO

In the second phase of the process -- to estimate the value of the target
as an ASM target -- the time premium for using an ASM on the target is
added into the basic value, RVAL, of the target, and the survival
probability used is that for the earliest possible launch point in range
of the target.

Special Considerations

Determination of the value of omitting a route point requires calculation
of the distance saved. Once this information has been computed for two

668



successive route points, the necessary distances have been computed that
are required to determine whether the two points are out of order on the
route. Therefore this determination is made during Part I of EVALB. The
following figure illustrates the method used.

4 A 5 E 7

C

The figure illustrates a route:

4 via leg A to 5
5 via leg B to 6

6 via leg C to 7

We wish to consider the possibility of reversing the order of points 5 and
6 on the route. The present distance is A + B + C, the revised distance
would be D + B + E, using dotted alternative legs D and E.

If the reversed path is shorter, then D + B + E < A + B + C or
A + C - D - E > 0. When we consider omitting 5 we compute DISTSV = A + B - D.
When we consider omitting 6 we compute DISTSV = B + C - E.

Adding the two values of DISTSV and subtracting 2B we obtain A + C - D - E.
Therefore if this value is positive the two route points are out of order,
and the flag JSEQERR is set to indicate one of the two targets for possible
temporary omission by SORTOPT. Usually the first target is flagged. (The
presumption is that a later call by SORTOPT on EVALOB will result in the
replacement of such a target in its proper position in the sortie.) How-
ever, if the first target is also a launching point for ASMs, even
temporary omission would be complicated; thus, rather than seek an alterna-
tive launch point for the ASMs, the second target will be flagged instead.
If both route points are also ASM launching points, no flag is set; and
the current order of targets is not changed.

The problem of route points serving double duty as ASM launch points also
arises in EVALB when the marginal value of omitting route points is being
estimated. Therefore after the original value VALO is estimated in Part I
of EVALB, a check is made to see 4f the point is used as an ASM launch
point. If so, the value VALO of omitting the point is decremented to

669

Sdj



reflect changes in the marginal value of the ASM, for which a new and
probably inferior launch point must be found. If such an alternate
launch point cannot be found, the entire value of the ASM is charged to

VALO. Except in the most extreme cases, this is sufficient to preclude
omission of this target.

This treatment is paralleled in the subroutine CHGPLAN. If SORTOPT asks
CHGPLAN to delete a bomb where the same route point is used as a launch
point for an ASM, CHGPLAN seeks an alternate launch point for the ASM.
However, if it cannot find one the ASM is omitted also. Thus the payoffs
estimated by EVALB correspond correctly to the options that would be
implemented by CHGPLAN.

670

~ .r LSL. -~....ffi . . . . <il 'sr..nC.'-:S-r ,, ±~.L. ~ A L



Scarn An Vau e Inren iIn Ponel bto f ae a hT

Calc. at Mrina Specif Ta

B Ye All- ASPJe 'oAeal eA
Assr~ inhte oud? Betnt~ ASMeOmsso

Fig.126 Suboutne fVAL (Maro lowcart
SaePyftm art gEtmt agnlVle-ot on

671s



A

Yes Is VALO
Ne go tive?

NooV

Search gou to 101 11ts
For First Potential

RageO Target

Part II Yestme Potenial aluc-S Target

Fin OeU672 hi



ýk j CýED
Initi:117oAnd

CI@ r 
Lo al

Vri a ble.4

Set J111, J11, And

J112 To Fir
rhree Consecu"tive

Route Po ints v I

5 200
Do. From Done

100 11-Origin To RETURN

JII-ISCAN 21

Do

Route 
3130

point 
Set DISTSV-0

28 313 Yes

Set ATLOCAL-Local No
Attrition For 3131 DISTSV Negative?

L Target ill

Yes 3111-Origin? No
4/

29 303:0

AnyuLow yog Ye, I Log
Altit do On LowLowLog

Jil Log? AýiEk :.de?
9 

:.d -)?

No 31 No

Re
set ATLOCAL To
Reflect Low
Altitude 310-312

Calculate
FDistance Saved.By]

Omittirg Targ

rig. 127. Subroutine EVALB (Detailed Flowchart)
(Sheet I of 6)

673



3131

And FQRA.ror Ee.,tive1

Ch~v I No Yo

IIIstimatJ A/tual

ErrorO Vrae alcul e AfOiso

ThFig 127 (tcont.)wi
NaximShee 2ror of 6)t

Y674



42

42

VALO yes
Loss Than

OT

N
S-47
Set Alm Point
One Leg Prior
To Last Aim
Point Used 9y

so 60
Aim Point

Within Rang e No Move Aim Point
Of J"? Forward one Leg 82

Yes Yes Aim Point No
ithin Range

80 Of J"?
CA 'cu"t* by.ýA:

Di ff,-,.n
Value Of Target

For ASM

81 No
a Target JH

Its Own Aim Yes love Ai m Point Ye
Point? ýo rw I DIT(;H Or

IRECOVER?
No

SS-86 
83

Estimate DAB: Marginal Calc--;to _DVALA:
Improvement In Sortie Differential Use TA get JH
It ASH Is Used t nstead Value Of Target 44 As It Own

(If Bomb For ASM j_1 Aim oint

97k DAB set JH To,- "' Hit
Greater Than Yes With Asm Aned Set Set Maximum
Maximum? Aim Point 12/ DAB

No

100

Fig. 127. (cont.)
(Sheet 3 of 6)

482 -548 0 - 72 - 10 675



r

ISO

Localealult VaialADfiiios
JX1,JX2- Te SRTYGT ndies of two oseutie rOutfoit

between ~ ~ ~ AS wTc agtJ a eadded

JXTEST~~A m ThPSR oTindxothtagt on1 thcotheraside of

IXTST - he inde ofng WXETi h ith list 1-

(Oef 4 of 6

676 est]PdV:AS

601160 N



Notes:

1. Il is kept as the index in the hit list for target JH2. IA is
tsed as the index to the current "fly point" JA.

2. This "do-loop" is over all actual route points, as opposed to
ASM targets.

3. If two consecutive fiy points are the same, the second (at least)
is an ASM launched from that point.

4. If JHil - IORIG, J11 as the first targct and low altitude on that
leg is assigned starting from the target and working back to the
origin. Thus, any low altitude at all implies low altitude at
the target. All other logs, however, are assigned low altitude
working from the previous target to the current one, and the
entire leg must be at low altitude for the target to be at low
altitude.

5. DREC(J) is the undefended distance from the depenetration point
associated with target J to the corresponding recovery point.
This distance is weighted to assume half the importance of the
defended distance. If J112 Is recovery, JH is the last target in
the sortie, and omitting JJi may change the depenetration route
if Jill is closer to another. Thus, DREC must be considered in
computing the distance saved in this case.

6. Using OLDSAVE Cwhich was DISTSV on the previous cycle) and the
current DISTSV, the effect of switching the order of JH1 and J.11
is calculated. JSEQERR is a measure of the distance saved by
this switch.

7. If there is a sequence error, either Jill or J11 may be omitted
under the assumption that it will be picked up later in the
optimizing process. JHI is normally dropped, unless there are
ASMs being launched from that point. In that case J14 is checked.
If it also is a launch point for ASMs, the error is ignored. If
JHl is the origin, the error is ignored.

8. The value of omitting J11 is computed in such a way that if the
value of distance times the distance saved (VALDIST * DISTSV) is
small, VALO is nearly equal to that product; and that as that pro-
duct increases, VALO approaches, but never exceeds, the potential
value of the omission POTVALO. The value of the sortie due to
increased survival probability is also included in VALO.

9. As EVALB proceeds in its overall loop, JA is kept set as the
first route point within ASH range of the current target. As
each new target is processed, the assumption is made that no
point earlier than the one immediately prior to the last JA will
be within the range of the current JlM, so JA is moved back one
position and testing begins from there, to find one within range.
A check is made to assure that a new route point is tested each time.

Fig. 127. (cont,)

(Sheet 5 of 6)

677



10. A test is made to see if the first target within range was JH
itself. If so, the succeeding target is tested. If thu target
is within range and is not the recovery or ditch point, it is
used for the aim point. Otherwise, the JHi target is used as
its "own aim point"; i.e., the sortie plans to fly within ASM
range of the target.

11. In computing DVALA when the sortie must fly to within range of
an ASM target, the VALB component of DVALA is computed as if
it were a bomb, with the exception of the local attrition.

12. JAP is set to indicate to SORTOPT, and hence to CHGPLAN, the
target in the hit list after which an ASM or bomb should be
inserted. For an ASM, it is normally the target used as launch
point. In the case where the ASM target is itr own aim point,
JAF is set to the preceding target and IADI, which indicates the
fly point, is set negative as a flag for CHGPLAN, signifying
that in omitting this bomb (for reinsertion as an ASM) it need
not drop or relocate any associated ASMs since the route point
will not be deleted.

13. If the target chosen to be switched from a bomb to an ASM strike
is already a launch point for other AS61s, now launch points

must be located for these ASMs. The effect of this change, or
the total value of the ASMs if new launch points cannot be
found, must be figured in the value of omitting the bomb (VALO).

I

Fig. 127. (cont.)
(Sheet 6 of 6)

678



SUBROUTINE EVALOA

PURPOSE: To evaluate the advantage in substituting a target

from the omit list for a current ASM target.

ENTRY POINTS: EVALOA

FORMAL PARAMETERS: None

COMMON BLOCKS: CHGPLAN, CURSORTY, DEBUG, EVAL, FIXALL, GRPTYPE,
INDEX, PCALL, PRINTOPT, PRNTF, SORTYTGT, 3

SUBROUTINES CALLED: DIFF, PRINTIT, PRNTF

CALLED BY: SORTOPT

Method

EVALOA estimates the desirability of using an ASM on one of the omitted
targets. It can be called by SORTOPT either to find a target for an
unused ASM or to evaluate the value of substituting an omitted strike
point as the target for an ASM already assigned. The main outputs of
EVALOA are stored in common /EVAL/. They are:

MINDA The minimum marginal value for ASMs as now assigned

JDEL The index to the target with value MINDA

MAXDA The maximum marginal vulue for ASMs on any omitted target

JADD The index for the target with value MAXDA

IAIM The index for the launch point for the ASM

JAF The index for the route point the ASM should follow in
the sortie

EVALOA does not deal with any changes in the bomber route. In this way
the values of changes considered by EVALOA can be evaluated exactly.

The operation is divided into two portions. First, EVALOA scans all
targets in the mission currently assigned for ASMs, skipping any target
used as its own launch point, since its omission would change the bomber
route, The marginal value of the others is determined by multiplying
the value of the strikes as ASM targets by the survival probability for
the aircraft to the launch point. During this phase EVALOA determines
the strike JDEL with the lowest marginal ASM value, MINDA.

679



In the second part of the subroutine, all omitted strikes are evaluated as
ASM targets. The method of evaluation is exactly the same. The only com-
plication is that a suitable launch point must be found. The routine
simply takes the first route point within range of each target as the
potential launch point. As it proceeds through this part of the program,
it keeps a record of the strike, JADDA, with the highest marginal ASM
payoff, MAXDA, and the associated launch point IAIM. Of course, strikes
are disqualified for such consideration if another strike on the same
target is already in the sortie definition.

In the first loop over all targets in the sortie, the differential value
of each ASM (DVALA) is calculated. The smallest of these DVALAs is
flagged. In the second loop over all targets, in the omit list, a launch
point is located and DVALA is calculated for each target. The largest
of these DVALAs is flagged. The values of these two targets, MINDA and !!
MAXDA, are returned to SORTOPT in common /EVAL/. "1
As in the other evaluating routines, JH is the index of the target under
consideration in the SORTYTGT arrays, Il is its position in the hit list,
and JA is the SORTYTGT index of its corresponding fly point. JX is the
SORTYTGT index of a target in the omit list, and IA is the position of
target JA in the fly list. I
To check for the same target already being in the sortie, the original
INDFXN0 must be obtained from the RAIDSTRK data (common /3/).
MYPOTGT(.JX) contains the RAIDSTRK index of target JX in the omit list.

As in EVALB, JAF is the SORTYTGT index for the route point that the new
ASM should follow in the sortie. This is usually the same launch point
chosen for the ASM, but when the ASH is its own launch point. JAP becomes
the preceding point and the target keeps its original position in the
hit list.

Subroutine EVALOA is illustrated in figure 128.

680



START

qe t VAll ASMs aLu, cc

Being Ust:d? I .1m m ASM I
Sortie To

yes,

30 DO 30 For All Done
Targets In Sortie

Do

NO Is This An Do 90 For All Pone
ASM Target? 90 Ta " e e ts I r' = PETUPN

CAlited List

Yes Do
10 65

Is Ibis The 'UVAIA Great rIs Target Used
Yes As I yes Recovery Point Tha*

ts Own n Previo s No
Instead Of A Maximum Omitted

Than 

Pr 

"

6 
' 

'

UVA 

'*A 

G 
r 

'

Target? Target?rg 

t?
NO 0 YesNo

I re

ute 32t 70-71

Launch 
Point? 

tax m 
I Q Sd No

Same Tar"t Ye,Nif erentlai Is This The Sa . T iAlready n ThisVolue Of MM First Call On *40 a y
(DVAL)k' EVALOA For Inis S rt ,

' 

a
So "tie? 

No
t r16 

Yes Set Target T6 0Is OVALA Smaller
Than Previous Inserted Arid Se-11-ý rev )u, Got Of Range Of
Millimu".1 Value? Flight Route, Maximum-DVALA

1 18-20 Yes 11 1 1 1t Sel DVAIA-0

3S Done
Is., Mininummi)VAi.A; Do 4 0 For11-ý N T All

T ýOlc8'. Route Pointsýd In Sortie

Do

No ROL, t, 0111t
With nelz n\
Omitt d Target

s
60

Ca I culate Value.1 On Target0 'SM
And Differential Value It

Of ASM To Sortie

Fig. 128. Sulroatine EVALOA

681



SUBROUT7INE EVALOB

PURPOSE: To evaluate the advantage of substituting a target
from the omit list for a current bomb target.

ENTRY POINTS: EVALUB

FORMAL PARAMETERS:' None

COMMON BLOCKS: 3, CORRIDOR, CURSORTY, DEBUG, EVAL, INDEX, PCALL,
PRINTOPT, PRNTF, SORTYTGT, VAI,

SUBROUTINES CALLED: DIFF, PRINTIT. PRATF

CALLED BY: SORTOPT

Method

EVALOB estimates the value of strikes in the omit list as potential
targets for bombs. It is called by SORTOPT to find an additional targct
or to find an' omitted target that is more profitable for a bomb than the
least valuable in tht; sortie. The main outputs from this routine are
placed in common EVAL and consist of:

MAXOB The maximum potential marginal value for an omitted strike
as • target for a bomb

JADDB The indcx to the above target

JAF The route point in 1he sortie which it should follow

The subrout cke processes ,in turn each target in the omit list. Each
pot intial target is tried, first in a position in the flight route just
before the first target in the list with a higher value of RIO, The
distance added to the sortie is then evaluated. The target is then tried
in a position on the other side of its nearest neighbor (nearest in value
of RHO). If this position produces a lower value for the distance added,
this position is accepted instead of the original position.

The marginal contribution of the bomb in the prefer'red position is then
computed. The -.,uthod parallels the calcul'ation of -he marginal value of
bombs in EVALB. The effect of the extra attrition on following targets is
evaluated. Ten the effect on lo4-altitude rangu is estimated using
(VALDIST * DISTAD). These quantities are added to get the total benefit,

682

Lim"



VALO, of not flying to this new route point. The value of the target
times the probability of surviving to reach it is then computed to get
the benefit of adding the target. Finally VALO is subtracted from the
benefit to get the net marginal value of adding the target, DVALB.

The index for the target with the highest DVALB is then recorded as
JADDB and the route point it should follow is recorded as JAF. Of course,
any strike on a target already in the sortie is excluded from considera-
tion, to avoid duplicate strikes on the same target by the same bomber.

Subroutine EVALOB is illustrated in figure 129. Sheet 3 of the figure
includes nctes to facilitate interpretation of the flowchart.

683



40 lements In UTR
The Omit List

D o 7 I o

Re~covry JXth Element

To Lagt Payinlg Targets In The
Flypoint, In Omit List

Current Sortie, Do
(JxI)

No Next Target 3
DISTAP R1100K

Distance From yes
Target JXI 200
T o R ec o v e ry D e t e r m i n e I)t s t -c e ,•]Added rf Inseted I

+In Courrsect
DVALAOPosition

S Value Of
Extra Distance

ATTIW. 235-290 N~o
Attrition Between[ Vetermine Distance]

Target UlI Added If Inserted
And Recovery On• Other Side Of

S~Closest Target

E. DVtimated /'Alternate

Sortie Value No position Better Ye
l•ded By Recovery] Than Normal

DIS"I',• • N Position?

it er 3o
I_ j C)Set Bomb To BeSurplus? Set BobToB Inserted In I

,In s e r te d InA l e n tNo rmal Sequence/ Poi t Anir e

Fig. 129. Sub-routine EVALOB
(Sheet 1 of 3)

684



330 335

MO

aý3 

335
Added By Inserting yes Set Valuo of

Ilona, To 1.41 rge
Bomb Gre ter Than Negative Number
Availabl: Range?

336 338 i"
336-338 No .135

Calckilate Added
Attrition. And
Attrition On
New Leg

3319
Was I VEXN

Of Flight Iýormerlyhis Stretch No
j.,), Allif..J.0

40 Yes

Calculat Added Attri-
tion And Attrition On
Now Leg At Low Altitude

21

M-352
Calculate Differential
Value Of Adding Bomb

(I)VA

DVALP Ureater No
355 Than Maximum

Value So Far7

Y s

360 5601
th Yes Re cover

is 'I'TarF t (JX
A Recovery' S 1-t Alrea y In 400

305 No 3('11 No

I K - Index Numbe - Set This Target
Of Target As Best Cliolee

To Be Addod

Do 3fil Por Al I t 111 Indem Fo
Targets In
flat Lis ilone I., t For .)Xl,

I
Do

IN . Index Number N,ýý-
f I11 t List Entry

Yes30
No

IK - IN? l1ellace
With .111cleding

Y03 F ypoint

F ig. 129, (cont.
(Sheet 2 of 3)

685



Notes:

1. Before calculating DVALB, a check is made to see if all of thewarheads on the sortie are ASMs. (It is possible for EVALOB to

be called if an ASM is dropped in the process of sortie optimiz-
ing. In this case EVALOB picks up a bomb without deleting one,
and then EVALB is called to switch a bomb to an ASM.) If all
warheads are ASMs, then local attrition is ignored in computing
DVALB.

2. If the entire JX2 leg was low altitude before, the assumption is
made that when target JX is inserted, the additional distance
flown will be at low altitude and the new attrition calculated
is reduced by the factor ATTRHILO.

Finally, if all warheads are ASMs, VALA is added into the final
computation of DVALB.

Fig. 129. (cont.)
(Sheet 3 of 3)

686

ILL



SUBROUTINE FLTPLAN

PURPOSE: To set up the flight profile and evaluate the
sortie plan.

ENTRY POINTS: FLTPLAN, FINFLT

FORMAL PARAMETERS: None

COMMON BLOCKS: 3, CORRIDOR, CURRAID, CURSORTY, DEBUG, EVAL,
GRPTYPE, INDEX, INITOPT, OUTSORT, PCALL, PRINTOPT,
PRINTF, RAIDSHR, RUNCHECK, SORTYTGT

SUBROUTINES CALLED: DIFF, PRINTIT, PRNTF

Method

FLTPLAN is used by SORTOPT to provide an estimate of VALSORTY for any
given sortie definition. It makes use of the marginal target value RVAL
supplied by the allocator, together with attrition parameters for the
corridor, to estimate the value of a sortie. The routine is called by
OUTSRT using the entry point FINFLT.

The value of a sortie as computed by FLTPLAN is given by:

VALSORTY = ESURV(I) * V(I)

where the summation is over all flight points including recovery.
SURV(I) is the estimated probability of the bomber surviving to reach the
flight point I, and V(I) is the estimated value of reaching that point.

The value V(I) attached to the targets, T, depends on whothlr it is to be
attacked by a bomb or an ASM.

(1) If I is a target for a bomb then:

V(I) = RVAL(tgt)

(2) If I is a target for an ASM then:

V(I) RVAL(tgt) * [1.0 + TIMEPREM(tgt)]

687

- -.



In the second relation, TIMEPREM is a bonus factor that is given
for using an ASM on certain classes of targets. At present
TIMEPREM is nonzero only for air defense targets. This bonus
is intended to reflect the advantage of destroying these targets
before the aircraft and others in the same flight have to pass
the target.

(3) If I is a recovery point then we define:

V(I) = .5 * 7RVAL(tgt)

In the third equation the summation is over all targets in
the sortie, which implies that the value of recovery is
equal to one-half the value of all targets in the mission.
The computation of SURV(I) for the formula is based on a
simple exponential attrition law,

If the integrated attrition probability on each individual leg to a point
J is given by ATLEG(J), then the survival probability for the bomber to
the point I will be given by:

SURV(I) = EXPF [ ATLEG(J)
J i

The attrition ATLEG(J) includes both area and local attrition for the leg.
Figure 130 illustrates the attrition rates used by FLTPLAN.

The area attrition for each leg is computed by integrating the assumed
area attrition rate over the length of each leg. After the first target,
this assumed area attrition rate per nautical mile is a constant, equal
to the data base variable ATTRCORR supplied for the corridor. Prior to
the first target, the assumed attrition rate falls off exponentially
toward the limiting value ATTRSUPP which is also a data base variable for
the corridor. Thus the assumed attrition rate between the origin and the
first target is given by

Rate = ATTRSUPP + CATTRCORR - ATTRSUPP) * EXPF(-X/DEFRANGE)

where X is the distance in nautical miles prior to the first target.
Attrition rates (ATTRLEG) may also be specified for the precorridor legs
leading in to the corridor.

688



The local attrition ATTRLOC (see TGT2 in figure 130) obtained directly from
ALOCOUT is estimated directly from the data base variable TARDEF (a TYPE
INTEGER variable) associated with each target as follows:

ATTRLOC = .1 * TARDEFHI

Naturally this local attrition is operative in FLTPLAN only when the route
point having local attrition is itself a target for a bomb. It does not
apply if the local attrition is associated with an ASM target and the
sortie definition shows the ASM as launched from some other route point.
Moreover, even if the sortie definition shows the ASM target as the ASM
launch point, any local attrition associated with the target is ignored.
This is done because it is presumed that the actual launch point (to be
defined in PLNTPLAN) will not require the aircraft to penetrate the local
defenses. In FLTPLAN the local attrition is applied entirely to the
incoming leg to the target.

FLTPLAN assumes that on any leg or fraction of a leg flown at low
altitude the attrition rates will be reduced by the factor HILOATTR. In
order to estimate the expected value of the sortie, therefore, an estimate
must be made of how the available low-altitude range should be applied.

Notice that a change in the assumed attrition rate for any leg or part of
a leg will change the integrated attrition for the leg ATLEG(J). This in
turn will change the probability of survival to any point I(SURV(I)) which
is required to evaluate VALSORTY.

FLTPLAN therefore begins by summing the total distance for the sortie as
specified. This distance is subtracted from the aircraft range to give
the surplus range RNGSURP available for the mission. Using the conversion
factor, RANGEDEC, this surplus range is used to estimate the available
low-altitude distance, AVAILOW, for the mission. Finally, AVAILOW is
allocated to the various legs in a manner intended to maximize the value
of the sortie, VALSORTY.

During this allocation of available low-altitude range the following
alternatives are provided:

1. Allocate low-altitude range to that remaining precorridor
leg that has the highest attrition.

2. Extend the low-altitude flight from the first target one more
leg toward the depenetration point (where the attrition is
assumed to end).

3. Extend the low altitude a little further in front of the
first target toward the corridor origin.

689



0)

0 40

41 a) 41
$4 0 04 j-H 0

Cn

0F4

H~ 41.)

o4 -F W4
4)4 C, 440

044.)

E4

4j -4

.L44

:3$ 0$4 -~0

4$44

4) L)ý
0)

$4 -
000

$44$0

$41

690



Choices among these alternatives are made on the basis of which one will

produce the largest rate of increase in VALSORTY per nautical mile of

low-altitude range required. Figure 131, in two parts, illustrates the

general flow of the subroutine. (The off-page connectors 'A" and "B" in

the diagram are used only by an alternate entry point for the subroutine,

which is discussed later.) A more detailed diagram of the subroutine

follows (figure 132); part III of this figure consists of notes to

facilitate interpretation of this detailed flowchart.

To illustrate how the priorities for this allocation work out mathe-

matically, we note that the cumulative survival probability SURV to

route point, i, can be represented as a product of the suxvival probabili-

ties, S., for each leg, j, up to and including the ith. Thus we can

rewrite the equation for VALSORTY as follows:

i=n j=i
fl Si V.

i=I Ij=l

where V is the value of the sortie and V. is the value of successftlly1

reaching the ith route point. (This is referred to as the value .. "

or VALDONE in the program.)

We also note chat

S.=e

where a. is the total attrition on the jth leg. Obviously a. is a3 3
function of LP, the low-altitude distance allocated to tha jth leg.

Differentiating V with respect to Lk, the low altitude allocated to some

specific leg k, we obtain

691

462-546 0 - 72 - 17

•(. , , , ..................... I... :.. • . •- '. . -



• - •3 -V @k @k

aLk ask ask k

while

v I n s- V~
=k

Sk - -e = -Sk
Bak

Thus

ax' - i=n j1 =1 i K
al I n sj v'] k

L' j=l DLk

and separating out the common factors S. for j=i, k, and noting that

i=k
n S. = SURV(k)

we obtain

.i=n j-.i(
aV = -SURV(k) I S. v i
3 -k i=k j=k+1 S a Lk

The term in the square bracket is the estimated value of the remainder

of the mission, assunming that the aircraft arrives successfully at the

point k. (This is called VALON(k) in the program.) Since Ck is the

total attrition for the kth !eg, the quantity ak/3Lk is simply the

difference between high-altitude and low-altitude attrition rates per

nautical mile. Moreover, since we are assuming a constant ratio,

HILOATTR, between high-altitude and low-altitude attrition rates, this

quantity is proportional to the attrition rate. Therefore, we can write:

692



0V -SIJRV(k) *VALON(k) *Attrition Rate (k) *CONSTANT
k

Thus the leg where additional Jow-altitude range will do the most good

can be selected by comparing the product of the first three factors in

the above expression for 9V/DL

This is the technique used in determining whether the next increment of

low-altitude range is to go into the precorridor legs, the leg to the

first target, or in extending the low-altitude flight to additional legs

or fractions thereof beyond the first target*.

The attrition rate used in this decision process for legs beyond the

first target is simply ATLEG(k)/DISTLEG(k); thus the effective attrition

rate also reflects any local attrition associated with the kth route

point.

The assumed position-dependent attrition rate per nautical mile is used

on the leg to target one so that low-altitude range is added to this

leg only as far ahead of the target as is justified by the assumed

attrition rate.

The attrition rate used in the precorridor legs is the constant value

specified in the data base.

lt is also worth noting that regardless of which leg, k, receives the

final allocation of low altitude, this allocation will correspond to

* Actually the values of SURV used in the subroutine during the alloca-
tion of the low-altitude flight are all divided by the value of SURV
to the first target. This speeds up the operation of the routine
since changes in the survival probabiiity in the precorridor legs or
on the way to the first targets, as allocations are made to those legs,
do not affect the value of SURV which must be used in later legs.

693



some value for the quantity 8V/Lk. This value, of course, is the marginal

value of additional low-altitude range. It can be converted (using the

conversion factor RANGEDEC) to obtain a marginal value of additiona]

range or the marginal value of saving distance in the sortie definition.

This marginal value of distance, known as VALDIST, is computed by FLTPLAN
and used by the EVAL routines to estimate the value of the distance saved

in alternative sortie definitions.

The above allocation procedure produces a rigorously optimum allncation

of the low-altitude range to the sortie so long as there is no local

attrition. However, where local attrition is present at specific targets

late in the sortie, a theoretically optimum allocation might allocate

limited low-altitude range explicitly for each such targct. If this were

permitted, it could lead to sorties which unrealistically go low for each

defended target and fly high between such targets. To avoid this

difficulty the requirement has been imposed that, after passing the

corridor origin, a flight is allowed to go low only once.

Moreover, for simplicity of computation during the development of the

sortie definitions, the flight is required to go low before the first
target, if it is going to fly low at all. Obviausly if there is local

attrition at a target toward the end of the mission but not at the first

target, it might be better to stay high past the first target and save the

low-altitude capability to be used in the vicinity of later defended

targets. While this possibility is ignored (for computational speed)

during the development of the sortie definitions, after the sortie defini.-

tions are complete a final check is made. If such a change would increase

the estimated value of VALSORTY, the change is incorporated in the final

version of the flight plan.

To perfoin this operation, FLTPLAN is called using the alternate entry

point, FINFLT, (see Part II of figure 131). If there are no defended

694



r -I

targets beyond where the flight goes high, FINFLT simply returns without

changing the sortie. Otherwise FINFLT tries extending the low-altitude
capability prior',to the first target, and the excess is allocated as

before between the leg to the first target and the precQrridor legs. If

there is no such excess, the point whe!-e the aircraft first goes low is

set as 4oon after thý first target as possible. The resulting value of

VALSORTY is then computed. If the sortie value is increased over that
previously obtained, the -revised sortie is used. If not, the priorI

version is retained. This process is repeated until a version of the

sortie is tested in which the low-altitudoflight is extended to the

last defended targbt. FINFLT then exits with that version of the sortie

which produced the best value of VALSORTY. .

There is a possibility that when FLTPAN is originally called for a given

sortie, the tota\l range iay be inadequate to execute the sortie as

defined even if the entire mission'were carried out at high altitude.

'In this case, FLTPLAN exits without assigning low altitude to any of the

legs. Moreover, VALSORTY is computed so that it receives no contribution

from any route point beyond the maxi.mum range of the aircraft. In this

case, later operations by SORTOPT usually result in the omission of some

targets that c'nnot be reached or ýhe elimination of recovery, so that

a revised sortie definition is developed which constitutes a feasible

sortie.

695



F L11LA.X

Set ITOI t

Each Route point; Yaesk lttc.(S t'a
Let T :o Cr) Lao SitI'o,, Sutlt"oAct ýaesr%# ofi j, Dd AVIlLOWAnal.d Li', U Stota For Prcc,'rrl,101 Legi and log GoNeji#0i6tLaC& For Sortie To Firs, Tirget OISV'Lal

Allocate Rem.,I n ng %IIW. , 1c .I
First Ieg, After first target:
C I c i at, Si"-1 F or h a

Leg, Relative ý.First Target

Co",g I: PIrstReii
Leg; With Somn.l Lig-

do Flight

Let To 
1

a a t i At C t(: 
1 C ri o

Neixt Lrotn rennio

N o N or H Iao h e It 'trane Of RFj. VLITPoaiiyPoaINFLT

C4IcuI~tvC-tuatsy

FistTagt 131. Sertn -A (Mcr FoChart)do
Partlit Sca Inr FLTL :

Rout. Pon sit



START Entry FINFLT

Store Presen
Versioii Of Surtie

Value ~~id NcwIn ComfITofl /OlrniR'T/

Low-AlItitudeIA
Distances Iii OUTSRl

- Ay Dfeded Targets No
Pt atLow-Alt] tude RETURN

F light?

Yes iYes

/ 7 ALNUWRetrieve Reserve From
VAL NoMI Leg To First Target
GVASOT, Arid Precorridor Legs;

Extend Low Altitude1
To Next Defended
Target; Decrement

Reserve

Is R~eserve Nosb
N)gat ive? A Of Part I

Allocate Reserve To

T Yes First Target Leg And
Precorridor Legs

Reclaim Low Altitude (Use Main FLTPLAN)
From Legs After
First Target

[R ec aIc uIa t c

Survivals

Calculate New Renormalizc-
VALSORTY, Survival To I
VALNEW Corridor Ent r~%

Fig. 131. (cont.)
Part 11: Fntry FINFLT

697



rEntry

SAT F LTP LXN

20 55 60

CluaeVleO oR" rI Calculate

DOcuDot Upper Lamif Soe DaSUad(IORIG)
Target: V')VAJ a From Recovery To DTUGORG]

For Bomb, V(J)--VAI.B'J) Origi I/ And increment
¢VALA(J) For ASMI- ITAC _

Of Sortie Value: Temporarily 1

VALPAX=VALMNýX4V(J) To 1.0/S (First Target)5

30 --"-

Calzulate Distance Calculate Surplus Range A

Of Log To Target J41! (RNGSURP=RANGE-DISTANCU)

DISTLEG(J+I)0O, For ASMl' And Corresponding Low-

DISTLEGIJ+i) Altitude Range (AVAILOW)6/

-DIFF(J,J+I), For ..omb
21

Reserve Some Low-Altitude

Inurement DISTANCF~B Range As Needed For

Distance To Next Precorridor Legs With

Target, Recovery, Attrition, And Some To
] Or Ditch Reach First T'arget (RSVLOW).',

Assuming ntire Flight-i Decrement AVAILOW

Except First Log At By RSVLOW

High Altitude, Calculate7
Attrition And Survivhl 70 J

4On Leg To Next/ Target 3/ If AVAILOW Now Negative,

, k . Set ToO0 And

48 I Decrement Reserve By I
Assuming Survival To This [ Difference

Target, Calculate ,0
Value Of Sovtii From 80

This Target On (VAI.ON(J)) Calculate Initial Attrition

Rates For Allocation Of
Low-Altitude Range--In

Precorridor Legs, To First

Target Or Later Targets

Fig. 132. Subroutine FLTPLAN (Detailed Flow)
Part I: Entry FLTPLAN
(Sheet 1 of 5)

698

~ ~'- -



r

VAL"l; WR I r) I) :OL

100 )0

Calculate SLIIZV(.1)
And VAI X)Nli (J) .,.ýlloleell llllriLýh 7/ v LOW. C I. ý4ý

Do

A"'M
Bomb Or A.YI? 8, Homb After

Flrst Target
First Target

95 In Flight Route

Calcill'ite
VORTG

A

120 1 3ti

_$_ý D IS ru. GCJ)vo? No AVA I LoW.0? No

140 Yes Iso

Yes YesRSVLOW-O? q/ j 11) 1 TCII?

No No
16() 155
DI STLOW (J) -

Yes AVAT LOW100 .).Do AVAII
1) 1 S I Uý G L J 10A VA I V

No
170

j V I STLOW I ) v 1) 1 S 1, 1. 1, r. (.1Calculat e A t t r i t i o n A VA I LOW, AVA L LOW -Prokk)nldlSllýrt)' I-or Leg v I S r I'm ('IPreceding J

180 17,;

Calculate Survival Calculate Attrition
Pur Leg 

For Leg

180

rle. 132. (cont.
Part I: (colit
(Sliect 2 of 5)

699



Prec~Recycle

CalcLlat At Rent i n
Increeenor ISTIO encrm n Iog Decremen RSVLOl4AlJN

Locuat AltiOfRettegLo AIt ?d

A05 Rese Attrtion ro PRrecrAido
Regs (VATRATRAFom irr)

Targe AttritiondFro

Curret Leg (cont.)

(2hee 32 ofo

700 I trii LtrLas DSL.()



260

Set Critical Attrition1
(CRtTATT) Based onil

Higher V2luceAttrition
Of Other TwoOpin

Set AVLOW T Tes Luprs ed No Atitde ADLOW) eddr

DISTLOW..DISTLEGCorio MakeW~ .Vi1vountt tOf Fow

ROtycr Too 205*Atito'

RSV205 Recyie OW

280gYe 3102 Yest

Setar 'Apl Cacontat

(Sheetrs 4Loe5

SE-t Fist ý701



ADD2. ADDI Survival CS) For Log 510

C21culatReset
And Survival To Origin DSTLow2*

flSTLOW3'

Recalcul561
Survival (SURV) To Fach VALSORTY-VALNEW

Pargt Base oconN.)
(ausfShe Fo Origi )

702irtTagt e

375UV 
-;.., 

A&~?X 
VANE N(:.,, .- SJ.A: - . .-



r
STAT Etry FINPLT

DISTLOiv

Set. DSILOI~tO

Do 501l I-Frg Anyefne

(O Ls Tret otudlitd piil?

YPar No: Fntsy IFaNFLT t

703



Attrition AndAtritovAe

F 600

Anecala c Suvialte S vival Teocla, ur i a
Aau oe o rgnd 'Value Doe Fo An RV~ ecyclen a

Sulbacel nquen ir t Larets Sub0qn Leg

To Dcremnt RVUO14 Se Le

Next Defendet Targe (co t,)ti

7544 Rese P,-corrduI



Notes:

& 1. The implied do loop here actually carries the indices of two
consecutive targets, since distance and cumulative values are
being computed, JH and JH2 are first set to the last two points

41' in the hit list which will either be recovery, or last target
and ditch, If the recovery point is in the hit list, it indicates
that recovery is planned. In this event, the distance associated
with the recovery point is the distance from the last target to
the dopenetration point (i.e.. the end of tne depenetration
corridor, or the point past which there is no expected attrition);
and the distance associated with "ditch" (which in this case
implies "land") is the distance from the dcpenctration point to
the recovery point, or end of flight. There is no attrition
associated with this last leg, and no low altitude is ever
allocated to it. No survival or value parameters are calculated
which have meaning beyond the depenetration point.

If recovery has been omitted, the ditch point indicates that the
vehicle will land as soon as it drops its last bomb. In this
case, the distance of the "ditch" leg is 0. In the distance
table (D(I,J) in coimmon /SORTYTGT/), the distance from any
target to ditch is 0 and the distance from recovery to ditch is
DISrREC(IT) - DISTOUT(IT), where IT is the last target in the
route.

The contents of J11 and J112 are the indices of the two consecutive
targets or route points in the SORTYTGT arrays. These indices
are set negative to represent ASMs. JY and JY2 contain the
Indices of the corresponding fly points (which may differ from
the targets If ASMs are being used).

Since Jii2 is always = 3 on the first cycle of this loop it is
not tested for sign, but if JM is negative (indicating an ASM
target), it is set positive so that it may be used as an index.
(See the section Program Conventions for description of
POSTALOC.)

2. At this point, since JH2 will never be negative, we test JY.EQ.JY.
If they are equal, we know that J112 is an ASM target, and
DISTANCE(JI12) and S(J112) are calculated as such (i.e., DISTANCE = 0
and S = 1.0). If JY and JY2 are not equal, either J112 is a
bomb target or it is an ASM target out of range of the rest of
the flight route. In either case, DISTANCE (J112) is calculated
as the distance between JY and JY2. On the first cycle through
this loop, when J112 -- IRr.COVFR we also set DIS'TLEG{1DITCHt) equal
to the distance from the depenetration point associated with

target J11 to its corresponding recovery point.

Fig. 132. (cont.)
Part III: Notes
(Sheet 1 of 4)

705



3. When JY x IORIG, we are dealing with the first-target case, for
which attrition is calcdlated differently from the subsequent
logs. lONlE and JIIONE are saved at this point, as the position
and SORTYTGT index of the first target in the sortie.

4. DISTLEG(IORIG) represents the entire distance from the base (or
refuel point) to the corridor origin. When buddy refueling or
no refueling is used, this is the sum of DISTINK which is the
corridor longth, and DSTB the distance from the base to the cor-
ridor entry point. If a regular refueling area is used, DSTB is
zero and DISTINK is the distance from the refuel point to the
corridor entry, plus the corridor length. These variables are
pre-set for the corridor in INITOPT.

5. The values of SURV used during the allocation of the low-altitude

flight are all divided by the value of SURV to the first target.
This speeds up the operatiun.of the routine, since changes in
the survival probability in the precorridor legs or on the way
to tile first target will not affect the value of SURV which must
be used in later legs.

6. If there is any surplus range, the amount of low-altitude flight
to be allocated is calculated by dividing the range surplus
(RNGS'JRP) by the incremental (high-altitude) range used per mile
by flying at low altitude.

7. Here again J1-1 and J12 are indices for a pair of consecutive
targets in the hit list. Wle begin with J11 at the origin and J112
equal to the next point In the hit list.

8. I1, the position of J112, is compared to IONE, the position of the
first bomb target. If it is less than ZONE, it must be an ASM.
In this case, SURV and VALDONE are calculated immediately and it
returns to the beginning of the loop, When I1 is equal to lONE,
then all ASMs launched from the origin have been processed and,
since the value of these is included in the value of the sortie
accomplished upon reaching the origin, VORIG is now calculated,
as well as SURV and VALDONE for the first bomb r.arget. When I1
is greater thz.n ION., the allocation of any available low
altitude is begun. Wle do not move to the next leg until either
all available low altitude has boon distributed among the three
alternatives: precorridor legs, first target leg, or the cur-
rent J112 leg, or until the J112 leg is all low-altitude and we
need to move to the next leg as the third alternative for low
altitude. If DISTLEG = 0 for 11 greater than lONE, J112 is again
an ASM target and as before SURV and VALDONE are calculated and
II • incremented.

Fig, 132, (cont.)

Part III: (cont.)
(Sheet 2 of 4)

706

LA 1-A



9. If AVAILOW and RSVLOW are both zero, there is no low altitude to
distribute and SURV and VALDONE are calculated for JHi2, and all
subsequent points in the hit list up to IDITCIH.

10. If AVAILOW is positive and if there is enough for the J112 leg,
we fill the leg, decrement AVAILUW, recompute the uttrition and
survival for the leg based on its low-altitude flight, and con-
tinue as before. If AVAILOW is not adequate for the entire leg,
we assign as muci as there is to the leg and go to the section
where the RSVLOW is ditributed amung the three alternative areas.
(Entry E on the flowchart.)

11. When all AVAILOW is used, a decision-making process must be gone
through in order to allocate each stretch of low altitude. Values
and attrition rates are associated with each of the three alter-
native areas as follows: VALTOTT is the value of the sortie
from the precorridor legs on; PRAJRATIA contains the attritica
rate for the current precorridor leg. VALIT Is the value of
the sortie from the first target on, and the attrition rate
calculated for this leg is stored in FSTAT'IR. VALONT is the
value of the sortie from the current leg to the end of the
sortie, and RATELEG is the attrition calculated for the leg.
The decision for the allocation of low altitude is made on the
basis of the products of these values and attrition:;.

12. This is done by setting the whole leg to low altituda, decre-
menting RSVLOW, and then checking to see it RSVLOW is negative.
If so, the low-altitude distance DISTLOW(IORIG) is corrected,
and RSVLO11 is set to zero.

13. CURVAL is set to the current maximum product of attrition and
value, and is used to calculate a "value per unit distance"
(VALDIST) of low-altitude flight, which is used by the evaluat-
ing routine in estimating the effect of route changes on the
total value of the sortie.

14. If CRITATT is less than or equal to the corridor attrition rate
with defenses suppressed, then the entire first leg is assumed to
have a higher attrition rate than any other area (i.e., all
other areas with attrition have already been allocated low
altitude), so the entire leg is set to low altitude without
further calcuations.

15. Actually FSTATTR is set to .991) x CRITATT so that low altitude
will next be allocated to the higher of the other two areas,
rather than coming back to the first target leg.

Fig. 132. (cont,)
Part III: (cont.)
(Sheet 3 of 4)

70,4

4(1-2 41 L% 72 - I I

.... .... ... .... .... ... .... ...',..



16. Now that all low altitude flight is allocated, we compute the
actual survival probability for the leg to thc first target,
and recalculate the cumulative survival probabilities to later
legs. (See note 5.)

17, If RNGSURP < 0, there was not enough range to fly the entire
sortie at high altitude. In thi3 event, the sortie plan is not
changed by FLTPLAN, but only the targets actually reached are
considered in computing VALSORTY.

18. ADDI, ADD2, and ADD3 are used by FINFILT to record changes to
DISTLOWI, DSTLOW2, and DSTLOWV3. They are actually added to the
original distances only if, by doing so, the value of the sortie
will be improved.

Fig, 132. co4t.
Part IIT: (cont.)
(Sheet 4 of 4)

7S

v, 70,L.•k~JV



SUBROUTINE FLTROUTE
NIF

PURPOSE: Prepares for and controls the assignment of

targets to sorties, specifying the launch bases
and determining which side of the corridor each
flight of vehicles is to fly down.

ENTRY POINTS: FLTROUTE. FLTPASS

FORMAL PARAMETERS: None

COMNON BLOCKS: 2, 3, ARAYSIZI., CURRAID, DEBUG, FLTPASS, GRPDATA
IRESRCH, KEYS, MASTER, NEXTFILT, PCALL, PRINTOPT,
RAIDSHR, TGTASGN

SUBROUTINES CALLED: IGET, NEXTFLT, PRINTIT, PRNTF, TGTASGN, TIMEME

CALLED BY: GENRAID

Method I

jor each successive flight assigned to the corridor, FLIROUTF assigns it::'
sorties to the right or left of the corridor. This subroutine is re-
sponsible for the initial generation of the skeletal description of all
sorties in a raid (or sub-raid, if there are more than 100 vehicles in
the raid). It stores this description in common block /CUR.AID/
(Current Raid). Fo" each sortie, in the raid (or sub-raid) the subroutine
records the base of origin, the pumber of strikes assigned, a list of
indices to the targets assigned, and the vehicle index for the particular
vehicle on the base.
Figure 133 illustrates the operation of subroutine FLTROUIL. Sheets

3 and 4 of ti'is figure consist of notes to facilitate interpretation
of this flov,.hart. It first calculates the number of vehi -les for the
corridor NVEII by determining, base by base, the number of vehicles
required to transport at least the desired number of weapons for the
corridor. So that PREtRAID cankeep its records correctly, the numbec
of weapons for 'the .orridor is then reset to the actual number of war-
heads on these vehicles.

If the nomber of bases involved in the raid is less than four, FLTROUIE
sets a flag which cai;ses NEXTFLT to deliver flights of only. Lalf a base
load at a time. This makes it possible to maintain better time coordina-
t.ion between •orties assigned to opposite sides of the corridor.

709

............ .,.



r\

If the number of vehicles would exceed 100, provision is made to process
them in several passes of 100 vehicles or less each.

Proceeding to the second sheet of figure 133, all sorties in CURRAID are
initialized to zero weapons assigned. The sorties for next flight are
then assigned; the assignment is from the top or the bottom of the list
of unassigned sorties, depending on which side of the corridor gives
the higher absolute value of PHI. At the same time a flag (ISIDE = 1
or 2) is set so that TGTASGN will know in which order to assign targets.

Finally, the base of origin for the flight is recorded for all sorties
assigned to the flight, and a vehicle index is assigned for each sortie.
Tfhen TGTASGN is called to actually assign specific targets for each
sortie in the flight.

710

710)



I

6-10
Caiclare Number

Of Vehic les (NVIH 1)
Por This Corridor 1 ]I

Sot Flag To Send Two0 yes Number Of Base's No Set Frlag To Seiid All
Plights Of Voldcles Less Than Or Vehicles Propi A Buas

S retap(.ters T oa

211

...............................................*-.Of** *



30

Unpack Number Of
Vehicles On Base,

so ' hikASE l j
Calculate An RJUK

Approximate Numbe r Of
Targets To Be' Assitned

To The Next Plighlt

Set Firat Ano Last

To 90So71l GTS1eT

Asig [Flightn 6Nmbor Anohe

WcAi iedto Ch., Ons IsNeesar

Pig. 1331cn,

Media Absclu712



ri
I"

Notes

1. Given the total number of weapons for a given corridor, and the
number of weapons that can be carried on each vehicle, FLTROUTE
computes the number of vehicles to be sent down the corridor

J• ~(NVEH).

2. If the last vehicle ends up not carrying its maximum number of
weapons, it is set to do so and NWPC is increased accordingly.
Thus the first corridor, which is the one with the most strikes
assigned, may end up with slightly more than its "share" of
weapons, which was the original NWPC computed by PRERAID. This
has the effect of leaving more targets per weapon to choose
from for the sorties in the more sparsely targeted corridors.
The average number of targets per warhead (TGTSWII1D) is also
calculated at this point.

3. It is desired to send approximately half the vehicles down
either side. If there are more than four launch bases, it will
suffice to merely alternate bases from one side to the other.
If there are four or fewer bases, half the vehicles from each
base are sent down either side of the corridor to provide an
even distribution.

4. Since FLTROUTE and the subsequent routines are equipped to
process only 100 sorties at a time, it is sometimes necessary
to make more than one pass to complete the processing., Entry
point FLTPASS is used for the second and subsequent calls on
FLTROUTE within the same corridor.

5. The sorties are processed working from both ends of the list,
in order to alternate from the left to the right side of the
corridor. Thus, if there is difficulty in making the final
assignments, these sorties will fall in the middle of the list
and there will be a better chance of finding suitable targets
by interchanging with the sorties on either side. The sorties
from the beginning of the list, are sent down the right side
of the corridor and those from the end are sent down the left
side. IIFTRSRT and IRTSRT are set to indicate the first sortie
not yet assigned from either end of the list. NFREPSRT indi-
cates the number of vehicles not yet assigned.

6. The target-to-sortie assignments are made by "flights" which

consist of either part or all of the bombers from a given
base. NEXTFLT returns the size of the flight (NTAILS) and its
launch base.

Fig. 133. (cont.)

(Sheet 3 of 4)

713



7. IFSTGT and ILASTGT are markers in the target list indicating
the first and last unassigned targets in the list. The median
value of PHI is taken, from the number of targets to be
assigned, at both ends of the list of unassigned targets. The
side with the higher absolute value of PHI is designated for
the next flight. (Thus, if one side of the corridor has more
targets than the other, the depth of penetration is still kept
fairly even on either side.)

8. Before the target assignments for the individual sorties are
made, IFSTVEII and LSTVE-H are set to the first and last index
numbers of the vehicles in this flight, and ILFTSRT or IRTSRT
is decremented or incremented as the case may be.

9. If another pass is necessary to finish target-to-sortie
assignments for the corridor, NTAILS is set to 1000 as a flag
for GENRAID. In the event that NTAILS was left as a negative
number, -1000 is added to its former value.

'I

Fig. 133. (cont.) J
(Sheet 4 of 4)

/14



SUBROUTINE GENRAID

PURPOSE: Prepares for and controls the processing of all

sorties through a given penetration corridor.

ENTRY POINTS: GENRAID

FORMAL PARAMETERS: None

COMMON BLOCKS: 2, 3, 4, ARAYSIZE, BEGIN, CORRCHAR, CORRIDOR,
DEBUG, DPENREF, FILES, FIXALL, FIXRANGE, GRPDATA,
IFTPRNT, INDEX, INFUTFL, ISKIPTO, ITP, NEXTFLT,
PCALL, PRINTOPT, RAIDSHR

SUBROUTINES CALLED: CENTROID, CORRPARM, DISTF. FLTPASS, FLTROUTE,
NOCORR, OPTRAID, ORDER, PRINTIT, PRNTF, RDARRAY,
REORDER, SETFLAG

CALLED BY: PRERAID

Method

GENRAID is the controlling subroutine for the generation of a raid in a
corridor. It reads in the specific list of strikes for the corridor
from the ALOCGRP or TDPALOC file and places the available bases and the
strikes in proper order so that the assignment of strikes to vehicles
can be accomplished by subroutine FLTROUTE. When the initial assign-
ment is complete it calls subroutine OPTRAID to optimize all resulting
sorties.

Figure 134 illustrates the opcration of GENRAID.

First, GENRAID reads the target data for strikes assigned to the cor-
ridor to fill common /3/. It mioves the corridor characteristics for
the corridor JCORR, named in common /3/, to common /CORRIDOR/ in ,n
unindexed form for easier reference. For each corridor where str kes
have been assigned, GENRAID places the bases for the group in order of
increasing distance from the corridor entrance. (If weapons from the
same group have been previously assigned, bases with remaining aircraft
may be mixed with bases from which all aircraft have been assigned; to
avoid this, routines which process bases always check numbers of ro--
maining aircraft on each base.) The result, however, is that bases
close to each corridor are always processed first (so long as aircraft
remain on the bases). In the case of the tactical bombers (JCORR 1 or 2

715



indicates tactical bombers which use no penetration corridor) or bombers
assigned to naval targets, subroutine NOCORR is called to initialize;
then CORRPARN is called to order the bases in tho same way that the
targets will be ordered.

GENRAID next calls CORRPARM to assign values of PHI and RP1O to each
target and the targets are sorted on the values of Pill.

PLTROUTE is then called to assign the strikes to aircraft beginning
with the nearest bases and proceeding until all strikes in the corridor
have been assigned. Finally OPTRAID is called to optimize the sorties
in the raid.

However, due to computer memory limitations, FLTROUTE and OPTRAID can-
not handle more than 100 sorties in a single raid. While such large
raids are unusual, they can occur. Therefore, a spill provision is
included. If FLTROUIE is called for a larger raid, it will return
when 100 sorties have been set up. Thus, afte: OPTRAID, a test is
included to be sure all sorties for the corridor have been processed.
If not, FLTROUTE is called to continue processing sorties for tho
corridor and OPTRAID is again called to optimize the sorties. The
entrance point for such a continuation is called FLTPASS.

