» NATIONAL

p MILITARY
COMMAND
SYSTEM
SUPPORT
CENTER

DEFENSE
COMMUNICATIONS
AGENCY

! THIS DOCUMENT HAS BEEN
DPPROVED FOR PUBLIC

J ﬁELEASE, DISTRIBUTION

| UNLIMITED,

COMPUTER SYSTEM MANUAL
CSM PSM 9A.67

VOLUME I, PART A

29 FEBRUARY 1972

v
&

(83

Y49

e
et

| THE NMCSSC
QUICK-REACTING
GENERAL WAR GAMING
SYSTEM
(QUICK]

DATA INPUT SUBSYSTEM

PROGRAMMING SPECIFICATIONS

| MANUAL
r‘\ ™ C _
. m‘m i \“ HTIEJU
RREA s m At
Lﬁ@F% |

445

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

CRODUCE LEGIRLY

N

THIS DOCUMENT CONTATNED
BLANK PAGES THAT HAVE REPRODUCED FROM

BEEN DELETED BEST AVAILABLE COPY

TN T

RSO HNI

Security ffllulﬂcl,lunn

DOCUMENT CONTROL DATA-R& D

(Security clasailication ol title, bady of abatract and indexing annolation mustl be eatersd when the overall repott iz clasaltied)

1. ORIGINATING ACTIVITY (Corporale euthor) A6, REPORT SECURITY CLABMMIFICATION

National Military Command Syntem Support Center (NMCSSQ)
Defense Communications Agoncy (DCA)

The Pentagon b, GmOUP

Washington, 9C 20301

3. REPORT TITLE

The NMCSSC Quick-Reacting General War Gaming System (QUICK)
Programming Specifications Manual, Volume I, Data Input Subsystem

4. CESCAIPTIVE NOTES (Type of repast and inclusive dates)

N/A
3. AUTHOR(S) (Firafl name, middie initial, last wams) -
NMCSSC: Yvonne Mapily Lambda Corp: Betty J. Ellis
Donald F, Webb Jack A, Sasseen
¢ REPORY DATE Ta, TOTAL NO. OF PAGES 7b. NO. OF RKFS
29 February 1972 486 4
.‘. CONTNACT OR GRANT NO. ORIG Ton'
S AL .'Nﬁﬁégé RS REPORT HUMBE RIS}

b ProskcT e, NMCSSC Project 631 COMPUTER SYSTEM MANUAL CSM PSM 9A~-67

b, OTHER NEPORT NOIE) (A ther numbers that 7]
s port) (Anpy o may be esaigned

d, None

10. DISTRIBUTION STATEMENY

This document iy approved for public release; its distribution is unlimited.

11. SUPPLEMENTANY NOTES - 12. SPONSORING MILITARY ACTIVITY

National Military Command System Support
Center/Defense Communications Agency
The Pentagon, Washington, DC 20301

13. ABSTRACTY

This is one of three volumes describing the computer programmiig specificarions for
the Quick-Reacting General War Gaming System (QUICK), This ‘olume addresses computer
programs of the QUICK Data Input Subsystem, It is intended to serve as the basis for
program maintenance activities, Accordingly, it describes the program functions and
contains flow charts for each program and subprogram of the Data Input Subsystem.

Based upon suitable data base and user control parameters, QUICK will jrenerate
individusl bomber and missile plans suitable for war gaming, and simulate the planned
events, The generated plans are of a form suitable for independent review and
revision., Subsequently, the planned events are simulated; various statistical sum-
maries are produced tn reflect the results of the war game, A variety of force
postures and strategies can be accommodated,

QICK is documented extensively in a set of Computer System Manuals (series 9-67)
published by the National Military Command System Support Center (NMCSSC), Defense
Communications Agency (DCA), The Pentagon, Washington, DC 20301,

AEPLACES DD POAM 1478, 1 JhaN 66, YHICH i$ yeo
' .ev ™ OOROLETE FOA ARMY ok, I

Az Security Cleeslfication

[N

REVIEWED BY:

NATIONAL MILITARY COMMAND SYSTEM SUPPORT CENTER

Computer System Manual Number CSM PSM 9A-67

29 February 1972

THI: NMCSSC QUTCK-REACTING GENERAL WAR

GAMING SYSTEM
(QUICK)

Programmning Specifications Manual

Volume I - Data Input Subsystem
Part A

Submitted by:

2;1’%6§§2z’iardé§é;¢2£r

Major, USAF
Project Officer

R, B, HARSHBARGER
Technical Director

NMCSSC

APPROVLED BY

BRUCE MERRITT
Colonel, USA
Commander, NMCSSC

Copies of this document may be obLtained from the Defense Documentation
Center, Cameron Station, Alexandria, Virginia 22314,

This document has been approved for public release; distribution
uniimited,

e T A e)

. R TOU Y 4 I
CAARIDS SO AT SO B PR TR NERERURS ERLS SRR il st

:
) ACKNOWLEDGMENT
This document was prepared undez the direction of the¢ Chief for Develop-

i ment and Analysis, NMCSSC, in response to a requirement of the Studies,
- Analysis and Gaming Agency (SAGA), Organization of the Joint Chiefs of
k. Staff. .Technical support was provided by Lambda Corporation under
b Contract Number DCA 100-70-C-0065.
g ii

;

i

i

CONTENTS

R E te e gt nt iy ~ L

] Part A
Chapter Page

ACKNOWLEDGMENT v v v v v v o v o v v o 0 e ii

‘ ABSTRACT . R S § 8

? 1 INTRODUCTION .+ ++ . . . 1

2 QUICK SYSTEM FILEHANDLER , . 5

Purpose . . . e e e e e e e e 5

) Concept of Operatlon e e e e e e e 5

i Functional Description . . . e e e e e e 8

. Initialization and Dlrectory Maintenance e 8
i

Output Data Transfer, . . e e e e 11

Input Data Transfer e

Dump Facility e e e e e e e 14

Error Detection and Recovery e e e e e T e
Common Blocks . v v v v v v v v v v h e e e e e e e 15
Subroutine FILEHNR ,, . .

(Entry ALOCDIR)

(Entry DEACTIV)

(Entry INITAPE (INITAP))

(Entry PRNTLAB)

(Entry RDWORD)

(Entry SETWRITE (SETWRIT))

(Entry WRWORD)

T R ey

o

Subroutine RDARRAY . , 35
(Entry RDARRAY)

Subroutine SETREAD . . N 43

Subroutine TERMTAP R 50

(Entry TERMTAPE)
(Entry TERMTPE)

T T T T T T T TR TR Y

3 SPECIAI.-PURPOSE UTILITY ROUTINES ., + « « + .+ « . 56
Program OUTFILE « .« . « v v v v v v v 4 57
Subroutine CLOSPIL 67
Subroutine CLRCMON . . . , . 69

Subroutine GETDF e e e e e
Subroutine INBUFDK ¢« « v v v « v « v « v « . 77
' Subroutine INERRDK « . ¢ « v v « v v v v 80
- Subroutine INLAREL « v . v v v v« . 83

]
-?
A
|
Chapter
Subroutine NODIRC, . . .
Subroutine OPENSPL,
Subroutine QUTBFTP ,, . . .
Subroutine QUTERTP, . .
Subroutine SETHEAD
Program RELOADF
Subroutine ENDTAPE , . ., . .,
/ Subroutine GETLOC . .
, Subroutine INBUFTP e e
Subroutine INERRTP ,
Subroutine NEXTAPE .,
: Subroutine QUTBFDK
Subroutine OUTDF
; Subroutine OQUTERDK e e e
; Program DECLARES
* Subroutine EQUIV
: Program FILEDUMP
4 GENERAL UTILITIES « ¢ « +« .« .
, Subroutine ABORT
: (Entry WARNING)
" Subroutine ANOTHER (COMPASS) , . , . .
b Function ATNZ2P1 . . . e e e
: Subroutine CHANGE-.
: Function DELLONG « « . .
. Function DIFFLONG
: (Entry DIFFLNG)
' Function DISTF + . . .
; Function DSTF
? Subroutine ENDDATA
: Subroutine ERAZE (COMPASS).
i Function GETCLOCK . o
i (Entry GETCLK)
! Function GETDATE (COMPASS).
1 Subroutine GETLIMIT (COMPASS) . . .
; Subroutine GETVALU , .,
¢ Function IGET « . .
] Subroutine INITEDIT .
(Entry INITEDT)
Subroutine INPITEM . .,
(Entry NEXTITEM)
(Entry NEXTITM)
. iv
1

o

Page

85
87
90 '
92 ‘

98
102
104
106
108
113
116
119
126
129
138
137

2 et il et P adme it el

140
141

143
144
146
148
150 0

e M B i i ram %

152
154
156 2
157 k
158 ;

159
160
162
166
168

v,

Satea w2

170

J- S SN SRS

[T SPL R PUPE. 2 WL R SN

i
]
i
!
d

1 § 4y T

L
i
b
:
l
i

e T T T T e

e ST

TR T

Chapter

5

Subroutine INTERP

Subroutine INTERPGC
(Entry INTRPGC)

Subroutine IPUT . . .

Function ITLE
Function IWANT . . , . . .
Function KEYMAKE

Function LOCF (COMPASS) . . .
Subroutine LOCREAD

{Entry LOCWRIT)

(Entry LOCWRITE)
Subroutine NEWUNIT (COMPASS).
Subroutine NEXTFILE
Function NUMGET
Subroutine ORDER
Subroutine OUTITEM . , . . .
Subroutine GUTWORDS .,

(Entry OUTWRDS)

Subroutine PAGESKP .

(Entry PAGESKIP)
Subroutine PRITEM
Subroutine PRNTBASE

(Entry PRNTBAS)

(Entry PRNTBSE)

Subroutine PRNTDIRC . . ., . .

(Entry PRNTDRC)

Subroutine PRNTDTA

(Entry PRNTDATA)
Subroutine PRNTPGE .

(Entry PRNTPAGE)
Subroutine READDIR . . ., . .
Subroutine REORDER . . , . .
Subroutine SKIP . . .
Subroutine SKIPFILE ,

(Entry BACKFILE)

Function SSKPC
Subroutine STORAGE ,
Function TIMEDAY (COMPASS)
Subroutine TIMEME . . .
Subroutine WRITEDIR ., .

(Entry WRITEDR)

PROGRAM QUIKBASE . . .
Purpose

Page

173
176

181
183
185
187
189
190

192
193
195
19y
200
202

204

205
207

209
213
216

218
221
224
226

227
231
233
234
237

240
240

P O L

-2

Chapter

T

6

Input .

Program Optlon Cards .
Data Library File .
Update Command Cards .
Item Update Files

Output . . .

Concept of Operatlon

Creation of a Data ulbzary f1lc (oLTID) Optlon .

Updating a Data Library File (UPDATL Option)
Data Base Generation (QUIKDBG Option). .
Printing of a Data Basc F'ile (PRINTDB) Oprlon
Identification of Subroutine Functions .
SETID Option (Creation of Duta Library Ille;
UPDATE Option (Updating of Data Library Fllb).

.

QUIKDBG Option {Data Base File Creation) .

PRINTDB Option (Printing of a Data Base Fllc)
Common Block Definition . A

External Common Blocks .
Internal Common Blocks

Subroutine ADDSET .
Subroutine BUFFIT ,
Subroutine CARDCK .
Subroutine COPYDB .
Subroutine COUNTDS
Subroutine FASTSET
Function ILOOK . .
Subroutine INITFAST
Subroutine INPRTCL
Function IPRINT .
Subroutine MAKEBAS
Subroutine MAKEIT
Subroutine MOVEIT .
Subroutine NEWBASL
Subroutine NEWDATA
(Entry NEWCARDS)
Subroutine NEWDIR .
Subroutine OUT
Subroutine PRONLY
Subroutine PRTCONT
Subroutine SETID

PROGRAM BASEMOD
Purposce .
Input Files
Output Files

ER S}

Vi

PR Tt PR LR S USSP LA RS

¢

RTINS TRRICH T N AR S P

Page

240
240
240
241
242
242
243
243
245
246
240
247
247
247
247
247
248
248
248
258
260
263
265
2e7
269
271
273
275
277
279
281
283
285
293

302
307
309
311
313

322
322
322
323

T T Y
S L et a1 S £

i«

;
1
!
i
i

U

T T

Chapter

7

Concept of Operation
Identification of Subroutinc Funct1ons
Post-QUIKBASE Operation

Post-INDEXER Operation .
Common Block Definition .
External Common Blocks
Internal Common Blocks

Program BASEMOD . .
Subroutine ADDVAL .
(Entry PRNTVAL)
Subroutine CQUNTDES
Subroutinc DBMOD .
Function INDEXTYP .
Subroutine INDMOD .
Function MYZONL .
Subroutine NUMDEL .
Subroutine PRINTIT

.

Subroutine PRTCOUNT .

Subroutine RDTYPES
Subroutine STKRIN .
Subroutine TARDEFS

PROGRAM INDEXER . . .,
Purpose
Input
Qutput . . .
Concept of Operatlon

General

.

.

-

D

Pass 1 Processing (Sheets 1 to
Pass 2 Processing (Sheets 6 to

Subroutine AROVRFL

(Entry COLOCCAT)
Subroutine FINDIT .
Function ICPL . . .
Function IDXF . .
Subroutine INITIND
Subroutine READIN .
Subroutine TDEFSTT

(Entry TDEFSTAT)
Subroutine VLRADI
Subroutine WRPRNT
Subroutine WRSIMT .

.

Subroutine COLOCATE .

vii

SO

6, Figure

11,

111).
Figure 111)
Pass 3 Processing (Sheets 11 to 18 Flgure 111)
Common Block Definition . .

.

Cnicdeadbo e ol dastaddel Ces

L] . 360

Page

.. 323
.. 323
. 324
324

.. 324
. 324
. 324
330

332

334
336
340
342
345
347

. . 353
.. 357
.. 360

360

360
361

. . 361
. . 368
.. 370

372
376

406

416
418
420
422
. 423
. 426

429
431
433

ek

PHLS ST P

i

L AT 8 L G D s i Tt L

it o s i St 2 o L it il

]
i
1
g

Program BASEMOD ., . . ., . . e e e .
Program INDEXER ., . . . , e e e e e
Program BASESUM , ., , . . . e e e
viii
By et e e A Y Lo wiid iAo ST GV TETRIIITON VI B S S e B ML L L

Chapter

8 PROGRAM BASESUM

Method ¢« .+ ..
Common Block Definition, , . .

APPENDIXES
A, Utility Routine Common Blocks
B. QUICK Attribute Names and Descriptions . .
C. Entry Points for QUICK Utility Routines . . .
D. Utilization of General Utility Routines .

DISTRIBUTION

DD Form 1473 .

PART B

QUICK Utility Program/Subroutine Listings
The QUICK Filehandler
Special Utility Routines
General Utility Routines

PART C

Data Input Subsystem Program Listings
Program QUIKBASE ,

Page

436
436
437

442
447
458
462

471

472

473
538
676

841
966
1063
1205

ot iy ez

i T NN

ILLUSTRATIONS

Number Page

1 The Data Input Subsystem . ., v . + v v o o o 2

2 Physical File Format , . , e e e e e e 9

3 Subroutine FILEHNR e« v . . 25

4 Subroutine RDARRAY . , . ., .,+ . . . e v . . . 38

5 Subroutine SETREAD ., v v v v o v v v v » e v . . . 45 '
6 Subroutine TERMTAP , ., & « v v v v ¢« v v v « « « . 52 4
7 Program OUTFILE ., « &« v v v v v o v o « v .. 64 ’
8 Subroutine CLOSPIL . , « v v v v v v v o v v 68

9 Subroutine CLRCMON « v v v v v v v v v o v v 0w 70 3
10 Subroutine GETDF+ . . R At ,i
11 Subroutine INBUFDK « « + ¢ v v o o o o 4 s o « s o o o o « .+ 78 b
12 Subroutine INERRDK . « « + « « . & P 3 | Y
13 Subroutine INLABBEL « + « v ¢ & v s v o v o 4 s ¢ o o « « + . 84

14 Subroutine NODIRC « v + ¢« v & ¢ o 4+ &t o « w s o« 2 o o« o« + + 86

15 Subroutine OPENSPL + + « v « ¢ o & « 4« o s o o « o o« « o+ 4+ « 88

16 Subroutine QUTBFTP .+« + + « + ¢ v v + + o o o & e e 91

17 Subroutine OUTERTP - . + « « + .+ . e e e e e e e 94

18 Suhroutine SETHEAD . . . e s e ¢ & & e e n e & 4 s & 97

19 Program RELOADF. . « « « ¢« « v v v « v 4« v ¢« o v s+ » « » 100

20 Subroutine ENDTAPE + ¢« « « + « « v o o o v & o « o » s « « « 103

21 Subroutine GETLOC - « « « + + + .+ & e e e v v+« . 105
22 Subroutine INBUFTP . O Y 4

23 Subroutine INERRTP - T T T S RS ST 8 X :
24 Subroutine NEXTAPE . . . e e e e . v e . . 114 }
25 Subroutine OQUTBFDK S B 4 3
26 Subroutine OUTDF . . o o C e e e e e e e 12

27 Subroutine OUTERDK v « « « « . .
28 - Program DECLARES . , v v o v v v o v v v 0 v o v . 132 A
29 Subroutine EQUIV « « ¢ v v v v v a4 b w0 e e .. 136 !
30 Program FILEDUMP | S 1) !

31 Subroutine ABORT B ¥ 4
32 Subroutine ANOTHER ., R X
33 Function ATN2PI , , s e s e s e e w ... 145
34 Subroutine CHANGE ., , SN . e e e ... 147
35 Function DELLONG . ., S LA
, 36 Function DIFFLONG ., v v v v v v v oo .. 131
3 37 Function DISTF , ., e e e e . v e 4 . s . 153 ‘
: 38 Function DSTF ., ., e e e e e 155 k
39 Subroutine ENDDATA . e e e e . R -1}
40 Subroutine ERAZE . e e e e e e P ¥ Y/

41 Function GETCLOCK ., v v v ¢« 4« v v v v« o « o+ . 158
42 Function GETDATE v & v v v v v s « v v v v o v . . 159
43 Subroutine GETLIMIT . . . + ¢« « v v v v v v v « v« « o« « . 161
44 Subroutine GETVALU ,

ix

. TP LT PTIUEy Aveets IR TN R IS
TR R S SUREL DUy T LR L LT R e

Number Page

k 45 Function IGET . , . e e e e . . 167

¢ 46 Subroutine INITEDIT e e . .. 169

] 47 Subroutine INPITEM, 171

] 48 Subroutine INTERP e e e . e e e 175

: 49 Coordinate System for INTERPGC . . . « « « v « « « o &+ « » 177

: 50 Subroutine INTERPGC . . . &« v v v ¢ ¢ ¢ v v o 4 o o o s o 180

3 51 Subroutine IPUT . & v v v « v « v v v e o o v o o v o v v« 182

8 52 Function ITLE . & v v v v ¢« v v t o 4 o s o s « o o o v « o 184

? 53 Function IWANT . . . & & v o v v v v e v e s v s e a v v . 186

54 Function KEYMAKE e e e e e e e e e e e e e e e e e 188

55 Function LOCF ¢ ¢ ¢ v ¢ v 6 v ¢ 4 v v o 4 v @ o o o v s o 189

56 Subroutine LOCREAD . , e . 191

57 Subroutine NEWUNIT . « ¢« « « & ¢ o « « & Vo e e e e 192

58 Subroutine NEXTFILE . « + ¢ v« v ¢ v v v ¢ o o o o o 4 s & 194

59 Function NUMGET . . . ¢« ¢« « v v « v v v v « o & v e e e . 197

60 Subroutine ORDER . . . & ¢ v ¢« v v v v ¢ & o & e v e e s 199

k 61 Subroutine OQUTITEM « . . . 41} |

¥ 62 Subroutine OUTWORDS « « « v « v + & & e+ . .« . 203

P 63 Subroutine PAGESKP . « « v v « 4 4 v v o o « o o o 4 4 o . 204

i 64 Subroutine PRITEM & v v v v v o o o o v o o« o . 206

i 65 Subroutine PRNTBASE v « « « v « ¢ « o o v « o o . . 208

g 66 Subroutine PRNTDIRC . . v . ¢« + ¢ v + v ¢« o o &+ e . 212

; 67 Subroutine PRNTDTA e e e e e e e e 214

L 68 Subroutine PRNTPGE R

69 Subroutine READDIR ¢ ¢ « ¢+ v o o 4 o 4 o o « « & e 220

: 70 Subroutine REORDER ¢« ¢ v v v o ¢ 4 « ¢ « o« o« « o« 222

3 71 Subroutine SKIP . . & v « v o v o 4 ¢ « o o s o o 4 4 4w . 228

3 72 Function SSKPC

; 73 Subroutine STORAGE v &« ¢ v ¢« v o v 4 v v o« e u o . 232

9 74 Function TIMEDAY . + & & & ¢ ¢ v v « & o s o o & o« o o o+« 233

b 75 Subroutine TIMEME . . & v « v o v v v o o b v v e o e v o 236

V 74 Subroutine WRITEDIR 239

g 77 Program QUIKBASE RN . 254

i 78 Subroutine ADDSET o .+ . 259

' 79 Subroutine BUFFIT « ¢« o . . . Co.o. 261

80 Subroutine CARDCK . . . C e e e e e . e v e s 264

81 Subroutine CORPYDB . . e e s s e e e s e a i e e e s e e.. 266

82 Subroutine COUNTDS . . . & . « v & ¢ v v v v o & « o « « . 268

: 83 Subroutine FASTSET e e e e e e e e e e 270

3 84 Function TLOOK . ., , . .« v . e e e e e . 272

85 Subroutine INITFAST . . « v v v v ¢« ¢ & o o « & e v oo. 274

86 Subroutine INPRTCL . +« v v « « « &« o + o+ . . v oo . 276

87 Function IPRINT « ¢« v « v ¢ & o« & e v .. 278

88 Subroutine MAKEBAS ., « « v ¢« ¢ « « & ¢ o o o . . 280

. 89 Subroutine MAKEIT . . . « v v « v ¢ v v ¢« o o o v o 2+ « . 282

] 90 Subroutine MOVEIT . . v v ¢ « & 4 v v o v o v o « v v o o 284
; x

3

Number

91

92

93

94

95

96

97

08

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

Subroutine NEWBASE .
Subroutine NEWDATA .
Subroutine NEWDIR .
Subroutine OUT . . .
Subroutine PRONLY
Subroutine PRTCONT .
Subroutine SETID . .
Program BASEMOD
Subroutine ADDVAL
Subroutine COUNTDES
Subroutine DBMOD .
Function INDEXTYP
Subroutine INDMOD .
Function MYZONE . .
Subroutine NUMDEL .
Subroutine PRINTIT ,
Subroutine PRTCOUNT
Subroutine RDTYPES .,
Subroutine STKRIN .
Subroutine TARDEFS .
Program INDEXER ., .
Subroutine AROVRFL ,
Subroutine COLOCATE
Subroutine FINDIT .
Function JCPL . . .
Function IDXF ., ., .
Subroutine INITIND .
Subroutine READIN

Subroutine TDEFSTT . .

Subroutine VLRADI
Subroutine WRPENT .
Subroutine WRSIMT
Program BASESUM

e e+ e * » .

xi

a e e e e

P

e & o = a

s s o e =

s s e s e

Page

287
295
304
308
310
312
315
331
333
335
338
341
343
346
348
350
352
354
356
359
386
405
408
417
419
421
422
425
428
430
432
434
439

Number

—
QWO ~IO)R

[S S ——
(7, B - ZA 0 S

TABLES

Filehandler Label Content , .
Filehandler Common Blocks

Common Blocks (Programs OUTFILE and RELOADF) .
Data Block Format for DATADB File
Data Base File (Logical Record Format).
Program QUTKBASE Common Blocks

Program BASEMOD Common Blocks . . .

Indexed Data Base File (Log1ca1 Record Format)
SIMTAPE Format . o v

Warhead, ASM, Payload, and DBL Data e e e e
Structure of a Word in the Array STATUS
Structure of a Word in the Array IOVERLAP . . .
Program INDEXER Common Blocks ., . . .,
Dzscription of COLOCATE Arrays
Program BASESUM Common Blocks

xii

-« & a4 o+ =

Page

17

243
244
249
325
362
364
373
375
375
377
407
438

PPN A

1

H

|

i

i

q

|

i LAl T i il A

ABSTRACT ,

The computerized Quick-Reacting General' War Gaming.System (QUICK) wili
accept input data, automatically gencrate global strategic nuclear wor
plans, simulate the planned events, and provide statistical output
summaries. QUICK has been programmed in FORTRAN for use on the NMCSSC
CDC 3800 computer system,

The QUICK Programming Specifications Manual (PSM) consists of threce
volumes: Volume I, Data Input Subsystem; Volume 11, Plan Gencration
Subsystem; Volume III, Simulation and Data Output Subsystems. The
Programming Specifications Manual complements the other QUICK Computer
System Manuals to facilitate maintenance of the war gaming system. :This
volume, Volume I, provides the programmer/analyst with a technical
description of the purpose, functions, general procedures, and programm-
ing techniques applicable to the programs of the Data lnput Subsystem
and to the utility programs/routines which' support the system. This
volume is in three parts: Part A provides a description of the
programs/subroutines; Parts B and C contain the associated program .
listings, Companion documents are:
) . .
1. GENERAL DESCRIPTION ‘ '
Computer System Manual CSM GD 9A- 67 '
A nontechnical description for senior management personnel
l ! !
2, ANALYTICAL MANUAL .
Computer System Manual CSM AM 9A-67 (three volumes)
Provides a description of the system mcthodology for the non-

programmer analysts | !

3. USER'S MANUAL _

Computer System Manual CSM UM 9-67 (two volumes)

Provides detailed instructions for applications of the system
4. OPERATOR'S MANUAL ‘

Computer System Manual CSM OM OA-67

Provides instructions and procedures for the computer operators |

xiii

g T T et - T TR T T

T T L e

CHAPTER 1
INTRODUCTION

The QUICK system consists of four functional subsystems: the Data :.aput,
Plan Generation, Simulation, and Data Output subsystems. In addition,
QUICK employs a gencral-purpose utility package. This utility package
consists of programs, subroutines, and functions which perform a variety
of support tasks common to two or morc system programs.

This volume of the Programming Specifications Manual describes the
programs which make up the QUICK Data Input subsystem and provides
a description of the programs, subroutines, and functions which

comprise the QUICK utility package. The organization of this volume
is described below.

Since the utility programs performed arc common to all of the programs of
the Data Input subsystem, these programs are presented first in Chapters 2-
4, Chapter 2 is a description of the file handling system (subroutine
FILEHNR) used by all QUICK programs for tape and disk operations to speed
read/write operations. Chapter 3 provides a description of the purpose,
functions, and operation of the special-purpose programs listed below.

1. OUTFILE and RELOADF, These programs provide a restart capability
used in conjunction with the Plan Generation subsystem. They
enable the user to interrupt processing in the middle of the sub-
system and either repeat or resume processing at a later time.

2. DECLARES. This program is used to assist the NMCSSC analyst in
writing and maintaining programs which process QUICK data base
tapes. It places into programs the proper FORTRAN COMMON,
EQUIVALENCE, and TYPE statements required for the data base
being processed.

3. FILEDUMP. This program provides the capability to print specific
portions of a magnetic tape, written in binary mode, or a disk
file.

Chapter 4 describes the remaining programs, subroutines, and functions of
the utility package, which perform a variety of tasks through the system.

The subsequent chapters provide detailed descriptions of the programs of

the Data Input subsystem. A description of the data flow within this sub-
system, shown in figure 1, and the programs involved are summarized below.

] - St S e ettt T Giea - S T T S R LTt Ty S
SRR \ rei i e .

pata \ —&

Library
El. QUIKBASE 1
:
BASEMOD
:
;
BASESUM
;" (Optional)
3 ‘
A
:
4
:
9 INDEXER
f Indexed
] Data
& Base
i
E BASEMOD [®«— T — — — =~ ——-
3 e — o ——— . ——— — —
E (SIMULATE)
: odified -,
Indexed E
Data ;

Base

(PLANSET)

Fig. 1. The Data Input Subsystem

e p iR

1,

Program QUIKBASE performs the primary function of creating a
game base flle which defines the general data to be used by
succeeding programs of the Data Input subsystem. This program
accepts as input the data library (in tape or card form) and,
based on uscr-input parumeters, modifies the file to create a
game base file (QUIKDB). As an optional feature, this program
provides the facilities to print the game base file (QUIKDB)
in a format meaningful to the user,

Program BASEMOD was developed in response to a specific NMCSSC
support task. As described herein, the main function of program
BASEMOD is to alter the content or characteristics of a data
base in order to adapt it to the specific scenario for which a
plan or set of plans is being developed. As indicated in

figure 1, this program may be used after program QUIKBASE and

after program INDEXER to introduce user-desired modifications
in the game file.

The purpose of program BASESUM is to summarize a game base file
and to print these summaries in tabular form. While figure 1
reflects the program operating after program BASEMOD, the
program may be used to summarize the data base contained on the
output tapes produced by programs QUIKBASE, BASEMOD, or INDEXER.
This program, while not a part of the data flow, provides a
means for further checking the input data and is a record of the
information contained on any game base tape.

To provide for efficient data handling and communications
between the programs of the QUICK system, it is necessary

to assign index numbers to various kinds of data in the
base, Program INDEXER is designed to perform this important
task and is also responsible for forming complex targets and
collocation islands. While the program is capable of accepting
a game base as created by program QUIKBASE (QUIKDB) in the
NMCS-C mode of operation, the modified data base output by
BASEMOD (QKMODDB) serves as the primary input. In a like
manner, the output game base (INDEXDB) is suitable for input
to the Plap Generation and Data Output subsystems. However,
in the NMCSSC mode, INDEXDB may be input to program BASEMOD
for additional processing and/or modification. An additional
output of INDEXER is the SIMTAPE, which contains selected

weapon and target data and is subsequently input to the Simu-
lation subsystem,

S T e ST B SESTICEL SRR R TR S S8 i

e asnoti, e mesm e el

I emsmiar st

T T T T TR e T e T

N
!
|
!
!

"

Appendix A contains a description of the common blocks associated with
all utility programs except OUTFILE and RELOADF. For the filehandler
(subroutine FILEHNR), only those common blocks used by the calling
programs for data transfer are included in this appendix. Appendix B
contains a list of QUICK attribute names and their descriptions.
Appendix C contains a 1list of the entry points within the utility
programs. Appendix D contains a list of the programs/subroutines which
call the general utility routines described in chapter 4.

Users of this manual are encouraged to submit comments or recommendations
for changes to improve the manual. Comments should be forwarded to the
Commander, National Military Command System Support Center, Defense Com-
munications Agency, Attn: B220, The Pentagon, Washington, D.C. 20301.

ATV O At b o
ERANULEE VIS BORTIE R

D)

E

CHAPTER 2
QUICK SYSTEM FILEHANDLER

PURPOSE

The QUICK system filehandler is a set of subroutines which provides for
data transfer from core memory to either magnetic tape or peripheral disk
storage (CDC 814 disk unit). The filechandler provides fer fully buffered
read/write operations with a maximum of 10 files active at any onc time.
The filehandler provides input/output (I/0) error checking and correction
service to the calling programs., The data are received by the filehandler
as a word stream consisting of blocks of words of varying lengths., The
word stream is blocked to a convenient record size and output to the
peripheral device as a number of physical records. A data dump facility
is provided, whereby the filehandler will print the data as the data are
being transferred. In addition, a list of files on the disk which are
required for the restart capability (programs OUTFILE and RELOADF, dis-

cussed elsewhere in this manual) is maintained on the disk by the file-
handler,

CONCEPT OF OPERATION

The 1/0 capabilities of FORTRAN are the most complex and cumbersome
feature of the language. The programmer must provide consistency in
record lengths and data lists, as well as insert all error detection
statements for each data transfer operation. 1In addition, I/O is very
slow compared to the speed of the arithmetic operations. The QUICK
system filehandler provides a simplified 1/0 capability to the programmer.

The input to the filehandler for writing operations consists of a word
stream. This stream consists of any number of blocks of words contiguous:
in the memory. The blocks may be as short as one word or as long as
32,767 words. For reading operations, the output is the same word stream.
The blocks transferred from the filehandler, however, do not have to have
the same length as the input blocks. The word stream ~an be segmented

by the programmer in any desired way.

The filehandler provides for full double buffering for each file. The
two buffers provide for temporary storage. At any one time, one buffer
is being used for data transfer to or from core memory; the other buffer
is being used for data transfer to or from the peripheral device. When

L A

ey

5 ma e S

N T e PR T

the core memory transfer buffer is filled (for writing, empty for recading),
the status of the I/0 opcration on the peripheral data transfer buffer

is checked. If there are no errors, the roles of the buffers are reversed.
In this way, the I/O operations proceed in parallel with the arithmetic
operations, which improves the job execution efficiency.

There are three kinds of files avai’ -+ - to the uscr of the CDC 3800
system under the SCOPE PFS Operatin, stem. These types are magnetic
tape, permanent disk files, and scratch disk files, Permanent disk files
remain intact from job to job., Scratch disk files are destroyed at the
end of each job, The QUICK system uses no permanent disk files; all

QUICK disk files are of the scratch type. Within that type, however,

the QUICK system discriminates betwcen two file typec: active and scratch.
The active files are required by more thar one program in the system., If
job termination procedures intervene between executions of two programs
which require a specific active file, the restart capability (programs
OUTFILE and RELOADF) must be used to save the active file on magnetic tape
and restore it at the start of the later job. Scratch files are those
files required by only one program of the QUICK system for t=mporary

storage. Therefore, no procedure is necessary to save these files between
jobs.

NOTE: 1In all QUICK Jdocumentation, the term scratch file refers to those
files which are:

1. Used by only one QUICK program for temporary storage
2. Considered by the SCOPE PFS Operating System to be scratch files.

Although the operating system considers the active files to be scratch

files, they are never referred to in that manner in the QUICK documenta-
tion,

The QUICK system uses no permanent disk files. The scratch file space

on the disk, however, is used and reused by the programs of the QUICK
system.

The physical format of any filehandler file consists of a label, data
records, padding records, and a terminating end-of-file. The filehandler
label is a 32-word physical record containing tape structure information,
Table 1 displays the contents of the file label. The label is the

first record on the tape following the operating system label. On mag-
netic tape files, the label is followed by an end-of-file mark, a dummy
BCD record, and a second end-of-file mark. These marks and the record
are not put on the tape by the filehandler. The operating system places
them there after the tape label has been rewritten after the tape is
written. (This rewrite is necessary, since the label contains the file

length,} On disk files, no end-of-file marks are between the label and
the data.

FEPRFSUSIPESE

Table 1. Filehandler Label Content

i WORD(S) DESCRIPTION
{ 1 File logical name
E 2 LNxx5162 - where xx is buffer number used on write operation
{ 3 Number of words written in file
v 4 Record length (96 words)
é 5 Run number (currently blank) 1
? 6 Date written (mm/dd/yy) %
‘ 7 Number of words requested for disk file (zero for tape file) i
8 Security classification (currently set always to NOT SET) E
9 Format identifier (programmer's option))
;: 10 First disk sector address (zero for tape) 3
: 11 Number of disk tracks allocated (zero for tape)
ﬁ 12 Number of tracks used (zero for tape)
i 13 Time of run (hhmmss)
i 14 Last sector address used (zero for tape)
15-27 Reserved for future use
28-32 User comments

The data records are 96-word physical records on both tape and disk.

(The sequential disk read/write routines of the operating system are used
for disk I/0.) The first word of each record contains a record number,
The first record is numbered one, the second is two, and so on. This
numbering is used in the error checking portions of the filehandler to i
detect the dropping of a record by the operating system and to correct i
for that error. The remaining 95 words of each record contain the data i
transferred to or from the program. This is the word stream. (The ;
buffers, of course, are each 96 words long.) The last record in the file

is a padding record. It consists of 96 words, each containing the word

PADFILE in internal BCD code. This padding file is vequired by the :
double buffering operation. In a double buffer mode of input, the periph- :
eral device is reading the record following the record currently being ;

e a

transferved to core. Thus, the last data record must be followed by a
padding record to prevent an end-of-file error when the file is read.

On disk files, bad sectors on the disk may prevent the correct output

of a record. In order to salvage the file, an error record is written
over the bad sector (each sector is 32 words long). This record contains
96 words of the word NODATA in BCD code. .When the file is read, all
errors which occur in reading a NODATA record are ignored.

NOTE: All filehandler files are written in binary (odd) parity.

Both tape and disk files are terminated with an end-of-file mark.
Figure 2 displays the physical format of the files,

The filehandler maintains a directory file on the disk. This file is
required by the restart programs, OUTFILE and RELOADF. It has a logical
file name of DIRC5162. 1Its format is one 64-word record. The 64-word
record consists of common block /DRC5162/. This file contains the number
of active files, their logical file names, their lengths, the number of
scratch files, and the length of a scratch file (one million words).

This directory governs the files spilled by OUTFILE to the spill tapes.
The number of scratch files is saved, so that later programs can reuse
space allocated to scratch storage in a previous program,

FUNCTIONAL DESCRIPTION

Initialization and Directory Maintenance

The first program in any job which uses the filehandler should call
subroutine ALOCDIR. This routine allocates disk space to the file
directory and initializes that directory.* Every program which uses the
filehandler must call subroutine INITAPE prior to a call on any other
filehandler subroutine (except ALOCDIR).* INITAPE initializes the j
filehandler variables and reads the file directory. (If INITAPE is called .
before ALOCDIR, the filehandler corrects the error by calling ALOCDIR on :
its own.) Subroutine ALOCDIR has no input necessary for its functioning.
INITAPE requires two inputs, MYIDENT (in block /MYIDENT/) and NOPRINT

(in block /NOPRINT/). MYIDENT is the program name vhich will be printed ;
on the console typewriter and the standard output. NOPRINT is a print E
switch. If it has the value one, all file initiations will print a ;
message on the typewriter and standard output. A different value of 5

*Note that ALOCDIR should be called only once each job. INITAPE
should be called once each program,

i tion
D”ﬁ; En—Tape load ‘point
4 "o Motion
! 80 Characters }Operating system label
BCD
32 Words }Filehandler label
Binary
{ End-of-file mark
j Written by
b 24 Characters }Dummy BCD record Operating
] BCD System
5 LI 2A+=End-0f-file mark
96 Words First data record
Binary
96 Words Second data record
Binary
96 Words Last data record
- Binary
96.W0rd5 Padding record
Binary
7 +End-of-file mark

/’\v

Fig. 2. Physical File Format

Part

1 of 2: Magnetic Tape File

L e

B S

T

Increasing
Sector
Addresses

Fig.

il it

Sector
Address
32 Words
0 Binary } Filehandler label
! 96 Word
ords
2 Binary First data record
3
4 96 Word
5 Bigzzys Second data record
6 o
[]
o /\v .
* /\/ ®
° []
¢ 96 Words Last data record
. Binary
[]
®
®
. 96 Words Padding record
o Binary
End-of-file marker
(BCD)
2. (cont.)
Part 2 of 2: Disk File
10

NOPRINT will suppress these messages, Therefore, the standard calling
sequence* for INITAPE is:

MYIDENT = 8HMYPROGRM
NOPRINT = 1
CALL INITAPE.

The value of NOPRINT can be changed during a run to request or delete
the messages.

Active files are automatically entered in the dircctory by subroutine
SETWRITE. They are removed by subroutine DEACTIV. This routine removes

the file whose name is contained in MYIDENT. Thus, the standard calling
sequence for DEACTIV is:

MYIDENT = 8HMYFILE
CALL DEACTIV,

Qutput Data Transfer

Four subroutines are used for output data transfer: SETWRITE, WRWORD,
WRARRAY, and TERMTAP. Subroutine SETWRITE prepares a file for writing.
Buffers are allocated and pointers initialized by this routine., If an
active disk file is to be created, the file name is entered in the file
directory. Three variables are input to SETWRITE to determine the mode
of the file. The three variables are MYIDENT (block /MYIDENT/), ITP

(block /ITP/), and MYLNGTH (block /MYLABEL/). The use of these variables
is as follows:

1. Tape files
ITP - Is the buffer number and the logical tape unit

number, It must lie between 1 and 10 (inclusive).
MYIDENT - Filchandler label name.
MYLNGTH - Not used.

2, Active disk files
ITP - Must be negative. Absolute value is buffer number,
It must lie between -10 and -1 (inclusive).
MYIDENT - lLogical file name; cannot be SCRATCH. If left
blank, a default value of UNAMEDxx is used, where

XX is an arbitrary number assigned by the file-
handler.

MYLNGTH - Number of words to be allocated to the file. 1If

the file length exceeds this, the operating system
will abort the job,

*MYIDENT and NOPRINT cannot be set by data statements. They must be
selt at execution time,

e

A

e S i in I, i

e £, g

3., Scratch disk files

ITP - May be positive or negative., Absolute value is
buffer number. Absolute value must lie between
1 and 10.

MYTDENT - Must be SCRATCH. On the disk, the logical file
name will be SCRTCHxx, where xx is a number assigned
by the filehandler,

MYLNGTH - Ignored. Length is one million words,

Once a file has been initialized by a call to SETWRITE, further references
to the file can bhe made through the use of ITP alone., Since each buffer
can be used by only one file, the buffer number is a unique file identificr,
Note that for tape filcs, every subsequent initialization of the file

must use the same value for ITP, since this is used as the logical unit
number, Similarly, for active dick files, subsequent initializations of
the file must use the samc value for MYIDENT, the logical file name.

Scratch disk files must use the same ITP on subsequent initializations.

The standard SETWRITE calling sequence is:

ITP = N3UFF

MYIDENT = NAME

MYLNGTH = LONG)} Active disk files only
CALL SETWRITE

Note that SETWRITE transfers all the data from common /MYLABEL/ to the
file label. If the program fills this block prior to the call on
SETWRITE, a call on SETREAD will retrieve this information and pass it
to common /FILABEL/.

If one word is to be transferred from core to the file, subroutine
WRWORD is used. This routine transfers 'he value of the variable ITWORD

(equivalenced to TWORD) in common /TWORL/ to the output buffer. The
standard WRWORD calling sequence is:

I''P = NBUFF
ITWORD = IOUT
CALL WRWORD

If more than one word is to be transferred, subroutine WRARRAY should be
used. This routine transfers a contiguous block of words from core to
the output buffer. This routine has two formal parameters. The first
is the first word to be transferred; the second is the number of words
to be transferred. The standard WRARRAY calling sequence is:

ITP = NBUFF
CALL WRARRAY (ORIGIN, LENGTH)

A write file is terminated by a call on subroutine TERMiAP. This routine
clears the buffers, adds the padding record, rewrites the label, and

12

sl e e e e, S R sl 4 : RTINS X7 L W TTINEY T P I IAA LA AN B L PR Py

A

resets the buffer pointers. The standard calling sequence is:

ITP = NBUFF
CALL TERMTAP

Input Data Transfer

There are four routines used for input data transfer, SETREAD, RDWORD,
RDARRAY, and TERMTAP,

A file is initialized for reading by a call on subroutine SETRFAD. This
subroutine allocates the buffers and initiates reading from the file into
the buffers. Two variables are input to SETREAD: ITP (block /ITP/) and °
MYIDENT (block /MYIDENT/). The value of thesec variables determines the
type of file which is initialized by SETREAD.

1. Tape files
ITP - Must be positive and in the range 1 to 10 (inclusive).
This is the logical unit number and buffer number,
MYIDENT - Filehandler label name.

2. Active disk files
1TP - Must be negative. Absolute valuc is buffer number.
Range is -10 to -1,
MYIDENT - Logical file name. Cannot be SCRATCH nor can the
first six characters be SCRTCH,

3, Scratch disk files
ITP - May be positive or negative. Absolute value is
buffer number. Absolute valuc range is 1 to 10.
MYIDENT - Must be SCRATCH or the first six characters must be
SCRTCH.

For scratch files, SETREAD reads the scratch file created using the same
buffer number requested in ITP., Common /FILABEL/ is filled from the
filehandler label. SETREAD reads the first buffer of data and initiates
the reading of the second buffer before returning control. The standard
SETREAD calling sequence is:

ITP = NBUFF

MYIDENT = NAME

CALL SETREAD

After the file is initialized, it may be referred to with only the buffer
number. Since only one file can be attached to a single buffer, the
buffer number ITP is a unique file identifier after file initialization.

_—

e, g LT

o T 34 17 T T R R T T

To read one word, subroutine RDWORD is used. The next word in the stream
(buffer) is transferred to variable ITWORD in common /TWORD/. (ITWORD

is usually equivalenced to TWORD for variable type compatablllty)} The
standard RDWORD calling sequence is:

ITP = NBUFF ' _ :
CALL RDWORD :
IN = ITWORD ‘

1

If more than one word is to be transferred, siibroutine RDARRAY should be
used. This routine transfers a block of words from the buffer(s) to a
contiguous storage area. There are two formal parameters for subroutine
RDARRAY, The:r first is the first word of core into which the data are to
be transferred; the second parameter is the block length The standard

RDARRAY calling sequence is: ‘
ITP = NBUFF ' !
CALL RDARRAY (DESTIN, LENGTH)

1

A read file is terminated by a call on subroutine TERMTAP, For this
type of file (read), TERMTAP rewinds the file if on tape or posxtlons
the sector pointer to the first sector (sector 0).

Dump Facility

The program can request a print of the data beiﬁg transferred through the
filehandler. The array IFTPRNT in common /IFTPRNT/ is used for this
purpose. There is one position in the array for each buffer.’ The value
of IFTPRNT is used as follows: if zero or'negative, no print is produced;
if positive, data are printed. On calls to-RDWORD or WRWORD, only the
one word transferred is printed. On calls to RDARRAY or WRARRAY, the
value of [FTPRNT (ITP) is interpreted as the number of words from each
end of the block transferred to be printed.’ For example, if IFTPRNT(3)=20
and the sequence of code is as follows:

ITP = 3

CALL RDARRAY (ARRAY, 100)

the values of ARRAY(I) through' ARRAY(20) and ARRAY(81) through ARRAY(lOO)
will be printed.

Error Detection and Recovery

The filehandler performs two types of error detection and recovery., It
checks for program errors in filehandler use, such as attempting to read
from a write file. The recovery procedures in these cases are either
warning messages, simple corrective actions (such as calling TERMTAP

and SETREAD in the above case), or aboxt with a memory dump. The other

14

1,

' attempted.

Table 2 lists the filehandler common blocks.
filehandler use all these blocks for their operation.
"blocks are also used by the calling programs for data transfer:

error checks are concerned with data transmission errors. End-of-file,
end-of-tape, or parity errors are all detected, and some recovery is

After an error has occurred, the filehandler will first repeat

the operation several (five) times to determine if the error was of a
transient nature,

performed as described below.

If the error persists, various recovery procedures are

Tape Output Error

Subroutine ERAZE is called to erase six inches of tape and skip
over the bad spot.

Tape Input Error

The tape is skipped forward to the first record following the
troubled record. If this new record has the correct number,
recovery is successful. If the record number is wrong, there
is no way to recover, and the job aborts. Note that a tape

produced with output errors as corrected by the filehandler can
be read back by the filehandler.

Disk Output Error

A variable LOCNOW in block /FILE/ contains the sector address
of the first sector of the troubled record. The file is
""backspaced" by positioning the file at that point. A dummy
record containing 96 words of the word NODATA is written over

the troubled sectors. The data record is then written starting
with the next group of three sectors.

Disk Input Error

If the troubled record contains the NODATA value, the file is
skipped forward to the next data record. If this record has
the correct record number, recovery is successful, Otherwise,

the job aborts. In addition, if the original error did not
occur in a NODATA record, the job aborts.

COMMGN BLOCKS

All subroutines of the
The following

15

e AN s e 5

e e b e i Y

L

ITP
MYIDENT
NOPRINT

TWORD All programs
MYLABEL S

FILABEL
IFTPRNT
TODAY (Program PLANSET)

DRC5162 (Programs OUTFILE, RELOADF, ALOC) !
INTFILE (Program ALOC). §

e et S ATt

Qf The following blocks are used internally by the filehandler:

FILE
22642626
FILELAB
FORFLS
LLOCVAR. !

16

BLOCK

DRC5162

INTFILE

FILE

Table 2.

VARIABLE OR
ARRAY »

LENLIST
NOWACTV
LENAME (30)
NUMEWDS (30)

NINTRNL
LINTRNL
INTIDNT

LINTFL
NOWALOC

MYITP (10)
ACTIVE(10)
READST (10)
IAUX (10)
IBEG(10)

TDISKFL(10)
IEND(10)

1PT(10)
NAME (10)
NUMRECW (10)

Filehandler Common Blocks
(Sheet 1 of 4)

DESCRIPTION

Length of file directory
Number of active disk files
Logical file names of active files

Number of words written on each active
file

Number of scratch disk files allocated
to disk

Length (words) of scratch disk files

First six characters of scratch file
name (=SCRTCH)

Length (words) of scratch disk files

Number of scratch files used by current
program

Buffer number used for each scratch
file written in current program

Logical array; TRUE if buffer in use

Logical array; TRUE if file is in read
status

First word in auxiliary buffer for each
file (this is device transfer buffer)

First word in core transfer buffer
for each file

Negative for disk files

Last word available in data transfer
buffer

Pointer to next word to be transferred
Logical file name

Number of words written on file

*Parentheti:zal valucs indicate array diwmensions. All other elements
are single word variables.

17

BLOCK

FILE
(cont.)

22642626*

FILELAB

FORFLS

ITP
MYIDENT

TWORD

Table 2,

VARIABLE OR

ARRAY

NEWT (10)

LOCNOW (10)

IBUFF(1920)

LNDIR
NDIROUT (32)
NDUMMY (33)

i1BADGE
LNGREC
LUN
MODE
NPAUL
NSECPRT

NSECTOR

ITP
MYIDENT

I'TWORD

(cont.)
(Sheet 2 of 4)

DESCRIPTION

Pointer to last good buffer transferred

to/from file

Sector address after last good disk
read/write

Filehandler buffers

Length of file label
File label (see table)
Label temporary storage

=5162

Physical record length (=96)
=LN

Data parity (=1)

=DIRC (for file directory name)

Number of sectors per track cn CDC 814
disk (=32)

Number of words per sector on CDC 814
disk (=32)
Filehandler buffer number

File name

Single word transfer medium

*This number is the word BUFF in interrnal BCD code.

The block is a

numbered common block to take advantage of the loader overlap fcaturc
of the SCOPE PFS loader.

O RIS DL VL

A sw it s 8 s

e Y T T e T e L

B3LOCK

FILABLL

IFTPRNT

MYLABEL

NOPRINT

TODAY

LOCVAR

Table 2.

VARIABLE OR
ARRAY
INIDENT
INRUNNO
INDATE
INFORM
INSECR
INTIME
INLNGTH
INCOMM(5)

IFTPRNT (10)

MYFORM
MYSECR
MYLNGTH

MYCOMM (5)

NOPRINT

NOWRUNO
NOWDATE
NOWT IME

IPOINT
MESS (8)
MFAKE
NDIR
NTX.

NT

(cont.)
{Shect 3 of 4)

DESCRIFTION

Incoming name (word 1 of label)
Incoming run number (word 5 of label)
Incoming date (word 6 of label)
Incoming format (word 9 of label)
Incoming security (word 8 of label)
Incoming time (word 13 of label)

Incoming length (word 3 of labe!)

Incoming comments (words 28-32 of label)

Debug print switches

Outgoing format (word 9 of label)
Outgoing sccurity (word 8 of label)

Number of words requested for file
(word 7 of label)

Outgoing user comments (words 28-32
of label)

File initiation print switch

Current run number (word 5 of label)
Current date (word 60 of label)

Current time (word 13 of label)

Pointer to next word transferred
Abort/warning message

Used for blank file names (UNAMED)
Directory length

Error code

Logical unit number for disk

19

P TP N At SRR I

Tt b b it ko v o]

BLOCK

! LOCVAR
b (cont.)

Table 2,

VARIABLE OR
ARRAY

NTR
NVERS
NWAIT
NWRDSAL
NTEMP'
MTEMP
INITFST
KREC (10)
NULL(96)
NODATA
NTIMES

(cont.)
(Sheet 4 of 4)

DESCRIPTION

Number of tracks allocated to disk file
Blank

Disk I/0 completion code

Number of words allocated to disk file
Entry point name

TAPE or DISK: file type identifier
INITAPE call check variable

Record counter for each file

Storage for NODATA record

=NODATA

Ervor correction attempt counter

20

A\t LA TN SIS U TP GO LEd SR SO !

AT e

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

SUBROUTINE FILEHNR

This TFORTRAN subprogram contains entry points
ALOCDIR, INITAPE, DEACTIV, PRNTLAB, SETWRITE,
RDWORD, and WRWORD. The purposes of these entries
are as follows:

ALOCDIR allocates the disk file directory to
the disk and initializes that directory

INITAPE initializes the filehandler variables

DEACTIV removes disk logical file names from
the active list in the file directory

PRNTLAB prints file labels

SETWRITE initializes a file for writing; the
file is activated and the buffers are
allocated

RDWORD transfers one word from the buffer to
common /TWORD/

WRWORD transfers one word from common /TWORD/
to the buffer

FILEHNR (not used), ALOCDIR, INITAPE (INITAP),
DEACTIV, PRNTLAB, SETWRITE (SETWRIT), RDWORD,
WRWORD

None

DRC5162, INTFILE, FILE, 22642626, FILELAB, FORFLS,
ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABEL,
NOPRINT, TODAY, LOCVAR

GETDATE, TIMEDAY, ERAZE, RDARRAY, WRARRAY, ABORT,
WARNING, Disk I/0 subroutines of SCOPE PFS

Operating System (ALLOCATE, LOCATE, SEEK, LSTATUS,
DREAD, DWRITE)

All programs of the QUICK system

21

iy

R R

i

Method:

Entry ALOCDIR: This entry uses operating system routine ALLOCATE to
allocate disk storage for the active disk file directory. The directory
is iniiialized to show no active files other than itself. ALOCDIR should
be called only once, at the beginning of each job. The directory name

is DIRC5162, If the directory cannot be written without errors, the job
will abort.

Entry INITAPE: This entry initializes filehandler variables, It should

be called once per program, at the beginning of execution. INITAPE clears
the buffers and retrieves the current date (subroutine GETDATE) and time
(subroutine TIMEDAY). The variable MYIDENT is assumed to be the name of
the calling program. INITAPE prints a program initiation message on the
console typewriter and also on the standard output, if requested, If
ALOCDIR has not yet been called in the job when INITAPE is called, INITAPE
transfers control to ALOCDIR before exiting. Othevwise, the file directory
is read into ccmmon block /DRC5162/.

Entry DEACTIV: This entry removes-a file name from the list of active
disk files. The name to be removed is placed in variable MYIDENT (block
/MYIDENT/) by the calling program. The file directory DIRC5162 cannot

be deactivated by DEACTIV. Since scratch files are not entered in the
directory, any attempt to deactivate a scratch file is ignored. I1f DEACTIV
cannot find the requested file in the active list, the routine returns
control to the calling program without further processing. If the file

is found in the list, the name and length are removed from the list and
the list compressed.

Entry PRNTLAB: This entty prints file labels. The input is the buffer
number ITP and the file name MYIDENT of the file whose label is to be
printed, Since PRNTLAB must move the file to retrieve the label, a call
on PRNTIAB while the file is being read or written (i.e., active) will
be cciisidered an error. Since PRNTLAB is a convenience utility routine,
all errors, including I/0 errors, in its processing terminate PRNTLAB
processing and return to the calling program after printing a warning
message. The format of the file label print is described in the User's
Manual. The print is also produced .. every call to SETREAD if the
progran requests it.

Entry SETWRITE: This entry initializes a file using buffer ITP and name
MYIDENT. (The Functional Description section of this chapter describes
the interpretation of these variables.) SETWRITE allocates two buffers,
each 96 words ih length, to the file. For all scratch files, SETWRITE
generates a logical file name. The scratch files are named SCRTCHyy,
where yy is a number assigned by SETWRITE, The first scratch file is
SCRTCH 1; the second SCRTCH 2; and so on. If the program calls SETWRITE
with a blank file name, SETWRITE assigns a name UNAMEDzz, where zz is a

number assigned in the same fashion a3 yy for scratch files, Various
procedural error checks are performed to see that the file shouid be
written on. For example, a call to SETWRITE on a file currently in read
status will abort the job. For disk files, variable MYLNGTH in /MYLABEL/
is used to determine the number of tracks on the disk to allocate for

the file. MYLNGTH is the maximum number of words expected on the file.
If it is less than one or greater than one million, it is set to one
million (977 tracks). Scratch files are always given lengths of one

million words, since the number of words on the file changes with each
use,

SETWRITE also fills the filehandler label from block /MYLABEL/ and
internal filehandler variables. The label is then written on the file.
For tape files, subroutine ERAZE is then called three times on the file.
This routine erases six inches of tape. (An end-of-file mark is approxi-
mately six inches long.,) This 18-inch blank stretch of tape is required
by the operating system. When TERMTAP is called on this file, the label
will be rewritten so as to contain the number of words written on the
tape. The tape will then be rewound. If a program writes on a tape and
then rewinds the tape, the operating system places on the tape, following
the last write, an end-of-file mark, a dummy BCD record, and a second
end-of-file mark. The dummy record is 24 characters long, of which the
first seven are EOSQUAT and the remaining 17 are undetermined. The
erasure of 18 inches of tape between “he label and the first data record
allows space for placement of these marks written by the operating system,

Entry RDWORD: This entry transfers the next word in the buffcr for file
ITP to the variable comprising common block /TWORD/. ITP is the buffer
number for the file. Entry RDWORD uses subroutine RDARRAY to read the
word. This procedure is used so that the error correction procedures
coded in subroutine RDARRAY do not have to be repeated in ROWORD. Note
that if the data debug dump facility of the filehandler is activated
(i.e,, IFTPRNT(ITP)>0), then it is deactivated before RDARRAY is called.
The dump facility produces different print formats for calls on RDWORD/
WRWORD and RDARRAY/WRARRAY. Thus, if RDWORD calls RDARRAY, the facility
must be off during the data transfer. When control returns to RDWORD, the
value of IFTPRNT is restored. If the original value is greater than zero,
then the RDWORD format for the debug print is produced.

Entry WRWORD: This routine is very similar to RDWORD. A call on WRWORD
transfers the data in common block /TWORD/ (one word) to the next location
in the buffer for file ITP. Subroutine WRARRAY is used for the transfer
in the same fashion as RDARRAY is used by RDWORD. The use of the file-
handler dump facility in WRWORD is identical to that in RDWORD,

e sl

.
T R Tt ey - e L T s R PR RO LR TONIISY i) ;,Lj
T T T I T T R T TNV A A SRR U R 1 o L s, s PIRIRAAAIRYIEEPUIN ¥ FONCE SV I NET VST NN S SRTTE S T PR L Nab il +

The flow of operations in FILEHNR is shown
consists of seven parts,
DEACTIV, INITAPE, PRNTLAB,
WRWORD and RDWORD while par
operations,

in figure 3, The flowchart
Parts 1 to V pertain to entries ALOCDIR,
SETWRITE, respectively. Part VI shows entries
t VII illustrates the error processing

s

—rr

Bt o

N PP

START Entry ALOCDIR
4
’ Set. Entry
[Identification B
.
]
: — © :
A H . :
| Has Directory yes e NIX w 1
[Been Inltialized?
;»' 7
f" 5 —_ 3
:l‘ determing !
« Directory Nuinw
f ;
F ALLOCATE P
/ Allocate File X ;
SLEK b
Rewind File e K
K
Y
l Clear Directory] g
L" DWRITE
3 Write Directory
Ly |
} LETATUS
" Determine .
! Operation Status R
i)
E Finished,
With E
1 - Status? i _5;125__,@ NIX = 2
. Continuing Finisned, ¥
] No Errors k
¢ R
y
! 3
i . .)
: Fig. 3, Subroutine FI LEHNR
: Part I: FEntry ALOCDIR .
g 25 |
i |
: y
iy
. I AR) ' o 3 LAy o AP LT IV TN LT CL A DT (/PN Y DRI i FU TN AL

[START Entry DEACTIV

Set "ntry
Identification

Has Directory No -
Been Initialized? @ MEe

‘Yu

Is File to .
Be Deactivated a Yes . o 99) NIX = 4
. Scratch File?
A ‘No
” Rewind and ;
Pead Directory !

LSTATUS
s Check Status

l——{ Status? m NIX = 2
Continuing With Lrrors

;rmished No Lrrors

r\

S

™

oA,

SEEK
Rewind "irectory

Is Directory to Yes
< Be Deactivated? > —.@N” =6
‘No 1
Do 705 for All | Dane ——] 3
Acnv-. Files RETURN

Is 'nns File to
- Be Deactivated? >
$

fc
X No
-

Clear Sp-n:c for Yes ¢
File Name and Length < 1/0 Errors? 99 1
‘... 1 NIX « 5

3 Compress Write Directory
; Directory | on Disk 3

AT e

ol iRl

Fig. 3. (cont.) i
Part I1: FEntry DEACTIV '

26

Set lintry
Identi ficat jon

!

STARY } Entry INITAPE

Has INITAPL Bccl;_*_\‘in'
Called Proviously?

e
w___ y

Set INLIARQ
Call Flag

-

Clear Lrror Code Array
and /0 Buffurs

!

Retricve Current
Date and Time

!

Write Program
Initiation Messape
on Console Typewriter

!

Is Print Yos
Switch on?

Print Program
Initiation Message

/

No et
\

Has Directory \ Ves

r’\\

Been Initialized? /

No
713

1

LOCATE
Determine if lurectory
Allocated on Disk

Is Directory Yos
Allocated?

No

(tntry ALQCDIR)

Fig. 3. (cont.)

Part I1I:

Determine
Directory Name

SEEK, DREAD
Rewind and Read
Directory

'

< /0 Errors?

No

~2
=
ro

Is Internal File
length Set?

‘No

Set Length
From birectory

27

Entry INITAPL

RPN

ST T ms e

START Tatry PINTLAB

-

Set Entr
Tdentification

Is Unit in
Range 1-107

Yes

I3 Pile Actlive?

Is This g
Disk File?

e 60" vy
L ey
Rewind Tape and ot S
Read Label Flie : 1/0 trrors?

No NIX o2

Was Name

Use Previous]y
Input Now?

Saved Name

Yes l .

y : .

Is Scratch File
Requested?

No l o Restore Incoming _
) - Parameters
Is Name Blank? 99 } NIX = 4 '
No

Use Previously
Saved Name

RETURN

Rewind File and
Read Label Record

Yes : 1 X ;
1/0 Errors? 99 JNIX =5

No : .

Rewind File i Prift Label

Fig. 3. (cont.)
Part IV: Entry PRNTLAB

28

o M A T A
bt o b oG TP TN SRRt RGN O NS S PRV TR PRI LU P IILEY Ok TS R

PRIORRIRRTINCRY, VORI L

Latyy SLTWRITE

Set Entry ldentlfication
Save Input Varlables

=

Is Buffer Unit Number No

NIX 1
in Range 1107 *
- {Yes
Gﬁ.1 Clear Lubel Array
NIX = 3

Construcs
Dummy Name

Is Scratch File \Ves
Requested? :

76
Save Hile
Size in
Label
Set Disk File
Identifiers
Is Requested ™\ No | Sct Length to
Length in Range? Scratch File Lengt
Yes | J
54 - :
Calculate Numbor R%‘ad Dish
of Tracks Required Directury
, !

ALT.OCATE
Allecate Space
for File

tHas File Already
Been Allocated”

SEEK %
Rewind File

Fig. 3. (cont.)

Rewind Dircctr
and Write
Modified File

73

Add New File Name
to Cirectovy List

NIX = §

Part V: Entry SETWRITE
(Sheet 1 of 3)

29

i e, i

Set Dish File
ldentigfers

32

Has File Reen Yos Uie Previousiy
< Assigned Freviously? > > Assigned Namne
JM)

Assign New Scratceh
File Name

Hns This File Been
Allocated in Previous
Programs of This Jub,

‘No

Determine Number of
Tracks to Save on
Disk

!

Is This the | —
Fourth or Later Yox L-;n? Second
Scruteh File? Disk Unit ;
* No |

ALLOCATE
Reserve File
Space on Disk

!

Rewind and Read
File Directory

Update
Directory

TR R AR

Fig. 3. (cont.)
Part V: (cont.)
(Sheet 2 of 3)

: 30
4

EI- S R R R

Set up lLabel

o ¥

Inftialize
Buffer Pointers

'

Set Fite Active
in Write Status

Rewind lape and
write Label File

Print File
Initiation
Message

ERAZE
Erase 18 Inches ot

Tape to Allow for T Restore Input
EOF Marks Tevminating Yariables
Label Fite

Fig, 3, (cont.)

Part V: (cont.)
(

c
Sheet 3 of 3)

31

START Zntry WRWORD

144)
Is Dump Yes Cancel Dump
Requested? Request
‘ No
146
WRARRAY -y

Write Next Word

!

Save Entry Name
and Record Count

Was Dump Requested \ No
<; Originally? >‘—‘— RETURN
Yes
147

Print Word Just -
Transferred

Entry RDWORD

604

Is Dump ng;sl
Requested? Request

RDARRAY
Read Next Word

No ‘

Yes /' yas Dump Requested \ , | Save Entry Name
Originally? and Record Count

Fig. 3, (cont,)
Part VI: Entry WRWORD & RDWORD

32

Print Error
Message

< Is Entry ALOCDIR?

No

\

< Is Entyy SETWRITE?

No

Is Entry INITAPE?