The following points should be noted with regard to subroutino GCNRAID.

1. When a penetration corridor is to be used, the launch bases
are ordered so that sorties are processed beginning with the
nearest base and working back to the farthest. In the case
of tactical bombers, the bases are assigned, values of RHJO
and PHI relalive to a line between the centroid of the base-,
and the centroid of the targets, The bases are then arranged

in order of PHI.

2. The targets are ordered so that those closest tu the corridor
origin are hit first. (See Raid Generation in POSTALOC of
this manual for further discussion of this.)

5. The current array dimension-- limit POSTtLOC to processing no
more than 100 sortie:; at once, If more than 100 sorties from
a ý,'eapon group are to go through the same corridor, it must
be done in more than one pass. FLTPASS is a second entry point
in PLTROUI'E, and is used for the second and suibsequent passes.
NTAILS, a variable usually used to tell FLTROUTE the number of
vehicles in the next flight, is set to 1,000 by FLTROUr'E to
indicate to GENRAID that another pass is necessary. If NTAILS
is negative at the end of FLTROUTE, indicating an error in
count of vehicles, it is sot to -100OINTAILS if another pass
is called for.

716

~J



l ~ r I - - - - A r r ,tyy ( C o m m on~ 1 3 / )
For Cuircroit C orridoi

Oft Ctirr~et C:roup

L ra n 4 l C I r ~ j D . l o r
Currcnt orridor

To U n I " dexed
Commo a Nlock

[Call Cl.NIROIL),

And R~iURIJTRPeneTrton C or riorCalFLI{II

TTargets

TToSequtiaelizseYes

Wit Ditoc Number Of
No Noiln nNs

Call COINIRPAIIMlU
CalorPM ITo ComputeCuv-3
Tiea Coodists rrr ksye

d Pill Aont d PiofIOR I ON

For. Alle 1uyt O LIIL

TomSeutne DitanceCulUpn~
Callo By1l O f lVc rrBuse n For .1r8i0

ToSeaunc r euel Po in 11 &-signi Patio

52e ata F ig. 134 Surutn N RAt i',n

717o



SUBROUTINE GETGROUP

PURPOSE: To read the BASFILE, one weapon group at a time,
and call PRERAID or MISASGN to process the
bomber or missile group.

ENTRY POINTS: GETGROUP

FORMAL PARA/TERS: None

COMMON BLOCKS: 1, ARAYSIZE, ASWTABLE, CONTROL, CORRCHAR, DEBUG,
DPENREF, FILABEL, FILES, GRPDATA, GRiTYPE, IDUMO,
IFTNO, IFTPRNT, INPLTrFL, ISKIPTO, ITP, MASTER,
MYIDENT, MYLABEL, NOPRINT, PAYLOAD, PCALL, PLANTYPE,
PRINTOPT, STRKSUM, TWORD, VAL

SUBROUTINES CALLED: ABORT, DEACTIV, INITAPE, MISASGN, OUTSRT, PRERAID,
PRINTIT, PRNTF, RDARRAY, RDWORD, SETREAD, SETWRITE,
TVi RMAPE

CALLED BY: POSTALOC

Method

GETGROUP calls the filehandler initializing routine INITAPE; calls
SETREAD or SETWRITE for each input or output file to be used by the
program; and reads the BASFILE to fill common blocks /MASTER/, /FILES/,
/CORRCGFAR/, /ASMTABLE/, /PAYLOAD/, /DPENREF/, and /PLANTYPE/.

Then from the BASFILE, the first weapon group data are read into common
/GRPDATA/, and the weapon type for the first group are read into common
/GRPTYPE/.

ICLASS, a variable in /GRPTYPE/, is then tested to see whether the group
is missile or bomber. If it is a missile group, MISASGN is called; if
it is a bomber, PRERAID is called.

When all groups have been processed, IGROUP is set to 201 as a flag, and
OUTSRT is called to write a record on the output file STRKFILE. The
filehandler terminator TERNFTAPE is then called for all files, and the
subroutine returns.

Subroutine GETGROUP is illustrated in figure 135.

718



ST~ART

2

Read BASFILE
Into Specified
Commaon Block

Ce pAll Othe ReSAn
D t a P r i e s s F rP 

e s

Missile GroupI.N

Pi Wapo 13. Guroutin CITGROiJPe l

0719

_ W LO Rea GRT And



SUBROUTINE GETSORT

PURPOSE: To bring into the potential target arrays the
targets currently assigned to the sortie in
the JTGT array.

ENTRY POINTS: GETSORT

FORMAL PARAMETERS: None

COMMON BLOCKS: ASMTABLE, CHGPLAN, CORRIDOR, CURRAID, CURSORTY,
DEBUG, DPENREF, FIXRANGE, FLTPASS, GRPDATA,
GRPTYPE, INDEX, INITOPT, PAYLOAD, PCALL, PRINTOPT,
RAIDSI1R, SORTYTGT, VAL, 3

SUBROUTINES CALLED: CIIGPLAN, DIFF, INPOTGT, OUTPOTGT, PRINTIT, PRNTF

CALLED BY: OPTRAID

Method

GETSORT searches for any unassigned targets in the portion of the target
list with which it is currently working. If it finds any, they are
placed in the LOSTTGT array. It then locates the least valuable targets
in the omit list, and drops the lower half of the list by calling sub-
routine OUTPOTGT for each target to be dropped. The targets listed in
the JTGT array, having been placed there by TGTASGN or after the first
optimization pass, are brought into the SORTYTGT arrays by calling
INPOTGT for each one. If there is extra space in the SORTYTGT arrays,
some of the unassigned targets may be brought in from the LOSTTGT array
at this time.

Subroutine GElTSORT is illustrated in figure 136; sheets 3 and 4 of the
figure are notes to facilitate interpretation of the flowchart.

720



0R FU 1
('Iwo RehterI 10 .9 )

-111I Set c Nor al C ri dor

1009 Orgi Coordinates i~d9

RNnirRglGRlt Area~ SC NriaFlt' !

RORO y ~ VqI RUl1.L

1ct NI)Il[r'~l~iSot Norc icr
rln~t ni [in AnyI onrg 0

CodIi na t'
100 Bas I:n or I-n n'I

Array IFnnin SS~ic i -tlrriy l-

5 e6 urc h rout ilv~ ll C.I Nt311.flR!0
UnssgndTarget In of .1C) t ssýI[

7eeat21 p T ullvO



VI
100I

Do 135 For Set Value 01' Recovery tNAI-nlirOf
Num~ber Of' Targets ['oflQ To Desi red F~ractionAv la e peiIlAssigned To Of Total Value Sortle Arruys OrSortnOr Sortie Numnber Of ILost Targote

u E. i~g' 3. (ot

(Shet of'I'

ýa T~722



Notes

1. The problem of having insufficient range to reach a single
target arises occasionally, because the allocator uses the
centroid of the bases when it is allocating targets to a group.
To avoid this problem temporarily, the range which is set
for each sortie, RNGE, is adjusted to compensate for the dif-
ference between DSTB and DISTC, where DSTB is the distance of
that sortie's base from the corridor entry point, and DISTC is
the distance of the centroid from the entry point. (The
problem does not exist when area refueling is done.)

2. In addition to DSTB, the following unindexod variables are
extracted from the indexed arrays to facilitate frequent
reference during single-sortie proces.ing:

NWHDS: Number of warheads on this vehicle

NASMS: Number of warheads which are ASMs
RNGASM: Range of this ASM type.

Also, the following variables in the sortie description
(common /CURSORTY/) are initialized:

NUMHIT =0 Number of targets being hit with bombs or

ASMs

NUMBOMB =0 Number of targets being hit with bombs

NUMASM =0 Number of targets being hit with ASMs

LASTTGT =1 Position in hit list of last target

LASTPAY =2 Position in hit list of last "paying"
route point

NHIT =3 Number of route points in hit list

IHIT(1)=IFLY(I)=IORIG=l

IHIT(2) =IFLY (2) =IRECOVER=2

IfI IT(3)-=IFLY(3) =IDITCH=3

LKHITMT(IORIG)=l

LKHIITMT(IRECOVER) =2

LKHITMT(IDITCH) =3

Fig. 136. (cont.)
(Sheet 3 of 4)

40-546 0,- 72 ID, 723



3. ITNEW is sot to che RAII)S'RK index of the firs t target in 1J(;T
array for the current sortie. ITOIH,) contains tile index of the
first target from thu last sortie. All of the targets in the
RAIDSTRK array between and including the two are checked to
see if any have not been assigned; i.e., MiYAS(CN (]T>O. If so,
these targets are placed in the LOSTTCJ array, NLOS'TFGT is
incremented, and NIYAS(;N (IT) is set to 1. Notice that if
MYASGN (I'f)= -1, the target has not hecn assigned because it Is
in the group to be processed on the next FIT'rlASS call; thus it
is not considered as a lost target.

4. To avoid keeping targets in the omit list that are completely
out of range, tile t:urgets are scanned and the ha]f that had the
lowest evaluations, with respect to the last sortie, arc dropped.
This provides additional space in the potrintia l target
(SORTYTGT) arrays.

S. If there is not enough space in the potential target arrays to
bring in all the targets assigned to the sortie in the .JTIT
array, some more targets must be dropped from the omit list,
or the number of targets assigned must he arbitrarily cut to
the space available.

6. Each target currently stored in tile .il;T array of comjmon;
/CURRAID/ for the current sortie is brought into the
SORTYTUT arrays by calling INPOCTCT.

7. If the target in the JTGT array is negative, it is set to be bit
with an ASM. (This will occur only on the second pass.)

8. If there are spaces left in the SORTYT(;T arrays, and if there
are lost targets, these targets are brought in by calling
INPOTGT until either space or targets run out.

9.. If recovery is ouiittcd for a sortie on the first processing
pass, NASGN is set negative so that GcTSORT can omit it on the
second pass, since the recovery point is not shown in the JTGT
array. Also, if IRECIODE is -1, the bombers are unmanned
"air-breathing missiles" which are not intended to recover.
In this case, GEISORT removes recovery from the hit list on
both passes.

P'ig. 136. (cont.1
(Sheet I oF ,4)

72
¾' 72,

I .~§'



SUBROUTINE 1NI'UI'OIT

IPURPOSIE: To initiali ze or clear the variablos in conmions
/SORTYTGT/, CUJRSORTY/, and /INITOPT/, in

epiparation for the optimization of all sorties
in the raid.

IENTRY POINTS: IN I TOrPT

FORMAL. PARAMIi'IiRS : None

COMMON BLOCKS ARAYSIZE-, CORRIDJ)OR, C(IRSORTY, I11BUG{, I)INRENPF,
FIX, XANCi , GRII)IATA, GRPTY1Hi , IN!EX, INITOPT, '
I)CAIL, PRI NTOP'I' , SORTYTC;T, 3

SUBROUTINES CALLED: DISTF, ORDER, PRINTIT

CALIAI-D BY: OPTRAID

Method

A variable, MAXPT, is set first to indicate the maximnum number of targets
to be allowed in the potential target arrays in common /SORTYTGT/ (else-
where referred to as "SORTYTNT arrays"). This number is the sum of:

three, representing the number of basic route points (origin, recovery,
and ditch or land; NSPARE, the number of extra targets to he considered
as alternatives (NSPARE=4); and NIVIIDS, the maximum number of warheads
carried on any one vehicle from any of the bases in the group. Thus if
the number of warheads is 4, MAXPT is 11. (MAXPT may not exceed the
dimensions of the arrays, MAXPA, currently set at 25.)

The first MAXPT cells of the SORTYTGT arrays are then either cleared or
preset. The following variables in commons /SORTYTGT/ and /CURSORTY/
are initialized to something other than 0:

NIITT 3 Representing the three basic route
points: origin, recovery, and ditch
or land

725



NAVAIL = MAXPT -3 Representing the remaining available
spaces in the SORTYTGT arrays for
potential targets

DVALA(J), DVALB(J) = 1E200 These variables are often used in
inequality tests and may assume
legitimate negative values

D(Jl, J2) = -10 Where J1 and 72 are targets, since
some distances are actually computed
as 0

D(IORIG, IRECOVER) 20000 So that if any sortie ever considers
flying directly from origin to
recovery without hitting any targets,
it will be discarded as a bad idea

RHOJ(IORIG) = 0 To assure proper positioning when the
RIIOJ(IRECOVER) = IE200 sortie hit list is ordered by RHO
RHOJ(IDITCH) = 2E200 .

IAVAIL(1 ..... ,NAVAIL)=MAXPT ..... ,4 So that IAVAIL(NAVAIL) always contains
the index of the next available
SORTYTGT index.

Subroutine INITOPT is illustrated in figure 137.

726



GpI

CcrAnd Initialize
TrSet Array AndValue Arrays Por

Sortie o)ptlimiation

Calculate Atti-
tion Per Unit
D~istance rorr

P Precorridor Legs

43
call ORDWR To
S equence Legs
By Decreasing

V. Attrition

Norio Length 4 efeln

4727



SUBROUTI NE INPOTGT

PURPOSE: To bring a target into the next available cell of
the potential target arrays and record in omit
list.

ENTRY POINTS: INNPOTGT

FORIAl, PARAMETERS: None

COMMON BLOCKS: C'ORRIDOR, 2, CURRAID, CURSORTY, )1:.13U(,, VI XALL
INDEX, PCALL, 3, PRINTOPT, SOqTY'I'GT

SUBROUTINES CALLED: I)[STIF, PRINTIT

CALLED BY: GELSORT, REFABORT

Method

INPOTGT receives from GETSORT the RAIDSTRK index IT in common /INDEX/
for the target to be brought into the SORTYTGT list. It enters the
index and transfers the target values, local attrition, and RHO
coordinate from the complete list of targets (common /3/) to the smaller, A
more selective list for the current sortie (common /SORTYTGT/).

Subroutine INPOTGT is idlustrated in figure 138, which includes notes
to facilitate interpretation of the flowchart.

72

728



I

Pick Up Next
Available Tndex

For Potential
Target 1/

Set Value,
Attrition, And

RHO For New
Potential Target

Calculate
Distances

Of New Target
From Origin
And Recovery

Record New
Target Tn

"Omit" List.2 /

-ETUIRN

Fig. 138. Subroutine INPOTGT
(Sheet 1 of 2)

729



Notes:

1. Since the indices of the available cells in the SORTYTGT arrays
are stored in reverse order in array IAVAIL, and NAVAIL
contains the number of cells currently available, IAVAIL
(NAVAIL) will at any time contain the index of the next
available celi, in this case JX.

Before bringing in a new target, the assignment status
(MYASGN) of the target previously occupying the space must be
reset to 1. DUMPSRT has already recorded the targets assigned
to the previous sortie in the JTGT array and has entered the
SORTYTGT indices of those targets in the AVAIL list, but has
not changed their status in Lhe MYASGN list. A check must be
made, however, to be sure that the target was a "legitimate"
SORTYTGT entry (i.e., MYASGN=2), and not one that was brought
in temporarily by REFABORT, which may not have even been
reached in the normal target assignment (i.e., MYASGN=-I).

To save time by avoiding frequent referencing of variables in
common, a local variable is often set to the common variable
at the beginning of a subroutine. Thus lTX is set equal to IT.

The RAIDSTRK index ITX is stored in MYPOTGT(JX), and MYASGN(ITX)
is set to 2. The distance array for the new target is cleared
to -10.0.

2. LK1ITMT(JX) gives the position of MYPOTGT(JX) in the hit or
omit list. To indicate that the target is in the omit list
rather than the hit list, the omit list index is made negative.

Fig. 138. (cont.)
(Sheet 2 of 2)

730

I



SUBROUTINE MISASGN

PURPOSE: To generate and write missile events for each
missile weapon group and its assigned targets.

ENTRY POINTS: MISASGN

FORMAL PARAMETERS: None

COMMON BLOCKS: 3, FILES, GRPDATA, GRPTYPE, IFTPRNT, INPUTFL,
ISKIPTO, ITP, MASTER, MISPRNT, PAYLOAD, PCALL,
PLANTYPE

SUBROUTINES CALLED: ABORT, DISTF, PRINTI T, POSIT, RDARRAY, WtARRAY

CALLED BY: GETGROUP

Method

Prior to calling MISASGN, the weapon group data must be stored in commons
/GRPDATA/ and /GRPTYPE/. The target data are read from the ALOCGRP or
TMPALOC file and stored in common /3/. From these data the missile
events are generated in the format shown in the STRKFILE record format and
written on the STRKFILE.

A maximum of 18 missiles can be assigned to a single event which,
in most cases, is sufficient for planting the launches for one squadron.
However, if a squadron contains more than 18 weapons (or re-entry
vehicles in the case of MIRV groups), the number of events required to
output all the weapons is computed. This number times the number of
squadrons in the group gives the total number of events to be generated
for the group. (For missiles carrying MIRV warheads, a maximum of 18
independent re-entry vehicles is allowed for each event.) This
subroutine generates events separately for each squadron (or base) which
belongs to the weapon group. T1his computation, however, is not performed
at the start of the subroutine, but rather during processing. Since
missile groups with a MIRV capability have a variable number of strikes
per booster, the number of missiles in each event can be determined only
dynamically.

The strikes are input into this subroutine in order of decreasing value.
For weapon groups with a MIRV payload, the strikes are ordered by
decreasing value of the total assignment to each booster. In order that
each event to be output to PLNTPLAN will contain a mix of values for its

731



strikes, the strikes are not assigned to events in simple serial order,
Rather, each event is assigncd one of the highest value strikes before
any event receives a second strike. This process continues so that each
event contains a mix of values. Subroutine POSIT is used to determine
which strikes should be assigned to each event. Since there is no room
to store the data for all events simultanenusly, POSIT must predetermiine
which strikes should bo placed in the event which is currently being
processed. The inputs to POSIT are the current pointer to the strike
array and the "Thkip" index. This latter variable informs POSIT of the
number of strikes that it should skip before selecting a strike (or set
of strikes for a MIRV weapon) to le added to the current event. It is
this "skip" inechanism which ditstributes equanl value missions to the
different events; using POSIT, MISA.SGN selects i strike to start an
event, skips a number of high value strikes, selects another fom inclu-
sion in the event, and so on. (Thus, the firist event mayv he composed
of strikes number 1, 11, 21, 31,....in the input list. The second event
has strikes 2, 12, 22,...) The number of strikes to le skipped is
computed as a function of the number of squadrons in the group. POSIT
returns to MISAS(iN the starting index (in the strike array in common /./.
and the number ofa re-entry vehicie, -ill the Sitrike, hince POSIT considers
a negative index number to designate the first strike assigned to booster,
non-MIRV weapon groups have all negative index numbers to show one strike
per booster. Program FOOTPRNT has previously negated the correct index
numbers fir MtRV weapon groups.

As MISASGN receives information on the target (or targets) to bc added to
the current event, it checks to see if there is room il the event for
these targets. If the total number of targets would exceed 18, then the
current event is output on the STRKI:IIi, the output array is cleared, and
a new event is initiated with the targets that would not fit previoushy.
MISASGN continues in this fashion until all strikes have been assigned
to events.

Before assigning the strikes to each vehicle, the subroutine computes the
number of vehicles in the group and the number of vehicle assignments
(i.e., number of negative index numbers) for the group. If the number
of vehicle assignments is less than the number of vehicles, the number of
vehicles for which a plan will be processed is decreased until it matches
the number of assignments. The vehicles are removed as equally as
possible from each squadron (i e. , base) . If the number of vehicle
assignments exceeds the number o1' vehicles, the subroutine determines
if the vehicles are carrying a MIRV payload. If so, then program
FOOTPRNT has erred in generating the footprint assignments. 1%1SAS;GN
prints an error message to this effect and proceeds. The result will be
the omission of some target sets from the final plan. If the group does
not have a MIRV payload, MISASGN removes the least valuable assigned
targets until the number of targets equals the numlber of vehicles. Hlow-
ever, the subroutine will not omit any targets aNssigned by the fixed

732



assignment capability of program ALOC, unless there arc more fixed
assignments for this group than there are vehicles. In that case,
some fixed targets would be omitted.

The flow of operations in MISASGN is shown in figure 139. The flowchart
consists of three parts. Part I illustrates the basic processing
accomplished by MISASGN. Part II :Thows the operations performed to
balance the number of weapon assignments with the available delivery
vehicles. Part III shows the processing performed to construct the
output missile events,

733

• "-"l ••i ....... l i- •-..... .. .i'• i•-• • :••i • '•' • ' •i•- .....i • 1'1• ii f •'[ •i'•• ".:



S rART

10

NO Group Number Yv-% Wrl leIt c>2ov 
Term inn I RKI ILI

Read Numher
Targets, Groups RISTURN

Corridor

Number Of Read
Targets No Strike
>1000? Data

Yes
30

P int Is 11 1 Yes 60
r 

11rOr To Be RETURNMessage ;-upP ?

'0 

so

1ýrln,
Lrr.r

Are Tap 3 No __ý= 7

In Phase? ,Lrr.r
Re

Yes
90

Compute
Site

Increments

120

Clear
Output
Array

135

Neg:ite All Indýx
MIRV No Numbers To Correspond

Payload? To A MIR%1 Payload
With One RV Per Booster

170 139

Equali.-.,- Number Of Initial.-e-
Vehicles And Number First Portion
Of Assignments (For Of Qu,;,1It
Details See Part 11) Array

3

Do 300 For 'onstruct Lvents
190 All Squadrons I)( (For Details See

In Crcup Part 111)

Done

Print 
RI:TIJR.N

Results

Fig. 139. Subroutine MISASON
Part 1: Basic Processing

734

...... I-A



17o
COu~nt Nril~hrO

MS sile Ak1isigitiwts
Actually Requiired

(I.e. Numqber Of'
lNepativ I 1'o,IL'A Nutmbers)

l~n
CCU[ ~t N1iivz, Of'

V hicles In
The ; oup

[aclt N19c NIacNmfrO

k. r Par TI: alacin Weapons oSnc ASIignInsA

Morean Deliicery Valehiclesobc

On~~~~~~ 35IsOfTres oOi



140

to
Call HNII 16 I:i

Number of RVs
III. Next Mi:;silc An,[

Index Of Last Targ
For Hooster

111 Dit

Wil I TK-e ;D] t 11: 1 t III 1ý.I`IrrviiturrvIltI'll: t rray?OtitrIt Arr 'Y'

Yes
202 .100

Print Is La I a rget
I:rro r In Ra ng vcs Sage

Yes14 
or,
Add hita lor

All Strikvs For
111IS Missi ltý

Vo Out P[it Array

As Nee
Reset 

In 

eI'La No Last Nit I; s I I v
In Squadron"

; . *1 A- ry
Ye s

200 ';et '" mh,- r (I f
See Missi les Mid I:irget,
P rit t IM Outpot ArrayAnd I I rgý--- y

28o Yv%
No I.,st jile

I it Siti ad r,,:, C:D
170
Cl a 1-11tot hritc

P r ion of ),It putI281)- r 7t to(.har., A, krraý

Fill. 139. (Cont .
Pa I't T 1 1: 1:volit Process.ing

73o

j

a 
4



SUBROIJTiNI NEXTI'I,I

PURPOSE: To determine the launch base for the next flight
and the number of vehicles in the flight,

iNTRY POINT: NIXTLTF

FORMAL PARAMETIiRS : None

CONMON BLOCKS DEI)IItUG, G(I)A'IDA, KEYS, NE XTFhT, PCAIL,
p RINTOPT, RAf I)SHIR

SUBROUTINES CALLED: I GET, PRINTIT

CALLED BY - I: I.'mOUTIi

CALLING PARAMITERS: JCORR, ISIDE

Method

NEXTFLT selects the number of vehicles NTAILS to be processed in the next

vehicles Crom one base before processing the next basc. If there is to
be one flight from the base, all vehicles remaining on the base are
assigned to that flight. If there are four or fewer bases, two flights
will be sent. In this case if nearly all the original vehicles remain
oon the base, half of them are assigned to tile flight; if only half
remain, all of them are assigned to the flight. Since the order of the
bases is changed from one corridor to the next, NEWXTLT must be prepared
to encounter new bases that are already completely or partly depleted of
aircraft.

NIEX'T'I-L'I" uses the NRVEII (number of remaining vehicles) array to determine
the launch base of the next flight. It receives the variable SPLIT
from FITROUnE, which equals I if the base is to split into two flights,
and equals 0 if the entire base is to fly down the same side of the
corridor. Thus, by letting CRITN = 1.7 - SPLIT, if NRVLt is less than
CRITN * VIRBASE, all vehicles remaining on the base are assigned t6 the
next flight; otherwise, half the vehicles remaining are assigned.

If a penetration corridor is being used, that i s, .JCORR is not equal to
1 or 2, the bases aro processed in turn, goin.g from the beginning of

737



the list to the end. In the case of tactical bombers (JCORR = 1) or
naval bombers (JCORR = 2), the bases are processed in the same way as
the targets, that is from both ends of the list working toward the
middle, depending on which side of the corridor, ISIDE, the flight is
taking.

Subroutine NEXTFLT is illustrated in figure 140.

738

-, Il



STAR~T

JCORR 5:2?

Yes~

10

Setigh (NTNet Bas

AOng Sidf 2f (KB)

Remainingg ReminigRO

Beign P14e.sing routsing IXTL

(1 NB?) (I - ?)



SUBROUJTINIE NOCORR

PURPOSIi: Sets variables in commons /CORRIDOR/ and
/RAIDSIIR/ in order to proce-s tactical bombers
or bombers assigned to naval targets.

ENTRY POINTS: NOCORR

FORMAL r'ARAMETIIRS: None

COMMON BLOCKS CORRIDORI, I:IXFXNGUL, GRPIDATA, 3, POLl TI, RAIIUSJIR

SUBIROUT'INES CALILiD: Ci-N'IROID, D)IS SI, INTERP

CALLIED BY: G(NRAID

Method

Subroutine NOCORR defines an axis to be used in the coordinate system
calculated by subroutine CORUPARM. This axis -is normally the penetration
corridor direction arrow. In the case of tactical or naval bombers
which do not use penetration corridors but fly directly from base to
target, the y-axis of the coordinate system is defined to be the line
running through the centroid of the bases in the weapon group ond the
centroid of the targets assigned to that group. In order to assign
values of RI1O and Pill to the bases as well as the targets, the origin
of the system is defined to be a point projected on the other side of
the base centroid at a distance from the base centroid which is equal
to the distance between the target and base centroid, as shown below.

(I-
13aeSCs Ta rgets

x710



NOCORR sets up this axis very simply by calling subroutine CIENTROJI)
to compute the two centroids, and by calling subroutine ]N'rilP to find
the origin point. The coordinates of these points are filled into the
common block /ClOtR• IDOR/ which normally contains thle corresponding peiit'tra-
tion corridor coordinates. KORPIVR is set to 1, which causes lines ofS • constant 0 to be straight lines radiating from the origin and lines

of constant P to be concentric circles in the relevant range.

NOCORR also computes the distance of each base from the target centroi(1,and the distance between the two centroids.

Subroutine NOCORIR is illustrated in figure 141.

7411



ICall CE~NTPIOIDt
To Calculate
Centrold Of

Bases

Call CENTHOID
To Calculate
Centroid Of

]'arget s

Call INTEsT[To Find Origin I
Of Coordinate I

System

Set Axis
Coordinates
In~ Common

Calculate

All BasesA

Calculate

DISTC, Distance

From Bases To
Targets

CRETURN

Fig. 141. Subroutine NOCORR

742



SUBROUTINE OPTRAID

PURPOSE: To control the setting up, optimizing, storing,
and writing on tape of the sortie plans, for
each sortie in the raid.

ENTRY POINTS: OPTRAID

FORMAL PARAiMETERS: None

COMMON BLOCKS: DEBUG, FLTFASS, INDEX, PCALL, PRINTOPT, RAIDSHR

SUBROUTINES CALLED: DUMPSRT, GETSORT, INITOPT, OUTSRT, PRINTIT,
PRNTF, REPABORT, SETFLAG, SORTOPT, TIMEME

CALLED BY: GENRAID

Method

OPTRAID controls the cycling of the optimization from one sortie to the
next within a raid. It is called by GENRAID after FLTROUTE and TGTASGN
have ;ompleted an initial assignment of strikes to sorties for all
sorties in the raid (or subraid). For each sortie, OPTRAID makes
calls on the appropriate data handling routines to set up the sortie
for optimization, and i.t then calls SORTOPT to accomplish the optimiza-
tion. Nl

Before beginning to process the sorties in the raid, OPTRAID makes a
call on INITOPT. The purpose of this call is to clear out the SORTYTGT

arrays and initialize them for the new raid.

OPTRAID makes two optimization passes over the sorties, the second in
reverse order. One reason for the double pass over the sorties is to
provide a chance for valuable targets omitted by a sortie to be picked
up by sorties on either side. On each pass, before calling SORTOPT,
OPTRAID calls GETSORT. GETSORT reads the list of targets for the
sortie as prepared by TGTASGN and inserts the appropriate targets into
the SORTYTGT arrays. GETSORT also sets up the current definition of
the sortie in the CURSORTY array.

SORTOPT is then called to optimize the sortie, and DUMPSRT is called to
record the resulting sortie. Targets that remain in the sortie are
cleared out of the SORTYTGT array and are recorded for the skeletal
representation of the sortie in the CURRAID array. (The indices for

743



ASM targets are recorded here with a minus sign.) Similarly, if the
resulting optimized sortie does not include recovery, this is also noted
in tile skeletal representation (by making the number assigned NASGN
negative in CURRAID). Targets that are omitted from the sortie by
SORTOPT are not cleared out by DIJMPSRT, so that they remain in the
IOMIT list for future consideration.

On the second pass, subroutine OUTSR'T is called after SORTOPT. ou'rSRT
records the final forn. of the sortie, including specific distances at
low altitude, on the output STI'KFIL" to be used by PI•NTPIAN.

A call is then made on REFABORT. If the bomber does not refuel, IREFABORT
simply returns. However, if the bomber does refuel, REFARORT prepares
an alternative sortie plan to be used in case of refueling abort.
Basically, REFABORT sets up a revised sortie to be optimized, calls

SORTOPT and OUTSRT, and then restores all arrays to their previous
content. To set up the alternative sortie, REFABORT reduces the range
used by SORTOPT for the sortie. It also adds into the IOMIT list certain
alternative targets with relatively low values of P.1O and values of Pill
close to those of targets in the original plan. Since these alternative
targets are probably already scheduled to be hit by the adjacent sorties,
their value is reduced by 50% so that they will be loss attractive than
the targets now assigned to the sortie. Conbequently, these alternative
targets are usually used by S3ORTOPT in developing the alternate plan
only if it is impossible to reach the ones originally assigned. When
the alternate plan is complete, OUTSRT is called to record it on the
output file for PLNTPLAN. REFABORT then sets all variables back as it
found them and exit.,

Subroutine OPTRAID is illustrated in figure 142.

7,14



CH D4 !. START

call I.NI.IOPT
To Initialize Sortie

Optimi zati on I
Phase

R1E 'IURN

0Do 1 For )One
All Sort ieu
In This P'ass

Cal EFLGDo 20 For b~one

Call2 InTF. A llv Sorti1To Set Print All Seties,Switches For ,n Reverse Order
"Ihis Sortie )o

H Call SETFLAG
Caill GESORT To Set PInt

To Set Up Switches
Sortie 

-

~ Call GETSORT
Call SORTOPT To Se 14 Sortie [

Sortie

To Storej Sortie Plan flI Call OUFSRT
To Write inal

Call .FABORT
To Provide Alter-
nate Plan In Case

Of Kefuel Abort

Call DUM1PSRT
"0 To Store Sortie

Fig. 142. Subrout ine OIIRA II)

7415



SUBROUTINE OUTPOTGT

PURPOSE: To remove a potential target from the omit list.

ENTRY POINTS: OUTPOTGT

FORMAL PARAMETERS: None

COMMON BLOCKS: CHGPLAN, CURRAID, CURSORTY, DEBUG, PRINTOPT,
SORTYTGT

SUBROUTINES CALLED: None

CALLEP BY: GETSORT

Method

OUTPOTGT receives from GETSORT the SORTYTGT index JDO in common /CHGPLAN/
for the target to be removed from the omit list. It moves the index from
the omit list to the AVAIL list, resets the values of LKIIITMT for the
targets affected by the move, and flags the target as available.

Subroutine OUTPOTGT is illustrated in figure 143.

7

746



Replace Target Index

Flag To Zero For This target JX in the omit list
Target (=-LKIIITNJT(JX)), where JX has been

Set equal toJDO.[ ~RETU RN

Fig. 143. Subroutine OIJTPOTG'r

747



SUB•ROUT''I NE 01I'SR'

PURPOSE: To wrice the final bombler sortie plan onto the

output STRK[IIIJt for input to PIN'PLAN.

ENTRY POINTS: OUTS .

U:oRAL PARANIFT' RS: None

COMNMON BLOCKS- 3, CtIRIIDOR, CIURRAII), CORSORITY, I)I1 I3(, FI LES,
IT7I'PPASS, (IRPDATA, ORIlTYPE, I DIUMP, I "INO, ,FTPRNT,

INIUI X, INITOPT, INPI TFI,, TTP, OtJrTivr, PCAIL,
I1,ANT''YP E, PRINTOP'T, PRNTF, RAT)SIIR > SORT YTiT'

SUBIROUTII N!:S CA LLE : ABIOPI., F I NI'I,'I', PRi NTIT, WRARRAY

CAL..LEID BY: MI TROIJP , OP'RAII), I)PFABORT

M~ethod"

All of the data to be included in tVe output record are assembled inl
common /OUTSR'I'/ to be written out as a block onto thi STRKFILE. . A

call is made on FINFIT, which is a special entry point in FEILAN, to
produce a final sortie plan. 'lThis final plan differs from previous

plans in that, if there are defended targets past the point at which
low altitude ran out, FINFLT considers flying loW up to each of these
defended targets (and therefore flying high earlier in the route),
checking at each leg to see if the value of the sortie is increased.
When the fi.nal plan is obtained, it is included ,n common /OUTSRT/ as
a series of happenings with associated latitudes, longitudes, and object
numbers. WRARRAY is then called tc write the record on STRKFILE.

Subroutine OUTSRT is illustrated in fi.igure 144; sheet 2 oi the figure
consists of notes to facilitate interpretation of thv flowchart.

71S



STAwr

900-40F

Variables In ."iL N.
Common /OUTSRT/

Cadjl Low-Altlitude -ttds r~ O''lt

I.A lcto ogtds I 3ý O T K i

Fig 1424.



Notes

1. IOIUTSRT rurs from I to NVEH in the output ,records for the
sorties from a given weapon group through a given corridor.
This index must be calcul.ted from ISRT, I1F:PSS, and NVEI1PASS,
since OUTSbT is called on the second optimizing pass For each
"FLTROUTE pass," and ISHIT is running in descending order.

MYGROUP is set equal to IGhOUP. IGROUP is used as a flag
(set equal to 201) when all groups have been processed and
thus causes a 5entinel record with MYGROUP = 201 to be written
out.

JDPEN is the depenctration corridor associated with the last
t-argtin the fly list. If the last target is hit with an
ASM shAt from the corridor origin, JDPEN is the depenetration
corridor associated with that target (i.e., the last target in
the hit. list).

DIELAY = 0 if the sortie is on alert, and is equal to the
dTiffrence between alert delay and nonalert delay, if the
sortie is non alert.

2. The flight from base to corridor origin is called a dogleg. The
latitude and longitude are for the corridor Lrigin, and the
object is the corridor index number. An ASM strike is called
AIM ASN. A bomb strike is called DROPBOMB. In either case,
latitdde, longitude, and object index number are those of the
target.

Depenetration is called'DEPEN, and the latitude, longitude, and
depenetration corridor indices are given.

If the bomber is an "air-breathing missile," instead of DEPEN,
we write DIVEMISL. If recovery is omitted, we write LAND. In
either case, the latitude, longitude, and object number are
irrelevant and set to 0.

DLAT and DLONG are used to represent deviations of the desired
ground zero from the target latitude and longitude given for a
complex target. In all other cases, these are zero.

If for any reason a bomber does not have range to reach even
one target, RNGSURP.will be negative in the final plan. In
this case, DSTLOWi Is set equal to RNGSURP as an error flag to
the user and to program PLNTPLAN.

Fig. 144. (cont.)
(Sheet 2 of 2)

750



SUBROUTINE POSIT

PURPOSE: To select the strikes to be added to the current
event in MISASGN.

ENTRY POINTS: POSIT

FORMAL PARAMETERS: ITGT, ISKIP, JTGT, NRVS

COMMON BLOCKS: 3

SUBROUTINES CALLED: None

CALLED BY: MISASGN

Method

MISASGN calls this subroutine to select the set of strikes to add to the
current event. In order that each event will have a spread of values in
its strikes, this subroutine must not only find the targets that belong
to a single missile (for MIRV weapons) but also return these data in an
order that distributes the value evenly. The strikes are placed in the
data array in common /3/ in order of decreasing value.

The input from MISASGN is:

ITGT - An index to the INDEXNO array which specifies the
target at which the search is to begin

ISKIP - An integer which specifies the number of missile
plans the subroutine is to skip before returning to
MISASGN.

The output from POSIT IS:

JTGT - An index to the INDEXNO array which specifies the
first targ6t in the missile assignment

NRVS - The total number of targets assigned to the missile.

This subroutine recognizes the first target assigned to a missile by a
negative index number in the INDEXNO array. For weapon systems without
MIRV capability, all index numbers are negative and NRVS is always set
equal to one.

Subroutine POSIT is illustrated in figure 145.

751

•T~i-i i -- •'1• •' ' ' ' ' '' ' '



Set Numbecr Of1
Negative Indices
Found (MlKll)

To 0

Po 100 From First -)eReset First
100 Tairge~t Requested

b, 1 0 Target To Star

A ~Pg 14'G'. TouEndu tiBe ginning

Of Lst (T) O7Lis



SUBROUTINE PRERAI 0t
PURPOSE: To control the processing for an entire bomber

group and determnine the distribution of sorties
by penetration corridor.

ENTRY POINTS: PRERAID

FORMAL PARAME'rERS: None

COMNON BLOCKS: ARAYSIZE, CORRCIHAR, DEBUG, DPENREF, FILES,
GRPDA'A, GRPTYPE, IFTPRNT, INPUTFL, ITP, KEYS,
MASTER, PAYLOAD, PCALL, PRINTOPT, RAMISIIR, STRKSUM

SUBIROUTINES CALLED: C;ENRAID, IGET, KEYMAKE, PRINTIT, PRNTF, RDARRAY

CALLED BY: GETGROUP

Method

PRERAID controls the entire sortie generation processing for each bomber
group. It reads the header array STRKSUM from the ALOCGRP or TEMPAIOC
file to obtain summary information on how the strikes assigned to the
group are divided among the various corridors. Then for each corridor,
it designates the weapon resources to be used and calls GENRAID to divide
up the job in that corridor.

After reading the input file, PRERAID calculates the following variables
in common /RAIDSIIR/ to be used in later processing:

VPRBASE - The average number of vehicles per base

NRVI31(IB) - The number of vehicles in group on IBth base which
are still unassigned

NASMPV(IB) - The number of ASNs per vehicle on the 11th base

NWPV(IB) - The number of warheads per vehicle on the l1th base

NB - The number of bases in the group

NWPC - The total number of warheads to enter by the corridor.

It also accumulates the number of warheads in this group (NWPG).

7S3

------------------- *i. . . .



The preferred number of warheads to assign to the next corridor (neglecting
the problem of integral number of vehicles) is calculated using the total
i ,mber of strikes remaining and the total number of warheads remaining.

GENRAID is then called to develop a raid in the corridor using vehicles
as required to carry at least the warheads specified.

It should be noted that the number of targets assigned to a given weapon
group by the allocator always slightly exceeds the number of weapons in
the group, to allow for some flexibility in setting up the sorties. The
distribution of weapons through the various penetration corridors should
be in the same proportions as the whole set of targets assigned. It is
on this basis that the number of weapons for each corridor is calculated.

Subroutine PRERAID is illustrated in figure 146.

754



STAR~T

SeaS

SIRKSUM ----
Array

Docrmen DoeNumber Of Wiid oMs~
Waread Per Group=NIN ERORI

Wril
N UMB6 R1 755JJA



SUBROUTINE PRINTIT

PURPOSE: To write formatted prints of the contents ofvarious co~nzon blocks.

ENTRY POINTS: PRINTIT

FORMAL PARAMETERS: ICOMMON

COMMON BLOCKS: 2, 3, ARAYSIZE, CHGPLAN, CORRCHAR, CORRIDOR,
CURRAID, CURSORTY, DEBUG, DPENREF, EVAL, FLAG,
FLTPASS, GRPDATA, GRPTYPE, INDEX, INITOPT,
MASTER, MISPRNT, NEXTFLT, OUTSRT, PAYLOAD,
PCALL, PRINTOPT, RAIDSHR, SORTYTGT, STRKSUM,
TGTASGN

SUBROUTINES CALLED: TIMEME

CALLED BY: CHGPLAN, CORRPARM, DUMPSRT, EVALB, EVALOA,
EVALOB, FLTPLAN, FLTROUTE, GENRAID, GETGROUP,
GETSORT, INITOPT, INPOTGT, MISASGN, NEXTFLT,
OPTRAID, OUTSRT, PRERAID, REFABORT, SORTOPT,
TGTASGN

Method

PRINTIT is called with one of the variables in common /PRINTOPT/, which
are mnemonically indicative of the common block being requested. These
variables have been set to positive integers so that they may be used in
a computed GO TO to the proper portion of the, program.

PRINTIT first checks the ICALLth cell of IFLAG to see if the print is
active. (See description of subroutine SETFLAG.) If not, the program
returns. If it is active, a one-line print is then written giving the
value of ICALL and the calling subroutine. The computed GO ro then
sends the program to the desired print.

Subroutine PRINTIT is illustrated in figure 147.

756

. ... ....



FiP17 uroutin ARNI

7ctv7



FUNCTION PRNTF

PURPOSE: To write formatted prints of local or indexed
variables, called often within a do loop in a
subroutine where the index is one of the calling
parameters.

ENTRY POINTS: PRNTF

FORMAL PARAMETERS: IP, JP, IDENT

COMMON BLOCKS: 3, ARAYSIZE, CORRIDOR, CURRAID, CURSORTY, DATA,
DEBUG, EVAL, FLAG, FLTPASS, GRPDATA, GRPTYPE,
INDEX, INITOPT, PCALL, PRNTF, RAIDSHR, RUNCHECK,
SKIP, SORTYTGT

SUBROUTINES CALLED: TIMEME

CALLED BY: EVALB, EVALOA, EVALOB, FLTPLAN, FLTROUTE, GENRAID,
GETGROUP, GETSORT, OPTRAID, POSTALOC, PRERAID,
TGTASGN

Method

This second print routine was written in order to print indexed variables 'I
being computed within a do loop, controlling on one or two separate
indices IP and JP and identifying the stage of processing by a Hollerith
identifier in IDENT. It also will print certain temporary values which
were originally local variables but have now been placed in common
/PRNTF/. PRNTF first tests the ICALLth cell of IFLAG to see if the print
is active. If not, it returns. Since the print may be a one-line print
called within a do loop, a test is made on IDENT so that the header will
be printed only on the first call in a loop. Before the header for any
print, one line is printed giving the value of ICALL and the calling
subroutine.

The following values of IP will produce different types of prints: any
positive integer, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12. For
the first type, where IP is positive, IF is the do loop index and JP is
the SORTYTGT index of the target for which the variables are being printed.
For each of the other types, where IP is negative, the sign is reversed
and IP is used in a computed GO TO the part of the program writing the
desired type of print. JP may or may not be a significant index for
these prints. (See the User's Manual for examples of all prints.)

Function PRNTF is illustrated in figure 148.

758



Fig.148 FActivne? NT

7es



SUBROUTINE REFABORT

PURPOSE.: To prepare an alternate bomber plan requiring
less range, to be used in the event of a refuel
abort.

ENTRY POINTS: REFABORT

FORMAL PARAMETERS: None

COMMON BLOCKS: 2, 3, CURRAID, CURSORTY, GRPDATA, GRPTYPE,
DEBUG, IDUMP, INITOPT, INDEX, PCALL, PRINTOPT,
SORTITGT, VAL

SUBROUTINES CALLED: INPOTGT, OUTSRT, PRINTIT, SORTOPT

CALLED BY: OPTRAID

Method

REFABORT stores the regular plan defined in common /CURSORTY/ in a
temporary location for later retrieval. It then searches for closer
targets, which may be already assigned to other sorties, and sets up an
alternate plan which u'Lilizes all weapons within the limitation of
unrefueled range. When the new set of potential targets has been ob-
tained, SORTOPT is called to optimize the sortie plan,. and OUTSRT is
called to write the output record for the alternate plan on the
STRKFILE.

Subroutine REFABORT is illustrated in figure 149; sheet 3 of the figure
consists of notes to facilitate interpretation of the flowchart.

760

" : - : , -• : , . . .. -: • • : : :• • • ' • • > .......• • :• • • • • •• i w • " .. .• " : • '" : ' • • " • :"



IsI
Pr esnt Sortie Pa

Sto LynNg ToLVI

u ig 149.en Subrttie Plan3O

OSef 1RHO3

7610



2S2C

ToAd Tairge t (Common No~SRT/

To Oritg Int Morei lCotet

Ret YesRltv

VOlf T 1'argets Alread Noe an

OSTerigina Value Rfee au

270 YsSrteTR

Or igina 4lue S c/ t
LSee To of 3)

7620



Notes:

/1. IREFUEL may assume the following values (when input to
POSTALOC) :

-5 For program-assigned area refueling (two

refuels)

-4 For program-assigned area refueling (one
refuel)

-3 For air-breathing missiles

-1 or -2 For "buddy refueling"

0 For no refueling

1,. ,NREFUEL For ared refueling, where the value is the
index of the refueling area.

2. The new set of potential targets should be near the original
sec but closer to the corridor origin. Therefore, the targets
with the closest values of PHI are examined, and those whose
values of RHO are less than or equal to the middle target on
the original list are selected.

3.. Markers ITHI and ITLO are kept to designate the range of targets
that has been searched. If I'TII exceeds NT (the total number of
targets), or if lTLO is less than one, the corresponding flag
ITOOHI or ITOOLO is set. As long as these limits are not
exceeded, the search alternates from targets preceding to
targets succeeding the "middle" target, in the PHI-sorted
RAIDSTRK array.

4. The number of new targets brought in should not exceed NHIT/'
(where NIIIT is the number of targets, plus origin,.recovery, and
ditch) for the original sortie plan.

5. RVAL is reduced for the neo targets since they presumably are
to be hit by some other sortie, Also, since INPoTGT wdll tamper
with MYASGN, its original value for the new target is stored
before INPOTGT is called. Afterwards, both RVAL and MYASGN
are reset to their original values.

Fig. 149. (cont,)
(Sheet 3 of 3)

763

...............--.-...---.-- --.



SUBROUTINE SETFLAG

PURPOSE: To rcad print request control cards from standard

input data, and set print switches as requested.

ENTRY POINTS: SETFLAG

FORMAL PARAMETERS: None

COMMON BLOCKS: DATA, FLAG, GRPDATA, INDEX, PCALL

SUBROUTINES CALLED: None

CALLED BY: POSTALOC, GENRAID, OPTRAID, GETGROUP

Method

The first time it is called, SETFLAG reads all the data cards into
common /DATA/. A card with 99999 in the first field, or the 60th card.
will terminate the read. The data cards consist of six format fields
(110) as follows:

Field Contents
1 Value of ICALL at desired print request (print

request number)

2 First sortie for which print is desired

3 Last sortie for which print is desired
4 OPTRAID pass (1 or 2) for which print is desired

S Penetration corridor in which print is desired

6 Weapon group in which print is desired
A zero in any field implies no restriction at that level; i.e., a card
with 36, 0, 0, 1, 3, 0 will turn the print at ICALL = 36 on for all
sorties on the first pass of the third corridor in all groups.

SETFLAG is called by GENRAID whenever a new corridor is processed, and is
called by OPTRAID whenever a new sortie is processed. Thus on each call,
it tests the current sortie, pass, corridor, and group against each print
request in common /DATA/ and, if the conditions are rig!it, it activates
the print by setting to one the ICALLth cell of the IFLAG array in

• ;/ common /FLAG/.

Subroutine SETFLAG is illustrated in figure 150.

764



First ~ ~ * Yes P~tD oeIe C;~me

10 m 1 Cle gh? HeadrA6

N~io DonoI

TheNumer f -L~RTU Nume
Print* Pequsts

No Prin RPquet

Imag

Yero

Det 40A For

thPrintReus ,

NoPitRequestNuerT1

And . 15.rubouinpFA

Yes5



SUBROUTINE SORTOPT

PURPOSE: To control the optimization of each sortie.

ENTRY POINTS: SORTOPT

FORMAL PARAMETERS: None

COMMON BLOCKS: CIIGPLAN, CONTROL, CURSORTY, DEBUG, EVAL, FIXALL,
GRPTYPE, INDEX, PCALL, PRINTOPT, SORTYTGT, VAL

SUBROUTINES CALLED: ABORT, CHIGPLAN, EVALB, EVALOA, EVALOB, FLTPLAN,

PRINTIT

CALLED BY: OPTRAID, REFABORT

Method

SORTOPT controls the actual optimization of each individual sortie.
When SORTOPT is called, all the relevant targets for the sortie to be
optimized are in the SORTYTGT arrays, and an initial definition of the
sortie which defines the sequence of targets to be attacked is contained
in common /CURSORTY/. SORTOPT modifies this sortie definition in
/CURSORTY/ to produce a feasible sortie of the highest possible value.

SORTOPT first calls EVALB to evaluate each target in the current sortie
definition in common /CURSORTY/ as set up by GETSORT. If there are
ASMs on the bomber, they will be placed on the targets chosen by EVALB
as the best potential ASM targets. CIiGPLAN is called to effect these
changes from bombs to ASMs. If there are too many targets in the plan,
the least valuable ones are omitted. (Each call on EVALB returns the
index of the least valuable target as JDELB in common /EVAL/.) SORTOPT
then calls EVALB to see whether the sortie could be improved by deleting
any target from the plan. EVALOA and EVALOB are called to consider
trading any targets in the hit list for one of the omitted ones to be
hit by an ASM or a bomb, respectively, in order to improve the sortie
value. Any omission or switch in the sortie definition (the "hit" list
in common /CURSORTY/) is effected by calling CHGPLAN. FLTPLAN is
called after each change to recompute the distances involved and to
recalculate the value of the sortie to be sure that the change was an
improvement.

766



Figure 151, in four parts, illustrates the operation of SORTOPT. Part I
modifies the specified number of strikes so that they will correspond to
the available warheads. First, until all available ASMs are used, the
strikes (initially assigned for bombs) are converted to ASMs--using those
for which the change promises the largest improvement in VALSORTY. Then
if there remains an excess of bomber strikes, the least valuable strikes
are deleted until the total number of strikes is just equal to the number
of warheads.

Part 11 checks the profitability of recovery of all strikes assigned.
Any strikes (or recovery) with a negative estimated payoff are omitted,
beginning with the larges;t. After each strike is omitted, FHIATLAN is
called to verify that tile omission did indeed improve the payoff. If
not, the omittcd point is replaced in the mission, and control passes
to Part III.

Part III of the flowchart deals with the possible substitution of
omitted targets in place of targets now assigned to the ASHs. This
por-ý ion carries out the substitution in the event that some of the
omitted strikes appear to make better targets. Since addition or dele-
tion of an ASN does not involve changing the flight path, the estimated
changes in VALSORTY are assumed to lie exact, and no check with FITI'I.AN
is made after the change.

Part fV deals with two considerations. First it checks the flight
points to see if the length of the sortie could be reduced by reversing
tile order of any two flight points. If so, one of the two points is
omitted with the expectation that it will be recovered and placed in
the proper sequence when omitted targets are examined as potential
targets for bombs. In the next phase, if some bombs are left without
targets, I'VAL(Th is called to find an omitted target that is estimated
to increase VALSORTY if Lired as a target for a bomb in place of the
least profitable target no%, assigned. The indicated changes, if any,
are implemented, and F'PLAN is cal led to check VALSOR''Y. If VALSORTY
did not improve, the clhange is reversed.

At this point, the routine returns unless there still are insufficient
AS'Is assigned. If so, control is passed back to Part Ml1 for a final
effort to locate a suitable ASM target in the Omit List.

Subroutine SORTOPT is illustrated in figure 151; part V of the figure
consists of notes (referenced by number within the flow diagram) to
explain the processes in more detail.

707



STAR

N10

ITC]10 VALS0A(14) TCYlEV

__~~~~~~Cl __Cal(0PANOA)CllOGPA(B

To~~~~~T Tak JlfA FomToMoe JE ro

As ASMProfilt And

ig.151, Subruatie SortiePT

Avaitablc Forh and 21S Is

768s



S50

50-601

Call EVALB
'J'o Pick Least

Calual BJGLA 3omb
To OFv IJLB From

orNegatver? to103v Sri

76/



103

tliminate Flight
Points With S=O
From 1ilt List

073

No w Many
Targts On 10

Q 109. ~~110 i LiiLstAtAS

ToFind 0Int~
T Omit (JLis Nt?