No
\

ARA

‘No

i vos
< Is Entry anm&)—‘-’—-—-———-—p- WARNING —>@

832

No

Yes

A20

WARNING

¥

Print Additionul
Message

Print Additional
Mossupe

ABORT
802 831
3,5,7,9,10
NIX « ? ‘ ABORT
1 8 2,46
830
Disk File? ABORT
| WARNING l l——> et File r—»@
| Inactive
06
Print Additional -
Mossage ABOKI

807

Is Entry nl:AL1'1V?4>—YL"°-———~’ KARNING RETURN

s ¢

808

1

Set Indlcator for
Error in Error
Processing Section

Fig. 3,

(cont.)
Part V1

L ABORT U

I: Error Processing

(Sheet 1 of 2)

33

s, T A s 1

3 r

i

E ()

i

t

i

|

Does lvame ¥

H Match Previously No - l ABORT l

i Used File? .

i

‘Yes

t{ #38 _

- Change Buffer Requnsted {
to Previously Assigned i

' Unit H

i Yes

v <:_ 1s File Active? £ NIX w 8

iNo
B838
Yos Set Buffer Numbey
(h Tnis & Lisk Fuc?)——————_ﬁ to Indicate
T Disk File
{ o

WARNING
3
;
S
|
, |
Fig. 3. (cont.) ;
Part VII: (cont,) 3
(Sheet 2 of 2)
: i
a 3
34 :
i ;
; :

T T

g T e ST

e e TR T

SUBROUTLINE RDARRAY

PURPOSE : This FORTRAN subprogram contains entry points

RDARRAY and WRARRAY. Their purpose is to transfer
blocks of data between core suorage and the file
buffers and also between th. file buffers and the
peripheral I/0 devices. Entry RDARRAY is used

for transfers from the files to core storage. Entry
WRARRAY is used for transfers from core storage

to the files,

ENTRY POINTS: RDARRAY, WRARRAY

FORMAL PARAMETERS: NAR - The first word in core storage to be used in
the transfer

NUM - The number of contiguous words to be trans-
ferred

COMMON BLOCKS: DRC5162, INTFILE, FILE, 22642626, FILELAB, FORFLS,

ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABEL,
NOPRINT, TODAY, LOCVAR

SUBROUTINES CALLED: ABORT, WARNING, LOCF, ERAZE, SETREAD, SCQPE PFS
Disk I/0 subroutines (SEEK, LOCATE, LSTATUS,

DREAD, DWRITE), SCOPE PFS Tape I/0 subroutine,
LENGTHF

CALLED BY: All programs of the QUICK system

Method

The formal parameters specify the block of core storage to be used in
the transfer. The parameter NAR is the first word of the block. This
parameter is given a length of one in a DIMENSION statement. This pro-
cedure allows the subroutine to treat the storage block as an array of
any length. The parameter NUM is the number of wovds to be transferred,

Figure 4 shows the processing operation performed by subroutine
RDARRAY (WRARRAY) . The flowchart is presented in five parts. Parts I
and 11 show the initial operations for entries$ RDARRAY and WRARRAY,
respectively. Part IIT shows exit processing procedures and is common

to both entries. Error processing operations are shown in Part IV for
entrv RDARRAY and in Part V for WRARRAY.

35

1
{
!
1
%
{
)
ii
|
|

ranriase i - o ot e e e
i rmmiiare bk sk b .

Entry RDARRAY: This entry is used to read data from a file into core
storage, After checking to determine if the file is active and in read
status, RDARRAY determines if enough words remain in the current buffer
to fulfill the request for NUM words (statement 60S). 1If so, the first
NUM clements of the destination array NAR are filled with the next NUM
words in the buffer (statement 610), The buffer pointers are updated

and control passes to the data dump section (statement 630). If part

or all of another buffer is needed to fill the request, the routine cmpties
the current buffer into the destination array NAR (statement 640). The
other buffer was being filled by a read operation initiated by a BUFFER IN
operation in either SETREAD or RDARRAY, RDARRAY checks the status of

this operation (statement 607). If there were errors, control passes

to the error correction scction (statements 199, 99), If the read operation
was completed successfully, a new read operation is initiatced to fill the
buffer just emptied, The buffer pointers are then nodified to rcverse

the buffer roles. Control then returns to statement 605 to determine if
the remainder of the requested block of data can be filled from the
current buffer, This process continues until all words have been trans-
ferred. For disk files, "dummy' records may be encountered amidst the
data records. These dummy records contain the word NODATA in all 96

words of the record. These records are written to space the disk file
over sectors in which the I/0 subroutines are encountering errors.

RDARRAY ignores dummy records. When one is encountered, the next record
is read and so on until the next data record is encountered.

In RDARRAY, two entries to the error processing section are used,
statements 99 and 199, Statement 199 merely increments the error code
NIX by one before transferring control to statement 99, This procedure
allows the error routine to differentiate between parity errors and
unexpected end-of-file marks. The end-of-file error codes are onue
greater than the parity error codes. The error correction procedures

for entry RDARRAY begin at statement 805. For unexpected end-of-file
marks, the job aborts (statement 842), For parity errcrs, the processing
of tape and disk differs. For tape errors, operating system function
LENGTHF is called (statement 870) to determine the length of the record
with bad parity., If the length is correct (i.e., 96 words), there can

be no recovery, and the job aborts, I[f the record is short, it may be

an error record written previously, In this case, the next data record
is read. If it has the correct record number, recovery is successful.
Otherwise, the job aborts via a transfer to statement 99 with NIX=7

(from a statement following statement 624). For disk errors, five attempts
are made to rercad the data. If these attempts fail, the job aborts.

Entry WRARRAY: The processing in this entry clesely parallels the
operation of RDARRAY. In this case, however, NAR is the origin array.
Words are transferred from NAR to the buffer and from the other buffer
to the file. Statement 14¢ parallels the operation of statement 605 in
RDARRAY in determining the number of words to be transferred from the
current buffer. If the current request for NUM words will not fill the

36

e TR T

ey e, i T,

buffer, statement 710 performs the complete transfer. Otherwise, statement
740 transfers full butfer loads from core to the buffers, until the

number of words remaining to be transferred is less than the full buffer
size. There is one major difference betwecn the logical flow of RDARRAY
and WRARRAY. Subroutine SETREAD assigns both buffers since they will

both be used immediately. Subroutine SETWRITE, howevecr, allocates only
one buffer, the first to be filled. Therefore, the checking of the status
of I/C operations starts only after the first write by subroutinc WRARRAY.
In addition, no distinction is made between write parity and write end

of 'reel" errors in WRARRAY, There is no end of "reel" error for disk
files, and end-of-reel errors for tape are irrecoverable. Therefore,
WRARRAY uses only statement 99 as entry to the error processing section,

The error correction processing for WRARRAY begins at statement 804, For
tape write parity errors, the tape is backspaced over the problem area.
Subroutine ERAZE is called to erase over the bad spot. The record is

then rewritten. If this procedure fails after five attempts (and 30 inches
of tape), the job aborts. For disk files a similar procedure is followed.
The file cannot be "backspaced” in the usual sense. Therefore, a pointer
array LOCNOW is saved in common /FILE/. For each file on disk, LOCNOW(ITP)
contains the sector address of the sector following the last good I/0
operation. (Operating system routine LOCATE is used tc determine this
information.) When an error occurs, operating system routine SEEK is

used to reposition the disk file to this sector, This is the disk equiv-
alent to backspacing. Then the dummy NODATA record is written, 1f this
write operation encounters errors (NIX=5), it is repeated five times.

After five attempts or a successful write, the data record is written
starting with the next sector available after the NODATA record.

Data Dump Processing: Both RDARRAY and WRARRAY share the data dump code

starting at statement 630. The complex DO loup hetween statemsnts 3
and 11 is required by the format of the data dump. The value of IFTPRNT(ITP)
is interpreted as the number of words to be printed from each end of the
array NAR. The print is therefore divided into halves. The word counters
for the halves are checked in this loop to determine when to print the
data. Utility subroutine LOCF is used to retrieve the address of NAR
which is printed in the dump heading.

\ﬁ
o
.

a
3
2

I

Lntry RDARRAY r

Are Any Words \ N0
to Be Read?

ns

Yos
? Set Ekntry ldentification
} and Save Input Varigbles
:)
.

1 '

Yos [set Disk Kile 4

<_Di“ Flle? >_" Identiflor 9
o {

y

1
‘ - |
i' ele 2 (99 stx e 1 i
\ sy :
' 604 Road Searuer Jw(30) 1 » 2
£05 Yes 610

i
K
g
1
§

Can Current Request\ yug |Fill Destination Update

‘ Be Fulfilled From Array From ftiel Buffar-
Current Buffer? Current Buffor Pointer

$40 yh

Transfer Remainder
of Buffer to
Destination Array

20
Yes
Initialize
Disk File? / Error Counter
N ——)
— — S0y
1/0 Errors on \ EOF i 1/0 Lrrors on
Last Tape Read?/ Nix w 3 NIX » 5 \[8st Disk Reod? A
O

L T it

Nene Parity

g
=
-

Initiate Read
Operation on
Next Record

4 Update Disk
522 Location Pointers

IR SO,

! 24

Modify Peinters to géf_:::gnksgd Is This @ \ Y5 faead hext
Reverse Buffer Roles Next Record fummy Record? Record

No

30

Update Disk d

Location Pointers N

NIX w 7 \

Mm;c nords

to Transfer?, 1

i

i

; Fig. 4. Subroutine RDARRAY j
2 Part I: FEntry RDARRAY

: 38 :

TSR IR AP Lot R A e 2t L L b N 1 SENC TR OISR P

\
i
|
!
[

|-
A

START Lntry WRARRAY

Yes

Are Any Words Nu
to Be {-,mg}—b(RETURN ’

Set Intry Idcrnnt'xcutmn
and Save Input Varlables

Is HE in
Road Status?

146

Can Request Fit in
Curyent Buffer?
No
740
Fill kemainder of

Curvent Buffer
From Oripin Array

710

Transfer Remninder
of Uripln Arruy to

tipdate
tut'rer

Current Butfter

Polinter

. ldentifiors

154

Advance Record
Number and Store

A
is1
Have Any Data \ yo Assiyn
Records Reen = \ixiliary 163
wWritten? fufter
You

in First Word

Have Any
Data Records Been
Written?

No

159

Tr-\.itiﬂll:a
Erroy

Counter

Set Dish File |

Have Any
Data Records
feen hritten?

162
1/0 Errors No Save Disk
oh Lust Write Sector
Operation? Locat i on
Y25
@ Hrite Next
Recoyd
NIX = 4

1/0 Errors ou
Last write?

No

Inltiate Write
Operation for
Next Record

156
Modify Iointers
to Reverse

NIX = 3

Bui'fer Roles

7

Clear Next
Buffer ta
Be Written

T

More Words to

- ;ch

T L T A VTR IR AN RS 1T Y

(cont,)

Part 1I: Entry WRARRAY

39

fle Trans ferred?
:

i

PRSP NP

A B i

m o

631

Restore Input | N
Variables RETURN

Data Dump
Requested?

Yes
632 y
Save Number of
Words Transferred and
Number to Be Printed

» |

‘ LOCF

: Determine Address of

Origin/Destination
Array

_

Print Header

B R T

Initialize Print
Word Counters

s

Do 11 for All Done J
4 M lhords Transferred -

?;“ A
’ g
2 Do

P‘) 7

k Retrieve Next 3
; Word 3
f,:- |
?‘ (') ..<“

: Is First Half of \ Yes Has Second Half of\ Yes _jIncrement Second]
a as Second Half o Half Print Word

] Print Fini "
: rint Finished? Print Started? Counter .
} 'No No

e e

Increment First . 3
' Half Print Print Word Print hord ;
1 Word Counter _
1 Last Word in
First lalf?

Skip Line

Fig. 4. (cont.)
3 Part TII: RDARRAY/WRARRAY Exit Processing

6 BT ¢t B et Bl o . e 5

840
SETREAD /
NIX«1 ™ [1nitiate File '\f’_o”‘)
B41
NIXe2 poo [ABORT | |e—
870
LENGTHEF Is Record \ Yes
NIX=3 |———®= | Determine Length b A
of Read Record Right Length? / BORT
842 _
NIXnd Print -
NIXmé Ad;:;itional —— ABORT
essage
875
Is This a Yes
NIX=$ Dummy Record? 622
l No
Ty -
Increment Error More Than Five \ ygq
Caunter Correction ABORT
i Attempts?
*No
SEEK
Return to Last @
Good Sector on Disk -
843 i
Print
NIX=7 Additionall—
Message
Fig. 4., (cont.)
Part IV: RDARRAY Error Processing
41

N

f
I
;

R T T N

Print l:';'rnr
Messape

804
861

< Nixa? >
NIXel -
NIXez ABORT l

863

Increment Litor |
Counter

NIXa=5$

NIXwd [— of | WARNING

No

WARNING,

- Yes
More Thun Five > II
Correction Attempts?/ ABORTAJ]

i70
Backspace [I ERAZL Rewrite Last
: Over Bad firase Over Record
Spot Bad Spot

161

Initiallize Lrror

865

fnerement [vror

N1x=$ Counter ,J

Fig. 4,

{cont.)
Part V:

e Counter Change
Code (NIX) to Five

1164

Y

SEEK
Return to Site
of) Bad Spot

{i’.

i

Reset Pointer
to Lust Good
Write

.

!

Wiite Dummy
Record

More Than Five
Correction
Attempts?

Write Next
Record

WARNING "@

WRARRAY Lrror Processing

:
!
i
1

()
b’ |

SUBROUTINE SETREAD

PURPOSE : This routine initializes a file for reading. It
allocates two input buffers to the file according
to the buffer number ITP. The input label is

processed, and the first two buffer loads of data
are input,

ENTRY POINTS: SETREAD
FORMAL PARAMETERS: None
COMMON BLOCKS: DRC5162, INTFILE, FILE, 22642626, FILELAB, FORFLS,

ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABLL,
NOPRINT, TODAY, LOCVAR

;. SUBROUTINES CALLED: ABORT, WARNING, TERMTAP, SCOPE PFS Operating

System routines (SEEK, LOCATE, LSTATUS, DREAD,
LENGTHF)

CALLED BY: All programs of the QUICK system

Method

SETREAD receives as input from the calling program the buffer number ITP
in block /ITP/, and the logical file name MYIDENT in block /MYIDENT/.
The interpretation of these variables is discussed in the Functional
Description section of this chapter.

Figure 5 shows the processing operations performed by subroutine
SETREAD. The flowchart is presented in three parts: Part 1, Status
Checking and Label Input; Part II, Pointer Setup and Buffer Filling;
and Part I1II, Error Processing.

SETREAD begins by checking to determine if a scratch file is requested.
If so, control passes to statement 480 where the name of the file is
determined. The file name will be the name used in writing the scratch
file, using the same buffer number. For example, if file SCRTCH 1 was
written with ITP=7, then a call to SETREAD with ITP=7, MYIDENT=SCRATCH
will set the logical file name to be read as SCRTCH 1.

,In any event, SETREAD checks the buffer number to be surc it is in the

right range. If the file is currently being used by the filehandler
for 1/0, then subroutine TERMTAP is called to terminate the file. Once

43

the calling procedure errors are checked, SETREAD vcads the file label.
Some of the label contents are transferred to block /FILABEL/ where they
can be accessed by the calling program.

SETREAD then sets the buffer pointers for the two buffers for the file.

The first data record is then read. Note that for tape files, an end of
file will be read before the first data record. (As was discussed in

the Concept of Operation section and the discussion of entry SETWRITE,

two file marks and a dummy record are inserted by the operating system
after the label.) This error is error code 4 (i.e., NIX=4). The error
correction procedure for subroutine SETREAD allows this error to occur
seven times without taking any action. In this manner the operating system
insertions on the tape are ignored, and the first data rccord can be read.

When the first data record has been read, the buffer pointers are set to
start emptying this buffer when RDARRAY is called. The filling of the
other buffer is then initiated before contrel returns from SETREAD.

The error correction procedures of SETREAD involve attempts to reread the
data. For tape files, five reread attempts are made before the job aborts
in trying to read the first data record. For disk files, SETREAD must
check that the first data record was not replaced by a dummy NODATA record
by subroutine WRARRAY. 1In any event, up to five rercad attempts are made
to input the first data record. Note that SETREAD reads and checks the
first data record, The inmediate checking is required since the call to
SETREAD may be followed immediately by a call on RDARRAY to begin data
transfer. The second data record, however, is only read in SETREAD. The
error detection and correction of the second and later data records is
performed in subroutine RDARRAY.

44

TR 1 . L | e s DRI et s 0 ani: TR I T UV SUPPIRR N 27 I ST LA S UL SR Y ST
I T S W Tt SRR U L T T O e i - - N X

STAKT

Set Entyy ldentiﬂcutionr
and Save inruc Varlahles
(Scrltch File RLquE!@L’@
Pn
(Dish File Requestad?
NIXs1 {No

@ Yes Is Unlt Larger Than 1U?)
*No
Yes
@ Is Tape Active?)
NIXe2 R
Rewind Tape and
~ Read Label Flle
401 F ves NIX=3
(1/0 Ervors? >—-° Lh

“on *Nn

LENGTHF NIXa?
Determire
Label Length

* i
No
(Correct Length? Print Message

Yes

Is File Active?

No

oot VS
02) 402 |
< File fnitiation >_Y_c Tretat dns
Message Requested? Message

Fig. 5. Subroutine SETREAD
Part I:. Status Checking and Label Input
(Sheet 1 of 2)

45

480 NIXs11
Is Unit Requested No
M in Range?
481 yYes NiXslo
Was File Previously
Wrntcn?
Yes
482 }

Use Previously
Saved File Name

‘ NIXwé

Y
{13 File Activer =2 @
ABY ¥ No
Sut Disk File "
Indicator
Rewind Filw and
Read Label Record
NIXx8

* N Y,
L I/0 Errors? ki @

No
Pile Inltiation No .
Message Requested?
*Yes
Print File I
Initiation {

Message /

@ Y

Fig. 5. (cont.)
Part I: (cont.)
(Sheet 2 of 2)

46

T T

Transfer Variables
From Label tu Core

Is Print Requested?

Initialize

Buffer Polnters had

Tape File?

Yt‘!i

414

Save Record Number l

Is Record Number 1? No

Yes

Modify Pointers
for Second Huffer

T

Initiate Read
Operation for
Next Record

Save Current
Buffer Pointer

|

422

"rint l.uhul,

429

trror
Counter

fnlvialize

'

NIX = 4

No

" Is This a
Dunmy Record?

No

Modify Pointers
for Second Buffer

Initiate Read
Cperation for
Next Record

Save Current
Buffer Pointay

s Y

Restore [nput

Fig. 5,

(cont.)
Fart I1:

Variables

Pointer Setup and Buffer
Filling

47

P

1/0 Eryors? >_Yc

NIX = G

e ANTLE

e e sl

i
!

‘
i
i
H

804)) .

LENGTIIF -

Nx e oap)Yl Determive &% Lenath
Label Length
No ~ No
\ 299 520 i

: Print trror ! d

Message l nerement

L Error Countey

NIX More Than Yes Send Message ;

- Four Attempts? to Typewriter .

--—a-alNo i

00 Y 3

KIX = ? ‘

, -/ More Than \ '
3

Seven Attempts?

Does Name Match

NIX o 1 Previously Used Fife?

Change Buffer Request
to Previously Used
Buf fer

802
NIX « 2 |—p l | TERMTAPE

Close File !

WARNING
g NIX # 3 jtgnd to Write @
. Warning Message

" 894

B03

LTTRERRT T

4
Vo NIX = 4 —»I | ABORT I |
. 805
NIX = § e @ i
"\ 806 :
8 . TERMTAPE ;
NIX = 6 Close File "’—"'—"’@ '
: 807) ;
. - -~ Generate .
f NIX w5 Uunmy Name > .
808
L ABORT i
. NIX = 8 |—p» to Terminate
Run ;
: i :
} A
‘ Fig. 5. (cont.)
" Part III: Error Processing
i (Sheet 1 of 2)
48

]
k.

RS Yt

CEETS

RSN

AN A

oy TSR T

NIX = 9

NIX = 10

NIX = 11

NIX = 12

—

809
Is This a Yes
Dummy Record?
No
742]
[nerement

Ervor Counter

A

More ‘Than Yes
Five Attempts?

No

|

| "Backspace” File

810

—]

ABORT 1—!

ABORT T]

812

A

Print Additionat
— Message

Fig. 5. (cont.)

Part I1I:

which Record \!)
Numbep? "

2

i

Which Record
Number?

i

429 et

{cont.)
(Sheet 2 of 2)

SUBROUTINE TERMTAP

PURPOSE : This routine terminates the file using buffer ITP
and returns the buffer for use by other files.

ENTRY POINTS: TERMTAPE, TERMTAP, TERMTPE

s s

FORMAL PARAMETERS: None

COMMON BLOCKS: DRC5162, INTFILE, FILE, 22642626, FILELAB, FORFLS,
ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABLL,
NOPRINT, TODAY, LOCVAK

SUBROUTINES CALLED: ABORT, WARNING, ERAZE, SCOPE PFS Operating System
Disk I/0 subroutines (LSTATUS, SEEK, LOCATE, DREAD,
DWRITE, DEOF)

CALLED BY: All programs of the QUICK system

T T e P

Method

The three entry points are at the same location, The three spellings of
the entry correspond to the spellings used in the calling sequences.

The only input from the calling program to TERMTAP is the buffer number
ITP in common block /ITP/.

For read status files, processing by TERMTAP is very straightforward. As
shown in figure 6, tape files are rewound (statement 506) and disk files

are returned to their first sector address by subroutine SEEK (statement 505).
The file is set not active (statement 507), and ITP is restored to its

input value (statement 508), since its absolute value was used as the buffer
number,

For write files, processing is more complex for three reasons, First,
TERMTAP must empty the last data buffer onto the file and add a padding
record to the file, Second, the file label must be rewritten so that it
includes the number of words written on the file in its third word. Last,
if the file is a non-scratch disk file, its length must be added to the
disk directory file DIRCS5162,

P, R TR T e S T TS, T T TIm eI v

: Before writing the last data record, TERMTAP must check the status of the
last write operation. (If the last data record is also the first data
record this check is not performed, as the last write operution was the
label write operation, checked in SETWRITE.) If errors arc encountered

50

g
g
h' o i A i, i Bl M e it ke B St ek e e T RTRLASY b b Al e S S eed e A e T el e S FRY S

in writing either the last or next to last data record, TERMTAP applies
the same error correction procedures described in subroutine WRARRAY for
write operation errors. When all data records have been written success-
' fully, a padding record is written. This record contains 96 words of the
; word PADFILE. This record is required by the double buffering operation
% ' of RDARRAY, While transferring data from one data record (in the filehandler
“ buffer), RDARRAY is reading the next data record from the file. Thus,
3 retrieval of information from the last data record requires a padding
record to follow, If this were not the case, an end-of-file error would
’ occur whenever data were retrieved from the last date record. If TERMTAP
] encounters errors in writing the padding record, no attempt is made to
) correct the error. Finally, an end-of-file mark is placed after the

) padding record. (Operating system routine DEOF is used for this purpose
3 on all disk files.)

Lt DA b el

The file is rewound (for disk files, positioned at the heginning), and f
the label is read. The number of words written on the file is inserted
in word three of the label and the file again positioned at the beginning,
The new label is then written on the file. No attempt is made to correct
I/0 errors in reading or rewriting the label,

: For tape files, the tape is then rewound. At that point, the operating

- system inserts two end-of-file marks and a short BC) record between the

label and the first data record. The file buffer is deactivated

) (statement 507), and the subroutine returns control to the calling program.
|

; For scratch disk files, the label rewrite is followed by the buffer return
3 processing of statement 507, For non-scratch disk Ffiles, the disk file

) directory must be updated. The directory is read from the disk. The ;
logical file name is found in the active file list, and the number of words 3
written on the file is inserted in the list. The directory is then re-
written on the disk file, No attempt is made to cdrrect I/0 errors in
reading or writing the disk file directory. Also, if the logical file
name is not found in the active list, c¢1ly a warning message is issued.
In any event, control goes to statement 507 for buffer return processing.

e S bl 5 TR

3 Ta L

5 e
P

;
;
!

Set Entry luentification
and Save Input Variables

1s Buffer Number

fh Range? NiXwl

Yes

Is File Active?

500 505

- SFEK
{3 File in Read Set File Pointer
Status? Disk Fije? on Disk to
Beginning of Fije

554
Set Pointers and
Recard Ccunter to

Quetput Last Buffer

507 i
Set File y
Inactive
- 508 1
Yes Return Input
@ Yariables to

Original Values

6

No)
504 55)
Have Any Data No Assign
Records Boen i Auxiliary RETURN
Written? Buifer)
Yes
J11)

1/0 Errors on
Last trite?

No
4 170 Ervors? Vo3 99) MiXwl4
Rewind Tape Save Number of
and Nrite Words Written
New Fiie Labcl in Label

NiXel3

NIXwb

Fill Buffer With
OQummy Data
("PADFILE")

Write End-Of-
File Mark and
Rewind Tape

¥ig. 6. Subroutine TERMIAP
{Sheet 1 of 4)

el S b s S Mot e S N Ny S)T e e L ve et

i
!
!
1
!

i

L
i h
]
4 B
:) j
" A
|
.
:
F"
. 170 Errors on NIX=3
i Last Write? NTOGO= 1
3 Read bisk
?l: [Mrectory
g b
; Si1) X
' / . Yesu
; 170 Lrrors? gu
v Save Number of No NINrR
Words Written . 1
2o ug i
Actaive [iwt? k
. Yos NIX=3 TTTTYYeas NIX=0 :
rrore? Ui ¢s A
1/0 Errors? NTOU0S. 91 l ?

Stve Number of
£56 Words Written in

A

Fi11 Buffer With Divectory g

Dummy Data ;
('PADFILEY) . y

Write Dish
Directory

Write Dummy
Data Recoard a6

170 I'rvovs? »m)
568 L, ;
N NIX> 0
170 Errorst HJE8 99 o
No Nix:7 Is File a
560

scrateh File?

G a1 B
170 1'.:-rurs3~ @ NiX=]2 ‘

Save Last
Sector Written “‘@
\- 1
.

: DEOE, S11K ;
’ Krite knd of File - .
. and Position Disk Write Flle 1
:A,' Pointer at Lahe) {
Y Begiming of Fije —]
¥ ;
: !
. Save File Length ;
; Read Fije Data in Labe) ;
Label :
1
LR ? 3
SITK !
. . Position Disi .
: 1/0 Errors? > Pointer to i
v Start of File
] Yes - \
: ‘L—H iy) Nide || ;‘
X

Fig., o, (cont.)
(Sheet 2 of 1)

!
i
i
¥
1
-
[odd !
99 A
i
Pl
q
: . ’ " s . T A sl SYRUTRCEIN, S0 JETE P SASO)
L T T T VR T TRV T TR Tty b s byt "

TR A

DU SR It

irint Error
! Message

N1X=ay,2

NTX=3

N1X=4

Detemmi et SELA
}1;.1m:n{c‘ -;L;ll fon - Fosition File to| |eg
(e ite
o H Ww0od Brijte tast Good Sector 4

814

Set Pointers for

4

N1X=S

l l WARNING
No
. | | More Than Five Yes
hrite frror Recor Attunplcd M-\\utcs
Ilh.nr.u.nt krror
{ 140 Errers? >_..l oo]

818

Reset Errer
Counter

S —

N I UG0=? }—"‘
Yes

170

Auniliary Buffey

815

o] Sttt Pointers for

Fig.

L Inerenent krror More Than Fij
v Cuunter Attempted Kowrites?
-

Madn Bufpey - >
822 Yes ' ¥
i N v FRAZY
Rueset 1rror No 7 _— :
Counter [—— /0 Lrrors? ‘rase Quer

Bad Spot

WARNING

G. (cont.)
{(Sheet 3 of 1)

<o) Mot AT

W e i LA e LB — 4 kim

i Bl i N L

i £ 422 e S

1
E E
|" @ ..
i i
:" Y

: 803 |

‘ \
] NIY=G L ! | arRNING —p. :)
1 804)
- NIX =7 L ! | WARNING ———-—»Ksog

802

Nix=8,10 F——————p | AnoORT <—————Goz

805

e i | WARNTNG _
NIX=9,11,12,13,14

:
:
|

y Fig. 6. (cont.)
| (Sheet 4 of 4)

U
v

Ut Lty

T

e rC

TR .

TR R

oSty

CHAPTER 3 ' .
SPECIAL-PURPOSE UTILITY ROUTINES

This chapter contains a description of fhe-special-purpose programs , '
OUTFILE, RELOADF, DECLARES, and FILEDUMP., While these programs are
part of the QUICK utility package, 'they are presented in a separate

chapter because of the unique nature of the support functions they ‘ : (
perform, .

The common blocks nsed by programs OUTFILE and RELOADF are described
in tabic¢ 3 (following the description of program OUTFILE). ‘The
common blocks used by DECLARES and FILEDUMP are applicable to other
utility routines and are, therefore, presented in appendix A.

56 ' : ‘)

PROGRAM OUTFTILE

B N g, T

e T

e TR TN

PURPQSE : To read information from disk files and write it
on magnetic tape in such a way that either the
last program run can be repeated or the next
program can be rin by restarting the subsystenm
(using program RELOADF to reload the disk files
from the magnetic tapes).

. ENTRY POINTS: OUTFILE
- FORMAL PARAMETIIRS: None

COMMON BLOCKS: BUFFERS, DICTARY, DISKIO, DIC5162, DSKHARD,
ERRMESS, ERRNUM, FILENOW, F{LEREC, LOCATOR,
MACHINE, SAVWRIT, SUPRVIS, TAPHARD

SURROUTINES CALLED: CLOSPIL, CLRCMON, GETDF, LOCATE, NODIRC, OPENSPL,
OUTBFTP, OUTERTP, SETHEAD

1
Method

s

The primary function of program OUTFILE is to dump information from disk
files used by a program in one of the QUICK subsystems onto spill tapes
in such a way that program RELOADF car be used to reload the disk files

‘from the disk files at a later time so that the QUICK subsystem can be
restarted where it stopped.

~ e

OUTFILE itself does not read or write information to or from tapes or
disks, but instead calls subroutines which handle these functions. First
it uses CLRCMON to initialize the variables in all of its common blocks.

Then it supervises the process by which the master directory (common
/DRC5162/) is read from the disk file who-e name is contained in variable
NAMDIRC (common /SUPRVIS/). It reads the directory twice and each timec
use¢s subroutine SEEK* to position the disk read head at the beginning of
the file. The full length of the directory is unknown until it is read;
hence, 'OUTFILE first uses subroutine DREAD* to input 32 (LENLIST = 32)
words of the directory. The second time DREAD inputs the full master
directory since now LENLIST = DIRC(1) which is the first word of the
master directory. In the event that end-of-file or parity crrors are

*PFS Disk 1/0 subroutine

wur
~1

YT .\.A'

P R O I T RRRACO J YRR e Ty
) . P AP U A A (S

N L A y o h b s R e Wi ath Y RVY § SO VI TR TS TR RN NE
R ENN AT AN Rl NI T [N ORI L PO LRI PR S

encountered during this process, OUTFILE repeats it until the error is
corrected or until it has failed MTIMESR {common /SUPRVIS/) times to
correct the error; in the latter case it calls NODIRC to write appropriate
error information on the standard output file and to abort the run.

When the full length of the master directory has heen read, QUTFILE calls
SETHEAD to determine the values of variables in the major directory
(common /LOCATOR/). This directory contains information about the manner
in which the disk files will be dumped onto the spill tapes; OUTFILE
writes this directory as the first file of the first spill tape. lowever,
if it encounters an end-of-tape or parity error, it calls OUTERTP with

the argument equal to 1, to correct the operation by repeating it.

Finally, OUTFILE controls the process by which the spill tapes are
written. OPENSPL is called once for each tape te set up and buffer ount
the minor directory (common /DICTARY/), which references it, to the first
file of the tape (except for the first spill tapec where the minor
directory is the second file). Then, for each record on the tapc OUTFILE
first calls GETDF to fill the input buffer from the current disk file(s),
and then calls OUTBFTP for the record to buffer out the output buffer to
the record on the spill tape., When all the records for a spill tape have
been buffered out, CLOSPIL is called to terminate the tape and see that

a new tape is mounted if another reel will be needed,

OUTFILE terminates its processing after writing error recovery messages
to the computer operator and to the output file.

Table 3 lists the common blocks used by program QUTFILE*. The flow of
operations in OUTFILE is shown in figure 7.

L3

*Program RELOADF also uses these common blocks.

S

Table 3.
VARIABLL
BLOCK OR ARRAY
BUFFERS INBUFF

IOUTBUF

NSLECTBF

LBUFF
IOBUFF

DICTARY

[AM
NREC
IDENT
NUMONME
NAMEONT

LONT

DISKIO ISTART

IEND

ISTREC

TENDREC

Common Blocks (Programs OQUTFILE
and RELOADF)
(Sheet 1 of 5)

DESCRIPTION

The index of the buffer currently being used
for input (INBUFF=1 or 2)

The index of the buffer currently being used
for output (IOUTBUF=l or 2)

The number of disk scctors which will fit in
one buffer

The length in words of onc buffer

The input/output buffer (IOBUFF has the
dimensions LBUFF and 2 - i.e., I0BUFF(LBUFF,2))

DICTARY is output as the first file on all
spill tapes except the first tape where it

is the second file; it is the 'minor dircctory'
and refers to only one tape

Spiil tape number

Number of records on this tape
Spill tape identifier

Number of files on this tape

An array containing the names of files on
this tape (it is dimensioned MAXFILE - see
LOCATOR block description)

An array containing the word lengths of files
on this tape (it is dimensioned MAXFILE - sce
LOCATOR block description)

Index to the starting word in the input/output
buffer IOBUFF

Index to the ending word in the input/output
huffer IOBUFF

Index to the starting word in the input/output
buffer for this record

Index to the ending word in the input/output
bufter for this record

59

st AT

L e o s, eoni

i

Table 3. (cont.)
(Sheet 2 of 5)

VARIABLE
BLOCK OR ARRAY DESCRIPTION
DRC5162 DRC5162 is the master directory; it is main-
tained on the disk by the filehandler and
contains information about the disk files
which are to be spilled
LENI'18T Length of the master directory file
NOWACTV The number of active files
LFNAME An array containing the names of the files
NOWORDS An airay containing the lengths in words of
the disk files ‘
NINTRNL The number of internal scratch files currently :
allocated to the program i
LINTRNL The length in words of a scratch file :
NDSKHARD This block contains information about the disk
hardware
NWDSCT The number of words per disk sector
NSCTRAK The number of disk sectors per track
ERRMESS A common block used in conjunction with
subroutine ABORT (sce appendix A for description)
ERRNUM NTERRTP The total number of tape read or writc errors
NCERRTP The number of tape read or write crrors for
the current tape
NTIMTAP The number of times which the current tape has
been changed
NTERRDF The total number of disk recad or writc crruis
NCLRRDF The number of disk read or write errors for

the current disk file

00

o e L T

BLOCK

ERRNUM
(cont.)

FILENOW

F1LEREC

Table 3. (cont.)
(8hecet 3 of 5)

An crror rcecovery indicator for the spill tapes
Successful error recovery

1
0 Unsuccessful recovery from error not
on first tape

=-1 Unsuccessful recovery from error on first

A disk file read or write error indicator
=0 No error

0 The number of words left in the file
after a parity error
.LT.0 End-of-file error

This common block is a work area for a read/
write operation affecting the current disk

The logiral name of the current disk file

The number of words read from/written to the

The number of words left to be read from/written
The address of the present sector in the

The number of the current file

The number of trailer words for the current

disk file to be read from/written on the

The number of header ..ords for the current

disk file to be read from/written on the

The length of the filehandler disk file label

VARIABLE
OR ARRAY DESCRIPTION
TAMOK
tape

IRPERR

.G

file
NAMENOW
‘NWORDNW

current file
LIMIT

to the current file
LOCNOW

current file
NUMNOW
NXTRAIL

current spill tape
NXTHEAD

current spill tape
LFILABL

record
LPHYREC

The length of disk physical records which are
provided by the filehandler

6l

et i B

i S, T i

et e i« e T it e sl

e i el T N

B

T e e T, AT -

VARIABLE

Table 3. (cont.)
(Sheet 4 of 5)

DESCRIPTION

; BLOCK OR ARRAY
LOCATOR
NTAPES

NFILES
MAXFILE

NAMES

LENGTHS

MACHINE IREAD
IWRIT
ICOMM

IPUNCH

SAVWRIT
NUME TRT
: LOCSTRT
NXTHSV

NXTTSV

NWDRDSY

e

This block is the first file on the first spill

tape and is the major directory for the spill
tapes

The number of spill tapes used
The number of disk files spilled

The maximum number of disk files which can be
spilled

An array containing the logical file names of
the disk files dumpcd onto the spill tapes; it
is dimensioned MAXFILE

An array containing the lengths in words of
the disk files which are contained on the
spill tapes; it is also dimensioned MAXFILE

Logical unit number for standard input file
Logical unit number for standard output file

Logical unit number for standard comment file
to computer operator

Logical unit number for standard punch output
file

This common block saves the starting pointers
for the first data on the current spill tape

The file number of the first disk file on
the current spill tape

The disk sectur address for the first data on
the current spill tape

The number of header words to be output cn
the spill tape before any disk files are dumped

The number of trailer words to be output on

the spill tape before any disk files are
dumped

Number of words already input from the first
disk file and written on the current spill tape

62

S T L I A LR T L T PRI AL IR T R LT R e RN T A AL LIPS IS Lt

s st bl

P

e ey g T TR FEG T T

i

BLOCK

PeCuiy

SUPRVIS

TAPHARD

VARTABLE
OR ARRAY

Table 3. (cont,)
(Sheet 5 of 5)

DESCRIPTION

MAXUNIT
IUNIT

NOWUNIT

NAMDIRC

MTIMESR

MTIMESW

MCHANGE

LWRIT

LDIM

IDNTSAV

LUNDISK
LNGHDTL

MXWDSTP

IMODE

The maximum number of spill tape logical units

An array containing the three logical unit
numbers of the spill tapes

The logical unit number of the current spill
tape

The logical file name of the master directory
(i.e., common /DR(C5162/)

The maximum number of times the program attempts
to correct a read error

The maximum number of times the program attempts
to correct a write error

The maximum number of tape changes allowed
while attempting to correct a tape error

The number of words written from the current

output buffer onto the current spill tape
record

The dimensioned length of the master directory
(common /DRC5162/)

The value of IDENT which is set in subroutine
CLRCMON

The logical unit number for disk

The length of the header and trailer blocks
which precede and follow, respectively, a disk
file which is dumped on a spill tape

This block contains information about the
magnetic tape hardware

The maximuwn number of words which can be written
on one reel of magnetic tape if the physical
record size is LBUFF (in common /3UFFLRS/)

The parity mode of tape 1/0 operations
= 1 1if mode is BINARY

o

START

Call CLRCMON

; Call TIMEDAY

Call GETDATL
Time and Date

L Aro Used in

! Output Heading

i

i Write Output lLeading
i to Operator and

i to Qutput File

: Set ITIME=-]
: Set LENLIST=32

b Set ITRYal
. b
r Set ITIME=[TIME+]
E T
{ 10
t Call SEEK
4 Position Logical File | e
b NAMDIRC for a Read }
f
N y
k Call DREAD
Read First LENLIST Words of
L /DRC 51€2/ from NAMDIRC
: [
! 20 A
}:, ’ - Operation
; Operation / What Is Status of in
] - M Read Operation? Prosress
: Successfu (LSTATUS) ogres
: 30 Error in Read or EOF
E flas Full How M ATt ts t
! Directory any AtLemprs to \ Fewer Than
; {Common /DRC5162/) %ad Commnon /DB(. :i()?/ Noximim | ITRY=ITRY+1
\t_ Been Read? Have Been Foijled? Numb oo
;(65 Too Many Aliowed
’E Determine Actual
4 Length of Common Call NODIRC
/DRC §162/ on NAMDLRC .
(LOCATE)
y
sToP

Fig. 7. TProgram DUTFILE
(Sheet 1 of 3)

64

o E—

‘, Is Length of I-:ull N3 g
Common /BRCS162/ on NAMDIRG Ye 30

Same as the Length Read?

70 {Y“s
1l
. Call SFTUEAD
E sy
? Set NOWUNLT=IUNIT(1)
(IUNIT(1) Is tho First e
) Spil} Tape)
. +
]
t Set Error Recovery

Indicator IAMOK
Fqual to 1

Rewind NOWUNIT and 3

Write teader ?.3

; (Comnon /LOCATOP/) on '
. the First Spill Tape

80 r —+
Operation What Is Status of \ Operation
Successful the Write Operation? /-in Progress
90 * EOF or Parity Error Encountercd
Call QUTERTP{1)

g Is Attempt to \ ,
<‘ Recover From EOF or o o)
P

arity Error Successtul?
100 >*Ye:ﬁ
Write EOF on
tirst Spill Tape
r o for Each
< : >-______..__—...z ~uill Tape
u‘ 2100 I=1, NTAPES)

Do

Ser "M Equal to the
mdea of the

; Spill Tape ;
; %
E: 3
Fig. 7. (cont.)
1 (Sheet 2 of 3)
A }

o5

b ad e HHREUAIAT o] Bt - T TR s PRIV AP T 1AL W T UL IS PPN U R TR TUR PRI F P RPNt

i £

1000

Call OPENSPL
to Open Next
Spill Tape

" y

Is Attempt to Write
Minor Nirectory on

(Not
First Spill

Spill Tape Successful?

?/ (Flirst Spill Tape?}

Tape)
f P 1100 +

Do for Each
: Record on the
. Spill srape

(Do 1500 J=1, NRF()

y

Is the Current Disk
File Index Greator

2 Than the Number

A of Files to Bo Output ?,

Cull CLOSPIL
to Closc
Spill Tape

>Yc -

Call GETDF

Y

Set IT=INBUFF
Set INBUFF=IOUTRUFF
Set TOUTBUFF=IT

Y

Call QUTBFTP

]
A
3
\
s
]

:
y

g -

y Unsuccessful What Is Status
Write on First) of Write Operation?
¢ Spilt Tape -

% 1500 ! Successful
|

| Done?

i]

i

R R A UK LT TN L St)

Fig, 7.

Write PROCESSING COMPLLTED
Message to Operator and
to Output File

Write on Spill
Tape Other
Than First

(cont)
(Shoet 3 onf 3)

066

i . SUBROUTINE CLOSPIL

PURPOSE : To terminate the spill tape and to recover from
end-of-tape or parity crrors on a spill tape,
if nccessary.

ENTRY POINTS: CLOSPIL
b FORMAL PARAMETERS: None _
b ;
- COMMON BLOCKS: BUFFLERS, DICTARY, LERRNUM, FILENOW, LOCATOR, MACHINE, b
; SAVWRIT, SUPRVIS

SUBROUTINES CALLED: QUTERTP, ANOTHER ‘

CALLED BY: OQUTFILL %
: i
i 1
Mcthod

Subroutine CLOSPIL first checks the status of the spill tape which it is
to terminate. If an end-of-tapc or parity ecrror was encounteved by
OUTFILE when it tricd to write on the tape, CLOSPIL calls OUTERTP with the
argument equal to 3 to attempt to reccover from the error. If recovery is
successful, CLOSPIL continues processing the tape as indicated below.
Otherwise OUTERTP aborts the run.

i
F
i
L
£

% If and when all records have been successfully written on the spill tape,
CLOSPIL puts an end-of-file mark on the tape., CLOSPIL uses subroutine
ANOTHER to unload the terminated tape. '

CLOSPIL then instructs the coamputer operator first to save and label the
old tape and, if another spill tape is to be requirced on the unit, to mount
a fresh tape on the same tape unit, CLOSPIL completes its processing by
resetting the variables in common block /SAVNRIT/ and writing a message

to the output file concerning the number of errors cncounterced and cor-
rected before the spill tape was successfully written,

Subroutine CLOSPIL is illustrated in figure 8.

67

T TR

W T

:
\
]
]
A
L
L'
,?.

T T

' START }

1 '

Operation what le¢ Status of CGperation -
Succcssful(Write Operation? in Progress

Parity Error or EOT
2

Set IT=INBUIF
Set INBUFF=[OUTBUFF

Call OUTLRTP
to Recover From
Error on Tape

-

| Zot INB Uil-lT I

3

IAerte End-0f- lllv
(EQF) Mark on Spill
'L Tape [NOWUNIT)

ather Cull ANOTHER
Fape PaLf3 to Unload
ed? Spiltl Tape

Label bi
Spitl

Call A VOTHER Instruct Computer
to Unfoud Spill Tape Operator to Suve and

smounted
Tape

Instruct Computer Instruct
Operator to Save erator
and Label Dismounted li&sh iﬂpc on Tape

Spill Tape

Computer
to Mount

it

100
Reset qumop ' —

Block /SAVWRIT/

{ ¥Write Lrror tount
Messages tnr the
Spill Tape to
/ Mitput File

|
RETURN

Fig. 8. Subroutine CLOSPIL

68

T\ S0

.
iy

"

&

Ry

+ 8 %

Ty

Sl

B et S .. |

PURPOSE:

: ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

SUBROUTINE CLRCMON

To clear or initialize all common blocks for
program OUTFILE (or program RELOADF).

CLRCMON

None

BUFFERS, DICTARY, DISKIO, DRC5162, DSKHARD,
ERRMESS, ERRNUM, FILENOW, FILEREC, LOCATOR,
MACHINE, SAVWRIT, SUPRVIS, TAPHARD

None

OUTFILE (or RELOADF)

Subroutine CLRCMON initializes all the variables in the common blocks used
by program OUTFILE (or program RELOADF), It assumes that the variables
LBUFF, MAXFILE, MAXUNIT, and LDIM have becn set by DATA statements at

" load time; the variables are defined in the calling program, Therc is no
: significance to the order in which the common block variables arc initializec

; Subroutine CLRCMON is illustrated in figure 9.

69

EERTUR-NA e TN

SR

ar)
AV Y 4 &¥ 2

rami ST . Ayt e s ol e

F
. 1
. I !
!
- 1
: Initialize "Hardware' I ' ! '
! (/MACHINE/, /DSKHARD/, and
‘ /TAPHARD/) Cbmmons
1) .
l | |
| : “
: .]
: Initialize /BUFFIRS/ : f
: Common Block : :
. . . §
.) ;
: T ! 1 ! ' N
;‘ l l ! : !
n Initialize Variahles : ,
g in 'Directories' (/DICTARY/, . . ;
\ /DRC 3162/, and /LOCATOR/ ' '
X Common Blocks) : ' ; E
;‘, l :) : t : !
F‘:’ - t . ;
Initialize /SUPRVIS/, ‘ . ’ ‘ 3
3 and /ERRNUM/ Common : : . ;
B Blocks : : ' 3
a l ' !
. Initialize Qther ;
4 Commons (/SAVWRIT/, - 1
: /FILENOW/, /DISKI0/, /FILEREC/) ;
4 ;
: i
;': |
RETURN :
!
) B
‘. ’
E ,
3 Fig. 9. Subroutinc CLRCMON ;
: l
, i
) - L"
: 70 |
;
|
:
X
i

B T T T [N S
F T]

SUBROUTINE GETDF

' PURPOSE : To set up a disk file for input into OUTFILE.
" ENTRY POINTS: GETDE /
FORMAL PARAMETERS: None
i + COMMON BLOCKS: BUFIFERS, DISKIO, DSKHARD, ERRNUM, FF1LENOW, TILEREC,
‘ , ' LOCATOR, MACIIINE, SAVWRIT, SUPRVIS
i SUBROUTINES CALLFD: INBUFDK, INLRRDK, INLABEL {
CALLLD BY: OUTFILE

g ' If, when the last call to GETDF occurred, the last word placed in the

: input buffer either immediately preceded a trailer label or was part
of a trailer or header label for a disk file, subroutine GETDF now places
the remainder of the trailer label and the hcader label (or the re-
mainder of the header label) at the beginning of the input buffer; then
it ‘calls INLABEL to place the filchandler label after these labels
) in the buffer.]

If the remainder of the input buffer can be filled from the current disk
file, GETDF determines how many words are nceded to fill it and calls
"INBUFDK to actually transfer the words from the disk file into the buffer.
llowever, if more than one disk file is required to fill the buffer,

GETDF processes one file at a time until the buffer is tull. First it
calls INBUFDK to place the remainder of the current file into the

buffer; after that it places the whole trailer label into the buffer if

it will fit. (Othezrwise, part of the label is saved for the next

buffer.) Then it determines whether the header label for the next disk
file can be added to the buffer and places it there if it fits, (Again,
part of the label is saved for the next buffer if it does not fir.)
Finally, it calls INLABEL to place the filchandler labe) for the new

file into the buffer. If the buffer is still not full, the length of

the new disk tfile is compared with the size of the remaining buffer
space to determine whether this file will now fit into the buffer; then i
processing continues as described above until the buffer is full.

Whencver end-of-file or parity crrors are encountered by INBUFDK or INLABEL
while these routines are reading words from the disk files, GETDF calls

71

INERRDK to attempt to recover from the errors, When the recovery is
unsuccessful, warnings are written to the output file and an appro-
priate amount of the input buffer is filled with the error message

PARITYLR,
L Suproutine GETDF is illustrated in figure 10,
u
| !

oz

o g

40

Set I Equal to
Index of Current
Input Bufter

!

Set the First NNMIRAIL
Words of the Input
Buffer kqual to the
Name of the Last

Current File

Set the Nest N\ AD

Words of the Input

Buffer lqual to the
Name ot the
Current File

Set ISTART fqual to
NXTRALL + NNJHEAD » ¢

Is This the I'irst
Call to GETLF for the
First Spill "Tape?

No

10

Set Number of Words
Read From Current
File (NWORDNK)
Equal to 0

Y

Set NAMENOW Equal tn
Name of Current
Disk Fila,

Set NEEDLBL = ,pPALSE,

|y

Wag an Lrror

500

fncountered on the
Previous Read From
a sk File?

Parity

Lrror

Lett in File Equal to

Is Number of Words No

the Buffer Length?

30

Determine How Many
Words on Current
Disk File Ilave Mot
Yet Been Written

on Spill Tape

Fill Remainder
of Buffur With

PARITYER Message

Yes - Whoie Butfer
. e in L

510 y would Be in Error
Reset Index
TIEND = 100

520 y

Can Input Biffer
Be Filled From
Current Dish Fide?

Put PARITYLR
(fer Parity Error)
Message Into
Input Buffer

Yos

40
Set NAMENOW [qual
to hame of Cuyrent

Disk Fyie

Fig. 10. Subroutine GETDF

(Sheet

73

1 of 1)

et v wn e vyt P

Wy ¥ *

Set IEND liqual to
the Llength of
the Input Buffer

y
Is Filehandler
Label fer Current
File Needed?

Yes

Call INLABEL
to Input
Filchandler Label l

4

No Is the Number

of Words Requesteqd
Greater Than 07

Ye
45 ¢S

If Number of Words s
Not Integral Number
of Physical Records
on Disk, Remove the
Excess Words

v

Call INBUFLK
to Fill Buffer
From Disk

/
Increment the Counter
for Number of Words
in the Input Buffer

ol

EQF oz Parit

peration
- -—!—ﬂ of Last Disk Read O-‘-—-—-—'-—-—-)J
Lrror

Wt

50
/ What 1s Status

eration? in Progress
. %P

Operation

Complete
1 80

Call INERKDK
to Attempt

Error Recovery

- Fig.

Set LOCNOb Lgual to
the Sector Address
of the Lurrent File

RETURN

10, (cont.)

(Sheet 2 of 4)

74

Set LWRIT Lqual to
Nunber of horuds in H——
current Input Burfer

S|

r

Set IEND Equal to
Number of Words
Remaining in
Current File

Is Filehandler
Label for Current
File Needed?

Yes

Call INLABEL
to Tnput
Filehandler Label

No

[

100

110

[ca11 vmurnk [l

100
Reset ISTART
and IEND Indices
for Traller Label
in Input Buffer

Reset IEND to
Index of Last Word
in the Buffer

Will Trailer
Label Fit in
Input Buffer?

No

Yes

Put Trailer Record
(or Part of It) Inte
the Input Buffer

Write Message to
Computer Operator
and to Output File

Increment
NUMNOW
e e

Fig. 10.

Are Thefc
More Disk Files
to Be Spilled?

Yes

‘cont.)
(Sheet 3 of 4)

75

1

Attt

PSRN AP

R i v v

A e e SV R4 A

170

Call INLRRDK
to Recover
From Frror

LoF

of Last blsk Read
Parity Operation?
Error —eepmae.

150 ¥
orbhhat Is Status Operatio

n

>~

in Progress

Operation Completed
180 /

Set NUMNOW Lgual

190

to Tndex of Next
Disk Tile

Reset Counters
to zero

y
Call SLLK

Position Disk
at Beginning
of Next Fite

!

Save Part of
Header lLabel
for N « Buffer

No

Will lleader
Label Fit in Carrent
Buffer?

200 Yes

Fig

-

Put Header lLabel
(or Part of It) Into
Current Buffer

Will Current
File Fill Rest of
Buffer?

(or Current
Buf{fer Full)

Yos

220
Set IEND Index
for find of
Current File

Y
Call INLABLL

to Put Filehandley

Label Intoe Buffer

/
Call INBUFDN
to Put file
Into Buffer

100
-

10, (cont.)

(Sheet 4 of J4)

70

- e

8
'
IY
4

SUBROUTINE INBUFDK

PURPQSE: To fill the input buffer {rom the current file
on the disk.

ENTRY POINTS: INBUFDK

FORMAL PARAMETLRS: None

COMMON BLOCKS : BUFFERS, DISKIO, DSKHARD, FILENOW, FILEREC,
SUPRVIS

SUBROUTINES CALLED: INERRDK

CALLED BY: GETDF, INLABEL

Subroutine INBUFDK first determines how many whole physical records must
be read from the current disk file to fill the input buffer from ISTART
to IEND; it calls DREAD* once for cach record to actuually fill the buffer,
Before each call to DREAD, INBUFDK calls LSTATUS* to determine whether
the last disk read operation has been successfully completed, If an
end-of-file or parity error has becn encountered, INERRDK is called to
attempt a recovery from the error. Finally, if only a part of a physical
record must be read to finish filling the buffer, a last cull to DREAD

is made to perform the operation.

Subroutine INBUFDK is illustrated in figure I1.

*PES 1/0 disk subroutines

Set I Lqual to
the Index ef the
Current Tnaput Buffer

Previous

for This

No

EOF or
Parity

What is the Status
of the Last Read
Operation for the Disk
NAMENOW 7

Call INERRDK
to Attempt Error
Recovery

Operation

in Progress

) { omplete
10 Uperation Complete

previous
Errors for This
File?

Find Current Disk
Scetor Address
Use LOCATE

I's Number of Words
to be Read From Dish
Greater Than Zero?
l Yes

Determine Number of Whole
Physical Records to
Be Input From Disk
|

1
Yy .
o for tach
Physical Record
(Do 80 J=1, NTIMES)

RETURN

;I\J
y
Determine Indiges
for Beginning and

tnd of Record

A
Call DREAD
to [nput Data
From the Disk

Fieo 110 Subroutine INBUEDK
(Sheet 1 of 2)

78

. .

T T

Call INERRDK
to Attempt
Error Recovery

EOF or
Parity
Lrroc

| S

Provious
Errors for This
File?

RETURN }

50

Whuat is the Status
ol the Disk Read
GUperation?

Operation

Operation Completo

tFind Current

Use LOCATL

Disk Sector Address)

0wy

No

Is Part of a Physical

Record Still to be
Read From Disk?

-—

Yes
90

Determine Indices

From Disk

for Word to be Kead

.

Call DREAD
to Input Data
From Disk

|

Fig.

RETURN)

Iy (cont.)
(Sheet 2

74

of 2)

/ in Progress

£l o

T

o oA

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETLRS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

SUBROUTINE INERRDK

To repeat a disk file read operation which
terminated because of an end-of-file or parity

error in order to correct the read if this is
possible,

INERRDK

I - An error type indicator.
I =1 if input end-of-file error
I = 2 if input parity error

BUFFERS, DISKIO, DSKHARD, ERRMESS, ERRNUM,
FILENOW, MACHINE, SUPRVIS

WARNING

GETDF, INBUFDK

Subroutine INERRDK calls WARNING to write a disk read error message on
the output file. Then it calls SEEK* to reposition the current disk

file at the beginning of the physical record so that DREAD* can
to repeat the attempt to read the physical record. If the read
successfully completed in MIIMESR (common /SUPRVIS/) correction

be used

INERRDK writes the message: IRRECOVERABLE READ EOF (or PARITY) ERROR ON
DISK FILE to the computer operator and on the standard output file,

Then it uses WARNING to write a DISK FILE ABANDONED message on the standard
Finally, INERRDK fills cach word - corresponding to ua word

output file,

of the physical recerd which cannot be read - with END FTLE or PARITYLR
depending on the type of crror.

Subroutine INERRDK is illustrated in figure 12

*PES Disk [/0 subroutines

80

PO T £ o T

cannot be
attempts,

ISP PEAPIET T TP e ey

(START) '

{
: s This Disk N v,
2 File Alveady Heen RLTURN
i Ahandone?
,
l NO
;
:
, Set . tqual to '
g Lrror Iype Indicator
Increment
Lryor Counters
Encode Error
Message)
U_ Call WARNING 4
10 ?
Increment Lryor :
] Atrempt [mdex for .
Current Dirk File
{
. L
Have Lnough Yoo ‘
Lorrection Attumptsy—rl. 3
Heen Made? 'j
Na %
€
: Call Sl
‘f to Reposition Dish
[File for a Read
|
; Call DRLAD
E to Input Phyaical
‘[r Record From Dysd
1
F‘ 3n - 4
‘ Lor Tor o “Uition an
o 2 fperation PRSI
’ rv
Lrror Oprration Conplete
40
Find turvent Dok :
Secter Wldress :
!
-9 ;
L]
‘ RE TR b

Fig. 12, Subroutine [NERRDR :

(Sheet 1 oar 2y]
_E
|
51 j
.
1]

1000

Write 'Irrecoverable Read'
Messages to Computer
Operator and on OQutput File

l]
Encode Disk o

File Name for
Error Message

Call WARNING

<l 1200

What Type of Fill Rest of

Error Occurred Input Buffer With
During the Disk Read? PARITYER Message

lEnd-of-.File ' ‘

1100 . Reset Counter for
Fill Rest of Words Left in Current
Input Buffer hith © File (LIMIT)
END FILE Message ’ -

'

l Set Error Indicutor]

Equal to LIMIT

Set Error Indicator
Equal to -100 and
LIMIT Equal to G

RETURN :

Fig. 12, (cont.)
(Sheet 2 of_2)

82

SUBROUTINE INLABLL

PURPOSE : To rzad the filehandler label for each disk file.
ENTRY POINTS: INLABEL
FORMAL PARAMETERS: FLAG - 1s a logical variable having the value

LTRUE. if the filehandler label must be
input and .FALSE. otherwisc

y COMMON BLOCKS: DISKIO, ERRMESS, FILENOW, FILEREC :
. l

SUBROUTINES CALLED: INBUFDK, WARNING '
) CALLED BY: GETDF
‘ Method

Subroutine INLABEI tests the value of FLAG; if it is FALSE, the call to

. : INLABEL was extraneous and INLABEL calls WARNING to writc the message

: EXTRANEOUS CALL FOR LABEL INPUT on the standard output file. If FLAG is
3 TRUE, INLABEL recsets the IEND index to correspond to the last word of the ‘
filehandler label and calls INBUFDK to input the label from disk. Then :

g it resets the ISTART and IEND indices as well as the word counter for {
L, words read from the disk file so far. Finally it sets FLAG equal to :
ﬁ‘ .FALSE, ,

2

Subroutine INLABEL is illustrated in figure 13,

; 83

E
E
'
g
&

t START }

3 \ 10
rSuvo [END Index

Should Filehandler ave .
Label Be Input for for LU§TQQt7Flle
Current Dbisk File? as [SAVEND

R

: o aas § Reset IEND to Allow
Encode Warning Just Enough Words
Hessage for for the
Extraneous Call s
to INLABLL Filehandler Label
5. l v
g Call INBUFDK
& Call WARNING to Input
] the Label

RETURN Increment the Counter
for Number of Words

Read From Current File

!

Reset ISTART Index
and Set FLAG for
Filehandler Label
Equal to .FALSE,

RETURMN)

Fig. 13, Subroutine [NLABEL

S

ey T

SUBROUTINE NODIRC

PURPOSE: To print an error message and abort the run if
program OUTFILE (or RELOADF) is unablc to read
the master directory, common /DRC5162/, or if
RELOADF is unablc to read the major directory,
common /LOCATOR/.

ENTRY POINTS: NODTRC

FORMAL PARAMETLERS: None

COMMON BLOCKS : DRC5162, ERRMESS, MACHINE, SUPRVIS

SUBROUTINES CALLED: ABORT

CALLED BY: OUTFILE (or RELGCADF)

Method

Subroutine NODIRC writes the message UNABLE TO READ DIRECTORY OF ACTIVE
FILES to the computer operator and dumps the contents of the current
directory., Then it calls ABORT to abort the run,

Subroutine NODIRC is illustrated in figure 14.

85

NAET

. ot et TSP OESE T

]

|

START

Write Error

Message

to Computer
Operator

1

Write Current
Directory Contents
on Output File

1

Encode an
Abort Message

i

Call ABORT

to Abort
the Run

RETURN

Fig. 14. Subroutine NODIRC

86

e

ot i e 8

SUBROUTINE OPENSPL

PURPOSE : To set up a spill tape for writing information
from disk file(s).

ENTRY POINTS: OPENSPL

; FORMAL PARAMETERS: None

% COMMON BLOCKS: BUFFERS, DICTARY, ERRNUM, FILENOW, LOCATOR,

; MACHINE, SAVWRIY, SUPRVIS, TAPIARD
SUBROUTINES CALLED: OUTERTP

; CALLED BY: OUTFILE

;

1 Method

Subroutine OPENSPL determines how many of the current disk files not yet
writter, on spill tapes will fit on this spill tape. Then it determines
how many records on the tape should be written to contain the disk file
information. The length of each record is the length of the input/output
buffer. During these determinations, it sets the values of the parameters
which are used during the tape writing process., (These parameters are
contained in common block /DICTARY/.)

As soon as these tape write parameters have been calculated, OPENSPL
determines the logical unit mimber for the spill tape and rewinds the
tape if it is not the first spill tape to be written., Then it writes

the minor directory (common /DICTARY/) on the tape and also on the output
file. If the write operation to the spill tape fails because of an
end-of-tape or parity error, OPENSPL calls OUTERTP with the argumant
equal to 2 to repeat that operation until it is successful or impossible
to complete. In the latter case, the run is aborted. Finallv, SEEK* is
called to reposition the disk read head for input.

Subroutine OPENSPL is illustrated in figure 15, |

*PFS Disk I/0 subroutine

et) ean ad ke ckeanons e d e iemn o HaEe
o s amee s SRR e
[P PSP

‘ START ’

Initialize Number of

Words to Go on Spill
Tape (NUMTOGO) nt
Maximum Allowed

Temporarily Rese: Lenpth of Currant
File by Subtracting Lengths of Trailer
Block and of Block of Words Already
Written From the Disk

200

Deterniine Number of
Records on the Tape
Which Will Hold the
Remaining Disk File
Information

D> for Each
Done | Disk File Not A)ready

Written on Spill Tape fe
(Do 200 1«NUMNOW,
NFTLES)

Do

Subtract Lengths of Fne and of Header

and Trailer Blocks From NUMI'OGO to Get NTEMP

!

No /Will Entire File
Fit on Tape?

Yes (NTCMP Is Positive)

Reset NUMIOGO to
Value of NTEMP

Set Value of tho
Tape File Length

v
300
Determine Maximum

| » Number of Records

Which Will Fit
on the Tape

400
Restore the Length

of the Current File

|
Set Error Recovery
Indicator to 1

Determine Logical
Unit for the
Spill Tape

Fig. 15. Subroutine OPENSPI,

{Sheet 1 of 2)

88

4
9
E
E
9
AY

i

Y
|
1
]

540

Is This the
First Spit]
Tape?

Rewind the
Tape

520 4
Write Minor

Directory (Common

/DICTARY/) on Spill

Call GUTERTP

(to Atvempt Lrror

Recovery)

Operation

in Progress

Fig.

Operation Successful

Write Setup
Information ftov
Spill Tape on
Qutput File

y
Ca.l SEFK

(to Position Disk
for a Read)

!

‘ RETURN ’

15 (cent.) _
(Sheet 2 of ¢)

89

B

i

iy

g

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

Subroutine OUTBFTP first checks to determine whether the previous buffer
out operation to the spill tape is completed. If this operation resulted
in an end-of-tape or parity error, OUIBFTP calls OUTERTP with argument
equal to 3 to repeat the operation until it is successful or until too
many rewrite attempts cause the run to be aborted. When the previous
buffer out operation has been successfully completed, OUTBFTP buffers out
the current information in the output buffer to the spill tape.

Subroutine OUTBFTP is illustrated in figure 16.

P VR NPPTRRVINRTY L8| VR WP SR TR

SUBROUTINE OUTBFTP
To buffer out the information in the output

buffer to the current spill tape.
OQUTBFTP

None

BUFFERS, DICTARY, SUPRVIS, TAPHARD
OUTERTP

OUTFILE

Liod i

90

20 B 10 o
Call OUTERTP [EOT or What is Status of Operation in
to Repeat |w—— Last Buffer Out Operation
Operation Parity to the Current Spill Tape Progress
Error "
1 Completed
Buffer Out Output
Buffer to Current
Spill Tape
RETURN
Fig. 16. Subroutine OUTBFTP
9]
i ST et RSN R

PP PLANIENY (RN

Lo Attt St e

rierand, adii

g T

SUBROUTINE OUTERTP

: PURPOSE: To repeat a tape write operation when an end-of-
v tape or parity error develops, or to abort the
i run if the write operation cannot be successfully

3 completed.

v

g ENTRY POINTS: OUTERTP

% FORMAL PARAMETERS: I - Is used to determine the nature of the

information being written on tape when the
error developed

I =1 if the major directory (common
/LOCATOR/) was being written on the
first spill tape

2 if the minor directnvy (common
/DICTARY/) was being written on the
curreat spill tape

-1
n

I = 3 if the current output buffer was
being written on the current spill tape
f COMMON BLOCKS : BUFFERS, DICTARY, ERRMESS, ERRNUM, FILENOW,
" LOCATOR, MACHINE, SAVWRIT, SUPRVIS, TAPHARD
& SUBROUTINES CALLED: ABORT, ERAZE, NEWUNIT, SKIPFILE, WARNING
g CALLED BY: CLOSPIL, OPENSPL, OUTBFTP, OUTFILE
1
Method

First subroutine OUTERTP calls WARNING to write an error warning message
on the output file. Then it determines whether the major directory, the
minor directory, or the output buffer was being written on the spill
tape when the end-of-tape or parity error occurred., 1In each of the
three cases OUTERTP positions the tape at the beginning of the record
which was being written, calls ERAZE to erase six inches of tape and
repeats the buffer out operation which was previously unsuccessful,

If the error recurs even after MIIMESR (common /SUPERVIS/) correction
attempts, the tape unit is unloaded and the unit released by calling
NEWUNIT and a fresh tape is mounted on a different tape unit; the disk
pointers are then reset for the beginning of the disk file. (The first
attempt to write on the new tape is made by the calling subprogram; thus,
OUTERTP doezs not write on the tape unless errors are again encountered,)

If the error cannot be corrected after changing the tape NTIMTAP
(common /ERRNUM/) times, it is considered irrecoverable; in this case
appropriate messages recording the nature and number of errors are

written to the computer operator and to the standard output file, after
which OUTERTP calls ABORT to abort the run,

Similarly, under those circumstances where all the available tape units
have been released because of errors, error messages arc written to the
output file and the run is aborted by a call to ABORT.