Yig est agt

No Alue AsnAS201

1201~~T Nov IsASI aueOfA

omFittd Tarttet

Fig.ig51.t Tartet

Part=1 No T Conted idre rsSttttn agt
inADA mit istefr CTrhtan Trgt

10/ Vaue Of in770



1244

N o Target Out
Bom Targets In _rro

SubsituLitinmte hgt o urn

a~ m Tr 
g 

et s I

liSheet 1e of 2)ro

46~.A4G (7 277



IA

Par Too Checs to Noke Sue any
S Mattuiny Wahadfalal Bombs Taoa

(SheOmi List 2

143 772



Notes:

1. Before calling FLTPLAN. variable OLDVAL is set equal to
VALSORTY, the value of the sortie obtained on the last call on
FLTPLAN, Each time a change is made, a check is made to see
if the value of the sortie has increased. A variable EPSVAL
is kept, which is equal to .001 times the value of thu sortie.
If a potential change will affect the value of the sortie by
less than EPSVAL, the change is not made (to avoid looping
because of rounding errors).

2. The variable ISCAN is set before calling EVALB to indicate
whether or not FVALB should evaluate thn sortie recovery. If
it should, ISCAN is set to LASTPAY, which is the index of the
last "paying" point in thle hit list. This is the recovery .f

point, or the last t.arget if recovery has already been omitted.
If. EVALB is being called to evaluate only the bombs, ISCAN is
set to LASTTGT qhich i;3 always the last target in týe hit
list. At this point on the flowchart, EVALB is called to
consider putting an ASM instead of a bomb on a target, so
ISCAN LASTTGT.

3. If EVALB cannot find a target suitable for an ASM (i.e., within
range of any other route point), it returns JADDA = 0.

4. JDO and JAFT are variables in common /CtlGPIAN/ which give
CHGPLAN the index of the target to be moved, and the index of
the target it is to follow in the hit list. In order to
change from a bomb to an ASM on the same target, we call
CIIGPLAN twic6, once to delete the bomb and once to inscrt the
ASM.

5. If there were originally more targets assigned to the sortie
than there were bombs available, the extras are not dropped
until after the AS}.. have been assigned. Then the least
valuable remaining target is dropped from the list, to leave
the right number of targets for the bombs.

6. In this phase of SORTOPT, w. are looking for omissions which
will increase the value of the sortie. ISCAN is set to IASTPAY
so that recovery, as well as the targets, is considered for
omi ssion.

7. Again, .liNB is actually required to be less than -EPSVAL, to he
worth omitting. (Soc note 1.)

Fig. 151. (cont.)
Part V: Notes
(Sheet 1 of 2)

773



8. Before removing a target which seems to have a negative value,
its position in the hit list is stored in JAFTXX, to facilitate
reinserting it if its omission in fact decreases the value of
the sortie.

9. Since EVALOA calculates the differential value to the sortie
of an ASM on each target in the omit list, this need be done
only once for the sortie. KALC is set to 0 the first time
EVALOA is called, and then it is set to 1 to bypass the calcu-
lations on subsequent calls.

10. If the processing of Part !V of SORTOPT has already been done
and this was a return pass to Part III, IEXIT equals 1 and the
program exits at this point.

11. EVALB checks to see if it is possible to shorten the distance
flown by interchanging the sequence of any two targets in the
list. If so, JSEQERR is used to indicate to SORTOPT which
target should be deleted. The target is not reinserted in its
proper position immediately, but is left in the omit list.
When all sequence errors have been "corrected" by deleting one
of the targets out of order, processing continues. It is left
to EVALOB to make the correct choice from the omit list to use
up the extra bombs and insert the targets in their correct posi-
tions.

12. If there are extra bombs available at this point, we want to
insert any target of value from the omit list, even if it is
of less value than the others already in the list. MINB (the
minimum value of a bomb in the hit list) is set to -EPSVAL so
that when the test MAXOB.GT.MINB+EPSVAL is made, if the maximum
omitted bomb (MAXOT1) has any value at all, it will he picked
up.

13. ICORRECT is set to indicate whether a bomb was only omitted, or
whether one was omitted and one was inserted, so that if the
change was a mistake it can be reversed.

14. If there is an ASM launched from the target being omitted, it
is necessary to find a new launch point for the ASMI. If there
is not one within range, the ASM target is omitted as well as
the bomb. Thus it is possible that at this state there may
again be ASNIs without targets, so SORTOPT recycles Part III to
use up its ASMs. If this happens, IFXIT is set to 1 to indicate
that processing is complete when the ASMs are assigned.

Fig. 151. (cont.)
Part V: (cont.)
(Sheet 2 of 2)

774



SUBROUTINE TGTASGN

PURPOSE: To make the initial assignment of targets to

all sorties in a flight.

ENTRY POINTS: TGTASGN

FORMAL PARAMETFRS: None

COMMON BLOCKS: ARAYSIZE, CURRAID, DEBUG, FIXALL, INDEX, IRESRCH
PCALL, 3, PRINTOPT, RAIDSHR, 2, 4, TGTASGN

SUBROUTINES CALLED: PRINTIT, PRNTF, TIMEME

CALLED BY: FLTROUTE

Method

TGTASGN is called by FLTROUTE to carry out the actual assignment of
strikes to each sortie in a flight. The first and last sortie
for the flight are specified by FLTROUTE (IFSTVE-H and LSTVEI1 in common
/TGTASGN/) together with a flag (ISIDE) which notes whether targets are
to be assigned from the left side of the corridor toward the middle or
from the right side of the corridor toward the middle. For each sideof the corridor, TGTASGN maintains a pointer to the first unaissigned
target so that the scanning of targets to be assigned can begin with

this target.

Figure 152 illustrates the operation of TG'rASGN. For each new sortie
the "target limit" (i.e., the total number of targets that Tlhould be
assigned up to and including the sortie) is increased by the number
of warheads on the sortie (NWPV) multiplied by the average number of
strikes per warhead for the corridor (TGTSPWIID). Since the allocator
has assigned more strikes than it has weapons, the number of strikes
per warhead is usually a little more than 1.0. Therefore (because no
fractional strikes can be assigned) the number of strikes per sortie
will vary and an occasional sortie will be assigned an extra strike in
excess of the available warheads.

Specific strikes are then selected for the sortie, beginning with the
first unassigned strike from eitheri the top or bottom of the list
depending on the value of ISIDE, until the target limit is exceeded.

775

_ _ _ _ _



Each strike sulected is tested against any already assigned to the sortie
to be sure that another strike on the same target is not included. If
the same target is encountered, the strike is simply passed over. When
an acceptable strike is encountered, it is inserted in the strike list
for the sortie in such a position that the list remains in order of
ascending values of RHO for the targets.

Subroutine TGTASGN is illustrated in figure 152; sheet 2 of the figure
consists of notes to facilitate interpretation of the flowchart.

776

"..................



ART

Do 100 For All

Don. Vehicles _d
In Flight

Do
•' ~Calculate. Target

l i~Limit For

Assignment To
This Sortie 21

12 2

IFSTSRT, SieI Of Corridor Side' L,ýSTSRT;Increme~nt Is Flight Decrement
N. I'STSRM Ass igned?r LASTSRT

.- 1 -18 ,- 3-8i

Beginning 1)ith eginning With
IFST'GT, Find IOSTTGT, Find

SFirst tUnassig.cd ac n Number
Target O90 Tarret 3/ts

Tm Trarget/

30-50 A No

Insert Strike It.
S~Sortie In Order

i Of RHlO S/

60
Increment Number

A Of Targcts

gA 
1Assigned 

,

(Sh~geet 
1so'2

Sid=? N o.C Ass ig n ed \YesS•(LVINSERT)/ - Greater Than
k_.___J Target Limit?/

Fig. 152. Subroutine TNTASON
(Sheet I of 2)

*777

-!~~



Fi
Notes:

1. TGTASGN receives from ELTROUTL the variables IFSTVEI and
LSTVEII, indicating which sorties are to be processed. It
initializes variables IFS'TSRT and ILASTS'S" to those values
and uses then as internal markers.

2. 'GTLIM, the target limit, is calculated as a floating point
number. Therefore, since T'C;SPWHID is usually slightly greater
than 1.0, occasionally a sortie will be assigned more targets
than it has warheads. These extra targets will be dropped in
the sortie optimization and will be considered for sitb-titution
in other sorties.

3. When TGTASGN is entered, IFSTGT and ILASTGT are set at the first
and " unassigned target, respectively. MYASGN is initially
sOe for all targets. As soon as TG'TASGN "looks" at a
tai I ; sets MYASGN to 0. If it assigns the target to a
sort it sets MYASGN to 1. Thus the first unassigned target
may be 0, if the target has been considered previously and
reject/ed, or -1, if it' is being looked at for the first time.

4. The allocation may assign more than one weapon from the sarve

group to a target when this happens; it is not desirable to
attL:-mpt more than one hit on the target by the same sortie.
Therefore, TGTASGN must check each target already in the list
each time it assigns a neW target.

5. The list of targets for a given sortie are listed in order of
RHOe as an initial attempl at determining the flight route of
the sortie. This order is subject to cuange by EVALB which
does a sequence check during its evaluation.

Fig. 152. (coat.)
(Sheet 2 of 2

ý778



CHAPTER 8
PROGRAM PLNTPLAN

PURPOSE

PLNTPLAN processes the bomber and missile plans given it on the STRKFILE
by program POSTALOC, and writes them with tanker plans to the EVENTAPE
in a format required by the QUICK Simulator. In addition, a detailed
plan is output via the PLANTAPE which reflects the plan in a form more
suitable for hardcopy output. The PLANTAPE is used as input to programs
INTRFACE and EVALALOC. Detailed prints of the final plans may also be
obtained from PLNTPLAN. Each type of plan (bomber, missile, and tanker)
is handled differently. Among the processing functions performed on the
input bomber plans are: assigning refuel areas; calculating ASM launch
points; determining where zone crossings, altitude changes, and decoy
launch points should occur; and coordinating launch times according to
user parameters.

For missiles, launch times are assigned based on user-supplied coordina-
tion parameters. Tanker plans are generated such that all bombers will
be serviced as required. Finally, PLNTPLAN calculates the distances
and times between tll events of each plan.

INPUT FILES

Three files are input to program PLNTPLAN: the STRKFILE, BASFILE, aid
MSLTIME file.

The STRKFILE is the output of program POSTALOC, and contains the skeletal
plans for each bomber and missile. Common block /OUTSRT/ contains the
input bomber record; common /BLOCK! contains the input record for
missiles. The end-of-file signal is a dummy bomber recorc with a group
number of 201.

For bombers which refuel, two records are provided; the first is the
primary plan, the second describes the plan to be used in the event of a
refuel abort. The input event list in common /OUTSRT/ nncludes all
targets, whether bomb or ASM. It always begins with the corridor origin
route leg, and ends with the input event DEPEN. LAND, or DIVEMISL (if an

779



rE

air-breathing missile), depending on whether the mission is successful
or aborts. Table 37 lists the admissible input events by type, and
indicates what information in the list is relevant for each type.

Table 37. List of Admissible Input Events by Type
and Information Relevant to Each

TYPE OF WEAPON OFFSET
HAPPENING LW'A., L4ALGG PLACE LAT., LONG.

DOGLEG Y N N

DROPBOMB Y Target Index Y

AIM ASM Y Target Index Y

USEDECOY Y N N

DEPEN N Depenetration N

Corridor Index

LAND N N N

DIVEMISL N N N:

Y = relevant

N = not relevant

Bomber sorties are identified uniquely by sortie number, group index,
and corridor index together. Hissiles are identified by index number.

The BASFILE, created by program PREPALOC, provides such information as
corridor, defense zone, payload, weapon, and tanker data. It is from
this file that PLNTPLAN retrieves the data required to fill the follow-
ing common blocks:

/MASTER/

/FILES/

/CORRCIIAR/

780

---- ---- - • . . . . . . . | . . . . . .., -



/A~kflAl3L[I
/PAYLOAD/

/WPINTYPEIX/

/NAVAL/

/9/ (variables corresponding to /BOLUNiARY/ , /CIIART:R/ , -nd
/IIAPIII:N/ in other QUICK progralis)

/ 7/.

Tie NSIII MI: fle , Created by programi AIQ(., conta ins a t ivo'-word record
fo r ceach fixed miiss ile (i .C. , each liS i siiC-deli ye red Weapon) . It is
read into array NISLFIL, of common block TINMELINE. IfC there are no fi xed
miss~ile assignments in the current plan, it cons ists simply of an
end-of-fi Ic record.

OUITIfl F I LEiS

Thie pr1i uc i pal outpuLt of 'LINITPAN is the iIiNINAPE , containing the bombe10r,
missii le, and tanker pl ans, for use by the QUICK S imul ator,

Bomber and t~anker planns arie written from common block / INDATA/ , whore
the main part of the plan is contained in the History table. Each line
lists an event by type, time , and place. The admi ssiblec events for
the IVIiNI'ANE record are those listed in table 38 (se xcept ion
noted for the last three events listed) . The name for each event used
inl common /1-'VHNTr/ and inl the oultpult prints is also given in the table.

Events for each bomber and tanker record are listed in the Hiis-tory
table inl proper order. Wi th each event the t ime given is the increment
since the previous event, except tfor the first event--the Launch event.
Hiere the '"previous"' event is taken to be the Lncq.Žt ion of the p1lan
and the time increment is measured from it. Ani auxil1i ary table called
the Warhead table is also included in the plan. This lsts fo each
weapon the type of warhead, the weapon of fset , if 31any, and1L hoight of
burst,. The re is an out rv iN the Warhead table for every Local
At tri tion (d rop heinb) or Launch ASM event.

781



Table 38. Bomber Events Recognized by PLNTPLAN

EVENT EVENT NAMES USED IN

TYPE OF EVENT TYPE PLACE INDEX /EVENTS/ OUTPUT•PRINT

Launch 2 Base Index LAUNB LAUNCH B

Refuel 4 Refuel Index LEREFUEL REFUEL

Enter Sector 5 Sector INSECTOR INSECTOR

Local Attrition or 8 Target Index LOCLATTR DROPBOMB
Drop Bomb

Launch ASM 14 ASM Type LAUNASM LAUN ASM

ASM Target -- Target Index -- ASM TGT

Launch Decoy is * LAUNDCOY LAUNDCOY

Change Altitude 17 1 for Go High, LOHI CHANGALT
0 for Go Low

Recover 16 Recovery Base Index LANDHO RECOVER

Abort 13 * LABORT ABORT

Enter Refuel 11 Refuel Area Index LENTEREF ENTERREF

Leave Refuel 12 * LEAVEREF LEAVEREF

Go High** 18 * IGOHI GO HIGH

Go Low** 19 * IGOLOW GO LOW

Dogleg** 20 * LEGDOG DOGLEG

*Place index not applicable

"*Appears only in detailed version of plan on PLANTAPE

782



In the case where the bomber refuels, the History table contains two
plans. The first is the "primary mission" to be executed after
successful refueling. The second is an alternate plan, to be executed
in the event that the last scheduled refueling is unsuccessful.

The "final" plan supplied to the Simulator does not contain references
to specific geographic locations, i.e., no latitudes or longitudes are
given. The geographic location of each event is available to PLNTPLAN
and is used by it to compute distances and their associated time
increments. This results in a "detailed" plan. PLNTPLAN then drops
all references to geographic location, including dogleg events for
the EVENTAPE.

Missile records are written from common /BLOCK/. In addition, records
indicating a time-dependent destruction before launch event will precede
the events for the first consecutively launched vehicle from a base of
weapons having a time-dependent DBL probability.

The formats for all plan record types on the EVENTAPE are shown in
tables 39 through 42. Each record is preceded by a one-word record
length field. A zero length field indicates the end of plan records.

After the plan records, data on the recovery bases used by the bombers
are placed on tile EVENTAPE. These tables also are shown in table 43.

The PLAM1APE is optionally available to store the detailed plans for
input to programs INTRFACE and EVALALOC. The information for the
PLANTAPE ii., retrieved from the arrays of common blocks /INDATA/,
/IOUTOLD/, /DINDATA/, and /DINDATA2/ for bombers and tankers, For
missiles, it is written from variables within common /BLOCK/. Tile
tape format for these records is shown in tables 44 through 46.
The end of this first file (containing missile, bomber and tanker
plans) is signalled by a dummy record containing 24 words of zeros,
followed by tho signal LAST in word 25. This, in turn, is followed
by an END FILE mark.

The second file on the PLANTAPE contains the refuel area table. Th e
first word is the number of refuel areas (NRF). Then follow NRF
word pairs containing the latitude and longitude of each refuel area.

The PLANTAPE is written using standard FORTRAN unformatted WRITE
statements rather than the filehandler subroutines.

783



Table 39. Format of EVENTAPE Records
(Bomber Plan Record)

WORD DESCRIPTION

1 Side (BLUE = 1, RED - 2)

2 Launch base index

3 Vehicle index

4-5 Reserved

6 Naval kill probability (PKNAV)

7 NAVAL if bomber has time-dependent DBL
probability

8 Reserved

9 Bomber type index

10 Target class (BOMBER = 2)

11 Launch region

12 Alert status (ALERT = 1, NONALERT 2)

13-15 Reserved

16 Current altitude (HIGH = 1, LOW = 0)

17 Electronic countermeasure index

18-20 Reserved

21 Number of lines in History table (N)

22 Number of lines in Weapon table (M.)

23-24 Reserved

25 Number of lines in primary mission
26 Reserved

27-A History table (A = 26+(3*N)), containing
1) Time of event (1st N words)
2) Place index of event (2nd N words)
3) Event type code (3rd N words)

(A+1)-8 Weapon table (B = A+(4*M)), containing

1) Warhead type (1st M words)
2) X-coordinate offset (2nd NI words)
3) Y-coordinate offset (3rd M words)
4) Height of burst (4th M words)

784



Table 40. Format of EVENTAPE Record
,I (Missile Plan)

A WORD DESCRIPTION

I Side (BLUE = 2, RED 2)

2 Launch base index
3 Reserved

4 Time of launch

5 Payload index

6-7 Reserved for future use

8 Number of MIRVs per missile

9 Missile type index

10 Target class (MISSILE = 1)

11 Launch region

12 Alert status (ALERT = 1, NONALERT 2)

13 Number of missile (N)
14 2 x number of targets (N)

15-A N missile indices (A=I4+N)
(A+I)-B N silo indices (B=A+N)

(R+I)-C Target data flight times* (C=B+M)

*Up to 270 words appear in pairs, one pair for each target, with the

following format:

lst word: 47 33 21 9 6 3 0

INTAR GX DGY DHOB LNARDEC I NTDEC

15 bits 12 bits 12 bits 3 bits 3 bits 3 bits

INTAR - Target index number

DGX - Offset distance for latitude ý(fiftieths of

DGY - Offset distance for longitude nautical miles)

DHOB - Height of burst code

NARDEC - Number of area penetration decoys

NTDEC - Number of terminal penetration decoys

2nd word: Time of flight from launch to target

785



I)
Table 41. Format of EVENTAPE Record

(Tanker Plan)

WORD DESCRIPTION

II Side (BLUE 1, RED 2)

2 Launch base index

3 Vehicle index

4-8 Reserved

9 Tanker type index

10 Target class (TANKER = 3)
11 Reserved

12 Alert status (ALERT = 1, NONALERT 2)

13-20 Reserved
21 Number of lines in History table (=7)
22-24 Not used

25 Number of lines in primary mission (=7)

26 Not used

27-33 Time of event

34-40 Place of event History Table

41-47 Event type code

786



Table 42. Format of EVENTAPE Record
(Time Dependent DBL Destruct Event)

WORD DESCRIPTION

1 Side (Hollerith name)

2 Base index

3 Index to DBL data tables

4-6 Zero *1
7 Event identifier (=5HNAVAL)

8 0

9 Weapon type index

10 Weapon class index
11 Weapon launch region

12 Weapon alert status

This record precedes the Launch event for the first consecutively
launched vehicle from a base of weapons having a time-dependent
destruction before launch probability.

Table 43. Format of EVENTAPE Recovery Tables

WORD PLNTPLAN FORTRAN NAME DESCRIPTION

1 NWORDS Zero record length field indicat-

ing end of plan record

2-201 INDBAS (50,4) Recovery base index numbers (four
bases per depenetration corridor)

202-401 INDCAP (50,4) Capacity of recovery bases

402-601 TOF (50,4) Time of flight from depenetration
point to each associated recovery
base

787

462 .546 0 72 - 23



Table 44. Format of PLANTAPE Record
(Bomber Plans)
(Sheet 1 of 2)

Header Block: .. "

WORD DESCRIPTION

1 Side

2 Group number

3 Penetration corridor number

4 Bomber sortie number

5 Base index number

6 Vehicle index number

7 ICLASS = 2

8 Weapon type

9 Launch region

10 Alert status

11 Payload index

12 Depenetration corridor number

13 Total number of bomber events in table .

14 Number of planned bomber events
(i.e., excluding Refuel/Abort mission events)

15 Available low-altitude range in
precorridor legs

16 Available low-altitude range before
first target

17 Available low-altitude range after
first target

18-19 Lower plot markers for sortie

20-21 Upper plot markers for sortie

22 Weapon type name (ISIMTYPE)

23 Bomber type (Plan Generator type)

24 Bomber function code

25 Number of targets in total plan (set to
4HLAST after last good record as an end
sentinel)

788

-2 ,



Table 44. (cont.)
(Sheet 2 of 2)

Plan Information Hlocks:

One block for each event in plan (regular or refuel abort)

WORD DESCRIPTION

1 Time increment since last event

2 Place index

3 Event type

4 Latitude of event

5 Longitude of event

6 Offset latitude

7 Offset longitude ) for weapon delivery

8 Warhead index

9 Damage expectancy

10 Cumulative time to event

Target Information Block:

One block for each weapon delivery

WORD DESCRIPTION

1 Index number for target

2 Target designator code

3 Target task code

4 Target country location code

5 Target flag code

789



Table 45. Format of PLANTAPE Record
(Missilb Plans)
(Sheet I of 2)

Header Block:

WORD DESCRIPTION

1 Side

2 Group index

3 Zero

4 Missile record counter

5-6 Zero

7 ICLASS (=1)

8 Missile type (ISIMTYPE)

9 Launch region

10 Alert status

11 Payload index

12 Zero

13 Number of missiles

14 Number of targets

15 Time of launch in hours

16-21 Zero

22 Warhead type

23 Missile type (Plan Generator type)
24 Missile function code

25 End sentinel (=4HLAST after last good
record; ze-o otherwise)

Target Information Blocks:

One block for each target in plan

WORD DESCRIPTION

1 Flight time

2 Site index

790

_ __J



Table 45. (cont.)
(Sheet 2 of 2)

WORD DESCRIPTION

13 Missile index
4 Target iatitude

5 Target longitu1e

6 Weapon site latitude
7 Weapon site longitude

8 Warhead 'type

9 Reliability

10 Target index number
11 Target designator code

12 Target task code

13 iTarget country location code

J4 Target fiag code

I'.1

I...

I'



Tablr. 46. Format of PLANTAPE Record
(Tanker Pla~s)

Header Block:

WORD DESCRIPTION

1 Side

2 Group number

3 Zero

4 Sortie number

5 Base index number

6 Vehicle index number

7 ICLASS = 3

8 Weapon type index

9 Zero

10 Alert status

11-12 Zero

13 Total number of events

14-241 Zero

25 End sentinel (=4HLAST after last good
record; zero otherwise)

Plan Information Blocks:

One block for each event in plan

WORD DESCRIPTION

1 Time incre,::ent ,•incc last event

2 Place index

3 Event index

4 Latitude of .vent

S Longitude of event

6 Cumulative time to event

792

I .*



Figue 13 i~vcstheove rallincr focarfo rgm11NP ,

Indisualroution iiAncludes read oisg thc ASI ~eatindo l t ankuer dat cards.
Then tie first acrd discussed Tunder thsrea ino sunotithmane
Bobrprocessing howes Mcnver, aisasil pla lowsdsbrutn

PANI S gr 5 isgwSea cotrpiol pathl ante bomb er wu dfcr ta s between the ti
(bofmtb1erchad t reco vewih ro'. Thmer bofmber is 1h ainchd from bas

fliesto a refuelthl poA,'int ornareas alf refuelingis coldf r thsienpltosa
corindoIr entry' Point.N cotrmay' thlen fly nc or moreal tranpei pland
dtileg (lealt lonedt core diSLISy lesunihdefinhoe aw peuetrautionerout

bFogre 15eaching thepoici able pah Combrridorl Origin From the origin

K tflies tove rethel pitrge area and iet.11ns assigne tfrct ri their proper

o rde r. It then Lenters the depenetration corridor which may also
consist of one or mlore. dotgl1egs. From there it flies to the recovery
point or base. At any point after thle corridor entry it may cross a
boundary l ine between doefense zones.

Th'iis path may' logically be di vi dod i~nto four parts: (l) the launch
and rit'1.0 ful ortion, (2) the preco rridor legs , (-S) the target area
whichl is tile ma in pazrt of the p1lan, atnd (4) tile deponct rat ion and
i'ccovery por'tion,

In PLNTPLAN, each bomber sortie is pi'ocessod in much tile same order as
it is flown; that is, first tile procorridor section events arc posted,
then those of tie target sect ion, and final ly , the depenet rat ion and
recovery section events. Besides the post ing of tile target events
themselves , tile 1main p races sing cons ists of postilng e venlt, f or changes
of' altitude, zone crossings , land decoy 1 aunchcs . AllI post-ings for
bomber even ts are mulec in the a rray's of common / 1)1NIATA/.

After eCýIh bomllher pall hIas been eval1uated , and its datz-8 stored , PLNITPLAN
reads in tho noxt STRJKFl Li record. I f tho new record is the alternate
planl or the sortie just ilracessd, the alternate evellts, are posted
before tile :VENiAPIi: or- PLANTIA is5 wri'ttell . Otherwise , thle completed
pllall i s output , and p rocessinug begills Onl thle new plan.

73



START

- Read I ASPI LE
Anti

InIt i a I e

P LNTP LA

CaI I SNAPC(ON rn Lqot
To InitiallizVi -czz'
Print C~1riro IptUiEIIIIIIII\ Read ContrlCds

(Shiet 1Ofeni)

Messges IA'S-ial



Initialize Plan
With Respect To

GOLOW Ranige

Process P'recorridor

31

Post. Corridor
Events

Adjust /OlJ-1SIRT/

i-or ASM [Fvents

E Call1 ADJUST1
Altitude E~vents

Insert Altitude Chuuige 1
Post Targo't Arca Eveflt I

F ~Find Zone Gross int~ An d
Possible Dlecoykt>'inLTchvs

PostPostAbo t lIvnpt Poit Abn r
DepenetratiY1 FiveMinte Secti nt? A

Post 1153 (cot
(5h'%t of';

Dep ne rt 1on i m " I-ý vL A



r

R oad Is It A No 11rIo&eIAieIS roL/s

WhaL Type Of
Plan Has Just

HeL'n Fro ec~ d 
W1111

PRIMARY PLAN PRIMARY .AN Ik' ( mll
WITH ALTERNATE ALTERNATE NO ALTERNATE

FOLLOWING FOLLOWING

Set Initial
Time Increment

Compute Call SW"TCHALT, Compute
Initial Launch 1ISTIM:, Initial Launch

Delay VLCOYADD De Iay

Call SWTCIIALT, Call SWTCIALT,D I S 1 .' I mI , S e t F i n a l .I S T k :

DEiCOYADD Cumulative lime DISTIAF,DFCOYADDDECOY,6DD

oInsert Decoy
Launches And
Terminators

/If Option Chosen

909(

.P..an kid W.rite .....-----
Oni EVE NTAPE

Fig. 153. (cont .
(Sheet 3of S)

796)



I BOHBER BASE Direction of Flight

0 REFUEL0 POINT0

! CORRIDOR ENTRY (First user-directed route point)\
0 \ PENETRATION ROUT'E LEGS (Called precorridor legs,
0 i.e., optional route

S1legs which control
S / bomber routing prior

/ to the corridor origin)

CORRIDOR ORIGIN (From this point, bombers may
fly direct to targets)

AXIS ORIENTATION' POINT/
/
3 FIRST TARGET

a LAST TARGET

IS..

" UDEPENETRATION CORRIDOR POINT

Route if refueling is specified DEPENETfATION ROU LEGS

and precorridor legs are defined
in data base.

-0o0- If refucling is not specified and RECOVERY BASE

precorridor legs are rot defined,
the bomber is routed in a straight
line fro,-i its base to the corridor
origin. In this case the corridor
origin is also the corridor entry
poini.

Fig. 154. Path of Typical Bomber Sortie

797



Tanker plans are generated by subroutine PLANTAdK after all bomber and
missile plans have been completed. All files are then terminated, and
PLNTPLAN exits.

Tro facilitate discussion, program PLNTPLAN is divided into "blocks" of
coding as noted in the macro flowchart. The remaining program descrip-
tion as well as the detailed flowcharts* are organized around these
blocks, which are:

BLOCK 10 - Program initialization

15 - Control loop

20 - Determine -type of plan

24 - Initialize plan

25 - Post Launch event

26 - Post Refuel events

27 - Initialize plan with respect to GOLOW range

30 - Process precorridor legs and apply GOLOW-1

"31 - Post corridor events

40 - Adjust /OUTSRT/ for ASM events

50 - Apply GOLOW-2 before first target

60 - Post depenetration events

80 - Read next /OUTSRT/ record, convert last one

90 - Process final plan and write on EVENTAPE

100 - Program termination

Block 10: Program Initialization (figure 158)

In addition to initializing program variables, coding block 10 reads all
required data from the BASFILE, and all user control cards, calling
subroutine SNAPCON for the print request cards and subroutine LNCHDATA
for the missile timing cards. Files are initialized, and preliminary
information is printed.

Block 15: Control Loop (figure 159)

The first bomber plan is then read in from the STRKFILE, and the main
processing of PLNTPLAN begins. If a missile plan is read, subroutine
PLANTMIS receives control. Otherwise, the number of events is checked
and the sortie INDEX is computed. Subroutine SNAPCON is called to

*Figures 158 through 174' are at the end of this section.

798



determine which prints are to be active for this plan. If the program
is to be terminated at this sortie (print request 14), a branch is taken
to the termination block.

Block 20: Determine Type of Plan (figure 160)

Each bomber plan, including the first, is immediatcly checked to see if
it is a sentinel record indicating that the end of the strike file has
been reached. Otherwise, tests are made to see if the current plan
begins a new group or corridor. If so, PLNTPLAN is appropriately
initialized. A check is then made to see whether the current plan is
an alternate plan. If so, plan initialization in coding block 24, as
well as the posting of LAUNCH and REFUEL events in blocks 25 and 26,
are skipped. If the low-altitude distance GI is negative for an alter-
nate plan, then the unrefueled bomber cannot reach the target area;
hence the alternate plan is replaced by the event RECOVER at the launch
base.

Block 24: Initialize Plan (figure l61)

The plan initialization at block 24 consists of setting pointers and
indices for the appropriate depenetration corridor and writing other
information into the final plan. Indices for the Payload table and
ASM table are set at this point, as are parameters which are dependent
on bomber speed. These parameters are associated with the minimum
length of time a bomber flies low, and where a bomber is to change
altitude in the neighborhood of a target.

Block 25: Post Launch Event (figurL 162)
After initialization, the posting of events in the output arrays of

common /DINDATA/ begins with the posting of the Launch event. It is
posted by location (latitude and longitude) as well as by type and
"place" index. Table 37 lists the types of events admissible for
posting, as well as their names. Note that the GO HIGH, GO LOW, and
DOGLEG events are not admissible in the final plan.

Block 26: Post Refuel Events (figure 163)

If there is a Refuel event, it is posted next. Refueling is accomplished
in one of three ways: (1) at preassigned refuel areas (refuel index
>0), (2) buddy refueling by another bomber or tanker launched from the
same base (refuel index -=-I or -2),or (3) automatically by PLNTPLAN
(refuel index = -4 foi- single refuel, -5 for two rcfuels). In the

799

....................................... ........... ..... . .:..,:...... -... d, .!=:/



first case the data preparer assigns refuel areas for both bombers
and tankers. In buddy refueling, tankers are ignored. Bombers are
refueled by the buddy system at maximum range (a great-circle distance
from the base equal to refueled range minus range) or just prior to
the corridor origin, whichever is sooner.

When a bomber is to be assigned a refuel area by PLNTPLAN the buddy
refuel point, X, is first computed a distance AR from the base on a
great circle between it and the corridor entry, as for buddy refueling.
See figure 155. AR is the difference between refueled range and
range. If there already exist refuel areas which are within A6'. of the
base and within some specified distance, D, of the point X, th"c area
nearest X is assigned as the refuel point. Otherwise the point X. is
assigned and is added to the list of refuel areas.

The list of tanker bases is then scanned to see whether the buddy
refuel point is within range of any of them. If not, the closest
tanker base is chosen and a new refuel point is computed by interpola-
tion. This point will lie on the line drawn between the tanker base
and the original refuel point such that it will be within range of
the tanker base.

The actual tiav, of arrival at the refuel area is computed, using the
CORBOMB parameter if the plan is for a first stri.ke, Tile earliest
arrival time in each refuel area is saved for later use when generating
tanker plans (array ARTIME). Also saved for tanker scheduling is the

arrival time and refuel area for each bomber (array ARVLS).

Block 27: Initialize Plan with Respect to GOLOW Range (figure 164)

The low-altitude range available to the bomber in flying the sortie is
specified to PI,NTPLAN in three separate amounts: the amount during the
precorridor legs (G1 ), the amount immediately prior to the first
target (G2 ), and finally, the amount immediately following the first
target (G3 ).

In block 27, these amounts are examined to make certain that the bomber does
not fly low for less than 15 minutes. If G < 15 * SPflII, then G1 is added
to G2 . If G2 " C3 < 15 * SPHIII, then G2 and G,3 are set to zero.

If the bomber is a tactical or naval aircraft (denoted by the use of
corridor 1 or 2), coding blocks 30 and 31 are skipped.

800



Corridor
F1n t T Y

kudd . fUc1 Point, X

ExisingRefuel
Area Assigned

Fig. 155 Acceptable Locations fo~r

Re fuel Area (Shaded Sect ion)



Block 30: Process Precorridor Legs and Apply COLOW-l (figure 165)

The main sortie processing begins then at block 30 with the processing
of the precorridor legs. They must be processed in the opposite
direction from the bomber flight beginning at the origin and proceeding
backward toward the entry. This is because the available low-altitude
range (G1) is measured backward from the corridor origin. Corridor
atirition may be associated with the precorridor legs, and low-
altitude range is applied against only those corridor sections where
the bomber would experience attrition. Any GI remaining is added to G2 .

The processing for this block of coding is perhaps best described by
referring first to figure 156 which gives an example of precorridor
legs in the most complex configuration allowed. It also shows how this
corridor is described to the program in /HIAPPEN/ (contained in
:ommon /9/). The corridor consists of eight sepmrate docleas or
nine points, and so is described in nine lines in /IIAPPriN/. Those dog-
legs where the bomber would experience attrition are indicated by
double lines. The corridor is described by listing the location
(latitude and longitude) of each dogleg point in order beginning at
the corridor origin and proceeding backward toward the corridor entry,
as shown in the figure. With each point the distance from the previous
point is also noted. If attrition begins at a point, this is noted by
entering a 1, 2, or 3 in array JAPTYPE, depending upon whether this is
the first, second, or third section. Similarly, if attrition ends at
the point, the number 4, 5, or 6 is entered. Thus point 1 is labeled
with a 1, and point 3 with a 4, to indicate the beginning and end of
the first attrition section. This example, of course, describes an
extreme situation where attrition occurs in three separate sections.
Usually, there will be attrition in at most one section. The program
must know which doglegs have attrition in order to know where to
apply the low altitude range G1. In the figure example, suppose
G1 - 180 miles, then 112 miles would be applied against the first dog-
lcg back of the corridor origin, 38 miles applied to the second dogleg,
The balance of 30 miles would be applied to the 5th dogleg beginning
with point 5 and ending midway between points 5 and 6. As a result,
GO LOW and GO HIGH events would be posted as indicated in the figure.
The posting of a GO HI1GH1 at the corridor origin depends on the value
of G2.

This section also sets up arrays which contain the event numbers of all
those precorridor events which might possibly call for tho launching
of a decoy. arrays are called LOHINLIT and LIDMIT. The event
number is stored in LOLINI11T for events of priority 2. (See sub-
routine DEC0O,:-!):I 'or table of priorities.) The event number is stored
in LDWlIT for e 'nch of priority 3 (or, after the first such event,

802



r

S. ,2 0 0

i -- Corridor
0 8 Entry

100

67

60r5 C

GOLOWO

65 5 c OHIGil

" / ~-S'- 4

38 GOLOWi 38

I2

Corridor
Origin

(a) Corridor Example

POINT
NLOWBER JAPTYPE HAPLAT HAPLONG HAPDIST

1 I lat long, 0
2 0 lat Ilong 2  112
3 4 38
4 0 s0

8 3 
80

9 6 200

(b) Content of Common /HAPPEN/

Fig. 156, IExample of Precorridor- Legs

4W.' ..... 3 2 2 803

__ _ 
A



priority 5). For the priority 5 launches, the distance to be covered
by the decoy is accumulated in a corresponding word of array I)IIU)IS.

'Tle flag JA is set to 1 when the beginning of an attrition section is
encountered, and back to 0 at the end. HI)1, is the indicattor to he
compared against JAPTYPE in order to determine the beginning and end of
attrition events. The counter JDO is advanced each tiime an additional
Change Altitude event is added.

Block 31: Post Corridor Events (figure 106)

After G1 has been measured out and the necessary Change Al Litude events
determined, the precoriridnr legs arc examined for possible zone crossings.
Thc.y are again processed backward beginning at the corridur origin whose
zone residence is known. A check is made for zone crossings as far hack
as the corridor entry, i11 the entry point is located inside a defense
zone, the bomber is considered to enter that zone at that point.

In block 31, zone crossing events are integrated into the event list.
The displacement they induce in the event numbers must be reflected in
a shifting of the l)ecoy Launch event numbers. This is the second pass
through the event list, and the list still is being processed backwards
from origin to entry. No check is made prior to the co'ridor entry.
When a zone crossing is detected, an INSECTOR event is inserted into
the event li.•,t along with the latitude and longitude of the crossing.
'fie detection of the crossing and computation of the crossing position
are done via a call on subroutine BOUNDARY. The indices .in the two
arrays LDMIIT and LOHInI1T are updated to reflect the displacement of event
numbers b), the insertion of the INSECrOR event. Finally, tile numnbering
of the events is reversed to put them into a sequence corresponding to
the entry-to-origin direction of the sortie, and the event numbers in
LUIMIT and LOIIIMIIT are changed to reflect the reversal. The possible I)e-
coy L]aunchcs then are posted by filling array LMIIT with the event number
(from array LIMIT or LOIII•TIF) and by filling array LPRIORITY with the
associated i)riority (5 if the event nuLw,,r is from array LlNMIlT , 2 if
the event nummbe r is frouu a rra[yv 1,01MTI'). Fol. the prority "- 1:unch, the
index to the associated distance in array DEILDIS is the s:mie as the
index to the cvent number in array l'MIlT; hence, this index is stored
in array NDCYRQ. The priority 2 launch does not require a coverage
distance. Mihnever this is the case, a I is stored in array NI)CYRQ.
The actual filling of these arrays is done by subrout.inno POSTLAIN.

Block 40: Adjust /OU'SRT/ for ASM Events ( 'i!,ure 7

The list of input events in the /oUS1rR'r/ ajrrays is next examined for
ASM events. If thire arc any , the aim or launch points for them are

80,]

----_



now calculated. If nec.ssary, the ASM ovents -ire reordered among tl:e

list of other events at this time. This is b'ccause ASM target evonts
. are supplied to PLNTPLAN by POSTALOC without 'aim points, and approxi.-

mately in tneir proper order. They may appear later in'the lists than
they should, but not earlier. Figure 157 shows a list of happenings
with ASM ev,,nts, to illustrate what is meant. The list indicates c
DROPBOMB event at point 2 followed by ASM events rit points 3 and 4
then a DROPBOMiB Cvient at point 5 and an ASM event at po-ints 6 and .

Suppose that the ASMs were to be launched or aimed as shown in
figure 157, that is. at pointss 1, 9, 10, ýniid I1 . Then the list ofi
happenings would be rearranged as shown. If an ASM point tell before
tile origin, the origin would be used as the ain i point. The ai in points."
9, 10, and 11 would be computed using the LAUNCH subroutine.

The processing for block 40 is carried out in four separate steps,
utilizini, the arrays from common /AS!t.-RRAY/. (1) The ASM target." are
first examined to see if they are in range of the origin or so;,e other
prior fly point such as a drop bomb point. Those which are not are
flagged by setting the corresponding cell of array' IFLY to 1. In the
example in figure 157 , points 3 and 4 wouad not be flagged, bil points
6 and 7 1{ould. (2) Tihe ASM targets flagged in the last step would
again be examined in the second pass to see if any were in range of a
previous ASM'1 fly point. In the example shown, point 7 would b- inI
range of ASM targ6t 6. The aim point (No. 10) for ASM target .6 is
comiputed at this step. The bomber's path is now fully determwined.
(3) Sort indices are now generated for all events. For all fly' point$,
the point niunbcr is taken as the sort index. For all other points,
(i.e., .. ,SI points which are not fly points; in this example, points

3, 4, and 7), the sort index is a number whose integer part is the
earliest point just Out of range, and Lts fractional part is tl*,e
distance to this point. ý After the sort indices are generated, the list
is appropriotely rearranged usiig tile ORDER and REORDEIR funct!Oils.
(4) The aim points for tile rest of the ASMs are calculated.

Subroutine FIAYPOINWIY, ,'1i ch has the cntri es Phi T.Yi , PRITIY2, ;a11.]
POSTI'LY, is 1 Ogically an intevral part o0 thlis cod inig block. 1uhroult ile
LAUNCH I : called only i y I'OSTFLY.

If the last c cnt is an ASM event, the de)Cenetration corridor is rib-
se lected.

The locations of aljpropri ate i'•,'i ,c \1t iltdC Qe ilts iSoci mated witi the
ranges ; and (;3 are nlow calculmated by subroutinte \liAllJUS. If the
Lal'a,,Ot alreal waIs 1ould to )e deenerate, h locks 50 anllk0 (W0 ar" s kipped.



Ii
ti

(a) Before Adjustment
6 7

ORIGIN 6 x7)K • DEPEN

I DL

3 I

'4

Po i nt I BTYPE

1 DOGLEG
2 DROPBOMB
3 AIMASM
4 AI MASMI
S DROPBOMIH
6 A IMAS1.:

7 AINMASM
8 DEPrN

(b) After Adjustiment

6 X 7

// " DEPEN
S'' '..2 10' // "J •- 8

' \ g

10"

5

Poi1tit I BTYPE

I DOG LEG
3 AIMASM
4 AIMASM
2 D)ROPBOMB
6 AIMASM
7 AIMASM
S DROPBOCMB
8 I)I-PI.N

Fig. 157. Illustration of ASI Event Adjustment

9806



Block SO: Apply GOLOW-2 Before First Target (figure 168)

Block S0 posts all events in the target area, including ASM launches
from the corridor origin, altitude changes and zone crossings. All
events except ASM launches are entered in the detailed 11istory table
as one-line events. For ASM launches two lines are required, the first
for information pertaining to the launch and the second for information
pertaining to the target. As the event list is processed, all possible
Decoy Latnch situations are flagged by storing the appropriate informa-
tion pertaining to the launch and the second for information pertaining
to the target. As the event list is processed, all possible l)ecoy
Launch situations are flagged by storing the appropriate information in
arrays LNJIT, LPRIORITY, and NDCYRQ (see block 30).

Processing is terminated with the occurrence of the input events DEPEN,
LAND, or DIVEMISL. For DEPEN, a normal exit is made to block 60 de-
scribed in the next section. For LAND, an abort event is posted five
minutes after the last target while the bomber is flying toward the
depenetration corridor, and block 60 is skipped. For DIVEMISL, an
abort event is posted immediately at the last target.

Block 60: Post Depenetration Events (figure 169)

This block of coding completes the processing for a normal sortie,
processing from the last target to the recovery point or base. It
computes the most distant recovery base, associated with this depenetra-
tion point, that the bomber can reach. The information on this base
and the depenetration corridor index are recorded in the depenetration
event. In addition, the time of flight to each of the possible recovery
bases is computed and stored. These calculations follow the processing

of the depenetration leg events. Once again, a check ib made for zone
crossings. If a zero zone is encountered in zone processing, indicating
that the bomber has left the area in which there are defense zones, the
zone crossing check is turned off and no further check for zone crossings
is made. Thus if a sortie should leave an area of defense zones, and
later reenter another area of defense zones, this second area will be
ignored. When a crossing into a zero zone is posted, the value of SIDE
is posted in lieu of zero.

Block 80: Read Next /o0rUSRT/ Record, Convert Last One (figure .70)

After the processing of the sortie has been completed as described above,
the next /0FUTSRT/ record is read in and checked to determine if it con-
tains the alternate plan for the sortie just processed. The details of
the processing at this point are determined by whether the current sortie
is the primary plan, its refuel-abort alternate, or whether it is a plan

807



without an alternate. In any case, subroutine SIV'CiALT is called to
convert the CIHANGALT events to GO LOW or GO IIIGH events. Subroutine
DISTINE then is called to compute distances between events and associated
time increments, and subroutine DECOYADD is called to allocate the
available decoys. Decoy Lautnches are now added to the detailed History
table by examining each event to see if a launch is to be inserted
(indicated if the corresponding word in array ILAUNDEC is nonzero).
For low-altittude launches (ILAUNDEC = 0), the actual launch point must
be computed. The Decoy Launches are inserted by copying each event into
a temporary detailed History table. If a GO HIGH event has a decoy
launch indicated, the launch is inserted after the GO HIGH. For all
other events with indicated decoy launches, the launch is inserted
before the event is copied. Decoy launches are posted by adding the
event LAUNDCOY to the event array (JTP) and storing the number of
decoys launched (>O) in the array usually reserved for the piace index
(KPL). The remaining information required in the detailed 1I.,story
table is stored in the normal manner.

Decoys are terminated as the detailed History table is recopied into its
original arrays. Each time a high-altitude Decoy Launch event is en-
countered, the total decoy flight time is computed from the distance in
array DISTORE (filled by subroutine DECOYADD) and added to the next
odd word in an array (TSTORE) which holds the remaining flight time of
alT decoys which have been launched but not yet terminated at the time
of this event. The number of decoys to be terminated is added to the
next even word of TSTORE. As each subsequent event is processed, the
time since the last event (11DT) is subtracted from the times in TSTORE.
Whenever a decoy has no flight time remaining, a LAUNDCOY event,
together with the number of decoys being terminated (stored as a nega-
tive number) and other relevant information, is added to the detailed
History table. If the bomber depenetrates or aborts while decoys are
still flying, the remaining decoys are terminuted immediately before
the final event. It should be noted that decoys launched at low alti-
tude are not terminated.

If the recently read /OUTSRT/ record was an alternate, control transfers
back to block 15. Otherwise PLNTPLAN outputs the final plan to the
PLANTAPE if the PLANTAPE option has been exercised. If the EVE.NAPE
has been requested, control then transfers to coding block 90; else it
returns to block Is.

Block 90: Process Final. Plan and Write on EVENTAPE (Figure 171f )

The purpose of this block is to format the plan for output to the
Simulator. During this processing, all references to geography (i.e.,
latitudes and longitudes) are dropped. Dogleg events, which are
strictly geographic, arc also dropped and time increments associated

808

0090"



with them are accumulated with the time increment of the next succeedingS event. GO HIGH and GO LOW events are converted back to CHIANGALT events

and the Weapon table is constructed. (In the event that the plan and
its alternate exceed 80 lines, a warning is issued on the standard
S output unit, and the first 80 lines of this plan are used,)

In the case of weapons which have a time-dependent destruction-before-

launch probability (DBL), an extra event is written on the ,VENTAPE.
This event causes the Simulator to compute a dynamic destruct event for
the base using the DBL data tables passed on the SINTIAPE by Pirogram INI)EXER.
Format fo, this evenlt was shown in table 42 (under OUTPUfl). TIf there
are several bombers launched consecutively from the same base, this event
precedes only the first bomber LIunch event. If two of more of these
events for the same base do appear on the EVENTAPE, the Simulator will
process only the first.

Block 100: Program Termination (figure 172)

The termination of PLNTPLAN occurs when the end sentinel record is
reached on the input STRKFILE. This record is identified by a group
number greater than 200. First, subroutine PLANTANK is called to
generate and write sorties for all tankers listed on the BASFILE. A
sentinel record is written at the end of the EVENTAPE and the PLANTAPE;
the bomber recovery information is added to the EVENTAPE and the Refuel
Area table to the PLANTAPE. Finally, all files are terminated, and
final messages are printed.

This completes the PLNTPLAN processing,

809



Initialize
PLNTP LAN

Initi0 Pogalinzeliato

BASF. N5. P orm PritNPA

Inti loci0zeorm ntalzt

PrinttR1qoest)

( -r -ANTAE Rea T 10



44

42-40T

Processing -- Selective
-Cr Processing

Cards

14
Print

Tape Option
Message

19

To Initialize

Call SNAPCON
To Initialize
Print Control

Print
Tanker

Informat ion

21
EVENTAPE
Requested? N

EAPI;~ 100 Yes

Initialize

19 EVE NTAPE

Call SNAPIT
(9,1) To

Print BASFILE
Data

Fig. 158. (cont.)
(Sheet 2 of 2)

811



IsI Call PLANTrMIlS
A B~omber No 1o ' 0 rocoas

Fo hsPlan? isiePa

Call S7 N196 
N

1~~~4li 15I litra PLis.A
Llock 1F, Coto Loo s

Than~ ~ ~~M 2 ý TeEn-fF 9



20 020

Is This
ARecorto?

N o

209 3Same Groupen av oriA ,Last 
Y es ~ ( ou i

2102

IndTiylie Index

Isr NThiw tr
Tcia OrNv Corridor

VAiriraflt? AtornatioonAtrnt

t235 232

COostDORAsCSort e L o Str

2029

Int1lz oc ( ltemie''yco P u

For Ne3

Corrido

Call.. SNPI



240-2253

Initialize
/INDATA/ And
Variables For

Plan

Call SNAPIT
(8,1) To

Output Print 8

250

fig. 161. Program PLN'rPLAN
Block 24: Initialize Plan

814



Post BombeCTr
LANC ven t

Fig.l Ai2.croaaftTPA

2loc4 25 Pst260 hUvn

22611



BLOCK 26 lit And 161.19

Set (SR,'I1l)
Locat ion Of Wha is ntaie 1UC

Refuel Area Rote)nd? N Refuel) Corideori

2254

IIse (1sta1c) Aa[w;n PAC

251 , 63.r Mici'o'' 1 1 Reue *\' Pj.\

256



A

Do 2585 Done
For Lach

Tanker Base
Do

Is This 25S3 
2586

Was Any
Base Within Yes A'TKB 0 Tanker Bose

Tanker Range Of Within Range
Budd Point? (ITKII m 0) ?

No No
258 2587

F C'11 R
Is This The Tan cr Ran ýeNo

Closest Tanker istance ro
Base So Far? Bu N, Point

Forclosest
Tanker

2582

Save Taijkc-r
Data Co I I I NTER I

For New
Refuel Point

Print
NEW ICH11:1.

POINTMes saýýc
27(1

of, 5)



S~268

(Aother Refuel,,,.~ No N

? Two,, Reefue ( l O s ?,n o7 -' _

I Ind~x In /From Launch To I - CR o

I• IRFI First Re riele

Cali POS fl4 Assign 29;2
To Post T'o ArM

Refuel Event

SAdd Onv T'o HumlberI

ICounter For ThlIs
L Rer'uel Area

Replace LaU nch
Location Witth

Location of First
Refuel

SReset ]

,IR = -4

DIS = Ili.qtance
From First Refilel

Point To Corridor
Entry

Fig. 10,-. (conlt.
(Shce"t 3i of! 5)



1 
270
L 271

'o"te Curront yer OPREV
Refuel -40- 0 Refuell Areas 6"rr"t Yer

N
ef-'.1D1.1 maximum? 10

Noocate ' 72725
DpR1:V
Size Of
Refuel

Neighborhood

273

RFDF
REFDIF + I

2273 
277

Was Any Set
76 Do 276 For Pon Refuel Area Yes (SRTR)Each Refuel Found Near Location OfArea Buddy Point? Refuel Area

Do 
No

X = Distance, 278

(SlTl) To Current No
Refuel Area 0 Refuel Areas

Maximum?