Subroutine OUTERTP is illustrated in figure 17.

93

Rewind the
Spill Tape

Minor

START

Inerenent Tape -
Error Write
Catmters

!

Lncode Parity
Error harning
Message

{

Call WARNING
oy
Increaent

Correction
Attempt Counter

Have Lnough
Attempts Been
Made to Corrcct
the Tapé Write?

No

What was Being
Written When Tape
Write Error
Developed?

Current
_Qutput

Buffer

300

Backspace Tape
to Beginning of
the File

Major Directory

Is Spill Tape
the First One?

Call ERAZE
to Frase Six
Inches of Tape

Rewind First
Spill Tape

210
Call SKIPFTLE Call ERAZE Buffer Out Output
to Skip a File on to %ra-; gfx‘ Buffer Onto the
the First Tape Inches of Tape Spill Tape

220 ‘

Call ERAZE 1
te Erase Six s

fuffer Out Major
Directory Onto the

laches of Tape Spill Tape

Buffer Out
Minor Divectory,
Onto the
Spill Tape

.
500 B
FaT or /What 14 Status
of Correction =
P, i o} d
;::;iy Attenpt? Frocess
Successful
RI TURN
—

Fig. 17. Subroutine OUTERTP
(Sheet 1 of 2)

e
!
3
z
i
;
]
;

Write Error
Message to
Computer
Operator

. Hlvcrﬁnohgh
—{ Tape Changes
Been Tried?

1000

Increment the
Tape Change
Counter

1500

Encode L:iror
Messape for Sub-
routine ABORT

Set Error Recovery
Indicator fqual to
-1 if Tape {s First

Spill Tape

1250 {

!

A on Output File

Write Contents ,
of Error Counter;/

Write Message to

Computer Operator

Indicating Release
of Tape Unit

Call ABORT
to Abort the Run

Call NEWUNIT
to Unload Tupe
and Release

Tape Unit

!

Determine Largest
Tape Unit Number
of Units Currently
Used

Is Maximum Unit
Number Greater
Than 437

1700

Write Messuge
to Computer Operator
to Mount a Fresh
Tape and Label It

3

Encede Error
Message
for Subroutine
ABORT

3

Fig. 17.

(cont.)
{Sheet 2 of 2)

95

Reset the Disk
Pointers

Encode a Warning
Message

Call WARNING

RETUKN

i AT

SUBROUTINE SETHEAD

v N l .
PURPOSE: To prepare data for the maJor directory (common

/LOCATOR/ before OUTFILE wrltes it out onto the ;
first spill tape.

ENTRY POINTS: SETHEAD .
FORMAL PARAMETERS: © None ,
COMMON BLOCKS: DRC5162, ERRMESS,IFILEREC, LOCATOR, MACHINE,
' SUPRVIS, TAPHARD
SUBROUTINES CALLED: WARNING - ‘ ‘
CALLED BY: OUTFILE.
]

' !)

Method : i ‘ ‘ ‘ ; : I - %

1
Subroutine SE1HEAD first determines whether the number of disk files to;
be dumped on spill tape exceeds the maximum, MAXFILE, which can be hundled
by OUTFILE. 1If it does, WARNING is called to write the message TOO MANY

FILES TO SPILL on the output file; in thls case OQUTFILE w111 dump onlv
the first MAXFILE Flles. .

i

Finally, SETHEAD determines the values of the varlables in the maJor
directory (common /LOCATOR/).

. ! : !
|

Subroutine SETHEAD is illustrated in figure 18,

gl

e

Encode Warning
Message: 'TOO MANY
FILES TO SPILL'

Call WARNING

y

_ MAXIMUM ALLOWED'

Write Message to
Output File:
'REDUCE FILES TO

I's Number of
Files to be Spilled
Greater Than
Maximum?

Initialize NTODUMP

Set Number of
Files Equal to the
Maximum Allowed

to -1

!

Remove Length of
Filehundler Lubel for
First File (Major
Directory)

H

Fig.

'

Do for Each
Disk File

Done

20

Determine Number of

(bu 20 I1=1, NFILESY

loo

Set File Name
Equal to Local
File Name

Tupes Necded to Dump
NTODUMP Words

'

L

Information on Output
ile

Write Major Diractnry/

'

Set File Length
Equal to Number of
Words in File Plus

Length of Filehandler
Label

Add Lengtﬁs of lieader
and Trailer Blocks
and of Flle to

NTODUMP

18.

97

RETURN

Subroutine SETHEAD

i e e

3
% '
3
3

T T

T

PROGRAM RELOADF

PURPOSE : To reload disk files from the spill tapes pro-
duced by program OUTFILE so that QUICK subsystem
processing can be continued or repeated.

ENTRY POINTS: RELOADF
FORMAL PARAMETERS: None
COMMON BLOCKS: BUFFERS, DICTARY, DISKID, DRC5162, DSKHARD,

ERRMESS, ERRNUM, FILENOW, FILEREC, LOCATOR,
MACHINE, SAVWRIT, SUPRVIS, TAPHARD

SUBROUTINES CALLED: CLRCMON, * LENDTAPE, GETDATE, GETLOC, INBUFTP,
| NEXTAPE, NODIRC,* OUTDF, TIMEDAY

Method

Program RELOADF first calls CLRCMON to initialize the variables in all
the common blocks. Then, after writing an output header (using TIMEDAY
to obtain the time and GETDATE to obtain the date) on the output file

and the message file for the computer opecrator, it calls GETLOC to

input the major directory, /LOCATOR/, from the first spill tape. (GETLOC
calls ABORT to abort the run if this directory cannot be read.)

Next, for each spill tape, RELOADF first calls NEXTAPE to input the
minor directory, /DICTARY/, from the tape. INBUFTP is called to input
the first record from the spill tape. Then, for cach of the remaining
spill tape records, the indices of the input and output buffers are
switched, INBUFTP is called to fill the current input buffer from the
spill tape, and OUTDF is called to set up the disk files by calling
OUTBFDK to transfer the data from the output buffer onto the disk file.
Finally, the indices of the input and output buffers are switched again,
and RELOADF calls ENDTAPE to finish reading the current tape, to release
it, and request that another spill tape be mounted (when more than
three spill tapes are used); OUTDF is called once more to transfer the
remaining data to the disk file(s).

When all files listed in the major directory, /LOCATOR/, have bcen
reloaded, RELOADF calls ENDTAPE to finish reading the current tape and
discontinues its processing of the spill tapes.

*Deseribed in program OUTFILE

9a

In all cases, when processing is completed, RELOADF writes tape and
disk error counter messages on.the standard output file and on the
output comment medium and also the message PROCESSOR RELOADF COMPLETED.

The common blocks used by program RELOADF are the same as those
previously described for program UUTFILE., See table 3.

Figure 19 shows the flow of operation within program RELOADF,

£ %o U

Call CLRCMON
to Initialize Comnon Blocks

3

v

Call TIMLDAY
Call GETDATL
to Get Qutput ilvader

Write Output '
Header to Computer
Operator and to Cutput File

Call GETLOC
to Obtain Major Directory

o e
Cr 5

f Do for Each Done
E Spill Tape
‘ Set 1AM

Equal to Spell
N Tape Number

Call NENTAPE

to Load Next
Spell Tape

.

Call INBUFTP
to Fill First
b Buffer From Tape

Y .:
Set NRECM) Equal '
to One Less Than

the Number of Records |
on the Tape

Fig. 19. Program RELOADF
(Sheet 1 of 2)

E 100

Bt S A i I

Do for Each
Record on the Tape

Switch the Indices

one gl of the Input and

‘Po

of the Iuput and
Output Buffers

Switch the Indiceﬁ

v

Call INBUFTP
to Buffer in a
Spill Tape Record

y

Call QUTDF
to Write Buffer
Onto Disk

1000 ‘

Is File Index
Greater Than
Number of Files?

Yes

3000

Call ENDTAPE
For Early Tape
Termination

Write Tape and

Disk Error Messages
to Computer Operator

and on Output File

Write Termination

Message to Computer

Operator and on
Qutput File

Stop

Fig. 19,

Output Buffers

y

Call ENDTAPE
to Complete Reading
of Current Tape

y

Call OUTDF
to Write Buffer
Onto Disk

Is File Index
Greater Than
___Number of Files?

Yes

(cont.)
(Sheet 2 of 2)

101

SUBROUTINE ENDTAPE

PURPOSE : : tomplete the reading of the current spill
. el

ENTRY_POINTS: ENDTAPE

FORMAL PARAMETERS: None

COMMON BLOCKS: DICTARY, ERRNUM, LOCATOR, MACHINE, SUPRVIS

SUBROUTINES CALLED: INERRTP, ANOTHECR

CALLED BY: RELOADF

Method

Subroutine ENDTAPE checks the status of the last tape read operation
for the current tape., If the operation terminated with an end-of-file
or parity error, it calls INERRTP to attempt tvo reread the record.

When the tape has been successfully read, ENDTAPE calls ANOTHER to
release it and then checks to see if the tape unit will be needed for
another spill tape. If so, ENDTAPE instructs the computer operator to
mount the next spill tape on the tape unit.

The subroutine returns afte printing out error counts which indicate
the number of tape read er .ors encountered on the last tape and on all
the tapes read so far,

Subroutine ENDTAPE is illustrated in figure 20.

102

e al T TR S S CUN —a LT

i

20

Call INERRTP
to Recover From Erpop

START
10

-

L.

What Is the Status
EOF or of the lLast Tape
Parity Error Resd Operation?

)

Fig. 20,

30

_ B | Operation
b‘ Completed

Set LWRIT
Equal to the Length

of the Current Spil] Tape

Y

Call ANOTHER
to Release the
Current Tape

No WIiT Anther
Spill Tape Be Needed
on This Tape Unit?

)

:1_0—- 7‘Yes

Determine
Spill Tape Number

—

WriteiMessage to
Computer Operator to

i Mount a Tape on This Unit7

Write Error
Counts to the
Output File

—
[

/

T

Reset Tape Error
Counter to Zero

RETURN

Subroutine ENDTAPE

103

. e o inesinr VA ki

e o o' i

Bl e e S e A e |

IR FR RO G e

SUBROUTINE GETLOC

PURPOSE: To read the major directory to the spill tapes
(common /LOCATOR/) from the first spill tape.

ENTRY POINTS: GETLOC

FORMAL PARAMETERS: None

COMMON BLOCKS: DRC5162, ERRMESS, LOCATOR, MACHINE, SUPRVIS,
TAPHARD

SUBROUTINES CALLED: NODIRC, ABORT

CALLED BY: RELOADF

Subroutine GETLOC first attempts to buffer in the major directory --
common /LOCATOR/ -- from the first spill tape. If an end-of-file or
parity error is encountered during the buffer operation, the tape is
rewound and the buffer attempt is repeated. If this buffer process

is repeated MT'IMESR, common /SUPRVIS/, times without success, GETLOC
determines how many words have been read successfully from the tape

and places them (the words) into the master directory (common /DRC5162/)
so that it can then use NODIRC to print out error information and

abort the run,

If, on the other hand, the buffer operation is successful, GETLOC

checks the value of MAXFILE (which is the maximum number of disk files
contained on the spill tapes) against the value of MAXFILE set earlier
in RELOADF If they are not equal, then either RELOADF has not been
updated to correspond to program OUTFILE, or the value read from the
tape is in error for some other reason. In either case, the discrepancy
is encoded into an error message and ABORT is called to abort the run.
The computer operator is also informed of the discrepancy.

In the normal case where the major directory is read successfully and
MAXFILE does not have an unexpected value, GETLOC writes the major
directory on the standard output file and processing control is returned
to RELOADE.

Subroutine GETLOC is illustrated in figure 21,

104

B A ot e

-

Al

START

I Set MAMOLD Equal to
Maximum Number of
;bhk Piles which Can Be Spilled
: Initlalize
ITRY Counter to lero

Set NOWUNIT to
the Number of the
First Spill Tape

Has Number of

ho Buf fer Attempts
Exceeded Maximum
Alloved?

*Yu

Set LREAD Lqual
to Number of Words
R

ead From the First Spiil Tape

1f LREAD 1r. Larger Than LDIM,
the Length of the
Master Directory, Resct
LREAD » LDIM

.]
10 Y
Increment
ITRY Countar by One

N

Rewind NOWUNIT

1

Buffer in /LOCATOR/
From NOI\'HNIT

Check S:.fns
of the Buffer
Oparation

*Ccmplned

Has Value of

Encode an
Error Message

Hﬂte Major
Directory on the
Qutput File

Y

Replace the First
LREAD Words of the
Master Directory With
First LREAD Words of
the Major Directory

Y

Call NORDIRC
to Print Error Messages
and Abort the Run

Fig. 21,

¥rits Error
Message to

Operator

MAXFILE Ch‘“ﬁ“” > to Be Used by ABORT

RETURN

Call ABORT

_ to Abort the Run

Subroutine GETLOC

105

PRV

e bl s atbnt v e ot 4 e et o anibae A

e

PUKPOSE :

ENTRY POINTS:

FORMAL PARAMETERS :

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

SUBROUTINE INBUFTP
To buffer in a spill tape recdrd into the input
buffer.
INBUFTP
None
BUFFERS, DTCTARY, SUPRVIS, TAPHARD
INERRTP

RELOADF

After setting local variable I equal to the index for the current input
buffer, INBUFTP checks the status of the last buffer in operation for

the current spill tape.

If the last operation ended with an end-of-file

or parity error, INBUFTP calls INERRTP (with argument=3) to repeéat the
operation until it succeeds or until the error is encountered at least
MIIMESR, common /SUPRVIS/, times; in the latter case, the unfilled
portion of the buffer is filled with the word PARITYER.

Whether the preceding operation ended successfully or not, processing
control returns to RELOADF after INBUFTP first saves the length of
the last record read in LWRIT. common /SUPRVIS/, and then buffers in
the next tape record into the input buffer.

Subroutine INBUFTP is illustrated in figure 22,

106

IR T RTIRR R e e

T e

20

Call INLRRTP
to Attempt

Lrror Recovery || Parity Lrror

|

Set [Equai to
the Index for the
Injut Buffer

10

‘A What {5 Status
EOF or of Lust Read Operatio§>>

for Currcnt Tape?

Fi—g' 220

"Lomp leted

30

Set LWRIT Equal
to the Number of Words
Just Read From the
Current Spill Tape

!

Buffer in the Next
Tape Record Into
the Input Buffer

RETURN

Subroutine INBUFTP

ol

i

E
k
|

SUBROUTINE INERRTP

PURPOSE To repeat a tape read operation which terminated
with an end-of-file or parity error in an effort
to correct it.

ENTRY POINTS: INERRTP

FORMAL PARAMETERS: I - An indicator which reveals the nature of the
information being read from tape when the
error occurred
I = 2 if the minor directory was being read

from the tape
1 = 3 if the current input buffer was being

filled
COMMON BLOCKS: BUFFERS, DICTARY, DSKHARD, ERRMESS, ERRNUM,
FILENOW, LOCATOR, MACHINE, SUPRVIS, TAPHARD
SUBROUTINES CALLED: WARNING
CALLED BY: ENDTAPE, INBUFTP, NEXTAPE
Method

After encoding the error message READ PARITY ERROR OR END OF FILE ON

UNIT ___, INERRTP calls subroutine WARNING to output the message and

other error information. Then it attempts to repeat the buffer in
operation which caused the error. First, it backspaces the tape to the
beginning of the record; if the current tape record is to be rercad, each
word of the input buffer is first filled with the message PARITYER., Then
depending on whether the formal parameter I is 2 or 3, the minor directory
(common /DICTAKY/) cr the current tape record is buffered in from the
current spill tape. In the latter case, the words input from the current

tape record replace the words PARITYER in the input buffer if the operation
is successful.

In either case if the '"buffer in' operation is not successful, the tape-
read error countcy is incremented and the process described above is
repeated until it ic successful or the number of reread attempts exceeds
the value of the variable MTIMESR in common /SUPRVIS/.

If MI'IMESR attempts have been made to correct thc read, and if end-of-file
or parity errors are still encountered, INERRTP encodes the message UNABLE

108

o

TO READ MINOR DIRECTORY ON UNIT _ if I is 2 or IRRECOVERABLE READ ERROR
ON SPILL TAPE ON UNIT if I is 3; then it calls WARNING, Further,
if I is 2, INERRTP determines whether the variable specifying the maximum
number of records on a tape (NREC) has been changed by the flawed read

- operation and whether the number of disk files on the spill tape (NUMONME
in /DICTARY/) is less than or equal to MAXFILE, If either of these

b conditions is not satisfied, NREC or NUMONME, respectively, is reset.

When I is 3, INERRTP determines the starting and ending addresses in the

i current disk file being written for the current tape record and writes the

| information on the standard output file,

=T e

In all cases, before control is returned to the calling subprogram,
INERRTP resets the value of IAMOK, the error recovery indicator,

Subroutine INERRTP is illustrated in figure23.

lncrement Counter
: for Total Number of
Tape Read Errors

‘ - i
Increment Counter

for Number of Tape Read ' : . :
Errors on Currcnt Tape : ' : .

y

' Encode Warning ' : v
3 Message for the . '
Read Error J

* ' ; ' ! v
Call WARNING

to Write Warning
. Message

: ' i i
I .
Set K Equal to

the Index of the : -
Output Buffer ; j

., ; H ! '
Sct ITAPE Equal

to the Number of ! ; ly
the Current Spill Tape i

Increment Counter !
(NOWERR) for Number of :
Attempts to Correct . Vo

i This Error

‘ . 3 : ; : i
1 N
<Iavc Five Attempts .Bcon> Yes . : o
Made ¢o Correct Read @ .
Lrror? 1 ’ ' .
‘ No . .
30

Backspace the Current
Spill Tape (ITAPL)

1 . . i

Rt D

Fig. 23.. Subroutine INERRTP
(Sheet 1 of 3)

110

T T T

- 1 PE—
g 1
200 300
Buffer in 1a2 / What Kas Nature of \ f.3 | Fill Words in Current
Minor Directory Information Input Buffer With
: (Common/DICTARY/) Belng Read? PARITYER
R . TBul fer in' the -
| Current Tape Record
1 Into the Input Buffer
B EOF ~+< —
or .
Parity, 500
! Error/ wWhat Is Status of
'Buffer in' Operation?
510 7iCompilcted
‘ Set Error Recovery
1 Indicutor (1AMOK) |
; : Equal to One
;) $20
g RETURN
, .
| (009
3
3 . 1200 1300 - :
! Encode READ ERRUR IN"] 1,5 /" What was Nature of \j1u3 [AD E
. . ol Encode READ ERROR ON
MINOR DIRECTURY <—<lnfomation Beir9+ SPILL TAPE Mesbage
Message Read? .
1 : Call WARNING —Call WARNING
; - to Write to Write
~ Wamning llessage Narning Message
: : I \
) Set NRECTST Equal to Write Encoded
the Number of Records Hessage to the
Which Can Be Contained Computer
on One Tape Operator

Fig. 23, (cont.)
I (Shect 2 of 3)

111

RS et o ke _JJ

T R Y .,

f

Detemlne the Adidress
of the I'irst hond for
the Cuvrent Buttoer

— Y

Petermine the Address
of the Last Word for
the Current Bufter

Y

Write Liror “fessage
tndienting Curtent
Rutter Is Abamdoned

Set brror Revovery
Tndicator Tqual te -1
for First Spill Tape, 0

for Others

T« NRECTST Less Than Nu
?

L Set NHECeNRECTSTE]

’<—_<_—-_,. ._—-—.J

Is Number ot Disk Files N
.- . h %
Dumped on Jape Creater
Than Mavimum Al lowed?
‘ ANLY

Resst NUMONMY «MANE LN

.

Set bivar Recovery
Tndieator Taual 1o -1
for Fivst Spld dape,

0 tor Others

—y

Q RETURN w
—————

Fig, 23, (cont.)

{(Sheet 3 of 3)

SUBROUTINE NEXTAPE

PURPOSE : To read the minor directory from the next spill
tape.
ENTRY POINTS: NEXTAPE
FORMAL PARAMECTERS: None
COMMON BLOCKS: DICTARY, LOCATOR, MACHINE, SUPRVIS, TAPHARD
SUBROUTINES CALLED: INERRTP, SKIPFILE
CALLED BY: RELOADF "
Method

After determining the logical unit number for the next spill tape
(NOWUNIT), and saving the spill tape number as IAMSAVE, NEXTAPE rewinds
NOWUNIT and uses SKIPFILE to skip the first file if the first spill tape
is to be read (because the first file of the first spill tape contains
the major tape directory). Then NEXTAPE buffers in the minor directory
(common /DICTARY/) from the spill tape. INERRTP is called (with
argument=2) to repeat the buffer operation in the event an end-of-file ‘
or parity error is encountered during this process.]

When the minor directory has been read from the tape, the actual spill
tape number (IAM) and label (IDENT) are known, so NEXTAPE compares
these valucs with those it expected., If the values of TAM and IDENT
are not the expected ones, and if the computer operator has not been
instructed to ignore mismatches in tape labels (via sense switch 1),
NEXTAPE then instructs the operator to mount the requested tape.

Finally, when the minor directory has been read satisfactorily, NEXTAPL
writes it on the standard output file and resets JAM to IAMSAVE, the
expected spill tape number,

Subroutine NEXTAPE is illustrated in figure 24.

113 |

fiide oy

C i SN

Deternine Logical Unit
Nunber NOWUNIT for Next
Spill Tape

Y

Save Value of
1AM as XM!SAVE

@——icwind Next Spill Tape

3 |

0 —
Call SKIPFILE
to Skip One File on| legt ls Ihn the
Spill Tape) First Spilt Tnp
[Ny
20
Is Spill Tap No
Reldy to Read?
10 *Yes

~

50

Buffer in tinor
Directory (/DICT/\RY/J
Call INCRRTP

[OF or Khat Is Status of
to Recover 3
From Beren m< Buffer Operation?

Erro
L ror —efw| COMD 1 @ ted

60
Has Correct Tape Yes
Been Read? 90
* No

Nrite Warning Message
on Ouvput File and
to Conrputer Operator

Should Label Yes
Mismatch Be lgnored’

Fig. 24. Ssubroutine NEXTAPE
(Sheet 1 of 2)

114

- gl

e gt ol T e B¢

R

80

Instruct Computer
Operator to Hount
Correct Tape or to Set
Sense Switch It Labels
Ignored

Should palels e No
Ignored?
Yes
90
20 Write Minor Ditvectory
on OQutput File

Reset Spill Tape Number
JAM tc IAMSAVE

RETURN

Fig. 24, (cont.)
{Sheet 2 of 2)

115

T

i

PP

SUBROUTINE OUTBFDK

PURPOSE: To buffer out information from the output buffer
to disk.
ENTRY POINTS: OUTBFDK
FORMAL PARAMETERS : None
COMMON BLOCKS: BUFFERS, DISKIO, DSKHARD, ERRNUM, FILENOW, FILEREC,
SUPRVIS
SUBROUTINES CALLED: OUTERDK
; CALLED BY: OUTDF
; Method

Subroutine OUTBFDK first determines whether the last disk write .operation
: terminated with an irrecoverable end-of-file (EOF) or parity error. If

3 it did, processing control returns to the czlling subprogram. Otherwise,
3 the status of the last operation is checked. If it ended with an EOF or
; parity error, OUTERDK is called to uattempt recovery from the error.

r Again, if the error is irrecoverable, processing control returns to the
calling subprogram, OUTDF,

f' As soon as the previous disk write operation is successfully completed,

; OUTBFDK saves the current disk sector address and determines the number

" of physical records to be written on the disk. It also initializes the

: indices ISTREC and IENDREC, which locate the record in the IQBUFF array.
Then it uses WRITECK* to transfer each disk physical record from the
IOBUFF array onto the disk; each write operation is checked for a possible
parity or end-of-file error. If one occurs, OUTERDK is called to attempt
error recovery. Finally, processing control returns to the calling
subprogram.

Subroutine OUTBFDK is illustrated in figure 25.

*PFS Disk 1/0 subroutine

116

Fig. 25,

Call OUTERDK ap
to Attempt Error | g ob OF
Recovery Parity

Error

START

Set I Equal to
the Index for the
Output Buffer

Was Last Disk No
File Write Operation
Error Free?

Yes
10 .
What Is the Status
of the Last Disk }
Write Operation?
Correct

30

‘ Was Last Disk File No
Write Operation
Error Free?

40

) ‘ Yes

to the Address of the
Current Disk Sector

Set LOCNOW Equal

Has Buffer Already Yes
Been Placed on ——
the Disek?

‘No

t

Set NWORDS Equal
o the Length of the
Suffer

the Number of Whele
Physical Recoids to Be

Determine NTIMLS-

Put on Disk

the

the Number of Words for

Determine NEXTRA-

Last Physical Record

¢

I

nitialize IENDREC
to ISTART-1

Subroutine QUTBEDK
(Sheet 1 of 2)

117

-

”

- Do for Each Record Done
\ to Be Written "

Dotermine Siar.i;a
Index of the Record-
ISTREC

of the Rocord-
TENDREC

Y

Call WRITECK
to Write Record on Disk

Determino Ending Index —I

hep———— -
70 60 _
Call OUTERDK EOF ot What Is 3tatus In k
to Attempt Recovery Parit of Writc¢ Operation? Progress

1 Error

Was Last Disk File No
Write Operation RETURN

Error Free?

0

80 Yes
Set LOCNOW Equal to the
- Address of the Current
») Disk Sector _

oes & Partial Physica
Record Remain Which - @ f
st Be Put on the Disk?

100 g
Deternmine ISIRCC and

‘ 1ENDREC Indices for
[the Rlecord

K] _

- Call WRITECK
: to Put Record on Disk

3
<

£rri S

0

. Fig. 25. (eont.)
(Sheet 2 of 2)

118 :

T W RTETERT

ey gy e —— AT

T R A e T T

Ty

SUBROUTINE OUTDF

PURPOSE: To set up the disk files for output.

ENTRY POINTS: OUTDF

FORMAL PARAMLTERS: None

COMMON BLOCKS: BUFFERS, DISKIO, DSKHARD, ERRNUM, FILENOW,
FILEREC, LOCATOR, MACHINE, SUPRVIS

SUBROUTINES CALLED: OUTBFDK, OUTERDK

CALLED BY: RELGADF

Subroutine OUIDF is called cnce by RELOADF each time the IOBUFT array
has been filled from a spill tape. It is used to determine which

portions of the disk files should be filled from IOBUFF and to set up
the files for output.

Each time a new disk file is to be loaded, OUTDF determines how many
tracks will be needed and uses ALLOCATE* and SEEK* to allocate the
disk tracks and to position the disk respectively. Then it scts the

indices ISTART and IEND so the filehandler label is put out when OUTBFDK
is called,

When the array IOBUFF does not begin with the first word of a new diszk
file, OUTDF first checks the array for trailer words which correspond
to the name of the current disk file (NAMENOW). If it finds a trailer
label, it sets the indices ISTART, IEND, and NWORDNW in such a way
that OUTBFDK writes the remaining portion of IOBUFF corresponding to
the current disk file (excluding the trailer label) onto the disk file.
If no trailer word is found in the rest of the buffer, OUIDF calls
OUTBFDK to put out the rest of the buffer onto the current disk file.
Sometimes, IOBUFF will contain data for two or more disk files. When
this situation arises, OUTDF first determines which words go onto the
first file and uses OUTBFDK to put them out as described above, Then
it uses DEOF* to put an end-of-file mark on the curreat file and checks
the header label for the next file. If not all of the header words are
in the buffer, no further data are output to disk files until GUTDF is

*PES Disk 1/0 subroutines

119

called again. If the buffer contains the whole header, OUTDF sets
up the next new disk file for output and proceeds to empty IOBUFF onte
this new file in the manner described above,

Whenever end-of-file or parity errors are encountered by OUTBFDK in
writing from IOBUFF onto disk files, OUTDF uses OUTERDK to attempt
recovery from those errors. Processing of IOBUFF continues until cither
all of IOBUFF is on disk or until no more disk files are to be loaded.
In the latter case, OUIDF informs the computer operator that the last

file has been output to disk, Then processing control returns to the
calling program.

Subroutine OUTDF is illustrated in figure 206,

120 |

Should Filc-

handler Label Be

Output?

' Yes

Set 1 Equal to
the Index of the
Output Buffer

Y

Set Starting Index
ISTART to Index of First
Word After Header in
I0BUFF

Y

Reset Length of
Hemlcr to Zero

No 1s This the First
Call to OUTDK?

10 * Yes

Set IEND to
Ending Index for
Filehandler Label

Initialize NMiENOW
IENDHED, NXTRAIL,
and NOLABEL, IOBUFF(GS 1)

y

Call OUTBFNK
to Output Label

Y

Reset Starting
Index to IEND+)

Y

Reset NOLABEL
to TRUE

——

Do 100 for Each
Remaining Word
in the Record

Done
110

ho

. 1

Yes

Fig. 26,

Is the Word
a Record Trailer
Word?

Subroutine OQUTDF
(Sheet 1 of &)

121

PR

e

30

30

Determine tndex [ENDTRL

of Last Trailer Word If

the Eirst One Hlas Been
Found

" Yes tins the Trailer
5 - Record Been Found?
3 7

i 40 y

; Reset [HWDTRL to landex

of Actual Last Word in
lecord

Sct NLOOKTL to
y Expected Index of
4 First Trailer Word

t 50 ‘

Do 60 for Each Uone

»- word in the Trailer L
Lobel
g Vo

- 1s the Word
- - 4 Trailcr Lobel E
R Word? . ’

80

; Resuvr TIND and -
- NWORDNK Since Yex Tas ThoTe “\)

End of Tile llas Been Length of Teailer
Reached] Chocked? /

No 5

' Resct Trailer E
3 @ Length to the Length .
of a Trailer Block '.

N EE T et

i
1
1
‘."‘
Fig.26 . (cont.) !
(Sheet 2 of 5) :
ki
122 4
) 1. N i i Lot ‘ "

110

Call ourrepg
tu Attempt Lipor

fecovery

-

110

Set TEND Lqual
to the index of the
Last Word in the hufrer
(tWRIT)

Y

Reset NwNRDNK
to LWRITe]

y

Call OUTAIIR
to I'ut Buffer on Disk

1on *) .

ror or What Is Status
| OF Disl hrite

oty ey atiog *

i

Froy =

Call ouTLrok
to Attempt Error
Revovery

UG) W VPP

L

LOF oy What ls_St.’l:‘u{i
— of Last Disk Write
Parity Operation? Progress
Liror ———

;ie-‘ucucssful

Reset LOUNOW to
the Address of the
Current hisk File

. RETURN

D

Call oulupkng
to Fut Out Rest of
Current File

210
R Krite Hessage to
Have ALl Disi. Y2 g Output File and g
Files Been Filled? Cemputer Operator
Nolg j

In¢renent
220) NUINOR

Call 1Mol
to Write TOF on
Curvent Disk File

Fig. 26. (cont.)

(Sheet 3 of 5)

R U R S P ¥ Y DY IS

PO PR S

et St oo,

1
]

S

i

250

Reset NXTHEAD and
LENDHIED to Correspond
to Part of llender tn

Buf'ter

Increment NUEINOW
to NU'®igW+] for
Next Disl File

Y

Reset NA'IENOW,

NCERHDF, NXT
IRPERR, .\m,\mx, and
TENDIHED fur Next file

No s A1l of ileader
p— for New File in.
Current Bufter?

Yes

1

Is Any ot the
< Header in thes—yﬁ—ﬁ—. '
Buffer? 260) -

No

320

Fig. 26.

. Initialize K to
NWORNNWA 1

270

Increment K to Kel

Is the Word TOBUFF
(¥,1) a Header Label
Wotd?

Is K the Index
of the Last Header Yes @
or Last Buffer Word?

Ne

280

Is TORUFF (K, 1)
8 Trailer Label iWord
for ‘the Previous
Disk File?

300
Set TENDHEDs
TENDYED+ 1

(cont.)
(Sheet 4 of 5)

124

EY

Write warning
That lleader 1s for
Wrong Dish File to the
Qutput File

30

. 320
' . Caleulate NWDSTRE-
@-——-’- thr Numher ot Woards/
) Track Tor a Pist Ijle

Determine Number
of Triacks Needed for
Current File

Call ALLOCATE
: ! - to Allocate Needed File
. on Disk

Call SELK
) . to Position Disk
3 - for Write

Reset LOCNOW to
Zero and 1START
to First Word After
tleader Record

! : Is Word Corresponding \ yo
to Index ISTARY @
in Current Buffer?

Yes

Fig., 26 . (cont.)
(Sheet 5 of 5)

125

‘ Aﬂiiii
e s o I T S S e e e

N "‘"‘"‘Eﬂ

SUBROUTINE OUTERDK

PURPOSE: | To repeat a disk file write operation in an

attempt to correct an output parity or end-of-
file error.

ENTRY POINTS: OUTERDK
FORMAL PARAMETLRS: I - Is an error t,me indicator
I =11if end-of-flle error
I =2 1if parity error
COMMON BLOCKS: BUFFERS, DISKIO, DSKHARD, ERRMESS, LERRNUM,
FILENOW, LOCATC", MACHINE, SUPRVIS
SUBROUTINES CALLED: WARNING
CALLED BY: OUTBFDK
Method

Subroutine OUTERDK first determines whether the current file (named
NAMENOW) already contains an irrecoverable error. If it does, no
further attempt is made to correct errors in this file and processing
control is returned to OUTBFDK.

Otherwise, error counters are incremented or initialized and a warning
message is transmitted to the standard output file via WARNING. Then
OUTERDK calls SEEK* to reposition the disk and WRITECK* to rcpeat the
attempt to write the record onto the disk. This procedure is repeated
until the write attempt is successful or until MTIMESW (commen
/SUPRVIS/) recovery attempts have failed. In the first case, the

error recovery indicator IRPERR (common /ERRNUM/) is sct to zero. In
the seccond casce, messages concerning the number of attempts made to
correct the write error arc written on the standard output file and the
computer operator is informed that there is an irrecoverable write error
on the disk file and that it jis being abandoned. Finally, in this
sccond case, the errvor recovery indicator IRPERR is set to -100 if the
error type is end-of-file and to the number of woirus left in the file
if the error type is parity.

Subroutine OUTERDK is illustrated in figure 27,

*PFES Disk 1/0 subroutines

T AR NS VATAQEA R e

e TRTN S O e R VG e

B ol S

:

Dacs the tile Yos
Already Contain an — m
Ivrecoveralile Frrar? —

]

i No

Set . Equal to Value
of Formal Parameter

Therement Treor
Commters aml Initialize
NOBLRR 10 Do

Lncode Warning
Measage 'Lrror on
File'

Call WARNING
to Print Warning
Hesxape

Set K Lgual to
Index ot Output
Bufier

Y

Increment Lrror
Courter NOWERRw
NOWERR« |

30

Y

Have at Lcast
MUTHESK Correction
Attempts Already

Reen Mude?

*No

Call SIK
to Repositica Disk
Head

¥

Call WRITIC A
to Try Disk
Write Again

ig, n7,

Subroutine OUTERDK
(Sheet | of 2)

PR

40

40

A
- . Wiat Ts Stitus
e KL Or /7 of the Disk Write L
gnrlty Attunpt? Progress

rror -
50 *hucfﬂjsful
Use LOCATE to
betermine Current
Disk Sector Address

Set l'rror lecovery
Indicator IRPERR
ta ~ero

RETURN

1000

Write IRRECOVERADLE
WRITE LRROI Message
to Output File and to
Conputer Operator

Write Ervor Counter
Information on
Output File

tirlte Message
DISK FILE ABANDONED
to Computer Operator

Encode the Fivar
Messape DISK FILE
ABRANDONED

.

Call KARNING
to Print Warning
lessage

1200 oy

Set Error Pecovery 0 .
Indicator [RPLRR What Kind of DPisk
to Number of Words hrite Lrror Was
necountered?

Left in File

RETURN

Fig. 27. (cont.)
(Sheet 2 of 2)

1100

Set Error Recovery
Indivator TRPLRR
to -100

RETURN

PPNt S —"

PROGPAM DECLARES

PURPOSE: DECLARES is a computer program processor which
is used to insert the FORTRAN common, equivalence,
and type statements into programs which process
QUICK data base tapes.

ENTRY POINTG: DECLARES

FORMAL PARAMETERS: None

QQ}ﬂDN BLOCKS: OUTFILES, DIRECTRY, XPRT

SUBROUTINES CALLED: ALOCDIR, EQUTV, FILEHNRK, NUMGET, READDIR, TERMTAPL
Method

Program DECLARES is a tool designed to aid the NMCSSC analyst in
maintaining four QUICK programs which process QUICK data base tapes. The
programs involved are BASEMOD and INDEXER of the Data Input subsystenm,
PLANSET of the Plan Generation subsystem, and program READSUM of the Data
Cutput subsystem,

The programming techniques and FORTRAN ,coding used within each of these
programs are directly related to the structure and content of the
directory associated with the QUICK data base. Changes in the directory
which involve the addition, deletion, or change in the ordering of the
attributes listed therein, will always rcquire a programming modification
to BASEMOD, INDEXER, PLANSET, and READSUM. Program DECLARES provides a
relatively simple method of implementing the required program modifi-
cations, To use this capability a set of DECLARES command cards are
inserted in the program source code (FORTRAN) deck. Program DECLARES

is then used to process the program deck, effect the required modifi-
cations, and prepare an output tape containing the modified FORTRAN
program, The modified program is subsequently compiled using standard
procedures and is ready for execution. A more specific explanation of
DECLARES and its operation is presented in subsequent paragraphs.

Programs BASEMOD, INDEXER, PLANSET, and READSUM must include: the common
blocks /PROCESS/, /EDITAPL/, and /EDITERM/; cquivalences between the
mnemonic attribute identifiers and words in the array VALUE (common
block /PROCESS/); and the type declarations for these attributes. These
equivalences are changed when: (1) the order of the attributes in the
directory is modified; or (2) the directory is changed by adding or
deleting attributes. When such changes are made, program DECLARES is

129

o A e

T e, S R 83 KT

T AT T

- g e

L TR

used to automatically insert the common statements, current equivalence
statements, and associated type declarations into these FORTRAN programs.

The input to DECLARES is a pseudo FORTRAN source program which contains
commands recognized by DECLARES, Based upon these commands, PECLARES
inserts the appropriate common statements, equivalence statements, and
type declarations in the source progran, Additinnally, DECLARES inscrts
"CALL CHANGL'' statements and statements to assign appropriate values to
the common variable NC required by subroutine CHANGE.

The action of DECLARES is strictly linear in the following sense: 1if an
instruction read by DECLARES does not contain one of the DECLARES com-
mands, its image is written on the output tape; if a card contains one

of the commands CDECLAREX, CDECLARE, or CIANGE, the appropriate FORTRAN
statements are written on the output tape. This requires that the
DECLARES commands be placed in the user's source program in locations
which are proper for the FORTRAN statements generated by DECLARES. The
command END also controls the execution of DECLARES but does not affect
the output FORTRAN program. A FORTRAN source program which is to be
processed by DECLARES may contain any number of FORTRAN subroutines,

and must contain the PROGRAM, SUBROUTINE, END, and SCOPE cards which are
normally required by the FORTRAN compiler of the NMCSSC CDC 3800 computer.

Each card image which contains one of the four commands rccognized by
DECLARES is regarded as cight fields of 10 columns each; alphameric
words are left-justified in these fields, and integers ave right-justified,

The use of these commands, including their placement in the FORTRAN
source program, is described below.

1. CDECLAREX and CDECLARE Commands. The CDECLAREX command causes
DECLARES to insert in the FORTRAN source program the COMMON
statements for common blocks /PROCESS/, /EDITERM/, and /EDITAPE/.
Additionally, the equivalence statements and type declarations
for the attributes whose names appear in the fields following
CDECLAREX are inserted. If no attributes are listed, the
equivalences and declarations will be inserted for all attributes
in the data base directory. Since this command is replaced in
the FORTRAN program by noncxecutable statements, it must precede
all executable statements in the program or subroutine in which
it occurs. More than one occurrence of CDECLAREX in a program
or subroutine will result in a compiler diagnostic, because
DECLARES would cause duplicate common statements to appear in
the program being processed. When CDECLAREX is used with a lict
of more than scven attributes, the CDECLARE command can be used
to obtain the cquivalences and declarations for the additional
attributes. Any number of CDECLARE cards can be used; they
must precede all executable statements in the program in which
they appear. Both CDECLAREX and CDECLARE cards are terminated
when a blank field is encountered. If required, a blank card
must be inserted to terminate,

150

e i A s it L

—————- e

kst

2. CHANGE Command. The CHANGE command generates a call on subroutine
CHANGE with NC (in common block /PROCESS/) sct to the index of
the word corresponding to the attribute ATTR in the array VALUE.
Whenever the value of a data base attribute is changed in a

program, the change must be preceded by the appropriate CHANGE
command.

3. END Command. The END command causes DECLARES to terminate,
This card is at the end of the user's FORTRAN deck following the
SCOPL card, and must be followed by a blank card.

As indicated in figure 28, processing begins by cstablishing the input/
output logical unit assignments. These assignments arc cstablished by

an input paramcter card or sct to their default valuecs, The pertinent
media are: the FORTRAN source program to be processed, I0UT; the data
base tape, QUIKDB; thec output FORTRAN source program whichk will subse-
quently be compiled, IOUTDEC; and if requestcd, the listing medium, I[LIST.

Prior to processing the input program, subroutine READDIR is called and
the data base directory is read in its entirety. The source program is
then processed one record at a time. If the record from the source deck
contains CDECLARE(X), the common blocks /EDITAPE/, /EDITERM/, and
/PROCESS/ are inserted and written onto output tapc JOUTDEC. The array
GLOB, which is used to keep track of attributes, is cleared to zeros.

If the record from the source deck contain< CDECLARE (blank), the common
blocks are not written to tape and the GLOB array is not cleared. In
either case, the remainder of the CDECLARE card is searched for a list
of attributes. If such a list is present, thc attributes, one at a time,
are matched against the directory, and the appropriate statement
equivalencing that attribute to a position in the VALUE array is written
onto the IOUTDEC tape. In addition, a type statement for the attribute
(REAL or INTEGER) is written. If a specific list of attributes is not
included, all attributes ure matched to the directory, and the cquivalence
and type statements for all attributes are inserted into the source
program.

If the record from the source deck contains CHANGE (attribute name), the
following code is inserted into the source program:

NC=INDEX (where INDEX is the position of the attribute in the
directory)

CALL CHANGLE (a call to a subroutine to save the present value of
the attribute),

The program is terminated by the occurrence of the word END at the be-
ginning of a record or an end-of-file if the input source program is on
tape.

T X W s S e e s

1l e Rte I

SL A by

YN

Y

10UT

STARY

Set Input And
Qutput Tape
Numbers to
Default Values;
Initiaiice
IPRNT » NONE

Read Input
Pavameter
Card

Scan Card For
Nondefault
Values (Reset
Input- Qutput
Unit Assignments
1f Given)

Print List Of
Input -Output
Units To

Be Used

Read
Print
Item
From TOUT

nd

Fig. 28 .

Call INITAPE
(QUIKDY)

Call
READIR

Cull
TERMTAPE

y

Clear Array
For
Global

Values

1s First
Word Of
Record

Write Common
Blacks
EDITERM,
EDITAPE and
PROCESS Into
10UIDEC

rogram DECLARLS
(Sheet 1 of 3)

152

tour

No Is Listing
o Tu Be
Macie?

440

Print
Blocks
Inserzed

450

t Clear Arvay
For Global
Values _
Jolo {-') 41

Is List

Vo For
Ofoﬁtfxz;g:tcs SN All 100 1) canl EQuIV
Record? Attributes
Done

Is Ficld

Blank?
Yes
Is Attribute
Call EQUIV In No g::tgafgr
Directory? =

e my -

Fig. 28. (cont.)
Sheet 2 of 3)

133

= ' . ST R YA SN dam i J
; FOREIT N | PRLIRNT O . b i PPV . e e
R b el o {

Is First
Word Of

Record
CHANG

251 §ves

Call EQUIV

260

Is Pirst
Word

END?

Yes Set End

Is Attribute Set Error
In Switch
Directory? To 2
Yes
253 ___J
Print CALL Print
N CHANGE Error
- Statement In Message
IOUTDEC
r y
Is Listing\ N Rewind
To Be 9 I0UTDEC
Made?
Yes
Print 2
Statements STop

Inserted

Fig, 28.

(cont.)
(Sheet 3 of 3)

134

' 2 Gl rl e Lo P A R A LI
L S T RPN S S

P AT T SR

- T A T N

ey

SUBROUTINE EQUIV

PURPOSE : To output to tape [OUTDEC the equivalence and
type statements required for cach attribute
defined in the data base dircctory.

ENTRY POINTS: EQUIV
FORMAL PARAMETERS : ATINM -~ The attribute name
J - Flag to indicate if the attribute is in

directory: 0 it not found; index of
attribute if found

COMMON BLOCKG: DIRECTRY, OUTIILES, XPRT

SUBROUTINES CALLED: ITLE

CALLED BY: DECLARES

Method

EQUTIV uses function ITLE to locate the index of the requested atteibute
in the directory. If the attribute is not found, an error flag is
returned to the calling program. If the attributc is located, the
attribute name is equivalenced by its index to the VALUE array, and the
statement 1s written to tape. The type-of variable is determined by the
value of ICODE in the dircctory, and the appropriate statement is written

to tape, If printing has been requested, all items written to tape arc
also written to the ILIST medium,

Subroutine EQUIV is illustrated in figurec 29.

135

v
i

e b

AT e Wt

START

CALL ITLE
Find INDEX
of Attribute

Is
Attribute In

D1RECTRY? J=0

Yes

Has]
Attribute \\&___Yes

3

Set GLOB

!

RETURN

J=INDEX

cmoax)n_J

Already Been
Identified? /

Is
Listing to be
Made?

Yes
—
p

rint
EQUIVALENCE
Statement

Write Type
Statement

According to
[CODE Value

Is
lListing to be
Made?

Yes

[

RETURN

Fig. 20. Subroutine EQUTV

136

Print
Type
Statement

.
. '-..;.l._.;:.u.;mJ

3.
‘

i
3
)
4.
I
4

PROGRAM FILEDUMP

PURPQSE: To print specific portions of a magnetic tape,
written in binary mode, or a disk file.

ENTRY PQINTS: FILEDUMP

FORMAL PARAMETERS: MODE -~ Tapc or disl. file designator
ITP - (If tape file), logical tape unit number
NMME - (Ff disk file), logical file name
IFF - First file tc be printed

IFREC - First record to be printed in each file
IFW - First word to be printed in each record
ILF - Last file to be printed

ILREC - Last record to be printed in each file
ILW - Last word to be printed in each record

COMMON BLOCKS: ITP, IREC, I'ATA, FILEIN
SUBROUTINES CALLED: NEXTFILE, NUMGLT
Method

The investigation of portions of a data file can be a tedious procr-s
for two reasons. First, printing an entire file is time-consuming - .d
costly. Second, manual conversion from binary data to other modes is
time-consuming and error prone. Program FILEDUMP is used to print

portions «f a tape (written in hinary mode) or a disk file in a readable
form.

The portion of the tape or disk file to be printed i specified by the
user, He specifies the files, records within files, and words within
records to be printed. The user-input parameters to this program are the
nine formal parameters listed above. These parameters are input on one
data card in the order listed above,

The program prints each word of the requested portion of the file in four
formats: octal (016), fixed point (Tl6), flouting point (E13.6), and
alphameric (A8).

If the data contain illegal alphameric codes, blanks are inserteu for
these characters in the alphameric field. As a further aid, ~ach
four-field bleck of output corresponding to one datu word is numbered
with its orde. of occurrence within the record. I1f a number of

consecutive data words are identical, the program does not print each
individual word. Rather, it prints thc contents of the words onge with |
a message listing the range of words which have this value.,

The program also prints the actual length of -each record The maximum
record size that can be accommodated is 20,000 words. If a record
equals or exceeds this length, only the first 20,000 words will be

printed, and the program will print the message RECORD LENCTH MAY .
EXCEED 20000. :

If a read parity error i3 encountered on 1nput the program will attempt
to reread the record six times. If the parity error persists, "the pro-
gram prints the message PARITY ERROR, SKIP TO. NEXT RECORD and reads the
next record on the tape or file, . '

Program FILEDUMP is illustrated in figure 30.

START

Read File
; : Mode, Desired
* ! ' Files, Records,
' and Words

Skip to First p———dm
‘ Desired File ‘

: | !

: Skip to First
! ' , Desired Record y ?

Read Next
Record
Do for all
Desired
‘ ! Words
‘Po
Blank Tllegal

Alphameric
Codes

NEXTFTLE

Last
Desired
Record?

Done

Skip to
Ind of File

Print
Data

Fig. 30. Program FILEDUMP

139

CHAPTER 4
GENERAL UTILITIES

This chapter contains descriptions of a variety of subroutines and
functions, performing various tasks, used throughout the QUICK system,
Common blocks used by these programs are described in appendix A. A

list of the programs and/or subroutines which call each utility routine
is presented in appendix .

140

SUBROUTINL ABORT

PURPOSE : Entry ABORT: To force a cure dump on demand,
Intry WARNING: To print a warning message and
possible error diagnostics,

LNTRY POINTS: ABORT, WARNING
FORMAL PARAMETERS: None

COMMON BLOCKS: ERRCODE, ERRMESS
SUBROUTINES CALLED: Q8QERROR

Method

This subroutine prints crror diagnosties and an optional core memory
dump. The error diagnostics include:

Error message

Contents of A and Q registers

Name of routine (ABORY or WARNING)

A trace of the chain of subprogram calls back to the main program.

The error message is contained in common /ERRMESS/. ‘This block consists
of two arrays, cach of 10-clement length, TABORT amd IWARN,

The messape to be printed is contained in array TABORT for entry ABORT,
and IWARN for entry WARNING, The calling program may place any message
in these arrays subject to the following restrictions:

1. ‘The message must end with a period (.) and contain no imbedded
periods.

2. The messape length must not exceed 80 characters, including the
terminating period.

If entry ABORT is uscd, the crvror diagnostics will be followed by the
phrase EXECUTION DELETED and the job will terminate with a core memory
dump,

Common /ERRCODL/ consists of two error codes, KABORT and KWARN They are
preset to KABORT=0 and KWARN=1, A zero code forces job termination and

141

dump, A nonzero code forces only the diagnostic print and a normal
return. Code KABORT is used by entry ABORT and KWARN by entry WARNING.

Subroutine ABORT is illustrated in figure 51.

. Entry
: START ABORT
Call Q8QERROR _
With Abort Code
: and Abort
' Message
L. -
- . RETURN
!
e s Entry
A STARI WARNING

Call QEQERROR

With Warning
Code and

Warning Message

RETURN

Fig. 31, Subroutine ARORT

142

. : H . Lo b2y
e [. dieo i st = .

*m'j'
1

SUBROUTINE ANOTHER

-~

wo PURPOSE : To unload a magnetic tape reel while maintaining
! the assignment of the physical unit,
g- ENTRY POINTS: ANOTHER
% FORMAL PARAMETERS: NTOGO - Logical tape unit number
; COMMON BLOCKS : None
SUBROUTINES CALLED: UNLOAD
7 Method

This assembly language subroutine uses the system macro UNLOAD to rewind
and unload a magnetic tape reel. The formal parameter is set to the logical
. tape unit number of the tape to be unloaded. The physical unit assignment

- is not released., Therefore, another tape reel can be mounted on this unit.

Subroutine ANOTHER is illustrated below in figure 32.

Set lssue
3 UNLOAD Macro
Address . » OAD :
Pointers Speclfylng o
Tape Unit Releasd

! ?

RETURN

Fig. 32. Subroutine ANOTHER !

y
143 E

FUNCTION ATN2PI

1 PURPOSE: To calculate the arc tangent function over the
interval 0 to 2w,
3 ENTRY POLNTS: ATN2PI
; FORMAL PARAMETERS: Y, X (floating point numbers)
" COMMON BLOCKS: None
SUBROUTINES CALLED: ATANF
Method

This function calculates the arc tangent of the value (Y/X). The arc

tangent returned to the calling program lies within the interval from 0

2 to 2m., The operating system function ATANF returns the principal value

£ of the arc tangent) i.e., over the interval -u/2 to +n/2, ATN2PI uses

Y ATANF to compute the principal value of the arc tangent of Y/X. The signs
of X and Y are investigated to determine the quadrant of the arc tangent. E

E» The principal value is then modified to return a value within the correct 'i

quadrant.

Function ATN2PI is illustrated in figure 33.

AR TR, T T T IR o S S T T T TS

2
ATN2PI=
ATN? L= '
ATANF(Y/X :
(CBC éOéT%AN 2n+ATANF(Y/X)
Function) _J
RETURN RETURN)

ATN2PI= ”
w+ATANF(Y/X) ATN2PI=n/2 ATN2PI=0 ATN2PI=3n/2 k
' !
\)) _;i__ i
RETURN RETURN (RETURN) RETURN E
— T ."1

Fig. 33. Function ATN2PI

145

e v e TR =z = Pl o nii A TR eSS b e M s e b SR S
JR— R T e e S S 1 SRS ST TR TR R =

SUBROUTINE CHANGE

5 PURPOSE ! To prepare for changing the value of any attribute
§ in the data base item (record) currently being
i prucessed so that globally defined attributes, if
; changed, are restored to their original value in
the following items.

ENTRY POINTS: CHANGE

FORMAL PARAMETERS: None 3
) COMMON BLOQCKS: PROCESS
SUBROUTINES CALLED: None
; -
! 1
5‘\
; Method

PR

If the index (NC) of the attribute to be changed is already contained in
the list of input attribute-value pairs, the subroutine returns to the
calling program. Otherwise, the index is stored in INITEM in- the location
o equal to twice the number of pairs plus one, and the value is stored in

b, the following location. The logical array DEF(NC) is set to onc to show
that the attribute with index NC is defined. The number of pairs NI is
incremented by one and the number of entries by two. This assures that,
if the attribute to be changed is globally defined, it will be restored

to its original value when a new item is read in,

Subroutine CHANGE is illustrated in figure 34,

e i e 2k Sttt i,

Vo et o el

146

START
: (NT)
Increment Pairs (NI
For All
, s Done > by 1, Number of
> Indices in Elements (NV) in
INTTEM INITEM by 2
5 v
Does the Index ‘ Store NC in INITEM
No Equal NC, the Index (NV-1); Store the
of the Attribute Value of this
to Be Change.? Attribute in

CINTTEM (NV)

RETURN _ 4'

Set DEF to 1 to
Show This Attribute
is Now Defined

!

Fig. 34. Subroutine CHANGH

147

P

st

FUNCTION DELLONG

! PURPOSE; To compute the signed difference between two
longitudes,
ENTRY POINTS: DELLONG
FORMAL PARAMETERS: A - A floating point longitude
B - A floating point longitude
COMMON BLOCKS: None]
SUBROUTINES CALLED: None)
Method

The input longitudes are expressed as decimal degrees measured in a
westerly direction., West longitudes are in the range 0-180 degrees;
east longitudes are in the range 180-360 degrees. Longitudes O and 360
are the Greenwich Meridian. This function returns the value of the

difference between the two longitudes. The sign of the value is deter-
mined as follows:

¢ . Positive

if A>2B
Negative if A < B.

Function DELLONG is illustrated in figure 35,

148

1

N

J

a M e nfadi BT T P VT PLIP I SR SRR IR RSORRBEY - [t ,J,..uj
SRS TR RY) SRR SR I (RIS PRSS TRE P [I T e L, 1

30

DELLONG =
~3560-A+B

1 DELLONG =
1 360-A+B

-—

~ 1
Lt

4 RETURN)
k .
?
t‘-’ |
. g
4 Fig. 35. Tunction DELLONG
: 149

TTETE e g T

FUNCTION DIFFLONG

PURPOSE: To compute the difference between two longitudes
whose sign is determined by the shorcer direction
of travel from the first meridian to the second.

ENTRY POINTS: DIFFLONG, DIFFLNG*

FORMAL PARAMETERS: X1 - Floating point longitudces
X2 - Floating point longitudes

COMMON BLOCKS: None

SUBROUTINES CALLED: None

The input longitudes lie in the interval 0-360 degrees with west longitudes
in the range 0-180 degrees and east longitudes in the range 180-360 degrees.
Longitudes 0 and 360 define the Greenwich Meridian. This lunction returns

a value whose absolute valuc is equal to the number of degrees of longitude
traversed in using the shortcr great circle routc from meridian X1 to
meridian X2, The sign is positive if the direction of travel is eastward
and negative otherwise.

Function DIFFLONG is illustrated in figure 36.

*PDuplicate entry for DIFFLONG.

START

Compute
Dj fterence in
Longitude
n = X1 - Xz)

Y

Absolute
Value of D € 1807 Yes

(0% 5 32400)

lNo

Recompute ''D"
to Reflect
Shortest Route

Travel Westward
(b =D -~ 360)

iy

3
Travel Eastward
(D =D + 360)

"D Reflects
Shortest
Great Circle
Route

~3 UTFFLONG=D fest-

RETURN

Fig. 36. Function DIFELONG

151

BT T T T S P T T T Y

N P VL Bt R

T T T TR

T

) . |
FUNCTION DISTF ’

PURPOSE : . To compute great circle distances in nautical
miles, '
ENTRY POINTS: - DISTF
FORMAL PARAMETERS: LAT1 . - Latitude of point 1
LONG1 - Longitude of point.1
LAT2 -~ Latitude of point 2
LONG2 ~ Longitude of point 2
COMMON BLOCKS: . Noné
SUBROUTINES CALLED: None

Method

The formal parameters are all type real, The coordinates are input in
degrees with south latitude and east longitude coordinates being
negative. (Lambda format for longitudes'is also acceptable.)

If the difference in longitude is less than ~2.8 degrees, a straight-
line approximation to the great circle route is used, .
standard law of cosines for a spherical triangle is applied to compute
the great circle distance. The radius of the earth is assumed to be

3437.74677 nautical miles. The units of the result are nautical miles,

i
{

Function DISTF is illustrated in figure 37,

Otherwise, '

Convert
Degrees tn
Radians

Is
Difference in
Longitude <2.8
Degrees?

. ' 24 40

? Compute Great Circle Compute Distance

f : Distance Using Law Using Straight-Line
Lo : of Cosines for Approximation to

: ' Spherical Triangies Great Circle Route

|

30

RETURN

Fig. 37. Jlunction DISTF

153

FUNCTION DSTF

PURPOSE ; To compute the distance over a straight-line
approximation to a great circle route between
two points.,

ENTRY POQINTS: DSTF
FORMAL PARAMETERS : XLAT - First point latitude

YLAT - Second point latitude
DLONG - Longitudinal difference between the points

COMMON BLOCKS: None
SUBROUTINES CALLED: None
Method

The formal parameters are all type real. They are in dégrees in standard
Lambda format.

This function computes a straight-line approximation to the great circle
distance between the points defined by the formal parameters. The
Pythagorean law is then used to calculate the distance along that
approximation.

The radius of the earth is assumed to be 3437,74677 nautical miles. The
units of the result are nautical miles,

Function DSTF is illustrated in figure 38.

A e i e s b atremn e v b)) i

T oo e ErT T coe T s ey gepmoo 2 T Em e s memEe- L Ty Tyt gy e oo e e e A

]
3
;
E
;
'%
; Convert From
f Degrees to 4
? Radians
;- { "
Determine
the Average
Latitude of
y the Two Points
E Determine
1 the Component
3 Along a Parallel

of Latitude of

3 the Distance Between

- the Two Poirts

’ Use Right Triangle
Relationship to

Obtain the Distance

Between the
Two Ppints

\E
RETURN
- 1
i
Fig., 38, TFunction LSTF
155 '

4
. . o
R sl e PR . DT T ST L AT o . . oo iy, . . 5 e e e e (d

PURPOSE :
ENTRY POINTS:

FORMAI, PARAMETERS :

COMMON BLOCKS :

SUBROUTINES CALLED:

Method

SUBROUTINE ENDDATA

To terminate the data file.
ENDDATA

NT1 - Tape to be terminated
ITP, TWORD

TERMTAPE*, WRWORD*

This subroutine terminates an output data base tape by writing the word
ENDDATA on it and calling TERMTAPE., ENDDATA is illustrated in figure 39

below,

Write
ENDDATA pm o —
on NT1

=

Call
TERMTAPE

RETURN

Fig. 39. Subroutine ENDDATA

*See Filehandler subroutines,

156

SUBROUTINE ERAZE

PURPOSE : To erase six inches on a magnetlic tape to reserve
space for future use or to skip a bad segment of
tapeb

LENTRY POINTS: ERAZE

FORMAL PARAMETERS: ITP - Logical tape unit number

COMMON BLOCKS: None

SUBROUTINES CALLED: ERASLE

Method

This subroutine uses the system macro ERASE to erase six inches from a
magnetic tape. The formal parameter is the logical unit number of the
tape to be erased. The subroutine will erase the next six inches of the
tape, and leave the tape in position to write beyond the crased portion.

Subroutine ERAZL is illustrated below in figure 40,

Set Address
Pointers

¥

Issuc
Macro LIRASE

RIETURN

Fig., 40. Subroutinc LRAZE

157

ool it b b ul

boa e Al

o i s Bt i

Rl i I Lo it i

FUNCTION GETCLOCK

PURPOSE : To return the current time in floating point
minutes.
ENTRY PQINTS: GETCLOCK, GETCLK (duplicate cntry)
\ FORMAL PARAMETERS ! X - A dummy parameter
: COMMON_BLOCKS : None
g SUBROUTINES CALLED: TIMEF
q

3 This subroutine calls the system function TIMEF to return the current
. time in milliseconds. A division by 60,000 is used to return the current
i time in floating point minutes.

Function GETCLOCK is illustrated below in figure 41.

START

GETCLOCK=
TIMEF/60000

Fig. 41. Function GETCLOCK

158

e RTINS 2
: - . " T T T T R WO R OE¥ G &1 - PIER. YRR S e NI ’
E T T LR LN R TSV TTC I A YIS I UL L ST I S S LS SR E S 2T CY

NI L R SRS T SO TP A It VO FEPRIE | UL PSR R VSRR

7y

T A

L ey T

PURPOSE :

. ENTRY POINTS:

FORMAL PARAMETERS :

COMMON BLOCKS :

SUBROUTINES CALLED:

Method

FUNCTION GETDATE

To obtain the current date,
GETDATE

X - A dummy parameter

None

JATE

This function calls the system macrc DATE to obtain the current date in

the format MM/DD/YY.

When called in a FORIRAN program, this function

will return the dute in a floating point format,

Function GETDATE is illustrated below in figure 42.

START

Y

{
| Set Address
Pointers

Y

Issue
Macro DATE

(RETURN

Fig, 42, Function GETDATE

159

w g ST T

SUBROUTINE GETLIMIT

PURPOSE : To return the limits of available memory in both
banks of the CDC 3800

ENTRY POINTS: GETLIMIT

FORMAL PARAMETERS: None

COMMON BLOCKS: BNKBNDS

SUBROUTINES CALLEDR: MEMORY

Method

This subroutine 1s called by subroutine STORAGE to return the limits of
available memory in both banks of the CDC 3800. The limits are returned
in common /BNKBNDS/ with the lower limits preceding the upper limits.
That is, the four words of storage in this common block are allocated in
order: lower limit in bank 0, lower limit in bank 1, upper limit in
bank 0, and upper limit in bank 1. The system macro MEMORY is used to
determine these liwits,

Subroutine GETLIMIT is illustrated in figure 43.

160

. . iy e PR YR Lot ST YRS TR0 LA S GO 21 1% W
el : i - el i .

e |

[V 4

Set
Address
Pointers

Y

Issue
MEMORY Macro,
Bank 0

Y

Store
Limits,
Bank 0

Y

Issue
MEMORY Macro,
Bank 1

Y

Store
Limits,
Bank 1

Fig. a3,

SRR FPHER S OVICPWIT D £ | YRR WP S

RETURN

161

Nemimliatbsiode -

Subroutine GETLIMIT

RPN § ST VIO Y. X

Aaed v aa

a

SUBROUTINE GLTVALU

3 PURPOSE: To convert unformatted input data into attribute-

f valuc form.

E ENTRY POINTS: GETVALU

g FORMAL PARAMLTLRS: INPUT - An array containing the input data

L NDATA - Number of data items found in input array

' NAMES - Names of variables found in input array

f INVALU - Values assigned to variable in input

: array

: INDEXY - Value of first index of array ;

§ INDEXZ - Value of sccond index of array 3
INDIX3 - Value of third index of array ;
MORE - Input termination indicator

: COMMON BLOCKS: None

3 SUBROUTINES CALLED: IWANT, NUMGET

L Method

: This subroutine receives as input an array INPUT which contains 80 BCD

. characters of information. This input is unformatted but consists of a
3 series of variable names, array indices, and values. Subroutine GETVALU
prepares lists of the variables contained in the input, their array

i indices, if nccessary, and their values.

_ Consider thc input array as an 80-column card., GETVALU considers the
¥ card to be broken into ficlds as follows:

1. Puarameter Ficld, Delimited by commas (,) with first ficeld be-
ginning in column 1 and last field temminated by column 80.
Each parameter fiecld may contain a number of subficlds containing
, the name of the parameter, the array indices for the parameter,
and the value of the paramcter,

p

r 2, Name Subfield. This subficld gives the name of the variable

s represented in the parameter field, 1f the name subficld is
missing, the subroutine assumes that the current parameter field
is for the succceding clement obf the array processed in the pre-
ceding parameter ticld. The nume subfield begins at the
beginning of the parameter Ficld. The first nonhlank character

e e

1ol

T T T T

cannot be numeric, Imbedded blanks are ignored. This subfield
is terminated by eithor an equals sign (=) for simple variables,
or by an open parenthesis (() for array variables.

Index Subfield, This subfield gives the indices for an array
varlable, If it is not present, the variable is assumed to he a
simple variable, This subfield must follow a name subfield, Tt
begins with an open parenthesis (() and ends with a close paren-
thesls ()).. Within the parentheses, the array indices arc
separated by commas, The maximum number of indices is threce.

Value Subflield, This subfield may be of two types, alphameric
or numeric., An alphameric field is begun and terminated with
an asterisk (*). There may be no imbedded asterisks in the
field. The maximum number of characters (including blanks) in
un alphameric ficld is 16, A numeric field consists of the
characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, ., B, or D,
Imbedded blanks are ignored. The waximum number of nonblunk
characters in a numeric field 1s 1l6.

Termination Subfield. This subfield consists of a dollar sipgn
(§). Its appearance in a name subfield as the first nonblank
character will terminate processing of the input data. In
addition, the value of the termination indicator MORE is set to
zero,

Subroutine GETVALU processes these fields to produce the following output:

1.

zl

NDATA. Number of valid parameter fields processed from the
input data.

NAMES. An array containing the names of the variahles as
determined from the name subficlds. Maximum name length is cight
characters.

INVALU. An array containing the characters in the value subfields,
There are two clements in the INVALU array for cuach element in

the NAMLES array. For the variable name in the Jth position in

the NAMH%farray, the corresponding value is contained in the
(2*3)-1 yad (2*J) positions of the INVALU array.

INDEXL. fAn array containing the valuc of the first index of an
array, For simple variables, its value is one,

INDEEX2 aﬁd INNEX3, Arrays used similarly to INDEX1.

MORE., A termination indicator, sct to 0 if a dollar sign (%)
appears as the first nonblank character of a name subficld; sct
to 1| otherwise.

l63

BT o

N e T T T v, v e

The values returned by subroutine GETVALU are in BCD code in the following
formats:

1. Alphameric. Left-justificed; blank filled on the right if field
Tength is less than 16.

2. Numeric. Right-justified with no imbedded blanks; hlank “illed
on the left if field length is less than 16,

In this format, the value field (INVALU) may be decoded using standard
FORTRAN formats (I, F, A, E, D).

'hen an array is input, a number of successive elements can be input with-
out repetition of the name and index subfields. If GETVALU encounters
value subfield prior to a name subfield within any parameter field, it
assumes that the current value subfield refers to the array element
immediately following the element used in the preceding parameter field.
However, the first parameter field in each input array (or on each card)
must have a name subfield. Omission of this subfield in the first parameter
field will be flagged as an error.

Subroutine GETVALU is illustrated .n figure 44.

161

R

FESTNUNE-J0 & JFp,

D e i

T T T S R R s

Note: Crror checking

is included in the

processing of each field,

RETURN

MORE=(0

P 2
roce§s No
Name Field jegf——-—

-

(START)

¥

Decode
Input

Y

Set Character
Peinter tu Look
for New
Parameter Field

Is It a

Valid Characte
for a Numeric
Field?

What

Wes the

LErrode / \
lNamc Field ™ — ™ Terminating

Left Parenthesis

l Process

PP LT

Number

TN

A

Process
Array Index
Subfield

Y

Encode
Indices [———P

Fig. 44.

Right

What
Was the
Terminating
Churacter?

Other

Charactefz_///ﬁ
Equals Sign?

Process
Value
Subfield

Parenthesis

Y

Encode
Valuc

165

Subroutine GETVALU

bt %

FUNCTION IGET

T T e T e T R A

‘ :
PURPOSE : To unpack a data item from a storage ares
- according to a specified format,
{
! ENTRY POINTS: IGET ‘
' FORMAL PARAMETERS: KEY - A key word genecrated by the function

KEYMAKE :) -

INDEX - An index to the array IARR; the value
of IGET will be extracted from

i
\

;

;

{
N
1
y

i
o

TARR(INDEX) o
IARR - The array from which the data will be
' extracted | ? !
COMMON BLOCKS: DATPK"
SUBROUTINES CALLED: =~ ABORT | ‘ ' !
1
Method

1
ihe variable KEY is compared with ISVKEY (the value of KEY on the
. previous call to IGET). 1If they are not equal, then the KEY is unpacked '
: and the variables ITYPE, NBITS, and NSHIFT are set (see description of .)
function KEYMAKE). If KEY and JSVKEY are cqual, then it is ussumed that ;
ITYPE, NBITS, and NSHIFT have been set by a previous call on IGET.

: If the data are unpocked (i.e., ITYPE=4), then ICLT is set equal to
IARR(INDEX) and the routinc returns, If ITYPE#4, then TARR(INDEX) is

shifted right NSHIFT bits, and now the riphtmost NRITS are placed in
T0UT.

) If ITYPE=Z, then IGET is set equal to TOUT, and the routine returns. If
. I'TYPE=1, then the propsr sign is attached to the value 10UT before

sctting the value of IGET to IOUT and returning contrel to the calling
program.

AR

It ITYPE does not equal 1, 2, or 4, then the subroutine ABORT is called,

Funcecion IGET is illustrated in figure 45,

106

T e T T TN T

Unpack
KEY Word

Shift

TARR(INDEX)
Right NSHIFT

Places

Y

NBITS and Put

Mask Off the
Rightmost

in IQUT

i 1GET=
ITYPE=47 IARRCINDEX) [—"{ perumy)

i R i o 1

e et

Yes
IGET=10UT RETURN

Set
1GET= -10UT

Call ‘.‘"
ABORT (]___‘1"1_”.'?13

(RETURN)

Fig. 45. Function IGET

ITYPE=1"? [0UT<0?

3

167

i e ST e

S

SUBROUTINE INITEDIT

PURPOSE : To initialize for editing or processing datu base
files.

ENTRY POINTS: INITEDIT, INITEDT (duplicate entry)

FORMAL PARAMETERS : IT - Input data basc file

COMMON BLOCKS: DIRECTRY, LEDITAPE, PROCLSS

SUBROUTINES CALLED: READDIR, WRITEDIR

This subroutine is the basic initialization routine for any processing
of the data base on unit IT, either for ordinary retrieval processing,
or for editing to create one or mnrc output data bases,

In the event that there are one or more output data bases, NOUT in common
block /EDITAPE/ must be filled, prior to calling this routine, with the
number of output bases to be created, and array ITOUT of the same block
must coutain the unit numbers assighed to the output data basc files. If
NOUT is not sct prior to calling INITEDIT, it automatically assumes the
value 0, and no output files will be created.

In addition, if the unit specified by IT is negutive, it is a signal to
FILEHNR that the input file is a disk file,

The basic actions of this subroutine are thercfore to read the directory
file from the input data base and to output the directory on the speci-
fied output data basc files (if any)., In addition, the values of all
attributes in memory are set to their default values as specified in the
directory, and the definition (DEF) and global definition (LGLOB) flaps
are all sct to 0 (FALSL).

Subroutine INITEDIT is illustrated i1 figure 46,

168

.

e ey

AR T T AT RS e e TR e T

START

Store the Input
Parameter as the
Input File Number

!

Call READDIR
tc Read in

Directory

!

Call WRITEDIR
to Write the
Directory on All
Qutput Files

.y

Set All Values
to Default
Va}ues

!

Set All Local and
Global Definition
Flags to 0

RETURN

Fig., 46. Subroentine INITEDIT

169

o

]

SUBROUTINE INPITEM

PURPOSE : To read items from a data base file.

ENTRY POINTS: INPITEM, NEXTITEM, NEXTITM*

FORMAL PARAMETERS : None

COMMON BLOCKS: EDITAPE, EDITERM, ITP, PROCESS, TWORD

SUBROUTINES CALLED: ENDDATA, OUTWORDS, RDARRAY™** RUWORD**, TERMTAPL**
Method

INPITEM is used to input the first item (record) of a data base prior to
executing the processing logic, Subsequent items beyond the first are
read in by calld on a second entry point, NEXTITEM or NEXTITM.

The action of both these routines is as follows. When called, the data
base contained on unit INTP (common block /EDITAPE/) is read until the
next item has been storced in memory with the values of all attributes
associated with it. Any global definitions or undefinitions which occur
prior to this item are automatically placed in force by these routines.

After execution of INPITEM or NEXTITEM, the resulting state of memory in
common hlock /PROCESS/ is as follows. The array VALUE is filled with
the correct value of every attribute which is currently defined and with
the default value of all currently undefined attributes. The logical
array DEI' has the value TRUE for all currently defined items and the
value FALSE for all currently undefined items. Finally, logical array
LGLOB has the value TRUE for all attributes which are currently globally
defined and the value FALSE for the remainder.

In addition, if chere are any output files, all global definitions and
undefinitions are automatically transmitted to the set of output data
base files at the same time that they arc processed herc.

Subroutine INPITEM is illustrated in figure 47.

*Duplicate entry for NEXTITEM,
**See filchandler subroutines.

170

SRR

.
:
k

100

Kumber of Words
to be Read is
Twlve this wornl

!

RDARRAY
To Read Kords
into INITIEM
Arrvay

First Word
of Pair is
Index

Store OId
Value
Temporarily

Pair is Vuluc;
Store in VALLL
Array

Se&:nd Word of |

Stoce
0ld Value
n INITEM

101

Set Loral
Oefinition
Flag to |

Fig,

ISDEETAL,
or FADIATAY

Yo

102

Ol TIURDS
To Write the
Word on All
Qutput Files

Establish
Global
Definition

103 L

RUWORD ‘JJ

OUTWORDS

Word is
Index of
Attribute

y

LDWORD

R

OUTWORDS

'

kord is
Vailue ot
Attribute

fntry
P tiEM

RIMUIRD
wWord Uqual To Read
to Lo ® e Kord

Is Word
ENDDATA?

Definltion

104

ROWORD

QUTWORDS

Index of
Attribute

KOWORD

v

wis[wfIRDS

PRS-
Word is
Value of

Attribute

Store Value;
Set Def'lned
Flag and Global
Fiag to !

Stwee Value;
Set Defindd
Flag and Global
Flay to 11

{

!

Is the Itnd
hm;c(l‘ l:(’.]‘l;lll ﬁ tata
Yes
200
Remove ENUDATA
Glohai

To Terminate
All OQutput
Tapes

!

set Number of
Output Tapes
to lero

Set ISIFTLRY
to 2 to Signal
End of Data |

.

RE‘l‘lJIlD

47+ Subroutine INPITEM
{(Sheet 1 of 2)

171

o ThREThESwTemmemmm L ATy o T

(:A START 'ﬂ>

Y

Eatry NEXTITEM
(or NEXTITM)

() Done

Do for Ail
Pairs in
INITEM

3

‘Do

First Word
of Pair
is Index

¥

Second Word
is 01d Value
of Attribute
Stored in
VALUE Array

120 l

Set the
Defined Flag
Equal to

Global Flag

‘

Fig., 47. (cont.)
(Sheet 2 of 2)

172

e e, T TR

o~ TR) Y

AT AT R T A N T R

SUBROUTINE INTERP

PURPOSE : To find by interpolation the point¢ (SR, TR)
located some given fraction of the distance
from the point (S1, T1) to the point (S2, T2).

CENTRY POINTS: INTERP
FORMAL PARAMETERS: None
COMMON BLOCKS: POLITE
SUBROUTINES CALLED: INTERPGC
Methgi

The parameters which control the interpolation are contained in common
/POLITE/ as follows.

1. Input parameters:

51 - latitude of first point

T1 - longituwde of first point
$2 - latitude of second point
T2 - longitude of «second point

FACIOR - fraction of distance to be interpolated
2. Output parameters:

SR - latvitude of interpolated point
TR - longitude of interpolated point

All latitudes and longitudes arec carried internally in the QUICK system
in the following format:

North latitude 0. (equator) to +90. (North Pole)
South latitude 0. (equator) to -90. (South Polc)
llast longitude 180, to 360. (Greenwich Meridiun)
West longitude 0, (Greenwich Meridian) to 180

The variable FACTOR determines the fraction of the distance from

the first point to the second that is equal to the distance from the
first point to the interpolated point.

173

AT o TR T, T g S AT el T

RUR——

Subroutine INTERP first determines whether the fraction FACTOR is
within the interval 0 < FACTOR < 1, If not, the result (SR, TR) is

sat to {§1, T)) when FACTOK £ 0, or to (S2, T2) when FACTOR 2 1, and
the subroutine returns.

When FACTOR is within range, however, the interpolation is to be
performed. First, the differeonce i longitude of +the two input points,
T12 = T2 - T1, is computed. If that differcnce is greater than 2.8
degrees, INTERP calls the utility subroutine INTERPGC to perform the

interpolation along the great circle route {rom (81, T1) to (S2, TZ),
and then returns.

If /T12/ is less than 2.8 degrees, INTERP performs a straight-line, or
Mercator, interpolation between (81, T1) and (82, T2) by putting:

SR
TR

ntun

S1 + FACTOR(S2 - S1) and
T1 + FACTOR(T2 - T1).

When the resultant TR is less than zuro, 300 degrees arce added to it;

similarly, 360 degrees are subtracted from a TR whlch is greater than
360 degrees.,

Subroutine INTERP is illustrated in figurc 48,

174

‘ STARY ,

FACIOR € 07

.

No

Yes

FACTOR & 17

’No

T12 » Longitwdin il
M florence

(T2

- TN

T2} » 2,87

i4

i No

Pertorm

Strealpht-Line
Interpolation

SR =
STPACTORY (8)-51)

8

4

T <
T FACTOR T 2

Yes
TR < 07 e e
No
o\
Yes

TR ¥ 360?

No

. BN CI TS

13

1

Set (SR, TRY

3

Set (S8R, TRY

w (K2, T2)

Call INTLRPGE
for Great Circle
fnterpolation -

e

Add 300
to TR

Subtract ob
Fyom TR

»

St RETURN)

[

Fig, 48,

1

78

R

Subroutine INTERD

o T T

SUBROQUTINE INTERPGC

PURPOSE : To perform interpolation over great circle routes.
Tt determines a point (SR, TR) located a given
fraction FACTOR of the distance from the point
(81, T1) to (S2, T2) where the coordinates are
latitude and longitude.

IENTRY POINTS: INTERPGC, INIRPGC (duplicate entry)

FORMAL PARAMETLRS: None

COMMON BLOCKS : POLITE, A, B, C

SUBROUTINES CALLED: ATN2PI, DISTF

Method

The parameters which control the interpolation are contained in common
/POLITE/ as follows:

1. Input paramcters:

S1 - latitude of first point
TL - longitude of first point
S2 - latjtude of seccond point
T2 - longitude of sccond point
FACTOR - fraction of distance to be interpolated

2. Output paramcters:

SR - latitude of interpolated point
TR - longitude of interpolated point

All latitudes and longitudes arc floating point variables giving the
data in degrees in standard Lambda format. The variable, FACTOR,
determines the fraction of the distance from the first point to the

sccond that is equal to the distance from the firsr point to the inter-
polated point.

176

bz, . Sl

L ot DT RIS

For the purpose of this description, we assume now a right-handed
coordinate system shown in fipure 49, where the angle o is the longi-
tude, measured east from the zero meridian (located along the X-axis)
Herc the latitude is given by the angle 6. Then the unit vector T

e PTGt et it —i g SR vt b

associdted with the latitude Gi and longitude oy is given by:

COs o; €08 O,
i i

"~
[
[H

sin a; cos)

i

sin 61

LY
A

gz

e

%
r .)I
X
i
Fig. 49, Coordinate System for INTERPGC ;
[
.
: 177
3
|

Assume we are given the unit vecfor ry located at (ul, 61).and the unit
vector r, determined by (az, 62), dand the angle.e between them. We wish
to find a unit vector r in the plane determined by T and r, some given
: angle 01 from rl. To do thislwe make usc of the following three vector
: relations: ' _ :

(r1 X r2) cr=0

r1 +'r = cos 0O 1

=
.

-
i

cos 0

wherc 02 = (- 01 .

These relations may be expanded as follows: ' .

(P237127 7157220 X * (T3t Tas)Y * (T17227 707202 = O A —

[

Ty Xt T, ¥+ ryg 2= cos B : -

r21 X + r22 y + ' rzs_z = cos‘e

2

where r = (X,y,z). This equation has a unique solution in x, y, and'z
provided 8 # 0 or 6 # 7, since the determinant:
.2
(rl X r2) = sin”o

is not equal to 0, Now since the resultant vector r is:

X cos a cos &

T = y sin o cos ¢

z sin §

T

then the desired point (a, §) is given by:

8

sin “Z ' ; ' !

Q
it
-+
©
=
'
u—y
TN
<
~——

1

178 . S i
b

|

where the value of the arc tangent is not necessarily its principal
value. (PFunction ATNZ2PI is used to calculate this value.)

To obtain 0 and 0, when FACTOR is known, observe that:
if: D is the great circle distance from the point (al, 61) to the
point (az, 62) and
R is the radius of the earth

then: = D/R

0
0y= FACTOR+0

Subroutine INTERPGC is illustrated in figurc 50,

START

Convert to
Radians
Compute

Coefficients of

Rows 2 and 3
(Left-Liand Side)

Y

Compute
Cocfficients of
Row 1
(Left-land Side)

Y

! Compute
Right-Hand
Side

Y

Compute
Determinant

Y

Evaluate
X, Y, and 2

Compute SR, TR ;

2 and Convert to d
g Degrees

(\h RETURN

3 Fig. s0. Subroutine INTERPGC

180

SUBROUTINE IPUT

PURPOSE : To pack a given data item into a storage aresa
according to a specified format.

ENTRY POINTS: Irur

FORMAL PARAMETERS: KLY - A key word generated by the function

KEYMAKLE

INDEX - An index to the array IARR; IVAL will be

packed into the word ITARR({INDIX)

IVAL - The data word which is to be packed
IARR - The array into which these data are to
be packed
COMMON BLOCKS: DATPK
SUBROUTINES CALLLD; None

Method

The variable KEY is compared with ISVKEY (the value of KEY on the
previous call to IPUT). 1f they are not cqual, then the KEY is unpacked,
and the variables ITYPE, NBITS, and NSHITT are set (see description of
function KEYMAKE). If KEY and ISVKEY are equal, then it is assumed that
ITYPL, NBITS, and NSHIFI' have been set by a previous call on 1PUT.

If the data are not to be packed (i.e., ITYPE=4), then the variables IN
and MSK are sct cqual to IVAL and 0, respectively. 1f ITYPL#4, then IN
is set equal to the rightmost NBITS of IVAL and shifted left NSUIFT

bits. MSK is set equal to MAST(NBITS), shifted icft NSUIFT bits, and
complemented,

The bits of IARR(INDEX) wvhere the data are to be stored are set equal to
zero. The variable IN (which is IVAL shifted to its proper position) is
now added to TARR{INDLX).

Subroutine IPUT is illustrated in figurc 51.

181

Mt

e i e i

START

e r i a e

Unpack
KEY Word

IN=NBITS of

ITYPE=47 IVAL Shifted
./ Left

E i
MSK=MASK (NBITS)
*ISHTAB (NSHI FT+1)

Y

INSIVAL |eg—
: MSK=0

g ok SRR e .

!) Clear Bits : MSK=
: of NOT. MSK
/ IARR(INDEX)
Add IN to
TARR(INDEX)

RETURN

Fig. 51. Subroutine IPUT

182

PURPOSI:

NTRY POINTS:

FORMAL PARAMETERS :

COMMON BLOCKS :

SUBROUTINES CALLED:

Method

FUNCTION ITLE

To compare an input value with values in a
specified array; to return an index of the
first match found, and tu rcturn zero if no
match is found,

TTLE

NX « The value for which a match is to be found
NAR - The array with which NX is to be compared

NMB - The number of words to be scanned in NAR
None

None

The input search value is compared with eacn member of the array to be

scanned. If no match is found, a value of zero is returned. Otherwise,
the index of the element of the array which exactly matches is returned.
In the case of more than one match, the smallest index value is returned.

Function ITLE is illustrated in figure 52,

187

START

For All
Values of 1
From 0 to NMB

Does NX \\>No
Match NAR(])?J//

i

No

Finished
Searching?

Yes

ITLE=1 ITLE=0

RETURN

Fig. 52, Function ITLE

184

T e T TR YT

FUNCTION IWANT

PURPOSE : To determine the position of an item in an array,
The scarch is modified by specifying items not to
be searched.

ENTRY POINTS: IWANT

FORMAL PARAMETERS: NEED - The item to be matched
IAR - The array to be scarched
ISTART - The first element in the array to be

searched
IEND - The last element in the array to be
searched

COMMON BLOGKS: None

SUBROUTINES CALLED: None

Method

This function searches array IAR from element ISTART to element IEND to
find a match for NEED. At each occurrence of an element of IAR with the
value = 1R*; i,e., one-character BCD code for asterisk right-justified
with zero fill to the left, the list is not searched for NEED until after
the next occurrcnce of the right-justified asterisk. This search method
corresponds to ignoring alphameric value subfields as defined by sub-
routine GETVALU, The value returned by the function is the index to the
element of IAR which is equal to NEED. If no element meets the pre-
scribed conditions, the function returns the value IEND+]

Function IWANT is illustrated in figure 53.

185

oy

START

Initialize
Indices

Y

Do From Done Ret Endi
“_“———I‘ Starting Index one | Return Ending
ndi Index
to Ending o] !
Index | us

Is This
Element the

Desired
Elemeqiz_

RETURN

Yes
50
Return Index

i Of Current
Element

Is This
Element

Between
'sk_s.z./

Element an
Asterisk?

Set/Reset
Asterisk
_Indicator =

Fig. 53. Function TWANT

186

FUNCTION KEYMAKL

, PURPOSL: : To generate a KEY word for input to subroutine
{ IPUT or function [CGET,
ENTRY POINTS: KEYMAKL
L
i FORMAL PARAMETIERS : ITYPE - Specifies the type of packing or
; unpacking
=] Signhed integer
=2 Unsigned integer
=4 Inpuacked word
NSHTEFT - The number of bits from the rightmost
bit of the packed word
i NBITS - The number of bits in the packed word
! COMMON BLOCKS: None
{ SUBROUTINES CALLED: None
b
' Method
2 Function KEYMAKE generates a key word which contains the necessary
- packing and unpacking information for input to IPUI or IGET. The format
1 of the key word is as Follows:
|
' Number of Bits 33 6 _ 6 3
T s ed ST NBUIS UYPE
The variable WD is set ecqual to NSHIFU and =hifted lefr six bits, NBIUS
is added to MWD, and WD is shifted leftr theee bits, ITYPE is now added
to TWD and the result placed in REYMARL, which value is returned to the
calling program,
Function KEVMAKE is illuostrated in Figure 5.
il
] IS7

START

Set IWD Equal
to NSHIFT

Y

Shift IWD
Left 6 Bits

Y

Add NBITS
to IWD

Y

Shift IWD
Left 3 Bits

Set KEYMAKE

LEqual to
IWD+ITYPE

RETURN

Fig. 54. Function KEYMAKE

138

rf-v-'vv—.v:-v.—«-w e
3

FUNCTION LOCF

PURPOSE : To retrieve the machine address of an item (e.g.,
LOCREAD uses LOCF to determine the limits of
core to be used in file recading and writing).

ENTRY POINTS: Lock

FORMAL PARAMETERS:

X - The nume of the variable whose address is to
be returned

COMMON BLOCKS: None
SUBROUTINES CALLED: None
Method

This assembly lanyuage function detcrmines the address of the variable
named in the forial parameter by retrieving it from the word containing
the parameters for the call to LOCF, The address is rcturned right-
justified in the accumulator. The bank addeess is removed before placing

the value of the machine address in the accumulator. Thus, function LOCF
will not return the bank address of an itcm.

Function LOCF is illustrated below in [igure 55,

(START

Set

Address
Pointers

l.oad
Variable
L Address

RETURN

Fip. 53. Function LOCF
189

PRWCH

T

v et 4

PUKPOSE :

LNTRY POINTS:

FORMAL PARAMETERS @

COMMON BLOCKS:

SUBROUTINES CALLED:

Mcthod

SUBROUTINE: LOCREAD

To read information from a file into, or write
from, a cor¢ arco specified by beginning and
ending addresses, using the filenandler.
LOCREAD, LOCWRITE, LOCWRIT

A - The name of the last word stored in the block
of ¢ore to be read or written

B - The name of the first word stored in the
btock of core to bhe =~ad or written

None

LOCF, KUARKAY,** WRARRMNY**

this subroutine uses function LOCK to determine the limits of core to
he used in the file rcading or writing, The reading and writing array
subroatines in the filehandler (RDARRAY and WRARRAY) are then used to
transfer the data into or out of this block of storage. Note that
proper usage of this subroutine requires a knowledge of the method of
storage allocation by FORTRAN, The programmer should alsce be awarce of
the proper use of the filchandler,

Subi utine LOCRIAD is illustrated in figure 50.

*Puplicate entry for LOCWRITL.
**.";L\L‘

U1lchandler subroutines.,

100

o SEPTIEEI LIRS Sy T ,‘g;—‘-n—-{»

- cnl

START ’ Lntry LOCREAD

Compute, Using

LOCE, Numher of

Memory Words to
Be Stored

Y

Call
RDARRAY

RETURN

Entry LOCWRIT:
Entry LOCHRIT

Compute, Using

LOCEF, Number of

Mewory Words to
Be Written

Y

Call
WILARRAY

(KITURN

Fig. Ho, Subroutine Tocig ap

161

SUBROUTINE NEWUNIT

PURPOSE : | To unload a magne{ic tape reel andlreleaSe thé ' '
physical gnit assignment.

ENTRY POINTS: , NEWUNIT .

FORMAL PARAMETERS: NTOG0>~ lLogical tape unit number . - C E

COMMON_BLOCKS : ' None '

SUBROUTINES CALLED: UNLOAN :

‘This assembly language subroutine uses the system macro.UNLOAD ‘to rewind
and unload 2 magnetic tape, reel. and' release the physical unit assignment.

The formal parameter is set to the logical tape unit number of the tape
to be unloaded and released,

Subroutine NEWUNIT is'illustrated below in figure 57,

START v | !

Set
Address
Pointers

=

[ssuc
UNLOAD Macro
Specifying Tupe |,
Unit Release

RETURN :
——.-E.a/

Fig. 57, Subroutine NEWUNIT

192

SUBROUTINE NEXTFILE

PURPOSE : To skip to the end of the current file on magnetic
tape or disk, while keeping track of the number
of reccords skipped.

ENTRY POINIS: NEXTFI1LE

FORMAL PARAMETERS: None

COMMNN BLOCKS: I'TP, IREC, FILEIN
SUBROITINES CALLED: None

Method

This subroutine takes the logical unit of the magnetic tape to be read
from common block /ITP/, which contains one variable, the logical tape
unit number. If this number is necgative, the file is on the disk, and
the name given by the variable in common /FILEIN/ is used to retrieve the
data from the disk. Common /IREC/ contains one variable which is the
number of records currently rcad from the file. Subroutine NEXTFILE
merely buffers in physical records from the tape or disk until it reaches
the end of file.* During this buffering procuss, the number of rccords
rcad is added to the variable in common /IREC/. After recaching the end
of file, the subroutine rcturns with the file positioned to read the first
record after the end of file,

Subroutine NEXTFILE is illustrated in figure 58. 1

*NEXTFILE positions the 1/0 device to the next record following the end 1
of the current file. Although the physical location of data arcas on

a random access device may be in a nonscquential order, the disk 1/0
routines on the CDC 3800 order all sectors in a disk file sequentially,
Thus, "next' record is defined for disk files in the correct manner for
NEXTFILLE.

193

L

START

Ind of
File?

No
20

End of
File?

30§

120

Fi

Buffoer
Record
in From

le (NAME)

1

Add 1 to
Record
Count

Buffer
Record in
From Unit

Subtract 1
From Record
Count

Plas Zao o St veatine o) (1

[Tp
Add 1 to RETURN
——— Record :——-—j
Count

ORI VPP S

J
(. U U-SUUEV Ar

FUNCITION NUMGET

PURPOSI: : To convert the BCD contents of an array into a
signed ints ger number,
ENTRY POINTS: NUMGET
FORMAL PARAMETLERS NIN - The name cf the array or variable where
the input data are stored
NCIi - - The number of characters to be scunned (the
3800 restricts intepers to 15 decimal dipits)
COMMON BLOCKS: None
SUBROUTINES CALLED: None
Method

Function NUMCET (figure 59) converts integer data, which have been read inte
an array using alphameric (A8) format for cach word, into signed integer
numbers with blanks ignoredy i. e., suppressed, The number of characters’
to be scanned and the array or variable name are specified in the calling
sequence., If no sign appears, the number is uassumed positive. llowever,

the sign may appear anywhere in the specified input field, and NUMGET places
it at the beginning of the number. If two signs appear within the same
field, the last sign is assumned correct,

When integer data are read in with I format, standard FORTRAN has a number
of limitations, The most annoying and time-consuming in preparing and
keypunching data for a program are the requirements that integers be right-
justified and that the sign (if any) precede the numbor. NUMGET overcomes
these restrictions., It is not intended to be an error-correcting routine
but rather a convenience and a time-saving routine, Whercas o normal read
using integer (1) format of a number such as 77/7 or 77M7 would abort

the computer run, NUMGET allows the program to continue, translating the
number in each example to 77. Thus the burden cf checking the accuracy

of the data remains on the analyst who has input the data--but he is uable
to check an entire run at once, rather than haviung his run abort on the
first illegal field encountered.

The program will scan as many contiguous characters as the calling program

has requested (formal parametcr NCII), moving down the array NIN (dimensioned
as 1 in the subroutine, since the real size of this array is derermined by

195

i s i i i} ok eax

o i, R

YT

the array size in the calling program), eight characters at a time* until
NCH has been satisfied. Since the 3800 has only a 48-2§t word and the
largest integer that can be translated accurately is 2"'-1 (15 decimal
digits), the practical limitation on NCH should be such that, éxcluding
blauks, the translated integer will fit within the word size,

Perhaps the most common example for NUMGET would be the one where the

field width has been defined to be 10 characters (normally read as 110 for-
mat). When using NUMGET, the calling program would read the field into

an array of size two using a format of A8,A2, NUMGET would be called with
NCH set to 10, and all 10 characters would be translated to an integer.

*Lach word of the 3800 may contain at most eight BCD characters,

196

T

a

‘ START ’

1

Set Number=0;

Set Sign=0,
Loud Q REGISTER with
First 8 Characters

y

Clear A PEGISTER
and Shift Left-
most Character

Tnto A REGISTER

T

oC-aas i red

Is
Character
BC?
JYos

>

AN =07

No

Is
Character
a Number?

No

\

Is 1\\
Character Yes

v

Is Yes
< Character ‘-iv

RETURN

Hove Number
and Stpn Into
Accunulator

%

Increase Number
by Power of Ten
and Add in
New Diglt

a Rlank?
No

1s
Character
a Minus?

No
Y
Is
Character
a Plus?

Yes

Ycs

Set Sign
Minus i

Set Sign
Plus v

'y

Load Q REGISTER
With Next wWord
(8 Characters)

Yes

Have B
Charactoers
Been Tested
in Word?

a

L
Have All

Characters
Beon Tested?

Move Sign
and Number
Into Accumulator

RETURN

Fig.

59. [Function NUMGET

SUBROUTINE ORDIIR

PURPOSE : To return the indices of the numeric order of
the elements in any array.

ENTRY POINTS: ORDER

FGPOMAL PARAMETERS A - An oarray of arbitrary values whose
clements are to be indexcd

INDEX - The arvray which wil] contain the indices
to A in increasing numerical order

N - The number of elements in A to be
indexed
COMMON BLOQEi: None
SUBROUTINES CALLED: None

Given an arbitrary array, 1A, of N elements, subroutine ORDLER returns in
another array, INDEX, the indices of the elements of IA in their
numerical order, That 1s, INDEX(1l) contains the index of the smallest
element in [A, INDEX(2) the index of the next smallest, and so on.
INDEX(N) contains the index of the largest clement in TIA,

There are restrictions on the values of the formal parametcrs. The
number of elements to be indexed, N, must be greater than zero. The
array to be ordered and the indexed array must both bave at least this
many clements. In addition, the subroutine will not operate correctly
urless the array te be ordered and the index array occupy different arecas
in storage, The array to be ordered, 1A, may be in either fixed point or
fFloating point format. The indices, of course, will be returned in fixed
point format.

Subroutine ORDER is illustrated in figure 60.

198

e Lo

,} (::—.STARF) !
é .ﬁh“;_._

Do for Hach
Done

(€————1 Llement to e

Be Indexed

; Do

Initialize Compiement
INDEX Arpay [~™ 5;;’:”1?“ |
Do for Lach Ros ..
. h 3 eset Sign ;
* L 6-Bit Group Done »- Bit of Iﬁ i

7Ay Do '

Initialize 7)
Work Array -
IWORK RETURN

]

Compute
Frequency
Count

Y

Compute Cumu-
lative Ire-
quency Count
e

Compute
New Index

Fig, 60, Subroutine ORbI'R

199

i R

i b s i

SUBROUTINE OUTITEM

PURPOSE : To output the current item (record) to the data
base file being created,

ENTRY POINTS: OUTITEM

FORMAL PARAMETERS: None

COMMON BLOCKS: EDITAPE, ITP, PROCESS, TWORD

SUBROUTINES CALLED: WRWORD*

Method

Subroutine OUTITEM uses the filehandler subroutine WRWORD to write the
current item (record) on the data base file specified by JOUT in common
block /EDITAPE/. The output file and the data to be output are communi-

cated to WRWORD via common variables ITP, of common block /ITP/, and
ITWORD, of common block /TWORD/.

As indicated in figure g1, OUTITEM first' causes the number of attribute
value pairs (variable NI, of common block /PROCESS/) associated with the
item to be output. Two calls to WRWORD are then made to output each
attribute-value pair, i.e., the index of the attribute within the VALUL
array (common block /PROCESS/) is output followed by the attribute value,

When all pairs have been written, control is returned to the calling
program,

Subroutine OUTITEM is illustrated in figure 61.

*See filchandler subroutines.

L A

START

Set ITP to JOUT,
Current Output
File

|

Call WRNORD
to Write Number
of Pairs

- Do for |Done ‘7
Each Pair RETURN 7
‘Po
Call WRWORD

to Write Out
Attribute Index

!

Call WRWORD
¢ to Write Out

Attribute Value

i ki

Fig. 61. Subroutine OUTITEM

201

e e o o .o

SUBROUTINE OUTWORDS

PURPOSE: : Used in processing a data base file to write
one word on cach of the specified output files.

ENTRY P(JIN'I'_S_: OUTWORDS, OUTWRDS*
FORMAL PARAMETERS None

COMMON BLOCKS: EDITAPL, T11P
SUBROUTINES CALLED: WRWORD**

Method

Subroutine OUTWORDS is called by the utility routine IMPITEM (NEXTITLM)
to write onc word on cach output file specificd in common block /EDITAPE/.

Subroutine OUTWORDS is jllustrated in figure 62.

*Duplicate entry for OUTWORDS,
**Sece filchandler subroutines.

START

7Any
Output
Files?

Save
Current Value
of TIT

!

For Fach Donhe Replice
r——b Output =228 Value of KITURN
Eile I —
‘no

Set TTP
to Lach
OQutput File

!

Call WRWORD
——— to Write
One Word
on File

R o

e e a L e kel aatin

Fie., 62, Subroutine OQUIKORDS E

208

SUBROUTINE PAGESKP

PURPOSE : To eject to the top of the next page on the
standard output,

ENTRY POINTS: PAGESKP, PAGESKIP*

FORMAL PARAMLTUERS: None

COMMON BIL.OCKS: None

SUBROUTINES CALLED: None

This subroutine uses the standard carriage control character (i.e., 1) in

column 1 to eject to the top of the next page on the standard output. Sub-
routine PAGESKP is illustrated in figure 63 bclow,

* Duplicate entry for PAGLSKP

Skip
a Page
in Qutput

RETURN —/)

Fig. 63. Subroutinc PAGLSKP

204

SUBROUTINE PRITEM

PURPOS; To print the defined attribute-value puirs of
the data base item currently being processed in
a readable format,

LIVERY. POINTS: PRITEM

FORMAL PARAMETERS None

COVMON BLOCKS : DIRECTRY, PROCESS
HUBIOUT INLS GALLLED: None

Method

This subroutine is usced in preparing a printout of the data base. When
called (e.g., by PRNTBASL), this subroutinc examines all attributes in
the directory to determine if they are defined for the data base item
currently being processed. 1{ so, the attribute name and value are
stored in print arrays. If the definition is global, the pair is marked
by un usterisk (*). When six pairs have been stored, the line is printed.
‘This process is repeated until ull pairs have been printed,

Subroutine PRITEM is illustrated in figure 64.

205

Skip
e Line

!

Set
Counter
to Zero

'

For All i
Attributes [Done s

in the Counter
Nirectory , iero?

Do

Is This
Attribute
Defined in
this Ttem?

[ncrement
Counter
By One

2

Store
Attribute

RETURN

Nume in NAM

kncodc and
Store Value
in NVAL

Set NGLOR
to Space
CODE

1

Set
Counter fe————pm

to Zero

NAM, NVAL

Print’
NGLOB,

Set NGLOB

to *

Is This
a_Global
Detinition?y

Fio, 64, subroutine PRITEM

206

i

SUBROUTINE PRNTBASE

PURPOSE: To print the dircctory in readable tormat,

, ' To print the attribute-value pairs detfined for
3 cach Jdata basc item.

i ' ENTRY POINTS: PRNTBASLE, PRNTBAS,* PRNTBSE*

FORMAL PARAMETERS: NIP - Logical unit number of the data base
‘ ' file which is to be printed

COMMON BLOCKS: GDITAPLE, EDITERM

SUBROUTINES CALLED: INITAPE, ** INITEDIT, INPITEM, NEXTITELM, PRITEM,
PRNTDIRC

Method

! This subroutine prints out in readable format the entire basc contained

’ . on tape unit NTP. It prints out the entire directory using subroutine

P PRNTDIRC, Then each item in the data base is printed by successive calls
on subroutine PRITEM. Tor cach item the name of cvery attribute defined,
either globally or locally, for that item is printed together with its
vatue, TIn addition, un asterisk is printed beside each attribute whose
value is currently determined by a global definition,

PRNTBASE first saves NOUT, the number of output tapes, and then scts it
to zero. Then through a series of calls an INITEDIT, PRNTDIRC, INPITEM,
1 and PRITEM, the entire data basce is printed, NOUT is restored to its
original vatue, and the routine exits,

Subroutine PRNTBASE is illustrated in figurce 65,

e s

*huplicate entries for PRMIBASL. i
#*See ilehandler subroutines. !

5%
=
~1

Call INITAPE _ﬁ
to Initialize Call
Filehandler INPITEM
¥ . e
Save NOUT
Call
(Number of PR%TEM
Output Files)
i ,‘ Call
Set NOUT to NEXTI'TEM
Zero to Prevent
Creation of '
New Output Files ;
? 4 Restore '
f - NOUT
; Call
) INITEDIT }
‘ (RETURN)
[Call
: PRNTDIRC i

Fig. 65. Subroutine PRNTBASE

208

SUBROUTINE PRNTDIRC

PURPOSE To print the directory contents in readable
format.

ENTRY POINTS: PRNTDIRC, PRNTDRC (duplicate entry)

FORMAL PARAMETERS: None

COMMON BLOCKS: DIRECTRY

SUBROUTINES CALLED: PAGLSKP

Subroutine PRNTDIRC is called to print the contents of the data base

directory. The directory consists of a list of all the attributes which

can he used to describe the data items defined in the data base. In

addition to the mnemonic name assigned to the attribute, the directory

includes information about the range of values which may be assigned R
to the attribute and the value which is given it when it is not

specifically defined for an items i,e., the default value. Information

is also included for checking the data input to the data base,

When called, subroutine PRNTDIRC (figure 66) prints all of the
information contained in the directory for each attribute., This
includes the attribute name, print format, checking code, default
value, and the attribute value range limits or a list of allowed
values specified for the attribute, The arrays which are examined
and printed by PRNTDIRC are:

1. ATTNAME: This array contains the name of cach defined attribute.
The position of the name in this array becomes the index to all
other arrays holding information about this attribute and is the
index which is stored with the attribute value in the item portion
of the data base tape. A data basc file is completely dependent
on the order of attributes in the directory.

2. I1FORMAT: This array contains the conversion format (e.g., 18) to 2
convert the value of the attribute to output (printer) format.

3. I20DE: The array code numbers {(between one and seven) which
specify the type value (c.g., floating point number) for each
attribute and the method of checking (range, list, or none). The
codes currently used are used are indicated below.

209

:
i
b
|
H
i
]
!
]

g AT TR

g

1¢obl TYPE VALUL CHECKTNG

1 Iloating point numeric Range (MIN-MAX)

2 Floating point numeric LIST

3 Fixed point numeric Range (MIN-MAX)

4 Fixed point numeric LIsT

5 Aphameric LISsT

0 Alphameric NOCHECK (none required)
7 Special (sce Directory Range (MIN=-MAX)

Conventions below)

4, N1, N2 (PFN1, FN2): ‘These arrays contain cither the minimun or
maximum values for the attributes in the casc of range checking,
or the beginning and ending indices to a list of all possible
valucs for the attributes that specify list checking. Thesc arrays
arc unused when no checking is called for,

5. DEFAULT: This array contains values which are to be associated
with any attribute when it is not defined for an item,

6. LISTCHEK: ‘This logical array is sct to "true' for list checking
and Talse for range checking or when no checks are required,

7. LISTVALS: This array contains thce acceptable values for an
attribute to be used in list checking. In this mode of checking,
the attribute value is restricted to a specified list., lFor
cexample, acceptable values of the attribute SIDE might be limited
to RED and BLUE,

The subroutine first retrieves the attribute name and determines if
there is a dcfault value associated with it. I there is, the
default value is encoded using the format statement for the selcected
attribute, 1 there is no default valuc, the work BLANK is sub-
stituted for the value in the print line,

The routine next ascertains if list checking has been specified. If

it has, the word L1ST is inserted in the output line. TIf list checking
was 1ot applicable, the routine determines if "no cheching™

(i.c., 1CODL=6) was specified for the attritube. If so, the word
NOCHECK is inscrted in the output line. [If ncither the list nor

"no checking' options were specified, it is presumed that range
checking is desired. In this case, the minimum and maximum values
specificd for the attribute value are retricved from the arrays

210

N1 and N2. ‘These values are printed using the format obtained from
the IFORMAT array. Should N) and/or N2 be found to contain blanks,
, the word BLANK is inscrted in the print line. ‘The printed line, !
i assembled by onc of the above procedures, is of the form: attribute

name, conversion format, code for checking, default value, first check
word, and second check word,

. : - ia —daniie e -
R IPPIII LN DOl sl T—

wmRmEm TR AR e o e

il

—izad

Do for All

Attributes
in the
Directory

‘Do

Convert Default
Value to
Hollerith

List
Checking?

50

Signal
List
Checking

Done RETURN

No
Checking?

Signal
No
Checking

y

60

Range
Checking
Convert
All Values

Attribute

ATTNAME

List
Checking?

Yes

180 Y

Check/Print
Attribute
Value List

Fig. 60.

Subroutine PRNIDIRC /

to
—
(29

. o oot AT, i

SUBROUTINE PRNTDTA

PURPOSE: To print the contents of a data base file in a
compact and readable format.
ENTRY PQINTS: PRNTDTA, PRNTDATA (duplicate entry)
FORMAL PARAMETERS: NT1 - Logical unit number of the file containing
the data base
COMMON BLOCKS: DIRECTRY, EDITAPE, EDITERM, PRNTCOMM, PROUESS
SUBROUTIMES CALLED: INTTAPE,* INITEDIT, INPITEM, NEXTITEM, PAGESKP,

PRNTDIRC, PRNTPGE

Method

This subroutine prints the contents of any data base file in as compact
and readable a format as possible.

Attributes which have the same value for items on a print page are printed
along with the value in a COMMON ATTRIBUTE block at the top of the page.
Attributes which have different values for items on a print page are
printed in columns in an OTHER ATTRIBUTE block beneath the COMMON ATTRIBUTE
block. The column headings are the attribute names, with each item re-
quiring a separate print line. If an attributc is defined for some but
not all items uon the page, a BCD slash (/) is inserted in the undefined
locations. If an attribute is undefined fdr all attributes on a page, it
is not printed. A print page is complete and another begun when:

(1) the number of items on a page reaches 35, (2) the number of columns

in the OTHER ATTRIBUTE block exceeds 11, or (3) a class change occurs.

Subroutine PRNTDTA is illustrated in figure 67. J

*See filehandler subroutines.

(%]
—
(V3]

R

- Increnent
4 Item
Count hy One

60

Set SAMLARRAY
tu True; Store
Value {n Common Gover
Attribute Array NEXTHEM

Yied
Iy Attribute
e tfined
for Thin [tes?

INFTARY I

!

tnd
of Tape®

A
L
, Save \otrl
{(Number of Do por AL fhvne
d Gutput Files); Attributes Set Swat
‘ Set hOU to Zere

to 2
U ?‘
! y] —()
i R y

YTk 104

Set Switceh INPITEM V

w! K Save Colunn

Count
J A
ts Switch J ‘s_—T__’

NLTE tyual to 17 . :

e bo for Al b0 Suve SAMLARRY

in Lommon

Artribntes Attribute Array

J' Set Number

!) of Incoming
PRNTTI I R Itens to

- 330
Do for A1) Jlone oy [0 tor ALl . Yes
Attribures Llements Lf.xzusl”t:)dl‘)? NEXTITEM
110 ;ho
B
Set SAM AKKY Set PAGEDATA End
W .. } .. of No
to FALSE l Array to -0 PRNTPAGL File? @
Yes "
170 f)
Restore le Any ltems
NOul to I'rint?

REIURN) Set Switeh L.__’Qj”
' N to 7 =

1 |
,i
%
1
i
4
!
3 . - .
Fig. 67 Subroutine "RNTDTA
{Sheet 1 of 2y
| .
A
| ";

i
!

oy

oa—Y

120 *

Ne for
@ s Al
Atiributes

Do

210 No

/1s Attribute \ N
in tommon N

Is It befined

hone

Have 35
[tems Been

No
At

Attribute for This ltem?
Array?

Yes —YFS
-

ts 1t Defined
for Lurrent

I's Commorn
trabute qual

Is It
Already a

o

Fig.

67, {cont.)
(Sheet © oof 2)

S

Processed? to Value? Ttem? Colunn? /
Ko
200 i\ M0 ¥
@4 S“tg“'}“" Set Switeh Sot Switch Set Switeh
R to 5 to 3 to §
a0\
Inerease Tnervase
Column Number ot
Count Colunnsg |
K
There 12 Yes / 1s This a
Columns? \, Class Changet
N:‘ No
160 190 260
Put Previous . !
Call Yes 12
Value Into All o x g .
Colunns PRNTPAGE ‘wlm“s?
No
A 276
- Set SAMEARRY Set Switch Store .
to FALSE to 4 Value
= = I
P y
i
H
J
1

i
i
|
Al
i
1
i
k|
H
L

g E

oo i e G

SUBROUTINE PRNTPGE

PURPOSE ! To perform the printing of data base information
as directed by subroutine PRNTDTA,

ENTRY POINTS: PRNTPGE, PRNTPAGE (duplicate entry)

FORMAL PARAMETERS: J - Number of attributes defined on this page

COMMON BLOCKS: DIRECTRY, PROCESS, PRNTCOMM

SUBRQUTINES CALLED: PAGESKP

Method

This subroutine prints a page of data base information, as directed by

subroutine

PRNTDTA. The variables in common /PRNTCOMM/ are interpreted

to determine the number of ''common' and "other' attributes. These are

printed on

Attributes
along with
Attributes
printed in

the standard input in the following format.

which have the same value for items on a print page are printed
the value in a COMMON ATTRIBUTE block at the top of the page.
which have different values for items on a print page are
columns in an OTHER ATTRIBUTE block beneath the COMMON

ATTRIBUTE block. The column headings arc the attribute names, with each
item requiring a separate print line. If an attribute is defined for

some but not all items on the page, a BCD slash (/) is inserted in the
undefined locations.

Subroutine

PRNTPGE is illustrated in figure 68.

‘ START ’

i
; Set Counter 70
] to Zero —
'i Print
: y Line
: 4
PAGESK I 7 .
| Yes
Is Counter
- Greater Than
Print Zero?
COMMON No |- y
R0 Y
P

Print
" 20 o OTHER
“ Do tor A1l lvon ATTRIBUTES
: _ ° [Hane B
: £ Attributes
: Do 3
y Cl'rlint .
‘hisg O Lumn
Is This Headings
a Cotunon
Attribute? Attribute
Names

30
Increment

Attribute Do for [Don : ;

Counter All Rows RETURN ;
20 Do u

y 1 ‘

Store Attribute

Do
Name and Value for ALl g 150
in Print Line Columns 3
Do
140
Is Counter Enccde

Equal to 67 Value for » :

Print Line

Yes 4 ;
a0 Yy :
Attribute Value .
2 Prine Defined for "‘t;*—-j 1
rint This Item® /
: Line
130 E
. Undefine Valup: E
% 60 J Place Slash (/) ‘——-———J \
- Set Counter in Print Line \Qf
; to Zero .
! Fig. 68, Subroutine PRNTPGE
3

to
_—
~J

o

SUBROUTINE READDIR

PURPOSI: s To read o directory contained on a data base file
into gommon block /DIRECTRY/.
ENTRY PQINTS: READDIR
FORMAL PARAMETERS: [TAPX - lLogical unit number of the file containing 4
the directory

COMMON BILOCKS: DIRECTRY, ERRGRM, TTP, TWORD |
SUBROUTINES CALLED: ABORT, RDARRAY*, RDWORD*, SLTREAL* 3
Method b

Subroutine READDIR rcads the directory from unit ITAPX, which is assumed to
contain a standard data basc, into memory in common block /DIRECTRY/.

This subroutine is shown in figure 69, 7The routine tcgins by setting the
buffer number ITP to indicate the logical unit number of the file containing
the directory., The filchandler subroutine SETREAD is then called to initial-
ize this file for reading. Subroutine RDWORD is then called twice to read
the first two words from the direcctory. The first word is stored in IDEF

and specifies the number of attributes contained in the directory. The scc-
ond word is stored in LASTLIST and indicates the number of entries in the
value list array LISTVALS, The routine then computes the maber of words in
the logical arrays LISTCHEK and GLOB (equivaltenced to LUGL and LOG2),

A series of calls on subroutine RDARRAY are then made to read in the contents
of the arrays described beiow.

1. APINAME: This array contains the name of cach delined attribute.
The position of the name in this array becomes the index ta gl
other arrays holding information about this attribute and is the
index which is stored with the actribute value in the item portion
of the data buse tape., A data base ile is completely dependent
on the order of attributes in the directory.

-

200 ITORMAT; This array contains the conversion format (e.o., [8) tao

convert the value of the attribute (o output (printor) format.

v

(CODL s Cthe creay code numbors (betwern one and sovend whisch specity
the Type vaoloe fesn., cloviamg point mombert for cach attoibate and

o Py orandler o subreoatar

'E
e __a_A\,_‘.._a_;___.;b ..;_.V‘H.,;(.ﬁ e !

U PR VIR DI TS SV TR L) PSSR

the method of checking {range, list, or none).

4, DEFAULT: This array contains values which are to be associated
with any attribute when it is not defincd for an item.

5. N1, N2: These arrays contain either the minimum or waximum values
for the attributes in the case of range checking, or the beginning
and ending indices to a list of all possible values for the attrib-
utes that specify list checking., These arrays are unused when no ;
checking is called for.]

6, LISTCHEK: This logical array is set to "true" for list checking
and "false'" for runge checking or when no checks are required.

7. GLOB: This logical array is set to "true'" if u global definition
Frum -~ 1 ¢ e 9 1" : 1"
is in force; otherwise, it is set to '"falsc.

8. LISTVALS: This array contains the acceptable values for uan attrib-
ute to be used in list checking., In this mode of checking, the
attribute value is restricted to a specified list,

Atfter transferring thesc data, the routine checks to ensure that the dircct- ;
ory as rcad was of the proper length. This is accomplished by determining

if the next word read from the input file is ENDIRECT. If so, control is
returned to the calling program. If not, an crror message is printed and
subroutine ABORT is called to terminate the run. The occurrence of this E
crror signifies either a machine or file error during the process of reading
the directory or an incorrectly mounted filec,

L ST Wt

i A

210

i
i

s e e PO I T T O YU S SNSRI TSY J

STARTY .
) AF ; f'y j }
Call RDARRAY . Call RPARRAY '
- o to Kead Array to Read Array
t‘:)‘ th\lpll)‘t ATTNAME LISTVALS . -
File Number , ‘
| call ROARRAY] Call
to Read Array RGN .
)) Hoi, . ‘
Cald SLTREAD ; . '
E _ ! v
7) Gl RBAKRAY ' ts,
: tg Read Array I'QI:‘I) : ' '
H . H) !
] Call RUWORD 1COh:] ;
i \ No
: - , Y A s
& . y : Call RDARRAY Set Errof Switeh)
- . 1]
Store hord to Read Array to Slgnnl Nirce- - '
4 j; ‘””;;‘_ PEFANLT tory length Eeror
iF, !
Number of + ' i
Attributes in - . - .
3 l)il‘C(‘T()‘l"\' Call f{l’-\l”f.'\.\ I'rint ,
. 1o RL.’J\'&; Array CODIRECTORY 1 '
1 R . L ! . LENG T FRROR
\ TAPE i
g , Call) + . -
J ROWORD Call RDARRAY % '
4 : ta Read Array
g ! y N2 Call
) - ABORT ; :
2 Store Word in ‘ : -] ' ;
3 LASTLIST . e .
3 Pesition of last i"”é,!‘l;'\?]y\.,‘) ' , .
Value in Directory Ol I:T(m : ray .
' Common Block - ’ ' .
: I |
] i Call RDARKY f ‘ |
] Cenpute the to Rowd Arran
3 Namber of uronr
.,- Words in : {
3 Logical Arrays \ ' l
. i
;
1
Fig, 09. Subroutine READDIR
1
220
L.

SUBROUT INE REORDER

PURPOSE ¢ To rearrange from one to seven arrays into the
sequence specified by the elements of an index
array.
ENTRY POINTS: REORDER :
FORMAL, PARAMETERS: ISEQ - (Fixed point) secquence key array of the 5
type produced by subroutine ORDER
NEL - [Fixed point)} number of elements to be
recordered in each array
NAR - (Fixed point) number of arrays which arc

to he reordered

L1-L7 - (Fixed point or flcating point) names of
the arrays which arc to be reordered; if
the number of these arrays is less than
seven, the remaining positions must he
filled bv trailing dummy arguments

!

COMMON BLOCKS: None
SUBROUTINES CALLED: None
Method

Subroutine REORDER operates in the following manncr. Tirst, it stores one

“element from each array in a temporary location. It then rcads from the

array ISEQ the clement which should go in that position (which may now
be considered empty) and moves it, filling that position and creating a
new blank. This is repcated for the corresponding clement of cach array
being reordered. [ach new blank spot is filled with its proper contents
as soon as its original contents have been moved, until the clement cur-
rently in toemporary storage is required. When this happens, subroutine
REORDER finds another element which is not alrcady in its scquence and
puts it into temporary storage and continues as before until no elements
are out of sequence.

The contents of the array ISEQ arc returned to the calling program
unchanged, so that subrovtine REORDER mav be called again, using the same

scquence key array if more than seven arrays arc to he reordered.

Subroutine REORDER is illustrated in figure 70,

2ol

10

o for
10 N=1 to
NI,

¢ Done
{ ho for .
N=1 to ton RETURN
: NI,

[
20
Change
i ISEQ(N) O Sign of
b L ISEQ(N)

Yes
la

3] ¢
] _
‘ FTEMP=N
I A0 <
r sy
: Add 1
to |A

40

fat Nth
Element in
Temporary
Storiape

«,

Fig. 700 Subrout ine REOPI)R
(sheet 1 oo)

[BFIR]

R

49 1
levorse Sign of
[SEGINY 1y
3 Set JTA=0 ¢ O
NN= [SLEQ(N)
;,
s Nu
' Fill Nth -
Element in I
With proper *
Llcement —
1 &ch
N=NN -
’ i 600
7 o \ Yes Reverse Sign ‘
L, _No_ 15}‘;‘?“‘{?)“ of 1SEQN) ' ;
PTEMPS 1m0
601 t
Add]
1o 1A - - -
Yos
- 1A > NAR?
No
602
: FI11 Nth spot in
L 10 P From Temporary
X .
g Storage
.___..._._lg_".._.< 1A=7" >_-_‘2________> 5
Froo on. (eont.)
(Sheet 2 oi .)

ol

SUBROUTINE SKIP

PURPQSE: To skip a number of words on an input file using
the filehandler,

ENTRY POINTS: SKIP

FORMAL PARAMETERS: NWORDS - The number of words to be skipped on

the tape

COMMON BLOCKS : None

SUBROUTINES CALLED: RDARRAY*

Method

This subroutine is used to ignore (skip) a number of words on an input
file while that file is being read by the filehandler, The subroutine
assumes the file is in read status. This subroutine has a small amount
of internal storage used for temporary data storage. Subroutine SKIP
merely calls the filehandler subroutine RDARRAY to fill and refill this
temporary storage arca until the required number of words have been read.
This leaves the input file in position to read the next word of data
after skipping the number of words specified in the formal parameter.

e ML b

Subroutine SKIP is illustrated in figure 71. As indicated, RDARRAY
reads 100 words per call except for the final call in which NREM words
are read (NWORDNS=(M%100)+NREM) .

*scee filehandler subroutines.

TR T

START

M=NWORDS /100
NREM=
NWORDS - (100*M)

]

Do
M Times

l[)o

Done

g — -~ -

Call
RDARRAY

for 100 Words

Call
RDARRAY

for NREM Words

Fig. 71,

(o

RETURN

b
o
72}

Subroutine SKIP

i oM

P

SUBROGUTINE SKIPFILE

PURPOSE : To skip to the end of a file on a magnetic'tape,)
e 9
ENTRY POINTS: SKIPFILE, BACKFILE
FORMAL PARAMLTERS: LTN - Logical tape unit numbcer

- COMMON BLOCKS: None

; SUBROUT INES CALLED: None

Method

% This subroutine merely reads records from the tape unit specified in the

b formal parameter LTN until it encounters an end-of-file mark. It then re-

i turns contrul to the calling program, leaving the tape in position to read]
or write the first record fcllowing the end-of-file,

Entry BACKFILL is used to read the tape backwards until the previous end-
. of-file mark is reached. When this entry is used, the tape is positioned
j at the beginning of the end-of-file mark.

This subroutine is part of the CDC 3800 SCOPLE system.

et e

e = Ve s

JU—————

FUNCTTON SSKPC

PURPOSE : To determine the single shot kill probability uas-
suming a circular normal delivery distribution.
ENTRY POINTS: SSKIC
FORMAL PARAMETERS @ MOD - Integer (currently 1, 3,0r 6); MOD determines
the number of terms used to approximate
SSKPC
A - Lethal Kill radius (positive real numher)
S§XY - Standard deviation
RO2 -~ Offsct aim point distance, squarced
COMMON BLOCKS: Nonc
SUBROUTINES CALLED: None
Mcthod

SSKPC determines the single shot kill probability PKW using the following

formula:

PKW

=

2
)
(27 + 42 + 2)

(-R02/2 + SXY? + 2) (
e 5 1+ (%) (Z +1) + -
2 - SxY? . g

& .
— ! (7‘

(4

Y

Bl @3 v 02 v asz e 0) + 2 2 vt s v
3

[(SERE-

-
«

)s
.5 4

+ 962 + 24) + —(— (27 4+ 252+ 2002“ + 60027 + 06007 + 120)

LS - ~Y

227

MOD MO 1
2 It TR
where ye AT, = A 2+ SXY
R0z
E and Z= 4+ fo SXY4

The flow diagram jn fipure 72 indicates the wav in which this formnla s
uscd to calculate PKW for different values of MOD (MOD is the equivalent
of the parameter W oas described under Derivation of Kill Probability
Function, Analyticul Manual, Volume 11)., Note that BETA = @, GAM = vy,
GB = GAM/RETA = y/8, and

i C(-R02/2 v sxy2 o+ 7) 3
‘ 1
P ¢ =
L 2 . SxY2 o BUTA
i 1
| :
[
i
;9
:
; ;
i 4
i
]
{ !
i
228 f
3
i
1
i
1
: T SN SN '.,_A;A;ALJ
o - AN RSP SR WISt

o

e s ey

SXY22 = o5/5xY2,
W o= NOD),

GAM = W/AZ,
BETA = GAN*SXYQZ,

FK2 ROB/SXY4,
and 2 = FK2/4+BITA

0N

'

Caleulate € Using
SXY2.&, RO2, Z and BETA

<144A MOD > Zero? No
*Yos]
1

PKW = C

Y

I S

*Yes

"GB = GAM/UITA
TERM = GBe(Z+1)
PKK = PRWeC+TIRM

Y

<: MOD > Two? No

*ch

GB2 = gr?
22 = 22
TERM = GB2+ (2244+242)/2

PRW = PKW4+C«TERM

. Function SSKIC
(Sheet 1 of 2)

Fipg., =:

)
[

229

(MOD > Threc? H’—-’

. 7 ich

B3 = n°
23 = 23
TERM = GB3+(2349-22+418+246)/6
PKW = PKW+CTERM

(MOD > Four? >_...=____12_.,

TERM = GB4+ (24416+234720224962424)/24
PKW = PKW+C«TERM

(MOD > Five?)—-———-‘12-»

. ich
¢

GBS = GB°
5
25 = 2
TERM = GRS+ (25625244200¢23+600+22
+600+24120) /120

PKW = PKW+CTERM

B

0¥

SSKPC = MKW

RETURN

Fig., 72, (cont.)
(Sheet 2 of 2)

230

EEEREE

Ealiatetits T ol S M et

TR T e

SUBROITINE STORAGE

PURBOSEE To calealate and print the pumber of available
memory locations,

ENTRY_POINTS: STORAGE
JORMAL PARNTERS: None
COMMON BLOGKS RNKBNDS
SUBROUTINES CALLED: GETLIMIY
Mothqg

This subroutine calculates the number of words of available memory in both
banks of the CDC 3800, 1t calls subroutine GETLIMIT, which returns the
limits of available memory in both banks into common /BNKBNDS/. STORAGE
then computes the difference of the upper and lower limits and prints the
number of words available for programmer use in both banks, " In addition,
the addresses of the {irst word and last word of the available area are
written on the standurd output,

In the FORTRAN Tanguape under the SCOPL PES Operating System, all available

core not utilized by the problem program and its associated system subrout ines

is used for input/output buf'fer storage. Thus, the information printed by
subroutine STORAGE reflects the amount of available core after the buffers
have been allocated. As o result, the most useful information returncd by
STORACE is the upper Timit in both banks. The true amount of avarlable
storage {1, ¢, ighoring the arbitrary length FORTRAN 1/0 buffers) is equal
to the amount of corc {rom the lowest available stovape location* to the
upper bound printed by STORAGE, Tess the nmount of numbered common in the
program.

For example, if STORAGE prints upper bounds of 40001 (octal) and 31645 foctal)
in banks 1 and 0, respectively, and the lower bounds are 1 oand 21045 (octal)
in the banks, the amount of available core is 20480 words (decimal) i.¢.,
40001, - 1 4 31“45q - 2]0458). Any numbered common in the program must be
subtricted,) :

Subroutine STORAGE is illustrated in figure 73,

*In bank one, the lowest available Jocation is 'y In bunk wero, th
towest available location is the first focation following the resident
monitor in bank sero.

T

e hee

STAI

")

Call
GETLIMIT

Y

Do
for Each
Bank

lDo

Calculate Core
Available
and Print

o ¥

Add
Amount to
NTOT

Subroutine STORAGL

L)
(¥
[2

Print

Total

Core
Available

o

v

T

——

LTI ETTRE 2

Py

=4

e

s

BT e

Y
i
Iy

FUNCEITON T IMEDAY
PURPOS): To obtain the current time of day.
ENTRY, POINTS TIMEDAY
FORMAL PARAMETERS ; X - A dummy parameter
COMMON - 13,600 None
SUBROUTT o LI TIMI:
Method

This asscmbly lanpuage function is usced to get the current time of duy in
24-hour ciock format. The eipht characters that are retarned are uscd as
follows: first character, blank; two characters, hour; two characters, min-

ute; two characters, scconds; and one character, blank, The system miacro

PTIME §s used to retriceve the time of day in this format, When called fron
a FORTRAN program, the result is returned in floating point.
Function TIMEDAY is illustrated below in fipure 74,
C STARY ’
i Cialize o CShire Time
Address] M: ‘I_"h,lll_(l‘h"_ [Into
L Painters aere Y ' Accuamulator
RETUHRN)
N
Fig. 74, TFunction TITMLDAY
JA3

im st

SURROUTINE 1 IMEME '

PHRPOSE: To vecord and print dilferential and camulative
differentiol time inter#ls,

e R G S WITEWT AT W)

t
ENTRY POINTS: TEMEM:
FORMAT, PARAMITTERS I~ dnteper vartable used as desvribed below
: RS AL SANA LA
: COMMON BLOCKS : None
; S ITUTL AR
}
{ SUBROUTINES CALLYE D GETCLOCK
h P !
(Mcthod ‘ e
The formal paramcter is ased as Collows:,
: b =3 Reactivate clock G
v [= -2 Deactivate clock
i
P P . o '
] = =1 Iitiabize TIMEME
e . . o . : : .
| O Print differential, comulative difTerential, and clapsed times
Pl Place differential and cumalative dilfferential times in cell |
i TIMEME i used in QUICK to obtain the ditforenial and cilative exeoation
times of different stapes of a:propram,. A cali on TIMEME with | - -1
inttialiaes Tts internal clock, Sabscequent cal 18 with Lo 10 wil)l record
Phe dirferential time in the Tth ditrerential time cof b amd will add the
3 differential time into the cumulative differential time coll, Lor caample,
to obtain the seporate ranning times for theee stapes of program, one
would coll TIMLME with 1o -1 at the hepinning of the First < tape to
inttialize the timing, A call with 1= P at the end of " thin stape
would cause the clapsad time to he recarded in cell’ 1 of the differential
time arvay and to be added into coell 1 oof the camndative Cime areay . Calls
with 1 - 2 and 1= 3 at the end of the scecond ard thpd slapes, respectively
would similacly Cill the sccond amd thivd cotls of the two arvays. Notice
that T is used asoa Tabel for the cells, not as oo iteration index.
s porsibbe to exclude time used for drrelevant operations by weing cal s
with 1 -2 and 1 - =% at the bepit Sing and end of each ivrclevant operat ion
to "tarn of 1" the internal clock, For example, i1 one has o print sdbrontine
which can be catled at any time to produce debup printa, these print times
RN

e

Fae

e e

can be excluded from the ruoning times by makiong o call with | = -2 gt the
beginwing of the print subroutine snd a call with | = -3 at the end. This

caases the time cetapsed daring the print routine to be subtracted {rom the

differential time of the calling stage of the program,
Acall with | = 0 causes the differential and camalative dilferential time
areays to be printed, as well as the total tiae, the time fost, and the s
of these twa, or the total clapsed time,
Three crror warnings may be issuaed rom TIMEML::

. JLLEEGAL TIMEME CALL 1~ (X)

(it 1 = 10}
2. ERROIC < STOP ATTEMPTED WITH CLOCK ALREADY STOPPED

(if two successive calls with T« =2 are made without an interven-
ing call with 1 = -3}

5.0 BRROR - RESTARE ANPTEMITED WETH CLOCK ACTIVE

(if two successive ealls with 1= =3 are made without an intervening
call with | = -32)

After cach of these messages, the subroutine returns with no further processing,

Subrontine TIMEME is itiustrated in fipgure 75,

-

NIRRT e e

.