Yes
2270 2278

No X RFDF Increase RFDF Slake Buddy
RUDIF Point A N*ew

274 Yes By 10 Refuel Area

Z = Distance,
Buddy Point

(SRTR) T OCATI
Refuel Area

(LOCATE Will Be

No Z < DPREV

275 Yes

DPREV - Z,
Save Refuel's
Area Index

Fig. 163. (cont.)
(Shect 4 of 5)

819



Compute CP
Refuel Area Distance From
Arrival Time (SlT1) To CSRTR)

294

A First ~Time Rltv
StikTO Trime0

1293

D = Arrival Time,
Coordinated With

CORBOMB Parameter

295
Store Refuel _ _

Time For Later

Tanker Scheduling

[ Update ARTIME -

] Array If This
]Is Earliest Refuel

IARTIME

(ARTIME May Be or(9

Fig. 163. (cont.)
(Sheet 5 of 5)

820



Block 2

With esec tLGLO1Rng

821N=



Call SNAP[T(7,l)
To Output

301 FaPr~int 7

Is There Set Flag To Retrieve
Attrition On No Indicate There Attrition Flag

Blockl 30orcsrreordrLgAnd Aply(OL

(See 1 ofs3)

J33 304822



.54
Is There Go Replace Dogl i:L w I Range Yes e:314 Event With
emaining? Change Altit]ude
INP Event

No
53

Event Store fillent
C JI) Number (,Il)

ssible For Possible309 Launch Docoy Launch

307 No 355
yes Does Attritio Increment Index

08 Begin Jjith To Arra DELDIS Is IDLL No

This Event? CKDST KDST4,I) < LMAX?

Yes
No 315

Did ast Log
A Have Attrition? Increment

(JA IDEL By One

Yes
312 316

Is There Go set Flag (JA)
Low 1 Range No To Indicate

No- That Last LegRem ining?
(IN = 0) Had No Attrition

(JA = 0)
Yes

351 350 If 309
309

AccumulateRetrieve Insert Latitude
Distance Distance Since And Longitude Of

Since Last Last Event In I Event InArray DULDISEvent (ELDIS) For Decoy Coverage Event List

313 352 No:
Will Go Low

Find Go LowRange Run No * % Does Attrition
Out Before I Range Which End With 352

This Event? Will Remain This Event?

Yes YYes

318 314

Fig. 165. (cont.

(Shoet 2 of 3)

823



Set Flag (INF)
To Indicate That

No Go Low I
Range Reminats

(INF - If

OfAltitude hag 31n~ Atitude

FinFig 16cti. EventnW.)
(e et3o 3)8

Change E824



IIOC
i'n' rotlNuniber .if ;venlts 341

Proces,.. A-ove

340

Post Iypa, Lati-
tude, Loig~itude, Post [oter SectorIncrement lIndex And Place Of lEven, , Latitude,

1*0 Flagging First livetnt lAnlLde,
Ar~ay L~il~ITJ nitialize And Place

Counters And Flags

362Ye

Replace Previous For All IOU S titorle NO
Event Number Fr' l ~ ef etreN

ReplacePrevios Pl~gted Fo CaltsOJNA~ Postiner Seto

With 166.en Pro ram ese CorrdorU1,t

36 Blo Ickre1m Pot Cont r Rid ' onEent
Fla(Sheet To oeflec)

Inreen Ide a d or No Aditon o is; a825e n

ToFagig PS111 COY RtieeLttue ogiueT



341 ,.•

341
Find Total

Number Of Events

Processed Above

Sot Pointer
1 DL As Last

Entry In
Array LWHIT

(She t 2 of 4

Set Index J To DoDo 395 reJ n
Process "Do" 11iree l v K L astryS I

Loop Backwards Ents ] rry LIInT

I•s Jth E,.ntryX
• / Of Array \Yes

F illed,?

Fig. 166 (conit.)
(Sheet 2 of 4)

826



Set Index K To
Process "Do"

Done Do 342 For Do Loop Baickwards;
342All Events Set Index 1, To

In Lis(Shext 3vaofa4l

8270



342

342y
R~eset Index MIJT

To Include
Those Events
Just Posted

Store Current

Value Of MIt-11
In M%11I MN (IALX)

Fig.~Do 16.ecn.

For(See 4rort of 4)re

Retriee Its 828N



IASMFLAG

401 Yes

N02 Nook 0

L5000 (lc O

Bloc 405 AdFtor~sT

Yor HIGH Poents

(See 1 of 4)I
828



.11.111te ASM

rags I: Lclpýui

Test Al I ASM 4m.. FLY(l).l
Ply Points 420

Do 410 Fo [)one DE3 420 D.n,11 11
,.2 To N11AP rur In' ro I .,.. output

ý11,111 1, IT
int 6Do NIIAý 110 :-111 P -Ita-',.""IT

IFLYM-i No IBTYIr 1)

Yes

No 
413

ISTYPL(l)

UAT-ALA,;(I)
Yes VAT-ALON(I)

403

JAY- I - I
UAT-ALAT(T) Call PkEl:ly2
VAT-ALON(l) o Got Distanc

rom Previous
Fly Point

Call PREFL, I
To Got Vist.nce 418

From Previouon-ASSI Fly Posint ST, 19DI - Pý%S JAYwI-I
L 

)TST'Y

417
No

DIST<RASM? IPLYM-O Call POSTRY
To CLMPUt 1,

Yes ASM Launch Point
407

yes TCa 11 P09-f" 'Y

0 '-Lmý u.

I -FLY(l)-O 
ALATM-RLAT

ALON(I) -RLON.G

JAY=NIIAPI

Yes

419

Fig. 167. (cont .
(ShOot 2 of 4)

830



62
1IDIST=10 6

IDP(IALX)=o

Do 243 For Ijoe IP(IALX)
KA=l To NDIVEN I)

Do

Set JJ To Pojirt Yes
To KAth Eventl IDX=0?

No -s
244441

Calculate LC=NIOUNT,{IDX)

r C DO D
DDistac J1I=J1LAP(1DX)

No Set.

DOD00iDIST. ALAT(NHAP)
ALON (NH-AP)

22 Yes

HD1ST=D0D0 Call POSTFLY To .I DX 4A P~oinmte Launch 
.*

Fig. 167. (cont.)

(Sheet 3 of 4)

831



PI
Gesneratet Sort -- 0-1)

IdcsAnd S art 1 d'

(Print 6 Pas 4)

No2

422~~~_ C lleUltdRs



Initialize Flags
And C ..... trs; Increment Retrieve
Retrieve :one, Pointer; Set Latitude And

-lo "q-xt LvLatitude fuid ent Long, tildeAfter 9riginLong i tilde Of 111is Event
Of Origin

Is Event
A Launch

AS, N I

512 Post Launch 519 Yes

And Target ye s s ASM To Be

In format, !on 1.1unched At

In Detailed Corridor

History I able Origin?

No No

513 5014

Is This Yes Set

The Last Position
Event? Pointers

5013 
No

Set Pointe Do 518 Store Index 600INK To Consider DO For All Of Last Word
La5t Event Remailling Filled In

(B I o(,.k 60)
Processed Events Array ULDIS

Retrieve
Type Of
This Event 5153

Has Bomber Yc's Set Depenetration
5154 Depenetratedl Flag (TFLGDPEN)
Is Bomber

Yes No
Approaching No

5101 'Me Origin At
Low Altitude?

IF

Fig. 168. Program PLNTPLAN

Block SO: Apply GOL0112 Before

First Target

(Sheet I of 5)

833



Have I ail], % 'i V r III r .4 1 , 0

V re I vI'lig !t o liplt Itm I ti"

No vi i titl it:ll ur L

t llow l q, 1

I,'w At

It4.,'

I ITS 11.111 IN

-d I ~ til..

1;v( hei' L2~l [tt,
kill~ ~ ~ .atI4,I

At4



t Id

[Iti I ti ll-C 1 1 1\ 1 1

Se t 1:1i

Tt C.I I I- Il \iilov Il

I~~ I S I ci

k it I A N '
iti Pr I orN !'I~ % fI li

I*Ieii*; Iiiluc iiiltt~ lIl~P
Vw:!i II1 %I'.I.

Ioq I ,uIR m I o *h iip t

Vl,ýt
1

llll'o I Imm

iShoo II f



5130 Y t

51Retrieve
SLatitudle Aad
SLongitude Of
[Last Event

5135

e gn iLatitude d

(Block 6U) No r "er-ent S579547 530- -

tIs Lvent 
I e.

A Re fu e l A C rui s e G-c1 'ro . t' F• bort ? M ir', Ile? PCI ont

Begin Posting 5125 "
Abort Event ; 599

polat on Factor Bo't'e. , \ omb Target?
To Abort Five Minutes Tarent A

After Last Target Target

To PerformAn SMII nterpol.ttoB II ;-ýo 80) • Lknch?
Yes :

592 560 ..

Abort Event; 'To Detailed I Post ASM,• Launch

Adjust Decoy Itatory lalble Ad ASM larget
Coverage Distance ( IT) Events

ro Reflect Abort

(Block 80)

Fig. 168. (cont.)
(Shoot 4 of 5)

830



Pr oItv

A: II I'o,;I I c I) k c ov I'atifllV11

L; If til

Yes



P 
Cs , 11 

UNECHOS
To Find All

Remainingone Crossings

Set
Depenetirstion

Flag

601

Call P ST 17 Is Bomber
To Post N at high
GO 1110111 Altitude?

ent

6
Post

Depenetration
Ev ent

60SI
post All

Events to r
Depenctration

L

Calculate Maximum 6 0
Distance Bomber Post

Can Fly At Ifigh qj Recovery
Altitude From Even t

Last Leg (DI91AX) 619-625

its Time of Fligh No Compute Time Of
f F h t

Been Computed fo FllRht From

his F Depenetratio Dopenetration Point

C t 8

a s Ti m 0

-< T Point? To Each Associated

Yes Recovery Hase

00

626 

I'g 
'n

Compute Bases
That This Bomber

tj
Can Reach

615

Add Final Oata To
Recovery Event (At
Farthest Reachable
Recovery Base)

Fig. 169. Program PLNTPLAN
Block 60: Post Depenetration Events

838



goo

A195
8197 Should

Call ABORT CS Program Yes Proces!sing to

T 0 Stop With Thii 620
Abort Abort? Event?

P ro gram 8198 No 819 0

Increment Process Read Next
Counter; Set Flag P .a From

to Stop STRKFILE
Processing

917

Bomber No 'all VL
Plan? To Pro

es
8194 8191 816 8182

Is Plan Should
I u it, No Processing
nc ded No Are All

block Being RýStdrt With Plans to he
Proce 9 0 his Plan? Iroce sed?

Yes 81 Yes Yes

Set

8801 81

Is Plan Th is Is It Anes Isfor the. Last Alternate
Corridor Plan? With &I-c0?
I or 2?

801 844 Yes 80 No 840

Set Doe:v.lan NO Print
Precorrie,)r 11 Error

Distance Wes o s? Message
Zero

Yes 818. Yes

Is Plan 1pute Plan Inde
for Retrieve Target Soo

or
Corridor Are L

,:.Ponters 
for

I or 2?

No

822

Fig. 170. Program PLNTPLAN
Block 80: Read NeXt /OUTSRT/
Record, Convert Last One
(Sheet I of 10)

839



Fri t 10. isf, t Aon in IternAt
P, ,, "I- "

9"n I.J. Plan? All Allernow

rl I t I a I L a -Set time For
Set T ,ir For "a" Coordinating At
Coord matins All,,n:*. CO"lj*r Lfttry
At C rrador P I. To :tro
Entry a :,rd

Did Was Are These
Primary Plan No Alternate Plans F.rHe .0 11 F1At Is? Do&#,. to? Stri, I

at 
It1. 1 Sol

host Roinitial;gi, R.initi list
Fint Tim TO time omputo Timm Fo

4or Entry (DIL) S-Con'i 'he L 5 t oordimAting At
Refuel Point CorriJor Entry

814

Is Tim No compute
Launch
Tits

Y4 C 11 Or TIM Cal I SkCHAL7 t.v.
0 Co u 0 Di T Ca"I"

co An Tim ChM,. A Yes
Set TI or .0 0 M vent tWii $24
To ter 

Set Ties
To let.

Store Total
Mus", A r 0

Call 01 TOE
0 Coagnate Dis Call DECOYonce And Time AJ)D Compute
stýoon Events To Allocate LAMJ

Decays Time

$04
all DEMYADV Store Total liltis to
To Allocate ý;Lab*r Of Incremental it" Call ShI 1ALT
Decays yet Alternate

Eyonts Time To To Convert
liat.61 Plan plan'$ Owes

t 060411vr ttl AltItude Events

Coviputo, Number
of littor Events
TO to AddeJ I it I-lit" Call D:STI:a

11so In, r .,Ital Time To "".to ots.
'to C fridoe Entry .1. And rime

etvttn EventsI

To 200 P ICall ý111ATI.ITýlint I. 
store Total

output rint 10
Nualber Of($lack IS) out;, ;'Print 10 Decoys Events

Fig. 170. (cont.)
(Sheet 2 of 10)

840



Lnta Ine

Store Spceds
At High And
Low Altit de

Set JFLAG To 0
oPrcss rmr

I0 GA1
Fig. 70. (oat. (Shct 3 f 10

S41rI.0



Ine rty To m Be o, Increme iv nt Indiex Shold oyo

Hi str D' Ta ble Hisor On Event And OLO

PReflect Devcnt Eve50 Event F
ToDcyLaunch Byaiin no SMTret

8426

Tn er Num 0 r.. 
W 

Of-c7,L , e e em i i g y , I e v n



Post w 111cil 1;Vnt st Time And Ni be The Launch Th
F1 Temporn ry Ve t a i I c aunchcd For I C 's I Itrvt,:,it lij 'I]

History lable Lnunch Event

8080 YE'S

Post Launch 11-0y Finish Vustilig
Event In lemp....ry Launch Deco , 1ý "

r FE"D, L-LstDetailed History] 
hith Latitud

Tab I e Long I tud V Of
8022 Launch

80.13 
3081

Calculate Yc, Calt:ulate [)is.
.; L.v" Last tance between

Cumu lative Time 0 n t Posted Lost Lvent And
Prom LAUNCH n ASNI T'arget, Decov Launch
ASNI Event 

No
807 8024

Ic. I at

r.m Last Event

tncrement C
Index 

JO To

Process Next 
cumu

*FC um
Evont From Last Event

Retrieve Latitudt,

8000 No And Longitude of

Yes 
Events before Anti

1-tive-1, After De oy La unt:1)
000 Last YE!Event .art

plan BeeBee n 8070
ssEd?Process ed ?

P Proc,

8001 Call IN
' 11:1111 

Ectween These

[: Po To Pcrf r1m Event$; Ca Iculate

Foll-wi. ThFollotwEiv*g"Tthe 8001 Interpolontin Interpolating
Decoy Launch L

$0623062
Finish Posting

Store Index 1 0Array Contai n 1 11 9 Decoy Launch
Decoy Distance

Event With
(For Uqc In Decoy 

Interpolated

,e mination) Latitude And
Longitude

Fig. 170. (cont.
(Shect 5 of 10)

843



OU70

803

Has "iet Hag 10 Set Indic.04
Al tern at, No Show Plan Will TO Point 10

Plan Be n Have been beginning And
PP'rs'ed? En'l or 11'an
rucessed?

Y Y.es
8032

Initialize
Pointers (ji Ini t lal i.:e 1116 c.,

And Flags I", betai 1ýj
(LAINI:LA(;) For 11L5t0rY

Calculating
Location Ot"

Decay lemin"ition

Do 8500 F'or Is Yes Store
11"no Event A Low Speed

All Events co Low? In SPIA11ý' 
PD.'.

"0 

or
IDetailed N o

History Tah I e

8802 8811 8811

Is E, ent I ý Sý
yq!q

410. No ly-pe LaUlIC11 11 11 -
Uccoy? S C ;,I 1 51,1)11

Yes
SS3ý Y

8504 h

yo
SM) I Set Flug To Show

Reset Number Of Is kitinch At .v [4etrlcve Index That A Decoy, sow

Decoys Lavnchcd 14D it Altitude- I'o [jecoy Is In Proce,'s
Ilig ray Or Being

CKPI.Y.) To Pistance Array

Positive Ille (KI'LX t 0)_ (DIS-1011M Terminatedcg

it

is "'c"th' LaL ..No ype c-ýI Y,

I e 
Th 

t

8SUB 8506
stoic Fl I gilt Retriove Indice- Is It

v Te -'I n ated

And Number < 7Are 1husu To Last AnI 'Next 5, le ThatTerminated (1) No Distances To Lunt [)I t This LaL

' " " L' 
po 211ch COuld

n 
IwoFor Earlier I'qua I ? Vol 1-his 5. 11 C "I It: c 11ave Two

Termination In
S*MRr And JIL, In Array DISIORI ýTertntnatwns?

NoI 

esStore Flight Time
And NumhLr
Terminat 'd

(JLAUN) For L a ter

Termination

Fig 170. (cont

(Sheet 0 of 10)

844



8505

8505
'Store Flight 'rime

And NUmber

[uSTLORI: And IrTSORli

Set Sequence

Do 8613 F~or Done
El ntries IIISqec

Decoy' Table 'IIIgd

Do NoD

Yes Are Trermiiimtiop1
Tlimes In Order?

No

lixchainge Times
Anid Set

Se~LQuence Che0Ck
Vari ah 1 c.

Fig., 170. (coir.)
(Sheet 7 of 10)

845



Are 1hr

'oenUt!

Ter',d noted'?

Yes

Fi. 1715 Icn crmntj,)-
No Lver(th1)tpS of 10 Pr v)

846N Hstor a)" 40



8511 8511 F

8545 Yes Ye 8572
Is Next Should Next

Was There Yes Untrv In Decoy Be Incroment Index
A Decoy 0 TO Decoy Flight

TSTORE Array Forminated (ie,. Time Array ToFlying?
0? Next TSTORE Test For Another

No No Entry <0)? Termination

560 8512
Set Decoy Increment Index

Flag To To Detailed
0 flisto Tab I o

8512

11 This Event j

Yes An Abort, Or An
Exit From Defense I
Zones (i.e., Last
Event In Plan)?

No
8601 8602
Are There

8601 Still Decoys No Post Event
Being 8500

Flying? Processed
Yes

rminate
e Decoy 8602

unch

ncroment Ind
To Dot a Decoy

"cr CA Setiled 11'. Z, Cy Igit
History Ta le Tire Table Flag To

0

860)

Fig. 170. (Cont.)

(Sheet 9 of 10)

847



C"i I I
SNAPIT (3, 1)

TO Print
Detai led

Ifistory Table

(Block 90) 900 No Should A
PLANTAIT

Be Writtvjl?

Yes
8990

Writo Required
Informatiot)

PLANTAJ)jýOil PLANTAPE

-0-e
Should

PLANTAIT
NoItIformatioll

fie Printed?
(NA 1) 2) :z 3)

Yes
898

PH I t
RO(JUIred

Inforn at i oil

8917

Should 'I.)lC,
Hk EVIAPE

1%,rittell?

No

2 09 (Block

Fig, 170. (coilt

(Sheet 10 Of ]0-)

848



1iUpdate
Oock Stn

A,- Iriove
Pa.yload

Oa.t a

NPLAN-O

I~rR A~HT- I

Post First Event

91 FrEVDhE vent Event

Afte The tfdW o o IET
(Soo 15 of17

849ler



9121
AddOn Tim C lculat(BeckIS

9 i00 171. Print.
Recovery (No ivmct~ 2 EXCE3D

850LNE



908

MI:L= I V()

Is There Ye

AnAtrnt

'l an ?
No

919)
NI' LAN=,kll;L

920

NAVAL Weapon DBI)3 Iestyllct I-I'ET

Baso 71?Eon.

f 118 o t 3 Pf 33



Call PLANTANIK
To Genoarate
Tanker Plaon.

Call 71110U(L4)

To Update
Clock 4

992 ~ Fia No CllCtsLAT

Blockat 100:TA Temnaton

In852

file$ /DNAA



External Common Blocks CMO LCCDFNTO

The common blocks used by programi PLNTPLAN in processing input/outputr files are shown in table 47.

InternalCommon Blocks

In addition to the common blocks associated with 1/O operations, thecommon blocks described in table 48 are used within PLNTPLAN.

853



Table. 47. Program PLNTPLAN External Common Blocks(Sheet i of 5)

INPUT DATA FROM BASPILE

BLOCK VARIABLE OR ARRAY* DESCRIPTION

ASM'fABLE IWHDASM(20) Warhead index
RANGEASM(20) Range

RELASM(20) Reliability
CEPASM(20) CEP
SPEEDASM(20) Speed

CORRCHAR PCLAT(30) Latitude of corridor point I
PCLONG(30) Longitude of corridor point I
PCZONE(30) Defense zone in which corridor

I origin is located
RPLAT(30) Latitude of corridor I origin
RPLONG(30) Longitude of corridor I origin
ENTLAT(30) Latitude of corridor I entry
ENTLONG(30) Longitude of corridor I entry
CRLENGTH(30) Distance from corridor I entry

to corridor I origin
KORSTYLE(30) Power of y versus x
ATTRCORR(30) Iligh-altitude attrition per

nautical mile unsuppressed
ATTRSUPF(30) Hligh-altit ude attrition per

nautical mile suppressed
HILOATTR(30) Ratio low- to high-altitude

attrition (less than 1)
DEFRANGE(30) Characteristic range of corridor

defense
NPRCRDEF(30) Number of attrition sections

this corridor
DEFDIST(30,3) Distance of attrition section
ATTPRPE(30,3). Attrition in this attrition

section
NDATA Total number of words in common

/C,)RkC IAR.

DPENREF DPLINK(50) Depenetration point I link
DPLAT(50) Depenetration point I latitude
DPLONG(50) Depenetration point I longitude
QFLAT(20) Refuel point I latitude
QFLONG(20) Refuel point I longitude

*Parenthetical values indicate array dimensions. All other elements are
single word variables.

854

I



Table 47. (cont.)
(Sheet 2 of 6)

BLOCK VARIABLE OR ARRAY DESCRIPTION

FILES TGTFILE(2) Target data file (unit and maxi-
mum length)

BASFILE(2) Data base information file (unit
and maximum length)

MSLTIME(2) Fixed missile timing file (unit
and maximum length)

ALOCTAR(2) Weapon allocation by targets file
(unit and maximum length)

TMPALOC(2) Temporary allocation file (unit
and maximum length)

ALOCGRP(2) Allocation by group file (unit
and maximum length)

STRKFIL(2) Strike file (unit and maximum
length)

EVENTAPE Simulator events tape
PLANTAPE Detailed plans tape

MASTER IHDATE3 Date of run which created
BASFILE

IDENTNO Time of run which created
BASFILE

ISIDE Side
NRTPT Number of route points
NCORR Number of corridors
NDPEN Number of depenetration corridors
NRECOVER Number of recovery bases
NREF Number of refuel areas
NBNDRY Number of boundary points
NREG Number of regions
NTYPE Number of weapon types
NGROUP Number of weapon groups
NTOTBASE Number of bases
NPAYLOAD Number of payload types
NASMTYPE Number of ASM types
NWHDTYPE Number of warhead types
NTANKBAS Number of tanker bases
NCOMPLEX Number of complex targets
NCLASS Number of weapon classes
NALERT Number of alert conditions
NTGTS Number of targets
NCORTYPE Number of corridor types
NCNTRY Number of country codes

855



Table 47. (cont.)
(Sheet 3 of 6)

BLOCK VARIABLE OR ARRAY DESCRIPTION

NAVAL NNAVAL Length of /NAVAL/ data arrays on
BASFILE

IDBL(200) DBL data table index for group I
PKNAV(200) Single shot kill probability

against naval targets for group I
ISVX(6) Temporary storage array
LSTDBLDS Index of last base for which a

DBL destruct event was written

PAYLOAD NOBOMBI(40) Number of bombs of type I (For
MIRVs, the number of IRVs)

IWHDI(40) Type index of first bomb
NOBOMB2(40) Number of bombs of type 2
IWHD2(40) Type index of second bomb
NASM(40) Number of ASMs
IASM(40) ASM type
NCM(40) Number of countermeasures (bombers)

Degradation factor (missiles)
NDECOYS(40) Number of decoys (for MIRVs, the

number of terminal decoys per IRV)
NADECOYS(40) Number of area decoys A
IMIRV(40) MIRV system identification number

PLANTYPE. INITSTRK Indicator for first or second'
strike

CORMSL Coordination time parameter for
missiles

CORBOMB Coordination distance for bombers

WPNGRPX ITYPEX(200) Type number from BASEFILE
DBLX(200) DBL probability from BASFILE

WPNTYPEX REL(80) Weapon reliability from BASFILE
IWHTYPE(80) Type name from BASEFILE
IFNCTN(80) Function code for weapon

TANKER INDEXTK Tanker index
TKLAT Tanker latitude
TKLONG Tanker longitude
IREFTK Tanker refuel area index
NPSQNTK Number of tankers per squadron
NALRTK Number of alert tankers
SPEEDTK Tanker speed
DLYALTK Delay for alert tankers
DLYNLTK Delay for nonalert tankers

856



Table 47. (conL

(Sheet

BLOCK VARIABLE OR ARRAY DESCRIPTION

TANKER TTOS Total time on station
(cont.) ITYPETK Tanker type

TANKRNGE Tanker range
7 TINDEXTK(60) Tanker base index

TKRLAT(60) Latitude of tanker base I
TKRLONG(60) Longitude of tanker base I
IiREFTK(60) Refuel area for tankers whore

n>O+ must refuel at area n
NTKPSQN(60) Number of tankers in squadron I
NALRTNK(60) Number of alert tankers at base I
TANKSPD(60) Speed of tankers at base I

TKDLYALT(60) Delay for alert tankers at base I
TKDLYNL(60) Delay for nonalert tankers at

base I
TKTTOS(60) Total time on station
IITYPTK(60) Tanker type

TRANGE (60) Tanker range
9* ILAUNDEC(90) Number of decoys launched

TIMELAUN(90) Time of decoy launch
DISTORE(90,6) Distance traveled by decoy
IIDTX(90) Temporary line array
KPLX(90) Temporary place array
JTPX(90) Temporary event number array
IILAX(90) Temporary latitude array
HLOX(90) Temporary longitude array
TZTX(90) Temporary weapon offset latitude

array
TZNX(90) Temporary weapon offset longitude
IWHX(90) Temporary weapon type index
PAX(90) Temporary probability of arrival

array
C.TX(90) Temporary cumulative time array
BPLINK(200) Boundary point link

Known elsewhere BPLAT(200) Botnndary point latitude
as /BOUNDARY/ BPLONG(200) Boundary point longitude

BPZONE(200) Zone for boundary point

*-Th~is common b'lock is redefined when used in subroutines PLANTANK and VMb.The alternate definition is shown under Internal Common Block, Table 48.

857



Table 47. (cont.)

(sheet B oC 6)

BLOCKBLOCK VARIABLE OR ARRAY DESCRrPTION

9 (cont.) NEXTZONE (200) Next zone for boundary IlieKOUNT(30)
Known elsewhere rHAP(30) Miscellaneous plum counters

as /CHARTER/ MOUNT(SO) and indices

JNDhAS(5O,) Rcvr aemc aho

JAPTYPE(250) Event typeKnown elsewhere HJAPLAT(250) Eetlttd E'V01t ati~de I U,;llto ryas /H1APPEIN,/ IIAPLONG (250) E:vent longitud {tabl)1e

IIAPDIST(250) Incremental distance
RECLAT(50) Tanker recovery latitudeRECLONG(50) Tanker recovery longitude

10 RCBLAT(50,4I Recovery base latitDTde Indexed
RCBLONC50,4) Recovery base longitude forINDBAS(SO,4) Recovery base index each eo: 4INDCAP(50,4) Recovery base capacity bases

DIS'rR(50,4) Distance to recovery assigned
TOF(50,4f Time of flight to to the

recovery 
Ith d-crpenet rat ion

point

INPUT DATA PROM STRKFILS,

BLOCK VARIABLE OR ARRAýY DESCRIPTION
BLOCK LOCK/BLIOCK(320) Initially, contains the 11issile

plan fron; STRKnFrL (,,cc STIr1KF1LI
format); alIso used to store the
output plan record

OUTSRT --- Contains the input bomber record

from STRKF:LE (see STRKFI LE
format )

858

0i..



Table 47. (cont.')

(Sheet 6 of 6)

OUTPUT DATA FOR EVENTAPE,

PLOCK VARIABLE OR ARRAY DES•CRIPTION

BLOCK LOCK/BLOCK(320) Initially, the missile plan
record from s'rRKFILF (see
STRKFILF format); later, the
missile plan record for the
EVENTAPE and/or PLANTAPE:

INDATA ---- The output EVENTAPE bomber or
tanker record (see EVENTAPE
fo rmat

85Ii

859



Table 48. Program PLNTPLAN Internal Common Blocks
(Sheet 1 of 11)

BLOCK VARIABLE OR ARRAY* DESCRIPTION
ARTIME ARTIME-(50) Earliest bomber arrival time at

refuel area I

NBLDREF Number of "buddy" refuelings
required

NBOMBREF(50) Number of bombers ,assigned to
refuel area I

NTANKREF(50) Number of tankers assigned to
refuel Parea I

IARVLS/ARVLS (2,1000) ARVLS(1',I) = time of the Ith
bomber refuel processed by
PLNTPLAN; IARVLS(2,I) = the
refuel area for that bomber
refuel

ASMARRAY ALAT(10) Aim poifnt latitude

ALON(lO) Aim point longitude

IFLY(1O) Fly point flag

IDIS(10) Distance from flý point to ASM target

IORD(IO) Sort index

JAY Index'communicated to PREFLY1,
PREFLY2

DIST Distance communicated to PREFLY1,
PREFLY2, POSTFLY

BOUND Xl Latitude of beginning point

gl Longitude of beginning point

X2 Latitude of end point

Y2 Longitude of end point

IZN Current defense zone or sector
number

XR Latitude of zone crossing

YR Longitude of zone crossing

*Parenthetical values indicate array dimensions. All other elements are
single word variables.

860

.1

~,-* ~ Z~~,.~-ffi--> 7



I

Table 48. (cont,)

t (Sheet 2 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION
BOUND NZN New zone number
(cont.) IZIT Zone crossing indicator

BOUNDPT ZLAT1 (20) Beginning latitude of boundary

line
ZLONI (20) Beginning longitude of boundary

line
ZLAT2 (20) End latitude of boundary line
ZLON2 (20) End longitude of boundary line
KK Index of boundary line

CONTROL ICE Indicates which output option
selected (1 = EVENTAPE only,
2 = PLANTAPE only, 3 = both)

LSIDE Indicates which side
NPLOT Indicates number of plots per

page
ISZE Plot size
SCALE Plot scale

CORCOUNT IH Points to line of /HAPPEN/ where
current corridor begins

KC Number of lines in /HAPPEN/
describing current corridor

JH Points to line in /HAPPEN/ where
current depenetration corridor
begins (I = depenetration point)

LC Number of lines describing
current depenetration corridor
(see common block /9/ for
description of /HAPPEN/)

DINDATA HDT(90) Time - for detailed history -

of event I
KPL(90) Place - for detailed history -

of event I
JTP(90) Event type - for detailed history -

of event I

861



Table 48. (cant)
(Sheet 3 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION

DINDATA HLA(90) Latitude - for detailed history -

(cont.) of event I

HLO(90) Longitude - for detailed
history - of event I

TZT(90) Weapon offset latitude - of
event I

TZN(90) Weapon offset longitude - of
event I

PA(90) Probability of arrival at target
- of event I

M-T Total number of lines in detailed
plan (primary and alternate)

NPL Number of planned events (primary)

DINDATA2 C4T(90) Cumulative time - for detailed
history

IWH(90) Weapon type index - for detailed
"history

DISTC DISTC(20) Distances between target events

EVENTS LAUNM Launch missile code

LAUNB Bomber launch code

LEREFUEL Refuel code

INSECTOR Defense zone boundary or sector
crossing code

LOCLATTR Local attrition or drop bomb
event code

LAUNASM Launch ASM event code

LAUNDCOY Launch Decoy event code

LANDHO Recovery Event code

LOHI Change Altitude event code

MISSATTR Missile attrition event code

LEGDOG Dogleg event code

LABORT Abort event code

862

I •I• -- "'7 i i i i I i i i i I i i•:i - Ai



Table 48. (cont.)
(Sheet 4 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION

EVENTS LENTI'REF Enter refuel area event code

(cont.) LEAVEREF Leave refuel area event code

GO111 Go to high-altitude event code

IGOLOW Go to low-altitude event code

FINDZONH FINDLAT LtAtitude of point for which
zone number is needed

FINDLON Longitude of point for which
zone number is needed

IFOUNDZN Zone for (FINDLAT, FINI)LON)

ItLO ISTOR1III Number of event in /OUTSRT/
after which GO HIGH occurs

ISTORE-LO Number of event in /OUTSRT/
after which GO LOW occurs

IGOLEFr Set to I if GO LOW range is
available after depenetration

FAQII Distance after event ISTOREHII
at which GO HIGHi is located

FACLO Distance after event ISTORELO
at which GO LOW is located

GOLO Amount of GO LOW range remaining
for depenetration

ICLASS IBOMBIiR Bomber class index

ITAN K1ER Tanker class index

IDP )I)P (2) Depenetration corridor index
number as reassigned when last
target is an ASM target; I1)P(l)
is for primary plan, IDP(2) is
fur the alternate

I FLGI)PIN I FLGDPEN Depenetrat ion flag

= 1 at calculated GO LOW

LOWZONE: = 2 if GO LOW precedes first
insector

= 3 if GO LOW posting moved to
subroutine ZONI'CROS

863

................................ *.



Table 48. (cont.)

(Sheet 5 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION
IFLGDPEN IC1FLG Tactical aircraft flag
(cont.)

IGO IGO800 Set to 1 for degenerate target
area

IOUTOLD (Save area for /OUTSRT/
information)

IOUTOLD Index of current sortie

KOKO Index of current ASM type

MYGROUPO Index of current group

MYCORRO Index of current corridor

LPAYLOAD Index of current payload

LREF Index of current refuel area
LDPEN Index of current depenetration

point.

SPDHIO Speed at high altitude

SPDLOO Speed at low altitude

FFCTNO Function of vehicle

NHAPO Number of events

IBJECO(20) Index of target I

IBDESO(20) Designation of target I

IBTSKO(20) Task number of target I

IBCTYO(20) Country code of target I

IBFLGO(20) Flag of target I

IRF IRF Assigned refuel area index

NRF Number of refuel areas, including
those assigned by PLNTPLAN

IRFTK IRFTK Refuel area index

ITAB ITAB Flag for subroutines FINDZONE
and BOUNDARY

KEYLENG LOS Length of /OUTSRT/ record
(STRKFILE)

864

. . . . .



Table 48. (cont.)
(Sheet 6 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION

KEYLENG LIN Length of /INDATA/ record
(cont.) (EVENTAPE)

LDN Length of common block /DINDATA/

LINC Length of /INDATA/ except for
last array

LTK Length of tanker record

LMIS Length of missile record,
STRKPILE

LMO Number of good words in missile
/INDATA/

LDBL Length of record for naval DBL
event

KEYS KEYDPEN Key .for packing depenetration
point

KEYBMX Key for packing recovery point

LASM Ul Latitude of beginning point of
bomber path

V1 Longitude of beginning point of
bomber path

U2 Latitude of end point of bomber
path

V2 Longitude of end point of bomber
path

UAT Latitude of ASM target

VAT Longitude of ASM target

RASM Range of ASM

RLAT Latitude of ASM aim point

RLONG Longitude of ASM aim point

LAUNSNAP INRANGE Set to zero if ASM target is in
range of flight path; otherwise
to one

FRACPATH Fraction of total path at which
ASM is launched

865

'F. ,0 1



TFable 48. (cont.}
(Sheet 7 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION
MAX MAIRDEZ ABM defense zones (20)(contains theQUICK maximum MALERT Alert conditions (2)limits) MASMTYP ASM types (20)

MBNDRY Boundary (200)
MCCREGN Command/control (20)
MCLASS Weapon classes (2)
MCNTRYS Country codes (250)
MCORR Penetration corridors (30)
MCORTYP Corridor types (5)
MDPEN Depenetration corridors (points)

(50)
MDEPNLG Depenetration legs (50)
MGROIJP Weapon groups (200)N1PAYLOD' Payload types (per side) (40)
MRECOVR Recovery bases (puints) (200)
MRECVLG Recovery legs (60)
MREF Refuel points (directed) (20)
MRTLEG Route legs (200)
MRTPT Route points (200)
MSPERMT Sites per multiple target (5)
MTANKBS Tanker bases (SO)
MTARCLS Target classes (15)
MTARCOL Targets, collocated (4000)
t4TARCPX Target complexes (total) (4000)
NITARERS Targets per collocation island

(100)
MTARGET Targets (allocator) (5000)
MTARIND Target index numbers (12000)
M1ARSEC Targets per earth sector (4000)

866



Table 48. (cont.)
(Sheet 8 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION

MAX MTARTEI Targets with terminal' ARM
(cont.) interceptors (500)

MTARTYP Target types (total) (250)

MTARVAL Target complex with value > 0
(2500)

MTELMCM Target elements per complex (40)

MTOTBAS Weapon bases per group (150)

MTYPE Weapon types (missiles + bombers
per side) (80)

MVULN Unique target vulnerabilities
within the game base (63)

MWEAPGP Weapons per group (missiles +
bombers) (1000)

MWHDTPE Warhead types (50)

MZONEPT Zone points (200)

MZONES Zones (63)

MTARPCL Target types per class (40 for
ICLASS 1 or 2; 20 for others-)

MH -MHMINA(IO) Line in common /DINDATA/ where
target a:.ea begins

HiMAXA(O0) Line in common /DINDATA/ where
target area ends

MHMN Lower plot marker for sortie

MHMX Upper plot marker for sortie

MH2 MHMIN(2) Lower plot markers for sortie

MHMAX(2) Upper plot markers for sortie

MISCT MISCT Missile booster count

MTARGCT Missile target count

MRVFLG MRVFLG Set to 1 if plan contains MIRVs

POLITE S1 Latitude of beginning interpolation
point

TI Longitude of beginning interpola-
tion point

867

402-548 0 - 76 - 28

". . ..•: .• . ' ...... m.mm.mm..



Table 48. (cont.)
(Sheet 9 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION
POLITE S2 Latitude of interpolation end
(cont.) point

T2 Longitude of interpolation endpoint

FACTOR Interpolation factor or fraction

SR Latitude of interpolated point
TR Longitude of interpolated point

REF RIFLAT(50) Latitude of refuel area I
RFLONG(50) Longitude of refuel area I

RL RL Decoy low-altitude range
PRI Decoy high-altitude range

SNAPON NAP(15) Set to three for active print I;
set to one for inactive print I

SPASM SPASM Speed of ASM currently used
TEMPO DT(50) Distance or time temporary

storage
JT(50) Event type temporary storage

TLT(50) Latitude temporary storage

TLN(50) Longitude temporary storage

LPL(50) Place index temporary storage
TIMWLINE ITIMETYP(40) CORMSL type (0-Flight; I-Line)

CORMSLX(40) Percent flight complete or time
on line

FLTMIN(40) Minimum flight time in minutes

INDXFIX(1000) Target index numbers for fixed
weapons

TITE,(IO00) Arrival times for fixed weapons
TDATA(252) Temporary storage area for flight

data

868



Table 48 (cont.)
(Sheet 10 of 11)

BLOCK VARIABLE OR ARRAY DESCRIPTION

TTMELINE ZLAT(50,2) Latitude of timiig line endpoints
(cont.) ZLONG(50,2) Longitude of timing line endpoints

XC(50) X-coordinate of cross product
vector of timing line

YC(50) Y-coordinate of cross product
vector of timing line

ZC(S;O) Z-coordinate of cross product
vector of timing line

DL(50) Length of timing line

TMLNCH(18) Launch time

GOLD Last fixed weapon group processed

NFIXWPS Number of fixed weapons
NLEFT Counter for fixed weapons
NLINES Number of timing lines

MSLFIL(S) Input area for record from
MSLTIME file (see MSLTTME format)

VICINITY V13 Bomber cannot go high within VIhB
miles before target

VHA Bomber cannot go high within VIIA
miles after target

VLB Bomber cannot go low within VLB
miles before target

VLA Bomber cannot go low within VLA
miles after target

GOMIN Bomber cannot fly low for less
than GOMIN minutes

1DELDIS(6) Decoy coverage distanceLPRIORITY(20) Possible decoy launch priority

LMIIT(90) Possible Decoy Launch event
numb e r

NDCYRQ(20) Pointer to array DELDIS
NPSLN Number of possible decoy launches
NUMDCOYS Number of decoys available

869



Table 48. (cont.)

(Sheet 11 of 11)
BLOCK• VARIABLE OR ARRAY DESCRIPTION

COST(I,J) Distance between tanker base I
and refuel area J (where 1=60,
J=S0)

SOURCE(60) Number of tankers at base I to
be automatically assignedISOL(ll0) The Ith nonzero element in final
VAM solutionRBASLOC(1IO) Tanker base corresponding to
the Ith solution elementCBASLOC(IIO) Refuel area corresponding to
Ith solution elementNSOL Number of nonzero elements in
VAM solutionRMAX Number of rows (tanker bases) in
VAM problemIRCHK(60) Set to one if base I tankers
are not to be automatically
allocated

IRCDIF Number of bases for which
IRC1IK(1)=I

DISTREFC50) Distances from current tanker
base to refuel area I

8i

870 
'

i



SUBROUTINE ADJUST

PURPOSE: To examin: the target section of the plan to
determine where GO HIGH and GO LOW events are
to be placed with respect to the target events,
and to adjust these as appropriate.

ENTRY POINTS: ADJUST

FORMAL PARAMETERS: None

COMMON BLOCKS: ASMARRAY, DINDATA, DISTC, EVENTS, HILO, IGO,
OUTSRT, POLITE, VICINITY

SUBROUTINES CALLED: DISTF, INTERP, SNAPIT

CALLED BY: PLNTPLAN

Method

Subroutine ADJUST allocates the go low ranges of 2 (low-altitude range

before the first target) and G3 (low-altitude range after the first tar-

get) beginning at the corridor origin and covering the entire target"

area. The values for G1, G2, and G3 are input from POSTALOC on the

STRKFILE; the G1 is allocated by blocks 27 and 30 of PLNTPLAN. ADJUST is

called by PLNTPLAN just before the target list is processed. ADJUST

begins by calculating the distance from event I to event I+1 in /ASMARRAY/

and storing it in DISTC(l). The initial go low point is then determined

from the value of G2 . If G2 >O, the go low will occur G niles before

the first target. Here, the first target is defined to mean the first

bomb target or the first ASM launch point after the corridor origin. If

G1 is such that the go low point is within 15 minutes (GOMIN) of the

871



corridor origin, it is extended so that the go low occurs at the origin.

If it is to go low at the origin according to G2, any go high event

posted at the end of PLNTPLAN's block 30 is cancelled and the go low

event for G2 is omitted. If an ASM Launch had been scheduled at the

origin, and a go low is also to occur there, the ASM Launch point is

recalculated to occur 5 minutes after the origin along the original

flight path.

For plans in which G2 0, the bomber will go low at the first target,

provided that the range to be flown at low altitude after the first

target (G3)>O. If 63 also equals 0, it will fly the entire mission at

high altitude. If G2<0, it will fly - G2 miles beyond the first target

before going low. The total low-altitude range in this case is C3 "

(-G) miles.

Once the go low point has been found, the number of the event preceding

the altitude change is stored in ISTORELO and the distance from that

event to the go low is stored in FACLO. The point at which the go high

event will occur then is determined by subtracting the distances in

array DISTC from the available go low range. When the range becomes

negative or zero, the index to the array will be set to the number of

the event preceding the altitude change. This number is stored in

ISTOREliI and the distance from that event to the go high event is stored

in FACI1I.

872



I" "
II

These preliminary locations must now be checked to ensure that thý

bomber does not change altitude within a critical distance of a target

or ASM Launch. These distances arm described by the variables V1IB, VIIA,

VLB, and VLA, contained in common /VICINITY/. These variables represent

the mileages which correspond to the constant time parameters TlHB, THA,

TLB, and.TLA. The settings in PLNTPLAN for these parameters are shown

on page 876 in figures 174 and 175. If a change does occur within a

critical distance, the values of ISTORELO (ISTOREHI) and FACLO (FACIII)

are adjusted so that the altitude change is moved to a point which is

the required distance away from the target. (See figures 170 and 175.)

The distance 'flown at low altitude never is decreased by the move. For

example, if the bomber originally were to go low less than VLA miles

after the target, the altitude change is moved to a distance VLB miles

before the target. If the critical distances to two (or more) targets

overlap, the altitude change is moved, either forward or backward. as

the situation requires, past the entir'e cluster' of target-:.

I making these adjustments the amount of low altitude flight may be

increased. This is illustrated by the example shown in figure 173. It

shows two targets T1 and T2 with their associated neighborhoods drawn

taking account of the parameters in figures' 174 and 175 and a section of

bomber path shown by a dotted lihe. In this case, a GO HIGH found, say

;.at point p, would be moved first to point q, and finally to point r.

The time of low-altitude flight would be increased, in this case, to at

most twice the sum of T1IB + TIlA. For this to occur, targets would have

873

C. -



II
to be within THB + 711A minutes of flying: time to each other.

Communication between subroutine' ADJUST and program PLNTPLAN is established

through common /HILO/. The final values of ISTOPWHI, ISTORELO, FACttI,

and FACLO are used by the main program to insert the C-,ANGALT events as

the target list is being processed. Later, the CHANGALT events will be

interpreted as GO HIGH or GO LOW events by subroutine SWTCIIALT.

Figure 176 illustrates program ADJUST.

87

874



I

.,I

I " *"---*- -i,

Fig. 173. Increase In Low-Altitude Flight

8

I.

t

875



/ Altitude

Low
Altitude

TARGET Or ASM Launch

Fig. 174. High-Altitude Adjustment

High :1.1
Altitude

i! • Low

ii': Altitude
TARGET Or ASM Launch

TLB

Fig. 17S. Low-Altitude Adjustment

PARAMEFER TIM| (MINU'rES) DESCRIPTION

111 is Time before a target during which
the bomber may not go high

1ThA 2 Time after a target during which
the bomb.er may not go highTLB 10 Time before a target during which
the bomber may not go lowTLA 3 Time after a target during which
the bomber may not go low

(Variables VIIB, VifA, VLB, and VLA in common /VICINITY/ represent the
mileages which correspond to the time parameter TtlB, TlIA, TLB, and TLA)

876

....................................... m-,...



set I(w'so
To I

Initii al I- lonl
S e t F I IN ' 1 0 r i
Nwmbc 10 o I rror

I ents -1;Cleri
I'IITC Array lo

[II3301) lo "M

I.~w~d) 1S .9 1 S C 1% I IN [lstai-twv
Set IVAvh 'D~bue i. )tizc Ice o Fr

TO I After OrIi j Tin IIIslvent lo our.
Next Lvent

Fig. 176.e SuAotie ADJUSTý

EShect Afofe7Id iiumG jCorid r ri in VI(111vi talceT877Le



5331

Set ISTORELO And
FACLO To Go-Low

At corridor Origin

5601
Did Somber Go
High At End Of yes Unrel
Precorridor Go Hi

Legs? Even

No

5390
5350

Set ACVIST To
DISTS To Test
If Bomber Goes 5350
Low Too Soan

Before Target

5351
13 ArDIST

53SS DO S35S For Wile Lesi nan NoEvent 5 Following Minimum Go Low 5370
GO Low Before Target?

00
5352 5360 Yes

Is Event A Nlove Go Low To
NO Mirget (DROPBoti yes The Mlnlýum DTihs,Or Launch Asm tance Be,.r.

Event)? Target (Reset
ACDIST d UISTA)

5380
Go Low To

8 Moved Post
S380 Event 7

A ISTcDISTC
ISTORFLO ?

Yes

S361

Fig. 176. (cont.)

(Sheet 2 of 7)

878



Re ISTORELO
Tto n t To V61Event Before

'get on,
no Ta Ev

Reset ACUIST To
Minimum Go Low
Distance Before

A Target

5369 Yes 5366

Is The Eve t 
S;t ISTOPEW To

A Drop Bo No Do $365 For Dolle aint To Event

Or Lnunch M Events Before After Which
Go Low Bomber Can Go

Event? Low

Do
5367 No

H Corridor Set Index J To 
Stort In VISTA

5368 Yes Or gin Been Process Do I*he Distance Of

ar hcd? no Go Low From

j I Loop Backwards The Event

No

Is Distance
ultrav, "Is

Yes ý0? (i.e., t:: c. To Previous
Can Bembor Go Event From Bis.
Low After The tallce of Go Low

Event?) To Target (ACIIIST)

P1

Fig. 176. (cont..)
(Sheet 3 of 7)

879



5380J

Resett 
ISTORLLL0To 1, DITo o 0Even Preedin (BoberShouldThe argt GoLowAt

Event id Adjste

8807

Set ADISTTo Se ACDST T



• '• •Go Low Time Over tance To Be Flown

The Target Area Low on First Ceg
• At Low Altitude|
| (Distance From Go
[ Low To Nex vet +I

SSet I To Point

To Next Event

5406 +5410 Set Flag IGOLEFT

Incren AC'IST 1) 5110 For All D Set ISTOLIII To To Show That LowIBy Distance To li• Eents 1Following Po Fint To Next Alitd Reains ge

Next Event The Go Low To Last Event RDepem tration FS• Do (IGOLEST.I
s390 ,,o1'"40...

/ \ ISubtract Distance
SHas Go Lo• \ Flown Thus Far A t

Ran c Run • Low Altitude

\ t? (ACDIST) From Total
Go Low Distance

Yes

Se ITOEH T Set Flat IGOLUM'4r"•
poit TO EI To Ev n l'o Show That Low Store Distance

After hEventGo Altitude RTnge From Go Low To
Aow hine Remains For Next Event InLow P~ge epopner rat Ion DIST13

Runs Out [ (IGOLEF'r w 1)

To VISTA For Check| SoeDsac

To Insure Th at -venJ to r Di T om
sombe r' Does .Not Go• Goro w Evnt DTo

Iligh Too SoonAfter
A Targeot Event

Fig. 176. (cont,)
(Sheet 5 of 7)

881



S424 yel
Is Pointer At

Another Dwnomi 
S421Or Launch ASM

Event? Reset

No Accumulated
S422 Distance

(ACDIST) To VIIAAdd Distance From
Pointer Event To

Next Event To The 5429
Accumulated Distance Reset ro I "gh

Pointe r To
Target Event

Do 5425 For Dono 5428 Yes
A All Events 5430

Preceding Go High Is Next Event Do S426 For
A DROPBOMB Or No All Events DoneDo Launch After
ASM Event? Go High

Is Accumulated 
DoDistance Less Than Yes

Minimum Distance Before
Is Resulting SubtractGoing High After No
Distance DistanceA Target? (VIIA)
Positive? To Next Event

From ACDISTS420
Reset Go High

Pointer To Event 
Set Go IfighPreceding

Pointer (ISTOREHI)Ilic Target
To Next-To-
Last Event

Store D S ance
To Last E ent

In F CIT

RETURN

Fig. 176. (cont.
(Shect C of 7)

882



5474

L S-et TentativeI
l ISTOREHI- To Event At

Negative

Set DISTA To Distance
To Be Flown At Low

Altitude Between Event
I1STOREII And(, OEI!.

[Set DISTB To Distance
I To Be Flown At Low
I Altitude Between[ These Events

5430oA Set ACOIST To DISTB;
Set J To Event

Following

Tentative ISTOREHI Is JAt Te Ye

Lagt 176.r (5on50
(Set7of7

543.4~0 2 54713



SUBROUTINE BOUNDARY

PURPOSE: To examine a given line segment to determine
at what point, if any, it crosses a defense
zone boundary.

ENTRY POINTS: BOUNDARY

FORMAL PARAMETERS: None

COMMON BLOCKS: BOUND, BOUNDPT, MASTER, 9, ITAB

SUBROUTINES CALLED: SNAPIT, ABORT

CALLED BY: PLNTPLAN, ZONECROS

Method

Both input and output of this subroutine are contained in common /BOUND/
whose variables are: X1, Yl, X2, Y2, IZN, XR, YR, NZN, IZIT. BOUNDARY
is given the point (Xl, Yl) in zone IZN, and the point (X2, Y2) as input.
It determines if (X2, Y2) lies in a different zone from (Xl, YI). If it
does, it records this zone in NZN and the crossing point (XR, YR) and
sets IZIT = 1. Otherwise, it sets NZN - IZN and IMIT -- 0.

Subroutine BOUNDARY also requires an input description of the zone
boundaries themselves. These are contained in the arrays of common
/BOUNDPT/.