CURTIM -
GLTCLOCK (Thimmy)

TIMLLOSTS
CURTIML-STOIME I M
+TIMLLOST

—

DTIME(1)
CURTIML-OLITIMI:
<TIMLLOST

!

TTIM.([)=
TTIME(T)+0TIML(T)

'

TOTAL
TOTALSDTIME (1)

—

OLUEIMY =C0Rg M

ST M ~Clik) 1Ay

!

TLOST= L LOSIT
«TIMLLON)

TIMELOSI: 0

R} (RN

-+

Leror I'rint

CALL 1e(0)

TLLGAL LM

3]
(Trisny,
Ke)

SUM =
TOTALTLOST

4
Imitiaiace.
LML () }s0
TTIME:{J)~1)

Jel N
OLDT UM LA,

TIMELOS =0
ISTOF=)

y
(et)

RIURN

y

-{ i :;!;D

-

fstar:n

4

y

ST M <
GIETCLOCK (Dammy y

TIME LG -
FTMEENS TG FOTOCR
(hamey) - s 108 1)

[TO]

Y

RI“TURN ’

4
15100 1‘
1

Rl TiRN

Error Print:
RESTAIT ALIIMIMHID
WITH CLOCX AU I

RETURN

Subroutine TIMIM

rror Prant]
STor ALt n
Wil clor
AR ADY

RITIRN >

SloE

ey

SHBROUTINE WRETEDIR

k PURPOSEE : To write a data pase directory as contained in
common block JDIRFCIRY/ onto o speci ficd Tile,
ENTRY POINTS: WRITEDIR, WRI'TEDR ;
i
FORMAL PARAMIITIERS FEAPX - Logpical unit number of the file on which
the directory is to he written
COMMON B1OCKS : DIRECTRY, 111", TWORD
SUBROUTINES CALLED: SEFWRITE® | WRARRAY *, WRKORD
3
Mcthod
This subroutine writes the contents of common block /DIRECTRY/ on unit
FEAPX. Subroutine WRETEDIR is illustrated in figure 70, As indicated,
the filchandler subroutine WRARRAY is called to write the contents of
the arrays described below onto the desipgnated unit. Maviug transferred
these data, .the end of the directory is sipnalled by writing the word
ENDIRECT on the output file using subroutine WRWORD, i
Lo APINAME: This array contains the name of cach defined attribute,
2. 1FORMAT: This array contains the conversion format (e.g., 18) to
convert the value of the attribute to output (printer) format, f
3. 1com:: The array code numbers (between one and sceven) which ‘
specify the type valuce (c.pg., floating point number) for cach
attribute and the method of checking (runge, list, or none).
4, DEFAULT: This array contains values which are to be associated
with any attribute when it is not dJdefined for an item,
3 5. NI, N2: These arrays contain cither the minimum or maximum
3 values for the attributes in the case of range checking, or the
beginning and ending indices to a list of all possible values
for the attributes that specify list checking., Thesce arrays are k

unused when'no checking is called for.

6. LISTCHEK: This logical array is sct to "true” for list checking

YSee filchandler subroatines,

7. LGILOB: This togical arpay is set to "tpoe™ when o plobal
definition is in force and set to "false" otherwise,

T T

Ko LISTVALS: This array contains the acceptable values for

attribute to be used in bist cheeking, I this mode of checking,
1 the attribute value is pestricted to a specificd Hiot, For
eximple, acceptable values of the attribute SIDE might he Limited
to RED and BLIE,

3
'
v
r

c ok i

238

: — | P T ALIAY
~ - Comput.e Numher ("tltl)lwtli"t\:j}‘m
START of Words in e
—— - ‘ > . R ‘—" Array
Lopical Arrays LISTCIEK
Set 1P - ‘ - I
to Output Call WI}ARRAY Call 'w‘l_{M:\RAY
File Number to Write to Write
] Array Array
¢ ‘¢ ATTNAMI, GLOB
E Call i
E SETWRITE to Call WRARRAY Call WRARRAY
‘ lx11t.1'.:1llzc to Write to Write
g. File Array Array
g * TFORMAT LISTVALS
[Set TIWORD lqual
: to TDEEF Number Call WRARRAY Set ’
of Attributes to Write TIWORD
in Directory Array to
] oD INDTRECT
i 1CODE ENDTRIC 1
Call WRWORD ‘ *
3 to Write Call WRARRAY Call WRWORD
: T'TWORD to Write to Write
g on TP Array T'TWORD
i DLFAULT on TP |
Set TTWORD LEqual ‘ A .
to Last Location Call WRARRAY RIETURN
of DIRECTRY to Write o |
Common Block Array i
l N1 .
! !
Call WRWORD :
to Write > Cﬂll"\\'l.{l\l\{R/\Y
3 L'TWORID to Write L)
i Array :
N2 ;
E.
Fig. 70. Subroutine WRITEDIR
130 “

bl
i
sl L . N IR P S O S S VN TR . CUUPI I SSIE I ‘J

CHAPTER 5
PROGRAM QUIKBASE

PURPOSE

The main purposc of program QUIKBASE is to crc te a game basc file,
composed of a number of items detined by a set of attribute-value pairs,
which defines the data basce that will be used by succeceding programs in
the QUICK system, In addition, program QUIKBASE has the capability to
create or to update a data library file, as well as the capubility to
print the game base file in a format which is meaningful to the user.

INPUT

The input to program QUIKBASE can be separated into four major catcgories:
program option cards, a data library file, update command cards, and item
update files. These inputs arc merged to create the game data base filc.

Program Option Cards

These user-input parameter cards speccify the mode of operation of program
QUIKBASE. The four major options are: creation of a data library file
from card images (SUTID option); updating of a data library file to
create a new library file (UPDATL option); gencration of a game base file
from the data library file (QUIKDBG option); and printing of the game
base file (PRINTDB option). These options may be exercised singly or in
groups to perform the desired operations. LEach option has a series of
subparamecters which control program operation (c.g., printing) during the
exccution of cach option.

Data Library File

This file, named DATADB, contains a series of card images with the
addition of card identifiers consisting of a set number, a linc number,
and an update identifier (e.g., the date). The card images arc divided
into sets, cach with a unique number. Within each set, cach card is
assighed a consecutive line number. Thus, each card is uniquely defined

p——

T

g o e e

gy

T

by its set und line number. The update identifier is an eight-character
word which aids the user in determining the run which introduced the
card into the data library file,

In some applications of program QUIKBASE, there is no existing data
library file. In this case, the SETID option may be exercised to
create this file from a card deck or a tape containing BCD card
images. The input file is then called the DATAFIL,

The card images on the data library file (DATADB) are data base creation
cards, This set of cards is constructed as follows:

1. Directory Card Images. The set of directory cards is in the
format of cight words of 10 columns each with all quantities,
including integers, left-justified. Two commands appearing in
word onc are recognized: ADI and ENDIRECT. The ADD command
is used to add a new attribute to the directory and is followed
by cards containing information about the QUICK data basc

attributes. The BENDIRECT card terminates the dock of directory
cards.

2. Dbata Base Card Tmages, The ENDIRECT card is followed by the
deck of item cards, Four commands are recognized: DEFINE,
ITEM, UNDEFINE, and ENDINPUT. The DEFINE command is used to
produce global definitions; i.e., attribute values which will
remain in force until removed by an UNDEFINL command., Words 2,
4, and 6 contain attribute namces, while words 3, 5, and 7
contain their associated values, A blank word terminates the
sequence, The ITEM command is used to provide values of attri-
butes for the current item only, Words 2, 4, and 6 of the
card contain attribute names, and words 3, 5, and 7 contain
their associated values., Subsequent cards contain attribute
names in words 1, 3, 5, and 7 and values in words 2, 4, 6,
and §. The sequence is terminated only upon detection of a
command in the first word of a card. UNDEFINE removes global
definitions. The names of the attributes to be undefined

occur in the remgining words of the card. ENDINPUT terminates
the deck of items.

Update Command Cards

These user-input parameter cards specify the mode of operation in the
UPDATE option. They specify the placement of new cards in the existing
data sets, as well as the input medium for update information, The
basic UPDATE commands are REPLACE, DELETE, and ADDAFTER. The REPLACE
comnand requests the update card image to replace the existing card

241

. L A ot S e HFPUS YTV TR et e At e I e sty St
ey tot pimemged T s s

k
b
b

v
T

image on the data library file. The DELETE command removes a set of
card images from the data library file. The ADDAFTER command inserts
a number of update card images onto the data library file. These
major communds have scveral suhcommands which control the printing of
information and the input mode for the update card images.

Item Update Files

These files (there may be up to four files used in any single run)
contain update card images to be inserted into the data library file,
The format of these files is cither buffered data (56-word physical
records) prepared by program DELDLESIG or CARD images on tape prepared
by program DATABACK. These programs support, but are not a part of,

the QUICK system. The efore, they are not discussed further in this
manual.

ouUTPUT

There are two major outputs from program QUIKBASE: an .pdaicd data
library file (updated DATADB), and a game base file (QUIKDB).

The updated DATADB file is in the same format as the original DATADB
file. It consists of a serics of card images with two words appended
to each image (see table 4). The two words are the set number and
line number (both contained in one word), and the update ideniifier.

The QUIKDB file is the data base that will be used by the succeeding
QUICK programs. It consists of a directory, which defines the
structure of the attribute-value pairs, and a series of items defined
by a set of attribute-value pairs. (Table 5 shows the format of the
data blocks on this file.) This file contains most of the information
on the weapon forces and target systems that will be used in the game,

The conversion of the data library cards to the data base items is
discussed in the next section.

242

Table 4. Data Block Format for DATADB File

WORD DESCRIPTION

1 Columns 1-8 of card image.

2 Columns 11-18 of card image,
3 Columns 21-28 of card image.
4 Columns 31-38 cof card image.
5 Columns 41-48 of card image.

6 Colunns 51-58 of card image

7 Columns 61-68 of card image.

8 Columns 71-78 of card image.

9 Set and linc number. First four
characters arce set number; last

four characters are line number.

10 UPDATE identifier.

CONCEPT OF OPLERATION

The main processing tlow of program QUIKBASE is best viewed as consisting
of four separate steps or options. Not all steps need be accomplished to
create the guame base file. The . slection of the options to he exercised
in each run depends on the form of the input and the desired output.
Since a complete run of QUIKBASE could include ail four options, this
section describes the operation as if all four were to be cxercised,

Creation of a Data Pibeary File (SFTID) Option g

This option reads an input file of card images and creates a data librar
File. The input sct of card images is divided into subsets, hereinafter
calted sets, ohe division of the input file Into sets is not merely for

addressing convenience. The (UICK Lita base concept allows for Yglohal®

BLOCK TYPE

Table 5. Data Base File (Logical Record Format)

ARRAY

Directory

Item

DeFine

Undefine

Terminator

IDEF
ILASTLIST
ATTNAME
IFORMAT
1cone
DEFAULT
N1

N2
LISTCHEK

LGLOB

LISTVALS

NI

TNITEM

NI
L,
VALUE

NT
L.

VALULE

NI

1

1

IDEF
IDEF
IDEF
IDKE
IDEF
IDEF
IDEF

IDEF

LASTLIST

2*N1

244

DESCRIPTION

Number of attributes

Number of entri¢s in valuc list
Attribute names

Hollerith format codes

Error checking code

Attribute default value

Minimum allowable attribute valuce
Maximum allowablce attribute value

Logical array to specify list
checking

Logical array to specify global
definitions

List of values to be checked

Number of attributes defined
locally for this item

Array containing attribute index
(from directory) in odd elements
and attribute value in even
elements

= .1 as DEFINE block indicator
Attribute index from directory
Attribute valuce

= ~2 as UNDEFINE block indicator
Attribute index from directory

New attribute value

= ENDDATA as terminator block
indicater

N ot ke e TSR T AP SNITRIE VLIPS Lo

definitions of uattribute values., That is, un attribute can be defined
(by a DEFINE command) to rctain a vulue for a number of consccutive
items, This capability allows compression of the DATADB file without
loss of information, since the value for globally defincd attributes
need not be repeated for cvery item. The global definition remains in
effect until either an UNDEFINE command is encountercd or the end of a
set is rcached., Thus, division of the input file into sets determines
the maximum range of globul definitions. A global definition cannot
exceed onc sct unless it 1s recrecated by a new DEFINE command.

In addition to division of the input file into sets, this option appen!s
a line number and an update identifier to each card image. The line
numbers run consecutively within each set, heginning at one at the stuart
of cach sct. lluch sct may contain no more than 9,999 card imapes. The
update identifier is an cight-character word which identifies the run
which Inserted the card image. Table 4 shows the format of the data
blocks in the data library file, DATADB. There is one data block for
cach card image,

The user options concerning set divislon arc discussed In the description
of subroutine SETID,

Updating a Data Library File (UPDATE Option)

This option repluaces, deletes, or inserts information on the data libravy
file, DATADB. The output is an updated DATADB file in the same format as
the original DATADB file. The update communds must be in the same order
as the information on the DATADB file. Therefore, the process used in
this option is very simple.

The program reads the DAVADB file one image at a time. TP the sct and
line number of the input image does not mateh the set aml line number
of the next update command, the current image is written on the npdated
DATADB file, The next card image is then read from the DATADR rile.

I the set and line number does match the set and line numbev on the
next update command, the program procecds to rovise the card imape,

1f the command is REPLACE, the update image replaces the input image on
the updated DATADB tile. 1t the command is DELETE, no information is
wpitten on the DATADE [ile. 1 the comuand is ADDAVTER, juformation is
mserted after the current card image on the updated DATADE file,

i

L’ il un bt o]

[P

s T

et s T

g

bata Base Generation (QUIKDEG Opt.on)

This optzon produces the QUIKDE file, 1t may be run concorrently with
the UPDATE option, since a data hase is generated on a card-hy-card
basis,

The QUIKDB Iile consists of a number of data hlocks s defined in
table &, The first block on the file isx the DIRECTRY biock. There
is only onc DIRECTRY hlock on the file. This bhlack defines the attri-
bute names and characteristics. [t provides a summary of infurmation
which will be used to determine attribute values. In particular, the ;
DIRECTRY detines the position of each attribute in o value array (VALUL Y.

in addition, the mode of error cheching for cach attvibute is determined

by intormation in the DIRECTRY,

The DTRECTRY block is followed by a number of 1TEM, DEFINE, and UNDEPINDE :
hlocks. Bach separate data base item generates one I'TEM block. Bach '
global definition geanerates one DEFINE block. luch romoval of a global
definition gencrates an UNDEFINE block. (These blocks are vencerated by
the data base commands of the same names,) The DATADE filce is terminated .
by o terminator block. The command BENDDATA generates this hlock,

The process used to zencerate these blocks is straighttorwvard. The
directory comnands ADD and ENDIRECT to generate the DIRBECTRY block.

The description of subroutine NEWDIR explains the use of these commands,
The ITEM command generates one I'HiEdM block., Bach BEFIND or UNDEFINE
commang generates one block (DEPINE or UNDEEINE, respectively) for cach
attribute listed. The description of subroutine NEWBASE explains these
conminds .

Printing of a baty Base File (PRINTDR) Option

The data base file QUIKDE may be printed in a readable format as it ie
crcated in the DPHATE optlon, or separately theough the PRINIDE opticn,
In cithor casc. cither subreutine PRNTREASE or snbroutire PRNTPTA ia
wsed te print the attribute-value paivs. The desived dever of detad]
detornaes which subroutine is used. The descoriptoion ol these atiltity
subprotit cnes eaplains the printing provess,

e T S

e X

~

IR I U A N U SR L R RO TSR TR IR ET U0 P FEIE PN *...A{.J,.AAJ

L

i

4

IDENTTVZCATTON Qi SUBROUTINE FUNCTIONS

Provram QUIKBASE is the main control program. ‘This subprogram rcads the
program option cards and calls the appropriate subroutines, Figure 77
ts o Plowchart of program QUIKBASE,

SETID Opuion (Creation of bata Library Tile)

All the functions of this option are performed by subroutine SETID

UrpAV L Uption (Updating of Datr Library File)

Sunroutine FASTSET is the main controller for this option., 1t culls sub-
routsnes INTFFAST and NEWDATA to initialize the variables and arrays used
in this option, Subroutine INPRTCL reads and interprets print requests,
The vpdate commands are read by subroutine CARDUK. They are interpreted
by stbroutine NEWDATA (entry NEWCARDS), and their correctness is checked
by subroutine CAPOCK. 1f some of the input information is containced on
files from prograa DELDESIG, subroutine BUFFIT is -sed to read this
information, Subroutines MOVETDT, [PRINT, ADDSET, QUT, COUNTDHS, COPYDE,
PRICONT, and TLOOK are usced to perform minor utility functions for this
option,

QUIKDBG Option (Duta Base File Creation.

[f the data base is created concurrently with o data library file update,
subroutine MAKEIT controls the data basce gencration, UOtherwise, sub-
routine MAKERAS is utilized. The data base directory commands are inter-
preted by subroutine NEWDIR, (The DIRLECTRY block is written by utiljty
subroutine WRITEDIR,) The data base item commands ave interpreted by
subroutine NEWBASE, (The data base e blocks for these commands are
written hy utility subroutines OUTETEM and OUTWORDS) The terminator
block is ocutonr by tifity subroutine INXPDATA,

PRINIDE Optien (Printing of o hata baze File)
——ar = earm et oAb ettt v em e m—— e = = = e N mm e m—— ——— - et

Hothe only option exercised is the YINTDR option, suliroutine PRONDD
controls the mode of operation, Otherwise. subrootines FASTSET or

SARKEBAS will contpeol printing. The actual printin, of the data bise

file is pertormed by utility <ubroutines PRNTEASE . PRVTDTA, and PRITEM.

kb e

l"‘l' o

o

K

1
i

COMMON BLOCK DEFINTTION

External Common Blocks

Program QUIKBASE references the following utility routine common hlocks,
which are described in appendix A of this manual: /DTRECTRY/, /ERRORM/,
/FILABEL/, /IFTPRNT/, /ITP/, /MPRTOPT/, /MYIDENT/, /MYLABEL/, /NOPRINT/,,
/PRTOPT/, /TODAY/, and /TWORD/. ' . .

Internal Common Blocks i

Table 6 1lists the common blocks used within program QUIKBASE and

identifies the associated arrays, . i
' ']

28

4
4

BLOCK
' B
HTST
1
g 1CKTST
i
f-
R
TCONTROL
TDES1GS
1
TENDSET
|

Table (. Program QUIKBASE Common Blocks
(Sheet 1 of 5)

VARTABLE

OR ARRAY DESCRTPTION

NSAVE Array to store defined attributes and values
during defuult run

N& Array for storage of attribute names from
directory

NOPSUSD An array in which the option specificrs
(e.g-, UPDATE and SETID) are stored in the
order they are exccuted

NUSED The number of options called for during one
QUTKBASE run

FCKTST Set to O if attribute vzlues are to be
checked agninst the data base dircctory;
set to 1 if input data card indicates
checking not desired

1COM 1 Aif JTEM; 2 if DEFINE; 3 if UNDEFINE; 4 if
ENDINPUT: 5 it none of the above

IDESTGS Avray where alphabetic part of tarpet Jdesig-
nators is stored

DESTGNO array where tarpgets arce counted by regron

TENDSET True i all DATADB has been read; false if

net

RN

i 2o .

B hdmma

ITSTUKRY

INSTDE

JDESTEST

KKSET
¢

1OGFLAG
j
b

MY GOODS

VARTABLE
OR ARRAY

Table 6., (cont.)

(Sheet 2 of 5)

DESCRTPTION

I'ISTUrF

IWS1DL

JDESTEST

KKSLET

LAST
T1CNT
TAPEIN
1ADD
DL
REPUT
ANDTT

TERROR

NLINE

ISET

Array where buffered data are read and stored

Hollerith print constants RED and BLUE

Position of DESIG attribute in ATINAME array

Sct to 1 or 2 to control storage of target

designator codes

TRUE if LAST update item has been read
TRUE if there is an unprocessed update card
TRUE §f BCD tape data to he added

TRUE i1 last control card was ADDAFTER

TRUE if last control card was DELETDE

TRULE 1§ last control card was REPLACE
TRUE 16 card in batfer is to he added to base

Not used

Line muher of ¢arrent DATADE line number “

set number from update tape item: e, set

to be wmadi Fied

Table 6. (cont.) »
(Sheet 3 of 5)
VARTARLY
BLOCK OR ARRAY DESCRIPTION .
3
MYGOOLS (cont,))
JSET Sct number of current DATADE sct i
NEWDATE Run identification (if given) from update
tape item
SYINPUT ENSTULE Array where auxiliary data are read if whole _
items or sets are being added
|
i
MYOUT OUTSTUEE Array where DATADE jtem is read and used j
i
MYPRINT [STAR Blank if old data item; * if new data item
NDEFINE TRUE (or FALSE) if last item was a define
card
NUNDEE TR (or FALSE) i last item was an unde fine
card
NTArES ENUNTT Tave mmber of auxiliare data; read in oo
cdit command card
JTLN PATADB tipe numbers sot from ExTAPL
LT DATADBUE Cane numbery sot Prom SO LN ()
NTAartonr QAULKDE tare aumber (data et Lo 7
NELCARDS lomporary storgee Cape Tor cdit commandd

vards tdata cot 1o 1o

. . ; ST e s reiy ‘».'-.j
. . . rese ST =
< N " —ih . . e exeaac
. . . e . . - : FT TS SO T W SRAPET TR B
. TR I)) (o

Table 6 . (cont.)
(Sheet 4 of §)

VARIABLE
BLOCK OR_ARRAY DESCRITTION
NEWSET NEWSET Scet number to be assigned to new scet, jf
present
!
; NODESTGS NODES TGS Total count hy side of tarpet designator codes 4
f NOERRORS NOERRORS Error count of odit command card errors
b SAHEOE - . .
v Aol 2nd, 3rd, and 4th ficlds on LAST card ot
? NRPHONL edit deck; usually name and phone number of
% IYANTRU person who submitted jobs
!;g,
r
' NOTES'T NOTES Switch to control data checking; O to check, "
! nonzero 10 no choekhing required
i
; OPTTONS NCON Array into which option card is read; NCON(O)
i .
E passced on as date cevident
f INTAPE Input (primary) tane for the run
i \DOUT Cutput (primary) tape for the ron
F(Nour2 Second vutput tape (if any} for the run
NPR it print =clected; 201 not)
f
NN Beginning line number of SETIH set
NOPSHT Option switch for SETTD; I=defoult, 2=side, '
S=class, d=<ide or ¢lass, S=manual
E

: T DV S M- RS ey R S

3

BLOCK

OPTTONS (cont.

SETIDD

VARTABLLE
OR ARRAY

Table 6 . (cont.)

(Sheet 5 of 5)

DESCRIPTTON

)
ISETS12

n

INDEX

JNDEX

TAUTO

Largest allowable line number in o set made

by default option of SETID

Array where set number to be printed is

stored

999Y if all scts arce to be printed; 0 if
none are to be printed; count of number of

scts to be printed if list read Lu

0 if no sets to be printed; cqual to INDEX
if list read in; ocqual to number of scts
updated i 1AUTO=1

1 if updated sets are to be printed; 0 if

not

U

(START ’ NouUra=o0
' IF A, P oure 8
o ' :
\
. [No
i Read Card) .
. :
% R(AS,2X1) { vor]
i NPR=1
| A
" Yes —L
] et
: Is First . / Is '
l Ward 2 First bord \o . Is . -\
‘ OPTION? nord 3
1 /

l..‘\l"., ﬂ-

Yes \No

_ Yoy
Iy Word 2 hal
Call f

sSETIDY ALORT] NP'R=32

N PRTNTY

£

i

No i
: 201 ¥ :
, 21

s

4 No s M You {
. Ward ¢S .
: 202 Kord 2 t PRI :L'l!r';'l . NPR=3
! UPDATE? R '
4
; No /
‘ [~

Is
Word
Blank~

‘{‘_ No NQITAP = 0

1

Are Pirst
[.etters of
wWord &5 IaPL?

Set 6th
Word=late
CETUNTE

T :
e

B

R AR kit it -

- ot i . it b v e ndil oA Col i anataba e
[VR ferale bl 3 0 ke PRENFERACOMRS It s tuh, RN T S S SO S SO T S LTSN SN

'
h
"

Decode and Check Tape
Numbers; Rewind
all Specificd Tapes;
NOPTAP=Numher
of BCH Tapes

ws Y

Is NUPTAP< g9

Yes

Print J
Error
Messape

Yes

Print
Frror
Messape

'y T teont,
(“heet

PN
D

Are First 4
Letters of word
O BUFE?

MOPTAP=0

'

Decode and Check
Tape Numbers: Reowind
ALl Tapes Speciricd;

MOPTAP=Number of

Buffered Tapes

——

Is MOPTAP-0?)

404 No

INTAPE=4
Print
Run Paramcters

-

Lall
AR R

D,

ool by

ST i

e L

Call
GETDATE b

| Noi

g

Tape
Input?

Date or
Identification
Given?

Y
es Yes
6 Y
INTAPE=10 Determine

Set Division _'_,

Option

‘ — -

No / NOPRINT e
-4—-——-——~<i5ulcctcd? INTAPE=60]

Yos! NOPSET=
V !7 TaMAXSET

A=SIDECIAS
NPR=1 NIR=2 (DEFAULT)
s §eMANAL

\
\ BACKLR
Desired? Line huxbersl
Yos
) \
- \
NOUT2=9 NOUT2=0
Print Run

- V Parameter 3
;] _ i
3 NOUT L=] Y :
; Y Call 4
’ L SE1ID :
e— ()
: G
:

e TTD 0 Jeont)
4 (Sheet 3 of 1)

v ar

L LN LT WS R

500

Is Word 2
QUIKDEA?

Call *
MAKL:BAS _5(70)

Is Word 2 600
PRINTDR, Call
PRNTDATA, PRONLY

or PRNTHB?

Print
Error
Message

Call
ABORT

Fig. 77, (cont.)
(Sheet 4 of 1)

SUBRGUTINE ADDSET

PURPOSI:: To add a set number to the list of sets to be
printed,
ENTRYAEQjNTS: ADDSET
. FORMAL PARAMETERS @ I - The set number
: COMMON BLOCKS : SETTON
SUBROUTINES CALLED: TLOOK
: CALLED BY: CARDCK
i
Mcthod
b Subroutine ADDSLT adds a set number (I) to the array ID and increases the
3 pointer (JNDEX) under which the set number iIs stored., An error message
is printed if more than 50 sets are requested. Subroutine ADDSET js
5 illustrated in figure 78. 4
1
E
!
:
i
i
r
: i
258 !
{

r i a1 'L .. - J
S e LLa s U COVINEY -
L =N Al ! H L) A T L NP R) st " B TR TR A L PRI Y Lo o a0 A W] AT DL i} . - <
") axl i /1 2 s :

L e

e S

1

i . RN (LN TV A
e e I RSO

START

Call 1LOOK

to Be Printed

Determine Sets

Is This
a New

Set?

Has Maximum
Number of Sets
Beeon Stored?

No | Add Set Number !
to Increase : RETURN 1
Number of Sets

Print
Overflow

Message

L

Fig., 78,

T 7

e

SUBRGUTINE BUFFIT

PURPUSE : To read in buffered data and to return one logi-
cal record (eight words) to calling program.
ENTRY POINTS: BUFFIT
FORMAL PARAMETERS: IDONE - Flag to show end of tape data;
0 if not done
1 if done
COMMON BI1.OCKS: I'PSTUFE, MYTAPLS, MYGOODS, MYINPUT, MUWSET
SUBROUTINES CALLED: None
CALLED BY: NEWCARDS
Method

Subroutine BUFFIT reads a physical record of 56 words (seven cight-word
items), compurcs the set number of buffered data with the desired set
number and, if they are the same, returns a data reccord to the calling
program through common block /MYINPUT/. 1If a rccord is heing returied,
the formal parameter IDONE is sct to 0. When the data for the set arc
exhausted, either because the end of set or the cnd of the data is
reaxched, IDONE is returned as a 1. If a parity error is cncountered on
the input tape, an error message is printed and the job is terminated.
Subroutine BUFFIT is iliustrated in figeve 79.

200

Ad

R0 R A

‘ START ’

e ()
G

Ruffer in
56 Words
to TTSTURF

? Y
Check Status of I
Unit Used in
Buffered Operationg

Wait Untii Tape
tnit is Ready

Purity Yoy
Error?

Print
Error
Messagpe

3 No
) ’ /JiL)
“ffhffi ;r qm Fnd of \Yes Rewind
ot - Hle? S
Eighth Kol File? lape
4 4
Set 160
= False
, 12
Y = 13
MSLT < M, Ny <:J€k Set INONE
AT TCN . o pe Space N
o1 ‘n‘,n;-x.xl / e j 7 N i
Yos e smn e

Fig. 74, Subroutine RUFETT

(Sheet 1 of 2)

261

-»{ slop)

'

Se

log

Set

t foirters
for Neat
1cal Record;
TGO & irue

4
RETURN)

' 3
{
/
\
F] |
1
Wl
'I
' }
. ['
i
5 ' :
: Sct Lighth . .'_
Bord = Blank 6 ™
6 —] ‘ ' -
L S 7 8
Is logica! . Move Data to ¥as This Last
] I Recard DO el prirst Bight Wordspmes Logical Record
; Blank? of INSTUFF of Physical
': , . Record? ‘
? Yos) . No .
§ 10 : ! .
Is Buffer ! Resot | Set Polnters ; : :
Done? Pointers for Neat lopical
—““'—-]———- - Record |
l_"_ : : H 1
110 y .]
. Advance (RETURN
i, lg—-| Pointers ' ' !
R
: .
v - \
: ;
b
!
?
1
1
b
;
£
E
3
. .

Fig, 79. (cont.)
(Shget 2 of 2)

202

o

PURPOSL :

ENTRY POINTS:

FORMAL PARAMETLRS:

COMMON BLOCKS:

SUBROQUTINLS CALLED:

CALLED BY:

Method

SUBROUTIND CARDCK

To read in and store on a scratch file all of
the user-input cditing commands and data base
updates to be used to modify a DATADB tape,
CARDCK

None

OPTTONS, MYTADPES, NOERRORS | 1)

ADDSET, FILEINR, NUMGET

FASTSET

Subroutine CARDCK reads in a card, determines Uf it is an editing commund
(c.g., ADDAITER, DELETE, REPLACE), and takes appropriate action., Noin-
command cards arc assumed to be data base items and are written dirvectly
to tape; command items are cxamined for proper sequencing of sct and line
numbers and for legal commands, Ajl cards are printed. Lrrors are
counted and error messages are printed if illegal cords are encountered,
Subroutine CARDCK is illustrated in figure 80,

]
}
?

i.
i
3
.
r

TR TG e

.
3
:

Gt it A il

START ,

Inttlalice 1lagps
and Counters
LAS TR P2« 00
LASTADE= - 200
NOLRROKS =0

10L04] Tan

TOLDLISE 20

e
e

Kead
ata Card

Is It Contral
Gard?

l.&‘ﬂm.i':-lnu Catl WRARRAY _(t‘
LASTA DD 200 Write Ciard Out

In It
smaller”

His st
Nuher
Changed !

Ky

|)
O]| [T‘“‘F ©

T

e
o

Het Larremt Set to
Nues Hetp Set
[OLDIINL to Zera

01

" Is New Line Sunbet
treater than 0Ll
Lie Nuber?

1es

al *\c:«

333 ’

fict Set Nunbor
From Catd

Get Line humber
Fruom Card

y

Yeu

I's Coreand
aon?

I's Firet letter
of Compand au A?

411

Change A to
ADDAFT LR

Ps tomrand
an R

Yor

Change #
to DLl

IFrint Card

Set Remaining Constante
In KOURHORS Block

!

Change R to
REPLACE

I

Y

Call TLRMrAP
to Tesranate {71P«}Q

Combine AIDAFIER Set
and Ling Number

:

Conbine Card Set
ard Line Suwber

RiTuRs

1

!

Xa Is o New Set
to Re Added”

set LAsl AR
Flag tao - lou

‘Yv.' ~

Get New ot
Nurither

80.

2

264

Is

stk

SElASTAEDT

Inercase Lrror

Lount ana Proant tard

Increase tount
and rrint frror
Mo

Subroutine CARDCK

P T,

5 SUBROUTINE COPYDB
|
é‘ PURPOSE : To make a copy of the updated DATADB tape.
] ENTRY POINTS: CorYDB
FORMAL PARAMETIRS : None
;: COMMON BLOCKS: I'TP, MYIDENT, OPTIONS
SUBROUTINES CALLED: FILEINR
CALLED BY: FASTSET

Subroutine COPYDB copies the updated DATADB tape generated by a FASTSET
: update run from NOUT1 to NOUT2. Copying is terminated by the word
. ENDINPUT. Subroutine COPYDB is illustrated in figure 81.

!B W e

SR N POV

START

Initialize
NOUT1 to
READ

Y

(Imitialize
NOUT?2 to
WRITE

1

Terminate READ
Tape; Terminate
WRITE Tape

: :

i
; »‘
| :
| P
S Fig. 81, Subroutine Copypr |
é
Li‘ 200 ‘

|
| 3
) E

X
.

SUBROUTINE COUNTDS

PURPOSE:: To tally the number of targets by region and
target type.

ENTRY POINTS: COUNTDS

I'ORMAL PARAMETERS : MYBLESIG - The target designator code in A8

formut

COMMON BLOCKS: KKSET, IDESTGS, NODESTGS

SUBROUTINES CALLED: None

CALLED BY: NEWBASE

Subroutine COUNTDS decodes the five alphamerie characters (two letters
and three Jdigits) transmitted to it via MYDESIG into two letters and
three numbers. The integer portion of the target designator code
MYDESIG (attribute DESIG in the data base) is used to determine the
region IREG to which a target class is assigned for summary purposes.
Three regions are considered to be defined as 1-499, 500-799, und
800-999.

The target types, indicated by the dalpha portion of DHESIG, are stored in
array IDESIGS by side as they arc encountered and tallied by type and
region in DESIGNO, a two-dimensional array. Subroutine COUNTDS js illus-
trated in figure 82.

207

(strr)
| .y
§

s

kFCOdC MYDESTG

Is the
Integer Portion
<5007

No / Between
- 500 - 8007

; IRIG = 1

S

’ ‘ Compute Proper
¢ " {Search Parameters
: A for Side

20

Is This
a New Type?

\

¥

k

I

’», Jr——
|

H

|

b

Enter ip ListJ

11

| Increase Count
- of Type
by Region

pLt-

Fig, 82. Subroutine COUNTHS

268

P

SUBROUTTNE FASTSET

PURPOSE : FASTSLET is the main control and monitoring
routine for an update run.

ENTRY POINTS: FASTSET

FORMAL PARAMETERS: None

COMMON BLOCKS: ERRORM, TITP, MYIDENT, MYTAPLES, NOLRRORS, NOPRINT,
OPTTONS

SUBROUTINES CALLED: CARDCK, COPYDB, FLLEINR, INITIFAST, INPRICL,
MAKLTT, NEWDATA, PACESKP, PRTCONT

CALLED BY: QUIKBASE

Method

Subroutine FASTSET calls INITFAST to initiulize all arrays. 1t uassigns
file names and initializes the filehandler and all pertinent tapes to
read and write, If manual print control was requested on the option card,
subroutine INPRTCL is called, Subroutine CARDCK is called to read in and
check all the update data. TIf that subroutine has found errors in the
input deck, FASTSLT prints the error messages and aborts the run. If the
update data have no discernible errors, subroutine MAKETT js called to
perform the major functions of the program. Control is returnced to
FASTSET which again looks for and prints, if present, any arror messuges.
The subroutine to print the target-region summary (PRTCONT) is called
and, if requested, a second copy of the updated data base is created by
subroutine COPYDB. Subroutine FASTSET is illustrated in figurce 83.

2064

e e e e e et e oo it A

lmsm_k—;h. e s

1
5
;
1

AT R T e e

' Call
SLIRRTT
Coll ! - T o
INIIEAST l {ls APR=3? >’“-*'P—,l INPRTCL

ho
JTIN = TR R S
Lo = Nonp) MVIDEAT =
KINCARDS = 1o SUEVICH
JERR = 9 i = Q
ROPRINT = | L J
MY TDENT= S| B R
¢ Calt !
SETY
ol SETWRIT l
INTTAPE
¢ Call
TTP=ITIN (1) CARDCK
MY IDENT =
BHDATADB }

.L-.—;_.._,r —d

y

Call
SETREAD

Print
frrore

Errors
in Update
Deck?

t
=

:\

l’

PEI=1L0UT (0)

; - VAL \.I\'.m(vnl :
calr T _ AT
SETWRIT 5. __LN__
—Fﬁd

Call L
ITRICOUNT A
MYEDE AT - ?
SCRATCH KJ | ——
e = " L rror Hnl
—— Run?
— / Frrors,

. {\ es L

K

|H -y

Cali alutrae J
Call st el

Lesd

Prant birare

Fie, 83 Subrontine FASTSI |

270

MYIDENT - ' ...i‘.’ﬂ:‘.
SHDATADRYP ls Copy
Call of Update _ No

5 :
I :1'1 - Call
o — NEWDATA COryphi ————————

Iring
FASIIA A
Canget et

v

RIEN

PURPOSE: :

LNTRY_POINTS

FORMAL PARAMETERS

CCMMON BLOCKS:

SUBROQUTINES CALLED:

CALLED BY:

© Method

FUNCTION T1LOOK

To examine array 1D (set numbers to be printed),
over [N items, for the presence of I (u set
number). The value of the function is 1, if 1
was found, 0 if I wus not found.

1 LOOK

IN - The number of items to be seanchad
I - Fhe item to scarch for

SETIDD

None

ADDSET, TPRINT

Function ILOOK examines the flug INDEX in common block /SETTIDD/ to deter-
mine if all sets are to be printed. 1f INDEX is 9909, a ! Is returned,
[f the flug is not set, array I[D in common block /SETIDD/ (preset by

INPRTCL and/or ADDSET)

s examined fFor the occurence of . [lunction

[LOOK is illustrated in [igure 84.

271

Is Flag
INDEX=99997

Has I Been
Stored in
Array 1D?

Fig. 4

ILOOK=$ p————

Yes

——1 ILO0K=1

‘»{ RETURN)

2

Function 1LOQK

ILOOK=1 '
RETURN

i

oy
>
e

SUBROUTINE INI'TFAST

PURDPOSE To set constants and clear arrays for subroutines
associated with QUIKBASE,

ENTRY POINTS: INITEAST
FORMAL PARAMETERS : None
COMMON BLOCKS @ DIRECTRY, LERRORM. [CKIST, ICONTROL, IDESIGS,

IENDSET, TTP, ITSTURE, TWSIDE, JDESTEST,

KKSET, MPRIOPT. MYGOODS, MYIDENT, MYINPUT,
MYOUT, MYPRINT, MYTAPES, NEWSET, NODESICS,
NOERRORS, NOPRINT, NOTEST, PRTOPT, SETIDD,

TWORD
SUBROUTINES CALLLED: None
CALLED BY: FASTSET

Method

INITFAST does no camputation., Either through data statements or
executable statements, it prescts constants and arravs to their
appropriate values. Subroutine IN[TFAST is illustrated in figure 85,

Set Common

Variables by
DATA

Statements’

Clear

Directory
Area

]

Clear
. Array
LISTVALS

Fig. 85, Subroutine INITIAST

274

T

SUBROUTINE INPRICL

PURPOSE ; To read print control cards for FASTSET (update)
if print control option was seclccted, and to sct
appropriate flags to monitor printing during the
execution of the main program,

ENTRY_POINTS : INPRTCL
FORMAL PARAMETERS : None

COMMON BLOCKS : TCKTST, SETIDD
SUBROUTINLS CALLED: NUMGET

CALLED BY: FASTSET
Method

Subroutine INPRTCL reads a print control card (option UPDATE) and deter-
mines if the first word is ALL., If it is, flag INDEX is sct to 99990 and
the subroutine recturns to the calling program. If the card contains the
word AUTO, the flag TAUTO is set to true, and another card is read. If
the card is CHECKOFF*, the switch to disable the value checking proce-
dures is turned on and a card is read. if the card is neither ALL, AUTO,
nor CHEC, it is assumed to be a set number or an end flag., The four
characters are translated to digits and, if they are not 9999, they arc
stored in sequential locations in array I until the termination flag
9999 is encountcred. Counters INDEX and JNDEX are set to the number of
sct numbers stored.

The command ALL causes all sets to he printed. The command AUTO causes
all updated scts to be printed in full. The set numbers listed in array
I will be printed in full whether or not they are updated.

Subroutine INPRTCL is illustrated in figure 80.

Only First four letiers checked.

DRI 2% 2 o

1 START

TIAUTO=0
ICKTST=0

(TEMP)
(4CHAR)

6
; Yes i X=0000 .
!
: 12
: T1AUTO=1 -asa-<:::)
% ———
1
3y
; 11
1s it CHEC? ICKTST=1 ————>@
No
: : .i
1ID(1)= |
k- NUMGET
3 (IEMP,4)
3 3,8
- Read and Store
. Is ID(1} \ No Set Numbevs in
3 99997 IDCINDEX) Until
= 9999 Encountered
3 Yes
] , . 1
E INDEX=0 INDEX=Numk:cF of
f, JNDEX=0 Sets to Print
JNDEX=INDEX

—_—

RETURN

Fig., 86. Subroutine INPRTCL

276

it v

o

FUNCTION IPRINT

PURPOSE ; To determinc if & set is to be printed. |
ENTRY POINTS: IPRINT

FORMAL PARAMETERS: I - The number of the set

COMMON BLOCKS : SETIDD

SUBROUTINES CALLED: 1LOOK

CALLED 'BY: NEWDATA

Method 5

Function IPRINT examines the flag INDEX *o see if either all (INDEX=9999)
or none (INDEX=0) of the sets are to be printed. If either condition
exists, IPRINT is set to 1 or 0, appropriately. If INDEX is neither
value, the flag TAUTO is checked for true (all updated sets are to Dbe
printed), or false (specific gpecified sets are to be printed). If TAUTO
is true, the array ID (list of sets to be printed) is searched over the
length equal to INDEX; if IAUTO is false the length of the search is
INDEX. Function IPRINT is illustrated in figure 87,

AT T TR ey

W RERTT

e A N L T TR A S AT AT BT

START

Are All
Sets to Be
Printed?
| No

Are Aﬂy
Sets to Be)-
Printed?

No

= IPRINT=0

IPRINT=21 jr—m RETURN
— RETURN

TLOOK

Set IPRINT
According to
Value of 1LOOK
(JNDEX, I)

RETURN
e v

TLOOK

Set IPRINT
According to
Value of ILOOK
(INDEX,1)

RETURN

Fig. 87.

Function 1PRI

NT

L

PURPOST:

ENTRY _POINTS :

FORMAL PARAMETLRS:

CCMMON BLOCKS:

SUBROUTINES CALLED;

CALLLD BY:

Method

SURROUTINE MAKEBAS

To call the subroutines required to prepare a
game data base tapec QUIKDB from an input data
library tape DATADB when updating of tha DATADB
file is not required.

MAKLBAS

None

ERRORM, HIST, LOGFLAG, OI'TTONS

ENDDATA FILEIINR, INITFAST, NEWBASE, NEWDATA,
NEWDIR, PRNTBASE, PRNTDATA, WRITEDIR

QUIKBASE

Subroutine MAKEBAS is a driver routine which controls the sequencing of
operations required to create the QUIKDB tape when the QUIKDBG option
is exercised. As indicated in figure 60, MAKEBAS calls the filchandler
(FILEIINR) to initialize the read, write, and scratch files., Then,
MAKEBAS calls, in order, the otner subroutines required to write the
QUIKDB tape. In effect, MAKEBAS is essentially the same as a null

UPDATE run,

2749

START

INTAPE = LUN]
or LUNG; e | Call INITEAST
NOUT = 7

Call ALOCDIR

!

C?;;tfﬁi?ﬁiT Call SETREAD
Scratch Files] lnéiix;ézc
9 and 10 !

Call INITAPE

Write

Last on -
LUN10 Call NEWDATA

Call NEWBASE

c ENDD o]
all ENDDATA | pe& (NOUT)

PRN'TBASE
Requested?

No PRNTDATA

Requested?

Call NEWDIR

v

Call WRITEDIR
(NoUT)

Call PRNTDATA

Print
Errors

Call PRNIRASE

RETURN

Fig. 88. Subroutine MAKEBAS

280

Nere
There
Errors?

RIETURN

e

SUBROUTINE MAKEIT

PURPOSE : A driver to call the subroutines necessary to
make a new data base.

ENTRY POINTS: MAKEIT

FORMAL PARAMETERS: NT1 - The tape where the QUIKDB tape will he

written

COMMON BLOCKS: JDESTEST

SUBROUTINFS CALLED: ENDDATA, ITLL, NEWBASE, NEWDLR, WRITEDIR

CALLED BY: FASTSET

Method

MAKEIT calls the data base generation subroutines, NEWDIR, WRITEDIR,
NEWBASE, and ENDDATA, which create the game base file, QUIKDB. Its
only computation function is to look up and store for later use the
index number of the attribute DESIG in the data base directory (array
ATTNAME). Subroutine MAKEIT is illustrated in figure 89.

-

START

Call NEWDIR

;

Call WRITEDIR

l

i JDESTEST=Index
‘ Number of DESIG

in ATTNAME

i

Call NEWRBASE

'

Call ENDDATA

RETURN

]

¢ !
i

i L
g ‘j

IFig, 89, Subroutine MAREDT
]
282 ’

I Sl L

; SUBROUTINE MOVEIT

) PURPOSE : To move update data to output huffer; add
; ‘ the desired data or update identification;
and to add current set and line number to
output record.

;i ENTRY POINTS: MOVEIT
% FORMAL PARAMETERS: IHOWTO - Switch to indicate whether input buffer
: is to be moved ;
COMMON BLOCKS: MYOUT, MYINPUT, MYGOODS
SUBROUTINES CALLED: FILEHNR
CALLED BY: NEWDATA
Hethod

Subroutine MOVEIT increases the current line number within the set by
one. It examines the input parametcr IHOWTO to determine which of two
functions it is to perform. * I{ the argument is equal to a one, MOVEIT
transfers a data record from commoa block /MYINPUT/ to block /MYOUT/.
It next sets the tenth word of. the block to the update identification.
The set and line number are encoded as two four-digit numbers into the
ninth word. If the input argument was a two, only the last function
is performed by MOVEIT; i.e., the set and line number are encoded into
the data record. Suhroutine MOVEIT is illustrated in figure 90.

Fig.

START

Advance Line
Number
- {(NLINE)

No
{ 1s IHOWTO=1 i>~——>

Yes
20

JSET=ISET
Move Card From
Input Buffer to
Output Buffer;
Insert Date of

Update

. |

Add Current SET
and LINE Number
to OQutput Buffer

RETURN

90. Subroutine MOVEIT

284

SUBROUTINE NEWBASE

PURPOSE : To prepare or augment the item portion of a data
base tape.

ENTRY POINTS: NEWBASE

FORMAL PARAMETERS : NT1 - the logical tape number where the basec is

to be written

COMMON BLOCKS: MYGOODS, KKSET, JDESTEST, PRIOPT, DIRECTRY,
IENDSET, ITP, TWORD, NOTEST, ERRORM, ICONTROL,
MYOUT

SUBROUTINES CALLED: NEWDATA, WRWORD*, WRARRAY*, [TLE, COUNTDS,
NUMGET

CALLED BY: MAKL1T

fethod

Subrcutine NEWBASE employs subroutine NEWDATA to read the item portion
of the data base, check for errors, and write cach item on the specified
output tape, NTI.

Four commands are recognized: DEFINE, UNDEFINE, ITEM, and ENDINPUT. 1In
the case of DEFINE the succecding fields on the card beginning in
columns 11, 21, 31, etc. contain attributc-value pairs which arc to be
made into global definitions in which the first ficld of the pair is the
BCD name of the attribute, left-justificd, followzd by the valuc in the
second field. The sequence of attribute-value pairs occurring on a card
is terminated by a blank field.

The ITEM card is as described above except that the definition is local
and the entire sequence of cards is terminated only upon detection of
another command in the first field of a cavd.

The UNDEFINE card removes global definitions with the names of the
attributes to be undefined occurring in succeeding fields on the card,
terminated by a blank.

The deck of input cards is terminated by ENDINPUT which also causes
NEWBASE to return to the calling program.

*See subroutine FLLEHNR,

o
o
w

All cards rcud by the routine arc checked for consistency unless
chuecking has been turned off by an update PRNTCL option card (sec
subroutine INPRTCL). That is, the attribute spucificd is checked
o determine that it is in fact defined in the duta basc directory
and that the value assoclated satisfies any range or list check
specifications for thut attribute. Appropriate crror messages are
emitted when such inconsistencies are detected, The flowchart
(figure 91) consists of threc parts. Part I shows the processing
sequence used in NEWBASE., Parts II and IIl show the operations of
: three local subroutines used by NEWBASE to perform the data checks
: and, if required, to write crror messages. Part 11 shows the local
b subroutines usced to signal undefined attributes (scc statement 110)
{ and to signal an crror in the assigned attributc value (sec statement
' 120). Part 1I1 shows the procedures used to convert and check the
attribute-value pair,

7 g T

~30

D . Iy ST SN e

3
3
1
]
1
)
]

221

START

VTV

Cleur Global
Nefinition
Indicator

Array

111 NEWCARDS
Read New 'd--
Command

221

Branch
Determined by

Value of

1C0M
- Write
UNKNOWN .
\ TERSK = 2 }—- Error
ICOM = 5 Message on @
JERR (SCRATCH
o
Undefine All —
ENDINPUT Global Attri- A1l Data
WOICOM = 4 " butes on Processeid
Qutput Tape .
A0
UNDEFINE
ICOM = 3 B 1 =2 o
e —
DEFINE
ICOM » 2 I =2 26
50 B
ITEM Assign 52
1COM = 1 t=2 to NGHEK [0
Fig, 91, Subroutince NEWBASE

Part 1: Precessing Scquence
(Sheet 1 of 3)

287

Is Field
Blank on Input
~ Card?

No

Assipn 28
to NCHEK

tall ITLE
Look up
Attribute Name

Call Local Subroutine

to Convert and Check

Attribute and Value
(See Part 111

Output
Global
Signal -1

Attribute
Value

Ts Attribute.
Name in
Directory?r

Yes

i
44 -

43,

Assign 45
to NAT

Write
Undefined
Signal (-2)
on Tape

Ouiput
Attribute

Call Local Sub-
koutine to Signal
Undefined Attribute
(See Part I, .
Statemdnt 110)

Set Glohal Set Globul
Definition for O
This Attribute’ Defxn:;zgn Flag

to 1
30 + 45 +
Advance Advance
Card Field Card Field
1 = l+2 I = 1+1

Fig. 91. (cont.)
Part .11 (cont.)
(Sheet 2 of 3)

288

[PPSR R

Call NEWCARDS

l_> ,Read New
Card!

1s the
Attribute
Field

Blank?r
1=
Catl Local Subroutine
to Convert and Chech
! Attribute and Value Qutput Number
(See Part 111) of Pairs
in Current ~
. Item ~
! QUIKDE
| Output All P4
”

Attribute
Value
Pairs

Store Attribute
and Value in
Temporary

Arrays

Advance
Ca;d.Fif;d Call
COUNTDES

Finished
With This
Card?

Fig. 91 . (cont.)
Part 1: (cont.)
(Sheet 3 of 3)

B

110

Lacal Subroutine
to Signal
tndefined
Attribute

120

!

Local Subroutine
to Signal
Value
Error

Set Switch
to 2

!

Set Lvror
Switch

RETURN
Specified by
NAT

Fip, 91, (cont.)
Part

to 2

Write
Lrrvor
Message
an JERR

mnuRTb
Specitfiv :
P LLVAL

Subrout ines

Prror Processinge

Locnl Subroutine

to Convert and

Check Attribute
and Value

Y

Call ITLE
Look Up
Attribute Nume
in Direcrory

Y

Error Flag

Set Lrror
fFlag to O

to |

133

s
Attribute Name
in Directory?
Yes

)

Set l

'
‘
J

all Local 5ub-
routine to

Signal Undefined
Attribute
(See Part 1)

Store Format of

This Attribute
in Decoding
Format Array

Assign 132
to TLLVAL

Is the
Value of the
Attribute BLANK?

780

Is This a
Latitude or Longi-
tude Conversion
(1CoDEa?) ?

Decode the
Value of
the Attribute

770

:

Set the
Converted Value
to Space Cards

790

¥

Assign 530
to ILLVAL

() ‘ Error? L
Yes
Check Values
as Specified Call Local
h * d Subroutine to
: Signal Value
;égle © Correct Error
h [rev 1y 1
Ghecking (See Part 11)
Procedure

¥

810 *No

<

Is Is ¢
the Value No Nu Checking Yes @
Inteper? Specificd?

800

iYes

Call NUMGLT
to Right-
Justify

Integer Value

Fig, 91 . (cont.)

Part 111: Local Subroutine for
Attribute/Valuc Checking
(Sheet 1 of 2)

291

o . - A N i1 - di—*’J

C

Decode
Appropriate Word
to R Format

‘ 780
! Is
3 Decimal Form Yes - Con\éert Word @
:) o o
é' of Lszeg; LONG Floating Point .
soi
; Yes Convert Word
: > to
3F2.0
40 l
Convert Word Check for
to p{ Appropriate
F3.0, 2F2.0 Limits
€

G i) e © f

Fig. 91, (cont.)
Part 111: (cont.)
{Sheet 2 of 2)

st A B Sl

SUBROUTINE NEWDATA

PURPOSE: To perform the following functions in conjunction
with the FASTSET update of program QUIKBASE:

1. A call on Entry NEWDATA initializes errors
and constants for NLWCARDS,

2. A call on NEWCARDS returns the next valid
data base card to the calling program in
OUTSTUFE.

3. To translate ITEM, DEFINE, UNDEFINE, and
ENDINPUT to ICOM=1, 2, 3, and 4, respectively,

4. To act on all editing and deleting commands;
to write updated DATADB.

ENTRY POINTS: NEWDATA, NEWCARDS

FORMAL PARAMETERS: None

COMMON BLOCKS: ICKTST, ICONTROL, IENDSET, I'TP, MYGOODS, MYINPUT,
MYOUT, MYPRINT, MYTAPES, NEWSET, NOTEST

SUBROUTINES CALLED: BUFFIT, FILENNR, IPRINT, MOVEIT, NUMGET, out,
PAGESKP

CALLED BY: NEWBASL, NEWDIR, FASTSET

.Methoq

Subroutine NEWDATA is an initiating entry which presets constants to zero,
true, or false, as appropriate, and prepares the tape written by CARDUK to
be read.

Intry NEWCARDS is the primary read and command editing subroutine for the
FASTSET update option, A call on NEWCARDS returns a singlé data base
item to the calling program. The subroutine recadus a control card record
and determines if a record is to be deleted, replaced, or added. It
watches update datua against a DATADB tape using the set and line numbers
to control the position of both tapes. The control cards indicate the
source of new data which may be individual BCD images from card or tape,
or which may be packed, buffered records on tape. Lach data card is
examined to see if it is an ITEM, DEFINE, UNDEFINE, or ENDINPUT card. If
one of these is encountered, the common variable ICOM is set to 1, 2, 3,
or 4, respectivelv., 1f the card is none of those listed, TCOM is

293

Gt e A

returned equal to 5. Set and line numbers are added to each record, as

is the run identification., The output tape DATADBUP is written, and the
items are printed if the print option for the set being read was selected.
Error messages are written to the error summary tape and, in all cases
where possible, the run continues nnting as many errors as possible. In
the event an error cannot be circumvented (e.g., the data base set numbers
requested on the update command cards cannot be found), the run is aborted.
Subroutine NEWDATA is illustrated in figure 92.

294

ST TR e mm

Lntry
NEWDATA

Initialize
Constants

j

ITP=10

| l

4 Call SETREAD

RETURN

Fig. 92, Subroutine NEWDATA
(Sheet 1 of 7)

295

| START Entry

NENCARDS
L
? A 310 50 | True
NOTEST < True AibiT? Fniscl st Tape Read
1 ICNT? Curd Data to Re AT\IE
~1CKTST HA.MM fo Hasc to DAT

LN T True 50

Call RDARIAY
. Read a4 Control Read Record
; Card Imuge Fron DATADS

Call RDAHRAY

Is Next Read
From DATADB?

‘ %o

34

‘ LAST«True I's It Last?

Get Set Number (JSIT)
and Line Number

J

Is Next Item

(JUINE) From Input Data
3 No
E; Is This the Start
] - of & New Set? Print F-"‘"'j;
DEL=Tric; (et Maximum [
Line Number to ‘
Be Deleted _J e e
Call ABORT

C: AS i

Get Set Number (ISLT);
Get Line Number
(LINENO)

to Terminate Run

True Last Control Card

s Delete Card

Set New Date

Card Data to Be
Added ro Buse ?

46

- AUDLT false

Fig. 92. (cont.)
(Sheet 2 of 7)

296

.
i
]
.

. 511
: Set JOLULSLTeThis
‘. Set Numbor,

‘ Set NLINE=O
Set ITENDSET=]

512

‘ Truc
; LAST? ' @
1

" False
j 510

Is Set to Is Line to
be Changed be Changed
This Set? This Line?

I8 Thig Set
Number lLarger
Than Correction Line to be

Set Number? Changed?)

Yes Yes

Is This Line
Greater Than

8277

L Print y
! Error

STOP

ore Than
One Card to be
Delcted?
Yes

55-56 Y
Read DATALB
Records = to
Number to be
Deleted

5555

DEL*False —.@

Fig. 92. (cont.) |
(Shert 3 of 7)

297

4
:
¥
]
]
!
)
4

5

42

18

Is It a REPLACE\YCS

REPUT=TRUE E‘.-@

Is It an ADDAFTEI

41 4211

Is Set to be P
Added From BCD TAPL I8 TRUE g et Uni
Number

No

4210

Are Data to
e Added on (Fro

ufered Tape)? == TAPE BUFF=TRUE

42 .
1ADD=TRUE Mussage
Is It No
NEWSET?
Yes
4250

Get NEWLET
Number

Fig. 92. (cont.)
(Shcet 4 of 7)

298

e Tt o i S e 3t

T TR

72

(:::)—*—-Cl<(EEE:-1n?

Fulse
7322

TAPI BUFF?

7100

fead Coard ITmage
From Tape to

INSTUF

Call Wt

[RILI I

false

TCNT=20

7% ¥
. 1s lhere

8 New
Number?

Set

Yes

7710

ISET=NFWSLT
NLINLE=0
IENDSET =1
NEWSIT=0

7660

Call
MOVE LT (1)

!

Set Indicator
for
New Record

(=)

Fig. 9

)

“©

. (cont.)

True
-C/u‘l;umrr ?

A Te N
CEAPLIN=T alsye

False
7794 4

Rewind Tape

7795

TDOSECTAPLEBUFF
wFALSE

(Sheet S of 7)

299

P

1
’
'
4
;

Rt

1ADR: Fulse
ADIMTsTrue
1CHT=False

Call
MOVELT(1)

Y

TCNT=FalSE
REPUT=FALSE
Set ISTAR to Show

Has Carﬁ

New Pecord Buen RETURN
Procrssed?
TN
-801 ¥ 80 °
] call
ICOM=5 MOVETT(2) *—@

Is This an TCoM=1
ITEM Card®
No
‘ 103
1s This 3 . _
DLFINE Card? 1C0M=2 >
4
108
105 ‘
18 This an 5
UNDEFINE 1C0OM=3 >
Card?

Fig. 92, (cont.)
(Shcet 6 of ¥

300

Set IOLDSET
= This Set
JSET

1s This 1817
Same as
fOLD set?

True

8109\
Call
- PAGESKP

83y

/
1erint N !
(Jsti‘) ? CALLOUYT]]
False { B

Set ISTAR to
Blank

Frite
Record to
BATADBOLP

RETURN

TERMTAPE
DATANE

Krite

Record
to

DATADBJ P

7 i

TERMTAPE |

] DATADSUP j
L.

Fig. 92, (cont.)
(Sheet 7 of 7)

;' 301

SUBROUTINL NEWDIR

1

PURPQSE : To create a new daﬁa hase directory.
ENTRY POINTS: NEWDIR o
FORMAL PARAMETERS : None
COMMON BLOCKS : DIRECTRY,; ERRORM, ITP, MPRTOPT, MYOUT,
TWORD _
SUBROUTINES CALLED: ITLE, NUMGET, K NEWDATA (Entr} NEWCARDS)
CALLED BY: MAKEIT .
|

! !

Method

This subroutine employs subroutine NEWDATA (entry NEWCARDS) to read a new
directory or modify an existing directory. The card format is eighy fields
of 10 columns each with all quantities left-justified. Twd commands ' in the
first field are recognized: ADD and ENDIRECT. The ENDIRECT card serves to
terminate the subroutine and causes a return to the calling program

The ADD command is used to add a new attribute to the dxreutory, or, in

conJunctlon with a prior delete command, to change an alrcady existing \
attribute in the directory.

With the ANDD command there are, in addition to the first f1c1d, $ix
further fields of data on the 1nput card:

1, The name of the attribute in BCD.

2. The input/output conversion format (FORTRAN)'associated with
the values for that attribute.

3. Code number specifying the type of chccklng to be conductod for
a particular attribute (see below).

4, The default value of the attribute, in thc appropriate ipput/
output format for that attribute as specified by item 2. This
is the value that will be associated with thc attrlbuto when
it is in an undefined state.

TR L T wm-m

5. Checking specifications. This field may contain the word -LIST,
which specifies list checking with the 1ist of allowable
attribute values to follow on subsequent cards; the word NOCHECK,
which specifies no checking of the attribute values; or the
lower value of the allowable range of values for this attribute
in the case of range checking.

6. This field is unused in the event of list checking, or no
checking, and contains the upper value for the range of
allowable values of the attribute in the case of ronge checking.

If list checking is specificd on the ADD card, this card is followed by
any number of cards containing the list of allowable values for thuat
attribute, eight per card, in the format specified for the particular
attribute. The fields for thesc values are the first eight columns of
each 10-column field. The series of allowable values in these cards is
terminated by the first blank field. A blank field can be specified as
an allowable attribute value by including the value BLANK in the list.

Appropriate error messages are written on an error message tape to

point out inconsistent operations such as attempting to issue a command
other than ENDIRECT or ADD, or attempting to add attributes which alrecady
exist in the directory. The error-checking codes permissible for the
third extra field are:

CODE TYPE OF DATA TO BE INPUT CHECKING SPECIFIED
1 Floating point numeric Range (Min-Max)

2 Floating point numeric List

3 Fixed point numeric Range (Min-Max)

4 Fixed point numeric List

5 Alphameric List

6 Alphameric No checking

7 Special conversion for Range

latitude, longitude

Subroutine NEWDIR is illustrated in fijgurc 93.

1

i s .Y ot o e aagibh i3

e s L

START

Call
5 NEWCARDS

!

Store Card

in
Directory
Block
86 87
ITRAN = 1 ITRAN = 2 g::;:
Message
{ ‘ on JERR
w Is Attribute Set Error
Y Already in Switch to
' Directory? 2
51
Yes
RETURN - Command Store Attribute
_ ENDIRECT? Format in
No Decoding Array
52 ,
Set Error
Switch to 46
2 Is the Set It P
. Default Value Equal to
2 the Word
‘ BLANK? Space Codes

0 ’

Fig. 93. Subroutine NEWDIR
(Sheet 1 of 3)

304

ST TN T I

}

; l Integer NDecode All
é values? 8;?325

5 Call NUMGET
to Convert to
Integer Values

26

Set List 4
Switch —»@)
to 1

25

Integer
Values?

No
Cherking
Specified?

Yes 'T ;

No
3 Yes
] 126 V 73 B
Set Remaining Decode to Con-
variables to vert Maximum and
Space Codes Minimum Values
for Checking ¢
» r
[. NUMGET to Convert
Set List . Minimum and
Switch Maximum
@ to 0 Allowable
3 ‘ %
Was This 1
: Increment)
éiizigzzfy Number of Defined
ibut
Deleted? Attr:oﬁags by

es
@ ¥
Store All Directory

5 Data for This
Attribute in

Appropriate Array

Fig. 93. (cont.)
(Sheet 2 of 3)

305

27

Call NEWCARDS

Read List
Card

Do for
Eight

Yes

Card

Fields

Dene

4—7}

[

Is the
Field
Blank?

No
29 Y

Increment
List Count
by One

!

30

Is the
Value of th;\—y—eL

Word Blank?

No
76

Decode

Value

o
- 75
Integer Yes Call
Values? NUMCET

Set It Equal
to Space
Codes

Fig.

93, (cont.)

(Sheet 3 of 3)

3006

SUBROUTINE OUT

PURPOSE : To print an item from the data base tape DATADB,
ENTRY POINTS: ouT

FORMAL PARAMETERS: None

COMMON BLOCKS : TCONTROL, MYOUT, MYPRINT

SUBROUTINES. CALLED: None

CALLED BY: NEWDATA

Method

Subroutine OUT examines the "type' switch (ICOM) to determine the print
format., ITEM cards arc printed with a preceding blank; DEFINE cards
are printed with a preceding *; UNDEFINE cards are printed with a pre-
ceding **. Subroutine OUT is illustrated in figure 94,

T TR T T e T

START CARD

54

ICOM =]

o

NDEFINE = TRUE
NUNDEF » TRUE
IAST = 21l

—~©

51

ICOM « 2
DEFINE

552
Branch
Detirmined 1COM = 3
by Value of [T "] UNRESI.\E
1COM CAR
‘ ’ ICOM = 4
ICOM = §

RETURN

True

NDEF INE?

NDEFINE = FALSE
NUNDEF = TRUE
T1AST = 2H*
PRINT BLANK

~ LINE

-®

53

NDEFINE = TRUE

NUNDEF = FALSE

TAST = 2H**

PRINT BLANK
LINE

e

Fig. 94. Subroutine OUT

308

SUBROUTINE PRONLY

PURPOSE : To permit the user to print the contents of the
data base tape QUIKDB, as prepared by program
QUIKBASE, in either of two standard output formats.

ENTRY POINTS: PRONLY

FORMAL PARAMETERS: None

COMMON BLOCKS: HIST, MYIDENT, OPTIONS
SUBROUTINES CALLED: INITAP, PRNTBASE, PRNTDATA
CALLED BY: QUIKBASE

METHOD

The PRINTDB option of program QUIKBASE provides the capability of printing
the contents of the data base tape QUIKDB. 1Inclusion of the PRINTDB
option card in the program run: deck serves to select the option and also
identifies the desired output print format. '

When this option is selected, subroutine PRONLY is called by QUIKBASE to
determine the desired print format and call the appropriate utility
routine to accomplish the printing.

As shown in figure 95, PRONLY first initializes the filchandler by
calling entry INITAP. The third and fourth data *ields of the PRINTDB
option card are then examined to determine the data base print format
which is to be used. Either or both of the standard data basc print
formats (i.e., PRNTDATA or PRNTBASE) may be obtained.

The order in which the prints are requested is immaterial. PRONLY deter-
mines the first print request and calls the associated subroutinc:
PRNTDATA or PRNTBASE (entry PRNTBAS is used). The second request is
processed in the same manner and control is returned to the calling
program.

Subroutine PRONLY is illustrated in figure 95.

309

: (START)
Y

Call INUTAP
to Initinlize
Filehandler
Variable

1s First
Option
PRNTDATA?

Is F]rst
Opcion
PRNTRBASE?

.
3 'ch
1 Call] call
. PRNTDATA l PRNTBASE
\ —
!]
Is Sccond Is Second
Option Option
: PRNTDATA? PRNTBASE? "
;-
' Call Call
PRNTUATA PRNTBAS
P 5 r
A
3
{ (RETURN
' 3
‘I

Fig. 95. Subroutine PRONLY

S0

i . SUBROUTINL PRTCONT

: - PURPQSE To summarize (print) the number of targets by
. side, region, and target type.
E ENTRY POINTS: PRTCCNT
? FORMAL PARAMETERS: None
2 COMMON BLOCKS: IDESIGS, NODESIGS, IWSTDE
! SUBROUTINES CALLED: PAGESKP ;
CALLED BY: FASTSET
Method

Subroutine PRTCONT prints information tallied by subroutine COUNTDS in

3 common blocks /IDESIGS/ and /NODESIGS/. Subroutine PRTCONT is illus-
- trated in figure 96,

3l

R

SI1DE=BLUE

8620 1

Print the Number of
Targets of a Given
fhu_ Type That Are Present
in Each Region

Y

Increment the Total
Number of Targets
Per Region Which

Have Been Printed

Yes More fargot
Types to
Consider?

No

8626

Print the
Totals for

Each
Region

SIDE=RED?

SIDE=RED

Yes

RETURN

Fig. 96. Subroutine PRTCONT

312

SUBROUTINL SETID

PURPOSE : To begin a datu base from cards or card images
and to write the DATADB tape.

ENTRY POINTS: SETID

FORMAL PARAMETERS: None

COMMON BLOCKS: 1, FILABEL, IFIPRNT, ITP, MYIDENT, MYLABEL,
NOPRINT, OPTIONS, TODAY, TWORD

SUBROUTINES CALLED: FILEHNR, NUMGET

CALLLD BY: QUIKBASL

Subroutine SETID is used to create a duta library file (DATADB) from a
card deck or a tapc containing BCD card images. The data library tape
(DATADB) is formatted for case in updating the informution contuined
thereon. The tape consists of a seriecs of card images with three
identifiers for cach card, ‘The identificrs consist of u set number, a
line number, and an update identifier; e.g., the date. The card images
are divided into sets, euch with a unique number. Within cach sct, cach
card is assigned a consecutive line number. ‘Thus, cach card is uniquely
defined by its set and line number. The update identifier is an
eight-character word which aids the user in dectermining the run which
introduced the card into the data library file,

e e ol e

Ihe user may specify that onc of three methods be used to divide the data
library into sets (scc SETID Option, program QUIKBASE, chapter 2, User's ‘
Manual, Volume [1}. The default option (SIDECLAS) causces scts to be .
established considering the uttributes SIDE and CLASS. Under this method,
the datu base directory is defined as the first set, The set number is
then increcased by one cach time a DEFINE card is processed which includes
the attribute SIDE and/or CLASS. The MAXSEY option causes the data to be
divided into the largest feasible sets. Under this option, the directory
is defined as the first sct, and cach succeeding 5,000 curds are defined
as a new set. Sclection of the MAXSLT option also causes the existing
global attribute definitions to be cuarried over to the next set. The
third option (MANUAL) enables the user to specify the exact points in the
data basc where o new set is to be sturted, The user may also cstablish
the scet numbers; however, they must be assigned in ascending order and the
dircctory must be the first set.

il
—
(o3}

P R —

As shown in figure 97, SETID initializes the filchandler and prepares to
writc onc or two copies of the DATADB tape, as request d. The subroutine
seads the directory cards; if manual division of sets has been selucted,
it looks for and uses (if present), a user-assigned set number. The
directory is read and written to one or two tapes, as dirccted, until it
reads the LSNDIRECT card. Lach attribute name is stored in array NS as it

\ is encountered. On option, each record is printed with its assigned sct,
line, and date identification. After the directory has been completed,

{

4 the set number is advanced by onc if manual control of scts has been

' sclected. For all other options, the set number is made two. The item
! cards are read and processed according to the sct option chosen.

If the card is neither a DEFINE nor an UNDLFINE card, the print option is
checked and exercised according to its value; the set and line number and
the update identificrs are inserted into the data record; and the record
is written to one or two tapes., 1f a card is a DEFINE card, a NEWSET or
BEGINSET card, or an UNDEFINL card, processing is as described helow: 1

1. If the occurrence of cither SIDE or CLASS is to indicute the
G end of onc set and the beginning of the next, cach DEFINE card
is searched for the key word; i.c., SIDE or CLASS. If the key
word is found, th2 set number is advanced, the lince number is
resct to ovne, and the processing continues as described above.

2. If manual control has been selected, the word BEGINSET or NEWSET
is sought and, if found, the optional sect number is sought., 1If
it is present, it is uscd; if not present, the sct number is
advanced by one and the line number reset to onc.

3. If the MAXSET option has been selected, the list of attributes :
on cach DEFINL card is scarched, and the name of the attribute ;
and its value are saved. The occurrence of an UNDEFINE card ;
causes the attribute-value pair to be erased. When the line
number reaches 1SETSIZ, the preset maximum* for a sct (now sct to
5,000), the set number is advanced; the line number is rescot to
one; and all defined attribut-value pairs are written to tape
as the beginning items of the new set.

When the card ENDINPUT or LAST is encountered, the tape writing is termi-
nated and, if two tapes have been generated, the tapes are compared. If
discrepancies are found, they are printed. If no errors are found, the
record count, together with the message NG ERRORS, arce printed. Control
is returned to the calling program QUIKBASE.

*Approximate number, ALT TTEM card attributes for the current data base
item arc processed before the set number is changed,

Prepare Output
(Nautr't) Tape
to

Is Second
CO[))‘
Required?

y Yes

Prepare Sccond
Tape (NOUT2)
to Write

456 4

Initialize y
NSET, NDIR, NAT|=&
and NEND to 1

10

Call NUMGET

to Obtain . R‘;“d .1__@
Sct Numbur T Card

)

724_Yos NSET=1

90

Is ‘There a
User-Supplied
set Number?

Print
Error
Message

y

Is It - o
NLEWSET RETURN
or -

BEGINSET?

Fig., 97, Subroutine SETID
(Sheet 1 of 7)

k]

Right-justify
Integer in
KWord 4

Y

Store Attribute
Name in NS(NAT);
‘Increase
NAT

n

Is This
End of
“Directory?

Write Recowd

to NOUTI
and If
Selected to
NOUT2

B

Write Set and

Line Number;

Write Dute
{NCON)

{cont.)
{Sheet 2«

vio

78

33

Print
Record

i =

Is Record
to Be
Printed?

Increase
Line
Number

\

End No
of

Directory?

Yes

11

Set Line
Nunber
to 1

!

Branch Determined

by Value of NOPSET

vy

.nAI“{

NOPSET=1
Largust
Possible Set
NSET=2

“_ ¥y

NOPSET=4

Divide Sets
on SIOL CLASS
(Default)

sy

NOPSET=5
Manual Sclection
of Sots
NSET=NSET+1

|

240 #’

Clear NSAVE Array
to Blanks

'

Skip Prine
Page

Is I'rint
lurned on?

a97. (cont,)
{(Sheet 3 of 7y

v

1

T AT ITT o o rRr T Ay Ay s e o s rEmem e mr e e

"’ UNDEFINE
Card?

i NOpPSE |~1°>L\~‘3-

b

IY
()

>Y » f Print
147
Frint? Record

,m .
A /Weve llnxlr'f‘xrul

\phe

S / Atributes on)j
: Nnrrent Defined /

’ N list?
,; No

Wi TR T TR

—— “---—-—4___.,
yint [
Frror

.‘-k‘ss;zgc

HUadefim |
Attribot |

.

1

;

L}
1
i
3
]
;
3
{
i Lont) _]
Shees 5 00 ‘
!
[!
i

T SRy e it i Lo
Sarsiealn bl

88 {

Print
Record

80

No

Print Error
Message

T FR TR T)
I S S T I T S S T T Tt T T 1 T R Uy Yy AU oy N pit S

/Wcre Nefined
Attributes in
Directory?

Skip Page

80
Print
Rocard

202

Encode Set and
g Linc Number;
Transfer Data

-lf-

Write Record
to NOUTI and
If Selected,
to NOUE?2

777 y

Increcase
Line
Numher

(cont.,)
(Sheet 6 of 7)

3N

e e e e

Was This

Yo

Last Card? /

Is Line Sumher

Greater Than
Maximum

Sot Size?

Have All Data
for Current ltem
Beea Read?

Yos
272

Inerease Set
Number; Set Line
Number=1

—_—
Write Current
Global Definitjons
on Tape for
New Set

v 200

72

Call TERMIAD

P~ | to Terminate

N

)

Two Tupes
Written?

[t

Yes

Y

30 o

Read Remaining
hata for
Current Item

Compare
Tapes

Errors?

RETURN ’

Print
Messape
NO ERROR IN
____RECORDS

Yes

Print Error Message
TAPES DO NOT AGREE.

__ DIFFLRENCLS
TN___RICORDS

1

RLTURN

Fig. 97. (cont.)
(Sheet 7 of 7)

321

b i

i
]
1
1
9
i

CHAPTER 6
PROGRAM BASEMOD

PURPOSE

The purpose of program BASEMOD is to alter the content or characteristics
of a data base in order to adapt the data base to the specific scenario
for which the plan is being developed. Because of its highly specialized
nature, program BASEMOD should be examined for possible revision each
time a new war plan is to be generated.

INPUT FILES

There are two distinct sets of input tapes which may be required by

program BASEMOD -- one for post-QUIKBASE operation, and one for post-
INDEXER operation.

When the program is executed in the former instance, the only required
input tape is QUIKDB, the game base tape produced by program QUIKBASE.
I1f, however, the user desires to exercise either the TARDEF or the ZONE
option, a second tape is required. This tape is produced by program
STACKER, a program of the NMCSSC QUICK Data Base Generator System
(QDBGS) .

The input from the QUIKDB tape consists of the entire data base; the
input from program STACKER is contained in two common blocks, Common
/XLAT/ contains the necessary data for the introduction of TARDEFs,
while common /MYZONES/ contains the data required for the determination
of zones.

When program BASEMOD is executcd post-INDEXER, the only required input
tape is INDEXDB, the indexed data base produced by program INDEXER.
Again, input from this tape consists of the entire data base.

OUTPUT FILES

In both post-QUIKBASE and post-INDEXER operation, there is one output
tape produced by program BASEMOD. This tape contains the modified
version of the game data base. In the former instance, this tape is
QKMODDB, while in the latter instance, the tape is TNMODDR.

CONCEPT OF OPLRATION

The exact functions of program BASEMOD are directly related to the par-
ticular war plan being constructed; the program described herein is one
which currently performs the modifications desired by the NMCSSC. Since
program BASEMOD may be run either after program QUIKBASL or after nrogram
INDEXER, there are two distinct sets of program capabilities and user
options. When BASEMOD is run after program QUIKBASE, the program performs
such tasks as: removal of inappropriate targers (attiribute RESERVE=Q)
from the game data base; establishing the number of aircraft per
squadron NOPERSQN, number in commission NOINCOM, and number on alert
NOALERT for each bomber and tanker unit; seclection of the appropriate
type name TYPE, value VAL, and relative effectiveness EFECTNES for

each fighter-interceptor squadron. Further, the user has available the
options to specify, for urban/industrial targets, the attribute VAL as

a function of either index of gencral industrial worth (I1GIW) or
pepulation (POP); to calculate bomber local defensc parameters (TARDEFs);
and to calculate defensive zones for either or both sides.

When run after program INDEXLR, BASEMOD provides the capability of
selecting or deleting targets on the basis of geographic location
(i.e., country location, CNTRYLOC).

IDENTTFICATION OF SUBROUTINE FUNCTIONS

Program BASEMOD is the muin control routine., This subroutince reads the
option card which specifies whother the run will be post-QUIKBASE or
post-INDEXER and calls the appropriate subroutines.

Lt ot -l Bt oSl et

Post-QUIKBASE Operation

Subroutine DBMOD is the controlling subroutine for this mode of operation,
It calls subroutine RDTYPES to read in the values of the sculing factors
to be used for the calculation of NOINCOM and NOALERT, and it reads in
the remainder of the input purameters itsclf. [If cither the ZONE or
TARDEF option is to be exercised, it calls subroutine STKRIN to read in
the required data for the calculations. Subroutine DBMOD performs all of
the required data basc modifications itself, cxcept for the determination
of TARDEFs (if desired) which is done in subroutine TARDEFS, and the

determination of ZONES (if desired) which is done in subroutine MYZONE. :
The record by region, type, and side of the targets deleted from the game :
base is kept by subroutine NUMDEL. The record by region, type, and side i
of the targets kept is maintained in subroutinc COUNTDES.

Subroutine ADDVAL maintains a record of target value by class, type, and
side and prints this summary after the processing is completed. Sub-
routine PRINTIT determines, on the basis of the user-specified parameter,
whether a given item from the data base should be prianted and, if so,
prints it.

Post~INDEXER Operation

Subroutine INDMOD is the controlling subroutine for this mode of oper-
ation. It reads in all of the user parameters, and it performs the
necessary data base modifications. It calls subroutine COUNTDES to
maintain a record by region, type, and side of the turgets kept, and it
calls subroutine NUMDEL to maintain a summary by region, type, and side
of the targets deleted, Subroutine PRTCOUNT s called to print the
summatries kept in subroutine COUNTDES.

COMMON BLOCK DEFINTTION

lixternal Common Rlocks ’
Program BASEMOD references the following utility routine common blocks,

which arve desceribed in appendix A of this manual: /LDITAPE/, /LDITERN/,
J1LTP/, /MYIDENT/, /NOPRINT/, and /PROCESS/.

Internal Common Blocks

-

Table 7 lists the common blocks used within RASEMOD and identifies the
arrays contained in them.

324

At et

Table 7, Program BASEMOD Common Blocks
(Sheet 1 of 5)

VARIABLE
. BLOCK OR ARRAY DESCRIPTION
; CUTIGIW 1 Dummy constant 3
!]
: JCOUNTRY List of countries to be assigned values of
MINTGIW
MINIGIW List of minimum allowable values of the attvi-
butc 1GIW
é NOIGIWS Number of countries in the list for each side
!
IDESIGS IDESIGS First two letters of target designator code '
- DESIGNO Array containing summaries by region und i
i type of items kept
_ JCARD JCARD (1) PRINT, if a print of items in the data base
; is desired; blank, otherwise
JCAQD(Z) Frequency of above print
JCARD(3) SELECT, if the items in the country list are
to be kept; DELETE, if they arc to be
. deleted
’ JCARD (4) Number of countries in the country 1ist
JSIDE JSIDE llollerith side name
LDESIGS LDESTIGS First two letters of tarpet designator code
LDESIGNO Array containing summarics by region and type

of itoms omitted

325

T

BLOCK

LODESIGS

MYSIDE

MYZONES

Table 7. (cont,)

VARIABLE
OR ARRAY

LODESIGS

LLMIN

MYSIDE

BLAT

BLONG

rzir

ILINK
MINBLUE
MAXBLUE
MINRED
MAXRED
MINTEST
JLINK
NTEST

MIN

(Sheet 2 of &)

DESCRIITION

Number of different types of weapons deleted
(for each side)

Internal index parameter; =1 for BLUE, =251
for RED

Current side

Zone data from program STACKER

Latitude asscciated with the point of vrigin
of a leg

Longitude associated with the point of origin
of a leg

The BLEGNO associated with the last IPOINT

which describes a zone

Value of LINK associated with BLEGNO
Minimum BLUE zone index number
Maximum BLUE zone index number
Minimum RED zone index number
Maximum RED zone index number
Internal BLEGNO index parameter
Internal LINK index parameter
Internal counter

Internal BLEGNO index parameter

326

-

e 2 bt i £

BLOCK

NODESIGS

NRTYPLS

PRINTS

TYPENAME

VARTABLE

OR ARRAY

NODESTGS

KKMIN

NRTYPES

MTYPES

NNTYPES

ALERTNO

COMINNO

1FREQ

IPRT

IPRINT

TNDBEG

TYPENAME

CUMNO
BTYPES

INDCLAS

Table 7. (cont.}
(Sheet 3 of 5)
DESCRIPTION

Number of different types of weapons (for

each side)

Internal index parameter; =1 Jor BLUE, =251
for RED

Number of weapon types for current side for
which NOALERT and NOINCOM are to be scaled

Same as NRTYPES, but in alphameric format

Type name of each weapon type for which
NOALERT and NOINCOM are to be computed

NOALERT scaling factor for cach weapon type

NOINCOM scaling factor for each weapon type

Desired frequency of prints

Index used te count number of items processcd

between successive prints

=1 If prints are desired; =0 If not

Smallest index number for cach type

Type names in order of increusing index

number
Cumulative number of types in cach class
Number of BLUE side types in cach class

Smallest index mumber in ecach c¢lass

527

-

. =

BLOCK

XLAT

VARIABLE

OR ARRAY

XLAT

XLONG

RADTIUS

NUMBATTS

JINDEX

LINDEX

ATEST

NBAREAS
NRAREAS

NTARSHT

NTARSLO

NTARTEST

Table 7. (cont.)

(Sheet 4 of 5)

DESCRIPTION
SAM data from program STACKER

Array containing the latitude of the centroids
of cach SAM site complex (locations 1 through
500 store BLUE data; 501 through 1,000 store
RED data)

Array containing the longitude of the centroids

of each SAM site complex (same storaye as above)
The defensive radius of each SAM site complex

Number of SAMs located within the radius of

the complex

Index of the first SAM site in each major geo-

graphical area

Index of the last SAM site in each major peo-

graphical area

Values of longitude which subdivide the

complexes into reasonably well defined sites
Not used
Not used

TARDEF number which is associated with a high-

altitude defense of a given strength

TARDEF number which is associated with a low-

altitude defense of a given strength

Contains values which divide the total number

of SAMs into several distinct ranges

VARTABLE
BLOCK OR_ARRAY

XLAT (cont.)
XTEST

IAXHT
MAXLO
FACLOW
LAREAS
LNLOW

TLOW

THIGH

UTARTAPE
‘,-‘ JJILOW

JAREAS

t JLOCS

Table 7. (cont.)

(Sheet 5 of)

DESCRIPT] N

Factor usced to determine if a SAM complex can

provide high-altitude defeuse to a target

The maximum TARDEF wl oh can be assigned for

high-altitade defenses

The maximum TARDEF which can be assigned for

low~altitude defenscs

Yactor used to determine whether a value of

TARDEFLO should be assigned to a piven target

Number of geogrophical areas into which SAM

sites arv divided

1he beginning indices of the arcas 1« BLUE

and RED (1 and 101, respectively)

Lower inldex indicating where storage of data
begins for BLUL and RKi:h, respectively, in
NTARSHT, NTARSLO, and NTARTEST

Index indicating where the storage of data
ends for BLUE and RED (7 and 17, respectively)

in the abovementioncd arrays
Not usced

Bepginning indices ol SAM complexes for BLUE

cnd RED (1 and 501, respectively)

Number of areas in o which SAM complexes are

dividad

Number of SAM complexes for cach side

329

G

] PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

S, SUBROUTINES CALLED:

! CALLED BY:
xl.':f
Method

INDMOD is called.

PROGRAM BASEMGOD
L 7]

To determine whether the program is being run
post-QUIKBASE or post-INDEXER, and to transfer
control to the appropriate subroutine.

BASEMOD

None

None

DBMOD, INDMOD

None , C

'
1

The variable IALT is read from an input data card. If IALT is zero or
negat1ve, the run is post-QUIKBASE and subroutine DBMOD is called 1f
-4 IALT is equal to one or more, the run is post-INDEXER ahd subroutite

~ After the subroutine returns the program stops.

Program BASEMOD is illustrated in figure 98.

330

T r I

to be Uscd?
Program QUIKBASL

After ;

‘ Program INDEXER

Subroutine Subroutine

Call

INDMOD

Program BASEMOD

3

j2}

SUBROUTINE ADDVAL

PURPOSE : To accumulate target value by class, type, and
side, and to print the information in tabulated
form.

ENTRY POINTS: ADLVAL, PRNTVAL

FORMAL PARAMETERS: IS - Value of attribute SIDE

! IC - Value of attribute ICLASS
‘ IT - Value of attribute TYPE

V - Value of attribute VAL

JC - Value of attribute CLASS

| COMMON BLOCKS: None
1, SUBROUTINES CALLED: None
: QﬁLLED BY: DBMOD
Method
é» Each time the subroutine is entered through the entry point ADDVAL, the

value of the item being considered is added to the total value of the

- other items of the same class, type, and side which have already been
considered, 1In addition, a count of the total number of items kept in

, each of the categories (various combinations of class, type, and side)

4 is maintained. T¢ the item under consideration is the first with its

class, type, and side characteristics, a new category is created for it.

When the subroutine is entered through the entry point PRN.VAL, the
summaries which have been maintained are printed out.

Subroutine ADDVAL is illustrated in figure 99.

(8]
w
o

o : i . FRIPR iy RS a —“
. . e N L. e i B e o
B O T SR B L AP ER S)

ST

AL TR T

TN e T

Entry

START AUDVAL

10

Initialize

Has an Item With
his CLASS, TYPE, and
SIDE Been Processed
~ Previously?
Yus

25

Add Value of Item |
to the Total VALUE | o

30

Start u New
Category with
Choracteristics

of This liem

of Those of Samu
TYPE

v

tncrement Number

of These Items

Which Have Been
Processed

et

- tntry
(START PRNTVAL

SIDE«BLUL

Print Summary
of Cumulative
Value by
CLASS and TYPE

SIDE=RED 4—“’6{ nlz=nrn>

Yes

‘ RETURN)

Fig., 99. Subroutine ADDVAL

SUBROUTINE COUNTDLS

PURPOSE To keep a tally by region and type of the tar-

. gets kept for each side after processing by
subroutine DBMOD.

% ENTRY POINTS: COUNTDES
S FORMAL PARAMETERS: II - Equals 1 if side is BLUE; 2 if side is
? MYDESIG - gggignator code of item
IREG - Region in which item is located
; COMMON BLOCKS: IDESIGS, NODESIGS
" SUBRUUTINES CALLED: None
CALLED BY: DBMOD, INDMOD

;» Cach time the subroutine is entcred, the total number of items retained
. with the same type, region, and side is incremented by one. The region

is determined from the target designation code, Subroutine COUNTDES is
illustrated in figure 100.

100

Separate Target

Designator Code

into Alphabetic
and Numeric Portions

b

Determine Region

in which
Target is Located

!

1

Y 20
Have Other Targets .]
of this Type No ‘Begln a New
been Recorded Category for
for this Side? Item

Yes
11 {

Incremen# by One the
Total Number of Such |egm
Targets Kept

RETURN

Fig. 100. Subroutine COUNTDES

i
L33
(%]

SUBROUTINE DBMOD

; PURPOSE To control the information processing when pro-
: gram BASEMOL is run post-QUIKBASLE,
F ENTRY POINTS: DBMOD :
FORMAL PARAMETERS @ None
) COMMON BLOCKS: CUI'TGIW, LEDITAPE, EDITERM, IDESICS, TTP, LDESIGS,
LODESTGS, MYIDENT, MYSIDE, NODESICGS, NOPRINT, ;
NRTYPES, PRINTS, PROCESS ;

SUBROUTINES CALLED: ADDVAL, COUNTDES, INITAPE*, INITEDIT, INPITEM,
MYZONE, NEXTITEM, NUMDEL, NUMGET, OUTITEM,
PAGESKP, PRINTIT, PRNTVAL, RDTYPLS, STKRIN,

, TARDLFS

CALLED BY: BASEMOD

Method

Subroutine DBMOD effects a sequential examination of cach item in the
game data base (contained on the QUIKDB tape). Each item is read in,
filtered through a series of tests, and assigned appropriate values for
certain of its attributes. The item is then either rctained or deleted
from the game data base. The 12 tasks accomplished by this processing
are!

1. Targets which are inappropriate for the plan under considerations
i.e., those tarpets assigned the attribute RESERVE=0, are
excluded from further consideration,

2. ‘The appropriate number of bombers or tankers for cach bomber or
tanker squadron (NOPERSQN) is selected, depending upon the par-
ticular plan being developed (Initiative, Surprise, or
Retaliatory).

. The number of bombers or tankers in commission (NOINCOM) for
each bomber or tanker squadron is calculated by specifying that
NOINCOM is ecqual to a uscr-specified fraction of NOPLERSQN.

*Soe subroutine FILILEHNR,

T TS A W

i 4. The number of bombers or tankers which are on alert (NOALERT)
for cach squadron is calculated by specifying that NOALERT is
cqual to a user-specified fraction of NOINCOM,

5. The appropriate value of the attributes TYPLE, VAL, and EFECTNES
is ecstablished for cach fighter interceptor unit based on the

: user-Input parameter POSTURE. If POSTURIE=1, these attributes

: arce assigned the values of the attributes TYPEL, VALL, und

: FFECNEST, respectively, Lf POSTURE=2, the values of the

. attributes TYPL 2, VALZ2, and LFECNES2 arc assigned.

0. The relative vatlue (VAL) of urban/industrial turgets is calcu-
luted as o function of cither general industrial worth (IGIW)
or population (POP).

7. If the TARDEF option is exercised, each target (opposing side)
is processed and the level of local bomber defense available at
the target is calculated,

8, TIf the ZONE option is exercised, items in ICLASS 4 and & (defen-
sive commsnd and control sites and interceptor basvs, respec-
tively) erc processcd to determine the air defense zonc in
which the item is located.

9, The value of the attribute IREG is drtermined based on the
target designator code DESIG assigned to the item.

10. Each Blue (SIDE=BLUE) installation is assigned a value for the
attribute FLAG. The assigned value (numeric code 1 through
9 costablished bascd on JCLASS) is subsequently used in program
ALOC to impose user-restrictions on the allocation of weapons
(see Program ALOC, User-input Parameters, FLAGREST Function --
Restriction of Weapons Using FLAG Attribute in chapter 3 o!
User's Manual, Volume 11).

11, Turgets may be deleted from the game basce on the basis of TASK
or MINIGIW (uscr-specified parameter which cstablishes the
minimum index of general industrial worth to be considered).

12, The appropriate value of the attribute DBL (probability of des-
truction before launch) is chosen. 4

Subroutine DBMOD is illustrated in figure 101,

152
(92}
~3

I |

: START

Initinlize

801 - Y

Read Input Parameters:
Print Frequency, Data, Side,
Posture, Plai., Task, PCT-POP,
TARDEF, ZONE, NIGIW, List of

MINIGIW, NOTYPES, Scale Factors
for NOALERT and NOINCOM

10000

Print
Input
Parameters

Call
STKRIN
1 50 No K
Determine Yes / I8 Item Bring "rem .o
sipE [« a Target? Into Memory H"d
10y 4
If I;em Should 1t it
Missile. Yes hou em \ vYes
Bomber, Tanker, Y— Be Omitted? Call —H
or RESERVE = 0 NUMDET,
Interceptor? —
No No
0 > 6
30 a1l Does 1tem 63 -
g a No /Exist for Date Assign ;
3 NUMDEL || of Game? Posture 1
i Yes]
-' 900 i
3 o GI C 300 |
i s Task \ ' No rint Er '
roy Call
g {eeertable] Message [l NUMDEL
% Yes !
A :
|

Fig. 101. Subroutine DBMOD
(Sheet 1 of 2)

338 }

2) 325

s Item Proceys
Missile, NOALERT
Bomber, or coM '
ok o NOINCOM

! g
Is Item ALERTORL /
r. Interceptor? NALRTOBL" [
Process VAL
EFECTNES, TYPE"'

8

Is Item

a City? -

y
:h d 1) e
oy tem -

Process A be Omitted? e | N%mnlll)lel.

VAL RESERVE«(

950 No
Call - -t
TARDEFS
951 - 962

tem
Are Zone
Defensive Yes Calt
. Assignments Al
Control or Neoded? VMY‘.ONI;
To- No
955
Call y
COUNTDES |[TF
Lefine value Call
of IREG and pe~| ApDVAL
FLAG
92
Call
P~ PRINTIT
B 3500 638
2997 Y Have all Irint
Call ltems Reen Uutput
— QUT T Constdernd? Sumnaries

T

Fig. 101.

(cont.)
{(Sheet 2 of 2)

539

ceide e

PRSI

FUNCTTON INDENTYD

PURPOSE: To compare the value of NUMBATTS with the value
of NTARTEST until the region in which the value
of NUMBATTS lies is ascertained,

ENTRY POINTS: INDEXTYD
FORMAL PARAMETLRS: NUMBATTS ~ Number of SAMs located within the
radius of the complex being considered

ISIDE - lollerith value of side

COMMON BLOCKS: JSIDE, XLAT

SUBROUTINES CALLED: None

CALL@&J{[: TARDEFS

Method

This function subroutinec is entered with a given value for the parameter
NUMBATTS. The range of allowable values of NUMBATTS has been divided
into (THIGH-TLOW+1) cqual segments, and the lower and upper limits of
cach of the segments have been stored in the array NTARTEST (IHIGH and
TLOW are externally specified index paramecters). A search is then
implemented to determine the segment in which the value of NUMBATTS under
consideration lies, 'This segment is characterized by the index number

of the upper limit of the segment (e.g., if NUMBATTS lies hetween
NTARTEST(3) and NTARTEST(4), the value of INDEXTYD for NUMBATTS will

be 4),

Function INDUXTYP is illustrated in figurec 102,

D O

JLOW=ILOWIJSIDL)
JUTGH=1HTGH (IS 1DE)

’
i

J=JLOW

s
NUMBATTS <
NTARTEST?
* —»| INDEXTYP=J
(reTurn X

i

[)

Fig., 102, Punction INDEXTYP

oL et

R R e

TGV BV YRR S

SUBRQUTINI "NDMOD
PURDPQSI: To control the information processing when pro-
pgram BASEMOD is run post-INDEXER,
ENTRY POINTS: INDMOD

FORMAL_PARAMETERS : None

COMMON BLOUKS EDITAPE , ERUIERM, TDESTGS, 111, JCARD, LI 1Gs,
LODES TGS, Y T NT, MOBLSTCS, NOPRINT, PROCL
TYPENAM.

SURFOUTINLS CALLLD, ABORT, COUNTILE, INFLALES, INGCILDEE, INPUTEM,

NEXTITEM, NUMDLL, MUMGIT, OQUTTTEM, PAGESEDR,
PRITEM, PRTCOUNT, STORAGE, TERMIAp*

CALLIE BY BASEMOD

poth,
INBHOR Beoios by veading the tnpot paramcters which inclode a Tist of
country codes to be used in selecting or deleting tarpets on the Lasis
of peceraphical boontion, The propgraw then performs sp o itow-ly-item

examin:dtion of the same datu base ag vontainca on the IKDEIDE tape and
retaing v oacleter flows in accordance with thoe input driteria, ltems
selectiee for rotention are cutput to tho [NMODEL tape,

Subroutine ININMOD s illustrated in {figere 00

ok e

Initializet

3510

vetornine

Frequency ot
frints £ Data
P tume

500
Bring ltem :
Into oo
.Iumnlv

<EflASHr(>- lb(:jﬁx\

'—rr(."

o ey

l¢

REY

Select/itete YVes
Opticn to he J7TTTTT ’ Commtry Cedes e
Lxereiend? / to be
. ﬁ’.:_; B [)L\)L\r(\”.‘ /
M 4) ‘J

No 4u6?

& ———].i5t of
Read

Is ltem in the

Write
Input
Faraneters

4058

prnt L.nl
1‘1,111A)n~ \‘3

ls item in the
List of Countries
Read in?

"_‘,T'TFS

Lountrics
in?

, |
o [; RN ' “
(;) o i e }
!] oL ;
‘ g Lo dd !
3 e ST
l\.__, .
! e oA N (B
A

4965

Call . . | ' l '
COUNTDES ' '

Should This
Item Be
Printed?

, ' Call T Call _ '
QUTITEM | PRITEM : ' |

Yes

Transter
‘Breakpoint
File From
INDEXDB to
INMODDB :

More Items to
Be Considered?

Cail
PRTCOUNT

RETURN

e e e

Fig. 103, (cont.)
(Sheet 2 of)

FUNCTION MYZOHE

PURPOSE: : To determine ir which defensive zone a target
lie: .
ENTRY POINTS: MYZONI:
FORMAL PARAMETTRS : ZLAT - latitude of iten
1 ZLONG - Longitude of item

COMMON BIOCKS: MYSTDE, MY ZONES

: SUBRQUTINLS CALLED: DIFFLONG

| ; (CALLED BY: DBMOD

1
i
4

‘Method

The subtoutine considers euch defensive zone for the side corresponding to

that of thc target, and determines the sum of alJl angles formed by the lines
; connecting the target point to two adjacent boundary points of the zone, If
the target is in the zone, or on a boundary, the sum will be 360°, and if
the target is outside the zone, the sum will be 0°., As soon as a target is
found to be within a zone, it is identified as belonging to that zone by

assigning it the zoio index. Thus if the target is on the boundary hetween

two zones it will be assigned the smaller zone index. If the target is not
» in a zone of its side it is assigned a zone index at zero.

Function MYZONE is illustrated in figure 104,

ji

START

Initialize

Considor
First Zone
of Side

104 +

—

Calculate the Sum
of the Angles as
Described in the

Method Section

200

Consider Yes
Next Zone

Fig. 104,

Is
Target in
Zone?

Yes

Are There
More Zones to
Consider?

No
400

MYZONE = 0

RETURN

346

Finction MYZONIE:

500

MYZONE =
Zone Index

RETURN

o NT T TR AR w

PURPOSE ;

ENTRY POINTS:

FORMAL PARAMETLRS ;

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

Each time the subroutine is entered, the total of the number of items

SUBROUTINE NUMDEL

To keep a tally by region und type of the targets
which have been deleted for each side after pro-
cessing by subroutine LBMOD.

NUMDEL

I - Equals 1 if-side is BLUE; 2 if side is
RED

MYDESIG - Target designator code of item

IREG - Region in which item is located

LDESIGS, LODESIGS
None

DBMOD, INDMOD

el

deleted with the same type, region, and side as the one under con-
sideration is incremented by one. If the item under consideration is
the first one with its particular characteristics, a new category is

created for it,

Subroutine NUMDEL is illustrated in figure 105.

! 100

Separate Target
Designator Code
Into Alphabetic
and Numeric Portions

]

]

|

]

‘ ‘
i —

‘ Determine Region
‘ in Which Target
: iz Located

) 20
Have Other

Targets of This
Type Been No Begin a New

Recorded for Category for Itenm
~This Side? B
Yes
11 _

Increment by One

11
the Total Number
of Such Targets *

Deleted

RETURN

Fig. 108, Subroutine NUMDEL

SRR

PURPOSI: :

ENTRY POINTS:

FORMAL PARAMETLRS:

COMMON BLOCKS :

SUBROUTINES CALLFED:

CALLED BY:

Method

This subroutine maintains a record of the number of items processcd and
kept by subroutine DBMOD. Each time it is entered, a check is made to
determine whether the current item being processed should be printed.

If it is to be printed, subroutine PRITEM is called to print the attribute-
value pairs for the item.

Subroutine PRINTIT is illustrated in figure 106,

SUBROUTINE PRINTIT

To determine whether the item being processed by
subroutine DBMOD should be printed and, if so,
prints it.

PRINTIT

None

PRINTS

PRITEM

DEMOD)

(START ’
8519 l
No Are Any Items from
the Data Base to

‘\L_ be Printed?

‘Yes 7”

Should this
Item be
Printed?

Yes
8521

Initialize
Item
Counter

8523 Jv

Call PRITEM u

Y

No

Increment
Item
Counter

RETURN

Fig. 106, Subroutine PRINTIT

iho

L 0 St B i b

et Rkl S e

ST T TR T Ren T T

et e L e e e ea iR

PURPOSE :

ENTRY PQOINTS:

FORMAL PARAMETERS:

COMMON_BLOCKS :

SUBROUTINES CALLED:

CALLED BY:

Method

SUBROUTINE PRTCOUNT

To effect the printing of the records of target
count by region which were kept by subroutine
COUNTDES for the targets processed and kept by
subroutine INDMOD.

PRTCOUNT

None

IDESTGS, NODESIGS

PAGESKP

INDMOD

A print for each side is made of the targets kept in the data base, by
type and regicn. Also, the total number of targets in each region is

pruesented,

Subroutine PRTCOUNT is illustrated in figure 107,

-

SIDE=BLUE

8620 i

Print the Number of

Targets of a Given
A Type That Are Present
in Each Region

Y

Increment the Total
Number of Targets
Per Region Which

Have Been Printed

More Target
Types to
Consider?

Print the
Totals for
Each
Region

STDE=RED

RETURN

Fie. 107, Subroutine PRICOUNT

2
5
)

A L AR

}
e . e e e Sl

SUBROUTINE RDTYPES

PURPOSI: To read in the values of the scaling factors to
be used for the calculation of NOINCCM and
NOALLRT,

EMRYPOWT$ RITYPES

FORMAL PARAMETERS : LSIDE - jlollerith value of side
COMMON BLOCKS : NRTYDES

SUBROUTINES CALLLED: NUMGET

CALLED BY: DBMOD

This subroutine is cntered once to read the data for the BLUE side and a
sccond time to reud the datu for the RED side, When it is entered, a
card is recad which indicates how many cards with scaling factors are to
be rcad, and these cards are then read. The number of weapon types to bhe
scaled, the scaling factor for NOALERT, and the scaling factor for
NOINCOM for the BLUL side ure stored in locations 1 through 50 of the
arrays NNTYPP3, ALERTNO, and COMINNO, while the data for the RED side are
stored in iocations 51 through 100.

Subroutine Wi (PES is illustrated in figure 108.

ATHPRTRIS

i
¥

: START

i Read Number

’ of Data Cards
f to Follow

l

Read the Daty:
3 NNTYPES (N)
- ALERTNO(NY,
COMINNO(N)

RETURN

Fig, 108, Subroutine RDIYDYS

SUBROUTINE STKRIN

PURPOSI: : To read in the arrays in common blocks /XNLAT/ and
/MYZONLS/ from the output tupe created by program
STACKER and to assipgn initial values to certain
variables,

ENTRY POINIS: STKRIN

FORMAL DARAMETIRS ¢ None

COMMON BLOCKS : FEP, JSTIE, MYTDENT, MYZONES, NOPRINT, XILAT
SUBROUTINES CALLLD: RDARRAY*, SETREAD, TERMIAP*

CALLED BY: DBMOD

Method

This subroutine reuads in the necessary data from the tape ¢reated by pro-
gram STACKER to cnable the calculation of TARDEEFs and the determinotion
of ZONES. 'The data used for the former task are contained in common
block /XLAT/, while that required for the latter task are contained in
common block /MYZONLS/.

Subroutine STKRIN is illustrated in figure 109,

Scce subroutine FILUINR,

.

f

]

f Read

E Common
E Block
! /XLAT/
\

Read

Common
Block
/MYZONES/

Assign Valucs
to XTEST, MAXilI,
FACLOW,
and MAXLOW

RETURN

{om b Bk

Fig. 109, Subroutine STKRIN

s s

SUy ROUTINE TARDEFS

PURPOSE : To assign values of JTARHI and JTARLO to charac-
terize a given target. These parameters describe
the amouri of high-altitude and low-altitudc
terminal SAM (surface-to-air missile) defenses
that are available to defend the target.

ENTRY POINTS: TARDEFS
FORMAL PARAMETERS: JTARIIT - Parameter characterizing the level of
high-altitude local bomber defenscs
JTARLO - Parameter characterizing the level of
low-altitude local bomber defenses
YLAT - Latitude of target being considered
YLONG - Longitude of target being considered
ISIDE - Hollerith value of side
COMMON BLOCKS: JSIDE, XLAT
SUBROUTINLES CALLED: DIFFLONG, DSTF, INDEXTYP
CALLED BY: DBMOD
Method

Within QUICK, the attributes TARDEFHI and TARDEFLO are defined for cach
potential target. The valuc assigned these attributes represents the
level of local bomber defenses available to defend the target aguainst
attacks expected at high altitude and at low altitude, respectively.
Normally, these attribute-valuc pairs are defined by NMCSSC with the use
of programs which are external to the QUICK system; however, program
BASEMOD provides an alternate metbod for assigning these vulues. When
this option is exercised, subroutine TARDEFS is called for cach target to
compute and to return to the calling subroutine the values of JFARHT and
JTARLO, the values that will be assigned to TARDEFHI and TARDEFLO,
respectively. To perform this task, the location of the target is con-
sidered, and the number of SAM batteries (NBATTS) capable of providing
high and Jow altitude defense for the target are determined. This
information is then used for the calculation of the values of JTARHT and
JTARLO. The data describing the SAM defenses which are stored in common
bhlock /XLAT/ arc developed in program KRUNCH, a program external to the
QUICK system. [f the TARDLEFS option is to be excreised, these data must
be provided as input to program BASEMOL.

357

5 Program KRUNCH considers all SAM sites within the target areca and groups
these sites in circular complexes on the basis of the effective range of
the SAM sites. Lach SAM complex is characterized by the latitude and
longitude of its centroid, its radius, and the number of SAM batteries

] (NBATTS) associated with the complex. Each SAM site is included in one,
and only onc, complex. KRUNCH orders and indexes the SAM complexes
according to increasing longitude, and then assigns to each complex a

; sector index. These sectors are established to facilitate subsequent

: processing and are formed through a longitudinal division of thc land ares
under consideration., When called, subroutine TARDLFS utilize§ these data
and determines first the area and then the complexes in which the given
torget lies. On the basls of this information, vaiues of JTARHI and
JTARLO, parameters which reflect the amounts of available local bomber
defense, are assigned. '

o

Subroutine TARDEFS is illustrated in figure 110,

mRT—

- START

i Initialize

: , 22§

= i ' Determine in

‘ ‘ ' Which Area the

i‘ , Target Lics

[

B , ' '

- Consider First
! Site in Area

Is Target
Within this
Site?

PO —

Yes

Call
, INDEXTYP
_ 1

JTARUT=JTARIIT
+NTARSHI (INDEXTYD)

Assign
JTARLO?

JTARLQ=JTARLO -~
+NTARSLO (TNDEXTYD)

Consider Next
Site Within
Area

RETURN ’

Fig. 110. Subroutinc TARDEFS

359 ____

AR TTEINTRR

.,

i CHAPTER 7
: PROGRAM INDIXER

PURPOSE

To provide for economical handling of data and to facilitate communica-
tions between QUICK programs, it is necessary to assign indices to
various data contained in the data base. Program INDEXER is designed to
perform this task. In addition, INDEXER processes all potential targets
and, where appropriate, forms them into collocation islands and complex
targets. Having completed the required processing, INDEXER prepares the
indexed data basc tape INDEXDB and the simulation data tape SIMIAPL,

INPUT

The input to program INDEXER consists of the user-input parameters and
a data buse file, The user-input paramecters identify the print options
to be cxcercised, and provide parameters used in blust damage calculations, 1
The required uscr-input parameters and a description of the output prints %
provided by INDEXER are presented in chapter 3 of the User's Manual, |
Volume 1, and in chapter 2 of the User's Manual, volume IT. |

The data base is input to program INDEXER via magnetic tape. Thi- source ‘
file may be cither the QUIKDB tape created by program QUIKBASE or the
QKMODDB tape prepared by program BASEMOD. This is not to imply that ,
cither source file is always acceptable. f the data base tape QUIKDB !
was processed by program BASEMOD to adept it to the game scenario, the

BASEMOD output tape QKMODDB is input to INDEXER,

ourrur i

Program INDEXER preparcs two output files: an indexed data base tape
INDEXDB, and a4 simulation duta tape SIMIAPIE. The INDEXDBE tape is uscd as
input to program BASEMOR (i f used in the post-INDEXER mode) or as input
to the Plan Generation and Data Qutput subsystems. The INDENDB tape is

3060

prepared using the same lopical record format as the input data base

tape (QUIKDB or QKMODDB) cxcept that an index breakpoint table is added
to the file*. Table 8 shows the togical record format of this file,

The SIMEAPE includes sclected weapon and target data and is prepared for
use in program SIMULATE. The SIMIADRE Format is shown in table 9. (The
SIMIAPE is produced by the QUICK system filehandler. The physical format
of the 'tupe is described in Chapter 2, QUICK System Filchandler.)

CONCEPT OF OPERATION

General

The data basc which is input to INDEXER contains those items which are to
be considered in a specific game scenario., The information included in
the data base 1s categorized by CLASSY c.g., bomber, and by TYPE within
classy c.g., B-52, Fiftecn classes arc uscd to describe the targetable-
type installations included in the data base (see Data Base Organization,
chapter 2, Analytical Manual, Volume 1), To facilitatc subscquent pro-
cesging, program INDEXER assigns vavious indices to these data items.

Khen the data hase is prepared, cach of the target classes s assigned a
value, from 1 to 15, for the attribute ICLASS**. Durinyg INDEXFR processing,
all target types which belong to these indexed clas es are assigned distinet
vitlues of the attribute FIYPE, and all types withio each class are assigned
distinct values of the attribute JTYPE, maintainin,, the order established

by the I'TYPE asgignment. In addition, cach of the .o data items is assigned
a unique value of the attribute INDENNO (index number) . The order of
indexing is as follows: first, all itews of the same class are numhercd
consecutively., Within a single class, items are prouped dccording to the
attribute SIDE (value RED or BLUE)Y, 1temns are Further grouped according

to type (attribute TYPE). Within a type, items are assigned index numboers
according to the order in which they appear in the data base.

After these indices have been assigned, collocation islands and complex
targets are made up from the collection of all potential tarpets {itens
for which INDLANO ts defined). Collocation islands are defined by the

* The data hase terminator bloch is followed by o padding record and an
cid-of-tile mark placed on the tape by subroutine ULRMIAP (sce Chapter 2,
QUICK System Filehandler). The single breakpaeint table record as dis-
played in table 8 follows the terminating ond of file written by

TERMIAP.

see appendix B ofor attribute Jdefinitions.

RISY!

T AT T AR TR e T Y

Tahle 8.

BLOCK TYPE

Directory

Item

Define

Undefine

Terminator

(Sheet 1 of 2)

ARRAY
IDEF
LASTLIST
ATTNAME
IFORMAT
ICODE
DEFAULT
N}

N2
LISTCHEK

LGLOB

LISTVALS

NI

INTTEM

N1
L
VALUL

NI
L

VALUE

N1

LENGTH
1

1

IDEF
IDEF
IDEF
IDEF
IDEF
IDEF
IDEF

IDEF

LASTLIST

2*NI

362

Indexed Data Base File (Logical Record Format)

DESCRIPTION

Number of attributes

Number of entries in value list
Attribute names

llollerith format codes

Error checking code

Attribute default value

Minimum allowable attribute value
Maximum allowable attribute value

Logical array to specify list
checking

Logical array to specify global
definitions

List of values to be. checked

Number of attributes defined
locally for this item

Array containing attribute index
{(from directory) in odd elements
and attribute value in even
¢lements

= -1 as DEFINE block indicator
Attribute index from directory

Attribute value

= -2 as UNDEFINE block indicator
Attribute index from directory

New attribute value

= ENDDATA as terminator hlock
indicator

s Al

Table 8. (cont.)
(Sheet 2 of 2)

BLOCK TYPE ARRAY LENGTH DESCRIPTION
Breakpoint CUMNO(T) 15 Total number of types within each
Tahles class (I = 1 o 15)
BTYPES (1) 15 Number of BLUE types in class I
INDCLAS (1) 15 Beginning index number INDEXNO
for class I
INDBEG(J) 250 Beginning index number INDEXNO
for type J
TYPENAME (J) 250 Type name for each type J

363

LIRS

i
I
1
b

VARTABLL
NTYPE
INDBEG
TYPENAME
CUMNO
BTYPLS
INDCLAS

NAMCLAS

NVULN
CVULN

" NCOL.

’ COLAR

NTHEF

NTINTX

NUMAINT

NAMI:

Table 9.

MAXIMUM LENGTH/
ACTUAL LENGTI

STMIAPE Format
(Sheet 1 of 4)

DESCRIPTION

1

250/NTYPE

250/NTYPE

15

63/NVULN

1

4000/NCOL

500/NTDEF

Number of target types in classes 1
through 15

Smallest INDEXNO assigned to cach
target type

Contains the name of cach target type
in the order referred to by INDBEG

CUMNO(I) is the total number of target
types in each QUICK class, 1 through I

BTYPES(I) is the number of BLUL target
types in class 1

Smallest INDEXNO assigned within cach
class

llollerith name of target class

Number of distinct values of vulner:
ability which occur in the data base

List of all distinct values of VULN;
indexed by IVULN

Number of collocated targets

Packed data related to collocated
tarpets

Number of targets with terminal bal-
listic missile defenscs (BMD)

Number of terminal BMD interceptors;
indexced by ITERM

Number of zonces with arca BMD inter-
ceptors

T e W

g Table 9. (cont.)
(Sheet 2 of 4)

VARTABLL MAXTMUM LENGTH/
NAME) ACTUAL LENGTHI DESCRIPTION
f AINT 60 Number of arca interceptors assigned
i cach antiballistic missile (ABM) base
f NUMNLRR 1 Number of zones with long-range BMD
: ridars
E NLRR 20 Number of long-range BMD radars covering
E cach zone
! NUMIOVR 1 Number of entries in the IOVERLAP
array
; I0VERLAP 20 Packed radar data (radar index, index
- of arca defensc zone)
3 MAXIND 1 The maximun (largest) index number
: (INDEXNO) assigned
-
STATUS 12000/MAXIND Packed target data; indexed by INDEXNO
NMTS 1 Number of missile types
MIS 11-80/11NMIS Missile typc data: MIS consists of
11 arrays, cach indexed by JTYPE, con-
taining PINC, PLART, PDES, PEPE, 'TVUL,
TRETARG, IREP, CEP, PRMIS, DELTA, ond
FUNCTTON, respectively
NBOM 1 Number of bomber types
i
BOM 7+80/7«NBOM Bomber type data: BOM consists of i
seven arrays, cach indexed by JIYPL,
containing PLART, TMDEL, ABRATL, PRABT,
CEP, DELTA, and FUNCTION, respectively
i NTANK 1 Number of tunker types .
3 TANK 5+¢40/5+NTANK Tanker type data: TANK consists of ;

five arrays, cach indexed by JTYPE,
containing PLABT, TMDBEL, ABRATE, DULTA,
and FUNCTT0ON, respectively

305

RO Y T T i T

N AT £ T T T

VARIABLE
NAMT:

NASMT

ASMT

NWID

WHD

NZONES

ZONES

NDEF

DLEFPOT

NINT

INTPOT

NBLUPLD

IPAYLD

Table 9.

MAXIMUM LENGTH/
ACTUAL LENGTH

(cont.)
(Sheet 3 of 4)

DESCRIPTION

1

2+20/2 «NASMT

3450/ 3+NWHD

1

3+63/3+NZONES

20/NDLEF

1

20/NINT

1

5+50/5<NBLUPLD

Number of ASM types

ASM type data: two arrays, euch
indexed by ASMIYPE, containing PLABT
and CEP, respectively

Number of warhead types defined in
the data base

Warhead type data: three arrays,
each indexed by WIDTYPL, containing
PDUD, YIELD, and CEP, respectively

Number of air defense (bomber) zones

Three arrays, each indexed by ZONL:
the first contains AREA; the second
and third contain the accumulated
effectiveness (LFECINLS) for classes
Defensive Control (DEFCONTR) and
Interceptor (INTCPTOR), respectively

Number of types of defensive command
and control defined in the data basec

EFECTNES of each defensive command
and control type, lmdexed by JTYPE

Number of interceptor aiveratt types

EFECTNES of each interceptor type,
indexed by JTYPL

Number of BLUE payloads
BLUE payload type data: five arrays,
cach indexed by PAYLOAD, containing

NOBOMBL, WHDTYP):, NWHDS, NDECOYS, and
NAREADEC, respectively

3006

ER A Oaiatalt |

T AT T

TR AR T N T ST S S e ey T R

SRR S TR XS

LR ST &

Table 9.

VARIABLE MAXTIMUM LENGTH/
NAME ACTUAL LENGTI
NREDPLD 1

IPAYLD 5+40/5*NREDPLD
NWHDS 1

PSASW 100/NWDS

TSASW 100/NWDS

(cont.)
(Sheet 4 of 4)

DESCRIPTION

Number of RED payloads

RED payload type data: same form as
described above for side BLUER

Number of words in DBLDATA tables

Destruction before launch probability
assigned a weapon for a specified
time period

Time at which a time period ends for
DBL data table; there may be up to
10 time periods for each table

Y

following criteria; 1if the distance between two targets is less than

the sum of the lethal radii of (for convenience) a one-megaton weapon for
the hardnesses of the two targets, then they belong to the same colloca-
tion island; a collocation island consists of all targets which are
linked by this distance criterion; and a single target does not form a
collocation istand., Thus, there is no theorciical upper limit to the
size of an island; but, in practice, islands are usually rather small
clusters. Two targets arc said to be cnllocated if they belong to the
same collocatirn island; a collocated target is one which belongs to some
cullocation ivlund. The definition of a complex target is identical to
the definitioi of a collocation island except that the distance criterion
is one-half the distance used for collocation, Thus, every complex
target is a subset of some collocation island. Collocation islands are
used in the Simulator in determining the status of targets following
warhead bursts; cumplex targets arc used in the Plan Generator,

To perform the required processing and prepare the output files, INDEXER
makes three passes through the data base, In the first, a temporary index
JTYPE is assigned to selected items, and breakpoint tables reflecting
the assignment of index numbers (INDEXNO) by target type and class are
formed. In addition, the various vulnerabilitiesy i.e., values of the
attribute VULN, assigned to data base items are retrieved. In pass two,
an index number (INDEXNO) is assigned to cach potential target. Then,
subroutine COLOCATE is called to form collocation islands and complex
targets. In pass three, the indexed data base tape INDEXDB is prepared,
and the bulk of the data base input for the Simulator is compiled and
written on the output tape SIMEAPL,

With regard to processing the data base, it should be noted that data
items in classes WARHEAD, ASM, PAYLOAD, and DBLDATA must precede all other
items on the data base tape. In addition, it is assumed that the indi-
vidual launch sites assigned to cach missile squadron arc grouped together;
i.e., entered sequentially, in the input data base, und that the valuc ot
the attribute ISITE (site number) is set to 1 for the first site appearing
on the tape in each squadron., The use of this technique facilitates
processing and cases the task of forming offensive weapon groups for use
in the Plan Generator. When input in this manner, the missile squadrons
are viewed as one launch base during plan generation, but the individual
launcher locations are used jn computing kill probabilitics during
simulation.

Pass 1 Processing (Sheets 1 to ¢, Figure 111)

Figure 111 reflects the logical flow within program INDEXER. The program
bhegins by calling subroutine INITIND to initiaulice counters and arrays,
Then, the user-input parameters arve read by calling subroutine READIN,

el

ST T T R,

After keys* for packing data in the COLAR, TOVERLAP, and COMPLEN arrays
. have been formed and the filchandler initialized, pass | obegins, The
/ data base directory is read in and written onto a temporary data base
. File {(LUNZ2) established on the disk using schrontines REAPRER and WRETLDIR,
Then cach data ttem contained on the input data base is read and processed,
As vach item is read in, the value of the attribute 1CLASS is checked,
Ttoms for which [CLASS cquals zeroj l.e., the auxiliary classes, are
copied onto the scrateh data base file created on the disk, and the next
Ltem is read., The items for which TCLASS is preater than zero arce
checked to determine if the item is a nonlead element of o missite
squadrony i.c., an clement of a missile squadron for which [SI1TE is not
set to 1. Tt so0, the site number (ISITE) is incromented by one, and the
stem is added tc the data base. The remaining itemsy i.ce., missile sites
for which ISTYE equals 1 and all items in c¢lasses 2 through 156 (TCLASS =
2,3,...15) arce processed and assigned a temporary index JTYPE,

.,_
:
*
)

E The assigning of JTYPE takes place in the following manner. Items are
- separatod according to side, and the arvay TYPENAME(J, ICLASS) 1s seusrched

for a type name match (1sJ£40 for side Blue, and 41:1:80 tar side Red).
If no match is found, the first blank word is filled with the new type
name. The attribute JTYPE then is assigned the corresponding vialue of

H the index J. Up to 40 types can be stored for cach side and class, 11

2 this number is exceeded, the message TYPENAMID TABLE TOO SMALL is printed,
and the run halts,

The number of items of cach tyvpe is stored in the corrvesponding word of

the arvay TYPETBLGT, TCLASS). Each time the type is encountered, the number .
is incremented by JADD, where JADD cquals the number off sites per missile
squadron or 1 for all other items. ¢

After cach item has been processed by type, the array CVULN is scarched
for the vulnerability attribute VULN detined for that item. 1f no match ,
is found, the first blank word is filled with the vatue of VULN, Should
more than 100 different values be encountered in processing the data base,
an eryor messapge is printed to indicate an array overflow, the item is
written on the scrateh tape, and the nesxt item is read from the data

* Key words returned by the vtility function KEYMAKE which contain
instructions for paching and unpacking of data according to o specitied
format.

300

base, Othcrwisc, the attribute IVULN* is defined in the data basc to be ,
the index of the word in the CVULN array which matches the jtem attribute

VULN, The item is then written onto the scratch lee, and the next item
is read. . !

After all items on the input data base tape have been processed, INDEXER
prepares the breakpoint tables, These tables contain the beginning index
numbers (INDEXNOs) of ecach class and type and the number of RED and BLUE
types in each class. The breakpoint tablés are used by subsequent
programs to obtain information as to the general content of the data base
and to facilitate cross-referencing operations; e.g., the class, type,
and side of an item can be determined based on its assigned index number

(INDEXNO). These tables are formed by assigning a begiuning index (INDBEG)

to each type, starting with the first BLUE type in class 1 (see sheet 4),
Each new index is found by incrementing the prcvxous index by the number
of items for the type under consideration (stored in TYPETBL). An index L
to the array INDBEG then is stored in TYPETBL, replacing the number of
items of that type. The number of BLUE types in each class (BTYPES) and
the total number of types in all classes processed thus fur (CUMNO)} alsc
arc accumulated. After all beginning indices have been found, the array
TYPENAME is collapsed so that types are listed consecutively in the order
cstablished by the INDBEG assignment, with nc blank words remaining. : The
beginning index for each class (INDCLAS) then is.calculated, and the
breakpoint tables and vulnerability (CVULN) array arc written:on the
simulation data tape SIMTAPLE (see sheet 6). .

Pass 2 Processing: (Sheets 6 to 11, Figure 111)

Before pass 2 begins, a critical distance for collocation (CRDIST) is
calculated for each value in the vulnerability array CVULN. This distance,
which is approximately the lethal radius of a one-megaton weapon corre-
sponding to the value VULN, is stored in degrees of latitude to minimize
computation in forming collocation islands. The type beginning indices
(INDBEG) then are stored in a current index array (INDCUR), and the first
item is read from the data base file written during pass 1 (see statement
200, sheet 6). 1If the item is not a potential target and will not be

* The upper limit of 100 vulnerabilities was established to aid NMCSSC in
processing large data bases containing an unknown number of vuinerubility
codes. Up to 100 different codes will be reflected in the print of the
CVULN array. Actually, the system is limited by the structure of the
STATUS array to an upper limii of 63 vulnerabjlities. If more than 63
different vulnerability codes arc encountered, the message SIMTAPEG
UNUSABLE---TOO MANY VULNERABILITIES is prlntcd This condition does
not preclude the use of the INDEXDER tape in plan generation but does
prochibit the simulation of such plans.

370

e i a2

assigned an index number INDEXNQ (i.e., if ICLASS=0), it is copied onto
a sc¢ratch disk file (LUN3, sece statement 215, shect 8) and the next item

\ is read, Otherwise, the item is assigned a value for the attribute
s INDEXNO as follows,

g 1 i T T

The type index (1) to the array INDCUR is retrirved from TYPETBL, and the

\ Index L then is assigned to the attribute ITYPE. In addition, the index
JTYPE is reassigned so that all types w.thin cach class are indexed
consecutively, The value in INDCUR then is incremented by NADD, where

‘ NADD equuls the number of sites por squadron for missiles and 1 otherwise.
. It is assumed that the first missile site in cach squadron is processcd

; first; subs~quent sites in the squadron are assigned consccutive values

. of INDEXNO by incrementing the index assigned to the first site by a

modified site index (ISITC-1).

After INDEXNO has been assigned in the data base, it is stored, along
with the latitude (LAT), longitude (LONG), and critical distance (CRDIST)
for use in forming ollocation islands. Due to the restriction of
available storage in the computer memory, most of the collocation data
nust be kept on the disk. This'is accomplished by splitting the earth

5 : into 10 longitudinal sectors and writing the information for all sectors
?- b o but the first on the scratch disk file (see sheet 8). Information for
:

14

items iy the first sector is stored in the arrays IND(INDEXNO), X(LONG),
B Y(LAT), and Z(CRDIST) for immediate use in subroutine COLOCATE (statcment
b .. 267, sheet 8). At this point, the item is written on the scratch tape and
% : the pass continues.

Once all the data for collocation have been collected, a check is made to
A . insure that no sector contains morc than 4,000*% items (shcet 9). 1If this
: number is exceeded, the message TOO MANY ITEMS FOR COLLOCATION, together
with the sector concerned and the number of targets in the scgment, are

E printed, and the number of targets to be considered is limited to 4,000,

r} when all sectors have been checked, subroutine COLOCATIE is called to

3 - process the data stored in the arrays IND, X, Y, and Z for the first carth
sector,

ﬁ When control is returned from COLOCATE, the scratceh file is read and the

i arrays IND, X, Y, and Z are filled with the data for the next scctor. The
' data for the remaining sectors are copicd onto a second disk scratch file,
: and subroutine COLOCATE is called to process the data for the next sector.
This process is repeated, with the input/output roles of the two scratch
files LUNG6 and 7 alternating, until all earth sectors have been processed.
(The input and output scratch files used in this process are designated
LIN and LOUT, respectively.)

* Program coding reflects the variable MIARSEC (maximum tuargets per scctor)
which is sct at 1,000,

!

corresponding value in INDCUR is assigned to the attribute INDEXNO (sheet 7).

e 1 SualiR D)

DRCHE S | e K

When control is returned from subroutine COLCCATE after processing the
last scctor, the scratch file LUN2 containing the COLAK agrray (written by
COLOCATE) is terminated. A check is then made to ensure that no more

than 4,000 target eclements were found to be collocated, 1f the number

of collocated targets cxcecds 4,000, counters arce sct to cause the message
ARRAY OVERFLOW COL TGTS (number of collocated targets) to be printed in
the final phasc of processing,

Pass 3 Processing (Sheets 11 to 18, Figure 111)

Before the pass begins, relevant arrays and countoers are initialized, Kkevs
arc formed for use in packing data into the urray STATUS, and the maximum
value of INDEXNO is retricved (sheet 11). The directory of the data bhasce
written during pass 2 then is read trom LUN3 and copied onto the final
data basc tape INDEXDB.