It is called as needed by the subroutine ZONECROS, or in block 31 of
PLNTPLAN. The method may be illustrated by referring to f:igure 177. A
directed line segment or vector going from (Xl, YI) to (X2, Y2) is
shown residing in zones 15, 27, and 62. Given that thu point (Xl, YI)
resides in zone 15, the crossing points p and then q must be determined.
The BOUNDARY subroutine does this as follows. The zone boundary lines
themselves may be looked upon as vectors, as suggested by the arrows placed
on the boundary lines of zone 15. Then the vector product or cross-product
may be taken between the input line segment and each of the boundary
line vectors in turn. If this is done, it will be noted that the cross-
"product for each of the dotted boundary lines will have a different sign
from the cross-product for the solid boundary lines. This simple test
enables the irrelevant boundary lines to be dropped immediately from con-
sideration. It leaves for consideration only the boundary lines (X3, Y3)

884

"Lit ... " '...



/ Exmpleof a 27

X1'YI

r Fig. 178. Example Of Crossing for a Non-Convex Zone



Point No. BPLINK BPZONE NEXTZONE

. - --- 4 5 0
4 5 20

1 5 10
6 7 7 0
7 8 7 14
8 9 7 20
9 10 7 20

10 6 7 5

.V

1 2

67

20 10 7 14

9 8 '
20o

Fig. 179. Example of Zone Boundary Description

886

...... . ...



r!
to (X4, Y4) and the line from the point (X4, Y4) to the point (XS, YS).
To determine the crossing point, use is made of the notion that any point
on a line segment is some weighted average of its extreme points. Consider
first the line (X3, Y3) \to (X4, Y4); then the point of intersection (X,Y)
between it and (Xl, Yl) to (X2, Y2) may be written as follows:

X = aX + (I -)X oX + (1 - B)X
1 2 3 '4

"Y = CiYI + '- c)Y2  i3BY3 + (I )Y4

These equations may be solved for a and a. The cross-over point will be
foiund at r. Since this is not on the segmcnt from (X3, Y3) to (X4, Y4),
2 will be outside the range from zero to one, hence the point r will be
rejected. For the line segment (X4,' Y4) to (XS, Y5), however, the corres-
ponding value a will lie in the interval 0 to 1, and so this point will be
accepted and its coordinates given as (XR, YR). Allso, NZN is \et to zone
27. Then the segment from point p to point (X2 , Y2) is used as. the input
.lne segment, and the BOUNDARY routine is re-entered to get the crossing

at point q in figure 177,

In a situation such as s own in •igure 178, the ends of the input line
segment (XI, Yl) to (X2, Y2) are both in zone 5 but cross-overs occur
at points a and b, into and out of zone 17.' BOUNDARY again examines only
the soli'd boundary lines of zone 5, and so produces the crossing ac Foint
a as a result. The crossing at point b is found upon entry with the line
segment from a to (X2, Y2) and zone 17 specified as the current zone.

Zone boundary lines are described to this subroutine in the arrays of
/POLINDPT/ as illustrated by the example given in figure 179. This shows
how zones 5 and 7 are described, and their'ladjacent zones indicated. Zone
5 coi.sists of line segments joining points 1i through 5 in order and is
described first. A line is indicated by a link between two points. Thus
point 1 is linked to 2, point 2 to 3, and so forth, and finally, point S is
linked back to point 1 to complete the description of zone S. Since the
segments 1-2 and 2-3 are not adjacent to another zone, NEXTZONE is re-
corded as zero. Segment 3-,4 has the next zone 7. Segment 4-5 has the
next zone 20 and so forth., Similarly, zone 7 is described by linking
points 7 through 10 together and then linking point 10 back to point 6.
For the purpose of this description, points are repeated; that is, points
3 and 6 are the same point and points 4 and 10 are the same point in the
figure.

Figure 180, illustrates subroutine BOUNDARY.

887



To utput Num~ber 0O?

Error Tom ANbor4 t
tljsag rougrh

'aeEtr Tior98
Thir oug?

Fi.10 uroutine BOUNDRYtr
Ye(hee Swtce ofo7

888t



499

.1,

Constanits

LEr'try Iii No Print Error Set ReturnJBE~GZONIE Array kiI ,keFlags

5299

Exrc Budr



?I
533

Do 600 K=l Tro
Number Of Done

Boundary Lines ISPLIT-O
(LNO) 0

Do

DIFFLNG =
Square Of Difference

In Longitude Of
End Points

No DIFFLNG

>32,400?

61)1 Yes

ISPLIT=l

613
DIFFLIN = Square Of
Longitude Difference

In End Points Of
Input Line (YI,Y2)

S~609

>3,40 No SPLIT=O

_0 Yes

I ISPLIT=l

Fig. 180. (cont.)
(Sheet 3 of 7)

890



650

No ISPL!1>0?

Yes

Lon giur e Toa Longtud

< 180?*

Saaecos nd Ye Ad 36
SieLoungtuer Tologiud

<i.1808(0n.

Ens(Shee 4ha of7)

And ZLN2891



517A

517

V Side Yes Call SINAPIT (4,6)
Counter (NL)

NO? To Output Print 4

No
518

JJ-l
LNO=O

sis

513 yes

Do 506 J=JJ To Done Line Nýumber No
34Number Of Sides SaLved 0?

- G e t 1,

et Index To Jth
Side Saved

T-7
Compute DEE
For Current

Side

Ye DEF=0?

No
514

Compute ALP14A
For Current SID

E.

No OeALPHAcl? S07

Yes
S0*5 - rr- Yes

Call SNAPIT
Compute BETA For (4,4) i],t4 O<BETAcl?
Current Side To Output Print 4

4No

Fig. 180. (cont.)
(Sheet 5 of 7)

892



SFind Ri£nimum
LALPHA Stored

e Setndex 
For

nlin mimumoLPAIn ISAVErVV]

No Is Ther IAV~tordS~~BETA= 
Storedic

N B CorresponInV53 Yes

"C Indexp 0No ~ BETA= Fo Wh c

S Cor esoss ng dingg ,
611 €
I~~~~~ Str rSnPot

5938

L 
et 

IS.VIndex.O
! BETA



FI

507

JJ..J,1

S824

.
ET=



SUBROUTINE CHKSUM

PURPOSE: To sum the contents of /DINDATA/ in fixed
point.

ENTRY POINTS: CHKSUM

FORMAL PARAMETERS: I, where I = 0 means to clear, I - I to sum, and
I = 2 to print

COMMON BLOCKS: DINDATA

SUBROUTINES CALLED: None

CALLED BY: PLNTPLAN

Method

Subroutine CHKSUM will clear the checking sum, KSUM, to 0 (when the formal
parameter I = 0), and print its contents (when I = 2). If I = 1, the con-
tents of each word of the first seven arrays of common /DINDATA/ are
added to KSUM.

Subroutine CHKSUM is illustrated in figure 181.

895



T wo Be SSete

(Sdd Cot Ntsri t
CHCKUM Word ToU.R

Reuste) MU

T ig 181 SubouineCHdU

Do9



SUBROUTINE CLINDATA

PURPOSE: To initialize common /INDATA/ and common /DINDATA/

,.; ENTRY POINTS: CLINDATA

FORMAL PARAMETERS: None

COMMON BLOCKS: DINDATA, INDATA, KEYLENG

SUBROUTINES CALLED: None

CALLED BY: PLNTPLAN, PLANTANK

Method

Each word in common /INDATA/ and each word in /DINDATA/ is set to zero.
IALT in /INDATA/ is initialized to 1.

Subroutine CLINDATA is illustrated in figure 182.

START

Clear Each
Word Of
/INOATA/

Clear Each
Word Of

/DINDATA/

:RET -URND

Fig. 182. Subroutinc CLINDATA

897

1 ,,i



SUBROUTINE DECOYADD

PURPOSE: To allocate the decoys carried by a bomber.

ENTRY POINTS: DECOYADD

FORMAL PARAMETERS: None

COMMON BLOCKS: DINDATA, DISTC, EVENTS, IOUTOLD, RL, 1, 9

SUBROUTINES CALLED: ORDER, RE-ORDER

CALLED BY: PLNTPLAN

Method

As each bomber plan is processed by the main program, any flight situation
which could use a decoy launch (see table 49) is flagged by storing the
event number (MHT) of the event following the launch in array LMItT in
common /1/. An associated launch priority is stored in the corresponding
word of array LPRIORITY, and, for situations resulting in decoy coverage
over a variable distance, the index to the array DELDIS, which contains
the distance to be covered, is stored in the corresponding word of
array NDCYRQ. Subroutine DECOYADD orders these arrays according to
priority and allocates the available decoys in the order of this
priority. The subroutine will determine only the location of decoy
launches (except for launches of priority 1 or 6, for which the location
must be determined as the events are processed for termination).
Terminations are calculated in the main program as the decoy events are
inserted into the detailed History table.

Three arrays in common /9/ are used to communicate decoy launch informa-
tion to the main program. Array ILAUNDEC contains the number of decoys
launched; array TIMELAUN contains the time interval between the decoy
launch and the event preceding it; array DISTORE contains the distance to
be covered by each decoy launch event. If this distance is greater than
the range of one decoy, DECOYADD allocates sufficient decoys to cover the
entire disLance. It is assumed that another decoy is launched as soon as
the previG-u; deý,oy terminates. However, only one launch event is posted
for the enti)c :overage distance.

Since the bnmb.:, must launch all decoys, more than one decoy may be launched
at a time if . priority list has been satisfied before all decoys have

898

------------------ •••I• ...... ]"•|-i '1• .... .. •i' .... ••:i•••"• ''•" • '•..



been allocated, In the case of area coverage, there may not be sufficient
decoys remaining to cover the distance of the first allocation. Hence, an
entry is made in array DISTORE each time a decoy launch event occurs over
the same area. If the last decoy does not cover the same distance as the
previous decoy(s), two decoy teirmination events must be posted for the
one launch event.

Each time a decoy is allocated, the index to the detailed History table
(M14T) is incremented to reserve a line for each event generated by the
launch. Since a decoy launched at low altitude (priorities 1 and 6) will
always terminate at its target, no termination event is necessary. Hence
space is reserved bnly for the launch event. (This situation is commun-
icated to the termination section by storing the number of decoys launched
as a negative number.) For high-altitude launches, either one or two
termination events are required in addition to the launch event.

The decoys are allocated by processing each entry in the priority array
in order. Since the calculation of timing and distance information differs
according to the launch situation, branches are made to various sections
of the program according to priority. It should be noted that since the
priority 3 launch information is ;ent to the subroutine as the first in-
stance of a priority 5 launch, the priofity 4 launch will be encountered
before the priority 3 decoy has, in fact, been allocated. Thus, before
the section for priority 4 is processed, a check is made to insure that
more than one decoy remains to be allocated. If only one remains, the
priority 4 section is skipped, reserving that decoy for the first priority
5 launch (i.e., priority 3).

Since the priority 8 situation calls for the decoy(s) to be launched
immediately after the priority 4 decoys to cover the high altitude
flight until a go low or a depenetration, the launch event is omitted from
the detailed History table and the distance to be covered by the decoys is
added onto the distance to be covered by the priority 4 decoys. This merely
moves the priority 4 termination event(s) to include the distance that
would be covered by the priority 8 decoy(s).

If decoys remain after every entry in the priority array has been processed
for the first time, the array will he reprocessed, in order, to provide
double coverage. Since many of the values calculated on the first pass
need not be recalculated, a different set of branches is taken, according,
again, to priority. Up to six allocation passes will be made, as long as
decoys remain. If more than six are required to allocate all the decoys,
the error message

NUMBER OF DECOY LAUNCHES EXCEEDS CAPACITY OF DECOY
ALLOCATION

is generated. Whenever this occurs, or whenever no more decoys remain to
be allocated, control returns to the main program. Subroutine DECOYADD is
illustrated by figure 183.

899

462-540 0 - 72 3P



Table 49. Launch Priority

LAUNCH PRIORITY CIRCUMSTANCE OF LAUNCH

1 R * miles before first low-
aititude gravity bomb attack
on a SAM-defended target

2 Immediately before changing
from high to low altitude

3 Immediately before penetrating
defended airspace if flying at
high altitude

4 R ** miles before first high
aytitude gravity bomb attack
on a SAM-defended target

5 Coverage when flying at high
altitude over defended airspace
before priority 4 launch

6 R miles before subsequent low-
ahtitude gravity bomb attacks
on SAM-defended targets

Coverage when flying at high
altitude over defended airspace
after priority 4 launch

*RL= range of decoy at low altitude (data set to 200 nautical miles)**R = range of decoy at high altitude (data set to 400 nautical miles)

***Priority 8 is used if the coverage is to begin at the point where thepriority 4 decoy terminates. Priority 7 is used if the bomber haschanged altitude between the priority 4 and the priority 7 launch.

900



t SlhL j•" ):

NLImbur Of YQ!

Nu

101 r'f Y
11, 01 1ER)I II fu ld r,

IO der Prlorit - An- " r irJ s t '1 t inin Il.Array l:Orreo Ind

CalJCii tC DecoC' I-l Ilht
TImL At uligh ',It itud ;

Set Flag "1o Proccis
[nitial At locat 1or)

Oinly Once

Do 500 For All otIle la]
Initialize I 0 Intries In t And Counters

Entry T0 - Temporary

Time Array Ue nlo

150

Are There No
Decoys T,)20

Be Launchcd? I
_Yes

Retrieve Index To 10
Elvent In Detailed [20 1. 3210 F:or 2 o
Hlistory Table For .\l Possiile
Which Launch tls 'lnchles

Fl aRged

300 :
o HIas In it2 i l .

,iA locat ioro
Occurred ?

Yes

.11

Fig. 183. Subrout ine UEICOYADD
(Shect I of 7)

901



6126100

6110
Decrement Number Of Store Minus Nuimber61

Decoys Remaining .4Decoys Launched Ye Is Launch Of'
By One (Minuis To Indicate Priority 1 Or 6?

-- A Low..Altltudo Launch) N

61N5

Set Flag Avid Store Storc Range Of Decoyy
Number Of Decoys In Distance Array YC IsLuhOf

Launched Far Later -4 (DI STORI-) According To -ianhO
Test For Dual Number Of' Decoys ririty 4?

Te rm inat io n Launched N

NoI
Decremen t Nube Of f

'I.g

(Shetz o 7



No

I~~~~ ~ Store Number Nubr YeosLfn O

Decrement Number Of Is Launch Ye D lime Laundchd,Decoys Remaining By r orft 2?TdIM geO
One AdRneO

No Decoys

Allocate One
Additional Line Ene im ni

To Detail.ed NetEvn (0)
History Table In Temporary

j Time Table

0[ Decrement Number
Of Decoys

Remaining P;, On~e

One Decoy priort 4? Allocate Two
FAdditional Lines

NoO To Detailed
40 Hi'story Table

Retrieve Index
To Distalic%
A.ray DELDIS J~0

[Store Event Index
In Detailed

History Table

Initiulite Line
Countex And

Decoy Flight
LTime. Variable

Fig. 183. (cant.)
(Sheet 3 of 7)

903

L1,



414

FindJ Decoy I iith ig'ti ru 4o Subt racm 1)1 nge Or

Coneage istace eoy Fromversag
Tinrme entin Iounter To beSuhtrjc Iistmee

Afnere S This Fvt 1tierelaovt 51 C eten 1en n

01r stane Nbe

Figc 183,n (~iohd ndt.) q

9046



Calculate Number Of Decrement
Decoys Required To

C (NDCY) Number Of d V,.,.Y.over Distance Roquire, her

Yes
52

S "ere Any Are There
Distance To S c ont No Reset NDCY To
Be Covered By No Decays To Laun h Launch Al I llic
This Prority 100 Number Require Remaining pecoys

Launch? Yes
53

Is This Priority
No Launch To Occur AtRetrieve Index T 55 First TargetDecoy Distance Encountered AtCOVtrage Array Ifigh Altitude?(DELDIS)

Yes
54

Add Distance To Be
Coverid To Distance

To Be Flown By Decoy
Launched IUI Miles

Before Target
(Priority 4)

Store Number 0
100 Event Immediately

Following The
Launch

300 Yes Are There Any Ný ý0
)00Decoys Remaining

Fig. 183. (cont.
(Sllc,'Ot 5 of 7)

905



S55 5

S tore Number Launched
Anid Time Launched For
Subsequent TermiflLt ion

Set Time interval To
Next Event To 0 (In
Temporary Time Table)

56Ne 

tTTý

Calculate Distance To

(See 
6 

ef7
906 
'm 

nt



Set Co"nters For
n. A OCIA ti

Hson
TO Detailed tory

Table To 0

Increment Counter
For Number Of Decays

Launched By one

631 7
630Set Flag To I ndicat .140 Are ýIore 11

_c 
,

,Are 
More 

Than

That Initial .4 ovs
Pi y rr.r ý. VF. i ý, ý- , P 'ý11'itDecovs To Launcx 'skllocatiýn Has He h

Occurred Foi Each Priorit

6.22 7nn
Set Index ]a 1: 'ri Y,,, ýas More Thai 0,0i tance Coveoed By Priority Fa.r 2000Previous Decoy eli"ve 'a' "are Thý,' 0"'Dlý!Loy Launch-rilDed?NO

A I This 'C And
i'Pr.li.u' s`7Z,.y Yes
Terminate At Same

Time?

No
620

Allocate 
one MoreLine To Detailed

History Table

a
Replace Ti 0 in
Time S '31 In Yes ýTlas This Entry rjo Do 400 For Length Done

Data i led Fillej In? Of Temporary Time _ 6 KP. rURN

401 

6214

Hi5tory Table 

Array (HDTY)
No

Fig. 183. (cont.)
(Shaet 7 of 7)

907



SUBROUTINE DISTIME

PURPOSE. To compute distances between events and convert
these distances into time increments.

ENTRY POINTS: DISTIME

FORMAL PARAMETERS: None

COMMON BLOCKS: ASMTABLE, DINDATA, DINDATA2, EVENTS, IOu'rOLD,
OUTSRT, PAYLOAD, SPASM

SUBROUTINES CALLED: DISTF

CALLED BY: PLNTPLAN

Method

This subroutine is called immediately after a bomber plan or an alter-

nate bomber plan has been processed. In either case, the plan is con-

tained in the arrays of common /DINDATA/. The counter WIT is set to

the number of lines contained in the plan. For primary plans, counter

NPL is set to zero. An alternate plan is located beginning at cell MHT.

DISTIME uses the latitudes contained in array H1LA and the longitudes

contained in the array 1ILO, and records the resulting time increments

in array HDT. For computing distances, the function DISTF is used.

This computes great circle distances where the longitudinal difference

is greater than 2.8 degrees, otherwise it assumes a Mercator projection.

To convert distances to time, the speed SPDI1I or SPDLO is used,

depending on whether the bomber is at high or low altitude. For ASMs,

the value in SPASM is used.

This computation is sufficient for all events except for zone cross-

ings. This is because zone crossings are located or determined only

908



approximately on a Mercator projection. The adjustment to the distances

in the case of zone crossings may be described by the illustration in

figure 184. This shows the two zone crossing events ZI and Z2 located

between events E 1 and E 2. The distances between events are di, d2P
and d3 as indicated. The great circle distance between E1 and E2 is D.

In this case the distance d1 would be replaced by d' d=1dD' where

D' = D/ (dI + d2 + d3). Similarly d'2 = d2D' and d'3 d 3D".

Subroutine DISTIME is illustrated in figure 185.

1)

• (12 d.

Z1 z2

Fig. 184. Distance Adjustments For Zone Crossings

909



START

OS..DistanceRetrieve Payload 
BetweenAnd warhead Indime 

(1-1)st And

Jth Events
JFY..O71
JFN.PL. 

Multiply IIDT(I)

70SS

Firogh W 85. Surotn e its

(Shee I of 2)

710 910



719
801

nDone Do 820 For SOS JFY-2
RETURN Events MIN 11DT(I) Yes JFY.17

TO RIT & Distance/
Do 85t ASM Speed No

4 No

S"Speed-Low Soo
IFY-O? Yes Altitude - - JFY-0

Speed Calculate Distance
HSO Arid Cumulative

Sp..d.11 

i gh 
Yet3

TimeSpeed-Iligh 807Alti tudeAltitude 08
Speed No 5 ibis

'bange No is Thi A

Vý, 

A

"tj 2 e

.L e Launch Ag
81.2 Altitud E e ýM A I m 808

Y

nge No Is n" 5"
7 So 

Speed 

08

e2 EveL a .d. Launc I A Alm *-e
c s 8 14

Retr Event? Yes
,)qrA., d, Yes 814

JTP(l)
IWARA

?804 806

A 804 806
t

No Th" A
A
v

Local Attrition IFY-1-IFY JFY.lEvent? (Flip cStore Lo ation

812 Yes 815 Indicator) Of Ith Event

Loc" on 815 
n jt

0 T _

Are There AnyAnyAre 
TharBombBombs (NDS) No I W11, BID

81 2 

'ej
NBS) jNo

Of Type 1? "11402

816

Set FIDT(I).

f 

vpe

L 
R.duc, 

NOS

tYYes nistance/Speed
316 

I ?r'
By 0". '

LNBSReduce 
820

By one;JWH ( I I WARl Cumulativeimi(l)-IWAR1 Add Time To

813 
Time

Yes
JFY-07 808

No

901

Fig. 185. (cont.)
(Shoot 2 of 2)



SUBROUTINE FINDZONE

PURPOSE: To find the closed polygon (zone) that contains
an arbitrary point (X, Y).

ENTRY POINTS: FINDZONL

FORIAL PARAME'fERS: None

COMMON BLOCKS: FINDZONE, ITAB, MASTER, 9

SUBROUTINES CALLED: DIFFLONG, ORIDER, REORDER

CALLED BY: PLNTPLAN, ZONECROS

Method i
The routine first sorts the zone data so that the zones are in numerical
order. Then the point to he tested (FINf)LON, IINDIAT), eC(UiValenced to
(X, Y), is checked to see whether it is inside any described zone. If
it is, IFOUNDZN is returned with the zone number; if not, IFOUNDZN is
returned with zero value.

The mathematical algorithm is based on the theorem that given any poly-
gon and a point, if the sum of the directed angles between the point and
succssivc vertices of the figure i:s zero the point is outside the
polygon. If the sum is >0 the point is inside the figure. Since in
this case the coordinates are described by longitude and latitude,
adjustment must be made for the circular nature of the longitudinal
scale. The first point of the zone is chosen as the reference point
and the longitudinal difference between this point and every other poa nt
of the zone is used to determine the size and direction of the enclosed
angles This method assumes that no one zone has more than a 1800
difference in longitude hetween any two points.

Subroutine IEINDZONE is illustrated in figure 186.

912



t 
ISTAR No I

Through

Subrout ine?

Yeos
300-302 - Thor rBG!N= I

ITAB- 0
Reorder Arrays

301

1=,0

200

Add Onm To I

No Is
BPZONE(,)0o?

S~152

Boudary/ Point s? IPOUDZN=0O k TL R

2ig. 186. Subroutine F1NIZONB
(Shtet 1 of 3O

913



220 ~(XL,YL
22 th Boundary

Point

C a YUIFL X0)IPN *ltitude
-Longitude Differene Difference Between

Between boundary New P'undary Point
Point 2YI) And Y And X

XDIPL Fl La t itude
Difference Between

Boundary [.,lnt D)ISTN X01W N2

And X

D-sT L ,. , -- Jo 1
LINK 0 ? '40

7Yes

ICORZONE, Zone
Nuniber for I SS .

, L.OSfe n1e
Los I LINK L L cat

(An le Coselt )[ LINK I ILI|•'-- • I •-

ounry what
vo Jnt Is /b/?

21
Loct. tio Of Print Message

LINKth Boundary Af I)
Point (Next Point 7: Of D

YDIFNsC Longi tude
Difference Between New D ._DBoundary Point A,\td

List Boundary Point

ýA

Fig. 186. (cont,)

(Sheet 2 of 3)

911



2102

Tu~~rc C(Sheete of 3) r-0 1Z

No915UNZ
4~2.%4D 0*57 0?



SUBROUTINE FLYPOINT

PURPOSE: FLYPOINT is an integral part of block 40 in
PLNTPLAN which adjusts events for ASM launches.

ENTRY POINTS: FLYPOINT, PREFLYI, PREFLY2, POSTFLY

FORMAL PARAMETERS: None

COC.ION BLOCKS: ASMARRAY, LASM, OUTSRT

SUBROUTINES CALLED: DISTF, LAUNCH

CALLED BY: PLNTPLAN

Method

PREFLYI determines the distance between the ASM target and the previous
flypoint which was not an AIM ASM event.

PREFLY2 calculates the distance between the ASM target and the previous
flypoint.

POSTFLY finds the next flypoint, and calls subroutine LAUNCH to compute
the ASM launch point.

Subroutine FLYPOINT is illustrated in figure 187.

916

-h \ ii i J %iI



I Is IFLY For yes IsTe yes Subtract
Entry PREFLYI JAYth JAYth Event One From

IEvent-i? An AIM ASM? ~ JAY

i FYFor Yes Set CUI,Vl) Calculate

10Entry POSFLF LY LYFo JAYth CftLAT(JAY), AMLuc

ig. ~ On 18. FuroutnmLYON

JAY

4I



p..i

SUBROUTINE INITANK

PURPOSE: To read and store tanker data from the BASFILE.

ENTRY POINTS: INITANK

FORMAL PARAMETERS: None

COMMON BLOCKS: FILES, IRF, KEYLENG, MASTER, REF, TANKER, 7, 9

SUBROUTINES CALLEDI: RDARRAY

CALLED BY: PLNTPLAN

Method

After PLNTPLAN has read and stored all other necessary information from
the BASFILE, it calls INITANK to complete the task by reading each
tanker base record and storing the elements required by PLNTPLAN.

Subroutine INITANK is illustrated in figure 188.

918



START

Number Of Tanker Yes RETURN

umber of :).jej
Bases=07

I loo 
No

000Bases=

S Skip To
New Page0 PrirOn Printer 7

Do 1200 For Each Done RETURN
Tanker Base

D

Read TankerE ad ankircL rom
'I

Record From BASFILEB rBASFILE

Store Data In
Block /7/

Array

Fig. 188. Subroutine INITANK

919



SUBROUTINE LAUNCH

PURPOSE: To determine the aim point, or launch point,
at which an ASM is to be fired.

ENTRY POINTS: LAUNCH

FORMAL PARAMETERS: None

COMMON BLOCKS: LASM, LAUNSNAP

SUBROUTINES CALLED: DIFFLONG, SNAPIT

CALLED BY: FLYPOINT (entry POSTFLY)

Method

This subroutine is called by the subroutine FLYPOINT Whenever the aim point
for an ASM is required. The inputs and outputs co this subroutine are all I
contained in /LASM/ whose variables are the following: U1, Vi, L12, V2, UAT,
VAT, RASM, RLAT, and RLONG. The subroutine is given that a bomber is flying
from the point (Ul, Vl) to the point (U2, V2) and that it is to fire an
ASM of range R at the target (UAT, VAT) during this flight, at maximum
range if possible. It determines the point CRLAT, RLONG) at which the ASM
is to be fired. The value for R is stored in RASM.

This description refers to figure 189. Here again the bomber is assumed
to fly from point (Ul, VI) to point (U2, V2) and the point (RLAT, RLONG)
at which the ASM is to be fired from maximum range R to a target located
at (UAT, VAT) is to be determined. Two cases occur. In the first and
simpler of the two, the range of the ASM is sufficient so that it may be
launched while the bomber is proceeding in a 9traight line path from
(Ul, VI) to (U2, V2). This would be the case if the range of the ASM were
R' shown in figure 189. The ASM target is said to be "in range". The
ASM could be launched at maximum range from either point p or point p'
shown in the figure. Of course, point p would be chosen. Since point p
is a point en route, it is not considered to be a FLYPOINT. The second and
more interesting case occurs when the range of the ASM is equal to R as
shown. Here the bomber must deviate from its course and fly to the point
p" to fire the ASM. The ASM target is said to be "out of range", and the
point p" is now a fly point. A solution in this case is to divide the angle
S=1 + e2 into its components parts in the same proportion as DI and D2

shown in the figure, that is:

920



e1 6 D1 /D1÷D2}02 = 6 O/ (DI+D 2)

This was found to give a good solution in most cases.. However, a better
solution is obtained by using a circle with radius .75 x R ins'pad of R,
and is described below.

The procedure carried out by the LAUNCH subroutine is outlined with the
help of figure 190. The origin of the coordinate system is taken at (U1,
Vi), and a Mercator projection is used with the longitude corrected to the
ASM target located at the point (BI, Al), by multiplying it by a=cos BI.
The distance Rl to the ASM target from this origin is first checked against
the range R of the ASM. If it is less the ASM is fircd from the origin.
This occurs if the ASM target is in the circular region about the origin.
Otherwise the distance Pl is computed as

Pl = B1 * cos a - Al * sin a = (Bi * A - Al *B)/P

and compared against R. If P1 < R then the ASM target is in range of the
(possibly projected) flight path. Then, provided it is also in the half-
circular region about the point (U2, V2), the aim point is on the line
from the origin to this point. The distance F is obtained by first obtaining

P2 = Al*cos a + Bl * sin a = (Al *A+ Bl*B)/P

and subtracting from it the distance x which is obtained by quadratic
solution.

If the ASM target is not in range of the flight path, the aim point is
computed as follows (see figure 191). First, the point (BT, AT) is com-
puted by:

BT = B*D1/(DI + D2)

AT * A*Dl/(DI + D2).

Then DIST is computed by:
IST2  (AT - 2 2
DI (AT-Al) + (BT-B1)

This yields the desired point (BF, AF) relative to (Ul, VI) as is:

4
BF = Bl + r(BT - Bl)/DIST

AF = Al + R(AT - Al /DIST

from which are obtained RLAT = Ul + BF and RLONG VI + AF/a.

921



The flowchart for LAUNCH is given in figure 192. In comparing it with

the above description, it is useful to note that, in the program,

quantities are squared for comparison purposes. Thus (RI) 2  RISQ,

(R2)2 R2SQ, p2= PATHSQ, and (P1) = BISQ,

922

_, ..fls .. l•i



D2

//• R f •.... .

oJl

(RLAT,RLONG)

- UAT, VAT)

(Ul,Vl)

Latitude

Fig. 189. Determination of ASM Aim Point

923



V

B--B U
Latitude

Fig. 190. LAUNCH Procedure Outline

924

L



(2V2)

D 2

(BT,A - ,--------A

'(BF,AF) R

I DIS

(UAT,VAT)

(U1,VI - B)

Fig. 191. Computation of Flight Path Aim Point

925



START

I ASM Range No Qt
W19 2 Alm voint

"0? Ov.r I 1ý. 10? Over The Targel

6 Yes

INRANGE-True
a-Long Correction

G-Runge ASM In Degrees
C-0,75C

Al (VAT- VI) o, RETURN

81-VAtT;-Ul)2+(BI])2RISQ-(Al ý+)IBý 80

jCall 
SSNAPI'r(5.1)

:2 RLAT;ýI, To OutputC IR 1 4SQ : G RLON V Priý,OQI Print 5
20 z

A-(V2-VI)a
B-U2_Ul

PAT,,SQ-A2 . B2 
25

:.0000001 BjPSQ-j'EMP12/PATllSQ

26

FRACPAT11= I - 6 A2-A-Al
MRI _SQ B2-B-BI

AF-Al*FRACPA'lll P2SQ-A22-822
BF=BI*FltjCP,%Til

30

BIPSQ:G 2 TEMP2-(A-Al)+(B-Bl)

70 
60

RLAT-U14BF Compute Aim INRANGE TEMP2*Point For Out 

TE

RLONG-VI.AF EMP21RAVISQ
-a Of Range Case VALSE (TEMP2 -RA111SQ)

)-0
40

RLONC:360* 5 > R2SQ:G 2

75

RLf)NG
Compute-RLOW:- 360 
FRACPATH

AF:A:FRACPATI,

BF 8 FRACPAT

4A.

Fig. 192. Subroutine LAUNCH

926



SUBROUTINE LNCIIDATA

PURPOSE: To read the user card input missile timing data,
nnd to prepare it for use by subroutine
TIMrliLNCII.

ENTRY POINTS: LNC1IDATA

FORMAL PARAMETERS: None

COMMON BLOCKS: BLOCK, FILES, ITP, MASTER, TYTDENT, TIMELINE

SUBROUTINES CALLED; DISTF, NUMNGrT, RIJARRAY, SETRI'AD

CALLED BY: PLNTPLAN

Method

Subroutine LNCHDATA reads the user data cards which contain missile timing
information. It first reads the latitudes and longitudes of any missile
timing lines, doing preliminary calcu'lations on the line data to save time
in subroutine TIMELNCII. Then, the CORMSL data is renri and stored. FLIGHT
CORMSLs, LINE CORMSLs, anla FLTMIN parameters are discussed with sub-
routine TIMELNCH.

Since some of the timing data is contained on the MSLTIME file, LNCGIDATA
initializes the file for use by subroutine PLANTMIS. Finally, LNCHDATA
'prints the timing line and CORMSL data.

Subroitine LNCHIRATA is illustrated by figure 193.

927



START

1001

Read Line
Description

Card

Fig. D93 Subou n LNCoAr

(See 1is ofe4

Nube Of Lie



Put Latitude
In Correct

Format

!007 +Yes

SReverse Sign

Of Latitude

1008
Put Longitude

In Correct
Format

Is Longitude No
East?

Yes
1009

Longitude =
360 - Input
Longitude

1013

Fig. 193. (cont.)
(Sheet 2 of 4)

929



1100

1101

Do 1101 Initialize COUISLX,
40 Times ITIMETY11, And FLTMIN

1102

Read
,R ;eaP LS

q: 

PJ- 
L

Card 
B

L 

L

B
Are First Two Yes 1106

Fields Blank? Set ITIMETYP
To 1, CORMSLX Yes Is This

No To A Lin
1104 Input Value COM51.7

Do 1199 For Each NoL

Set Of COPMSL 119.
Done chDone Data On Card 1108 1107

i Do Set COMM Yes Is
Retrieve Plan To I CORMS Lý- 17
Generator Type
Number CID) No

1110 
1109

Yes Set COMSLX Yes Is
Is 15IDS407 To 0 CORMSL<0?

q1105 No No

Retrieve FUMIN 
do

And CORMSL Input
Values

6B

Fig. 193. (cont.)

(Sheet 3 of 4)

930



R ead First
Rccord On

File

Too ~ ~ ~ g 193.c7 Yesn V. PrnMesg
(Set ' GS of 4

GroupNumbe? 0 ISSIL9IN1
of. a4CQ 

Er 
10 

AMlO 

I E



SUBROUTINE PLANTANK

PURPOSE: To process the tanker records originally con-
tained on the BASFILE, and to generate tanker
plans which correspond to them for inclusion
on the EVENTAPE and/or PLANTAPE,

ENTRY POINTS: PLANTANK

FORMAL PARAMETERS: None

COMMON BLOCKS: ARTIME, CONTROL, DINDATA, DINATA2, EVENTS, FILES,
ICLASS, INDATA, IOUTOLD, IRF, IRFTK, ITP, KEYLENG,
KEYS, MASTER, MAX, MYIDENT, OUTSRT, PLANTYPE, REF,
SNAPON, TANKER, TWORD, 7, 8, 9, 10

SUBROUTINES CALLED: CLINDATA, DISTF, IPUT, ORDER, SNAPCON, SNAPIT, VAM,
WRWORD, WRARRAY

CALLED BY: PLNTPLAN

Method

The input data for the generation of tanker plans are contained on the
BASFILE in the form of records whose contents are listed in table 50.
All of these records are read from the BASFILE early in the program by
subroutine INITANK and stored in common /7/ for use by PLNTPLAN and sub-
routine PLANTANK. The number NTANKBAS of these input records is supplied
to PLNTPLAN through common /MASTER/. A record is supplied for each tanker
base. A separate plan is generated for each tanker on the base; i.e.,
Nt plans are generated for each input record, where Nt is the number of
tankers on the given base.

Each tanker plan generated consists of seven events: (1) Launch event,
(2) Enter Refuel Area, (3) Leave Refuel Area, with (4), (5), (6), and
(7) as alternate Recovery events, as shown in table 51.

Tanker plans are generated in the following operation. As each input
record is read in, Nt plans are generated: Na plans for alert tankers,
and then Nt - Na for nonalert tankers.

Each tanker base is first inspected to determine if its tankers are to
be automatically allocated. Then, after all bases have been inspected,
PLANTANK fills common block /9/ with required data and calls subroutine

932

i'



VAM to allocate those tankers to specific refuel areas in such a way as to
minimize the total miles flown by them while servicing all bomber reqvests.

When VAM has returned its solution, PLANTANK allocates any extra tankers
and then proceeds to calculate the time schedules for individual flights.

In the second-strike case, all tankers are sent to their assigned refuel

areas at the earliest possible moment, considering delays before launch
duc to alert or nonalert status as well as the travel time required be-
tween base and refuel area.

In the first-strike case, however, they are scheduled as follows. Bombers
have been scheduled by PLNTPLAN to arrive at specific refuel areas
over a period of time (which may be several hours) so as to satisfy the
requirements associated with the CORBOMB input parameter. These bomber
refuels have been posted in the matrix IARVLS/ARVLS (I,J) where J indicates
data for the Jth refuel to be scheduled by PINTPLAN, 1=1 contains the
scheduled time of the Jth refuel, I=2 contains the assigned refuel area.

As each tanker is processed, the IARVLS array is searched for the first
unserviced bomber refuel which is to occur at the refuel area to which the
tanker has been assigned by subroutine VAM. When found, the bomber time
of arrival is retrieved, the tanker is scheduled to launch so as to arrive
at the refuel area .1 hour. prior to the bomber, and the IARVLS entry is
set to zero to indicate that the bomber has been serviced. If the search
finds no unserviced bomber at the refuel area, the tanker is extra, thus
PLANTANK schedules it to arrive .1 hour before the earliest bomber at the
area (stored in array ARTIME).

After scheduling has beem completed, distances from refuel area to recovery
bases arc calculated for each tanker, the recovery events are ordered by
ascending distance, and I'VENTAPE, PLANTAPE, and printed reports are output
with tanker plans according to user options.

Figure 194 illustrates subroutine PLANTANK.

933

........................... ~.A



Table 50. Tanker Input Record

Fortan Symbolic
ITEM Name Name

Tanker base index INDEXTK

Base latitude TKLAT

Base longitude TKLONG

Refuel area IREFTK

Number of tankers per squadron NPSQNTK Nt

Number of tankers on alert psr squadron NALRTK Na

Tanker speed SPEEDTK Vt

Alert delay DLYALTK D
a

Nonalert delay DLYALTK D
n

Total time on station TTOS

Tanker type ITYPETK

Tanker range TANKRNGE

Table 51. Tanker Plan

Event Type Time Place

Launch Delay INDEXTK

Enter Refuel Area DIST/Vt IREFTK as set by PLANTANK

Leave Refuel Area TTOS IREFTK as set by PIANTANK

Recover DI1/V (RCBLAT, RCBLONG)
Recover2 DI 2/V (RCBLAT, RCBLONG)2

Recover DI /V (RCBLAT, RCBLONG)2 2 t 2

Recover DI /V (RCBLAT, RCBLONG)
434 t

Where DIST = Distance from tanker base to refuel area
DI = Distance from refuel area to recovery base

x x
934



C START

i =0
Nwnber Of Yes

(Tanker Bases-ý0? ý kTR

100000,1009 ,No

Initialize
COST Array

1010

Initialize
IRCIK, IRCD.OIF,

And Source Array

Do 120U For | { Call VMi1 To
ITK=I To Dn Set RAX• Allocate

Number Of And CkAX Tankers To
Tanker Bases Refuel Areas

1025

Index Indicate NoAutomatic For Bas
Allocation? To I

*1020 ie

NwbrO Subtract Number Of

Tidnkmbrs To Tankers From Number

SOURCE rsrTo Of Required Refuels
SOURCEArrayAt Area

SFill COST Array

For This Base And A
All Refuel AreasF

Fig. 194. Subroutine PLANTANK

(Sheet 1 of 4)

935



20 A

1300 102
Initiali: rint Doe Refuel Index

Surplus Tanker S IPPLD Indicate Automatic
Control OSPR Mcs3age -Allocation?

Yes
105

Initiall-c IIS Do IIS For
Output Fields Each VAN Done

solution Element

Do
Call SNVCO\ To

Initialize 
No 1 3 Thi 3Print Requests Element

For Tankers (ISOL) )-0?

1 
106 Yes

Do 20 For Each Done/ Print Does Element
20 inal No Pertain To ThisTan'ker Base ( K) MCSS2geS Tanker Base?

Do
100 109 Yes

Fill DISTRU Array
With Distances From RETURIN JRPLPT

Base To Each -Refuel Area
Refuel Area

Subtract One
Retrieve ITKth From ISOL
Tanker Record

From Common /71 
110

Yes Is This The
"00 Dummy (Surplus)Done Do IS, First For'anf Refuel Area?

ALERT, The;nFor
ERT s NnNON-ALERT Tanker, 20

400 UIRFTK
Do Set IRFTK

I 
el-Reluel Area

Fill Initia
Output Fields11

J_
Do 10 For at Done

10 Tanker With I is isG ' 1. tuýAlert Status
ke r With

Do

Fig. 194. (cont.)
(Sheet 2 of 4)

936



SIDDt n ART rArra Are Yes ulT

Do m Of For Wet Ocr tTi
BEabe Atue Aresk In ul ra

No T eu l g Ca ooe e Retdieve Tim
At A sea Surplu es OfSurplus

Refuel A rea ue CoutrR1)

Yate

TankerBaseTaime Fr Sewcnd 4 00

Figd 194.e (Aone.
Least ~ ~ ~ She 3ube Of Supu4)rtStie

T a n e r s A s s g n e3Y e



460

Post Tanker
Launch Time

3-602

W v TenYtsPn

Pig. 14. (Evnnts

(Shes 4Tohe

EVENAPE No93it



SUBROUTINE PLANTMIS

PURPOSE: To control the processing of all missile plans
input from the STRKFILE.

ENTRY POINTS: PLANTMIS

FORMAL PARAMETERS: None

COMMON BLOCKS: BLOCK, CONTROL FILES, ITP, KEYLENG, MAX, MISCT,
MRVFLG, NAVAL, OUTSRT, PAYLOAD, SNAPON, TIMELINE,
TWORD, WPNGRPX, WPNTYPEX

SUBROUTINES CALLED: ABORT, RDARRAY, SNAPIT, TIMELNCH, TIMEME, WR\RRAY,
WRWORD

CALLED BY: PLNTPLAN

Method

This subroutine reads and processes missile plans from the STRKFILE. It
is called whenever PLNTPLAN reads a missile record.

The STRKFILE record is first moved from /OUTSRT/ to /BLOCK/. To facilitate
processing, most of the data is then transferred to the TDATA array in
common /TIMELINE/. Table 52 shows the variable placement in arrays BLOCK
and TDATA.

The remainder of PLANTMIS merely outputs missile plans in the correct
format onto the PLANTAPE and EVENTAPE. If the weapon group under considera-
tion has a time-dependent DBL probability, the subroutine precedes the
missile launch events for each base on the EVEWTAPE with a naval DBL
destruct event. The last words in each EVENTAPE missile launch event re-
cord are target data words which occur in pairs, one pair for each target.
The second word is the time of flight from launch to target. The format
of the first word, along with that of the DBL destruct event, is shown
in table 4' under PLNTPLAN Output Files.

When PLANIMIS has completed processing a missile record, it reads the next
plan from the STRKFILE. If the i,,formation read is another missile record,
PLANTMIS processes it without returning to PLNTPLAN; otherwise, it .rcturns.

All processing of missile plans is done in subroutine PLANTMIS, TIMELNCH,
and LNCHDATA.

Figure 195 illustrates subroutine PLANTMIS.

939



Table 52. Arrays TDATA/ITDATA and BLOCK/IOCK
Used in PLANT'MIS and TIMELNCH

TDATA/ITDATA BLOCK/LOCK

INDEX ATTRIBUTE INDEX

--- STRKFILE or EVENTAPE Record words 1-18 1-18

1-18 Missile indices 19-36

19-36 Site indices (from data base) 37-54

37-54 Target indices (from data base) 55-72

55-72 Offset latitude (DLAT) 73-90

73-90 Offset longitude (DLONG) 91-108

91-108 Flight Time (hours) 109-126

109-126 Weapon site latitude 127-144

127=144 Weapon site longitude 145-162

145-162 Target latitude 163-180

163-180 Target longitude 181-198

181-198 Target designator 199-216

199-216 Target task 217-234

217-234 Target country 235-252

235-252 Target flag 253-270

940

S. . . . " ... . .. . .. . .. .... . .... " ... ... • '• :":" i i i i i i



CSTART

Call '&I4MLi(3)T
v Ulpdate
Clock 3

5-10
Move /OWSRT/

Record To
LOCK Aray

11
Re•trIevo•Is. l

Group t In2
And DDL

STRFfL . . ...

Stord urn

Rerev uber Of 
."

Misle5An uber i

OTagets

Increment ni :Sslle

And Target

Counters

\Fixed Weapons?/ ..

2100 •yes

SStore Current

GSAVE

Fig. 195. Subroutine PLANTMIS
(Sheet 1 of 4)

941



AI

YL ~ 'qua Trou Sumbt Numbe r Oe f

.220

Va ig. Of 5 FicedWeapo

(S e 22of 04

9220

Doe Gru Nube Doe Gru



Prepare Data

For
2800-2902 Target Block

Load LOCKl

Array To

PLTAPE* I Block To

PLANTAPL
Retrieve
Payload
Index No Is

Print Request

Call TItU3LNCH To 2 cie?

Compute Missile 211

Lounch Tie'- Print Numbert
2 FomtO

Missile

No27 
Reco rd

Yess

20 is EVENTAPE
Requested?Is Group No, RetrieveIt

Number No YPE And No
Too Large? Reliability 26 .

Yes, Call SNAPIT(1S,3)I
0 Yes t9 • ,I To Output

P-int 1I

6 EV 'APE Index° And L''•

Fig. 195. (cont.)

(Sheet 3 of 4)

943

Do~~~ 25Fr eriv25 E~h Wah en Dat
.a . ..g e. . ..t• , < •"• : , , ' . : .- - .. . . . . . . . . . ., . ; : L • - ; • - ' • : •: :' • :• - ' • ,' - : , • : : ': . ', : : = ••D:o 1 7 1 , 1 7 24 - • I - " : ' •± :



r0

Clear Last Retrieve Dt
SectiLon Of Required ;.r
LOCK Arlesy EVENTAPE

Convert Offsets No IDBLTEST0
To Floating STRKFILE And

Point LOCK(2)OiLST "D LOS)

Yes
65 6070

Do 65 Done Read Next b1Update
For Each IMii~ile on Acord LSTU CLS

0D o
105

Retrieve Is It A No
Launch Bomber S Write Record

TisW RcordFor NAVAL -

Tie ecrd DOL Event

Retrieve 73
Missie Oat, Dts TIHF.MF(2)

Frm T3AATo Update IBLOCK (6) EVkNTAPEF ~ro ITVTA I rine 2 'KNAV

Set IS..ITCT~l RUH Write
I4ISSDEX.Inissi le Missil - I

I n d e xR e c o r d

Target Beginning -Number Of Call SNAPIT(lS,2)
With Number 15 Targets-l To Output

Do 64Print 1S

Fig. 195. (cont.)
(Sheet 4 of 4)

944



SUJBROUITINi' POST

PURP'OSlE: To enter the event type, event location, and
place code to the arrays In common /DINDATA/,

iNTRY POINI'S: POST
POST4 (Refuel event)
POSTS (linter Zone event)
POST8 (Local Attrition event)
POS1Il S (formerly, Launch Decoy event; now

i nkct i Ve)
PosrI 7 (Change Altitude event)

FORMAL PARAMH'IRS: A = Lat itude of event
B = Longitude of event
I = Place code for event

COMMON BILOCKS: DINDATA, iVliNTS, PILElS

L SURHOUTINE'S CALLIED: None

CAILID BY : I'INTPIAN, ZONIECIROS

N1et hod

The event tlope is dett erm1i ned by the entry point used. Sub routlin POST
inc rellelnts tihe /1)INlA'A'A/I line counter (MI IT) by 1, then entoers tihe event
type code ill1 'rl (,I I'1"). the I at it ude of the event ill Il.A (111'1'), the
long itiude in 111,0 (M ll'l) and the place index inl KPI, (MIIT).

Stlbroutinte POST is illust t|:tcd in t'igllre 190,

S..--. -



Increment Post Refuel
EtyPS4Line counter -o Event To JTP In N

By One /DINDATA/

IncrementPcst Local
IncrmentAttrition Event

Entry POSTSLine CounterToTPI

By One/DINDATA/

IceetPost Change4
Linre Cente -- o Altitude Even~t

By One/DINDATA/

En t ry PS Line Counter Evn To JTP In lo

Post Location
Of Event To
/DINDATA/D

110

E n t r y P O S0i R E T U R N

Fig. 196. Subroutine POST

946



SUBROUTINE POSTLAUN

PURPOSE: To add information pertaining to possible decoy

launches to the arrays examined by subroutine
DECOYADD.

ENTRY POINTS: POSTLAUN

FORMAL PARAVMETERS: LPR, LIlT, LDST

COM'ION BLOCKS: 1

SUBROUTINES CALLED: None

CALLED BY: PLNTPLAN, ZONECROS

Method

POSTLAIJN increments the counter for the number of possible decoy launches
(NPSLN) and stores the information sent through the calling parameters
in the appropriate arrays, indexed by NPSLN. Parameter LPR contains
the priority of the possible launch; parameter LtlT contains the number
of the event following the possible launch; and parameter LDST contains
the index to the word in DELDIS in which the decoy coverage distance is
stored. Parameter LDST will be meaningful only for launches of priority
5, 7, or 8.

Subroutine POSTLAUN is illustrated in figure 197.

9,17

402-5.4 0 2 - 33



START

Increment Number Of
Possible Decoy
Launches By One

Store Priority
Of Possible
Launch (LPR)

Store Number Of 1
Event Following
Possible Launch

(LHT)

Store Index
To DELDIS

(LDST)

CRETURN

Fig. 197. Subroutine POSTLAUN

948



SUBROUTINE PRNTAB

PURPOSE: To print the final tanker allocation tables.

ENTRY POINTS: PRNTAB

FORMAL PARAMETERS: None

COMMON BLOCKS: ARTIME, IRF, MASTER, REF

SUBROUTINES CALLED: LATCV, LONCV

CALLED BY: PLNTPLAN

Method

Subroutine PRNTAB outputs tanker allocation information, first for the
user-assigned refuel areas, then, after skipping a line, for the refuel
areas calculated by PLNTPLAN.

Subroutine PRNTAB is illustrated in figure 198.

949



G 
START

p

Print Heading$
For Tanker

Allocation Table

Initialize J To 1.
LSW To 1, And K To

Number Of User-Assigned
Refuel Areas

10

Skip One Set

[- print Lin" LSW-2

11

Do 5 For Done Yes er

Refuel Areas LSW-I? -As igned *fuel

; ; -

UsSat 
J;1*Number 

Of
as Done f Ye

J To K Areas; Set K-Total

r0Do 12 NoNo Number Of Refuel Areas

'fu; 

Do

F Detemine Number of Print NL14BER

R 
Of

Do 
5T

Extra Tankers At OF BUDDY
Area,(ISURP) TANKERS-N

Retrie--i Courdinates
Of Refuel Area RETURN

Print
Detail LinesLL 7

Fig. 198. Subroutine PRNTAB

950



SUBROUTINE SNAPCON

9

PURPOSE: To control the activation of optional prints
within PLNTPLAN.

ENTRY POINTS: SNAPCON

FOPMAL PARAMETERS: None

COMMON BLOCKS: IFTPRNT, OUTSRT, SNAPON

SUBROUTINES CALLED: None

CALLE) BY: PLNTPLAN

Method

This subroutine with SNAPIT and SNAPOUT provides the capability for
optional printing within PLNTPLAN. SNAPCON reads the print request
cards initially, and uses this information to control the activation
of prints during PLNTPLAN processing. SNAPIT is called wherever an
optional print is to be issued; SNAPIT, in turn, calls SNAPOUT to do
the actual printing.

For eacn input record from STRKFILE, SNAPCON checks the print reVqest
list wi.h a particular value of a print control parameter, say group,
to determine which prints are to be activated. Let x be the value of
the print control parameter; e.g., the group number on the current
input record. Suppose that a = the starting group and b = the finishing
group as specified on the print request card. Then x is checked to
determine whether it is in the interval a to b. Either a or b, or
both, may be blank or zero on the control card. Table 53 lists the
possible values of a and b, and the value that x should assume if the print
is to be active in each of these cases. Let a be the minimum value x
can have and let bm be its maximum value. Then the following single
"test of x suffices to determine if x is such that the print is active:

a' + amL(a')•x b' + a'L(b') + bmL(a')

where L(x) = 1 if x = 0 and is 0 otherwise.

For each print number (1 to 15) which is to be active for the current
plan, SNAPCON sets the corresponding element(s) in the NAP array to 3.

Subroutine SNAPCON is illustrated in figure 199.