As cach item is recud from the data base, it again Is tested for class
assignment. ltems which arce not potential targets (i.e., ICLASS=0) arc
separated into appropriate clusscs (sheet 12). Relevant datu for items

in classes WARIEAD, ASM, ZONL, and DBLDATA are stored in the corresponding
array (scc tuble 107, and the number of items in cach class Is accumulated,
Items in class PAYLOAD are scparated by side and assigned a new paylond
index (NBLUPLD or NREDPLD), beginning with '"1'" on cach side. The index

is stored under the old index PAYLOAD in array KNARRAY, and the attribute
PAYLOAD ts changed in the data basc to represent the new index. Relevant
data then are retrieved and stored in corresponding arrays (scc table 10).
The item is written onto INDEXDB, and the next item is recad. As each of
the items (data basc records) associated with these auxiliary classes is
processed, a check is made to ensure that the maximum limit for the class
is not cxceeded (for maximum limits, sce description of common block /MAX/
in table 13). If the upper limit is eacecded, flags arc set to cause an
array overflow error message to he printed. The item is then written onto
the INDEXDB tape without storing the associated data (sheet 12).

With onc exception, data basc items from the auxiliary classcs POINT,
BOUNDARY, CORRIDOR, and LEGS arc merely written ontoe the INDEXDBR tape and
the next item is reud. The exception pertains to a check of class
CORRIDOR 1tems to ensure that the corridor types DUMMY and NAVALAIR arce
defined in the data base (required it tuctical bombers or bowbers with
the attribute PRNAV>0O are to he considered in plan generation),
corridor types dare not encountercd in processing the data base, a
message 1s printed to alert the user to a possible error,

11 these

As appropriate,

one or hoth of the following messages is printed: DUMMY CORRIDOR FOR
TACTLCAL ALR NOT DEFINED; and/or NAVAL AIR TORRIDOR NOT DEFINED,

sl il

e e S Bt

Table 10. Warhead, ASM, Payload, and DBI, Data

ARRAY POSITION ATTRIBUTE DESCRIPT LON

WHD WHDTYPE, } Phun Probability of a dud

WHD WHDTYPE, 2 YIELD Yield (megatons)

WHD WHOTYPLE , 3 CEP CEP (nautical miles)

ASMT ASMIYPL, 1 PLABT Probability of launch abort

ASMT ASMIYPE, 2 CEP CEP (nautical miles)

ZONES ZONE, 1 AREA Area of a defense zone
(millions of nautical miles”)

MIRV PAYLOAD, ISIDE NOBOMB1 | "Number of boﬁbs carried by ' E
vehicle

INWHDS PAYLOAD, ISIDE NWHDS Jumber of warhcads (missiles)

IWHDTYPE PAYLOAD, ISINE WHDTYI'E Warhead type index

INDECOYS PAYLOAD,ISTIDE - NDECOYS Number of decoys carried by

o véhicle

INARDEC PAYLOAD,TSIDE NAREADEC Number of srea decoys

TMASW TPASW Time for DBL data table

DBLASW PSASK Dl probabijity for DBL data

table

TR TR T T e R

i
b
v
b

T s T

e e

If the item under consideration is a potential target, it is checked for
collocation (logical array COLO). Collocated targets are so iudicated by
packing a "1" under TCOL in the STATUS array (indexed by INDEXNO (see
table 11)). The logical array COMP then is checked to s¢e if the collo-
cated target is also a member of a complex. 1If 1t is, function ICPL is
called to unpack the index ICOMPLEX from array COMPLEX. ICOMPLEX then is
assigned in the data base.

For all potential targets, the values of the attributes TARDEFHI, TARDEFLO,
IVULN, IATTACK, IAREA, ADEFZON, and ADEFCMP are packed iato the STATUS
array (table 11).

Dynamic targets (items assigned the attribute-value pair TGTSTAT-1 in the
data base) are so indicated by packing a "1'" under the al.ve-deau
indicator TSTAT and status flag IKEEP in the STATUS array. In addition,
for all itemssan ICLASS 4 and S5 (currently clusses defensive centrol
DEFCONTR, and interceptor INTCPTOR), the value of the attribute ZONE is
packed into the STATUS array; the defense potential of the target (attri-
bute EFECTNES) is accumulated in the zone array (table 11); and the
value of EFECTNES, Which must be the same for all items of a given type,
is stored by JITYPE in the array CPACTY if the item is the first of its
type. For items which are antiballistic missile (ABM) bases (ADEFCMP=1
2, or 3), the value of NAINT is stored in the AINT array, doubly indexed
by ABM detensc zone (ADCFZON) and ABM defense component (ADEFCMP), For
items which are radars (ADEFCMP=4), NLRR is incremented by one for each
of the area defensc zones AZON1, AZON2, and AZON3 supported by the radar,
In addition, the values of the attributes INDEXNC, AZONI1, AZON2, and
AZON3 are packed in a word of the array IOVERLAP (table 12) indexed by
ADEFZON.

Ttems belonging to ICLASS 1, 2, and 3 (currently classes MISSILE, BOMBER,
and TANKER} now are tested for payload. .1{ the payload index (attribute
PAYLOAD) is defined, the new payload index (NBLUPLD or NREDPLD) is
retrieved from array KNARRAY and assigned to the attribute PAYLOAD in the
data base, Certain data which do not change within a given type arc
stored in the corresponding MISSILE, BOMBER, or TANKER array for the first
item of cuch type (indicated in array ICHK). The item then is written
onto INDEXDE and the next item is read.

After all jtems have been processed, the array COLAR, which was written
during subroutine COLOCATE, is read into memcry and copied ento the
Simulator tape SIMTAPL (shect 17). Subroutine TDEFSTT now ie called to
make the final assignment of terminal defense indices (NTDEF). When
control i¢ returned to INDCXER, data for the Simulator are written on
SIMTAPE in the format shown in table 9, and the tape is terminated.
Subreoutine SKIPFILE then is called, so that the index breakpoint tables
may be written at the end of thc INDEXIE tape. Depending upon the print

TR O\ PR L

-

Lﬂ' i ot e Al T i L St b Y RS i
i et o oot s e anen e

Table 11. Structure of a Word in the Array STATUS

B1TS VARIABLE VALULS DESCRIPTION
0-1 TSTAT 0,1 Value equals 1 for (alive) dynamic rar-
gets, equals 0 for nondynamic targets
2 TKEEP 0,1 Value equals 1 for dynamic targets,
, cquals 0 for nondynamic targets
3-5 TCOL 0,1 Collocation indicator; l=collocated
6-8 TARDEFLO 0-7 Level of local bomber defenscs at low
altitude
9-11 TARDEFHI 0-7 Level of local bomber defenses at high
altitude
12-14 IATTACK 0,1 Selection index for preferential BMD;
value equals 1 if selection is user-
directed
15-20 IVULN 1-63 Index to vulnerability number table
21-23 1AREA 0,1 Value equals 1 if ltem assigned to an
area BMD zone; i. e., item attribute
ADEFZON > 0, and otherwise set to 0
24-32 ITERM 0-500 Terminal BMD defensc index
33-38 ADEIFZON 0-63 Area BMD zone number
39.41 ADEFCMP 0-4 Area BMD component code (ABM base or
radar) :
42-47 ZONE 1-63 Bomber area defense zone number (ICLASS
4 and 5 only)
Table 12. Structuvrc of a Word in the Array 10VERIAP
BITS VARIABLE VALUES DESCRIPTICN
0-14 ITAR 1-12000 Index numbor INDEXNO of the radar
15-2¢ AZON1 0-20 First area BMD defense zone covered by
radar
21-26 AZON2 0-20 Second arca BMD defense zone covered by
radar
27-32 AZON3 0-20 Third area BMD defense zone covered Ly
radar
375

e Bl A st " L i e i e Bt ! ®

crrag w7

o

e

o sgr—

controls, the data on SIMIAPE and in the STATUS array may be printed at
this point. Otherwise, the processing of INDEXER is complete,

Common Block Definition

Program INDEXER references the following utility routine common blocks,
which are described in appendix A of this manual: /DIRECTRY/, /EDITERM/,

i
JEDITAPE/, /ERRORM/, /IFTPRINT/, /ITP/, /MYIDENT/, /NOPRINT/, /PROCESS/,
and /TWORD/.

Table 13 lists the common blocks which are local to this program and
identifies the arrays contained in them.

376

E,
3

Table 13, Program INDEXER Common Blocks
(Sheet 1 of 9) E
VARIABLE ;
BLOCK OR _ARRAY DESCRIPTION .
1 NISL Number of collocation islands
NN Index to COLAR array
g
NCOL Numbei of collocated targets
NITEM Number of items in segment being processed
X Array containing longitude
Y Array containing latitude
Z Array containing critical distance
IND Array containing index number INDEXNO
STATUS* Array containing packed dav. for targets -
2 CoL Array indicating targets belonging to a
cnllocation island i
!
CL Array indicating targets belonging to current
collocation island
CLT Array indicating targets in current island
which have not been checked for further
collncation
cr Array indicating targets belonging to a
complex
3
3 TCUR Complex index
TSTORE iadex to array COMPLEX 3
:%
Lquivalenced to X to save sterage space, é
377 %

Tahle 13. (cont,)
(Sheet 2 of 9)

| VARIABLE

i BLOCK OR ARRAY DESCRIPTION

: 3 (cont,)

; COLAR Array containing packed data for collocated

; targets

g COMPLEX Array containing packed data for complex
targets

;j 4 NULL Beginning INDEXNO refcrence point in CUMNO

| CUMNO (1) Total number of type

BTYPES(I) Number of BLUE types in class I

INDCLAS (1) Beginning index number for class I

INDBEG(J) Beginning index number for type J
TYPENAM Array containing type names
TYPLTBI. Array containing number of items of each type
INDCUR (J) Current index number for type J
MIS(FMIS) Arrvay containing missile type data
BOM Array containing bomber type data
TANK cray containing tanker type data
ASMT Array containing ASM data
WD Acray containing warhead data
ZONES Array containing :Zone data
CAPACTY Array containing effectiveness (LEFECINES)
T1CHK Array used to process information pertaining
to all itoms of the same type
378

1 A T o VAT L S OURL PY 5 W RN M st
- . o Fres Ly - - ol - - — =
iy S lE = b

Table 13, (cont.)
(Sheet 3 of 9)

i
3 : VARIABLE
: BLOCK OR ARPAY DESCRIPTION
3 . 4 (cont,)
! MIRV Array containing number of mu)tiple inde-
) pendent re-entry vehicles
{ IWHDTYP Arvay containing warhead type index
i
! INWHDS Array containing number of warheads carried
by vehicle
INDEECYS Array containing number of bomber decoys
: INARDEC Array containing number of area decoys
i, NAMCLAS Array containing Hollerith rame of target
r
é classes
!
E 5 NTDEF Number of terminal ABM defenses
: ITERM Array containing index number of terminally
E- defended targets
: NTINTX Array contéining number of terminal inters
: ceptors
i
b 7 CoLO Logical array which flaps collocated targets
: COMP Logical array which flags complex targets
4
; LTERM* Logical array which flags terminally defended
. targets
; * Equivalenced to COMP to suve storage space,
. 374

NN PR OSSRy T TR AR VIR IS SR B DS T ST

e il

[Teble 13, (cont.)
1 (Sheet 4 of ©)
VARIABLE
' BLOCK OR ARRAY DESCRIPTION
; 9 ICHKFLG Array containing names of classes which have
exceeded maximum number of target types per %
class
TCHKNUM Array containing number of target types f
H
i greater than maximum ailowed per class ;
_ NCHKFLG Array containing Hollerith identjfier for 5
;. variables and arrays which cxceed upper limits E
b]
X NCHKNUM Array containing number of items associated ¥
with cach- NCHKFLG entry '
i; 10 KNARRAY Array containing payload indices for each
i side .
X AREADAT AINT Array containing number of area interceptors
; NLRR Array contsining number of long-range radars é
! covering a zone
' TOVERLAP Array containing packed duta for radars k:
comp LCOMP Array containing index numbers of targets in
current collocuztion island
|
KEY KEY Array containing kecys for packing data into K
COLAR
b
ﬁ 380
3 i

BLOCK

KEYC

1 KEYS

VARIABLE
OR_ARRAY

KEYC1
KEYC2
MASK1

MASK2

TSTAT
(KEYS(1))

TCOL
(KEYS(2))

TARDLO
(KEYS(3))

TARDRI
(KEY3(4))

KATTACK
(KEYS(5))

TVULN
{KEYS(6))

KARDEF
(KEY3 (7))

KTERM
(KEYS(R))
ZO%
(KEYS(9))

KDLFZON
(KEYS(10))

KDLEFCMP
(KEYS(11))

Tuble 13. (cont,)
(Sheet 5 of 9)

DESCRIPTTON

Key for packing index number into COMPLEX

Key for packing complex index into COMPLEX

Mask corresponding to KEYC1

Mask corrcsponding to KLEYCZ

Key

Key

Key

Key

Keyv

Key

Key

Key

Key

Key

Key

for packing

for packing

for packing

for packing

for packing

for packing

for packing

for packing

for packing

for packing

for packing

381

status flag

collocation flag

TARDEFLO

TARDEFHI

TATTACK

TVULN

TARLA

ITERM

ZONE

ADEFT.ON

ABEECMP

J—

BLOCK

MAX

VARIABLE

OR_ARRAY

MALERT
MASMTYP
MBNDRY
MCCREGN
MCLASS
MCNTRYS
MCORR
MCORTYP
MDPEN
MDEPNLG
MGROUP
MPAYLOD
MRECOVR
MRECVLG
MREF
MRTLEG
MRTPT

MSPERMT

Table 13. (cont.)

(Sheet 6 of 9)

DESCRIPTION
Array containing maximum limits
Aiert conditions (2)

ASM types (20)

Boundary legs (200)
{ormand/control (20

Weapon classes (2)

Country codes (250)

Penetration corridors (30)
Corridor types (5)
Depenetration corridor route points (50)
Depenetration legs (50)

Weapon groups (200)

Payload types per side (40)
Recovery bases (200)

Recovery legs (60)

Directed refuel points (20)
Route legs (2003

Route points (200))

Missile sites per multiple target (5)

' LN . el APPSR e A meam A
| U U VLR - S S I PP P S

" S Y UG

P

BLOCK

MAX (cont.

VARTABLI
OR_ARRAY

MTANKBS
MIARCLS
MIARCOL
MIARCP X
MI'ARERS
MIARGET
MTARIND
MI'ARSEC
MIARTEL
MIARTYR

MTARVAL

MIELMCM
MI'OTBAS
MIYPL
MVULN
MYEADGY
MWHDTPE
MZONEPT
MZONES

MTARPCL

Table 13, (cont.)

(Sheet 7 of 0)

BESCRIPTION

Tanker bases (00)

Target classes (15)

Collocated targets (4,000)

Tarpget complexes (4,000)

Targets per collocation island (100}

Targets (program ALOC limit) (5,000)

Target index numbers (12,000)

Targets per carth scctor {(4,000)

Targets with terminal BMD interceptors (500)
Total target types (250)

Target complexes with value greater than zero
(2,500 per side)

Target clements per complex (40)

Weapon bases per group (150)

Weapon types (missiles plus bombers per side) (’0)
Vulnerabilities (100)

Weapons ner group (1,000)

Warhead types (50)

Zone points (200)

Zones (03)

Target types/class (missile and bomber oo all

other classes J0)

385

AT AT ¢ DA

e sy

BLOCK

MAX (cont,)

NAVALTB

PRNT

RADATA

TRANS

VARTABLE
OR ARRAY

Table 13, (cont.)
i (Sheet 8 of @) 1

DESCRIPTION

MABMDEZ

MABMSIT

TMASW

DBLASW

ITMAX

I DBLMAX"

IPRNT

PA
PG
QA

QG

NASMT

NVULN

Area ballistic missile defense (BMD) zones (20)

Missile sitos per ballistic missile defense
zone (3) '

Array containing'times for time-dependent DBL
'data tables '

1 ' .
v Array containing cumulative DBL probabilitigs
for DBL data tables

* Maximum number of times per DBL data table

Numbér of DEL data tables currently defined

1 .
Array contlaining print controls

Arrays containing vulncrability information

for subroutine VLRADI

Number of ASM (dir-to-surface misside) types
in data basc

Number of distinct vulnerabilities assigned

to items in Jdata base

i Table 13, (cont.)
(Sheet 9 of o)

! | VAKLABLE
' BLOCK OR_ARRAY DESCRIPTICN

TRANS (cont,)

NBLUPLD Number of BLUE payloads in base
MAXIND Number of irdex numbers stored in STATUS
array
J : N NREDPLD Number of RED payloads in the data basge
LMAX Total number of types assigned index numboers
in data basc E
WRIT WR(IWR) Array used for collocation data
' NR Array containing nuaber of items in an

viarth sector

XLONG Designates sector boundaries

X
Bl

——

START

Call
INITIND

L

Call

Rli:\lLNJ

S

Form Keys for
Packhing Data in
COLAR, LOVERLAP,
nd COMPLEX Array s

Inftiulise
Filehand)ep

Y

Call READDIR
Call KRITEPR
Write Directory
on o Scrateh File

Call INPUTEY

or NEXTITM

Rewd Data Rase
ltom

Q0
Non-First
Fiement of
Missile

Yes .

Nite?
Frg. 111, Froveam 1A \ER
(Sheet 1 ooy (IR
AN

s
]
§
1
!
i
j
1
1
i
{
i

Q

IR

5? 98
N
g Assign 113 —
:) Ne'xt Set NADD to Initialize
‘ Site Number Number of Sites | Sitc Index
; (NADD=NOPERSQN/ to 1
; 5 v NPSITE) _(JSITE=1)
‘ Add New \ Numbar Per) “Y“
j Site Number <'~° Squadron Is This a No
. to iqual Numbe sile? P
, Data Rase ‘er Site? MissiTe?
"y Yes
, wu"'“’—.
3 50 Set Number
Is Item - of TYPES
to be Added to 1
: Indexed? {NADD=1)
N — H
i —T .
103) 112
N - Assign : ;
Set TYPE No “Side o TYPE Index . : -
Index Range f=& Fqual in Data Basc ; ' E
for RED BLUE? (JTYPL)
r- Yes 11 T : -
; Previous Fill in
: Error in \ 'eS TYPE
4 This
Class? N
No 1s,This R
\ : : 810 Space in i
¥ Set TYPE JYPE Name Table ’
: Index Range Filled?
_ for BLUE "
, Do No
ﬁ. Do MTARPCI
!{1 \ Spaces in TYPE A
E- Name Table Tl
. {By Side)
E. {llone
. 814

Increment
@ Error Counters
to Print Ervor 814

Messages Later

3 Fig. 11}, (cont.)
3 (Sheet 2 of 18)

387

1
A
9
1
]
(19
é 114 '
3 Scumulate
: Number Addod
l Store in
- TYPE Tahie
]
) 819y
? Too Many Yes
) 3 Vulnerabilities?
f No
835 4
{. go for Tll Done Increment
g paces in . Error .
E-. Vuln‘?rg?llity Count }
H n c <
!; bo
8 115 / 118 - H
4 Vulnerability Has This Fill
a5ty i anis Spase Been o1
: quco° Filled? Vulnerability
3 e -
: Yes 119 Al -
Y Store Count Number
' = pd Vulnerability of
Index Distinet
Yulncrabilities

£0
Change
Vulnerability
Index in
Data Base
120 Jo——
120 ;

Write Item
LUN2 [P on Scratch

File

AR

Has Last
Item Been
Read?

Frg, 111, (cont.)
(Sheet 3 of 18)

384

9l

91
Initialize Indices,
Beginning
Index
Pointer

!

Do fo:
r—-—h All Tarpet Jlﬂj_ﬂ..m_’®
Classes

tUo

ey
Set Indices
to Consider

Blue Types

Done

Set Indices
. “‘ - to Consider
121 — - Red Types
% for Store Bogxnning B
. 130 Index Pointer in
Types on 41 Typc Table; In-
This Side crement Pointer
T
]Do 123 * 123
Store Index Num- Find Find Total Number
ber for This Type Beginning Index of tlue Types
in Beginning Index of in
(INDBEG) Table Next Type This Class

* N9

Retricve Number of
Items of This
Type From
Type Table

Equal
Zero?

Blue Types
Just
Processced?

s,

l———]

127 _ 24
Find Number of . e
Accumulﬂgc [tems in No s Tblh
Nurher of Previcus thg First
Types Class Class?

Set Number of

. Items in

Frevious Class
QM) to Zere

Fig., 111. (cont.)
(Sheet 4 of 18)

389

T P

g

s A

i
\

r

Find Store Total
P Beginning Number of
Index of Differcnt
has Class Types
3
Do -
feve
Do for Do for b Retr
All Target | Done Entirc 2 H‘?ASS;"“
Classes Type Table) Pointer L,
Done A150
“Arc Bronk-
No point Table Yes
bata to Be
Printed?
Yes 145
shift Type
lag— ..} to Position L
1149 in TYPENAME
Print TYPENAME Table
INDBEG
CUMND
B TYPES
INDCLAS

1165

Call WRSIMT(1)
Write Breakpoint
Tables

I
{

Fig. 111. (cont.)
{Sheet 5 of 18)

390

T,

po—

- R
b A
5702 |
3 Call VLRADI J
n?)i:;ct’;n‘::l bo Compute Corre- _
e RSN

Vulnerablilitivs sponding Criti-
o cal Distance

Done

18¢
Arc _,,
Vulnorahility You . Print All
Data to be Distiact /
Printed? Vulnerab!lities
No i
bt -
158 / B
Call WRSIMI(2) Sc: gurrent
Wrira | .. n exito ;
Vulnerability ’ Bcgign ng T i
Data ndex ;g
A 3
-Continue Initial- b 3
ization of Collo- 9
Do for cation Counters TDO for 250
240 Done and Arrays and] ypes in -
Length e a1l Loy LG Breakpoint | ¥
of Array to Write Table .
'] - Done .
- " G -»
[- 200y
Initialize
Arrays for LUN2 - Rend Data i
Collocation Tten <« PASS 2 BEGINS !
f 3

Is Item
to be
Indexed?

Fig. 111. (cont.)
(Sheet o of 18)

TP

T

391

A e

PR SR

203 210)
2 Retrieve Adjust Curvent
* Current Index to Include
“ Index Additional ;
3 Pointer Missiie Sites

Kbsign Current

Assign Current
Index to

fndex to

5 Attribute Attribute

3 INDEXNO INDEXNO
A

Assign Current |

Index Pointer

4
g to Attribute |
3 ITYPE ;
1 .g
]
E
. §
|
Assign Type Set Numbar |
Index Within » Added 1s :his 5
.4 Class (NADD)
! (JTYPE) J to 1 Missile?
3 ‘ |
] Yes !
] 204
k Set Number
3 Added to Total
Nunber
4 of Sites
| 205
Increase
Current Index
by Number
Added

, Fig. 111, (cont.)
’ (Shect 7 of 1R)

390

T

EER M Mt

Assign Tarpet b
to First |e—=20€

Retricve
Critical
Distance

-

Do Jer
A1l Sepmrents

Segment

201 ‘

Count Numboer
of Targuts
in This
Segment

Target
in First
Segment?

264

Score Index Numver,

Latitude, Longitule,
and Critical
[tistance in

Collocuation Arrays

of the
Larth

260

oes
Longa tile
Lie in This
Segment?

266

Mo

Ceunt Numoer
of largets
in First
Segment

————

\ ch_b

Mure Than
4,0007

hre o

Store Index Number,
Latitude,
Long itude,
and Critleal
Distance in Array

Y
215)

LUN3

(Sheet 8 of 13)

y
Write LountI?:g:er of
Array on File
\
LUNG
Fig. 11t. (cont.)
393
N i PRI ¥ 3 5

. C o R
R TICIRY ROV~ PTG SUFCHI] | LYES T

o

B

Terminate e e - - LUN
File 6
= e N o
Initialize
Collocation
Counters
Are Collo-
cation Data _Done D:ltior)
to be] it 1
Printed! Earth Sectors
Yos Do
4
Print Headers] Are There \ Set Number of
INDNO, NTA, More Than 4,000\ No ITtems At
IDLAT, IDLONG, Targets In Max imum
COLAR) Jhis Segment?, (MTARSEC)
Yes [
235 Y . -
Call COLOCAT Print Set
to Form TOO MANY ““H Number
Collocation ITEMS FOR of Targets
151w, 3e COLLOCATION At 4,000

Fig.

()

111, (cont.)
{Sheet 9 of 18)

394

bl

T i

aleal

\ i e

A e "
o7 st 1o

C)
Il -
: Assign Iﬁ;]ut
! LUN (1AIN6) and output
L 2 (LUN7) Files
)’2 ‘
f.- , ,
‘. L ho t 520
1 - o tor
! Terr;“\‘?u :ml“ Rematning |wg call
" ¢ Segment s colocar ||

S
less I'nm
.‘ N0 SETARSE C) Indtiulize
; Collocated
'iur;,et*?

Switch in[uIt—
and Uutput -
File

s Index to
i Artuys onts
2_ y Assignmgnt:’ LIN
i V“’ 4
])
L Increment g
i}. Counters to Retrieve Longi- TQ;T::“N §
[PEint Lrror tudinal Boundary * 3
L. Message Later Por Thix 4 ‘
¥ Seygmenc \
1 2
o
B [
i L Put Tt and L e Mo
! tput Fi : " ’
; Ou {“’: les W11l te be Pro-
5 ssed)
: -] Froper cosse
Lout - - Mode [
Do for Find Numbuer of
o Targets {n Ttems
y Rt Remaining in This
Segments Sppment
Do |
g Store [Adex MRes umb e
. ’;lumbnr Lutitude, Re IdL}l:a‘.l::d:umbl
e Longitude, Criti. Longitude .
3 Dizta In . omedtude,
: _Eo)lnmn‘? Srrilvs Critical Dstane
508 f ‘ 505
d . 1s Write Index \un!
f Increment Yes Longi tude Latitods e
i Arruy Index o atitude, LouT :
f by Cue S0 s Longitude,
; Segment ¢ Critical Di tance
)
y
) Fig. 111, (cont.)
. (Sheet 10 of 8
¥
'l
E 395
}

. P S, i AL e St e kel [O A I TR
e o " £ Py 1., (RAT I LF derarom e Liiackn et

]
]
4
]

W Rl TTmRRETmT—

Print
Collocation
and Complex
bata?
Tr

Initinlize
Counters and Ar.
rays for lcrminal
Defenaes

09,10,12

Make Up
Keys for
Paching Status
Array

/

Find Last
Index
Nunbier

|

¥oite Directory
on INDEXDH

L

Is
Directory to
Be Printed?

275

~—-;ind
Actual Number
of Conplex

Targets

Print
Directory

Fig. 111.

{cont.)
(ghpnf 11 o+F 1%)

<« PASS 3 BEGINS

i

Pl

Kead
bata jo- -
ftem

Um

[

860

More Than
MAHDTY P (S
Types

Set brror
- Mussaye to
Print Later

No
Place Probability
af a [ud, Yicld,
CEP in harheal
Arrav
E—————— -

Class
Warhead”

326
) More Than Set Erro:
Llass MASMIYP(20) Message to
E ASM? Types 7 Print later

;

B !

Place . %
Probability of k
Launch Abort, CFP[|
in ASM Array !

Set brror
Message to
Prant Later

Class
Corridor?

77Ye>
222

Save
F‘soi\a:illni' Is IYPt ves Set Dummy
asd Time latal . | ¢ |
1 DBLASK and o Hag to One
THASK Arravs

i.\u

. Set Naval
Is TYpI Yes
38vu rae s Air Flag
NAVALAIR ? to One

Fig. 111. (cont.)
] (Sheet 12 ar 18)

397

S atTRR L,]

T

!

.

Assign
Side
Index («))

¥
Count Nurber
of Blue

Assign
Stde .
Index (=2)

Count Numboer

Payloads
Store in Array
A T LA

901
Eﬁgnge Attribute
Payload tn
Number of Blue
Payloads

of Ned

Payloads,
Store in Arry

Store Overflow
late to Print
Later

91

Lhange Attribute
Payload to

Number of Red

, Payloads

334

Set Multiple Inde-

pendent Re-Entry

Vehicles to One
in MIRV Array

'
333

Number of
Bombs of

First Type
iqual Zero!,

Set Hultiple Inde-
pendent Ré-Entry
Vehicles to Number
of Bombers in MIpv
i_Arrdy

3

y

338
Set Number of
Warheads:
to 1 in

Warhead Arrav

339

Number of
Warheads
Equal
Zero?

Place ‘Nunber

of Warheads

in Warhead
Arrav

349 ¥

Plaze Warhesd Type,
Number of Pecoys, Nuwber of
Area Decoys in

Corresponding Arravs

Fig. 111. (cont.) .
(Sheet 13 of 18)

308

- PR A
e P S U S SN
et i e S WESEESN-EECY CUBES U O - VSR SN

i

Too Many
Indices?

Store Overflow

Yoy Mata to | >
)—-h Print lLater ! (“80

1s Call TPUT
Ttem Pack a4 | Inte
Status
Collocated? Array
‘No
343
call tPUI ‘o Is frem
) Pack TARDEFLO o ina
' Inta AA—\‘Ccimplex’.’
Array v
y w3 r
' Call runction
: T
I IGPL Unpack Store
' Into TCOMPLEX From Overflow
K Status Array Complex Array Data
I - ‘ rYes
Call IPUT Change
Pack TATTACK [COMPLEX Too Many
Into in Ternlnal
Status Array Data Base Defenses?

| v

No

Place Trilex

Number in [TERM

Arvay Indexed
by NTDEF

f

Call 1pPUT

. Pack IVULN
Into

Status Array

Y

In?:rement Tee-
minal Defenso
Counter NITi:E

by 1

!

Placu Number of

Terminal Interceptors

in NTINTX Array
Indexed by NTDEF

1

Catl 1pPUT

Pack TARDEF
Into

Status Array

Place a | In

LTERM
Array
v
Call IPUT Call 1yt Are There
Pack ADEFZON » Pach ADLFOMP Any
Into Into Terminat
Status Arrav Status Array Interceptorsy

Fig. 111. (cont.)
(Sheet 14 of 18)

399

No

—wl in LTLEN

fs2

30

Place levo

Array

sty

e AL AL

532

In Item a
Dynamic Target
TGISTAT o | e
1CLASS » 14
ICLASS ¢ §
Yos
345

Call Jimr
Set ISTAT and
IKEEP to |
in Status Array

Is ltem an
Aren ABM
Defense
Component ;
ICLASS & (a4»

Missile, Bomber,
or Tanker:
ICLASS = 1,2,32

Is ltem
Defensive
Control or
Interceptor;
ICLASS = 4,87

ftem Assigned
IOKE » 7

Mark Zone
Assignment
Error
(1TP » 10)

35

3
.

380

Store Kumber of
Area [nterceptors
in AINT Array

Pefined?

Range Radar;
ADEFCOMP 2 4
in Cala dase?

noresent

MLkt by

for Each
Ar rgned Area
ene (AZOND,2,3)

359 ‘

Call Irur
to Pack Radar
INDEXNO in
TOVERLAP Arruy

v

Call trur
to Pack Arca

380
-

3147
Caly Dot
o] | to Pack Sone

dones .n
TOMRLAV Array

R ——

in Status
Zene

Set Index
LC

to 2

Fig. 111. (cont,)
(Sheet

400

Calculate

[Eftectiveness
in Zone Array
(by 2one, LC

34 41

Set Index {
w

to 3

No

1s ltem
Defensive
Control
ICLASS = 4
e

15 of 18)

0
Decrement Find Type
Index LC — Beginning
by 1 Index
y
Store

Effetiveness
In Capacity
Array

Set Flay
For Having
Stored
Lffectiveness

BT a P e TRt T

’

360
i
Is This ,
Type Being No @
Considered? H{,
] ‘fes
601 600 Y
Retrieve Payload Is
Index;ighango , Yes There
’ 4
Data Base ‘a Pay load?
i No
61 Y
Is Item
First of Tts \ No
Type? (1CHK - -
\ITYPE) =0)
Yes
362
Set Flap for’
Having Stored Lata
for This Type
(ICHK (1TYPE) =1)
365
Is Item Yes Store
a ——aeped Missile Data
Missile? for This Type
378 No 370

Fin:_i Type Yes Find Type

Beginning a Beginning
Index Bember? Index

l y
—

Store Tanker Store Bomber
Data for s_-__......b. I . lata for
‘This Type This Type

Fig. 111, (cont.)
(Sheet 16 of 18)
401
ST RSN RS iy R TUR TITG A1 S SURPEITS AT A ITRNOW N © Lot hss

it e

380

380

Cuill
ourtTin ||
Write T
Coltem
T -

377

Call PRITEM
Print All Yes
Attribute-Value ot
Pairs; Indicate
Global Definitiony
T

3
|
3
!
3

Is INDEXDI
to be
Printed?

» No

37d

Call NEXTITM™
to Read Next
Data Item

Has Last
Item Been
Procesied?

ST oA L medS T T

Read
LUN — COLAR Array,
Terminate
File

Call WRSIMI(3)
. Write Nuiber
of Collocated h
Targets, KN
COLAR Ar:iay N\

f N

Call TDFFSTT
to Assign
Terminal Defense
Index

SIMTAPE

816 .
Call 7/
WRSIMY (1) ’
Write Rest
of SIMIAPE

Fig, 111, (cont.)
(Sheet 17 of 18)

402

et

Call ;
SKIPFILE
; (for INDEXDB)
E
8
]
Call WRPRNT
to Print TYPE 1
Data, and
Status Array
If Roquested
i v
Call AROVRF,
to Print
i Lrror
- Mesgages
: e e P
i Fig. 111, {cont.)
] (Sheat 18 of 18)
: 1n3
i

SUBROUTINE AROVRFL

% PURPOSE : To examine the error message flags which are

L. written during the running of program INDEXER,

i and to print the errors encounterad.

% ENTRY POINTS: AROVRFL %

i)
FORMAL PARAMETERS: None }
COMMON BLOCKS: 9 2
SUBROUTINES CALLED: None é

;- CALLED BY: INDEXER %

|

i Method f%

_ o ‘1

Subroutine AROVRFL (figure 112) checks the arrays JCHKFLG and NCHKFLG for 1
the prescnce of error flags set by program INDEXER and, if present, writes

an appropriate error message which indicates a data overflow. If a target
¢lass includes too many TYPES, the error message will indicate the number

of excess TYPES, the SIDE (RED or BLUE), and ICLASS index involved, Over-
flows of other selected data arrays will be noted by a message identifying
the array and the total number of items read. The latter message will be

printed if the upper limit for any of the following is exceeded:

CONSTRAINT

LIMIT (TOTAL) 9

|
Target Types (TYPES) 250 i
Target Complexes (CPX TGT) 4,000
i Collocated Targets (COL TGTS) 4,000
E Warhead Types (WARHEADS) 50
Payload Types, BLUE (BLU PLDS) 40
Payload Types, RED (RED PLDS) 40

ASM ‘lypes (ASMS)
Zoncs (ZONES)

Index Numbers (INDEXNO) 12,000

Jod

R AN b 2

PRt s RLE S b

et L

Check for Too
Many TYPLS
Per Class

100__Y

Do for All

> kD and BLug; . Done
Classes

Print Eryvor
Message Number
EXCESS TYPES,
SIDE, ICLASS

Check ArrayVOVerflows
(TYPES, CPX TGTS, COL
TGTS, WARHEADS, BLU [

PLDS, RED PLDS, ASMs,
Z0NES, INDEXMO)

550 *

bo for

Lach Array Done

Overflow

sy’

Print Error
Message Number

Items, Array
Designation

112. Subroutine AROVRFL

15

o

R e L

s g T e S TR

SUBROUTINE COLOCATE

PURPQOSE : To form collocation islands and complex targets
: for up to 4,000 targets in a given earth segment.

ENTRY POINTS: COLOCATE, COLOCAT (duplicate entry)

FORMAL PARAMETERS : None

COMMON BLOCKS : 1, 2, 3, 4, 7, KEYC, KEY, COMP, KNARRAY, PJNT,
TRANS

SUBROUTTNES CALLED: ORDER, REORDER, IPUT, IGET, IDXF, FILEHNR

CALLED BY: INDEXER

The jnitial action of COLOCATE, as shown in figure 113, is to call sub-
routine ORDER to arrange the latitude array Y by increasing magnitude,

Subroutine REORDER then is called to place the arrays IND, X, and Z in

the corresponding order (sheet 1).

The search for collocation begins by comparing differences in latitude
for consecutive targats in the ordered list, beginning with the first
uncollocated target (sheets 2, 3). When a differencc which is less than
,35° is encountered, the arrays COL, CP, and CLT (see table 14) are
tested to find the status of the second target (J). If target J has been
collocated previously and is either a member of a complex or a nonmembe r
of the current island, the test for latitude difference between the first
target (I) and the next target on the list continues. O:herwise, the
actual distance betwcen targets I and J is calculated and compared with
the sum of the critical distances for the two targets. Where two targets
are found to be collocated, COL and CL are set to 1 for both, and CLT is
set to 1 for the secon!. If the targets are sufficiently close to be

members of a complex, CP is set to 1 for both, and the index J is entered
in the array LCOMP,

Target 1 continues to be tested against suhsequent targets on the list
until a difference in latitude greater than .35° is encountered. The
investigation of that target then is considered finished, and CLT(1) is
set to zero -(sheet 4), If there is an unfinished complex, the next
target in the list LCOMP is compared in the same way to find additional
members of the complex. The process is repeated until all targets in

e et it TN TR P R LIV R S VU NP ORI VLR SR

T A

SETTTERR T

P

the list LCOMP have been investigated, and the complex is complete. Each
member is flagged in the array COMP as belonging to a complex (sheet 5).
The complex then is assigned the next value of ICOMPLEX (beginning with 1)

which, together with the index number of each member, is packed into the
array COMPLEX.

The search for members of the current island continues until all targets
have been checked for further collocation and complexing (sheet 6). The
island then is ccnsidered complete. The directed horizontal and vertical
distances to each target from the one preceding it in the list (in 50ths
of nautical miles) are calculated and packed, together with index number,
intc the array COLAR (sheets 7 and 8). For the first target in the island,
the distances are calculated to it from the last target. In addition, the
number of targets in the island (NTA) is included in the data packed for the
last target. For all other targets, NTA is sct to zero. The array COLAR
is written on a scratch file, LUN2; the number of ccllocated targets and
col location islands processed thus far is accumulated; and the investiga-
tion is restarted with the next uncollocated target (COL=0) on the list
(sheet 2), When the list is exhausted, control is rcturmed to INDEXER.

Table 14, Description of COLOCATE Arrays

ARRAY LENGTH DESCRIPTION

coLo 12,000 (logical) Is set to 1 if corresponding target
belorngs to 4 collocation island

coMp 12,000 (logical) Is set to 1 if corresponding target
belongs to a complex

COLAR 100 Is packed with data required for collo-
cation islands

COMPLEX 4,000 Is packed with data required for complex
targets

COL(J) 4,000 (logical) Is set to 1 if Jth item in array IND
belongs to some collocation island

CL({J) 4,000 (logical) Is set to 1 if Jth item in array IND
belongs to current island

CLT(J) 4,000 (logical) Is set to 1 if Jth item in array IND

belongs to current island but has not
been checked for further collocation

CP(J) 4,000 (logical) Is set to 1 if Jth item in array IND
belorgs to a complex

LCOMP 40 Contains indices J of items in array IND

which belong to the complex currently
being investigated

407

T s AR 1 4

Rt 0 anse o o AN v .

A—

3
Do for Initialize .
Up to 2O alle

4,000 Items

‘Done

Find Total ;
Number of
) Tavget Types

Arrays to 0

998 N
Print Number
of Items in
This Segment
(NTTEM)

;' Call ORDER
Order

3 Latitude

: Indices

'

Call REORDER

Put Index Number,
Latitude, Longitude,
Critical Cistance in
- Corresponding drder

A 9 ;

i J

: Do for Initialize H
4 @43’-’5\ 4,000 fes New Index i
3 : [tems Array to 0 p

§ i Do)) !

g Fig. 113. Subroutine COLOCATE:
! {Shect 1 of 8)

108

B Done

Do for
Targets
in Segment

Has Target
Already

Find Index
(1) for
This

- Target

'

e g PR R

Find Index
(IA) for Next
Target
in Sector

e et

397 ‘hii

Initialize

Pointers to
Complex

Array (LCOMP) -

_Y

Store Index to
Target (1) in
Complex Array

498 .-'

Retrieve
Latitude,
Longitude,
Critical Distance

Y

Find
Cosine of

)

Latitude

{cont)
(Sheet 2 of

J04

POURECCLE RN RN 5 T AU Wi VO A 1Y YRR U W Rt - R PR S

UL EL S

OSSN V5 UGN I O PR B ORE T SRS

o Gl ool

1s Latitude
Differencey,35?
(Collocation
Criterion)

Set Collovation

Chech Flag b

O

9

| ©

to]
(LSWw1)

Already in
Complex?

Is
Target (J)
in Current
Island?

Segment (J)

tto for Items § g
Remaining in _L:E;.1III'

s
10 398
. Ret}ieve
Set 1T to index ! for
:}?”‘l‘:‘“‘: Next Target
: In Corplex
} b
Prfnt More Than
MORE THAS MTELMCM(40)
MAX) TARGETS Llements This
;N COMPLEX

Complex?

Array by 1

Fill Complex
Array (LCOMP)
With Index (J)

of Current Target

o2 1

Se: Complex
Flags in
Status Arrays

Yes

Distance
Within Required

Yes
51 31
Compdte-w Set
Longitudinal Collocation
Pistance from{ * Check Flag to 2
Last Member (LSWw2)
Find
Complement
AN =l= 2o
.8" /
INo
53 57 No 0

Sum Critical

Distance tor

Targets (I
ard 4J)

56 ‘

Is Distange
Within Critical
[r'stance?

Comput e
Actual Distance
Between Target ([)
dnd Target (J)

bnn

Nas Target (J) \ Yes

Distance for
Complex?

61

Flags in

Set Collocation

Status Arrays

Compute Distance
For Complex
(Half of
Critical Distance)

Already Collocated”

Fig. 113 (con

t.)

{(Sheet 3 of 8)

410

st 1

i

H
i
H

Target (1) in
Current
Island?

01
Flag Target |
ns
Completely
Investigated

Shift LCoMP

Pointer
by One

Y92

More 1han
MUELMCM
Elements This

@ Complex?
No

LT = MTELMCM

!

110 993 112
Retrieve .)
) . was Last hoes Complev
l"d“; l‘f°’i Yo Complex Have at Least
Next Target in Comps luted? Two Clements?
Complex

Shift Pointer
to Last Dntry
in LCoMP

1030) *

Print
LCOMPLEX:
Complex -
Index

Are Complex
Data to Be
Printed?

Fig. 113. (cont.)
{Sheet 4 of 8)

411

 NRTTTRTETTTETRR AL T

A,W_ﬁ,ru_,rw_‘_v.,r—.,_ﬁ,-.A

115

1

Call IPUT
to Pack
Index Number

'

Call 1pur
to Pack
Complex Index

— 9

Fig. 113,

Do for Bone | Increment Fiud Inddx of Next
pe{ All Targets = Complex o Target to Be
4 in Complex Index by | . Checked
1 1
Retricve Find Index of Last
Index ! Target in
Number \ Segment
1032
Are Cmﬁplex) !
Data to Bc Index ¢
Printed? Number
A
1034 ‘ ' -
Flag Target as ' . . o £
nitialize . or
Selonging to COLAR index teg®n Rewa Luing
s argets
{Array COM) NN to O £
Y ¥ 8
Increment Initielss Is Tarpet in Cur- X
Packing Index' . nitialize rent Island but Not\No
(IST0RE) by) Target c°;“‘°' Checked for Further
NT to Collocation?

(ceut.,y

Yes

(Sheet 5 of 8Y)

412

©-

More
Than 100
Tarpets?

No

Yes

Store Index

fionv| v fur
-1 Reradning -t
Tarpets (M) [
[
Is Target (M1 rint Neader
Merbor n:’ COLOUATION 1] NI
Curpent - ININO, YR,
1s1nd? TDLAT, TDLONG
Tes
250 No
Increment Arc
Counters, tmfiag Colloeation

as Meiber of
Current Island

Data ta le
Printed?

»l

Store
Overflow
Information

First "

Time Through
Loop?

252

Find Difference
in Latitude
With last
Turget (ML)

I

FUNCTION lUXF
tind bifference
in Longitude

Y

Do for All hone

L -

Stoce Index
(M) for

This Target in ML

T iy

1U06 —
Print Index Nube

Types

il\.{
1004

ference, Longitude
M fference, Index

Yes

Is Indea
her Less Than
ype Beginning

Indea s

Are
Collocation
l'ata to fe
Printed”

Retrieve
lype
Nane

Fig, 1

13, (cont.)
(Sheet 6 of 8)

Name, latitwle Dif-

Mof This
Tarpet

}

Ilag larpet as
Collovated
(COLO Arvay)

}

Call IpUT
Pack Lonpituwle
Difference Into
COLAK (AN)

}

Call IPUY
Packh latitude
Difference lnto

COLIK (KY)

Call JNPUIL
PFack Index
Number Into
COLAR (NN}

t

Initiatize LOLAR
location 1o 0

I Store Index
o Number
IKDA: IND (M)

==

e T TR R

Find Latitude Dit.
ference Retwern
First and lLast

Targets in Island

{

FUNUTTON ThAE
Find Longitude
Differerce Hetween
First and tost Tarpets

!

Find Index
for First
Target (NF)

ho for
None ALl

Types

o

1066

I's Index Numher
of First Target
Luss Thiw Typa
“eginnfng Index?

Retrieve Ye
Type g ——05
Nase

Are
Collacation
Nata to Re
Printed?
S

1067
Print Indey Sumber,

Type Name, latitude
Pifference, Toneitudly

Nifference, Index

Fipg, 113, (cont.)
(Sheet 7 of 8)

P . SRS B . Al N celaeddn o e i i e Tl Gl e 8 nn -

-

L
!
i
1
-
:

Store Index
Number
INDX=TRD(MD)

Initialize
COLAR

location
to @

'

Call 1mur
Pack Index Num-
ber Into
COLAR(NF)

!

Call 11rur
Pack Numbey of

Targets in 1sland

Into COLAR NI

Y

tall leur
Packh latitude
M fference Into

COLAR (NE)

|

bifference Into

Call 1pur
Pick longitude

COLAR (N1

y

Flag Target

as Collocated pee——e

{(COLO Array)

2l ralis il wadies

Call 1GET
mpack number
of Targets in
Island (NI

Call 1l
Unpack
Index
Numbey

Done

1014 o

Do for
Length of

Array

(NN}

1s
Collocation Ar-
ray COLAR to He

Printed?

=

Inerement Counter

for Number of
Islands
by 1

Inerement Counter
for Number of
Collocated Tarpets
by NN

-y

Fig. 11

3.0 [eont.)
(Sheet

oot oK)

SSS——

Call 1GLT []
Unpack
Latitude
Biffoerence

Y

Call 10601
Unpach

Lonpitude
Ditierence

!

Print Inde- Number

NT, Latitude Dif-

fererce, Lonpitude
Difference

PURPOSE :

CNTRY POINTS:

FORMAL PARAMETERS :

COMMON BLOCKS : ¢

SUBROUTINES CALLED;

CALLED BY:

Methed

SUBROUTINE FINDIT
To 1ok up the index number INDEXNO of a targe®
irn che collocation array COLAR.
FINDIT
None
3
ABORT

TDEFSTT

FINDIT receives the length of the array COLAR in ISTORE, and the value
of INDEXNO to be matched in ICUR (both in common /3/). It executes a
masked equality search through COLAR and normally returns, in ICUR, the
index of the word in COLAR which contains the matching INDEXNO. If no
match is found, ABORT is called to terminate the run. Subroutine FINDIT
is illustrated in figure 114,

116

.
e L i

i
{
el
.

caathald

START >

Extract Lefe-
Most 14 Bits
From
ICUR

Y

Do

——pme{ for Length of
f COLAR

Done

luo

Extract Leftmost
14 Bits of an
Element of COLAR

Fig,

114,

50

50

(Call ABORI

Set ICUR

to Index of

COLAR

{ RETURN) k

Subroutine FINDI]

417

‘

T g e g =

FUNCTION ICPL

PURPOSE:: To unpack the index ICOMPLEX from array COMPLEX,
ENTRY POINTS: ICPL
FORMAL PARAMETERS: INDEX - The index number to be located in the
. COMPLEX array
N - The number of words in the COMPLEX array
which have been filled
COMMON BLOCKS: Z, KEYC
SUBROUTINES CALLED: IGET
CALLED BY: INDEXER
Method

ICPL begins by masking all information except the five-digit index
contained in the parameter INDEX and in the array COMPLEX. The array
then is searched until two matching index numbers are encountered. If
no match is found, ICPL is assigned the value zero. Otherwise, function
IGET is called to unpack ICOMPLEX from the word -in COMPLEX at which the
search is stopped. Control then returns to INDEXER with this value of
ICOMPLEX assigned to ICPL. Function ICPL it illustrated in figure 115.

418

§ . -anl, b et
. - s PP AR D W R TIPSR P P PR VL AT TV Ry S
P

sl

b £ i A

i
1
1
1
H
%
!
3

v e

r

START

Mask Out
Index Number
in Calling

Parameter

Y

Do for
Length of
Array COMPLEX

y)o

Mask Out Index
Number jn Array
COMPLEX

: No

_y

Masked Calling
Parameter
Equal Masked
COMPLEX Entry;

Yes

Call IGET (Unpack

Assign as Value

Complex Index;

of ICPL)

Fig. 115. Function ICPL

419

Done Assign Zero
T ™| o IchL
e

RETURN

i S

FUNCTION IDXV

: PURPOSE: To compute the latitudinal distonce between two
P consecutive targets in a collocation island.
° ENTRY POINTS: IDXF

{ FORMAL PARAMETERS :

J - Pointer to longitude of first target
K - Pointer to longitude ot second target

' COMMON BLOCKS: 1 ;
; SUBROUTINES CALLED: None

i CALLED BY: COLOCATE

E

|
- Method 4

The parameters J and K are indices to the array X in common /1/ which
contains degrees of longitude. After the corresponding values have been
retrieved from X, the difference between them is calculated and changed,

' if necessary, to represent the shortest.distance around the earth and

i then converted to 50ths of nautical miles. The value is returned to

: COLOCATE as the value of IDXF, Function [DXF is illustrated in figure 116,

420

A A A e

i o

START

Find Longiiude
Difierences
Between Two

Absaolute Value
Of Difference
< 180°7?

Yes

No
20 ,
Subtract No Is N
Difference Difference
From 360 Negative?

30

Subtract
Difference
From «360

50 J

Convert Difference
Y to 50ths of y
P4 Nautical Miles; |ef————
Assign as Value
of TDXF

RETURN

Fig. 116. Function IDXF

421

SUBROUTINE INITIND

;
L
? .

PURPOSE: To data set INDEXER common constants and to k
' clepr ali common working and storage arrays to

2ero.
. ENTRY POINTS: INITIND
i FORMAL PARAMETERS: None
{ COMMON BLUCKS: AREADAT, EDITAPE, EDITERM, IFTPRNT, ITP, KEY, KEYC, ;
: — KEYS, MAX, MYIDENT, NAVALTB, NOPRINT, PROCESS, ‘
¥ PRNT, RADATA, TRANS, TWORD, WRIT, 1, 2, 3, 4, 5,

7, 9, 10
[SUBROUTINES CALLED: None | | :
!“') . . “‘-'
[CALLED BY: INDEXER :

Method

[y

INITIND does no computation, Either'through data statements or exccutable '
statements, it presets constants and arrays to their appropriate values.

e R e AT AT T N AT TS

n
The principal constants preset in data statements arc those which define '
the maximum limits of the system (common block /MAY/), the constants to N
determine earth sector boundaries (common block /WRIT/), and certain k
masks used in packing and unpacking (common block /KEYC/). Subroutine E
INITIND is illustrated below in figure 117. i

'

F|
[START :
v —

[

b
; Clear Clear J
g Labeled Common |____ g Numbered Common - RETURN {
; Arrays Arrays ,

; |
:
; 4
f Fig, 117. Subroutine INITIND

422 ¥

!_-f -.i
‘ !
]

)
3 b . b st st b L.‘.r\.‘...r..'d-..-..._-u,.mﬂ-f-.iu:.J
. L et 4k 1 e i 2t il aet ectdd s s n e e o e PRI SR i SISRVRIEATA R Rt P R
L C I T TIPS T TR PR PN R hadd
o i R (R LR —

i
SUBROUTINL READIN : B
PURPOSE: To read the card(s) containing print options and i
set print controls for INDEXER; to read the cards
_ containing the VLRAD input parameters; and to .
) read the card containing the missile vulnerability N
' parameter., %
: ENTRY POINTS: READIN :
: FORMAL PARAMETERS None
f COMMON B:OCKS: PRNT, RADATA, 3 ‘ :
3 SUBROUTINLS CALLED: None ;
5 CALLED BY: INDEXER
W Method

This subroutine (figure 118) reads the input parameters contained in the

i execution dack. First, the cards indicating the selected print options -
‘ ' are read, These print options are controlled by one or more data cards ;
containing integers between 1 and 15. These integers, which must be

. right-justified in 10-column fields, contrel the printed output as follows: ;
L PRINT OPTICN DATA PRINTED)
%[1 Breakpoint tables ;
] 2 INDEXDB J
% 3 Data base directory only {
? 4 Type data for the Simulator é
: 5 Collocation array é
i 6 Status array/r:dar and ABM data E
% 7 Collocation islands é
3 8 Complex targets i
Z 9 Reserved for future deveiopments é
i 10 Terminal interceptor, payload, and IDBL tables é
E 11-15 Not used. ;
;_‘ 1

3
| 423 i

Next, the VLRAD input parameter cards are read, and the data are stored
in common block /RADATA/.

The final data card read by READIN contains the missile vulnerability

3 parameter established to characterize missile launch sites in their
softened condition immediately after lift-off. This parameter is stored

in the first word of the CVULN array, and control is returned 1o INDEXER.

T A T

T T T

i

g TR, TR A

424

VTS e T e

=F

TR T ey A, QR

RN M iU

e, LT T e AL

START

Done
€= Eight Ficlds)

Read
Print
Option

Cards

S—
First
Field Blank?

No
6 S

Yes

Do for

Do

Is Control No
Number Within
Limits?

Set flag to
Print

Corresponding [

Data

Fig. 118, Subroutine READIN

425

i2

Read
VLRAD
Cards

PRSP I TS S P

B

T

e e A T T T

T e T bl

SUBROUTINE TDEFSTT

PURPOSE: To make the final assignﬁént of terminal defensei
indices so that collocation islands are trcated
as sinple targets for defense purposes,

ENTRY POINTS: TOEFSTAT, TDEFSTT (duplicate entry)

FORMAL PARAMETERS: Nonc o | ‘

COMMON BLOCKS: _ KEY, KLYS, 3, 5, 7 ‘

SUBROUTINES CALLED: FINDIT, - IPUT, TGET

CALLED BY: | INDFXLR |

I 1

Hethod

TDEFSTT begins by testing the first: location. in the arrav ITERM for 4.
positive value of INDEXNO, which indicates that the item has texmlnul
defenses, Whenever a nonpositive value is encountered, control is
returned to INDEXER. Otherwise, the,array NTINEX is mcstud to sce if the
item belongs to 4 collocation island to which a terminal defeuse indey
already has been assigned.: 'This is indicated by nc&atlng the terminal
defense index assigned tc¢ that ‘island uand storing it in array NTINTX.
Thus, 1f the 'value in array NTINTX is found to be negative, it must be
the terminal defense index to be assigned to all targets in tho island.
The index then is reset to its positive value and. packed :under KTERM in
the status array.

i

If the value in array NTINTX is found to be pesitive, the item under con-
sideration is tested for collocation. An uncolleocated target retains the
original terminal defensc index 1, which is packed under KTERM in the
STATUS array; a collocated target bclonglng to a collocaion island with
no previously assigned index is treated in thc following manner.

Subroutine FINDIT is called to retrieve the indes to the word in array
COLAR in which the valuce of INDEXNO. has becn pacted. The number of
targets in the island is then unpacked from the word for use in cycling:
through all targets in the island. The attribute INDEXNO is unp)(kcd
from cach consccutive word and tes: xd agqlnst the original value of

INDEXNO (in ITERM(1)) to sec if the c¢rcle is complete.

If the two valu.s
do not match,

the target is checked for terminal interceptors (logical

N

. . : Lt e et o e
. N \ : SRVPRUR SIS SR

e e o S Ll LRI I ST WO NIV

D NSy e i ety fale ol ‘
oo P & v L

Gty |

array LTERM). When terminal interceptors arc indicated, the number
NTINT is retrieved from array NTINTX(J) and added to the number being
accumulated under the original target (NTINTX(I)). If no terminal inter-
ceptors are indicated, INDEXNO is added to the list in ITERM, since the
target assumes the terminal interceptors of the collocation island and
must be so indicated in the STATUS array. As each additional target in
the island is encountered, the negative index I replaces the number of

terminal interceptors for the target (NTINTX(J)) to indicate that the
target already has been processed,

When the cycle through the island is complete, the index of the original
target is packed under KTERM in the STATUS array. The next target in the
list ITERM then is considered. When the next item on the list is zero,
control is returned to INDEXER.

Subroutine TDEFSTT is illustrated in figure 119,

e T AT T

200
RETURN

START

NAXNDL P
=« 512
Do for Call IPUT
Done MAXDER 100 Pack { Under
Targots Index Number in
4}) STATUS Array
bo

Have Ml
Targets in List

Yes

ITERM Been
Processed?

9?7

Retricve

Index Sumber
from ITLRM

|

Unflag Iten
By Taking
Complement
of Indea !

Belong to
Previvusty Pro-
essed [sland

Yo

Does Target
Belong to
'reviously Pro-
essed lsland?

Does

Target !
Have Terminal
Defenses?

9
Call FINDIT to
Find COLAR Address Retrieve Store
in Which INDEXNO fndex Number 1 -
Is Located from LTERM in IT™H
i S
Call IGET to Unpack
Number of Targets _
in Island (NT) 4
fror COLAR
Last TGT
in [sland
(NT>0)?
Recycle the Store -1 T INDEXNO St '
Index By J e X ore -
Subtractin in in List L 2! in
NT 8 NTINTX(J) 1TERM? NTINTX(NTDEF)
4 1 _ 22 16 l
Accunulate Total Lo fer Ll XNO
x";:;::"t Number of Tercinal Y Oone Remait.ing 2 M;’OIL;":N
Interceptors in [Targety bE
1 NTIATX(1) on List ITERM(NTDEF)
go TL:.S t 50
Call IGLT to Uoes 1NDLXWO cgr::sp:"jfng Increaent
eyirion | S A (IR repml gefene
: Terminal -
in COLAR Array T:rgert (1;7 / Interceptors® By 1
{\'GS

Fig. 119,

Subroutine TDEFSTT

il

i

T il

s

SUBROUTINE VLRADI

f | PURPOSE : To find the lethal radius of a weapon delivered
: against a target of a specified vulnerability, and
to set FN for use by the culling subroutine.

ENTRY POINTS: VLRADI
{ FORMAL PARAMETERS : YIELD - Yield of weapon in megatons
3 NVN - Vulnerability paramameter of target
: HOB - Weapon height of burst
4 FN « Darameter specifying shape of damage
function
f
ﬁ COMMCN BLOCKS : RADATA
g SUBROUTINES CALLED: EXPF
] CALLED BY: INDEXER
q
i
; Method
3
3 NWN is decoded into the appropriate vulnerability number VN, the letter
3 (P or Q), and the K-factor XK. The cube root of the yield is extracted.
: Then the udjusted vulnerability number AVN is determined by methods
) described in '"Computer Computation of Weapon Radius,' B-139-6l1, Air Force

, Intelligencd Center. FN is set to six or three for P and Q type targets,
k. respectively, ;

_ Common block /RADATA/ contains four arrays (for the four combinations

4 of P or Q vulnerability and air-or-surface burst) each of which contains
the natural logarithm of the lethal radius (in nautical miles) of a one-
megaton burst. The data arc at intervals of five vulnerability numbers.
Subroutine VLRADI interpolates in the appropriate array to find the
logarithm of the one-megaton lethal radius for AW. The lethal radius of
the weapon is then determined by exponentiating and multiplying by the
cube root of the yield,

ﬁ A flowchart for VLRADI is shown in figure 120.

Decode
NVN to
. W, LETTER,
XK
CRY =
‘ vIEL /3

st it

Set A and .

! Yes
x Calculate Calculnte
DELTA « O DELTA DELTA
: 9 {
i Letter AVN =
- Q7 DELTAsWN
! 19 ,
} AVN =
DELTA+VN
T
;: Ns3
i ‘
¢ _ 26 23 1
A Find Ordinate Find Data
?‘ From Appropriate L —Points Boundary - HOB Switch .4.___1’
: Letter-HOB AWN {JSW)
E Combination

Calculate)
i’ Radius

Fig. 120. Subroutine VLRADI

430

LTI S SR
TP PR SN

- Subroutinc WRPRNT pertforms no computation,

SUBROUTINE WRPRNT

PURPOSL : To c¢xecute the prints required when INDEXER
print options 4, 6, or 10 are requested,

ENTRY POINTS: WRPRNT

FORMAL PARAMLTERS: None

COMMON_BL.OCKS : AREADAT, [FTPRNT, ITP, KEY, KEYC, KLYS, MAX,
MYIDENT, NAVALTB, NOPRINT, RADATA, PRNT,
TRANS, TWORD, WRIT, 1, 2, 3, 4, 5, 7, 9, 10,
PROCESS, EDUVIERM, EDITAPE

SUBROUTINES CALLED: IGET

CALLED BY: INDEXER

Methad

Subroutine WRPRNT is used to print the contents of several data arrays
associated with program INDEXER print options 4, 6, and 10. A
description of these print options and the associated print formuats is
presented in the User's Manual (see Output, Program INDEXER, chapter 2
of Volume I and chapter 3 of Volume 1I).

As shown in figure 121, WRPRNT ecxamines the print option switches to
determine which prints, if any, are required. If no prints are required,
control is returned to INDEXER, Print option switch 4 is cxamined

first to determine if the simulation-type data avre to be printed, If
not, switch 6 is cxamined to determine if the STATUS array and
antiballistic missile (ABM) data arc to be printed. As indicated in the
flowchart, switch 10 which controls the print of the terminal ABM data

is only checked if print option 4 was also sclected by the user (i.e.,
print option 10 can only be used in conjunction with print ontion 4).

It merecly prints the
indicated datz arrays.

131

H
3
|
4
4
i

P

PREER ST

Simulator
Type Bata to b
Printed?
(Switch 4)
YES
—_—Y
Terminal ARy
Data to be
Printed?

(Switch 10)

Print I'TERM,
NTINTX
Arrays

Print Missile,
Bomber, and

Tankey

Arrays

Print ASM,
Warhead, Zone,
Capucit)y and

Payload Tables

I'rint DRI
bata Arrays,
TMASK and
Dl LASY

Fig. 121.

and ARM

Printed?

Print
TOVERLAP,
NLRR, and
AINT Arvays

bata to be

Unpack
STATUS
Array

Print
STATUS
ARRAY

RETURN

Subroutine WRPRNT

432

44

SUBROUTINE WRSIMT

PURPOSE ; To write the Simulator data tape SINMTAPE,
ENTRY POINTS: WRSIMT
FORMAL PARAMETERS: NOP - A flag which indicates the write operation

to be performed

COMMON BLOCKS: AREADAT, IFTPRNT, ITP, KEY, KEYC, KEYS, MAX,
MYIDENT, NAVALTB, NOPRINT, RADATA, PRNT, TRANS,
TWORD, WRIT, 1, 2, 3, 4, 5, 7, 9, 10, PROCESS,
EDTTERM, EDITAPE

SUBROUTINES CALLED: SETWRIT, WRWORD, WRARRAY, TERMTAP
CALLED BY: TNDEXER
Method

The data base information which is required by the Simulator is written
onto tape SIMTAPE by subroutine WRSIMT. This information includes the
index breakpoint tables; the COLAR array, which contains packed data for
collocated tarpgets; the STATUS array, which contains packed data on all
potential targets; and several other arrays containing characteristics
of weapon types, characteristics of warhead types, and defensc capabili-
tics. When called, this subroutine cxamines the write option flag
NOP(1-4) and writes the appropriate data onto the SIMTAPE. Subroutine
WRSTMT i¢ illustrated in figure 122,

*
Determinc upc
Write Option as
_ Set by Calling
__Routine
| WRSIMT(1) FREIMT(2) WRSIMT(5) [WRSIMY (4}
5] '
1 !
11
sEs‘;.JRITE Write Write \A .
(Initinlize Vulnerability ->-|-<~ COLAR
SIMTAPE) Array (CVULN} { Avray
: ! '
3 !
'
Write I .
g Breakpoint | RETURN
3 Table« :
i‘
:
3
|
s Fig, 122, Subroutine WRSIM
: (Sheet 1 of 2)
] 434
]
¥
1

b asio walindien ctia s LT a itk s i g s

Write Array Wrive Array]
Containing Number Conteining Number
of Terminal } of Termingl
Interceptors Intercepters \
(AINT) (NTTNTX) \

/ Yy

/ Write Array Write Array
/ Containing Number Containing Zone
/ of Long Range Coveruge of
/ Radars ABM Radars
’ (NLRR) (IOVERLAP)

291 392 \\
NG Write \
~
Missile, Bomber, g:jl::is) \
\ Tanker Arra
\\ Atrays y
\\ 393 i : STMTARE |
N _
\ Write ASM, gg; ;'L‘ﬂg" '
Warhead, Zones, Payloads /
Capacity Tables/ (ISIDE=1) / /,}
- / / /
4 306
g Hrite Pavloud /
Tahle for /
. Appropriate .
Side / ’
} {
/ /
/ /
/ /
/ /
397 " 7 / /
Set Index Y herc
for RED °* BLUE Fay- ll:f[l);gA Terminuve
Payloads loads JJust Table Tape
(1S1DE=2) Weitten? ey

Fig. 1210 (cont.)
(Skeet 2 of 2)

T e TETIT_RA e

g T e 4
B it L

i . .
- each class? e.g,, Bomber, and each side, a summarv table is printed,

CHAPTER 8
PROGRAM BASESUM

PURPOSE : To summarize the input data base and to print
these summaries in tabular form.