951



Table 53. Possible Values of a and b

a b VALUE OF x FOR ACTIVE PRINT

0 0 any value

at 0 x = a

0 b' any value

at b' a' <- x b'

952



Clear NAP
Array To Ones

Aer Tor Reoadro

ISHitOeqest Ye HreToSe Pin

FIs 199 Subrutin IsNPrcesse

A(Sne 1tr o1 2)

ISHQ0953



r

Do '0 'or 
j~iC 

I(IOI 
o D e his S ri

E~achi Rquos t Group NO Fa-ll Wihin
(N R:). Number, Bounds?

Yes
Yes

Pr ntM r RTURNI PRNTc 100?

27 No

Is This Group Y, L~PR
Number Same 4dl10

23 No-

SetOICOUNTeFor IFTPRNT(LEG)
ThsRequest Ilnput Frequency

To 0 or Print Request
24

Clult Upr 28
Lower, Gruoup Add One To

Bounds For This OLTFo
Print Recquest This Requeit

No Does Th is No Is ICOUNT>

'.; Group Fall Within 
Frequency?

Bound;Li Yes
2S yes 29
Calculate Upper An Turn .n NAP
Lower Corridor Indicar For
Bounds For This Ti rn
Print Request

0

Withi 1a,.cot,
Co(rheet 

2a ofI
Within oundS4

~~~3 Yes~ u L LL ~ .


SUBROUTINE SNAPIT I
PURPOSE: SNAPIT is called whenever a print is to be

issued. It determines whether the print, is
active and, if so, cal!Is SNAPOUT to issue the
print.

ENTRY POINTS: SNAPIT

FORMAL PARAMETERS: 10 = Print request number
NO = Print option code

CONNON BLOCKS: SNAPON

S1tlBROUTINES CALLED: SNAPOUT, rIDMEIE

CALLED BY: PLNTPLAN, BOUNDARY, LAUNCH, P LAN'ANK, PLANINI S

Method
When the user's print option cards are read at the beginning of PLNTPLAN

execution, the encountering of each unique print request number (numbered
1 through 15) causes the corresponding element of the array NAP in block
SNAPON to be set to 3. Otherwise, the element will contain 1.

During processing of PLNTPLAN, subroutine SNAPIT is called and given the
applicable print number along with a print option code whenever a print
is to be issued. If the NAP flag for the requested print is not equal
to 3, SNAPIT simply returns. Otherwise, the print optioi: code is checked\
for the value 1, SNAPOUT is called with both 10 and NO paiameters, and
SNAPIT returns.

A print option code of 1 causes SNAPIT to print the message "PRINT
NUMBER _, and if it is print 4, the message BOUNDARY SNAP before
calling subroutine SNAPOUT. This option code, regardless of its value,
ils passed on to SNAPOUT where it has significance forprints 4, 11, and
15.

Subroutine SNAPIT is illustrated in figure 200.

"955

START

No Was This Prn
Requested?

Yes

all TIMiMEI, (-2)
To [Deactivate

Clock

4

Does Print
C Op~tion Code es Message

=1? PRINT

No NME

Fi. 00 Sb outn SNAAP

56

SUBROUTINE SNAPOUT

PURPOSE: To perform all optional printing within

PLNTPLAN.

ENTRY POINTS: SNAPOUT

FORMAL PARAMETERS: ILK = Print request number
MLK = Print option code

COWON BLOCKS: ASMARRAY, ASMTABLE, BLOCK, BOUND, BOUNDPT,
CONTROL, CORCOUNT, CORRCHAR, DINDATA, DINDATA2,

DISTC, FILES, HILO, IDP, INDATA, IOUTOLD, IRF,

IRFTK, ITP, KEYLENG, LASM, LAUNSNAP, MASTER,
MMt, 1HI2, OU'rSRT, PAYLOAD, PLANTYPE, SPASM,
TANKER, WPNGRPX, WPNTYPEX, 9

SUBROUTINES CALLED: DISTF, LATCV, LONCV, TIMEMU

CALLED BY: SNAPIT

Method

The User's Manual describes the optional priits available in PLNTPLAN
(numbered 1 through 15), and the data card format to be used when
requesting them. The cards are read initially by subroutine SNAPCON.

Then during PLNTPLAN processing, subroutine SNAPCON is entered as each
new STRKFILE bomber record is read in to be processed. SNAPCON scans
the list of requests and determines, by matching the group, corridor,
and sortie numbers of the incoming record against the request list,
which prints are to be activated and which are to be inactive during
the processing of the record. It communicates this information to sub-.
routine SNAPIT via common block /SNAPON/. This contains a fifteen-word
array NAP, one cell for each print request. The cell is set to 3 for
active requests; otherwise it is set to one.

The subroutine SNAPIT is called during the PLNTPLAN program or its sub-
routines wherever a particular print might possibly be issued, For
example, SNAPIT is called upon to print the detailed plan immediately
after this plan has been completed. SNAPIT then checks cell 3 of NAP
and issues the print only if the cell is set to 3. It calls on sub-
routine SNAPOtUT to (1o the actual printing. This separation of

957

subroutines is made because the resulting FORTRAN-produced program is
m ore efficient; SNAPIT and SNAPOUT might logically be treated as one
subroutine.

SNAPOUT itself contains only printing routines. in some instances, the
print option code (MLK), passed with the print request number, may select
differing print options within the given print number.

Subroutine SNAPOUT is illustrated in figure 201.

958

GýP
Miat Print

Number (ILK) If
Stan Requested!)

I

Print
Print I OUT RT/ RETURN0

Rec rd

2

Print 2 'rr'nn'n.1 Planinal Plan

3

F

an

4 j

Prin Print RGqUV5LULl
f" Line of

r-Oter Boundary Snap
S

I'' r
I Is 1:1

Snap

11, 1 1 f

Ir
I I cz, I I I RETURN

Legs

Fig. 201. Subroutine SNAPOUT
(Sheet I of 2)

1)S9

A 8

Print
Print 8 Dcpcnctrationý-

en'tr
=Corridor

9 9

Print 9
Print
BASFILE RETURN
Input

10

Print 10 RETURN

Test MLK For Print

ný61.11ij
ADJUSTed Or AD:J

UNADJUSTed Prjint SnaV1,

12

Print 12 Print
Abbreviated

ii-ý RE-TURN
EVENTAPE Plan

13
r Call TIýFNjr,

Print 13 Print To Pr nt RETUPNHeader Timin
ion

14

Print 14 Pr int
111- 6ý Ter., 11,11111''IL1,111 1L

M s ,age

Print IS Print

I I orma 1 011

Print N-,,,--
16

>15 Outpilit

Fig. 201. (cont .

(Sheet 2 of 2)

960

SUBROUTINE SWTCHALT

PURPOSE: To convert each bomber plan's change altitude

ENTR.POITS:events to go high or go low events.

ENTRY POINTS: SWTCHALT

FORMAL PARAMETERS: None

COMMON BLOCKS: DINDATA, EVENTS

SUBROUTINES CALLED: None

CALLED BY: PLNTPLAN

Method
SWTCHALT -xamines the plan contained in common block /DINDATA/, and
replaces 'he event code for each odd-numbered Change Altitude event
with a go low event code. The even-nuibered Change Altitude events

become go high's.

Subroutine SWTCHALT is illustrated in figure 202.

961

START

IFY-1

MIN=NPL+,2

Do 820 For Each
CHD4Done

RETURN Event In /DINDATAI
Between MIN kid MT

Do

Is This A No
Change Altitude

Event?

802 yes
804

IFY=O? Ye IFY=

80
2

Y"

Ye

84

3 No_g 805803

IFY Change Event To
IFYNO 1 0 IV If mIGOLOW If IFY

Or
IGOHI If IFY=l

Fig. 202. Subroutine SWTCHALT

962

A

SUBROUTINE 'TI'IFELNCH

PURPOSE: To compute launch times for missiles, and to
assign specific fixed weapons to specific

, /targets.

ENTRY POINTS: TIMELNCH

FORMAL PARAMETERS: None

COMMON BLOCKS: BLOCK, PLANTYPE, TIMELINE, WPNGRPX

SUBROUTINES CALLED: ATN2PI, DISTF

CALLED BY: PLANTMIS

Method

For missile plans, all data except launch time and flight time are
copied from the STRKFILE. Subroutine TIMELNCH computes the actual
launch times and flight times, using the card data read in by sub.-
routine LNCHDATA and the fixed assignment information on the MSLTIME
file.

The main user card input parameters for missile timing are the minimum
flight time (FLTMIN) and the coordination time for missiles (CORMSL).
FLTMIN is the minimum flight time for a missile type. All flight
times less than FLTMIN will be raised to FLTMIN before any timing
calculations are made.

A CORMSL may also be specified for each missile type. This parameter
will control the launch timing. There are two kinds of CORMSL: a
"FLIGHT" CORMSL and a "LINE" CORMSL. A "FLIGHT" COPR1SL is the fraction
of the missile's flight which is completed at time 0.0. Clearly, such
a CORMSSL must lie between 0 and 1. If it is 0 the missile is launched
at t = 0. If it is 1.0 the missile impacts at t = 0. The "LINE"
CORMSL requires another user input. The user specifies a sequence
of straight line segments (not necessarily connected). The "LINE"
CORMSL is then the time at which the missile first crosses any line.
If the flight path does not cross any line, then the missile will
impact at time t = 0.0. These COIMSL features are operative only for
initial strikes (INITSTRK = 1).

963

480.&46 0 - 72 -34

Subroutine TIMELNCH, then, executes as follows.

First, it raises all flight times which are below the specified minimum
flight time (FLTMIN) to the minimum. The subroutine then determines
whether the next target processed is the first target assigned to a
missile or a later target assigned to a MIRV payload. This information
is needed since, if there are several targets assigned to a missile
and more than one have fixed time assignments, only the first fixed
time assignment encountered will be considered. Thus, if a previous
fixed time assignment has determined the launch time for the missile,
no further calculations need be done to compute the launch time for
later re-entry vehicles on the missile. If there are no fixed assign-
ments (with timing) on a missile with MIRV payload, the launch time
is computed by considering only the data for the target assigned to
the first re-entry vehicle on the booster.

The program then checks the missile to see if it is a weapon that was
fixed with timing in program ALOC (statements 1000-1100). If so, the
launch time specified in ALOC is used (statement 1300).

If the weapon is not fixed, TIMELNCII checks the plan type. If the
strike is retaliatory (INITSTRK = 2) the complicated time plan is
ignored and the launch time is the time specified by POSTALOC. If
INITSTRK = I there are two options. If the missile type has a
FLIGHT CORMSL the launch time is computed in statement 3000 so that the
fraction of the flight specified by CO.ISL is completed at time zero.
If the missile type has a LINE CORMISL the situation is more complex.

The 2300 block of statements calculates whether the missile flight
path crosses one of the timing lines input in subroutine LNCHDATA.
The method for determining the intersection is explained in the
Analytical Manual for the Plan Generation subsystem. The 2300 block
computes vector cross products to find possible intersections.

If the missile crosses a line, the launch time is computed so that the
missile crosses the timing line at time equal to COPJ1SL. If the
missile fails to cross any line, the launch time is chosen so that the
missile will impact at time zero.

For a description of the variables contained in arrays BLOCK/LOCK
and TDATA/ITDATA, refer to discussion of subroutine PLANTMIS.

Subroutine TIMELNCH is illustrated in figure 203.

964

RT Ot 1400TAI !0-
Use Specified 1200

In Yes Time, Set Launch Is Time
Are Any 1Set IFIXFLG TI mes for al. et Y.weapon S 1 Specified?

I Fixed Previous KV3, Set oFlag To I From his Group?

virst FixPlag
2 000 -'a

20
t toIs -CNTST No... Pu,:. N.., 40t,--& S. ' to

/'-`Nnone Ou OQ99 For All Launch TimL?
RETURN filraets (RVS) In 9999

This Record No`ýIrLul .2;

Do Is T1,Is A
Rotalistory

Use as 14 L I
Set Minimum POSTALOC
F light Times Launch Time Yv- Is i: T pe

Untin d?
30UO

Y651 Use
hi N!- Reset Missile 0 e
T 3':. !w Frac ion f h Typ

Mis Indices, Clear CONNISL?
First Fix Flag plight

No ime 'LINE'
An .2510 2300

Set NEXTST Flag Set NEXTST Flag

-to Use
Previously

Set Launc
Cro

c To Compute Now Perp.
Computed Laun hTime to Impact

Launch Time at T-0.0 to Plane
(NEXTST Flag - 40) (NEXTST Flag - 20SO) No of Flight Path

60
Is There a r vious N Is This a 'LIS rher a no Do 5u er

Fixed As3Ij m .nt on. Potential 0 Crossi n g 'r All Timing

this Miss I ? Fixed Line%

Weapon? 2600 Yes Do

c 3 Compute

1000 Yes Potential
Set Launch Time 5 t Launch to Crossing
for Current RV Does rarget No C , s Line at Point

40 Equaloto Any ";x I"atc" It C RNS L
Prev usly F xed T.r8e
Computed Value Index?

Is There Act ua 1 '0
Yes Cross ing Clos or to

1200 Launch than Others?

t 2400

Set Fraction
of Flight
Complete

rig. 203. Subroutine TIMELNICH

965

SUBROUTINE VAM

PURPOSE: To solve the transportation problem of alloca-
ting available tankers to bomber refuels so as
to minimize the total tanker miles flown.

ENTRY POINTS: VAM

FORM4AL PARAMETERS: None

COMMON BLOCKS: ARTIME, 9

SUBROUTINES CALLED: None

CALLED BY: PLANTANK

Method

The task of allocating tankers to refuel areas in such a way as to
service all bomber refuel requirements is considered by subroutine
PLANTANK to be a form of the classic transportation problem. Hence,it structures the data as such in common /9/, and calls subroutine VAM
to apply Vogel's Approximation Method to obtain a solution.

A general statement of the problem involves the following variables:

966

j=Refuel area
"number

.. L i 2 3
S=1I * **, a1

2 a2a
S a3

i g a. Total number
i T nk rof tankersj=Tanker Iaaldlb ase i Ja va i l ab le

base
number Iat tanker

• b! I I tankers required

" R at refuel area J

*.COST(1,1) ** COST(1,2)

X (1, 1) X(l,2)

Each cell in the above table has two entries associated with it:

1. COST (i,j) = distance from base i to reCuel area j + safety
factor of .5 miles.

2. X (i,j) = number of tankers at base i to be assigned to
refuel area j.

The cost matrix is an input to the algorithm; the X matrix is its
solution.

The statement of the transportation problem to be solved is:

Given: all i, j, ai, bj, and COST (i,j),

Find: all X (i,j) such that the total number of tanker miles
flown

[CosrT(i,j) ,xi,j
9i=l j=l

967

is minimized, subject to the constraints that

1. the total number of tankers assigned from base i must equal
the total number of tankers available at base i

X(i,j) ai for Lti<i<)

2. the total number of tankers assigned to refuel area j must
equal the total number required at refuel area j

X(i,j) = bj for 15j)<C

A dummy refuel area is created to handle extra tankers, which are

later reassigned by subroutine PLANTANK.

The FORTRAN labels used in VAM rather than the symbols above are:

Table Symbol FORTRAN Name

C CMAX
R RMAX
a SOURCE (I)
b SINK(J)
COST(i,j) COST(I,J)
X(i,j) ISOL(K). where

X(RBASLOC (I) ,CBASLOC(J))=ISOI.(K)

The solution is found using Vogel's Approximation Method, a standard
operations research technique. The steps of the procedurc are:

1, For each row and column in the COST matrix, calculate the
difference between the smallest and next-smallest entry
(row and column penolties).

2. Select the row or column with the largest difference.
3. Allocate as many tankers a, possible to the sma. lest COST

cell in that row at column,
4. Allocate zero elsewhere in the row or column where the supply

(tankers) or demand (refuel requests) has been exhausted.
5. Make the only feasible allocation in any rows or columns

having only one cell without an allocation of tankers.
6. Eliminate all fully allocated rows and columns from further

consideration. Stop if no rows or columns remain. Other-
wise,

7. Begin again, using the modified COST matrix.

968

A nondegenetate basic feasible solution will have (CMAX+RMAX-1) non-
zero allocations in che ISOL array.

Subroutine VAIN is illustrated in figure 204.

IA

969

MSTART
I BAS IS40

Initial.i e S INK
Array W ith

NBOMBREF Array

Initialize ICC11K
Array And Total

Fields To 0

Set TSRCE
Total Number
Of Tankers

6
Set TSINK
Total Number
Of Bomber
Refuels

'iSRCExo?

S 4 No 503
Create Dummy

TSRCE>TSTNK?-ý Refuel Area For
Extra Tankers

S04 No 10 11
Print
COST
Matri±

1043 -1050

suPrint
SORCE/SINK 700)
Values

Fig. 204. Subroutine VVM
(Sheet 1 of 8)

970

Get Row Penaltics,
Save Location Of _ IDOOVR-BOTH
Smallest Cost In

Row

| RetrieveI~mber Of Row's

CNROW) And
Number of

Columns (NCOL)

SDoes rDOOVRe • No -
7 ROW Or BOTH? D

S Yes

Do 33 For Done
Each Row, 1 0 R 33

Set RORDER

971

To 107

N Is This Row

TTo Be Included?

No Is Ths Rowum

L < To Be Included?)

Fig. 204. (cont.)
(Sheet 2 of 8)

9"71

9000

Compa()=ore RODJ~)

IROW (1, 1) miIRORD I ,2)=JO1)Rl

RFig. 204. (cont.Jl

(See 31 of8
972R 1=O" j

•,DoeGet Column No

Penalties. _____e_________
Save Location - COLUMN Or

-- Of Smallest ?BOT?

Cost In Column 36 Yes

S• -I ~E a c h J C o l u m n I. .

NDo
S Set

CORDER

973

-_107

No Is This
= • Column To Be

\ Included? /,:
37 • es.-

(• 62 • Do-62 For]Doner Penalty= "
' A •'l Ea h R wI 1 CORDER(2)- !

.. No Is This Row-\i
S~To Be,•
S~Included?/

3800 • Yes

Only One N

x Row,?0

3801 4 Yes

Penalty=COST(IJ))
ICOL(J,1)--I
ICOL(J,2)= -1 A

Fig. 204. (cont.)
(Sheet 4 of 8)

973

:i .aim

C ERCO T Compare

CORDR(2)COSTIJ) CO RDRTOS ORER2>CsJx J

Fig. 04. (onts

490

Find Largest Of Initiali ze
Row And EMXAn
Column Penalties IDXT 0

Do 90 For Each
90Row and Each IWDEX>l?Ye

CoEXlunIDX200

9795

No T T.s..w N

100

130
Is PENTIE
> (Number of

COL-ROIVmPENTIE(1)Rows)? IROW(PENTTE, (1) flo
Ilu *Yes

IE(1)-RMAX
L(COL, 1)

139

Adl One To
IB4SIS139

RBASLOC(IBASIS)-ROW
CBASLOC(IBASIS)-COL

160

Is SOURCE (ROW) Yes IDOOVR=
< SINK (COQ? L A- ESatoi.sfy

LUMN Ro

140P
No

Satisfy IDOOVR=ROW Post Solution:E ISOL(TBASIS)a
SOURCE (ROW)

Post Solution:

17,Su(IBASIS)-S1NK(COQ u t ract
(ROW) From6OURCE (COL)ESINK

ubtract SINK(COL)Fs From SbURCE(ROW) Eliminate Row
From Further

utationlimi,ro. I
Eliminate Column
From

F----h ,Computation

Fig. 204. (cont.)
(Sheet 7 of 8)

976

170
404

300

"No Hfts S601ution Print / 4044
7 Y054MBeen Reached? M RETURNSolution

270

'4 Or 'Ore
COL*PENTIE(l)--PMAX

P...l ties 40. ROW-ICOL(COLI) 139
A

i
=

ed

RO
JCOL(COL,

CO
L;!ENTIE(I)..

PMAX
261

Do 260 For Done PENTIE(l),. No R 'T'
X?

I ROW1-1 To Irdex RMAX? CI
OW;L!P N
P=ENTIE(J) .1)

Do
251

(N PENTIE(l) . Yes MNT-
b-(Number Of Rows)? PENTIE(I).pNIAX

201
NT NooNf

u

Yes

260

Y,

T

260
20

1

h
d Tie
0

w?

1

No Should Ti Should Tie

"M

E
r

RBe Broke W th Be Broken Wit No PENTIECJ)>

No

ith

No

R IV; . JE (I)

This Row? This Column? X?
Yes Yes No

02 2S2 270

OW-PENTIE (I)
COLýIROW C0L-:MPENT COL-PENTIE

(PENTIEI),l) ROW-ICOL(MPVNTl) (I)-RMAXP
ROW= I CO L (CO L, 1)

261

ROWýPENTIE(J)
L= IROW

COL=IROW
Tj ECJ)(PENTIE (1) , 1)

139

Fig. 204. (cont.)
(Sheet 8 of 8)

977

SUBROUTINE ZONECROS

PURPOSE: To obtain all zone crossings which intercept
a given directed line segment and post the
corresponding INSECTOR events.

ENTRY POINTS: ZONECROS

FORMAL PARAMETERS: None

COIMMON BLOCKS: BOUND, CONTROL, DINDATA, EVENTS, FINDZONE,
IFLGDPEN

SUBROUTINES CALLED: BOUNDARY, FINDZONE, POST, POSTLAUN

CALLED BY: PLNTPLAN

Method

Subroutine ZONECROS accepts as input the line segment from (XI,Y1),
to (X2,Y2) specified in common /BOUND/ and calls on subroutine
BOUNDARY to obtain the first crossing (XR,YR). It then checks to
find if there is a crossing (IZIT ý 0). If there is one, it posts it,
records this crossing as the beginning of the next linc segment, and
begins again by calling BOUNDARY. This is repeated until no crossing
is found. Special handling is required, however, when both the zone
number and depenetration flag (IFLGDPEN) are zero.

Note that the defense zone in which the corridor origin is located
is specified to PLNTPLAN in common /CORRCHAR/. Consequently, the
bomber path is processed both backward from this point to the
corridor entry using subroutine BOUNDARY directly, and forward to
the recovery base using ZONECROS.

Subroutine ZONECROS is illustrated in figure 205.

978

(Call beOorDARY

F Cro25.s ubounegOECO

NZN-04 ? N 72 - 35NZ

Asig I.-.--....---.

(FINDLAT,FINDLON)
(X2,Y2)

Call FINDZONE
To Determine

Which Zone

16
IZN.IFOUNDZN (X2,Y2)-CXl.Yl)

(XI,Yl)uCFINDLAT,
FINDLON)

No~
11

20-1 21Call BOUNDARY
TO Find Zone

LOWZONE -3 ? YesI RETURN Crossing
Point

(Sreet 2 of 3

9800

Fg 205. (cnt

- XR,YR)

\L-Pos IZ-I
CrNossn Evn?3 I1LGOIsc

IZN-I-ONZ
(X2,2)

(Fig, 205.F(cont.)

(Sheets 3 _73

LOWZOE = 0Po981

CiAPTER 9
PROGRAM EVALALOC

PURPOSE

The purpose of program EVALALOC is to summarize the planned allocation of
weapons to targets and provide an expected-value estimate of the results.
Provision is also included to evaluate the allocation for variations in
the values assigned selected parameters (planning factors) associated
with the weapons and targets. EVALALOC may be run at two stages of plan
development, either before program ALOCOUT or after program PLNTPLAN. If
run prior to the selection of desired ground zeros (DGZs) for complex
targets (accomplished in ALOCOUT), the analysis of aim point offsets is
not included. In this case) the results produced by EVALALOC represent
an upper limit estimate which assumes that each target element in a com-
plex is directly targeted. When EVALALOC is run after program PLNTPLAN,
the weapon aim points offsets are available and are included in the
expected-value computations.

INPUT FILES

When program EVALALOC is run before program ALOCOUT, the input files are
the BASFILE preparea by program PREPALOC and the ALOCTAR file prepared by
program ALOC. When run after program PLNTPLAN, the PLANTAPE produced by
PLNTPLAN is also required as input.

OUTPUT FILE

Program EVALALOC does not produce an output file for use by later pro-
cessors; its sole output is a set of summaries which present the expected-
value results of the planned weapon allocation. A detailed description
of those summaries is contained in the EVALALOC section of Chapter 3,
Plan Generation Subsystem, User's Manual, Volunie II.

982

CONCEPT OF OPERATION

Program I'ALALOC processes the targets one at a time. For each target
(br target element of a complex target), the weapons assigned are read
in and ordered by time of arrival. Surviving target values arc cal-
culated, utilizing the same damage functions useaI in program ALOC
(subroutine WAD), except that correlations are ignored. After the sur-Ivival probability of each target isýi computed, the target and the assigned
weapons are classified for summarization purposes. When al.l targets have
been processed, the expected-value results, are summarized and printed.

The initial pass over the target system always produces an evaluation
based on the same weapon and target parameters used in program ALOC.
Subsequent passes may be made to investigate the sensitivity of the
results to changes in:these weapon And/or target pararmeters.

When program EVALALOC is run prior to program AWOCOUT, the weapon
allocation data are obtained directly from the ALOCTAR file (A1LOCTAR
reflects the allocation by target). When EVALALOC is run in the post-
PLNTPLAN mode, the weapon allocation data are obtained from the
PLANTAPE but cannot be used directly. Ili PLANTAPE reflects the
allocation by sortie; i.e.,ieach block of data describes a deliveryvehicle which transports warheads to one or more targets. Consequently,
in this mode of operation, EVALALOC must first process the PLANTAPE and i
construct from it a file which reflects the allocation by target.

The program consists of the main executive program EVALALOC, a

summarizing, data handling, and print subroutine EVAL2, and a computing
subroutine EVALPLAi%. EVALALOC includes provisions for exploring the
sensitivity of the results to the assumed or calculated values of someI of the weapon or target plalining parameters. The program can be re-
cycled and -these parameter values can be varied using subroutines
WPNMODIF and TGTMODIF.

As indicated above, when EVALALOC is run after PLNTPLAN, it is necessary
to prepare a new file on which the weapon-to-target allocation is target
oriented. gecause of the large amount of data which must be stored to
describe the allocation, it is necessary to pack several items of
information in each word. This is done by the four packing subroutines,
PACK, BONIRPAKR, MISLPAKR, and UNPACKER. In the event that the pre-
PLNTPLAN operation is prescribed, the packing routines are never
called and the allocations areread from ALOKTAR.

Program EVALALOC (figure 206) reads the user's general control data card
and stores the input parameters ITGTMAX, JOPT, and PREFABRT in common
block /OPT/A, the parameter PKTX in common block /MIS/, and the parameter
LAW(1), LAW(2) in common block /LAW/. If ITGTMAX is negative, it stops
the run. Otherwise, it initializes the filchandler and reads the

983

...

START'
SRe~ad And Print User /

eneral Cor-rol Card

SI GTMAX < 0.? STeP

i•No

And FILES From The BASFILE
(RDARRAY, SKIP)

, Call TER•TIrAPE To

Post-PLNTPL/\N Run No Release Buffer Areas

\I' jUed By BASFILE

Call TheMAPIE To

Release Buffer Areas
eUsed By BASFILE

-I Callng PL•ACK ato
Ra Target Group Order On

RArrang Ue dB PLAN APEDta

II A SCRATCH File So
II It Can Be ProcessedU1 Like The!ALOCTAR File

Call iEVAP2 To

Evaluate The Weapon
Allocation To Tohe Targets

Fig. 206. Program EVALALOC

•' 9 8 4

TagtGopOdrO

A SCR.ATCH ileS

/FILES/ and /MASTER/ common blocks from tho BASFILE. If the run is
post-PLNTPLAN it also reads the REL, ITYPE, and DBL arrays into common
block /WPNMODi so they can be used by subroutine UNPACKER to modify the
values of the weapon penetration probability obtained from the PLANTAPE.
In this mode of operation, EVAILPLAN next calls subroutine PACK to
reorder the weapon allocation data from the PLANTAPE. Then it calls
EVAL2 to evaluate the allocation and summarize the results. In the
pre-ALOCOUT mode of processing, subroutine PACK and its associated
subroutines are not used, and EVALALOC proceeds directly to the EVAL2
call. After EVAL2 completes its processing, EVALALOC reads the next
user general control data card and repeats the process described here
until it reads a card where ITGTMAX is negative.

Subroutine PACK is used only in post-PLNTPLAN operation of EVALALOC.
PACK determines the order of the targets on the ALOCTAR file and reorders
the weapon-to-target allocatLon data on the PLANTAPE in that target order.
To do this, it must pack the weapon allocation data using subroutines
MISLPAKR or BOMRPAKR (depending on the weapon type). At the time of
packing, DOMRPAKR and MISLPAKR use subroutine SEARCH to locate the
ALOCTAR targer number associated with the target index number, INDEXNO,
contained on the PLANTAPF. This number is also packed with the weapon
data. When all the weapon allocation data from the PLANTAPE have been
packed and written onto a scratch file in target number order by PACK,
the ALOCTAR file is read again, one target at a time, and PACK uses
UNPACKER to locate and unpack the weapon allocation data associated with
the targets. Since these data are in target order on the SCRATCH file,
the matching process is straightforward. After the allocation data is
unpacked, PACK writes the target data from the ALOCTAR file and allocation
data (obtained from the PLANTAPE) onto a new scratch file in a format
identical with the ALOCTAR file. Hence in post-PLNTPLAN processing,
this scratch file is used in place of the ALOCTAR file.

Subroutine EVAL2 controls the evaluation process in EVALALOC. It first
calls subroutine WPNMODIF to modify the BASFILE weapon parameters
specified by the user if this is not the first pass through EVAL2. (On
the first pass no weapon or target parameter modifications are done.)
Then it reads thQ target and weapon allocation data from the ALOCTAR file
(or from the ALOCTAR-like scratch file in post-PLNTPLAN operation) one
target at a time. If the target is multiple or complex, it also reads
the associated target element data from the BASFILE. For each target,
or complex target component, if this is not the first pass, EVAL2 calls
TGTMODIF to perform user-specified modifications on target parameters;
for all passes it then calls EVALPLAN to determine the amount of damage
done to the target and to store the results in the various arrays in
common blocks /LITTLE/ or /2/ to be used later in EVAL2 when it produces
the printed output summaries. EVALPLAN uses the functions SSKPC, SSPCALC,

985

and DIST to determine the probability of kill for a target, the target
survival probability given a multiple weapon. attack, and the distance
between the target centroid and the point of weapon delivery. All three
of these factors affect the expected-damage calculation for the target.
(Note that in post-PLNTPLAN operation, TGTMODIF and EVALPLAN are called
once for each multiple target element.) When all the targets and
associated weapon allocation data have been read and evaluated, EVAL2
summarizes and prints the results in tables. This completes one pass
through EVAL2. The next pass through is initiated with another call to
WPNMODIF to see if the user wanted to test the sensitivity of the results
to other weapon parameter modifications. If he did, another pass through
EVAL2 is accomplished. This process continues until EVAL2 encounters
the word RETURN as the weapon parameter to be modified. Then control is
returned to the main executive program, EVALALOC.

COMMON BLOCK DEFINITION

External Common Blocks

The format and content of the external common blocks used in EVALALOC
is presented in table 54. The use which the program makes of each
of the blocks is set forth briefly below:

1. /FILES/: This common block contains information about the
BASFILE, ALOCTAR file, PLANTAPE, and SCRATCH files (which are
equivalenced to the STRKFILE which is needed to use the file-
handler subroutines).

2. /1/: This common block is filled from the PLANTAPE by sub-
routines PACK and is used by subroutines BOMRPAKR and MISLPAKRto obtain the data which they pack for each target event.

3. /TGTNIOD/: In post-PLNTPLAN operation, this block is first
filled by PACK when it reads the ALOCTAR file and then is filled
by UNPACKER when it unpacks data for the ALOCTAR-like SCRATCH
file. Then, in all cases, it is filled by EVAL2 when it reads
the ALOCTAR file or ALOCTAR-like SCRATCH file. The data arc
modified by subroutine TGTMODIF and used during EVALPLAN
evaluation.

4. /WPNMOD/: In post-PLNTPLAN operation, this block is first
filled from the BASFILE by EVALALOC so the weapon parameters
can be used by PACK to modify the weapon penetration

986

;,]

..

probabilities from the PLANTAPE. In all operations it is
filled again from the BASFILE by subroutine EVAL2, modified
by WPNMODIF, and used during EVALPLAN evaluation.

S. /PLANREC/: Is a convenient storage place for data read from
the PLANTAPF header portion of each record and is used only
by PACK.

6. /MIS/: This block contains data about terminal ballistic
Rile interceptors and is filled by EVALALOC (PKTX) and
EVAI2. It is used by EVAL2 during the calculation of expected
target damage when the target has such interceptors.

Internal Common Blocks

The format and content of the internal common blocks encountered in
EVALALOC are presented in table 55. The use of these blocks by the
program is set forth briefly below:

1. /LATLON/: This block is used by subroutines PACK and UNPACKER
during post-PLNTPLAN operation to transfer target and weapon
delivery location coordinates back and forth. It is filled
in all EVALALOC runs by EVAL2, and EVALPLAN uses it during its
calculation of expected target damage.

2. /LITTLE/: This block is filled by subroutine EVALPLAN which
uses it to pass some weapons allocated to one target to EVAL2.
EVAL2 updates the arrays used to produce the printed summaries
from these data.

3. /OPT/: This block contains the user's options as contained on
the general data control card. It is used in various ways by
nearly all EVALALOC subroutines to carry out the functions
specified by the user.

4. /LAW/: This block is filled from the general control data
card by program EVALALOC and is used by function SSPCALC when
it determines target survival probability for EVALPLAN.

5. /BINSCH/: This common block is used by PACK, BOMRPAKR,
MISLPAKR, and SEARCH and contains parameters related to the
binary search done by SEARCH to determine the target number
corresponding to a given target index number.

987

6. /2/: As used by PACK and its associated subroutines, this
bF-ck contains the packed data from the PLANTAPE. It is used
by EVAL2 to store weapon data (CCREL, IREG, IALERT, IPAY, and
YIELD) from the BASFILE for use by EVALPLAN to hold the arrays
in which the summary data for the prints produced by EVAL2
are stored.

988

Table 54. Program EVALALOC External Common Blocks(Sheet I of 5)

INPUT FROM BASFILE

BLOCK VARIABLE OR ARRAY* DESCRIPTION

FILES TGTFILE(2)** Target data file

BASFILE(2) Data base information file

MASLTIME(2) Fixed missile timing file

ALOCTAR(2) Weapon allocation by targets
file

TMPALOC(2) Temporary allocation file

ALOCGRP(2) Allocation by group file

STRKFIL(2) Strike file

EVENTAPE*** Simulator events tape

PLANTAPE*** Detailed plans tape

INPUT FROM PLANTAPE

BLOCK VARIABLE OR ARRAY DESCRIPTION

/1/ LGRP Weapon group index

KORD Corridor index number

TMLAUN Missile time of launch

HDT(90) Missile flight time or
bomber/tanker time since
last event

KPL(90) Place or site index

JTP(90) Missile index or event tape

*Parenthetical values indicate array dimensions. All other elements
are single word variables.

"**In two word arrays, first word is logical unit number; second word is
maximum file length in words. Single variables are logical unit
numbers.

***These files are output on magnetic tape.

989

Table 54. (cont.)
(Sheet 2 of 5)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/1/ HLA(90) Event latitude
(cont.) HLO(90) Event longitude

TZT(90) Missile weapon site latitude
or bomber weapon delivery
offset latitude

TZN(90) Missile weapon site longitude
or bomber weapon delivery
offset longitude

IWH(90) Warhead type or index
PA(90) Reliability/damage

expectancy
ICMr(90) Bomber/tanker cumulative

time to event
ITGTX(90) Missile/bomber target index

number

INPUf FROM ALOCTAR

BLOCK VARIABLE OR ARRAY DESCRIPTION

TGTMOD INDEXNO Index number of target

VTO Original target value
M Number of hardness components

(<2)
HC2) Hardness of each component
VO(2) Original value of each

component
NK Number of time periods (<3)
FVAL(3) Fraction value escaping in

each period
TAU(3) Time cading each period
NUM Number of weapons assigned

990

† † † †.......

Table 54. (cont.)
(Sheet 3 of 5)

BLOCK VARIABLE OR ARRAY DESCRIPTION

TGTMOD IG(30) Group number of assigned
(cont.) weapons

KORR(30) Weapon penetration corridor

RVAL(30) Relative value of weapon
allocation

PEN(30) Weapon penetration probability

TOA(30) Weapon time of arrival on
target

DE(30) Survival probability of
target after arrival of
weapon I

TIMEVAL(30) Surivival probability of time-
dependent target value after
arrival of weapon I

NTYPE Target type name (same as
IHTYPE on ALOCTAR file)

INDTYPE Index of target type used
for summarization

VTOC Total value of all components
of complex target

ITGTINDX Number of targets being
processed; in UNPACKER, number
of target, for which PLANTAPE
weapons must be found

IBGINDX Index number of target for
which PLANTAPE weapons must
be found by UNPACKER.

*The remaining segment of /TfTMOD/ is used for internal processing.

991

..6.

Table 54. (cont.)
(Sheet 4 of 5)

INPUT FROM BASwIIE

BLOCK VARIABLE OR ARRAY DESCRIPTION

WPNMOD NTYPES Number of weapon types
CEP(80) Weapon CEP (nautical miles)
ICLASS(80) Weapon class index (I for

missile, 2 for bombers)
REL(80) Weapon reliabili-y
NAMEWPN(80) Weapon type name
FUNC(80) Weapon function code
ITYPE(200) Weapon type index
DBL(200) Probability that the weapon

survives before launch
NPASS Number of times the program

runs

MIS NWHDS(40) Number of type I bombs
NDECOYS(40) Number of terminal decoys
MISDEF Number of terminal ballistic

missile interceptors (minus
the number of interceptors
if a DEFALOC allocation)
(ALOCTAR file)

PKTX Probability of kill of a
terminal ballistic mi;sile
interceptor

INPrLT FROM PLANTAPE

BLOCK VARIABLE OR ARRAY DESCRIPTION

PLANREC JSIDE Side

LGROUP Group index
LPEN Penetration corridor number

992

<L' .tirL,,a,~fi ~ .. m " "-

Table 54. (cont.)
(Sheet 5 of S)

BLOCK VARIABLE OR ARRAY DESCRIPTION

PLANREC JSORTIE Missile record counter or
(cont.) bomber/tanker sortie number

JUNIT Zero or base index nmnber
JVEHIC Zero or vehicle index number
LCLAS Weapon class (1, 2, or 3)
JWPNTYPE Weapon type index

JREG Zero or launch region

JALERT Alert status

JPAYLOAD Zero or payload index
JDEPEN Zero on depenetration

corridor index
LTOT Number of missiles or total

number of events in table
LPLAN Number of targets or total

number of planned events
G(l) Missile time of launch
G(2), G(3) Not used
MLO(2) Lower plot markers for sortie
1HI(2) Upper plot markers for sortie
JHfYPE Warhead type name
JPTYPE Weapon (Plan Generator) type

index
JFUNC Weapon function code
JLAST End sentinel or not used

993

Table 55. Program EVALALOC Internal Common Blacks
(Sheet I of 5)

BLOCK VARIABLE OR ARRAY* DESCRIPTION

LATLON BLAT Latitude of a burst event

BLON Longitude of a burst event

TGTLAT Target latitude

TGTLON Target longitude

LITTLE INDCLAS Summarization index used for
target classes

SURV Survival probability of a
target

TGTRAD Target radius

TMULT Original target multiplicity
(for multiple targets)

VALDES Value of target destroyedI. VALESC Value of target escaping)ii during attack !

CTMULT Current target multiplicity *1

(for multiple target)

PLANYLD Total yield scheduled to a
target

DELYLD Total yield delivered to a
target

NOWPNS Number of weapon categories

VALFAC Fractional value of a complex
target component referrad to
total value of complex

OPT JOPT(20) Logical array which controls

printing and type of operation

IT'A'.. Number of targets for which
detailed print is given

PREFABR'i Probability of refueling abort

*Parenthetical values indUiT,-:,, array dimensions. All other elements are
single word variables.

994

Table 55. (cont.)
(Sheet 2 of S)

BLOCK VARIABLE OR ARRAY DESCRIPTION

OPT JSKIP Indicator which contains
(cont.) program control information.

depending on user's input
option

LAW LAW(2) Hollerith name of damage
function option

BINSCH NMTGTS Total number of targets for
binary search

JREAD Indicator equal to 0 on first
call to SEARCH, 1 thereafter

NLOG Maximum number of iterations
in binary search to find
target number

INT Initial length of binary search
interval

NOW Initial index of entry in
JORDER array to be tested:
dummy search

JORDER(6144) Array containing words for
binary search - each word
contains a target index number
and its associated target
number

/2/ As used by PACK, BOMRPAKR,
MISLPAKR, UNPACKER

LINK Index to next words in JLINK,
KLINK, and LLINK arrays to
be packed or unpacked

ILINK(12000) Equivalenced to JLINK(4000),
KLINK(4000), and LLINK(4000)

995
462-54 0 0 - 72 - 36

Table 55. (cont.)
(Sheet 3 of 5)

BLOCK VARIABLE OR ARRAY DESCRIPTION/2/
JLINK (4000)(cont.)

Packed array; each wordcontains target index number,
target number, weapon group
index, and corridor index

KLINK(4000)
Packed array; each word con-tains weapon penetrationprobability, and time of
target eventLLINK(4000)
Packed array; each word
contains latitude and long-
itude of burst event

/2/
As used by EVAL2 and EVALPLAN

CCREL(20)
Command and control reliability
(from BASFILE)

IREG(20) Weapon region index (from
BASFILE)IALERT(200)
Weapon alert status 1 for
alert, 2 for nonalert; (from
BASFI LE)IPAY(200j
Refuel code for bombers or
payload index for missiles
(from BASFILE)YIELD(200)
Weapon yield in megatons

(from BASFILE)CLASTYPE (200) Summlari7ation index for
aggreg-iting types into
classesNALLTYPE(1,J)(7,200)
Number of weapon., of category
I scheduled against targets
of tyýpe JSKDWPTYP(T,J) (7,200) Number of weapons of category
I scheduled against targets
o f t ype J

996

S-_ ..
. . . .- -.'

Table 55. (cont.)
(Sheet 4 of 5)

BLOCK VARIABLE OR ARRAY DESCRIPTION

"/2/ DELWPTYP(I,J)(7,200) Yield from weapon of category
(cont.) I against targets of type J

ALLTYPE(I,J)(7,200) Number of weapons of category
I delivered to targets of
type J

NALLCLAS(IJ)(7,50) Number of weapons of category
I scheduled against targets
of class J

SKDWPCL(I,J)(7,50) Yield from weapon of category
I scheduled against targets
of class J

DELWPCL(I,J)(7,50) Yield from weapon of category

\I delivered against targets
of class J

.ALLCLAS(IJ) (7,50) Number of weapons of catego-ry
I delivered against targets
of class J

NAI".CLAS(I) (50) Name of class Io a
NOFCLAS(I)(50) Number of targets in class I

VOCLAS(I)(50) Total target value for cla-s I
VDESCLAS(I) (50) Time-dependent value of

target destroyed in class I
VESCCLAS(T) (50) Time-dependent value of

target escaped in class I
VRE:MCLAS(I) (50) Timc-dependent value of

target remaining in class I
SURVCLAS(I)(50) Percent of target value

surviving in class I
SKEI)CLAS(I) (50) Megatons scheduled for

target class 1
DELCLAS(I) (50) Megatons delivered to class

I targets
DESTNOCL(I) (50) Value of target destroyed

in cla3s I

997

Table 55. (cont.)
(Sheet 5 of 5)

BLOCK VARIABLE OR ARRAY DESCRIPTION

/2/ PCDESTCL(I) (50) Percent of target value
(cOnt.) destroyed in class I

NSUMCLAS(I) (50) Number of weapons allocated
to targers in class I

SUMCLAS(I) (50) Number of weapons delivered

to targets in class I
KCLSNGL(I) (50) Number of targets in class I

attacked alone
KCLSCOMP(I) (50) Number of targets in class I

attacked as part of a complex
SK-DALL(J)(7) Total megatonnage scheduled

for weapon category J
DELALL(J) (7) Total megatonnage delivered

from weapon category J
NAMETYPE(K)(200) The definitions of these

arrays exactly pa-allel
those of arrays NAMECLASthrough KCLSCOMP except that

KTYPCOMP(K)(200) they are for target type K
(instead of class I)

NWPNTYP(J) (7) I Total number of weapons
scheduled from category J

XWPNTYP(J) (7) Total number of weapons
delivered from category J

998

SUBROUTINE BOMRPAKR

PURPOSE: To pack the weapon allocation data for each
bomber target event into three words

ENTRY POINTS: BOMRPAKR

FORMAL PARAMETERS: LLL - Index of entry in KPL array which contains
the target index number

COMMON BLOCKS: 1, 2, OPT

SUBROUTINES CALLED: SEARCH

CALLED BY: PACK

Method

BOMRPAKR sets INDX equal to the target number which is KPL(LLL), and
uses SEARCH to find the target number ITGT on the ALOCTAR file to which
this index number corresponds. Then it determines the index, I, of the
next free words in the JLINK, KLINK, AND LLINK arrays where the packed
weapon allocation data are stored. Finally, it packs ITGT, INDX, weapon
group number (LGRP), and corridor number (KORD) into JLINK(I), the
penetration probability (IPEN), and time of weapon arrival (ITIME)"into
KLINK(I), and the weapon delivery latitude (LAT) and longitude (LON)
into LLINK(I). Note that all of these weapon parameters have ben
integerized before packing. The locations of the packed values are
illustrated in figure 207.

If the user has set the debug pvint option (JOPT(3)) to I, BOMRPAKR
prints all the parameters being packed as well as the packed words,
KLINK(I) and LLINK(I).

Subroutine BOMRPAKR is illustrated in figure 208.

999

1. JLINK(I)

ITGT I INDEX LGRP KORD

2. KLINKCI) NOT

IPEN USED ITIME

[-*- 5 o
3

3. LLINK(I)

LAI' LON'K24 •.• 1...--- 24 ,

24--

*1

Fig. 207. Location of Packed Values in
Subroutine BOMRPAKR

1000

LINKt-LINK+3

I Pack ENDX, ITGT, Group
Index, And Corridor

Into JLINK(I)

Pack Penetration
Probability And Time

Of Arrival Into KLINK(I)

PakFaigt28 ubruie AndPA

Lonitue O Bu1t0 ven

I
FUNCTION DIST

PURPOSE: To calculate the distance between the target cen-
troid and a point near the centroid at which a
given weapon is aimed.

ENTRY POINTS: DIST

FORMAL PARAMETERS: TLT1 - Target latitude
TLON1 - Target longitude
TLTZ - Latitude of aim point
TLONZ - Longitude of aim point

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: EVALPLAN

Method'

DIST (See figure 209) computes the distance between the target centroid
and weapon aim point using the following formula:

22
DIST= (TLTI - TLT2) + (TLONI - TLON2) 2

1002

J DELLAT=TLTI-TLT2

FDELLON=TLON1..TLON2J

I DLLAT**2.DLWLLON**2]

Fig. 209. Function DIST

1003

SUBROUTINE EVALP LAN

PURPOSE: To classify the weapons all...-.ted to each target
and compute the corresponding change in target
value after the attack

ENTRY POINTS: EVALPLAN

FORMAL PARAMETERS: None

COMMON BLOCKS: LATLON, LITTLE, MIS, OPT, TGTMOD, WPNMOD, 2

SUBROUTINES CALLED: ABORT, DIST, INITPROB, SSKPC, SSPCALC

CALLED BY: EVAL2

Method

EVALPLAN is called once for each target to consider the damage done by
all weapons allocated to the target. When called, internal arrays are
initialized and the number of target value components is checked. If
the target has more than three value components an error message is
printed and control is returned to the calling program.

If this is not a first pass (initial) evaluation and EVALALOC is being
run after program ALOC, EVALPLAN determines if the target is defended by
effective terminal ballistic missile interceptors. If so, EVALPLAN
recomputes the penetration probability for each missile allocated to the
target before performing target survival calculations.

If this is a first pass, EVALPLAN classifies each weapon into one of
seven categories: alert LRA, nonalert LRA, TAC, SLBM, MRBM, IRBM or
ICBM. It then updates entries in the following arrays in common block
/2/: NALLCLAS, NALLTYPE, ALLCLAS, ALLTYPE, SKDWPCL, SKDPTYP, DELWPCL,
and DELWPTYP.

For each weapon, EVALPLAN updates the DELYLD and PLANYLD parameters in
common block /LITTLE/ for all passes of EVALALOC and calculates the value *1
FVALTOA of the target at the weapon time of arrival. Then it uses
functions DIST and SSKPC and subroutine SSSPCALC to calculate kill and
survival probabilities SSK and SSS. These probabilities are subsequently
used to compute values for PRODSS, a hardness component probability
factor, CUMDES, the value of each hardness component destroyed, and
CUMESC, the value of each hardness component escaping during the attack,

1004

The values of DE and TIMEVAL in conmion block /TGTMOD/ are then calculated
using these variables. Finally, EVALPLAN calculates the target survivalt Uprobability (SURV), the total target value destroyed (VALDES), and the
total target value escaping during the attack (vALESC). These results
are later saved in subroutine EVAL2 by index of target type INDTYPE.

Subroutine EVALPLAN is illustrated in figure 210.

[..5

i]3005

Valueniiaiz OfnaretThrnagtl
Oes~cydAn77e PO Vt-LTPLAN Arurays

Escapng Duing NPrn EqalT

The WeaPon ' L Thn Nmbr Of Tem al Blliti
KORR(I) Fo MisCile onterntrs?

R2 376 Less Than 4er

InitiaCalulzt Totys" al NumbertiIfRn IsSPost- of RelLile Intercepto0r?

PLNTPLSecon Set Ain t Ter Weponsn

CalculateClcuat RELT- f oplxTagt

Survival~Pobbiit Ofbailt DoeEac0Fohac
WeMipsil Allocatedd

DestroyedB~.I AndM Ors TRBMLTL unO

Value ~ Fig 210 Subrutin FirstPLaN 3F EALLr

(See 1h ofap2)

D 1006

Determine Weapon
Type And

Class Index

Increment Appropriate
Entries In NALLCLAS,
NALLTYPE, ALLCLAS,

ALLTYPE, SKDWPCL,
SKDWPTYP, DEMLWPCL, DELMPTYP

In Common Block /2/
109

Increment Yield Scheduled
And Yield Delivered

Parameters

Restore Original _
Value Of CTMULT

Ai

Calculate Value Of Target
At Time Of Arrival Of Weapon

Over All Time Components
(FVALTOA) 130

121 _TI iiCalculate Survival
Do 95 For Each Hardness Done Probability Of Target,
Component Of The Target DE, Arid Survival Probability

Of Time Dependent Target
Do Value After Arrival

DT Of The Weapon
Calculate Survival Probability

Factor, PRODSS, Value Of Hard-
ness Component Destroyed, Do 0
CUMDES, Value Of Hardness
Component Escaping During

The Attack, CUMESC

Fig. 210. (cont.)
(Sheet 2 of 2)

1007

SUBROUTINE EVAL2

PURPOSE: To read the weapon allocation data, evaluate
and classify it, summarize it, and print it in
the summaries produced by EVALALOC.

ENTRY POINTS: EVAL2

FORMAL PARAMETERS: None

COMMON BLOCKS: 2, FILABEL, FlIES, ITP, LATLON, LITTLE,
MIS, MYIDENT, NOPRINT, OPT, PLOT, TGTMOD,
TWORD, WPNMOD

SUBROUTINES CALLED: EVALPLAN, ITLE, ORDER, PAGESKP, RDARRAY, RDWORD,
REORDER, SETREAD, SETWRITE, SKIP, TERMTAPE,
TGTMODIF, WPNMODIF, WRARRAY, WRWORD

CALLED BY: EVALALOC

Method

EVAL2 first reads weapon parameter arrays from the BASFILE. Then it
initializes control numbers and the arrays which will contain data for
the summary prints to zero. If this is not the first pass (NPASS # 1),
EVAL2 calls subroutine WPNMODIF to modify the weapon parameters in
the manner specified by the user. In this way the sensitivity of the
weapon allocation and the evaluation performed by EVAL2 to changes in
these parameters can be tested.

If the run uses the weapon allocation prepared by program ALOC, EVAL2
then reads the processes target and weapon allocation data from the
ALOCTAR file, one block at a time. Otherwise, it reads these data
from the SCRATCH file prepared by subroutine PACK using the ALOCTAR
file and the PLANTAPE.

For each target, EVAL2 orders the weapon arrays by time of arrival; in
the case of multiple or complex targets, additional data for each
multiple target element or complex target component are read from the
POSTDATA section of the BASPILE. Then if this is not the first pass,
and the run is after PLNTPLAN (JOPT(1)=I), EVAL2 calls TGTMODIF once
for each target, target element, or target component to perform
user-specified modifications on the target parameters; again this is
done to test sensitivity of the evaluation to these parameters. It

1008

also calls EVALPLAN for each target, target component to classify the
weapons allocated, the expected damage done by the weapons, and the
change in value of the target.

This process is repeated for each target on the ALOCTAR or SCRATCH
file. Two differences exist if EVALALOC is run before ALOCOUT instead
of after PLNTPLAN. First, EVAL2 calls TGTMODIF and EVALPLAN only once
fur each multiple target in this case. Second, if this is the first
pass, it writes the target index number and the ALOCTAR weapon arrays
on a scratch file which is used in subsequent passes by subroutine
TGTMODIF to perform its target parameter modifications. At the user's
option, during this phase of EVAL2 processing, the target and weapon
data are printed for a specified number of targets in a SAMPLE TARGET
LIST whose contents are described in the EVALALOC section of Chapter 3,
Plan Generation Subsystem, User's Manual, Volume II.

When all target and weapon data from the ALOCTAR or SCRATCH (post-
PLNTPLAN run) file have been processed, EVAL2 prepares summary tables
which describe the results of the allocation. These cumulative results
of the weapon allocation are stored and printed by target class and
type. The TARGET DESTRUCTION SUMMARY is produced during every pass
through EVAL2. (EVAL2 does a new evaluation of the weapon evaluation
for each set of user weapon and target parameter modification cnrds;
each evaluation is a new pass through EVAL2.) The other summaries are
produced by EVAL2 only during the first pass. They are the SCHEDULE OF
WEAPONS ALLOCATED, the SCHEDULE OF WEAPONS DELIVERED, SCHEDULED
MEGATONNAGE, and DELIVERED MEGATONNAGE. When all passes through EVAL2
are completed, control returns to EVALALOC.

Subroutine EVAL2 is illustrated in figure 211.

1009

CýD

Us 011'AAS-SPASS-1 AMWILAY, 5kip to

T1, Rr3j 'JI,' ItIr
4

Ifliti lit* All Ar,ýys

ary.:Tl ti
To

2040

Call StMkl), SEIVRIII JD48

To prop 10 j ;a C-.1I.%T,1.1AnTQ

ALOCIAAAllis Ayn 4 Pvt-PLqrpLA,,; Run* YU Pr p r , R

Write Sr.tch File

50 , w 1 0 ACK

20SO

I'Vint SAMPLE. TAJ1,; T LIST? y 1`41ý1 Hamer
SjwPLE

TAAJjLT LI

all KPIN1100IF to

ity NPASS- I T

yet
44

O:dsgj"k
Of targetInd Of All No As

madifitations? Ur Srm ALOCTAR $at j
retch Irl I@

yet

firm End Of Filer Y45 200

6200

Co-ploa

Print Error

He$ 0 ages Ad
asset cop ... t Yei 4-y

Co.httr(-) To

6201

61..P."
AtsIs"d

Y"To Target'

1044

tr ký,

At, 1

Pig. 211. Subroutine LVAI.2
(Sliect 1 of 4)

1045

t Other Target
Cooliters

TOO MUMY Weapons Assiptied? I"

No

Inc

0

"1'

t

NPASS. I ?

Yes
218(,

Use Okm it And Rj.Ojlj)jiR
To Reorder We . p 11 Arrayse 0By Timi 0 f Arr val0 1

1, 1 r

218S

Post - PLNTPL4,N R,,,7 Yes

No

flZAY 1-0 Writ ePEN And Kuj,,fz

= -Isklp-i Weapon Arrays
On Scratch Jile

53 1 186 54
Assign 200 To NI.Xj Comp I ex SiMple, Nki ý';ImPlc

Coll] j.riple Or
alget? Assign 4.1 to NEXT

Multiple
51 2152

Do 2CO For Lach (:opjpI,,,x
Target ComporiL No ýall SKIP 70 Read

,nt Pust-PI.NTPULN Run' WItiple Target

Yes iccords [N] HA.,;F:11,1

21;1
C-111 RVARRAY To Re:1,j Ca I I 1ZDA:: To kvai
Complex Target Record One %1 t T;irget

From Record Vrom RAqrtj.f.

Recalculate V-1,clional
value-Time Co. "e.t, Last Record For 11iis jar Ye A,.,Igll 4

And Va I., of
Qct?

Hardness C No

2168

Assign -1151 to Nj..Xj-

so

Fig. 211 (cont .
(Shoot 2 of 4)

1011

1216

U pdate 1 Mdf TargetSuivlritEtesI

To Targt For TisaTramteters

Add. 211. (cont

Increent N1012e

Of Offns - - I,

Class And Target Tyrpe in
The Target Clasq

C NPASS-1? Nc 182

Yes

Calculate And Print Entries
In SCHEDULE OF WEAPONS

ALLOCATED For Each Target Class
And Target Type in Trho Class

[a cla te And Print
EntriesIn SCHEDULE OF WEAPONS

DE1 u CLIVERED For Elach Target
lass And Target Type In The Class

TYPE NAM~ES FOR WPNMODIF Print

Cal'culate And Print Entries I
DEIVC1ERE LLD MEGATONNAGESunar

MayFor Each Target ClassAnEs Target Type In The Class

Fig. 211. (cont.)
(Sheet 4 of 4)

1013

SUBROUTINE MISLPAKR

PURPOSE: To pack the weapon allocation data for each
missile target event into three words.

ENTRY POINTS: MISLPAKR

FORMAL PARAMETERS: LLL - index of entry in ITGTX array which contains

the target index number

COMMON BLOCKS: 1, 2, OPT

SUBROUTINES CALLED: SEARCH

CALLED BY: PACK

Method

The method here is exactly the same as that used in BOMRPAKR except that
the time of arrival parameter ITIME and the weapon delvery latitude
and longitude LAT and LON come from different variables in common
block /1/, and the target index number is ITGT7XJ).

Subroutine MISLPAKR is illustrated in figure 212.

1014

cIýD
LINK=LTNK.3
I =LI NK/3
J=LLL

IN DX= I TGTX Cd)

CallI SEARCH T~oObtain

CTarget Number, ITAGT

Pack INDX, ITGT, Group
Index, And Corridor

Into JLIKI

Pack Penetration
Probability And Time

Of Arrival Into KLINK(I)

P ack Latitude And
Longitde Of Burst Event

Into LLINK(I)

Pg 212. =J Nub ouie ISPK

pYes

1015

SUBROUTINE PACK

PURPOSE: PACK with its associated subroutines BOMRPAKR,MISLPAKR, SEARCH, and UNPACKER, converts the

sortie-order weapon allocation on the PLANTAPE
to target-ordered allocation and writes this
new allocation onto a SCRATCH file which is

treated like the ALOCTAR file in subsequent
processing by EVAL2. PACK is used only in
post-PLNTPLAN operation of EVALALOC.

ENTRY POINTS: PACK

FORMAL PARAMETERS: None

COMMON BLOCKS: 1, 2, BINSCH, FILABEL, FILES, ITP, LATLON, i
MYLABEL, NOPRINT, OPT, PLANREC, TGTMOD,
TWORD

SUBROUTINES CALLED: BOMRPAKR, MISLPAKER, ORDER, RDWORD, RDARRAY,
REORDER, SETREAD, SETWRITE, TERMTAPE, UNPACKER

CALLED BY: EVALALOC

'I

Method
,1

Before PACK can reorder the PLANTAPE weapon allocation into target order,it must obtain the target order from the ALOCTAR file. It does this by
reading the target index number and target number one target at a time

from the ALOCTAR file and by packing these into the next unfilled word j
of the JORDER array until the whole file has been read. Then it uses
ORDER and REORDER to reorder the array in target index number, IND, order
(since the PLANTAPE does not contain target number data). Now PACK is
r'ady to process the PLANTAPE which it does one record at a time. Tanker
:ecovds on the PLANTAPE are ignored by PACK since they contain no weapon
J11.,cation data.

PACK packs data for each event on the PLANTAPE which is a target event.
When processing a bomber record, it calls subroutine BOMRPAKR once for
each event involving a target burst to pack the weapon allocation data
into the next unused words in the JLINK, KLINK, and LLINX arrays and to
determine the target number on the ALOCTAR file which corresponds to
this target index number. Subroutine MISLPAKR is called by PACK to

1016

I

perform the analagous function for missile target events. This process
is repeated for every missile and bomber record on the PLANTAPE until
the JLINK, KLINK, and LLINK arrays are filled. Then PACK reorders
these arrays in target number order. If the arrays are filled for
the first time, they are simply written onto a SCRATL.: file in the new
order. If not, they are merged with the packed data wh-..Lf must be
read from the previously written SCRATCH file; the merged data, which
is in target number order, is written onto a new SCRATCH file. Then
PACK continues reading and processing PLANTAPE records as before unti.l
the packed arrays are again filled or until the PLANTAPE has been com-
pletely read and all the weapon allocation data are contained in target
number order on one scratch file. (If the total number of warheads
is no greater than 5,000, no SCRATCH file is needed or written.)

The final phase of processing by PACK consists of reading the ALOCTAR
file one target block at a time, calling UNPACKER to unpack the associ-
ated weapon allocation data for the target from the previously written
SCRATCH file, and writing the ALOCTAR target data and PLANTAPE weapon
allocation data together oa a new SCRATCH file. When all targets on
the ALOCTAR file and weapon data from the PLANTAPE have been processed
in this way, PACK writes the ALOCTAR end-of-file record on the ALOCTAR-
like SCRATCH file and returns control to EVALALOC.

Subroutine PACK is illustrated in figure 213.

I1
1017

Call RDARRAY

ToReaysO ALOCTAR Pile o6

Targt IdexNumer ataCall ORDER An id REORDER T
ToReorder JLI ORLIkADE

CaIl My)RA ; C ll RW RD To Wr t

Aeraed Dat OnOTA Nilw S2AT03i
LINK<;O Array0To

L-:_MGT--NTFsig 213. Surutn PAC

Pack(See INEV ofd 3)

Into JRDER(N-1018S

2007ISAVEO?
Calculate Total

Number Of Words On No
SCRATCH File And 82

nLINK NXTLNKaNXTLNK.l

NXTLNK•O I Call UNI'ACKER To

Unpack PLANTAPE
Weapon Arrayc.

Call RDARRAY To Corresponding
Read First To The Target

Target Block
From ALOCTAR File t

alWri AstA TartSet NYw Value Of Nti

~Call WRARRAY To'

- Write• Last Targetly Yes Ed fFie
II Block On I ~ i ie•

Write Target Block
80 Onto Scratch File[]

RE NITGTINDX, IBGINDX Yes NUMl0 '
And NUM Parameters NUM-O?

Call RDARRAY To Ca I l RA Y To
Read Weapon Array II Write Weapon ArraysII
From ALOCTAR File Onto Scratch File

90
Call RDARRAY To

Read Next TIfULT-TTMULT-1
Target Block

From ALOCTAR File
81 Yes M.IU LT--0?

Fig. 213. (cont.)
(Sheet 2 of 3)

NoI

1019

2044 2003

2044
Ra d PLEANTAPTE7 Read Past

e edrRecord PLANTAPE Record

Last Record? Bomber, Or For Bomber *

Ce anlkeLPJrI lent
To1 Pak Missile Pa sd
D RatUsd ByAA LSTART=PNl

EVLLCFor LN.L

Call~al BOMRPAJ(R IAlento
To ac MsslePlack Bomedat

UsedLO Byr LEVALALOC

For Each Target
Event In The Plan

Fig. 213. (cont.)
(Sheet 3 of 3)

1020

SUBROUTINE SEARCH

PURPOSE: To determine the target number from the ALOCTAR
file which corresponds to the index number of a
PLANTAPE target.

ENTRY POINTS: SEARCH

FORMAL PARAMETERS: INDEXNO - The target index number for which the
target number is sought

I'TGT - The target number corresponding to
INDEXNO and, determined by SEARCH

COvMMON BLOCKS: BINSCH

SUBROUTINES CALLED: None

CALLED BY: MISLPAKR, BOMRPAKR

Method

Subroutine PACK sets up the JORDER array, which is a list of packed words.
Each word in the array contains a target index number (INDEX) and a target
number (ITGT) corresponding to a target on the ALOCTAR file, and the
array is in increasing order by INDEX. SEARCH uses a binary searcn to
find the word in the JORDER array which has target index number INDEXNO
or which is the index number closest to INDEXNO but not larger than INDEXNO.
This word has index NNOW; SEARCH unpacks JORDER(NNOW) to obtain ITGT.

The first time SEARCH is called it determines the parameters NLOG, INT, and
NOW used in the binary search. These parameters are contained in the
common block /BINS01/.

Subroutine SEARCH is illustrated in figure 214.

1021

START

NoJRl'AD - 0 7

Calculate Initial Length Of'
Search Interval , I.Nj . -iiixilillIll
NUmher of' Searches, NI.UL;, Ant!
Index Or First JORDR lintry
To Be Tested, NOW

JRVEAD= I

4

INT1ýTNI' and f;N(jW.NOjq

DO 7 For I From I
Through Loa

--- N-J

I N'r 1 4 1 N T1 / M2

k Target Index Numbcr,"",I)l R " 'm :r,X. From JCRDl-R(NN0lW)

0 INL)I:X JNj)FXL'qO ? >0
N.N0WzNNOW-INT1

5

NNMOW-NNO .1N'r I

7

CONTINUE

Unpack "arget Index Numter,
INOEX. Frcm JoRl)j'P(N.NnW)

INDLX-lNUr.XN0 ? NNAv N

10

Unpack Target Number,
ITGT From lORDj::j (N.14OW

Fig. 214.' Subroutine SEARCH

1022

II
II

SUBROUTINE SSSPCAI.C

PURPOSE: To calculate target survival probabilities
for mvtltiple weapon attacks. This routine
will consider either the exponential or
square root damage law.

ENTRY POINTS: INITPROB, SSSPCALC

FORMAL PARAMETERS: SSS - A single shot survival probability
NWP - A number of weapons

J - index to hardness component

COMMON BLOCKS: LAW, LITTLE

SUBROUTINES CALLED: None
CALLED BY: EVALPLAN

Method

The iNITPROB entry point is used to initialize two local arrays which
are used in the calculations. This entry is called once for each target,
before processing the weapon damage calculations in EVALPLAN. The formal
parameters have no effect on this entry point. The two local arrays are
indexed by ha~rdness component. They are defined as follows:

CUMKIIL(K) current fraction of Kth hardness component
surviving.' Initialized to 1.0.

SUMSK(K) Current sum of kill factors for Kthi hardness
component. Initialized to 0.0.

.ntry SSSPCALC computes the multiple weapon survival probability from
the single shot survival probability. If the exponential damage option
has been selected, then the multiple weapon survival probability is
equal to the product of all the single shot survival probabilities for
Sach weapon.

If the square root damage law option has been selected, the routine
checks to see if the target radius is greater than zero. I f not, the
exponential damage function is used. If so, the routine must calculate
the square root kill factor corresponding to the input single shot
survival probability. 'he algorithm used for this is the same one that
is used in subroutine SETABLEI in program PRIALOC2 and prograbi ALOC. The

1023

I, -

algorithm is a recursive, one,-dimensional search procedure to find the
appropriate kill factor. The new kill factors are added to the old sum
of kill factors to determine a new. sum. This new sum defines the new
fraction of the target that survives. The multiple weapon survival
probability is then the ratio of the new fraction surviving to the old
fraction surviving.

Subroutine SSSPCALC is illustrated in figure 215.

I

1024

I.__~~K- <X~A
_____________ .\

RETURNEnr

Set Target Survival No Is Target Radius
Probabilitr GraerSSnZr

liz X To 1

Set SS Eqv'ualS(

START Entr AndtCIIL TrorER
INITROB (iSS).SS

Set TaXe SErviva
Aryto 1#Ix)R And TCUNIILL/ LPhIL(

Ofr TCUKL InZ

CtIM3K(J LS1S(J)

Intaige 215,L Subroutiite SSSPC To

ArayToI ndTCP.KI1025IL(J

SUBROUTINE TG1}OD I F

PURPOSE: ro enable the user to modify five target
parameters:
11(1) - The hardness of the target component

in PSI
VO(l) - Tho value of the target at hardness

''(I)

TAU() I The time at which the target changes
value rapidly

FVAL(1) - The fraction of the target value
associated with TAUClI)

PElN - P'enetration probla•ility of a weapon I
allocated to the target

ENTRY POINTS: 'I'GTMOD I F

COMMON Bl.O('.S: FILAI'EL, FILES, FT'P, MYII)E"NTI, NOPRINT, flPT, Z
'I'G.IOI) , 'W1ORID, IVPNNIOD

SIUBROIUTI]NES CALLED: ITLE, IDARRAY, RDLVORD.

CA LIEIl) BY: IiVAL2

Method

Modifications of target parameters are made in accordance with target
parameter modification data cards supplied by the user. The target
type may be ALLTGTS or a specific class or type name such as MIl ITARY,
BEAR, etc. If the type names included in the data base are not known,
they can be read from the target damage stummary printed on the first
pass through EVALAIOC.

The attribute to be modified must be 11(1) , VO(1) , TAI'(I) , FVAI,(1) , or
PEN. If any other word s punched, the program prints an error message,
(the word puLnlched and a list of alloVable ,ords) , no changes are
made, and execution continues. Modifications made hy the subroutine are
printed out along with the number of the pass.

The penetration probability PEN is weapon-target dependent. Itf it is to
be modified, the last four words on the data card are the weapon types to
which the nod ification app lies. The first of these four words may be
ALLIPNS, BOMBERS, or MISSIILIES if a specific type name is not used. I f
one of these three general names is used, no other type names will be
read from the card.

102t0

Ii
The target is described by either one or two hardness components. 'lhe
total value is divided between the hardness components, VO(I) being
that part of the target value associated with the first hardness component
11(l), If VO(I) is changed, a check is made to ensure that the modifica-
tion value does not exceed the total target value.

The target value in the QtJICK system is always time dependent. The
functional form of this dependence is

NK INvAL(.,)
Va lue () =Va lue(o)* (el÷ 1)/,I'at(1],

NK
whlere T is time in hours, and NK is betweOn one and three. IVAIN.A

a lways equals unity'.

Such a function gives a step-like dependence of the target value on time.
Targets such as cities usually have only one time component (NK::I), and
TAU(1) is very large. Other targets such as alert bomber bases may have
a small value of TAUC(1) . Usually, the major part of the target value is
associated with FVAL(I).

In all cases T'NOI')1 " modifies the specified target parameter f'or the
specified target typte(.) by multiplying it by the factor X''GTATT which :1
is also specified by the user. If there is more than one hardness or
time value component, then both VO(1) and VO(2) or all three of FVAL(1),
]VAL(2), and I:VAI.(3) will be modi fied.

Subroutine 'r'GlhOI)lF is illustrated in figure 2-l(. A1

10217

_______i_ -2 7

START

20
POST- oCall RIJARRAY

P02t-ALOC Or Post. '-%LOC Input Weapon

PLN'TPLAN Run ? PENrrayý',T,00AA.) G
For

POSTiPLNTPIAN One Target From

No First Call To The Scratch File

TGP-10DIF I'his pass?

7 0 es

Initialize Modif cation
Counter IMP T 4

Read One Target
Modification Card

741
Does First Card Field lýii Y-e s
Contain Word STOP GED

7S5 742 NO

Incr-Ir-
u ent 17r-91 t-1 Is Card BI n(

Modification Counter IEnd of m difications)?

Yes

Print Target Modif cat
Cards - If A y

770

Do 850.For Ea h Done ITGTINDX
780 Taret Modificati n Card 1TGTINDX+l
Does Target Type Do
Match Type For No Is Modification For

This Modification L
RETIIRN

es Yes

Determine Index Number
Corresponding To Attributc

Which Is To Be Modified
(Use ME)

Attribute Index Nu=mber ?

0
4

79 79

Fig. 216. Subroutine TGTMOL)IF
(sheet I of 3)

1028

788

PPrinit ATTH1111rrl: NOTNube Of Ihjrdnes Oi ~ ~ pyVOI
r OI LISIT 0F ATTUiB~fl'.:i Fato X1cVFAFtTo

W Wl11110 MAY 0li OIANW: 7 7 Two Glot Attribute VOUl)

Multiply Alttite OC)
By Factor iTIT

793

F Multiply Attribute ______

FAUli) By Factor XTGTATT<r(:

Multiply ~ ~ ~ ~ ~ Se Attrbut TwTunrof Valu 01 etFALIdT

8100

VA() retrMultiply AVAL(1) B
Thanto XTne AT Factr XT AT

Mutpytrbt 12 = -cSet FVAL(2) To 1VL1 rae hnOe

l~FVAL(l) b atrXC~rt

8807

Ans FVAL() Tor0ate0

ThnOe util VLI

(ig. Greaterntan ~ ~ (he 2n=, ofto 3)GA

102ll

SOS No

Nt~~~~~ ~ ~odify PEN Array Y5 I E ob h e

only ~ ~ ig 216. weaooFont.)es
Whi(hee 3r of 3)s

83030o83

IsPE o eChngY. oif PNAra

SUBROUTINE UNPACKER

PURPOSE: UNPACKER reads and unpacks the total PLANTAPE
weapon allocation for a target from the JLINK,
KLINK, and LLINK arrays.

ENTRY POINTS: UNPACKER

FORMAL PARAMETERS: LNK - Tile first index in the JLINK, KLINK and
LLINK arrays used by UNPACKER.

IUNIT - The number of the scratch file containing
the packed arrays

COMMON BLOCKS: 2, F[LABEL, I'P, LATLON, WYIDENT, MYLABEL,
NOPRINT, OPT, TGTMOD, TWORI), WPNOD

SUBROUTINES CALLED: ABORT, RDWORD

CALLED BY: PACK

Method

Each time UNPACKER must determine whether to unpack weapon data from the
JLINK, KLINK, and LLINK arrays, it tests the new value of LNK to see if
it exct'ds MAXLNK, the current maximum index for weapon array words in
these packud arrays. If INK does exceed MAXLNK, UNPACKER refills JLINK,
KLINK, and LLINK from the scratch file IUNIT, keeps track of how many
words are left on IUNIT, and resets LNK to unity. If LNK does not
exceed MLAXLNK, or after the arrays have been filed with packed data,
UNPACKER unpacks the target index number INOEXNO from JLINK (UNK) and
determines whether it i• in the ranae from ITGTINDX to IENDTCG'TX. If
it is, UNPACKER unpacks the rest of the weapon data from KLINK(LNK) and
LLINK(LNK), and increments the weapon counter NWPN for this target.
LNK is then increased by one and the above process is repeated.

If the number of weapons allocated to a target exceeds 30, UNPACKER
attempts to reduce the number by combining the weapons, where possible.
If it cannot reduce the number of weapons, it prints the message
UNPACKER UNABLE TO REDUCE NUMBER OF WEAPON GROUPS ON TARCET and aborts
the run (via ABORT).

If the scratch file and ALOCTAR file are not in synchronization (i.e.,
the scratch file has a target number or index number greater than the

1031

current one on the ALOCTAR file), a message indicating this fact isprinted, and the run is aborted (via ABORT).
The first time INDEXNO is not in the correct range, UNPACKER set NUM(the number of weapons assigned to the target). to the current value ofNWPN, and LNK to LNK-I. Control is then returned to PACK where thetarget and weapon data are output on the ALOCTAR-like scratch file.
Subroutine UNPACKER is illustrated in figure 217.

1032

START

1006
NwrN. 0 And MM. I Reset LNkTST

LINK 50001 0'01A=NK-(S00A?

No Yes
NO -- jLINK ktAxiso Reset iIAXLN;K

NO y
102 LXK i, LINK = 'M

No V j
Lail RMORD ToUnpac INDEMO 1 E INK, KLINKFill JL

From .11 fk: ri U I And LLINk Alray-,

pnpack lTGTX From ILIIk

lTGTX - ITGTINDX? 3'0 102
103 1) NMI-NKPN
Print OUT OF INDE"'O - IBClNDX LNK-LNK-I
YNCH Mes sage

4

ca XWPIN N1iPN-I
all GýDA ORT

(7 MWPN -50 NT-NWPN-l
RETURN 6 *130

Unpac), IL;(NWP.4)
And KORR(N'WPN) liIERE-()
From JLINK(LNK)

Don
6 Do 15 1 1, NT?

d TOA(.NWPN)pack PEN(.NWP

n KLINK(LNX)

12
Unpack BLAT(.1,WPN), HERE-WERE-1
BCN(NWP.%') From

LLINK(LNK)
N #r6

Of WR:.pens 11 ocated
LNK-LNK-I JOPT(3)- F Crou I C; (I

I L.--> I P ssible
5 Yes

Print P CKEU AND
LINO CK .D DA

Continue

THERE-11WRL-I

6 NWPN-IIIERE N1YPN-

vo

RETUILN Call ABORT Print (INVACKLE
To Abort The Run UNABLE 710 RLDUCE:FýI.rror Ilessage

Fig. 217. Subroutine UNPACKER

1033

SUBROUTINE WPNMODI F

PURPOSE: To allow the user to modify reliability REL and
circular error probability CEP by weapon class
or type and DBL probability and weapon yield
by weapon group

ENTRY POINTS : WPNMODIF

COMMON BLOCKS: OPT, WPNMOD

SUBROUTNES CALLED: None

CALLED BY: EVAL2

Method

WPNMODIF allows the user to modify specified weapon parameters, namely,
reliability (REL), circular error probability (CEP), DBL probability,

and weapon YIELD for chosen weapon types. The type name may be ALLWPNS,
BOMBERS, MISSILES, a specific type name such as B-58-E, or GROUP. The
parameters DBL and YIELD can only be changed by the type name GROUP.
WPNMODIF reads the users weapon parameter modifications one card at a
time, and multiplies the parameter by the factor on the card for the
specified weapon type, class, or group. Internal checks are made by
WPNMODIF to ensure that REL never exceeds unity. As each modification
is made it is printed out.

Exit from WPNMODIF is accomplished when it finds a blank card or a
RETURN card at the end of the modifications.

Subroutine WPNMODIF is illustrated in figure 218.

1034

ART
START

Print 11'adings For Weaponvarsvic or ." o'jolifl'.t M difwmi."
ard Print

Oýo Weapon
R".-rýMO&Iificntion Car:d]

Yes Print M 3ge,.
Blank card? ALL 'CATI'NS IP

525 Z MADE
TUPNP p o

J-T U RN Card?

N
Ird D_

529 No 52(,
Pý i.t put
Print Inpuý-F;-"d

"I Ir600 Set JSKIP To 611AýErUkN

n 'or No Iý

So EVAL2 Skips CgII5

up,
Multiply DEL Or YIELI) Yes "tc -ti. F

1' 0 A WeRPOM Group?

E Y
Is Modification

For

To TGIMODIFISA M Gr.For Group
by XWJINATT

k "pon
Pon!.

550 54 0 'No. Yes 540 Is a NoFor Each Weapon Yes M.di fic t to" For.'fultip ly 11, 11 ?
fication Forppropri.t, U Weapons? C I, ýXl TDMultiply

1110

A Wea

Appropriate Entry 562
In The RLL Or CLI, ý60 := No -Por LýTh -o,,b,,

Array By The Is Modification For Yes Multiply The
SPCcifled Factor All Bombers? Appropriate Entry

WPN In 1he PJ.L Or L:LP
$70 No Array by The

Array

If Modified Parameter Yes Specified Factor
'p C'fýIs RILL, Insure That Is Modification
U. es No For At kit to$? XWPNA1'T

580 No
For sp

572 Typ o C4 t I to d
Wrapon eter

ul iply Insure That I
For E&Lh Missile The Appropriate Entry Does Not Exceed I
Multiply The In The REL Or CEP ArrayBy The Specified Factor,Appropriate Entry A

In The Itfil, Or CEP XWPNATT
Array By The

Specified Factor
XWPNATT It Modified Parameter

113 PEL. Insure That
It Ooes Not Exceed I

11r,,eter
;z Ft. Th.

Does Not Exceed

Fig. 218. Subroutine WPNNIODIF

1035

CHAPTER 10
PROGRAM INTRFACE

PURPOSE

Program INTRFACE is one of the two special-purpose processors which provide
an interface between QUICK and other computerized simulation systems used
in strategic war gaming. These programs, INTRFACE and program TABLE,
extract and reformat data from QUICK-developed files and output data which
are used as input to the Event Sequenced Program (ESP), the Nuclear
Exchange Model (NEMO), anT to a-NMCSSC damage assessment system such as
SIDAC (Siidle Integrated Damage Analysis Capability System). INTRFACE
(and TABLE) do-not produce output files which are used within QUICK.
Specifically, INTRFACE processes data contained on the PLANTAPE and
reformats it for output on three tapes, the STRIKE tape (PTAPE), the
STRKREST tape (STAPE) and the sortie specifications tape (ABTAPE).

INPUT FILES

The QUICK developed files used by INTRFACE are the BASFILE prepared by
program PREPALOC and the PLANTAPE output by program PLNTPLAN. The
BASFILE is used to obtain weapon and vehicle type data which are not
included on the PLANTAPE. The PLANTAPE provides detailed information
about missile, bomber, and tanker plans prepared by the QUICK Plan
Generator.

OUTPUT FILES

INTRFACE produces three output tapes, nll containing 80-column BCI) card
images.

1. The STRIKE tape (PTAPE) containing strike card ("S" card) type
data for each missile and bomber weapon scheduled for delivery
(for bombers, only the weapons associated with the primary
plan are considered). The strike card format is shown in
table 56.

1036

2. The S'RKREST tape (STAPE) containing strike card data which are
essentially the same as that on the STRIKE tape.except that it is
formatted differently. The'STRKREST card format is shown in table 57.

3. The sortie specifications tape (ABTAPE). This t'ape contains
a set of BCD card images for each missile, bomber (primary
mission), and tanker plan contained on the PLANTAPE. A card
set consists of one "A" card which contains general descriptive
information and a variable number of "B" cards which \define
t*he individual flight legs of• the mission. The "A" and "B"
card formats are described in tables 58 and 59, respectively.

1037I

II

! ~1037 •

I

IJ

V. Table 56. Format of Strike Card on STRIKE Tape
(Sheet I of 2)

CARD VARIABLE
COLUMN NAME I N 0 RATI ON CONTENT

1 Strike card indicator S
2 Zero 03 ICMD Cnmmand or function code 1-9

4-8 INDEXT QUICK target index number 00001-99999
9-10 DAHOMIMO Day 01-31

11-12 flour 00-23
13-14 Minutes of target detonation 00-59
15-16 Month 01-12
17-18 YEAR Year 00-99

19-20 LATTGT Degrees
21-22 Minutes Latitude

of23-24 Seconds target

25 North or South N or S
26-28 LONGTT Degrees
29-30 Minutes I Longitude

: of31-32 Seconds target
33 East or West E or W

34-38 JDESIG Target designator 2 Alpha,

3 Numeric
39-40 IPLS PLS - Probability of pre-launch 00-99

survival

41-42 IPTP PTP- Penetration probability 00-99
43-44 IWSR WSR - Weapon system reliability 00-99
45 IREG Region code 01-99
46 Blank

47-49 IFRAC Fission/yield ratio 000-999
50-54 IYIELD Weapon yield (KT) 00001-99999

55 KHOB HOB (Height of hurst) A or G (air
or ground)

S6-57 Blank

1 03S

" . k 1

Table 56. (cont.,)
(Sheet 2 of 2)

CARD VARIABLE
COLUMN NAME INFORMATION CONTENT
58-60 KCEP CEP (in lOOs of feet) 000-999

61 Blank
62-63 ITASK Target task code 2 Alpha
64-65 IXNTRY Code for country of target 2 Alpha

location
66 Blank

67-68 IPABORT Percent chance of target 00-99
attrition

69 Blank
70-71 IPLNETYP Plane type code 00-99
72-73 IWPNTYPE Weapon type code 00-99
74-77 JUNIT Unit number 0000-9999
78-79 ISORTIE Sortie number 00-99

80 Blank

1039

N

Table S7. Format of Strike Card on STRKREST Tape
(Sheet 1 of 2)

CARD VARIABLE

COLUMN NAME INFORMATION CONTENT

1 Strike card indicator S

2 Zero 0

ICMD Command or function code 1-9

4-8 INDEXT QUICK target index number 00001-99999

9-10 DA-40MIMO Day 01-31

11-12 flour 00-23 3
13-14 Minutes of target detonation 00-59

15-16 Month 01-12

17-18 YEAR Year 00-99

19-20 LATTGT Degrees

I I Latitude21-22 Minutes LtofOf
23-24 Seconds target

25 North or South N or S

26-28 LONGTT Degrees
3 M Longitude

S29-30 Minutes of

31-32 Seconds target

33 East or West E or W
34-38 JDESIG Target designator 2 Alpha,

3 Numeric

39-40 IPLS PLS - Probability of pre-launch 00-99
survival

41-42 IPTP PTP - Penetration probability 00-99
43-44 IWSR WSR - Weapon reliability 00-99

45 IREG Region code 1-9

46-48 IFRAC* Fission/yield ratio 000-999

"49 Blank

50-54 IYIELD Weapon yield 00001-99999

* When yield (cc 0-54) is less than 100, the field for fission/yield
ratio (cc 46-48) is blank.

1040

Table 57. (cont.)
(Sheet 2 of 2)

CARl) VARIAB1LIE
COIUMN NAME, INFORMIAT ION CON'rTENT

55 KIIOB 11014 (Heiglht of burst) A or G (air
or ground)

56-57 Blank

58-00 CITP CIHI' (in 100s of feet) 000-999

61 Blank

02-6.3 fIASK Target task code 2 Alpha

04-05 ICNTRY Code for country of target 2 Alpha
locat ion

60 B lank

67-68 1 PABORT Percent chance of target 00-99
attrition

69-71 IWPNSYS* Weapon system 3 Alpha

72-73 1 PINET'Yi Plane type code 00-99

74-77 I1IN IT tin it number 00000-99999

78-79 1SORT I IE Sort iie number 00-99

80 B1 lank

*Wea.ponj system (cc (9-7l) is derived from conMIand o0 function code (cc 3)

fos ol lows:

Conmmand or FIuct ion Code Weapon Sstem

1 I CM
I RNI

3 I RM

4 I RN

,/ N1

7 LRA
8 T'AC
9 Blank

1041

Table 5s. Format of "All Card on Sortie Specifications Tape (AI3TAPE.)

CARD VARIABLE
COLUMN NAME INFOWI~ATION

CONTENT
I Card designator

A2-4 LINEAI Line number
000-999

5-8 1UNIT Unit number
0000-99999-10 ISORTIE Sortie number 00-99

11-12 Blank
13-14 IPLNE'IYP Plane type code 00-99is Zero

0
16-17 Blank

18 Zero0
19 -122 IREFTIMvE Reference time (launch time in 0000-2359

hours and minutes)
23 ITIMEREP Time reference I =launch

24-30 Zero
000000031-80 Blank

1042

It

Table 59. Format of "B" Card on Sortie Specifications Tape (ABTAPE)
(Sheet 1 of 3)

CARD VARIABLE

COLUBMN NAME INFORMATION CONTEl NT

I Card designator B

2-4 LINEB Line number 000-999

5-8 TUNIT Unit numbor (QUICK index number) 0000-.)999

9-10) ISORTIF} Sortie number 00-99

11- 12 LEG Leg number 00-99

13-1.1 lOP Operation code for QUICK I - Takeoff
RISOP-71 plans 2 - Aerial

refueling

3or4 -

Dogleg

5 - Not used

o- ANM launch

7 - ASM on
target

8 - Vecoy
rel ease

9 .. Decoy
i mpac t

10 - Missile or
bolni) on

tarpet

11 - MLRV on
target

12 - Not used

1 - Recovery
sp ash

14 - Splash

104 3

Table 59, (cont.)

(Sheet 2 of 3)

CARD VARIABLE
COLUMN NAME INFORMATION CONTENT
15-19 IDES Location identifier for given

operation code. The contents
column shows the entry associated
with the followiiLg codes.

IOP= 1 Base index
INDEXNO

= 2 Area number
= 3 Zeros
= 4 Zeros
- 6 00001
= 7 Target DESIG

code
= 8 00001
: 9 000-1
=10 Target DESIG

code
=11 Target DESIG

code
=13 Recovery base

INDHXNO
20-25 LAT Latitude at end of leg (DeRrees, min-

utes, seconds)
26-33 LON Longitude at end of leg (Degrees, min-

utes, seconds)
34 MODE Mode of operation 1 - High

altitude
4 - Low

altitude
35 Zero 0

36-39 ICUMTIME Time of event Hours and

minutes
40 Zero 0
41 Blank
42 ISOUTH Southern latitude indicator S if southern

latitude,
blank if not

1044

Table 59. (cont.) o3S(Sheet 3 of 3

CARD VARIABLE
COLUMN NAME INFORMATION CONTENT
43-44 Blank

45 Zero 0
46-49 Blank

50 IECM ECM 0 - Off
I - On

51 Zero 0
52-53 iPARI Warhead type 00-99

54 IHXX Height of burst (HOB) 0 - Ground

1 - Air55-58 IPLNETYP Plane type code 0000-9999
59-60 ICNTRY Code for country of target 2 Alpha

location
61 IREGB Region code 1-9
62 Blank

63-64 ITASK Target task code 2 Alpha
65-68 Blan!,

1045

CONCEPT OF OPERATION

As indicated in figure 219, INTRFACE first reads and prints the user-
input cards and stores the information in the appropriate common blocks --

namely, /BURST/, /INHOB/, /GAMETIME/, /IPRT/, and /IFUNC/. (These param-
eters are described in User's Manual, Volume II.) Then it initializes the
filehandler and proceeds to input data for common blocks /MASTER/, /CUMNO/,
/PAYLOAD/, /FRACYLD/, /VEHIC/, and /PROBI/ from the BASFILE. Depending on
the user print option IPRT, INTRFACE then prints weapon and vehicle tables
from common blocks /FRACYLD/ and /VEHIC/.

After this initial input process, INTRFACE processes the PIANTAPE records
for missiles, bombers, and tankers -- one at a time. First it reads in a
PLANTAPE header block and uses word 8 (missile or weapon type) to obtELin
IPLNETYPE, ICMD, and CEPI for the STRIKE and STRKREST tapes and ABTAPE. If
the record is for a missile, INTRFACE then reads in the target information
blocks from the PLANTAPE. If the record is for a bomber, INTRFACE first
reads in the plan information blocks to determine the number (KK) of
scheduled weapons (i.e., the number of drop bomb and ASM target events),
and then reads in KK target information blocks. If the record is for a
tanker,'INTRFACE reads in the plan information blocks from the PLANTAPE.

If the user has specified that he does not want a STRIKE or STRKREST tape,
INTRFACE skips the process described below.

Since INTRFACE produces strike cards only for events which are target
hits by ASMs, bombs, or missiles, tanker records are ignored during the
processing for the STRIKE tape. INTRFACE processing for the STRIKE tape
falls into six main categories. The first is conversion of many numbers
into BCD code and replacement of leading blanks in these numbers by
zeros. Functions KNOBLANK and NOBLANK are used to accomplish this pro-
cess. The second involves determining target impact time, TGTITIMh, in
hours from the beginning of the game, and using common block /GAMETITM/
and subroutine FINDTIME to convert TGTITIME into BCD coded data. The
third is determination of target latitude and longitude in degrees and
conversion of these numbers to a BCD coded word which contains the
latitude or longitude in degrees, minutes, and seconds--north or south,
or east or west. Function LATS (and entry LONS in LATS) are used to
accomplish this process. The fourth is conversion of probabilities into
percent by using function IPROB. The fifth is using IGETHOB to determine
height of burst for the weapon. And the last is using subroutine YLDFRAC
to calculate equivalent yield and associated fission fraction if the
record is for an MRV missile. When these six categories of processing
have been completed for missile and bomber records, INTRFACE writes a
strike card record on the STRIKE tape and, depending on the user's option,
also prints the card. It also writes a strike card record in a different
format on the STRKREST tape.

1046

When all the strike cards corresponding to the PLANTAPE record have been
produced, INTRFACE tests whether the user has specified that the ABTAPE
is to be made. If not, INTRFACE skips the processing of "A" and "B"
cards and returns to the branch where it reads in a PLANTAPE record.
Otherwise, corresponding to each aircraft in the case of bomber or tanker
record and to a booster in the case of a missile, INTRFACE processes
information for the "A" card. Only two categories of processing are
involved. The first is conversion of integers to BCD code as mentioned
before. The second is calculation of bomber or tanker takeoff time or of
missile launch time in hou'rs and minutes from the beginning of the game;
NTIME is used to convert the time from floating point hours to BCD hours
and minutes. When this processing for the "A" card is complete, INTRFACE
writes an "A" card record on the ABTAPE. If the user has specified that
the ABTAPE is to be printed and that it should be printed together with the
STRIKE tape, INTRFACE prints the "All card. It then begins processing the
"B" cards, It produces a "B" card corresponding to each missile launch,
missile re-entry vehicle on target, and to each bomber or tanker event I
which is a launch, refuel, dogleg, ASM launch, ASM on target, decoy release,
decoy impact, bomb on target, recovery, or splash. Processing for this card
falls into four main categories. The first is again conversion of integers
to BCD code using KNOBLANK and NOBLANK. The second is conversion of float-
ing point numbers for latitude and longitude at the end of a leg into BCD
codes; LATBT and entry LONBT in LATBT are used to perform this function.
The third is calculation of number of hours since beginning of game to the
beginning of the route leg and conversion of this number into BCD code by
NTIME. The last is determination of the target region associated with the ;

missile re-entry vehicle, ASM or bomb. At the completio[of "B" card pro-
cessing, INTRFACE writes the "B" card on the ABTAPE. Again, if the user
specified printing of the ABTAPE together with the STRIKE tape, INTRFACE
also prints the "B" card.

When all of the PLANTAPE records have been processed to produce the
specified strike cards and/or "A" and "B" cards, INTRFACE writes end-of-
file marks on the STRIKE and STRKREST tapes and/or ABTAPE and tests to
determine if the user specified a print of the ABTAPE separate from the
STRIKE tape. If a separate print was specified, INTRFACE rewinds ABTAPE,
reads it one card at a time, decodes it, and prints it; at the end of the
print INTRFACE calls PRNTOFFS to print the offensive systems table for the
PLANTAPE, and then prints INTRFACE timing information before stopping.

COMMON BLOCK DEFINITION

The common blocks used by program INTRFACE are described in table 60.

1 047

1. 1 1prlntYI~~, %tprIn tnt
1..r. 4,4 I ?,O0.iten, AnJ

10 i1' 1, Ttnnn

An , Prnt Prtin~tkr laijn,

SiHlIML. la, Anil/Or
Ar AtilPl RIIIt'intre.l1

113-1 An,, n l*~~

~or 21-11 1 Icr

Read Arnd Prnn) U.te Tinm
Launch, C-njnJ l'aants.0t

/ P r i n t " l e n i n gT " Se "i T t n sAS CAR.,5 ,I AltAYC Inquired? A. W'1111 hl1.L
I"L1 PROCICF.Cl~ IFPOII 'Vi~S~f

Fig. ~ 219, lih Prga ITFC

(Shee 1 of 4)

10480

F o P1 . I,% WI.Al

Sf14 LI 1140 kII KI S I 'No

"10o 1p () ~ i DO S0141 tor LEfch

A F r j ho~c he 1,011 I.Votit

00) 110
I o ral I t I I \)~ I i % id I rIl I I Call KSC:LX k To

Niorilor, tor lip. ormat IIN1'S OndkI S(II1 I
C ON)'! IAN NlinI' r icr B Ca rds

Forinat ICN'IkY And .40t~'I i~.j~I' N

For STRIT (I IdIv5s<"UO

1, 1) 1o 1 F orm t I he ; din I G v5 UUIODEI I RECY, 1I~).1,0 For 1

14Card CorrespondiigloyI
Set IFIIU~CSCTo 3010; Launch Of Sti-silo Boostter

Process And Write (Uso kNOIAYE, LAI'H:,
StrkeCad ilUh LONUI , Ard LTIFkII.)

Card If Specifieod L."Uo Set 1IPOOI141 10 DUA
Then Irocvvs Andr,, rt

30 AHlTAPLI Produc~l.' Al 30Sr IlAY ___

Set 101I' CoJe IL I0[(Or LI if 'Ii sm~~ , k v A SIRN)
Do 30123 401 And Initializt

For achSlisileLeg Couumter To Zerv

Fo rr't I14UN I I ard I SllI II 11:otth oihlmL0
Nunlb,- I or A Card I C14TIzIY, L, I S I. Iki :It, 1

(N11AI. IA!, LON,141 T ICI PARrI I .41 Fol

3024 [B Card Con npnthKi~ngo A
Oc Ote .4) Use KVIOFLAK. LAM],

t~~s Ic i~o ,o l im. T':. , le ll, Ao ' " I) I P 401 1;

Cao rdro 0.4, k) r l AS .tl Ileo Fr AmA30 inTA

Fig. 219. (cant .
(Sheet 2 of 4)

10 '19

Format IIJ.Ntl' An
IlkISORTIF Number .1 NU lo 10. j v ýý

Hom PI.X14TAIII.
16-

Read I'M
NoBlock From PLANT 10-11 .100 AIIIAPI

I Ev, Produced ?

605 Ivs
Bead IARGHT INPOW %TION -- t-

ISvt Paylua,[Count mtasureBlock From PJAN',7IIT,,FN Counter To (II- ;7-111-1

700 No
STRINU And STRKRI ST ,40 AV I PI: Fu rmat I t)N I I AndTape .:t roduced? Pro ecd? ISOR11F NUmber , For

es L ARTAP . kvc,.ýrds

Do 670 For Eqch ASM On 705
Or - Drop Bomb Lvvnt Done Determine Time uf

680 Do Bomber/Tanker Launch-STIMI:

te nrmin
I L Call FUNDTIMI! To

me of Ta.
ý

t I
D no a AridTa,::, PROCA to 75o;

Time 0 pact Then Process W WriteAn A Car
lind On The ARTApj;

Format INUM' And M

ICNTRY For Strike Card lnit,ý..alize 1he Vailillles
I CM, HOPE, And LeR

Number
Set IPROCSC To 670; I'g
Then Pro ess And Do 775 For Each Bomber Or-i* Write A strike Card t-,\Done Tanker Event WithOn the STRIKE And Soo

STRKRESj')',Ipes Operation Code 1-4,
6-10, Or 13-14

Do

Call KNOOLA -VK,
LATBT, LOMT To

ý I 'I

Format Variatles

IT 1ý1ýý=ý

B
0

IIIXX. IDFS(I), ICNTRY,
ITASK. 1111'Cli, ll:ckt,IQ'

LNIOP, tTA.SK, LAT, LON.
lCuMl-%Il:, IPARI,
LEG For a Card

Ct IPKI.)(.b to 77,,S;
Then Process AndA

[write AR Cltar,101n Th, ARTAIII:

Fig. 219. (cont.)
(Sheet 3 of 4)

1050

/Endfi le AlITAP1E, SIR KREiST

lpAdSTRIKE Tape

SepraelyFrm SriiCall PRMOFF To1,

FAg 2P1-9Pd~e . Infonat.)
YSee 4 ofe4

ABTAPE 1051

Trable 60. Program IN'JRFACE C:omiiion Bilock.S
(Sheet 1 of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION
BURSTr 1,DES IG Beginning numericalI par~t of

target designat or codc for
target requi ring spec!ific hecighit
Of bUrst (110B)

IND3S I G Ending number for spec i PI.' c 101
IIIWPNG Weapon' type Wh i ch requie

ground burst
ITGTG Alphabetic portion of target

designator code for target
requi ring a groun11d bur-st

IIIOBUJLT ' ~ DefauOlt madc for 11013 A - air
burst , and G = ground 1)Irs t

NWPNG The number of weapons requiring
ground burXst.

NTGTG Thie number of targets requiring
ground burst.

CUNNhO I CULIN 0 Cutmulative number of types in
each class

DAIT TFGTTINI*I~i Time in hours, since beginning,
of game, of target hlit

DAHOMIMO BCD; coded day , hour, Minute,
and month 4pf target hilt

YEAR BCE); year of target hit
1)1N DATA Swcond pairt of PLANf'AP1 record[j~~o r mni ssil es, bombers, or- t ani.evs

(sce dlescript ion of P1,ANTAIHI

* FILABE1L FTLA1EIE is a fi lehandi er common
1) l ock

FlBj\CYLD YI ELD Weapon yivld

FISFRAC Fi ss ion friction for weapon
MY PN Numnber of woapons

* CME1~4EKDAY D)ay of game

Table 60. (cant)
(Sheot 2 of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION

GMAMEINI Nil DON Month of game
(cot.)KYLAR Year of game

I FIINC I FLNC IPIJNC(T) is function or conmmand
to which QIJTCK plane type I
be longs

JFUNC TFUNC (l) is function or c~ommnj~jd
code if I is odd; JFIINC(1+1)
is the Hldlerith nameij fol-
JFIJNC(T)

INDFUNC INI)PUNC(T) is the same as
JFUNC(I) whenl I is even

INIIOII INIIOR INIIOB(T) is 1 if air burst is
required over region 1; it, is
0 if ground burst is required

I p r IPR'r Print opt ion for weapon and
vehicle tables; TPRT 1 for a
print; MIPT = 2 if no print of
tables is desired

ISOUT11 Is(J-ri'i ISOIriii =Ills if latitude is
southern; otherwise ISotrHi' = III

T T1P Tip is a filehalndler Common block

mAsTErui MASTER is the first common block
onl the BASIETLEl. (See BASPILE
descripti on)

MI ISS IE IX.YP4) P~TP is thle p1)n9nC type of a
mi.ss ile for Which a I aun1chl intervall
is SleO`Jfled by' the userCl

1) Im IS (,I DLAIS(l) is the missile launch
interval in hours corresponding

NNI)SS The. number)CI of type of missilies

105 3

I,

Table 60. (cont.)
(Sheet 3 of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION

MODE MODE MODE is I for high altitude and
4 for low altitude

MYIDENT MYIDENT is a filehandler common
block

NOPRINT NOPRINT is a filehandler common
block

OFFSYS MASKO For offensive system type corres-
ponding to index I, MASK(I)
contains the values of NOBOMBBI(I),
IWHD(I), NOBOMB2(1), IWHD2(1),
NASM(I), and IASM(I) from common
/PAYLOAD/ and the plane type code

IHTYP Type name

IPGTYP Plan Generator type number
ICOUNT ICOUNT(J) is the number of

offensive systems corresponding

to MASKO(J)

NT Number of different offensive
systems ,

PAYLOAD PAYLOAD is the sixth common block
on BASFILE; (see the description
of BASFILE)

PAYLOAD2 MASK MASK(I) is a coded sum of
NOBOMBI(I), IWHD(II), NOBOMB2(l),
IWIiD2(T), NASM(I), and IASM(I)

PROBI REL Weapon reliability

SBLX Pre-launch survival probability

STUB STUB contains some of the
variables found on the first part
of each PLANTAPE record; (see the
description of the PLANTAPE)

TAB ITAB The table of possible operation
codes

NOPSHOT NOPSHOT is the dogleg number for
doglegs 3 or 4; otherwise, it is 0

1051

Table 60. (cont.)
(Sheet 4 of 4)

BLOCK VARIABLE OR ARRAY DESCRIPTION

TAPES PLANTAPE Output tape from QUICK system
Plan Generator which contains
records for missile, bomber, and
tanker events

BASFILE File put out by PREPALOC in the
Plan Generator; it contains
common block information needed
by many programs in the QUICK
system

ABTAPE The sortie specifications tape
put out by INTRFACE

PTAPE The STRIKE tape put out by
INTRFACE

STAPE The STRKREST tape put out by
INTRFACE

VEHIC CEP1 Weapon CEP

NVIIC The number of weapon vehicles

1OSS

SUBROUTINE FINDTIME

PURPOSE: To convert TGTITIME from a floating point number
of hours to a date and time in integer format
where the date and time are computed from the base
game time.

ENTRY POINTS: FINDTIME

FORMAL PARAMETERS: None

CONVON BLOCKS: DATE, GAMETIME

SUBROUTINES CAtLEI): KNOBLAINK

CALLED BY : INTRFACE

Method

TGT1ITIME is the time in hours since the beginning of the game of a target
hit. FINDTIME first converts TGT1TIME into integers IJIOUR and MIN for
minutes where MIN is a result of rounding off to the nearest integer. If
MIN equals 60, FINDTIME resets it to 0 and adds I to IIIOUR. Then if IHOUR
is at least 24, FINDTIME alternately decreases IIIOUR by 24 and increases
):DAY by 1 until IHIOUR is less than 24. (The initial values of IDAY, IMON,
and IYFAR are the input values for the day, month, and year of the game.)
Similarly, FINDTIMI: tests IDAY and if it is greater than 31 it alternately
adds I to IMON and decreases IDAY by 31 until IDAY is less than 32.
FINII'IMEi's final test in on IMON. If IMON is larger than 12, FINI)IIMIF
alternately decreases it by 12 and increases IYEAR by 1 until IMON is less
than 13. f for some unanticipated reason rYEAR is largter than 91,
FINDTIME resets it to 99 and prints an error message for TLLIGAL I)AIF.

Finally, FINIYI'JME codes IMON, IDAY, IItOUR and MIN into integer by
performing the sum of IMION, 1001MIN, 10000. IIOUR, and 1000000.1DAY to
obtain IDATL2. KNOBLANK is used to obtain D1IIOMIMO and YEAR in BCI) format.

Subroutine FINDTIMII is illustrated in figure 220,

Io5("

i~i 'lO'e

z . .I I"J . . N • •k i ;I .. itI..• 2 : 2 tk:d A -C : : l~- I [

5;E I AY I,11 in J IM.

1I NiA, Iqu I In lo YI III

ul (I ., I [l P1,11 0

In III-t M IN IZOIII e e ~. ul

L east 24 1101 mii AI d o IV i

Ios IM I; N -L lI ttl vI- ' tLlI N IC qt I, In tlr

HtIn ;11 1WA Alid Add I to InNh~

IU VI II-,J~ Ftrom

I140.11 And Add1, I T'o I YJ'At
T No

1,I IYIAlt Prti ~ ritt I'rop

lITItI An I DAY Equal To 99

XI lo
oI i I vo In "1I

1 I 2 ~ . Sub rout inc, P1 NFTT ME

FUNCTION IGETHOB

PURPOSE: To obtain height of burst for weapon type KWPN
with designator code KDSG.

ENTRY POINTS: IGETHOB

FORMAL PARAMETERS: KDSG - Target designator code; KDSG comes from
DES array on the PLANTAPE

KWPN - Weapon type; KWPN comes from the IWH array
on the PLANTAPE

COMMON BLOCKS: BURST, INHO1B

SUBROUTINES CALLED: None

CALLED BY: INTRFACE

Method

First IGETHOB decodes KDSG into ITPART and determines whether the target
is in one of the three target regions defined by LDESIG and INDESIG. If
the target is in an undefined region, IGETHOB is set equal to the default
value for height of burst -- namely IHORDFLT.

Otherwise, the target is in region I where I = 1, 2, or 3, and IGETflOB
checks to see whether region I requires a definite ground or an air burst
and sets IGETHOB equal to the letter G or A accordingly (G for ground,
A for air). If the user has not specified the type of burst for the
region, IGETHOB decodes KDSG again, this time into IAPART, and proceeds to
determine whether the target is one which was input as a ground burst
target in the ITGTG array. If it is one of these targets, IGETHOB is set
equal to lHG. Otherwise, the function IGETHOB checks to see whether
weapon type KWPN is one which was input as a ground burst weapon in the
IWPNG array. If it is, IGETHOB is set equal to MHG. Otherwise, the
default value IHOBDFLT is returned as the value of IGETHOB.

Function IGETHOB is illustrated in figure 221.

1058

J
START

Iqua TargetauIn

Rgo I qee Set IGETHOB

Yes OHBDDFL

RETTURN

$at 21 unto IGETHO Rqir nBi

905

402.Decod 0 -72 4

FUNCTION rPROB

PURPOSE: To convert probability A to a BCD integer
preceded by zeros

ENTRY POINTS: IPROB

FORMAL PARAMFTrERS: A - A floating point numbe'r between 0 and
I representi1ng a probab ilIi.ty

COMMON BLOCKS: None

SUBRUOTINES CALLED: KNOBIANK

CALLED BY: INTRFACE

Method

IPROB adds .005 to A, multiplies by 100, and truncates to convert A to
integer IA. Then if IA is greater than or equal to 100,]PROB resets
IA to 99. Finally IPROB is set equal to KNOBLANK(IA).

Function IPROB is illustrated in figure 222.

I

lOb U

_ _ _ _ _ _ _

Set TA

100. (A+.O~

10061

FUNCTION KNOBLANK

PURPOSE: To convert an integer into BCD format with
leading zeros

ENTRY POINTS: KNOBLANK

FORMAL PARAMETERS: IND - The integer to be converted to BCD
format

COMMON BLOCKS: None

SUBROUTINES CALLED: NOBLANK

CALLED BY: FINDTIME, INTRFACE, IPROB, NOFFSYS, NOP, NTIME

Method

KNOBLANK sets IT equal to IND, encodes IT into IN in IS format, and uses
NOBLANK to remove leading blanks from IN.

Function KNOBLANK is illustrated in figure 223.

16

i'!
!.4

{,"• 1062

START
A .. /

L Set IT

Equal To IND

Enc de IT In~to
IN In 1 8 Format

Set KNOBL.ANK
Equal To
NOBLANK (IN)

CRETURN

Fig. 223. Function KNOBLANK

106.3

I , ,

FUNCTION LATBT

PURPOSE: To convert a floating point latitude or
longitude to the form DDI)MISSII or ODDLDWISS
for printout in A-format where DDD is degrees,
MM is minutes, SS is seconds and I1 is E, W,
S, or N for the appropriate hemisphere.

ENTRY POINTS: LATBT, LONBT

FORMAL PARAMETERS: A - Floating point longitude or l'titude in
degrees

COMMON BLOCKS: ISOUTH

SUBROUTINES CALLED: None

CALLED BY: INTRFACE

Method

First LATBT converts latitude or longitude frow decimal degrees into
integer degrees, minutes and seconds (LATFIX, MINFIX, and SEICFTX,
respectively). If entry LONBT is used, east or west longitude is set
in LIIEM (--lRE or 1RW) depending on whether A is greater than 180 degrees
or not. Ultimately, in this case the BCD character E or IV occupies
the rightmost position in the word LATBT which is returned by this
function.

On the other hand, if entry LATBT is used, the variable ISOUTr1 is set
to 111 or ills depending on whether the latitude is north or south. In
this case the north or south latitude information is never put into the
word LATRT which is returned by the function.

For both entries, the parameters LATFIX, MINFIX, and SI:CFIX are all put
into one word - LERESFIX by performing the sum of: S.CFIX, lO0.MINFIX,
10000'LATFIX, and 10000000. Then ',ERESFlX is encoded into LAT'IBT in I8
format and if LATBT is to be returned as a. longitude determination, it
is shifted one BCD character to the left and LIII-N is placed in the right-
most character of LATBT.

Function LATirT is illustrated in figure 224.

1064

[ARI4 Itt ry. TR 1.
lASTART I.Al4it

Ilset A MilT . Set LATI Ll
lpaI la A qula I o A

ect I1111 Sct 1.111,1 h ul~q;
(I a I 10 W TaV -r

We',est Long~iItude

Is~N. IA~ W 1.41 1.1
Ne'lat yie? fletrThan

2

5 41t [.AT!:[.]' Jo *Resot 411441 lo
- LAV Lie Anid U40414l IN: For Fla~t lernitil

To IIlS For South l~atitud And LAllI To1'

36(l . - AIrFLl

7

Trunica te IA11El.1
To Glet LATFIX
Set LA'FUIT II EqualI

To LAT[I X.

I'Convert 11:loa
E Nunhor'01 Dere

Truncate MINI[.I'lor

Con, cr1 Ir~ict on

Number Of 'unirtes
T0 Sacoal a And teMIJ

Off~ IC, let -I(I I X

In SICIIX
E quil li y ~ a 1\I

A

1:i g 224 Sbrlt l LA1'WI
(S 1. of 21

1 1065

S. MIF'e Reset MINFIX To 0;

Set LERESiFIX Equal
To Sum Of SECFIX,

100.MlNFIX., 10000.LAkTrIX,
And 1000000

Encode LERESFIXI
Into LATBT In I8

Fig.22ma cott

(Sheetn2iofd2

Shit LT1066eBC

FUNCTION LATS

PURPOSE: To convert decimal latitude or longitude into
degrees, minutes, and seconds, north, or south,
or east or west, respectively.

ENTRY POINTS: LATS, LONS

FORMAL PARAMETERS: A - Latitude or longitude as a decimal number
of degrees. A is negative if latitude is
south and A is greater than 180 if
longitude is east.

COMMON BLOCKS: None

SUBROUTINES CALLED: NOBLANK

CALLED BY: INTRFACE

Method

If entry LATS is called and A is positive, ALAT is set equal to A and
latitude is north so LIIEM is equal to IRN. Otherwise, ALAT is set to
-A 3nd latitude is south so LHEM is set to IRS.

Similarly, if entry LONS is called, and A is less than or equal to 180,
ALAT is set equal to A and longitude is west so LIIEM is set to 1RW.
Otherwise, ALAT is set to 360 - A and longitude is east so LHIEM is set
equal to IRE.

In all four cases, LATS then converts ALAT, which is in decimal degrees
between 0 and 180, to integer degrees, minutes and seconds (LDEG, MIN,
and LSEC). Then it codr.s these values into one number -- LAT -- by
setting LAT equal to the sum of LSEC, 100.MIN and 10000'LDEG, Finally,
LAT and LHEM are encoded into one BCD number -- LATS -- ant' NOBLANK is
used to replace leading blanks in LATS and zeros.

Function LATS is illustrated in figure 225.

"067

*1

STARI Lntry
LATS START Ent ry

LON',

Set ALM Equal
Set ALAT LquulTo A; Set DIUM

lial ro IRN To A; Set LIMS1
Equal To IRW

Is ALAI' No NO Is ALAI' GreaterNo tive7
Thall 18to) lltv.rr

S et ALAI lqual jo 11

kvsct Llll':.i T.-Al.Al kcet
IRF; Set ALATHUI To IRS

Equal To 360.-ALAI

2

Set LIXG F.qu;,I
To ALAI'; Set

DEC. 1:4ual TO f.Dl:G

Convert Frjctj
Number Of 1)cýg

Into Mintites
01,1111

Convert l:rjctj()n[jI
Number Of Minutes
IntO SCC011,1% And

Ruutld Off ro Nearc3t
"ec-d

IS NUMber Of N,!LSýj ýl L.SE(: 1,0Seconds Equýjj LN"' EC c;dA,;],j"j--- LNjid Add I T, MIN
No

Reset MIN l'o 0. Yes Is Sunher ot
Add I To 1.11I.G Minute, Equal I-L, t,,,-,

No

6
Sot LAT I.quji 1 1-0
LSEC- I oo - Lki I N.

I cool, - Lbl.cl

A

Fig. 225. Function LATS
(Sheet I of 2)

1068

AA

Enoc'IAT~And

(Sh11A I LAt 2

Us N(MLAK ..

FUNCTION NOBIANK

PURPOSE: To convert an integer which may be preceded
by blanks into right-justified BCD code
preceded by zeros

ENTRY POINTS: NOBLANK

FORMAL PARAMETERS: M - M is the integer to be converted to BCD
code by NOBLANK

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: INTRFACE, KNOBLANK, LATS, YLDFRAC

Method

The first time NOBLANK is called, IFIRST is reset from 1 to 2, IBLANK
is set to BCD blanks, and the array IB is set by performing the logical
.AND. operation between IBLANK and each item in the MASK array.

If this is not the first time NOBLANK has been called, the step above
is skipped. Then the octal representation of the integer M is checked
two digits at a time beginning with the leftmost pair to determine whetherM is preceded by any blanks, If the first pair of digits is a 60 Cand
hence a blank), NOBLANK replaces the 60 by 00 and proceeds to check the
two digits immediately to the right of the first pair for a blank. Again,
if this pair of digits is a 60, it is replaced by 00 and the above
procedure is repeated again. As soon as NOBLANK tests a pair of digits
in M and determines that it is not a blank, NOBLANK is set equal to M
(in which all previous blanks are now zeros) and control is returned to
the calling subprogram.

Function NOBLANK is illustrated in figure 226.

1070

SIs Th is The N o
First call .

ToNOBIANK?

4 Yes

S Set IFIRST

Equal To 2 4

Set IBLA.NK Equal

To BCD Blanks I

SDo For Each Done

Value Of I Prom D
1 Through 8

Do 5 1

IBLANK.AND. AK(,) Value Of I From
I Through 8

SSet ITEMP Equal To[

M.AND.MASK (l)

To IB(1)?

Set NOBL&NK Set N,' Equal To
Equal To M M1.AND.(.NOT.tASKCI))J-4

Fig. 226. Function NOBLANK

1071

FUNCTfON NOFFSYS

PURPOSE: To prepare information for the offensive
systems table output at the end of INTRFACE.

ENTRY POINTS: NOFFSYS

FORMAL PARAMF.TIRS: IT - Plane type

COMMON BLOCKS: MASTIER, OFFSYS, PAYLOAD, PAYLOAD2, ST'1TB

SUBROUTINES CALLED: KNOBLANK

CALLED BY: INTRFACE

Method

The first time NOFFSYS is called, it initializes the MASK array for
values of I between I and NPAYLOAD and initializes NT to zero.

Then, for all calls to NOFFSYS, a final mask -- MSK - is formed from
,MASK(LPAYLOAD) and from IT -- the plane type. This mask is compared
with previously set values of MASKO and if it matches IASKO for some
index-J, NOFFSYS is set equal to KNOBLANK(J) and ICOUNT(J) is
incremented by one.

Otherwise MSK corresponds to a new offensive system and the offensive
system counter NT is incremented. Also the arrays MASKO, JIITYP, IPGTYP
and ICOUNT are updated to reflect the new system. Finally NOFFSYS is
set equal to KNOBLANK(NT).

In the unlikely event that NT exceeds 100 -- tthe present size of the
offensive systems table--the message "NO OF OFFENSIVE SYSTEMS EXCEEDS
TABLE SIZE" will be printed and NOFFSYS will be filled with BCI) blanks.

Function NOFFSYS is illustrated in figure 22?.

107•2

Initializ

is NT To 0z

Pron Foro Eq a ch DoeIcrmn
MesValue OfQBL From

To ill CuutThrog NTy CouEinte*ro LNfrY

Dof~

40 Ye I'sNT Geate

Pi. Se.t nc o NO ITSYS A K CNT

Prin Ur-orEqu l '1`03

Message. - ~-

FUNCTION NOP

PURPOSE: To find the operation code associated with

event type I.

ENTRY POINTS: NOP

FORMAL PARAMETERS: I - Event type

COMMON BLOCKS: MODE, TAB

SUBROUTINES CALLED: KNOBLANK '

CALLED BY: INTRFACE

,I
Method

First, if NOPSHOT equals 3 or 4, the values of ITAB(J) for J=18, 19, 20,
and 21 are reset to NOPSHOT and NOPSHOT is reset to zero.

In any case NO is set equal to ITAB(I+1) and KNOBLANK is called to
convert NO to NOP (which is NO in BCD code with initial blanks replaced
by zeros).

Finally, if I is 19, MODE is set equal to 4 or if I is 18, MODE is set
equal to 1.

. Function NOP is illustrated in figure 228.

107

1074

'I P

s'rART

Is Event A
Dogleg 3 Or No
A Dogleg 4?

Yes

Sct TTAf(J) rqua.l
To NOPSIIOT FIor'

J!18, 19, 20, 21

qSet NOPSHIOT
Equal To 0

Set NO Equal
To ITAB (141)

Sot NOP Equal To
I NOBLANK (NO)To

To 19?

To 18?
'€ ~Yesr

Fig. 228. Function NOP

452-F.4a (1- 72- 42 1075

Yesi

"20_

FUNCTION NPLNETYP

PURPOSE: To convert the missile type or weapon type
index from word 8 in the header block of a
PLANTAPE record into a plane type code.

ENTRY POINTS: NPLNETYP

FORMAL PARAMETERS: I - The missile type or weapon type index on
the current PLANTAPE record

COM•ON BLOCKS: CUMNO, STUB

SUBROUTINES CALLED: None

CALLED BY: INTRFACE
"A

Method a
If LCLASS is 1, then I is the missile type and NPLNETYP is set equal to I.

Otherwise I is a weapon type index for a bomber or tanker and NPLNETYP is
set equal to the sum of I and ICUMNO(LCLASS-1) the cumulative number of
types in class LCLASS.

Function NPLNETYP is illustrated in figure 229.

z1 1

Set NPLNETYP Equal N is The PLAN APE Ye S E
To Sum Of I And 0 Record A Set NPLNETYP

[ICUMNO(LCLASS-1) M •issile Plan)*/ [EulT

Fig. 229. Function NPLNETYP

1076

,., . . I ,

FUNCTION NTIME

PURPOSE: To convert decimal time in hours into integer
representing hours and minutes

0p
ENTRY POINTS: NTIME

FORMAL PARAMETERS: T - Floating point number of hours

COMMON BLOCKS: None

SUBROUTINES CALLED: KNOBLANK

CALLED BY: INTRFACE

Method:

Function NTIME converts time T to hours and minutes (IIR and MINI). It I
then codes 1HR and MINI into the integer NT by performing the sum of MINI
and 100.1I1R. Finally, NTIME is obtained by using KNOBLANK to convert NT
into BCD code.

Function NTIME is illustrated in figure 230.

1077

I %

START

Truncate T To
Obtain JHlR

Convert Fractional l"

Part Of T To Minutn
And Round Off

To Nearest Minute

"Is MIN (Number Ye Rc MIN ToR 0
SOf Mlinutes) Equal And Add 1 To

FSet NT Equal To Su
Of IMINI

And IO0.IIIR

II

! o Get NTIME
I I From N "T .

Fig. 230.]"Unction NTIME

1078

"='''-t .,t:, "='M >, • ' '•• J': : ttt.YI' r, >{g,.•.m : [. .. t - • • 2 2L 5 • " , -L~ •' k '=d4;-'. .::[" - -.,4..,,*. .- n..":o ?,'.; ",t:,c' &, & ,1 JL& 4.~i s ll(!L2K.,A.. .'".,, . -j'l h'

SUBROUTINE PRNTOFFSt
PURPO&E: To print offensive system number tfble.

ENTRY POINTS: PRNTOFFS

FORMAL PARAMETERS: None

COMMON BLOCKS: OFFSYS

SUBROUTINES CALLED: None

CALLED BY: INTRFACE

Method:

First PRNTOFFS prints the table title and headings on a new sheet of
printer'paper. Then for each offensive system it processes and outputs
a line in the "Offensive System Table." Note that the values. NOBOMB1,
IWHDI, NOBOMB2, IWHDZ, NASM, and IASM were coded into MASKO(I) for
offensive system I in function NOFFSYS.

Subroutine PRNTOFFS is illustrated in figure 231.

1079

-.- - - -.- - - - - - -..- *, . . .

S IT A RWT

Print IHI ToSkip ro New[Sk ro NewP rint IHI TLPrinter P"gepInter P7ag,

Print Title
OrrF:NS I VE

.NSt'I LNJ
IASYSTEM TABLE

Or ',NS' VL
Pr' n t "' t Ic
"S' N' ' A BL._Print T-blcý ̀Print Table

i:g,
Coiumn Ifeadings

Prfn

-

Do

L

m
L

Do For
End

T)
srn0 IP

D IV

Orfensiv 0 Doric RMIIPLN
ystem (I-I.NT)9

0 IVBc Clýl

Do

;in

To
ýtkS

K0(

I
Set IDIV Equal

o r V L

Jo MSM(l)

t
I

Equa

I

or n%ve ystct0yDo For Values Done Prin't rnt% ys ýIi.imF- ive 'ýy te.Of J Fr 1 0 veOffer, ysThrough 6 Tab leTable

-ýt I R (J) Equal

To IDIV/10(j)

fT7S
.-tiý'ioi rix"ý 11ý1; 11.1117To wo vr (1, Imuo))

Fig. 231. Subroutine PRNTOrrS

1080

.......... ý4- 0. ýJ:. L L4-,; -

SUBROUTINE YLDFRAC

PURPOSE: If weapon is MRV missile, YLDFRAC calculates
its equivalent yield.

ENTRY POINTS: YLDFRAC

FORMAL PARAMETERS: IWl! - Weapon type index
IYLD - Weapon yield
IFRAC - Fission Fraction

COMMON BLOCKS: FRACYLD, PAYLOAD, STUB

SUBROUTINES CALLED: NOBLANK

CALLED BY: INTRFACE

Method:

If the weapon is not an MRV missile, YLDFRAC sets IYLD equal to YIELD(I)
and IFRAC equal to FISFRAC(I) and returns processing control to INTRFACE.

Otherwise it sets FNB equal to the number of warheads, decodes YIELD (IWH)
into an integer KYLD, and calculates equivalent yield for the MRV by
multiplying KYLD by FNB raised to the 1.5 power. Then KYLD is encoded
into JYLD and leading blanks are removed from JYLD by NOBLANK to get
IYLD. Similarly, FISFRAC(I) is decoded intc ITEMP, and ITEMP is scaled
down by dividing it by the square root of FNB and rounding off to the
nearest integer. Finally, IrEMP is encoded into IFRAC and NOBLANK is
used to remove leading blanks from IFRAC.

Subroutine YLDFRAC is illustrated in figure 232.

1081

STA kT

Set I I-WH

Is Weapon No
A Nissle?

Yes
25

Is missile No
An MRV?

0 So Ye" 60
Set FNB Fpqua I Set IYLD Equal To

To The Number Of YIELD(I) And IFRACWarheads Equal To FISFRAC(I)

DOcode YiLLD(I)
Into IKYLD RETURNIn I8 Format

Set KYLD Equal
To KYI.[D Times FNB

Raised To The1.5 Power

Encode KYLD Into
JYLD In 18 Format

Use NOI.ANK To
Obtain lYLD From JYI.J

Decode ViSFkACCI)
Into ITEMP In 13

Format

A

Fig. 232, Subroutine YLDFRAC
(Sheet 1 of 2)

1082

lDecrease ITEMP By
Dividing By The Square
Root Of FNB Anti Rounding
'to The Nearest Integer

[Encode ITEMP Into

I IFRAC In 13 Format

I tse NOBLANK To
Remove Leading

Blanks From IFRAC

CH EtRN

1I

Fig. 232, (cont.)

(Sheet 2 of 2)

1083

CHAPTER 11
PROGRAM TABLE

PURPOSE

Program TABLE is one of the two programs (TABLE and INTERFACE) which
provide an interface between QUICK and two external simulators used inRISOP/SIOP gaming; i.e., the Event Sequenced Program (ESP) and the

Nuclear Exchange Model (NEMO).

Specifically, program FABLE reads either the INDEIXDB tape produced by
program INDEXER or the INMODDB tape produced by program BASEMOD and
records, in abbreviated form, selected data concerning weapon systems andtargets described therein. The extracted data are written on an output

tape, TABLTAPE. This program performs no other functions and is not
required to operate the QUICK system. However, because it summarizes part
of the indexed data base, it enables the user to review the data base
before embarking on plan generation if he so chooses.

INPUT FILE

The sole input file is the INDEXDB tape produced by program INDEXER or
the INMODDB tape produced by program BASEMOD. The format of both thesefiles is identical and is described as the output of INDEXER in Chapter 7

of the Data Input Subsystem portion of this manual. For the remaiTnder of
this chapter, the input file is assumed to be the INDEXDB tape. TheINMODDB tape replaces this file only if the user has used program BASEMOD

after program INDEXER to modify the indexed game data base.

The data extracted from the input file include descriptions of targets,
missile and bomber launch bases, delivery vehicles (missiles and
bombers), and weapon characteristics.

The sole user-input parameter to program TABLE specifies the attacking
side for the current plan. Thus, TABLE is run once for eath side.

1084

w

OUTPUT FILE

The sole output file is the TABLTAPE. This tape is written as five data
lists: Target list (FITARGET), Vehicle Characteristics list (FIVEHIC),
Weapon Characteristics list (FIWEAPON), Missile Base list (FIMIBASE), and
Bomber Base list (FIBASE). The lists are placed on the TABLTAPE in the
above order. Each entry in each list is written as one 80-character BCD
logical record. (The TABLTAPE consists of only one file; the lists
are not separated into separate files.)

The information on the TABLTAPE is also printed on the standard uutput
file to provide hard copy output of these lists. Figures 233 through
237 display the format of the 80-character records for each list.

CONCEPT OF OPHRATION

Program TABLE is a very simple processor. It merely reads through the
input data base one item at a time. All indexed items on the defending
side are added to the target list (FITARGET). The values of appropriate
attributes are encoded into the 80-character entry for this list and
written on the TABLTAPE directly.

The second and third lists on the TABLTAPE, Vehicle Characteristics
list (FIVEHIC) and Weapon Characteristics list (FIWEAPON), are
maintained in core during the operation of program TABLE. These lists are
stored in common block /111/ in arrays TABVEH and TABWEP, respectively.

The fourth list, the Missile Base list (FIMIBASE), is stored temporarily
on a scratch file, OUTAP2. This file, produced by the QUICK filehandler
on the CDC 814 disk, uses filehandler buffer number 2. The 80-character
list entries are output as a 10-word data block. In the closing phases
of TABLE processing, this scratch file is read and the data are transferred
to the TABLTAPE.

The fifth and final list on the TABLTAPt, the Bomber Base list (PFBASE),
is stored temporarily on a scratch file OUTAP3. This file uses file-
handler buffer 4 and is used in the same manner as OUTAP2.

TABLE performs some simple error checking and data conversion. 'lic
number of entries in the vehicle and weapon tables is checked to prevent
table overflow. In the vehicle table, the circular error prorability (ClIP)
is converted from nautical miles (on the INDEXDB) to hundreds of feet

1085

I
(TABLTAPE). In the weapon table, the yield is converted from megatons to
kilotons and the fission fraction is converted from a fraction (between
0.0 and 1.0) to hundredths (between 0 and 100).

Subroutine HELP is used to convert latitudes and longitudes. On the
INDEXDB tape, these attributes are stored in QUICK system format. In
this format, latitudes are expressed in degrees and fractions of degrees
with north latitude positive and south latitude negative. Longitudes are
expressed in degrees and fractions of degrees ascending in a westward
direction from the Greenwich Meridian in a range from 0.0 to 360.0 degrees..
Subroutine HELP converts data from this format to the standard degrees/
minutes/seconds/direction format.

COMMON BLOCK DEFINITION

Common blocks /DIRECTRY/ and /PROCESS/ of the data base handling package
are used in processing the indexed data base (INDEXDB). These blocks
are described in Appendix A, Programming Specifications Manual, Volume I.
In addition, /111/, described below, is used for internal processing.

"" BLOCK ARRAY DESCRIPTION

111 TABTAR(10) Temporary storage for single
entry in target list (F1TARGET)

TABMIS(1O) Temporary storage for single
entry in missile base list
(FIMIBASE)

TABVEH(800) Vehicle characteristics list
(FlVEHIC)

TABBAS(IO) Temporary storage for single
entry in bomber base list
(FlBASE)

TABWEP(700) Weapon characteristics list
(FL. EAPON)

1086

COLUMNS DESCRIPTION REMARKS

1-8 Format and table name FITARGET

9 Side 1 = BLUE
2 = RED

10-14 Line number 1 to 9999

15 Blank

16-23 Target designator code 2 Alpha
3 numeric

(Desig/CNTRYLOC/Flag) 2 Alpha
I numeric

24 Blank

25-31 Latitude Degrees, minutes, seconds,
S if south, blank if north

32-39 Longitude Degrees, minutes, seconds,
E if east, W if west

40-46 Blank

47-54 Target name 8 characters only

55-59 Category code 5 numeric

60-61 Country code 2 Alpha

62-67 Majur reference number 6 numeric

68 Blank

69-70 Task 2 Alpha

71-72 Blank

72-76 Index number (INDEXNO) 1-12,000 assigned by INDEXER

77 Blank

78-80 Complex number 1-999 assigned by INDEXER

Fig. 233. Target List (Program TABLE)

1087

COLUMNS DESCRIPTION REMARKS

1-8 Format and table name FIVEHIC

i4 9 Side I = BLUE
2 = RED

10-14 Line number 1-9999

15 Card number 1

16-20 Plane type Type number = 1 to 99

21-55 Blank

56-58 CEP Mode 1 or CEP Msl* Hundreds of feet-O to 999

59-61 Blank

62-64 CEP Mode 4* Hundreds of feet-O to 999

65-67 Blauk

68-75 Vehicle type name 8 characters

76-80 Blank

*Mode 1 (high altitude) and Mode 4 (low altitude) refer to bomber flight

V profiles, QUICK permits only one value of CEP for each type bomber.
This assigned CEP is entered for both modes (cc 56-58 and 62-64)

Fig. 234. Vehicle Characteristics List (Program TABLE)

1088

COLUMNS DESCRIPTION REMARKS

1-8 Format and table name FIWEAPON

9 Side 1 = BLUE

2 = RED

10-14 Line number 1 to 9999

15 Blank

16-19 Weapon number Weapon number = 1 to So
(WHDTYPE)

20 Weapon type 0 = Bomb
I = ASM
2 = Decoy

21-37 Blank

38-43 Weapon yield Kilotons

44-46 FFRATIO 000-100

47-80 Blank

Fig. 235. Weapon Characteristics List (Program TABLE)

1089

.

rOUN nDESCRI PTION REMARKS

2-RED

10-14 Line number I to 9999

is Blank

16-20 Base identification number QUICK index number
INDEXNO (1-12000)

21 Blank

A~
22-28 Latitude Degrees, minutes, seconds,

S if south, blank if north

29-36 LgiueDegrees, minutes, seconds,
E if east, W if west

37-40 Blank

41 Blank

42-43 Missile type Two-digit code.
(ICODTYPE)

44-45 Blank

46 Beginning sortie number Always 1

47 Fixed slash()

48-49 Ending sortie number 1 to 99

so Blank

51 Hard~ or soft site
(vuln,: W-,I" ty) 11 or S

52 Blank

Fig. 236. Missile Base List (Program TABLE)
(Sheet 1 of 2)

1090

COLUMNS DESCRIP'rION REMARKS

53 First or second salvo All sites listed once only;
hard sites are first salvo
only; A(l) indicates all
missiles at the base are
scheduled for the first
salvo; A(2) indicates the
missiles are scheduled 5096

fir'3t salvo and 50% second

salvo

54-59 Blank

60-67 Target name 8 characters only

68-69 Blank

70-71 Country location code 2 Alpha Characters

72-80 Blank

Fig. 236. (cont.)

(Sheet 2 of 2)

1091

462- 0 72 42

11t
COLUMNS DESCRIPTION REMARKS

1-6 Format and table name F1BASE

7-8 Blank

9 Side 1 = BLUE
2 = RED

10 Blank

11-14 Base number (NUMBAS)

15 Blank

16-20 Base identification number QUICK index number
INDEXNO (1-12000)

21 Blank

22-28 Latitude Degrees, minutes, seconds,
S if south, blank if north

29-36 Longitude Degrees, minutes, seconds,
E if east, w if west

37 Blank

38 Red lauiich command 2 - LRA
3= TAC

39 Blank

40 Base functions (either X = yes: Blank or zero = no;
home base or dispersal Note: differentiation between
base) a "home base" and a "dispersal

base" is not made

41-43 Blank
44 1ranker Alpha characters

45-59 Blank

60-67 Target name 8 Alpha characters

68-69 Blank

70-71 Country Location 2 Alpha characters

Fig. 237. Bomber Base List (Program TABIiE)

1092

PROGRAM TABLE

PURPOSE: This routine retrieves, reformats, and writes the
information required for the TABLTAPE.

ENTRY POINTS: TABLE

FORMAL PARAMETERS: None

COMMON BLOCKS: 111 DIRECTRY, EDITERM, ITP, MYIDI'NT,
NOPRINT, PPOCESS

SUBROUTINES CALLED: HELP, INITAPE, INITI'DIT, INPITEM, ITLE,
NEXTITEM, RDARRAY, S ETREAD, SE1Ri0T'E,
TERTI'APE, WRARRAY

CALLED BY: Operating System; this is a main program

Method

This routine is the main processor. The processing is quite straight-
forward. The input data base is investigated item by item. A series of
checks determines if the item is a target, launch base, or weapon. If not,
the item is ignored. If the item is one of these, control transfers to
a part of this routine which reformats the appropriate attribute values
into the form required on the TABLTAPE.

Three local arrays are used in this process:

VEHI(200) - A logical array; set true if vehicle type has already
been processed to vehicle table

NYT I(50) - Yield in kilotons for each warhead

NFFRAC(50) - Fission fraction in hundredths for each warhead.

The variables in numbered common /111/, described earlier in this chapter,
are placed in numbered common to obtain more storage for program TABLE
by overlaying the loader. Figure 238 is a flotvchart of this routine.

1093

± :V..I4

In the series of statements preceding statement 29 several calls on
utility subroutine ITLE are made. These calls look up the index of various
attributes in the data base directory (array ATTNAME in common /DIRECTRY/).
These indices are used to retrieve the attribute values from the VALUE
array in comon /PROCESS/. This mode of operation obviates the need for
processing the TABLE source code with utility program DECLARES.

1094

Inlitialize File
Uniit Numhers_ý

Read)
Attacking Side

SetTable Woentitiers1
F!!~ Side I

Yese Table
Is Side Hitit? Id ntitHers

Is ideFor BLUEi Side

Iflitializi We.~an
Table Identifiers

Call INhTAlEI To
In itialize

Fl leh andler

23 pr- F i te F ttr a ibuatt-aeIt
i

Fig 238. Progaa TAL9

DýIer~in lnexcs 1Par uter I Inta Initialzmn cat

1095

Retrieve V.
;iýws F r No Itom Y s
dontife 110Basic Item iers 'Iroacstsed?

I loo

Idn

q

00
Call NEXHILM To

or

No

Read Next Data 100

/S ,

te
Convert I at I '" d

Call HEL 11 To Base m
"t I '"d

And Lngitud. To
Format Of Degree--.;/ý D "it' f ieMinutos/Seconds

No

30

Is Ibis Item On No 30 Is Thir. Item
Attacking Side? Target?

40 Yes 31 Yes

Retrieve Weapon iZe j'arge., Write Target
naU d L.". 91 Entry On

Identifying Data In Tarket Table Output Fil

70 71
No s caport A -No- z" !

s , 10, t ,",awn.ber7m, r,

42 72 Yes Yes
Inc er Set Tanker

Numbe Set Type Index
Of ri".1,Cnit1. Indi ato

72

T
Retrieve Correct

Type Index $4

Decode First Two Digits Call WRARRAY To
Of Vulnerability Write Mi sile Base

Table Entrs, On Scratch
File

48, 49

Set Bas o Hard Or 53 t
soft kccording To En ode Data

I-abi I ity Kissile Ta

Fig. 238. (cont.)
Part II: Basic Item Processing

1096

No 41

Is Weypo Yes N P
An Riange? 100R

Se Fu"tt

Urdex

Has Vehicle Tabl Ys e t Tanker 67

Pro norementf Co mbe rO

IsWeapon YessA~~

Convert EPFromA MsesTale? 0

NautIfca Mills To~A N o
OUTA - -6* N -Y ej WrteheTal

Fi.238 Fucont.)od

Par Vehicl Weapon Vehicle Prcssn

1097rmntNmbrO

1,; Item An AS., 0 N

It Ter. e An oom1 No itFr r

YYe

Segtfl ToW ltarheadiA ahad isinFaci~

Ind ca or SMnode E ata An

Fig.io I3.nco t

CmuePoirteI: WredadAMPocsn

1096

ISI~ereRoo7>Nj

14- Write Vehicle Table

I On Output File SO

Call TED YIA PI!' OLTAP2
Terminate Srth - OUTAP3

Flic Read And Print
Outpu ile

I'ABLTAF1! - - i to Wepn 4

-=Terminate Ou.tput Filec

Do 130 For All Done Do ISO For All Bases

Read Base Data A2Read Base~ Data
FromScrtch ileFrom Scratch File

OUTAP 3

Fig. 238 (cont.)
Part V: Termination P1rocessinig

1099

SUBROUTINE HELP I
PURPOSE: To translate latitude or longitude from floating

point format to integer format.

ENTRY POINTS: HELP

FORMAL PARAMETERS: DEG - Input degrees in floating point format
KDONE - Output translation of DEG to integer

format
LTEST - Input flag set to:

0 - for longitude conversion
1 - for latitude conversion

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: TABLE

.I

Method

Each execution of subroutine HELP translates a value for latitude or
longitude from floating point format to integer format. The sub-
routine's input and output are transmitted via the three formal para-
meters: DEG, KDONE and LTEST.

The flowchart for HELP is shown in figure 239.

1100

SSTART) ..
S~100

Fir.5t Ti Yes•SThrourhe
Initialize(JFIRST --1)? /i

NoNo 2

2000
1 1

Lttd NoConvert

ConvesionLongitude
(LTES-1)?To E Or W

[Convert Latitude•
To North (1H)lo
Or South (1HS)

Convert To

Integer,
Store In KDONE

Fig. 239. Subroutine HEFLP

1101

APPENDIX A
QUICK ATTRIBUTE NAMES AND DESCRIPTIONS

ATTRIBUTE
NAMS DESCRIPTION

ABRATE Probability of aircraft in-flight abort per hour

of flying time

ADBLI ALERTDBL probability for initiative attack

ADBLR ALERTDBL probability for a retaliatory attack

ADEFCMP Area ballistic missile defense (MID) component
index (radar or missile launih site)

ADEFZON Area ballistic missile defense (BMID) zone number

AGX Offset X-coordinate of AGZ (fifticths of nautical
miles)

AGY Offset Y-coordinate of AGZ (fiftieths of nautical
miles)

AHOB Actual height of burst of weapon (air or ground)

ALERTDBL Probability of destruction before launch (DBL)
of alert delivery vehicle (missile or bomber)

ALERTDLY Delay of alert vehicle before comniencing launch
(hours)

AREA Area of a bomber defense ZONE (millions of
nautical miles 2)

ASMTYPE Air-to-surface missile type

ATTRCORR Attrition parameter for a bomber corridor (probab-
ility of attrition per nautical mile)

ATrRLEG Attrition parameter for each route leg in bomber
sortie (probability of attrition per nautical mile)

ATT RSU1)F Amount of original attrition that remains after

defense supprCssion

1102

ATTRIB11TE
NAME DESSCRIPT'ION

AZONI First area defense zone covered by a BMD long-range
radar

AZON2 Second area defense zone covered by a BHD long-
range radar

AZON3 Third area defense zone covered by a BMD long-range
radar

BCODE Code indicating the outcome of a simulated bomber
event

BENO Bombing encyclopedia number

BLEGNO Index to boundary line segment

CATCODE Category Code as reflected in Joint Resource
Assessment Data Base (JAD)

CCRE., Regional reliability of offensive command and
control (probability)

CEP Circular error probable (CEP) , delivery error
applicable to bomber and missile weapons (nautical
miles)

CLASS Class name assigned identify sets of TYPES in data
base

CLASST Target CLASS

CNTRYLOC Country code for country where item is located

CNTRYO1VN Country code for country which owns the item

CNTYLOCT Target country code for country where the target
is located

CNTYOWNT Target country code for country which owns the

target

CODE Outcome code for a general event used in simulation

CPACTY Capacity of a bomber recovery base (number of
vehicles)

1103

ATTRIBUTE

NAMIE DESCRIPT ION

DATEIN Earliest date in inventory (year)

DATEOUr Latest date in inventory (year)

DEFRANGE Typical range of interceptors at defense bases near
a corridor (nautical miles)

DELAY Delay time (e.g., launch delay time) (hours)

DELTA Time interval between successive vehicle launches
from the same base (missile or bomber) (hours)

DESIG Target designator code; e.g., AB1O0, which uniquely
identifies each target element included in the data
base

DGX Offset X-coordinate of desired ground zero (DGZ)
(fiftieths of nautical miles)

DGY Offset Y-coordinate of DGZ (fiftieths of nautical

miles)

DHOB Height of burst of weapon (0-ground, 1-air)

BFECNESI1 Attributes assigned to fighter interceptor units
I3FECNES2) (ICLASS = 5 in the data base): the value EFECNESI

or EFECNES2 is assi.gned to the attribute EFECTNES
depending on value of BASEMOD input parameter
POSTURE (if POSTURE=l, EFECNES1 is used; otherwise
EFECNES2 value is assigned)

EFECTNES Air defense capability (arbitrary scale) established
by user to indicate relative effectiveness of
air defense command and control installations and
fighter interceptor bases

EVENT Index to event type

EVENTN Index to type of event which did not occur

FFRAC Fission fraction (fission yield/total yield)

FLAG Numeric code (1 through 9 permitted) used to impose
restrictions on the allocation of weapons within
QUICK

1104

AlTRIrUTE
NAME DESCRIPTION

FLTNO Flight number for a sortie

FUNCTION Operational appli'cation code for a weapon system
(e.g., I CBM)

FVAULl Fraction of value of target in first hardness component

FVALTI Fraction of target value that disappears by TI
(percent)

FVALT2 Fraction of target value that disappears by T2
(percent)

||I First hardness component of a target (VULN) I
H2 Second hardness component of a target (VULN)

HILOATTR The ratio of the low.-altitude attrition ratb to
the high-altitude rate (decimal fraction)

IALERT Alert status; 1 = alert, 2 nonalert

IALT Altitude index (1 = high, 0 low)

IATTACK Selection index for preferential area BMD; 1 forces
target selection for defense.

ICLASS Class index assigned for game

ICLASST Target class index

ICOMPLEX Complex index

ICORR Bomber corridor index number assigned in program
PLANSET:

1 - Tactical (FUNCTION=TAC) aircraft corridor
(TYPE name DLI'NY in the data base)

2 - Naval attack corridor (TYPE name NAVALAIR
in the data base) used by bomber units
with PKNAV greater than zero

>2 - Other corridors used by long range bombers
(FUNCTION= LRA)

1105

ATTRIBUTE
NAME DESCRIPTION

IDBL Index to data tables for time-dependent destruction
before launch probability

IDUD Dud warhead indicator; assigned to weapons which
arrive at the target but fail to detonate; l=dud
warhead

IGIW Indices of General Industrial Worth (IGIWI) (dollars)

IGROUP Group index assigned for weapon grouping during
game

IMIRV Identifying index for system with multiple indepen...
dently targetable re-entry vehicles

INDEXNO Index of a data base item (potential target) used
during processing to identify the item

INDV Vehicle index within base

INTAR Target index (corresponds to INIDXNO)

IPENMODE Penetration mode; 1 - aircraft uses penetration
corridor, 0 = penetration corridor not used

IPOINT Index to a geographic point

IRECMO)DE Recovery mode; 1 = aircraft should plan recovery,,
0 = aircraft recovery not planned

IREFUEL Bomber refueling code

IREG Index to identify a geographic region

I RE P Reprograominng index (capability of missi sie
squadron)

ISITE Site number

ITGT Target index nuimer assigned by Plan Generation
subsys tem

ITIM1 E Index to time periods in tife dependent I BI. dat.a
tables

1106

ATTRI BUTE

NAME DESCRIPTION

ITYPE .Type index assigned for game

ITYPET Target type index

IVULN Index to vulnerability number table

IWTYP2 Second warhead type

JTYPE Type index within class

JTYPET Target type index within class

KORSTYLE Parameter to adjust mode of corridor
penetration

LAT Latitude (degrees)*

LEGNO Index to line segment

LINK The index of a leg linked to the current point

LONG Longitude (degrees)*

MAJOR Major reference number as reflected in the Joint
Resource Assessment Data Base (JAD)

MAXFRACV Maximum value of weapon resources to be used relative
to target value (in processing MAXCOSTImAXFR]ACV)

MAXKILL Desired maximum damage expected for a target

MINKILL The required minimum damage established for
a target

Latitude and longitude are carried internally in the QUICK system in

the following format:

North latitude 0. (equator) to +90. (North Pole)
South latitude 0. (equator) to -90. (SoiAth Pole)
East longitude 180. to 360. (Greenwich Meridian)
West longitude 0. (Greenwich Meridian) to 180.

These attributes may be input, in either the above format or in
standard degree, minute, second, direction format.

4-.. 4 . . 4.. 1107

ATTRIBUTE

NAME DESCRIPTION

MINOR Minor reference number as reflected in JAD
to identify an item

MISDEF Number of terminal ballistic missile interceptors
for a target

MVA Manufacturing value added (MVA); indicates the
amount of value added by manufacture within a
specific area (expressed in U.S. dollars)

. VWIDS Number of missile warheads penetrating area
defenses to terminal defense

NADBLI NALRTDBL for initiative attack

NADBLR NALRTDBL for retaliatory attack

NAINT Number of area ballistic missile interceptors at
an interceptor launch base V.

NALRTDBL Probability of destruction before launch (DBL)
of non-alert vehicle

NALRTDLY Delay of non-alert vehicle before commcncing
launch (hours)

NAME Arbitrary alphameric descriptor for any item
included in the data base

NAREADEC Number of decoys per independent re-entry vehicle
for area BHD

NASW. Number of ASMs carried by a bomber

NCM Nu-mber of countermeasures carried by vehicle

NDECOYS Number of decoys on a bomber or number of decoys
per indepcndent re-entry vehicle for terminal BMID

NDET Number of warheads detonating in current event

NEXTZONE The adjacent zone to a side of a defense zone

NMPSITE Number of missiles per site

1108

ATTRI BUTE
NAME DESCRIPTION

NOALERT 'Number of vehicles on alert at a base

NOBOMBI, Number of first bomb type carried by vehicle

NOBOMB2 Number of second bomb type carried by vehicle

NOINCOM Number of delivery vehicles in commission

NOPERSQN Number of weapon vehicles per squadron

NOPERSQ1) Attributes used in program BASEMOD to compute t.he
NOPERSQ2 value of the attribute NOPERSQN for bomber units;
NOPERSQ3) numbers 1, 2, and 3 specify surprise, initiative,

and retaliatory attack plans respectively

NPEN Number of warheads penetrating in current event

NTARG Number of targets in missile launch event

NTINT Number of terminal BNID interceptors at target

NIVHDS Number of warheads per independent re-entry vehicle
(missiles)

NWPNS Nunber of weapons in a group

NWTYPE Warhead type

PARRIVE Probability of bomber arrival in curri-nt event

PAYLOAD Index which identifies entire weapon and
penetration aid complement on a vehicle

PDES Probability that launcJh failure destroys missile

PDUD Probability a warhead will fail to detonate

PEN Penetration probability for a weapon

PFPF Probability of failure during powered flight
(missiles)

PINC Probability that a missile is in commission

1109

ri

ATTRI BUTE
NAME DESCRIfPTTON

PKMIS Probability a missile fails to penetrate terminal
defense

PKNAV Single shot kill probability of a weapon against
a naval target (a value greater than zero restricts
weapon use to naval targets)

PLABT Probability of vehicle launch abort

PLACE Index to geographic location of an event

PLACEN Index to geographic location of an event which
did not occur

POP Population (cities) (thousands)

POSTURE Force readiness condition

PRABT Probability of refueling abort

PRIMETAR Prime target flag; I signifies priority target
in a complex

PSASW Destruction before launch probability assigned a
weapon for a specified time period

RADIUS Size descriptor for area targets (nautical miles)

RANGE Vehicle rsage (nautical miles)

RANGEDEC Range decrement for low-altitude aircraft flight
(high range/low range)

RANGEREF Range (nautical miles) of bomber with refueling

REL Reliability - probability that weapon system will
arrive at target given successful launch

RESERVE Technique used to remove certain targets f rom
weapon allocation when RESERVE = 0

SIDE Item side name, currently either "RED " or "BLUE"

1110

ATrR1 BUTE
NAME DESCRIP'rION

SITENO Site number (currently for individual missile

sites)

SPDLO Speed at low altitude (knots)

SPEED Speed (knots)

SQNNO Squadron number

Ti Time of departure of first value component of a
target

T2 Time of departure of second value component of a
target

T3 Time of departure of third value component of a
target

TAIM Number of aim points perceived by terminal defense
in current event

TARDEIliI Level of local bomber defense at high altitude*

TARDEFLO Level of local bomber defense at low altitude*

TASK Target task code indicating targeting priority

TGTSTAT Indicates target status as dynamic or nondynamic;
in simulation status (alive/dead) is maintained
for dynamic targets

TIM•E Game time at which event occurred (hours)

TIMEN Time planned for event which did not occur (hours)

TWDEL Mean delay time to relaunch after a nondestructive
aircraft abort (hours)

* Arbitrary units scaled by user-input parameter in Plan Generation
subsystem. Minimum value 0 for no defense. Highest allowed defense
"level is + 7.

I111

ATTRI BUTE
NAME DESCRIPTION

TPASW Time at which a time period ends for DBL data
tables; there may be up to 10 time periods for
each table

TRETARG Time required to retarget for known in-flight
missile aborts (hours)

TTOS Total time on station (for a tanker) (hours)

TVUL Time a missile remains within vulnerable range
of launch site (hours)

TYPE Arbitrary alphameric deignator (type name) to
identify smallest sets in data base

TYPET Target TYPE

TYPE11 Attributes assigned fighter interceptor units
TYPE 2 (ICLASS=5 in the data base): attribute TYPE is

assigned the TYPE1 or TYPE2 value based on BASEMOD
input parameter POSTURE (POSTURE=I TYPE1 is used;
otherwise TYPE2 value used)

VAL Relative value of an item within its CLASS as
established in the data base by the user

VALU Game value of an item (assigned in plan
generation based on user-input parameters)

VALl Attributes assigned fighter interceptor units
VAL2 (ICLASS=5 in the data base): attribute VAL is

assigneod the VALl or VAL2 value based on BASE,.MOD
input parameter POSTURE (POSTURE=1, VALI is used;
otherwise VAL2 value is assigned)

VU LN Vulnerability number

WACNO World aeronautical chart number

WIIDTYPE Warhead type index assigned in the data base

WITYYPEN Warhead type index (used with EVENTN)

YIELD Yield (Mir)

ZONE An area bomber defense zone enclosed by a set of
linked boundary points

1112

APPENDIX B
ENTRY POINTS FOR QUICK UTILITY ROUTINES

This appendix contains an alphabetic listing of the entry
points associated with all utility programs and subroutines.
Subroutines associated with each of these entry points are
indicated below.

ENTRY POINT TO SUBROUTINE
ABORT ABORT

ALOCDIR FILEHNR
ANOTHER ANOTHIER

ATN2P I ATN2P I
CHANGE CHANGE

CLOSPIL CLOSPI L
CLRCMON CLRCMON
DEACTIV FILEIINR

DECLARES DECLARES
DELLONG DELLONG
DIFFFLNG DIFFLONG

DIFFLONG DIFFLONG

DISTF DISTF
DSTF DSTF
ENDDATA ENDDATA
ENDTAPE ENDTAPE
ERAZE ERAZE
EQUIV EQUIV
FJ LEDUMP FI LEDUMP
FI LEHNR FI LEHINR
GETCLK GETCLOCK

1113

~l

ENTRY POINT TO SUBROUTINE

GBTCLOCK GETCLOCK
GETDATE GHTDA'rE

GETDF GSTDF

GETLIMIT CETLIMIT
GETLOC GETLOCI
GET VALU CETVALU

I SET I GET

INBUFDK INBUFDK
INERRDK INERRDI(

INERRTP INERjRTP

INITAP FILEHNR

INITAPE FILEHNR

INITEDIT INITEDIT

INITEDT INITEDIT

INLABEL INLABEL

INPITEM INP ITEM

INTh RI INTERI'

INTERPGC INTERPGC

INTRPGC INTERPGC

I Put" I PUT

ITLF. ITLE

IWANT IWANT

KEYMAJ(E KEYMAKE

LOCF LOCP

LOCREAD LOCREAD

LOCWRIT LOCREAD

LOCWVRITE LOCREAD

NI3WUN IT NEWUNIT

NEXTAPE NEXTAP E

NEXTFILE NEXTFI LE

1114

rENTRY POINT TO SUBROUTINE

NEXTITEM INITITEM

NEXTITM INITITEM

NODIRC NODIRC

NUMGET NIJMGET

OPENSPIL OPENSPI,

ORDER ORDE-R

OUITBFDK OIJTBFDK

OUTE FTP OUTBrf*IP

OUTDF OLJTDF

OUTE RDK OUTERDK

OUTERTP OUTERTP

OUTFILE OUTFI LE

OUTITEM cJLrfITEM

OLTMORDS OITIWORDSI
OnIJTRDS OUIWORDS

PAGES K IP PAGESKP

PAGESKP PAGESKP

PRITEM PRITEM

PRNTBAS PRNTBASE

P RNTB ASE P RNTBASE-

PRNTBSE PRNTI3ASE

PRNTDATA PRNTDTA

PRNTDTA PRNTDTA

PRNTDIRC PRNTDIRC

PRNTDRC PRNITDIRC

P1RNTLAB FILEHNR

PRNTPAGE PRZNTPGE

PRNTPGE P RNTP GE

RDARRAY RDARRAY

READDI R RJ3ADDIR

RI3LOADF RI3LOADF

ills

ENTRY POINT TO SUBROUTINE

REORDER REORDER
SETHEAD SETHEAD
SETREAD SETREAD
SHTWRIT FILEHNR
SEIVTRITE FILEHNR
SKIP SKIP
SSKPC SSKPC
STORAGE STORAGE
TERMTAP TERMTAP
ThlR1?fFAPE TEMITfAP
TE PRM PE TERWAP

TIMEDAY TI ME DAY
THMEME TIM1ME

WAR~NING ABORT
WRARJRAY RDARRAY

WRITEDIR WRITEDIR
WRITEI3R WRITEDIR
WRWORD F I LEHN R

1116