ENTRY POINTS: BASESUM

FORMAL PARAMETERS: None

QQMMON.EEQEEQ: DIRECTRY, EDITERM, PROCESS, TABLES

SUBROITINES CALLED: INITEDIT, INITAPE*, INPITEM, ITLE, NEXTITEM,
PAGESKP

Program BASLSUM provides the capability of summarizing the datu base
contained on the output tupes produced by programs QUIKBASE (QUIKDB
tape), RASEMOD (QKMODDB or INMODDB tapes), or INDEXER (INDEXDB tape).
The data base tape to be summarized is the only required user input,
and there are no output Ffiles created by BASESUM,

To summarize the contents of a data basc tape, two passes are made

through the tape to summarize, in order, the Blue and Red sides. For
Within these tables, the columns reflcct the types within the classy

¢.g., B-52 and B-58, and the rows reflect the attributesi e.g., RANGE,
defined for the class,

The following conventions apply to the valucs of the attributes printed
in the table. All floating point values arc the average vaiuc, and all
integer and RCD values are the first one encountered in reading the

data base tape. If the value changes within any type, the value in the
matrix i: marked with an asterisk,

Figure 123 depicts the logical flow of this program. As indicated, a
flag is sct to cause side Biue to be summarized first, Next, the
array dimensions are set to correspond to the expected size of the
data basc., The division at the present time is 25 classes, 200 types,
and 100 attributes per class per side, 1f any of these dimensions is
exceeded in processing the data base, an approprit‘te errov message is

printed. [he directory and the first item are now read in, and the

* <,

» oo tchardler subroutines,

. . . " Y .
Y - . - . TV I [E SRR IS S UL e S L BTN S RN .
e —— i § ot it o s N el
X . .o . s v = . ol e
N ot S e Za ST YR
L.u i

gt

A e s

JEPSEIS S ex R

positions of CLASS, TYPE, and SIDE in the VALUE array are founu by
comparing these attribute names with the ATTNAME array. As each item

is read in, it is examined in several ways. It is skipped if value of
the attribute SIDE is not the side currently being processed. If this

\ requirement is met, the class name is checked to determine whether it is
3 a new class and whether storage is available., If so, the new class is

3 stored and the class counter is incremented. Next, the type name is

' compared to those previously processed. If no match is found and space
is avallable, the new name is stored; the type counter is incremented;
and the index to NAMECLAS is stored, If a type name match is found, a
check is made to ascertain whether the class is the same, If not, n :
further check is made to find a name match later in the table. {f none b
is found, control goes to the new type case, At this point in the flow, '
the number-of-items counter is incremented, since both the type and the i
class are known. Now all the attribute names defined for this class are i
examined. The value of the attribute is stored directly for newly

defined attribute names or the first appearance of an attribute in a

R type and class., The procedure differs, however, for attributes previously
defined. A logical array ITEMS is examined for a previous change in

the value of this attribute if it is not the first item encountered of
this class and type. If the present value is equal to the previous

o value, the next item on the data base tape is processed. If the value :
5 is different, that fact is recorded in ITEMS, If the value is integer

[or BCD, nothing further is required. If it is floating point, the

- previous value is multiplied by the current number of items minus one,
b and the present value is then added in,

After the last item has been processed, the floating point values are
averaged, and all of the tables for this side are printed out. The
entire process is repeated for side Red.

Common Block Definition

E Program BASESUM references the following utility routine common blocks,
3 which are descrihed in appendix A of this manual: /DIRECTRY/, /EDITERM/,
and /PROGESS/.

N In addition, BASESUM uses common block /TARLLS/ which contains the urra&s
described in table 15,

st e

|

F

i

i

d

¥

‘ ;j
.

T

- s

Table 15.

VARTABLL
BLOCK OR ARRAY

TABLES NAMECLASS
NAMETYP:
CLASTYPE

NAMEATY
(equivalenced
to NMATT)
NUMATT
VALATT
(equivalencad
to MVALATT)
ITEMS

PARRAY
MFEORMAT

Program BASESUM Common Blocks

DESCRIPTION

PrEt

Class numes
Type names
Index of class to which each tvpe belongs

For each class, pairs of locatiovns in which
the first is the name of the attribute, and
the second is its location in the VALUL array

Number of defined attrivates for each class

Value of ecach attribute for each type

Set to 1 if value of attribute has changed;
0 if nct

Print array

Format of cach print line

i
:
]

[

e, SRR TS, e

LT e

]

Sk,

—arli

START

Increnent
Counter of Items
of This Class
and Type

8181

Set Sido to KLUL, |
Fill Prirt Fomrat
Array

Increment Type
Counter, Stere
iype und Its Class

Set Maximum
Numter of Types
Per Side to JCuo

¥

Raom to
Store It
in Table?

tnd
2f Tubie?

Sei Up to lLook
Through Rest
of Type Tuble

Sare
Clase?

181 *

Call INITAPE
to Initialize
Filehandler
Vaviables

Y

Call INITEDIT
to /repare for
Reading Items

Fig. |

139
(3]

818t
Set t‘-"’dm“’“ Increnent initialize to
Num ?; °f. Class Counters Look “Throuph
P"Aé{:““";‘wo store Class Name All Types
- X -
3] ‘es 161 ’uo
Set Maximom Number Storage Is Thi.
,of Classes Available to Liass
ber Side to 25 Store This Class? New?
_) Ne
164 ¥ 8182 8185 3456 Yoy
Initialize Print Print 1s
Arrays and Ervor Error SIDE
Cunstants to Zero Messape Messupe Idefined?

Is [tem
an the Side
Being
Processed?

l Call INPITEM

Item

to Read First . of Class Type and

SIbe An VALUL Array

Cal) ITLE
to Find Indices

Program BASLSUM

(Sheet | of 3)

KR

1 [4
! 9 slan
No -
Ag:;:::s: foom to Print
Store This Error
Yes Value? Messape
Previously No 3182 130 -
Defined -,__.J Increment
for This Ndmgevlzf Add Value vo N
Clase? _,// Attributes in Sum 3::5:fv1°"'
This ¢ :
0 Yes his Class —
flas Value of .) Yes
No/This Attribute Store Name wnd Floatiny
Previously Index of ihis Paint -
. Changed? Attribut: | Va) ves?
141 130 131,
Floating Add Value to Store
Point Sum of Previbus Prosent i
Values? Values Values
151 130 .
Fifst Multiply Previous .
xpcarnnce for Value by Number of R s.,,,,“ﬂf"ﬁizsigﬁs -
Items With Provious values
Value
Y U, '

Signal Value for
This Attribute

Yes

Floating
Point

Changed Value?
!
Fig. 123, (cont,)
(Sheet 2 of 3)
1
J40
i R T o NNy (RS L gt |

TR T

i heallad e

Call NEXTITLM
| to Read Next ||
Item

Finished
With tnput
Tape?

-

Cali PAGESKP tane
to Skip to -— bo_for o

Do for

Next Page ALl Qypes

#={ All Attributes
of This Type

gl

‘ — liohe

o for lone Side Value
> Al | o Lqual to Ever
4 Classes Red? Changed?
o hoi
Go to Local ‘ - 163
Subroutine Clear Print Set SIDE Float:ng
to Print Array to -U to RED Polrnt
Q -—-——Ta---—t Value?
Done —
Assign 39 ho for
v . Divide by
to NBACK ALL Types ni' Total Teent .
ho This Type
This Type
in Present
Class?
37 =
Assign 38 Value Ever
to NBACK Changed?
;7 No -
y
Go o Local Store Attribute Store a
Subroutine Value Blank
to Print -
38 ‘ f‘” '32
Do for A}l ; Store an
Set Page - 4 Acterisk
Countar to 0 Done] Attributes l Acterls
¥ 4
Set Print Increment Store Type Name And
- Paye —#sd Number of Ttems
-0
Array to Count Yor This Class

Fig. 123. (cont.)
(Sheet 5 of)

i wa

Is
1

EL N SRS P

APPENDTX A
UTILITY ROUTINE COMMON BLOCKS

The following is u description of the common blocks associated with all of
the utility programs except for programs OUTFIiLE and RELOADF. In addition,
.only those filehandler common blocks used by the calling programs for data

transfer are included in this appendix. For a complete list of filehandier
common blocks sce table .

VARIABLE
BLOCK OR ARRAY DESCRIPTICN
A R Interpolation calculation watrix
B S Temporary interpolation matrix
BNKBNDS TAMLOW Lower storage limit in both banks
TAMHITGH Upper storage limit in both banks ;
C S50L Solution vector for interpolation calculation .
DATA X Storage area for file data
DATPK MASK Table of masking variables
ISHTAB Table of shifting variables
DIRECTRY Contents of directory
IDEF Index of last defined attribute in tables
LASTLIST Index of last entry in LISTVALS %
NDIMDIR Maximum size of tables !
NDIMLIST Maximum size of LISTVALS

112 ‘

H
]
|
i
: ; L P S S i UEEURURRPEI YRRV O AP S T R ST UNE R S (4 J
. S

»

e T

BLOCK

DIRECTRY
{cont.)

EDITAPE

EDITERM

ERRCODE

VARIABLE
OR ARRAY

ATTNAME
TFORMAT

ICODE

DEFAULT }
IDEFAULT
N1

EN1 |

N2

FN?
LISTCHEK
GLOB

LISTVALS

INTP
NOUT
ITOUT
JouT

ISWTERM

KABORT
KWARN

DESCRIPTION

Hollerith name of attribute

Input/output conversion format (FORTRAN) for
attribute values

Code specifying type of values and method of
checking

Undefined value for attribute

Minimum allowed value (range check) or index
of beginniug of allowed list in LISTVALS
(list checking)

Maximum allowed value (range check) or index
of end of allowed list in LISTVALS (list
checking)

Set to TRUE for list checking; FALSE for i
range checking |

TRUE when global definition in force; FALSE §
otherwise 1

Contains allowable values for list checking

Data hase tape editing information
Logical tape number of input data basc
Number of output tapes

Logical tape number of output data buses

Logical tape number of current output tape

tEnd of data base tape signal

Set to 1 if not end of tape; sct to 2 if end
of tape

Abort condition code

Warning condition code

14

4;Aﬁkﬂmuh;;;;g‘_;iwéigJmﬂi

B IR L T U SOOI S TS R

| e g 7

BLOCK

ERRMESS

ERRORM

FILABLL

FILEIN

IFTPRNT

IREC

ITp

MPRTOPT

VARTABLE

Logical unit number for output error messapes

Set to 1 if no crrors detected; to 2 if errors

Eight letters of (input) file name; read firom
Run number; read from file

Date generated; read from file

Format; read from file

Security; rcad from file

Time generated; read from file

Five words available for user comments
Logical disk filc name

Controls debug printout

Number of records read from curroent filc

Tape currently being used (integer value

OR ARRAY DESCRIPTION
TABORT Abort message
IWARN Warning message
Lrror signals
JERR
IERSW
are found
INTDENT
file
INRUNNO
INDATE
INFORM
INSLECR
INTIME
INLNGTH Length of file
INCOMM
NAME
IFTPRNT
TREC
I'TP
1 to 10)
Print contrel
MPRTOPT

Set to | to print directory card imiges;
0 otherwisc

i

BLOCK

MY IDENT

MYLABEL

NOPRINT

OUTFILES

POLITE

’ROCESS

VARIABLE
OR_ARRAY

MYIDENT

MY FORM
MYSECR
MY LNGTH
MY COMM

NOPRINT

IOUTDEC

ILIST

IBODY

FACTOR
SR
TR

NI

NV
NC

DESCRIPTION

Tape identifier

Format designation
Security designation
Maximum file length (words)
Conments, if any

1 to print tape label

Logical tape number on which DECLARES
writes the modified FORTRAN source
program (source code on this tape is
subsequently compiled)

Logical tape number on which the input
source program is printed

Not used

First point latitude

Fivst point longitude

Second point latitude

Second point longitude

Fraction of distance to be interpolated
Interpolated point latitude

Interpolated point longitude

Stores item information

Number of attribute-value pairs in incoming
item

Twice NI

Index of a changed attribute

. . . [A ke Y . A‘_.._,-;j
- o . " e . : o U AL ekt a2l L
datalt i SUREE N TSV S LIV SUUUIETHIE RS TRy SN L OPE SRR VSRR LI SE £

T

o

S

e T e

AR

BLOCK -

PRNTCOMM

PRTOPT

TODAY

TWORD

XPRT

VARIABLE
OR ARRAY

DESCRIPTION

INITEM
VALUE
DEF

LGLOB

SAMEARRY

DEFINED

INDXOTHR
PAGEDATA
COMATNAM
COMATVAL
ICOLSAVE

NPRTOPT

NOWRUNO
NOWDATE

NOWT 1ML

THORD

Alternate attribute indices and values
Current value of all attributes

TRUE if attribute currently defined; FALSE
otherwise

TRUE if attribute currently globally defined;
FALSE otherwise

Printing information

Set 1 if attribute defined for item; O
otherwise

Unused

Indices of already defined attributes
Attributes and values changing on page
Names of attributes common to page
Values of attributes common to page
Number of columns on page

Print control

Set to 1 to print item card images; 0
otherwise

Current run number (currently not uscd)

The date of the run; written con file label
as 6th word

The time of the run; written on file label
as 13th word

Word where next data stream word is placed

DECLARES print control for listing input
source deck; ALL if prints required;
otherwise sct to NONE

440

. carktes
FPREL . H PRSI R P e
PRI MEFLE PR EL e PRI, B N SR

o S AP

el el

i iy e

T T B e T e T

APPENDIX B
QUICK ATTRIBUTE NAMES AND DESCRIPTIONS

ATTRIBUTE :
NAME DESCRIPTION i
ABRATE Probability of aireraft in-flight abort per hour
of flving time
ADBLI ALERTDBL probability for initiative attack !
ADBLR ALERTDBL probability for a retaliatory attack]
ADEFCMP Area ballistic missile defense (BMD) component)
index (radar or missile launch site)
ADEFZON Area bLallistic migsile defense {BMD) Zone number
AGX Offset X-coordinate of AGZ (fifticths of nautical
miles)
AGY Offset Y-coordinate of AGZ (fiftiecths of nautical 3
miles) g
AHOB Actual height of burst of weapon (air or ground)
ALERTDBL Probability of destruction hefore launch (DBL)
of alert delivery vehicle (missil. or bomber)
ALERTDLY Delay of alert vehicle before commencing iaunch
(hours)
AREA Area of a bomber defense ZONE (millions of
nautical miles?)
ASMTYPE Air-to-surface missile type
ATTRCORR Attrition parameter for a howber corridor (probab- ?
ility of attiition per nautical mile) 3
ATTRLEG Attrition parameter for cach route leg in bomber |
sortic (probability of attrition per nautical mile)
ATTRSUPF Amowst of criginal attrition that remains after
defense suppression
447 :
|
i
i

e e AT T T

i e o g e

e h s e

ATTRIBUTE
NAME
AZON1
AZON2
AZON3

BCOLE

BENO
BLEGNO

CATCODE

CCREL

CEP

CLASS

CLASST
CNTRYLOC
CNTRYOWN

CNTYLOCT

CNTYOWNT

ot

CPACTY

e i b M el D e

DESCRIPTION

First area defense zone covered by a BM, long-range
radar

Second area defense zone covered by a2 BMD long-
range radar

Third area defense zone covered by a BMD long-range
radar

Code indicating the outcome of a simulated bomber
event

Bombing encyclopedia number
Index to boundary line segment

Category Code as reflected in Joint Resource
Assessment Data Base (JAD)

Regional reliability of offensive command and
control {probability)

Circular error probable (CEP), delivery error

applicable to bomher and missile weapons (nautical
miles)

Class name assigned identify sets of TYFES in data
base

Target CLASS
Countyy code for country where item is located
Country code for country which owns the item

Target country code for country where the target
is located

Target country code for zountry which owns the
target

Qutcome code for a general event used in simulation

Capacity of a bonber recevery base (number of
vehicles)

448

. : B\ . Coang e A N (R
denirbu kel ss b g PRSI SSLT AT AR L S PR RN TARSUTFRBECT Ly SRICNE VP IR DR SAUSRS S BB R U 8

P R S RUR LRI St S T TRE NS

ATTRIBUTE

NAME

DATEIN
DATEOQUT
DEFRANCE

DELAY

DELTA

DESIG

DGX

bGY

DHOB

EFECNES1
EFECNES2

EFECTNES

EVENT
EVENTN
FFRAC
FLAG

DESCRIPTION
Barliest Jate in inventory (year)
Latest date in inventory (year)

Typical range of interceptors at defense bases near
a corridor (nautical miles)

Delay time (e.g., launch delay time) (hours)

Time interval between successive vehicle launches
from the same base (missile or bomber) (hours)

Target «d¢signator code; e.g., AB100, which uniquely
identifies each target element included in the data
base

Offset X-coordinate of desired ground zero (DGZ)
(fiftieths of nautical miles)

Offset Y-coordinate of DGZ (fiftieths of nautical
miles)

Height of burst of weapon (0-ground, l-air)

Attributes assigned to fighter interceptor units
(IZLASS = 5 in the data base): the value EFECNES]
or EFECNES2 is assigned to the attrihute EFECTNES
depending on value of BASEMOD input parameter
POSTURE (1f POSTURE=1, EFECNES1 is used; otherwise
EFECNES2 value is assigned)

Air defense capability (arbitrary scale) established
by user to indicate relative effectiveness of

air defense command and control installations and
fighter interceptor bases

Index to event Lype

Index to type of event which did not occur

Fission fraction (fission yield/total yield)

Numeric code (1 through 9 permitted) used to impose

restrictions on the allocation of weapons within
QUICK

449

BRI A

e il et St e W T et 2R

]
ATTRIBUTE
_NAME DESCRIPTION
FLTNO Flight number for a sortie
FUNCTION Operational application code for a weapon system
(e.g,, ICBM)
{ FVALIL Fractior of valuc of target in first hardness component
! FVALT1 Fraction of target value that disappears by Tl
E {percent)
i
E FVALT 2 Fraction of target value that disappears by T2 1
. (percent) @
‘ M1 First hardness component of a targcé (VULN) ;
;- 1?2 Second hardness component of a target (VULN) :
|
b HILOATTR The ratio of the low-altitude attrition rate to
the highealtitude rate (decimal froction)
\ JALERT Alert statusy 1 = alert, 2 = nonalert '
{. [ALT Altitude index (1 = high, 0 = low) k
v TATTACK Selection index for preferential area BMD; 1 forces
target sclection for defense. '
LCLASS Class index assigned for game ?
a, { CLASST Target class index
,‘ i\
3 [COMPLEX Complex index i
P LCORR Bomber corridor index number asszigned in program é
] PLANSET : ;
i i
' | - Tactical (FUNCTION=TAC) aircraft corridor 4
(TYPE name DUMMY in the data base) 1
1
2 . Naval attack corridor (TYPE name NAVALAIR i
in the data basc) uscd by bomber units i
with PRNAV greater than zero <
»2 . Other corridors used by long range bombers é
(FUNCTTION=LRA) 1
)
o
450 !
N
!

v
p
3 s attoT e et TR P R TR B S BT
= ORI e e L:ﬁmﬁm@w;‘;;‘.;_‘“u#-/kw-gﬁ, . RTINS
3. - o e

Y "

o e S e ™

—

T et

N

T e T o

TS v

ATTRIBUTE

NAME

IDBL

1DUD

IGIW

LGROUP

IMIRV

INDLXNO

INDV
INTAR

IPENMODE

IPOINT

IRECMODE

IREFUEL
IREG

IREP

ISITE

ITGT

ITIM:

DESCRIPTION

Index to data tables for time-dependent destruction
before launch probability

Dud warhead indicator; ussigned to weapons which
arrive at the target but fail to detonate; 1=dud
warhead

Indices of General Industrial Worth (IGIW) (dollurs)

Group index assigned for weapen grouping during
game

fdentifying index for system with multiple indepen-
dently targetable re-entry vchicles

Index of a data base item (potential target) used
during processing to identify the item

Vehicle index within base
Target index (corresponds to INDEXNO)

Penetration mode; 1 = aircraft uses penctration
corridor, 0 = penetration corridor not used

Index to a geogruphic point

Recovery mode; 1 = aircraft should plan recovery,
0 = aircraft recovery not planncd

Bomber refueling code
Index to identify a geographic region

Reprogramming index (capability of missile
squadron)

Site number

Target index number assigned by Plan Generation
subsystem

Index to time periods in time dependent DBL data
tables

451

PR e T i i A ik Ca i eal i ST L T

L

[APSPPIC AIPS LHIN H SRITEE EEC

i

‘ ATTRIBUTE
ITYPE Type index assigned for game .
I'TYPET Target type index ;
IVUWN Inder to vulnerability number taeble |
' TWTY D2 Second warhead type '
; JTYPE Type index within class
| JTYPET Target type index within class %
; KORSTYLL Parameter to adjust mode of corridor 1
L penstration
LAT Latitude (degress)* :
l I.LEGNO I'ndex to line segment
; LINK The index of a leg linked to the current point
i LONG Longitude (degices)™ j
MAJOR Major refercnce number as reflected in the Joint
Resource Assessment Data Base (JAD)
MAXFRACV Maximum value of weapon resources to be uscd relative
” to target value (in pro-essing MAXCOSTsMAXFRACV)
MAXKILL Desired maximum danage eapected for a target
MINKILL I'he required ainimum damage established for
; a tarpet

Latitude and Jongitude are carriod internally in the QUICK system in

; the following format:

3 North latitude 0. (equator) to +90. (North Pole)
South latirude 0. (ecquator) to -90. (South Pole) K
Fast lonpitude 180. to 360. (Greenwich Meridian)
West longitude 0. (Greenwich Meridian) to 180.

These attributes may be anput in either the above format or in
stundard degre, minnte, second, direction fornat,

o

Sl i Pt o

[

e Ty T

"

ATTRIBUTE

NAME

MINOR

MISDEF

MVA

MYHDS

NADBLI

NADBLR

NAINT

NALRTDBL

NALRTDLY

NAME

NAREADLC

NASMS
NCM

NDECOYS

NDLET
NEXTZONE

NMPSLTE

DESCRIP1 (ON

Minor reference number as reflected in JAD
to identify an item

Number of terminal ballistic missile interceptors
for a target

Manufacturing value added (MVA); indicates the
amount of value added by manufacture within a
specific area (expressed in U.S. dollars)

Number of missile warheads penctrating arca
defenses to terminal defensec

NALRTDBL for initiative attack
NALRTDBL for retaliatory attack

Number of area ballistic missile interceptors at
an interceptor launch base

Probability of destruction before launch (DBL)
of non-alert vehicle

Delay of non-alert vehicle beforc commencing
launch (hours)

Arbitrary alphameric descriptcer for any item
included in the data hase

Number of decoys per independent re-entry vchicle
for area BMD

Nunber of ASMs carried by a bomber
Number of countermeasures carried by vehicle

Number of decoys on a bomber or number of decoys
per independent rc-entry vchicle for terminal BMD

Number of warheads detonating in current cvent

The adjacent zone to a side of a defunse zone

Number of missiles per site

paE

3
|
i
1
1
i

1 1 =
ATTRIBUTE ' 1
NAME DESCRIPTION . ' ;
NOALERT Number of vehicles on alert at a base . 5
NOBOMB1 Number of first bomb type carried by vehicle
NOBOMB 2 Number of second bomb tyﬁe carried by vehicle ;
g NOINCOM Number of delivery vehicles in commission E
§ NOPERSQN Number of weapbn vehicles per squadron %
: NOPERSQ1 Attributes used in program BASEMOD to dompute the '
t NOPERSQ2 value of the attribute NOPERSQN for bomber units;
i NOPERSQ3 numbers 1, 2, and 3 specify surprise, initiative,
' and retaliatory attack plans respectively
§' NPEN Number of warheads penetrating in current event
% NTARG Number of targets in missile launch event
NTINT - Number of terminal BMD interceptors at target - : ' !
‘ NWHDS Number of warheads pef independe it re-entry vehicle ! é
; (missiles) ° : ' : . é
- £
v NWPNS Number of weapons in a group %
! NWTY PE Warhead type ' : | si
3 i
PARRIVE Probability of bomber arrival in current cvent !
i
) PAYLOAD Index which identifies entire weapon and i
; penetration aid complement on a vehicle :
] !
} PDES Probability that launch failurc destroys missite : g
PDUD Probability a warhead will fail to detonate |
PEN Penetration probability for a weapon :
PFPF Probability of failure during powered flight
(missiles)
PINC

Probability that a missile is i commission

4544

e

ATTR1BUTE
__NAME

PKMIS

PKNAV

PLABT
PLACE

PLACEN

poP
POSTURE
PRABT

PRIMETAR
PSASW

RADIUS
-RANGE

RANGLDEC

RANGEREF

REL

RESERVE

STDE

DESCRTITION

Probubility a missile fails to penetrate terminal
defensc

Single shot kill probability of a weapon against

a naval target (a value greater than zero restricts
weapon use to naval targets)

Probability of vehicle launch abort

Index to geogruphic location of an event

, ,

Index to jeographic location of an event which
did not occur : :

Population (cities) (thousands)

Force veuadiness condition

Probability of refueling abort

Prime target flag; 1 signifies priority target
in a complex

Destruction before launch probability ussigned a
weapoi for a specified time period

Size descriptor for arca targets (nautical miles)
Vehicle range (nautical miles)

Range decrement for low-altitude aircraft flight
(high range/low range)

Range (nautical miles) of bomber with refueling

Reliability - probability that weapon system will
arrive at target given successful launch

Technique used to remove certain targets from
weapon allocation when RESERVE = ©

[tem side name, currently cither "RED ' or "BLUE"

i
¥

U SO

S o
Ead . B

ATTRIBUTE

NAME DESCRIPTION
SITENO 5ite number (currently for individual missile
sites) ;
SPDLO Speed at low altitude (knots)
SPEED Specd (knots) !
SQNNO Squadron pumber
T1 Time of departure of first value comwponent of a
target
T2 Time of departure of second value component of a
iLarget
T3 Time of departure of third value component of a
target
TAIM Number of aim points perceived by terminal defense

in current event

TARDEFIIT Level of local bomber defense at high altitude*
TARDEFLO Level of locul bomber defense at low altitude*
TASK Target task code indicating targeting priority
TCTSTAT Indicates taryet status as dynamic or nondynamic; ;
in simulation status (alive/dead) is maintained
for dynamic targets
TIM: Game time at which cvent occurred (hours)
IIMEN Time pluanned for cvent which did not occur (hours) :
TMDEL Mean delay time to relaunch after a nondestructive
alraratt abort (hours)
~

Arbitrary units scalced by user-input parameter in Plan Gencration
subsystem, Minimun value 0 for no defense, Highest allowed defense
level is + 7

i 150

ATTRIBUTE

NAME

TPASW

TRETARG

TTOS

TVUL

TYPE

TYPET

TYPE]
TYPE2

VAL

VALU

VAL1
VAL2

VULN
WACNO
WHDTYPE
WHOTY PEN
YIELD

ZONE

 ———

Tine at which a time period ends for DBL data
tables; there may be up to 10 time periods for
each table

Time required to retarget for known in-flight
missile aborts (hours)

Total time on station (for a tanker) (hours)

Time a missile remains within vulnerable range
of launch site (hours)

Arbitrary alphameric designator (type name) to
identify smallest sets in data base

Target TYPE

Attributes assigned fighter interceptor units
(ICLASS=5 in the data base): attribute TYPE is
assigned the TYPEl or TYPE2 value based on BASEMOD
input parameter POSTURE (POSTURE=1 TYPEl is used;
otherwise TYPL2 value used)

Relative value of an item within its CLASS as
established in the data base by the user

Game value of an item (assipned in plan
generation based on user-input parameters)

Attributes assigned fighter interceptor units
(ICLASS=5 in the data base): attribute VAL is
assigned the VAL1 or VAL? value based on BASEMOD
input parameter POSTURE (POSTURE=1, VALl is used;
otherwise VAL2 value is assigned)

Vulnerability number

World acronautical chart number

Warhead type index assigned in the data base
Warhead type index (used with EVENTN)

Yield (MI)

An arca bhombor defense zone enclosed by a set of
linked boundary points

15y

i TRCTT—

Rt i al s o

St

o i R

APPENDIX C

ENTRY POINTS FOR QUICK UTILTTY ROUTINES

This appendix contains an alphabetic listing of the entry
roints associated with all utility programs and subroutines.

Subrontines associated with cach of these entry points arc
indicated below.

ENTRY POINT

ABORT
ALOCDIR
ANOTHER
AIN2PI
CHANGE
CLOSPIL
CLRCMON
DEACTIV
DECLARES
DELLONG
DIFEFLNG
D1EFFLONG
DISTF
DS
ENDUATA
ENDTAPE
LERAZE
EQUIV
FLLLDUNMP
FLLENNR
GLPCLK

TO_SUBROUTINE

ABORT
11 LEHNR
ANOTHER
ATN2PI
CHANGE
CLOSPII,
CLRCMON
i1 LLINR
DECLARLS
DLLLONG
DLEFLONG
DTEFLONG
DISTI:
DSTE
ENDDATA
ENDTAPE
ERAZLE
EQUIV
F1LEDUMDP
FELEHNR

GETCLOGK

< LT

ENTRY POINT

GETCLOCK
GETDATE
GETDF
GETLIMIT
GETLOC
GETVALU
IGET
INBUFDK
INERRDK
INERRTP
INTTAP
INITAPH
INTTEDIT
INITEDT
INLABEL
INPITEM
INTERP
INTERPGC
INTRPGC
U
FTLE
IWANT
KEYMAKE
LOCE
LOCREAD
LOCWRIT
LOCWRITE
NEWUNIT
NL:XTAPE
NEXTETLI

459

TO SUBROUTINE

GETCLOCK
GETLATE
GETDF
GETLIMIT
GETLOC
GLETVALU
IGET
INBUFDK
INERRDK
INERRTP
FILEHNR
FILEHNR
INITEDIT
INITEDIT
INLABEL
INPITEM
INTERP
INTERPGC
INTERPGC
1PuUT
ITLE
IWANT
KEYMAKL
LOCF
LOCREAD
LOCRLAD
LOCREAD
NEWUNIT
NEXTAPE
NEXTFILE

i

ENTRY POINT

NEXTITEM
NEXTTTM
NODIRC
NUMCET
OPLNSPL
ORDER
OUTBFDK
QUTBFTP
GUTDF
OUTERDK
OUTERTP
OQUTFILE
OUTITEM
OUTWORDS
OUTWRDS
PAGESKIP
PAGESKD
PRITEM
PRN'TBAS
PRNTBASE
PRNTBSI:
PRNTUATA
PRNTDTA
PRNTDIRC
PRNTDRC
PRNTLAB
PRNTPAGE
PRNTTGE
RDARRAY
READDIR
RELOADE

doi

TO SUBROUTINE

INITITEM
INITITEM
NODIRC
NUMGET
OPLNSL,
ORDER
OUTBIDK
OUTBI'TP
OUTDF
OUTLRDK
OUTLRTP
OUTFILE
OUTITEM
OUTWORDS
OUTWORDS
PAGESKP
PAGESKP
PRITEM
PRNTBASI:
PRNTBASE
PRNTBASE
PRNTIIA
PRNTDTA
PRNTD]RC
PRNTD I RC
FILEHNR
PRNTPGE
PRNTPGL
RDARRAY
READDI R
RELOAD]:

B A il il ol e)

T A AR T e T in e

ENTRY POINT

REORDLR
SETHEAD
SETREAD
SETWRIT
SETWRITE:
SKIP
SSKPC
STORAGE:
THRMIAP
TERMTAPE
TERMIPE
TIMLEDAY
TIMEME
WARNING
WRARRAY
WRITEDIR
WRITEDR
WRWORD

401

TO_SUBROUTINE

REORDER
SETHEAD
SETREAD
Fi LEINR
FLLEINR
SK1p
S8KPC
STORAGE
TERMYAP
TERMI'AR
TERMTAP
TIMEDAY
TIMEME
ABORT
RDARRAY
WRITEDIR
WRITEDIR
FLLFYINR

APPENDIX D
UTILIZATION OF GENERAL UTTLITY ROUTINIS

The following is a list of the programs and subroutincs which call the
¥ general utility routines described in chapter 4,

UTILITY ROUTINE CALLED BY

ABORT ALOC
BOUNDARY
ENDTAPE
FILEIINR :
PINDIT
FOOTLST y

GLTDATA
GETGROUP
GETLOC
GOPRINT
GRPSORT
1GET
INDMOD
INERRDK
A INERRTP
L INLABLL.
A MISASGN
A NEWDATA
t NODTRC

} PREPALOC
! DPRNTNOW
; PROCS IMP
i QUILBASE
v READDIR
READIN
SETDATA
SETREAD
SIMULATE
SORTOPT
ZABORT

e et e S ST AT VTS T TR

SUPWORIE FEY S TR S

ANOTHER CLOSPIL g
ENDTAPL '
OUTERTP
SETIHEAD

Jo2

UTTLITY ROUTINE

ATN2PI

; CHANGL
DELLONG

: DIFFLONG

:
} DISTF

ENDDATA

ERAZE

J03

CALLED BY
INTERPGC

DBMOD
INDEXER

CORRPARM
GETDATA

FINDZONE
LAUNCH
MYZONE
TARDEFS

ADJUST
CORRPARM
DTFFR
DISTIME
FLYPOINT
GENRATID
GETDATA
TINITOPT
INPO'I'GT
INTERPGC
LNCHDATA
MISASGN
NEWCOOR
NOCORR
PLANTANK
ROUTING
SNAPOUY
TARDESS
TGTPREP
TIMELNCH
WEAPPREP

ENDTAPL
INPITEM
MAKEBAS
MAKETT

READSUM

QUTERTP
SETWRITE
TERMTAP
WRARRAY

T e TR RN T

LT T R v R TR RT—— T

UTILITY ROUTINE

CALLED BY

GETCLOCK

GETDATE

GETLIMIT

GETVALU

IGET

INTTEDTT

TIMEME

FILEMNR
INITAPE
INPITEM
QUIKBASE
RELOADF
QUITFILE

STORAGE

PREPALOC
RDALGRD
RDCARDF
RI:PRCMP
SETFILE

BDAMAGE
BDAMX
BLAUN
CLAUN
COLOCATE
FLTROUTE
I'PClL
LATTRIT
MLAUN
NAVCAL
NEXTFLT
PRERATD
RECOVERY
STATSUM
STRKOUT
TDEFSTT
TERMBMN
TwYLAUN
WRPRNT
WRRDSTRK

BASESUM
INDMOD
PRNTBASE
TABCGEN
TABLE

404

el e

AT T

.

UTILETY ROUTINE

INPITEM

INTERP

INTERPGC

1PUT

ITLE

BASIESUM
DEMOD
INDEXER
INDMOD
PRNTRBASE
PRNTITA
TABGLN
TABLE

AbJust
ENDTAPE
NOCORR

INYERD

ALOCOUT
BDAMAGE
CLAUN
COLOCATE
TNDEXER
MLAUN
MOREDATA
NAVATR
NAVCAL
PLANTANK
TOLEESTT
TRY LAUN

BASLSUM
COLFIND
CYCLER
DEMOD
FQUIY
EVALZ
GETDATA
INTREL
LOCREEST
MAKETT
NEL BASE
NERDIR
RDALCRD
RDCARDE
RDPRCMP
RONE TND

J05

UTILITY ROUTINE

CALLED BY

~ITLE (cont.)

IWANT

KEYMAKE

LOCF

NEWUNIT
NEXTFILE
NEXTITEM

NUMGET

SETUP
_TABLE

TGTMODIF

TGTPREP

GETVALU

ALOCOUT
BDAMX
INDEXER
MOREDATA
PRERAID

_SIMULATE

BLAUN
LOCREAD
RDARRAY
TERMBMD
WRARRAY

OUTERTP

F1LEDUMP

TABGEN

BUFFIT
CARDCK .
DBMOD
DECLARES
DEFALOC
FTILEDUMP .
FIXWEAP
FLAGRST
GETDATA
GETVALU
INDMOD
INPRTCL
ENCHDATA
LOCREST
MIRVREST
MULCON
NEWBASE
NEWDATA
NEWDIR -
RDALCRD

4060

UTTLITY ROUTINE

NUMGET (cont.)

ORDER

QUTITEM

OUTWORDS

PAGLSKP

RDCARDF
RDPRCMP
RNGEMOD
SETFILE
SETID
SETUP
TABLINPT
VALUMOD

ALocour
BOOSTIN
CALCOMP
COLOCATE
DECOYADD
EVAL
EVAL2
FINDZONE
FOOTPRNT
GENRAID
INIFOPT
NEWCOOR
OPTBOOST
PACK
PLANTANK
PROCCOMP
ROUTINE
SORTMIS
STRROUT
TGTSORT

DBMOD
ENDTAPE
INDEXER
INDMOD

INPITEM

BASESUM
DBMOD
ENDGAME
EVALZ
FASTDATA
INOMOD
NEWDATA
PAGESKP

.

.

o

UTILITY ROUTINE

PAGESKP (cont.)

PRITEM

PRNTBASE

PRNTDTA

PRNTDIRC

PRNTPGE
RANORDER

READDIR

REORDER

CALLED BY

PENTDIRC
PRNTPAGE
PRTCOUNT
SETUP
SIMULATE
STATSUM
TABGEN

DBMOD
INDEXER
INDMOD
PRINTIT
PRNTBASE

MAKEBAS
PRONLY

MAKEBAS
PRONLY

PRNTBASE
PRNTDAT

PRNTDTA
MLAUN

DECLARES
INDEXER
INITEDIT

ALOCOUT
CALCOMP
COLOCATE
DECOYADD
EVAL
EVAL?2
FINDZONE
FOOTPRNT
GENRATD
NEWCOOR
PACK
PROCCOMP
SORTMIS
STRKOUT

stme e e o

et o

BBl vl i

UTILITY ROUTINE

CALLED BY

SKIP

SKIPFILE

SSKPC

STORAGE

TIMEDAY

TIMEME

TR e e e — s e

ALOC
FOOTPRNT
GETDATA
GETGROUP
SETDATA

ENDGAME
INDEXER :
INDMOD E
MOREDATA

NEXTAPE
OUTLRTP
ZABORT

el .=

EVALPLAN
MOVE
VMARG

ALOC §
FOOTPRNT .
INDMOD
PREPALOC

FILEHNR
INI'TAPE 1
RELOADF .

ALQC
ALoCouT
ENDTAPL
FLTROUTE
CETDATA
MULCON
OPTRAID
PLANTMIS
PRINTIT
PRNTALL
PRNTNOW
PROCCOMP
READSUM .
RECON .
SNAPIT
SNAPOUT
STRKOUT
TCOTASSN
FIMEPRT
WERDSTRK

oot 1Ko b

oot .

JOO

3 UTILITY ROUTINE CALLED BY
WRITEDIR INTTEDIT
‘ MAKEBAS

-

—

DEFENSE COMMUNICATIONS AGENCY
NATIONAL MILITARY COMMAND SYSTEM
SUPPORT CENTER ' ‘
WASHINGTON, D. C. 20301

IN REPLY . : . | g
nercn vo: B221 8 November 1972
T0: DISTRIBUTION ' : t
SUBJECT: Change 2 to Programming Specifications Manual CSM PSM %

9A~67, Volume I, Data Input' Subsystom, Part A

R

1, The purpose of this set of changa pages is to document changes

necessary to correct a deficlency in identifying the variable CCREL

as a Quick-Reacting General War Gaming System. (QUICK) attribute.

These change pages reflect the currently operational version of

QUICK at the National'Military Command System Support Center. Insert

the enclosed change pages and destroy the replaced’ pages decording
to applicable security regulations.

fD-74278 3

2, A list of Effective Pages to verify the accuracy of the Manual :
is enclosed., This list should be inserted before the title page, '
When this change has been posted, make ah entry in the Record of ‘
Changes on the tnside cover. ’

FOR THE COMMANDER:

o '
6 Enclosures /J. DOUGLAS
Change 2 pages . Chief,

o ™

Repreduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Seportment of Corrm cree
Qpeenglonld VATI16]

Y

DISTRIBUTION
! :
Addressee Copies
NMCSSC Codes
3121 L] . L] [3 . L] * [L] . [) [] [* [[[» . . . L] . [] * [] * L] 3
8122 (stock) . . » [] . [L . * . L L] 1] L] L[] [] . . » L2 . . L] L] 6
8200 L3 * * . . [] . [. . L] . . » . L] . [] L] . » - L[] . * . ['] 1
leo [] L] » » L] L] * * L} L] » L] * * [] L] - > . . [L] [] . L3 . . L] 2
Bzzo . + L] L[] L L] * . L] . » . L] * [L] . L L] . L . L[] L[] » . [] . 29
3600 . L] L » L] L[] . L] . » * . . L[] L) L] . i . - » . L] - 1
DCA Codes
920 [- L] L] - - . L4 * L4 L] L . . L] » L] [» - . . » - L[] L] L] Ll 1 3
950 . * L] . » . * L] - L) * [L] . . [} . L] » L] Ll . * L] - L] » * 1 §
. | i
System Engineering Facility, ATTN: T221 i
Reston’ virgiﬂiﬂ 22070 . . L]) . [] [] L . L] - L] * [] L L[] » L] 1 i
] :
0JCS
Studies, Analysis and Gaming Agency, ATTN: SFD,
Room 1D957, Pentagon, Washington, D.C. 20301 5
. Commander-in-Chief, North American Air Defense Command
ATIN: NPPG, Ent Air Force Base, Colorado 80912 , 2
- Commander, U.S. Air Force Weapon Laboratory (AFSC)
ATTN: AWL, Kirtland Air Force Base, New Mexico 87117 . . . 2 3
' Director, Strategic Taryet Planning
Offutt Air Force Base, Nebraska 68113 . . . ¢ « ¢ o & o « & 2
" Chief of Naval Operations, ATTN: OP963GC
Room S5E531, Pentagon, Washington, D.C. 20350 2
Defense Documentation Center, Cameron Station,
Alexandria, Virginia 22314 v ¢ ¢ o v v e e . 12
70

L)

CH- 2

g 1 T YR IR TR

ol

EFFLCTIVE PAGES - 20 September 1972]

This list is used to verify the accuracy of PSM 9A-67, Volume I after]
change 2 pages have been inserted. Original pages are indicated by
the letter 0, change 1 by the numeral 1, and change 2 by the numeral 2,

Page No, Change No.

Title Page, Part A
i1i-xi1i, Part A
1-101
102-103
104-252
253
254-268
269-270
271-272
273
274-278
279

280
281~-283
284
285-286
287
288~-289
290

291

292
202.1
293-301
302

303

304
305-335
336-337
338-447
448
449-470
471
472-472A

s St e Bt -

2% mtsbassonins

CNONOHOFOHOHOHOFRFO=OROROHEGOGROFHO-OOC

Title Page, Part B
ii-vii, Part B
473-840

(el =ia

Tille Page, Part C
ii-vi, Part C
841-1219 0

==

CH-2

R————_— R

e e

s
;
{
|
f
.
f
:
{
f
f
[,

ATTRIBUTE

NAME

ABRATE

ADBLI
ADBLR

ADEFCMP

ADEFZON

AGX

AGY

AHOB
ALERTDBL

ALERTDLY

AREA

ASMTYPE

ATTRCORR

ATTRLEG

ATTRSUPF

APPENDIX B

QUICK ATTRIBUTL NAMES AND DESCRIPTIONS

DESCRIFTION

Probability of aircraft in-flight abort per hour
of flying time

ALERTDBL probability for initiative attack
ALERTDBL probability for a retaliatory attack

Area ballistic missile defense (BMD) component
index (radar or missile launch site)

Area ballistic missile defense (BMD) zone number

Offset X-coordinate of AGZ (fiftieths of nautical
miles)

Offset Y-coordinate of AGZ (fiftieths of nautical
miles)

Actual height of burst of weapon (air or ground)

Probability of destruction before launch (DBL)
of alert delivery vehicle (missile or bomber)

Delay of alert vehicle before commencing launch
(hours)

Area of a bombar defense ZONE (millions of
nautical miles€)

Air-to-surface missile type

Attrition parameter for a bomber corridor (probab-
ility of attrition per nautical mile)

Attrition parameter for each route leg in bomber
sortie (probability of attrition per nautical mile)

Amount of original attrition that remains after
defense suppression

447

o~

ey

ATTRIBUTE
_ NAME

AZON1
AZON2
AZON3
BCODE

BENO
BLEGNO
CATCODE

CEP

CLASS

CLASST
CNTRYLOC
CNTRYGWN -~
CNTYLOCT

CNTYOWNT

CODE

CPACTY

DESCRIPTION

First area defense zone covered by a BMD long-range
radar

Second area defense zone coversd by a BMD long-
range radar

Third area defense zone covered by a BMD long-range
radar ~

Code indicating the outcome of a simulated bomber
event

Bombing encyclopedia number
Index to boundary line segment

Category Code us reflected in Joint Resource
Assessment Data Base (JAD)

Circular error probable (CEP), delivery error
applicable to bomber and missile weapons (nautical
miles)

Class name assigned identify sets of TYPES in data
base

Target CLASS
Country code for country where item is located
Country code for country which owns the item

Target country code for country where the target
is located

Target country code for country which owns the
target

Outcone code for a general event used in simulation

Capacity of a bomber recovery base (number of
vehicles)

448 CH- 2

IFTAPCSAEIR TR

e T

)

|
$
|-
L,
|

DISTRIBUTION

Addressee

NMCSSC Codes
5121 [] [] L] L] * 1] L] . . » L L] L] ’ L] L] . * L] L] L] L] . . .
B122 (8 tock) 8 5 8 b 4 6 & 6 s ¢ s 2 e & 8 s v e e
Bzoo [. . . [] - []) L] . [[. * £] » L] . 1] » L] . - 1] []
3210 - » . . L] L] L) * [] L] [» . - »] * L . v 1] L] * - L
5220 [] L] - L] (] . L2 L] L] [. . L] * . L] » 4 . - L[] [} . L]
B600 . L] . * L] . [. L] » . [] L] [. L] L) [. * » L] 1] . »

DCA Codes

920 [N D I N R e I
950 « & & 2 4 & 2 ¢ e

L] LI e 8 s b 0 LI L I ¢

i e & & 9 ¢ B 8 5 & 4 ¢+ &

System Engineering Facility, ATTN: T221
Reston, Virginia 22070 . . . ¢« « « & &

0JCs

Studies, Analysis and Gaming Agency, ATIN: SFD,
Room 1D257, Pentagon, Washington, D.C. 20301 ., .

Commander-in-Chief, North American Air Defense Command
ATIN: NPPG, Ent Air Force Base, Colorado 80912 . ., ,
Commander, U.S, Air Force Weapon Laboratory (AFSC)
ATIN: AWL, Kirtland Air Force Base, New Mexico 87117

Director, Strategic Target Planning
Offutt Air Force Base, Nebraska 68113 ., ,,

Chief of Naval Operations, ATIN: O0P963G
Room 5E531, Pentagon, Washington, D.C, 20350 . .

Defense Documentation Center, Cameron Station,
Alexandria, Virginia 22314

@ 0 ¥ 4 6 8 b 6 & s+ e 4 s

471

e = ® e = e

{
k
}
P— F—— R . [S

« & » & ° o

Coples

= ADBN ON D

-

CH-2

o——

TR)

i

Becurty Classilicstic _ _ h 41 0"'
DOCUMENTY CONTROL DATA-R&D ' .

(Security claaeificatinn of tile, hdr of abatract and l»duln% lonr must ba when ihe everall re, ts elaasifl
1. ORIGINATING ACTIVITY (Corporate auihee,

A8, AKPORY EECURITY CLASNFICATYION
National Military Command Syltom Support Center (NMCBSQ)

[
Defense Communications Agency (DCA) THYTTT) .
Tho Pont:gon ' e
hington, DC 20301) i ' el BT o
3. "-onr fITLE a—a , Ty A S .
f The NMCSSC Quick-Reacting General War Gaming System (QUICK) *}hXWj‘\\" ' A
) Programming Specificstions Manual, VYolume I, Data Input Subsystem ' i :
. Aiia) v
4. DEACRIPTIVE NOTES ¢Type of ropasi and inclusive dates) R g o
NA : - RUOL .
. AUTHONIS) (Firat neme, middie Inltisi, iast nama)

NMCSS8C: Yvonne Mapily

i
Lambda Corp: Betty J., Ellig ‘W™
Donald F, Webb

Jack A, Synseen

¢ REPORY DATEL ™™, TOTAL NO. OVVPAIII 18, NO. OF REVS é

29 February 1972 486 4 0
[C&‘;'i%g;oﬂ:c‘:aé‘eﬂﬁ “M‘B’gé“m' REPORT NUMBER(S) %
». ProskcT NO. NMCSSC Project 631 : COMPUTER SYSTEM MANUAL CSM PSM 8A-67 ;

'S
[BJ-“:‘-:.’J"’" NO(8) (Any othor numbers Bl may ke assigned

o TR T A T R T

[

i S 4 sk e

None)
30 DISTRIBUYION ATATEMENT ;
i
§ This document is spproved for public release; its distribution is unlimited,

11, SUFPLEMENTANY NOTES

18. SPONSORING M'I.I'I’ARV ACTIVIY
National Military Commnnd System Support

Center/Defense Communications Agency
The Pentagon, Washington, DC 20301

13, ABSTRACT

This is one of three volumes describing the computer programming specifications for
the Quick-Reacting General War Gaming System (QUICK), This volume sddresses computer
programs of the QUICK Data Input Subsystem, 1t is intended to serve as the basis for
program malntenance activities. Accordingly, it describes the program functions and
contains flow charts for each program and subprogram of the Data Input Subsystem,

RN

Based upon suiteble data base and user control parameters, QUICK will generate
individual bomber and missile plans suitable for war geming, and simulate the planned 3
events. The generated plans are of a form suitable for independent review and
revision, Subsequently, the planned events are simulated; various stotistical sun-
maries sre produced to reflect the results of the war game., A variety of force
posturvs and strategies can be accommodated.

t
|
:
I

QUICK 1is documented extensively in a set of Computer System Manuals (series 9-67) -
putlished by the National Nilitary Command System Support Center (NMCSSC), Defense
Communications Agency ()CA), The Pentagon, Washington, DC 20301,

DD o "1473 :::;.:.c :oo.rm un'a JAM 34, WHICH 18 " ' -) .

472 1mdn Clnnlﬂc-tlon

DEFENSE COMMUNICATIONS AGENCY
NATIONAL MILITARY COMMAND SYSTEM . ‘
SUPPORT CENTER
WASHINGTON, D. C. 20301

1

IN REFLY 3) .

; reren o B231 1 September 197?

Og T0: DISTRIBUTXION

X VDN SUBJECT: Change 1 to Computer System Manual CSM PSM 9A-67, Volume I,
: ' Part A, The NMCSSC Quick-heacting General War Gaming Systenm

; (\) (ﬁ (QUICI) Data fnput Subsystem, Programming Bpocu:lcnuons

) QQ Msnual, 29 February 1973. 1
; N I~

: ‘\{ ™~ 1, Insert the enclosed change pages and destroy the roplaced puges

: \)L Y according to appliceble sscurity regulations.

-\ 2.

m A list of Effective Pages to verify the accuracy of this manual is
& enclosed, This list should be inserted before the title page.

. 3. When this change has been posted, wske an mtry in the Record of '
Changes on the inside cover,

1
A FOR THE COMMANDER:
:
. 21 Enclosures .
c Change 1 pagzes /{ Personnel
- ve . Services
ot
;! DISTRIBUTION
g :
E NMCSSC Codes
. -
. B12l 3
- B122 (stock) §
f’- 8200 1 Reproduced by
B210 2 NATIONAL TECHNICAL
g B220 19 INFORMATION SERVICE
,I i P800 1 Us Q..:W:,T:l‘:; (\"Ac;ﬂ%f""
é{ ! -—v-————"m cod.‘ U_,.-._‘. T .'.‘J l l.l rid, n"I' A’w
; l 920 1 Approvod for pubhc relecsa
i 950 1 Distribution Unlimived

T e SR

EFFECTIVE PAGES - 17 July 72

This list is used to verify ths accuracy of CSM PSM 9A-67, Volume I,
Part A, sfter change 1 pages have beaen inserted. Original pagos are
indicated by the letter O, change 1 by the numersl 1,

=

' " Page No. Change No.
2ege o, Lhange No.

Title Page
& 1i~-xi11
;o : 1-101
i 102~103
. : 104-252
‘. :) 2353
L - 254-268
1 . 269-270
; . : 271-272
| . 273
: : 274-278
d _ 279
1 - 280

' 281-283
284
285 286
287
288-289
200
291
292
5 .. 292.1
! 293-301
. : 302
i : 303
: 304
305-335
336-337
- 338-470
- - 471

HOMOFOMOMOROMOFEOROFROHOWOFOFHOOO

NMCSSC Letter, B22l, Change 1 to Computer System Manual CSM PSM 8A-67,
Volume I, Part A, The NMCH83C Quick-Reacting General War Gaming System
(QUICK) , Datm Ynput Subsystem, ' pramming Specifications Manual,

29 Yeb 72,

oJCS
Studies, Analysis snd Gaming Agency, ATTN: 8FD,
" Room ID937, Pentagon, Washington, D,C, 20301 5

Commander in Chief, North American Air Defense Command,
ATTN: NPPG, Ent Air Force Base, Colorado 80812 2

¢ Commander, U,8, Air Force Weapon Laboratory (AFSC),
5 ATTIN: AWL, Kirtland Air Force Base, New Mexico 87117 2

Director, Stratogic Target Planning, ;
Offutt Air Force Base, Nebraska 68113 2 ;

- 4 Chief of Naval Operaticns, ATTN: OPS83QG,
) Room 3E531, Pentsgon, Washington, D,C, 30350 2

Defense Documsentation Center, Cameron Station,
Alexandris, Virginia 22374 12

k.
™

Do for fach
Record on the Tape

‘U 3}

|

Switch the Indices
of the Input and
Output Bulfers

¥ _

Call INBUFTP
to Buffer in a
Spill Tape Record

!

Cail OUTDF
to Write Buffer
Onto Disk

3C00

1000
Is File Index

Greater Than
Number of Files?

Yes

Call ENDTAPE
For Early Tape
Termination

O——

flune
L.

Write Tape and
Disk Error Messages
to Computer Operator
and on Output File

'

Write Termination /

Message to Computer
Operator and on
Qutput File

Stop

—

Fig. 19. (cont.)
(Sheet 2 of 2)

101

Switch the Indices
of the Input and
Output Buffers

L

Call ENDTAPE
to Complcte Reading
of Current Tape

tCatl OUTDF
to Writc buffer
Onto Disk

Is File Index
Greater Than
Number of Files?

No

wy

e

B T

TR P T P T

T WL W

P WS L T e RO

SUBROUTINLE ENDTAPE

PURPOSE: To complete the reading of the current spill
tape,

ENTRY POINTS: ENDTAPE

FORHAL PARAMUTTRS: None

COMION_ BLOCKS : DICTARY, ERRNUM, LOCATOR, MACHTNL, SUPRVIS

| S'.JBROU_I!NL’S ('.M,I,IEH_: INERRTP, ANUTHER, NEWUNIT

CALLED BY: RELCADE

Method

Subroutine ENDTAPE checks the status of the last tape read operation
for the currert tape. If the operation terminated with an end-of-file
or parity error, it calls INERRTP to attewpt tc rercad the record.

When the tape has becn successfully read, SNDTAPE calls ANOTHER or
NEWUNIT to release it and then checks to sce if the tape unit will be
needed for another spill tape. If so, ENDYAPE instructs the computer
operator to mount the next spill tape on the tape unit,

The subroutine returns after printing out ecrver counts which indjcate
the number of tape read errors encountered on the last tape and on all
the tapes read so far.

Subroutine ENUTAPE is illustrated in Qipure 2.

Cch-1

102

e L

ot e

20

START

10

Call INERRTP EOF or what Is the Status
to Recover From Lrror | jes——e—-—- of the Last Tape
ror

Parity Er

{

Read Operation?

Call NEWUNIT
. to Release the

Operaticn
a0 4" Completed

Set LWRIT
Lqual to the Length
of the Current Spill Tape

y

Call ANOTHER
to Release the
Current Tape

No Will Anothﬁr dod
‘Current Tape and Spill Tape Be Neede
Logical, Unit Assignment on This Tape Unit?

40 ‘ch

Determine
Spill Tape Number

Write Mes.age to
Computer Operator to
Mount a Tape on This Unit

50
Write Error
Counts tc the
Output File

Reset Tape Error
Counter to Zero

Fig, 20, Subroutine ENDTAPE

103

20

;N
X
,
2

SUBROUTINE GETLOC

PURPOSE: To read the major dirvectory te the spill tapes
(common /LOCATOR/) from the first spill tape.

ENTRY POINIS: GETLOC

FURMAL PARAMETERS: None

COMMON BLOCKS : DRCS162Z, ERRMESS, LOCATOR, MACHINE, SUPRVIS,
TAPHARD

SUBROUTINES CALLER: NONDTRC, ABORT

CALLED BY: RELOADF

Method

Subroutine GETLOC first attempts to buffer in the major directory --
common /LOCATOR/ -- from the first spill tape. If an end-of-file or
pavity error is encountered during the buffer operation, the tape is
rewnund and the buffer attempt is repeated. If this buffer process

is repeated MI'IMESR, common /SUPRVIS/, times without success, GETLOC
determines how many words have been read successfully from the tape

and pleces them (the words) into the master directory (common /DRCS5162/)
so that it can then use NODIRC to print out crror information and

abort the run.

If, on the other hand, the buffer operation is successful, GETLUC

checks the value of MAXFILE (which is the maximum number of disk files
contained on the spill tapes) against the value of MAXFILE set earlicy
in RELOADF)£ they are not equal, then either RELOADF has not been
updated to correspond to progrvam OUTFILE. or the valuz read from the
tape is in error for some oiher reason. In either case, the discrepancy
is ¢ncoded into en error message and ABORT is called to abort the run.
The computer operator is also informed of the discrepaancy.

‘n the normal casc where the major directory is read successfully and
MAXFILE does not have an unexpected value, GETLOC writes the wajor
divectory on the standard output file and processing control is returned
to RELOADF,

Subroutine GETIOC is illustxated in figure 21.

104

s i M

VARIABLE
BLOCK OR ARRAY
OPTIONS (cont,)
ISETS1Z
SETIDD 1D
INDEX
JNDEX
IAUTO
'SIDECC IXSD
XYz " XMIN
XMAX

Table 6 . (cont.) ‘ ?
(Sheet 5 of 5) E
DESCRIPTION
Largest allowable line number in a set made
by default option of SEVID A
Array where set number to be printed is B
stored _ 4
9999 if all sets are to be printed; O if :
none are to be printed; count of number of 4
sets to be printed if list read in

0 if no sets to be printed; equal to INDEX
if list read in; equal to number of sets
updated if IAUTO=1

1 if updated sets are to be printed; 0 if
not
Position of SIDE attribute in ATTNAME array

Value of attribute MINKILL for current item

Value of attribute MAXKILL for current item

Ch-1
253

A S ey

B a0

‘ START)
y

Is First ‘o // Is

Word
QPTLION?

=

irst hord

S

Is Word 2
SETID?

s
Word 2
UPDATE?

Set 6th
Word=Date
GETDATE

1
401

LND?
/
Yo

call)
ABORT _“

o set
L-—'JL NOUT 1=6

NOIMm2=0
Is word 4

Sty
&\ BACKUP?

_.4\: °

HOUT 2=4

O el —

y

¥

MPR=d

Is
word 3
NOPRINT?

Is

Word 3

\ PRINTCTL?
| G

Yy
Are First 4

Letters of
Word § TAPL?

Proceac DUTERASE

(heet) oor)

-

NPR=3

| . I s i ol b S R
—_— . - . e em e e A R A ST it R LA T aP

SUBROUTINE PASTSET)

PURPOSE : FASTSET is the main control and monitoring
routine for an update run.

ENTRY POINTS: FASTSET

FORMAL PARAMETERS: None

COMMON BLOCKS: ERRORM, ITP, MYIDENT, MYTAPES, NOERRORS, NOPRINT,

OPTIONS, ICKTST, SETIDD, TWORD

SUBROUTINES CALLED: CARDCK, COPYDB, FILEHNR, INITFAST, INPRTCL,
. MAKEIT, NEWDATA, PAGESKP, PRTCONT

CALLED BY: QUIKBASE

Method

Subroutine FASTSET calls INITFAST to initialize all arrays. 1t assigns
file names and initializes the filehandler and all pertinent tapes to
read and write. If manual print control was requested on the option card,
subroutine INPRTCL is called, Subroutine CARDCK is called to read in and
check all the update data. If that subroutine has found errors in the
input deck, FASTSET prints the error messages and aborts the run. If the
update data have no discernible errors, subroutine MAKEIT is called to
perform the major functions of the program. Control is returned to
FASTSET which again looks for and prints, if present, any error messages.
The subroutine to print the target-region summary (PRTCONT) is called
and, if requested, a second copy of the updated data base is created by
subroutine COPYDB. Subroutine FASTSET is illustrated in figure 83.

i

o e Taint

I WL

f‘ Ll .
i
]
!
! T can
. il
| (STaRT A"""“I SETRRIT ”
! RN
! y 3
i Call (Call
INITEAST 7 =37 Pl IneRTCL
fi
: No
JTIN = INTAPE
LOUT = Nour MribEN] =
: KiNCARDS » 10 SCRATCH
A JERR = 9 1P = 9
; NOPRIST = |
] HY LDENT « BHQU T KBA.IL: | ¢
4
%- } Coll
3 i SE
5 j o SLTWRIT
- ; INLTADE,
t ¢
i
a v
1TP=JTIN (1)
i MYIDENT =
: QDA TADE
i Print
d ¢ Error
Messages
: Call
; SETREAD
N
- ‘ Call Call
: : & NENDATA Coryos
: i 1TP= LOUT (6) !
' MYIDENT ‘l
S SHDATADBUP 1s Copy
% i Call - of Update FASTDATA
3 i & MAKEIT Wantes$? Completed
o
| Call
{ SETWRI'T 3 ?
: Call
: i PRTCONT | RETURN)
i
' MYIDENT =
3 ; SCRATCH
i 1TP =« 10
T - B
L
N
S ; TP = §
: ; Call TFRMTAP
= { Call SETREAD
o Read and
. ! Print Errors
; ;
F
S
: Fig. 83. Subroutine FASTSET ;
. CH- .. i
o 270 ;
2
4
: A

PURPOSE: To set constants and clear arrays for subroutines
associated with QUIKBASE.

ENTRY PQINTS: INITFAST

FORMAL PARAMETERS: None

COMMON BLOCKS: DIRECTRY, ERRORM, IENDSET, IWSIDE, KKSET,

SUBROUTINE INITFAST

MPRTOPT, MYGOODS, MYPRINT, MYTAPES, NEWSET,
NODESIGS, PRTOPT

SUBROUTINES CALLED: None

CALLED BY: FASTSET

Method

INITFAST does no computation. Either through data statements or ;
executable statements, it presets constants and arrays to their e
approp.iate values. Subroutine INITFAST is illustrated in figure 85. 3

v

e T St ek R+ e e e 3+

et mER 4 L e e R

START

Set Comnon

Variables by
DATA

Statements

LY

Clear
Directory
Area

Y

Clear
Array
LISTVALS

RETURN

Fig. 85. Subroutine INITFAST

274

£ ot it N et e . iy e i e

¥
H
g
3
3
H
H
H
i
?
H
i
H
i
H
:
\

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

SUBROUTINE MAKEBAS

To call the subroutines required to prepare a
game data base tape QUIKDB from an input data
library tape DATADB when updating of the DATADB
file is not required.

MAKEBAS
None

ERRORM, HIST, ITP, LOGFLAG, MYIDENT, MYTAPES,
OPTIONS, TWORD

ENDDATA, FILEHNR, INITFAST, NEWBASE, NEWDATA,
NEWDIR, PRNTBASE, PRNTDATA, WRITEDIR

QUIKBASE

Subroutine MAKEBAS is a driver routine which controls the sequencing of
operations required to create the QUIKDB tape when the QUIKDBG option
is exercised. As indicated in figure 60, MAKEBAS calls the filehandler
(FILEHNR) to initialize the read, write, and scratch files. Then,
MAKEBAS calls, in order, the other subroutines required to write the
QUIKDB tape. In effect, MAKEBAS is essentially the same as a null
UPDATE run.

e e .
Lo Rt e RS 3 it i s e

PEcY]

G a0 i

T T R € G P T A

S

< START)

y

INTAPE = Luni
or LUNG;
NOUT = 7

Call) SETWRIT
Initialize
Seratch Files
9 and 10

Write
Last on
LUN1O

Call INITPAST

Call SETREAD
Inftialize
DATADL

Lall ALOCDIR

'

Call INITAPE .

Call NEWDATA

Call ENDDATA

e

—

'RNTBASE
Requested?

Y 4

Yes

Call PRNTBASE

Fig. 83.

Call NEWBASE

(NoUT)

Call NEWDIR

'

PRATDATA
Requestod

Call WRITEDIR![

i (NOUT)

2 =

R ,
Call PRNTDATA

Errors

Subroutine MAKEBAS

280

A

S .
a
o \

4 !

R SUBROUTINE MAKEIT

; PURPOSE : A driver to call the subroutines necessary to

; N . make a new data base.
o " ENTRY POINTS: MAKEIT
A FORMAL PARAMETERS: NT1 - The tape where the QUIKDB tape will be

: written

(
oo COMMON BLOEKS: MYIDENT
P v
' SUBROUTINES CALLED: ENDDATA, NEWBASE, NEWDIR, WRITEDIK
. | . . o

%. CALLED BY: FASTSET .
o
2; MAKEIT calls the data base generation subroutines, NEWDIR, WRITEDIR, :
3 ' NEWBASE, and ENDDATA, which create the game base file, QUIKDB. Its "
9 only computation function is to look up and store for later use the i
g index number of the attribute DESIG in the data base directory (array F|
o ! ATTNAME) . Subroutine MAKEIT is illustrated in figure 89. :3
! :
=
T
:
' CH-1
: 281

,:i o
= i)
5 : START

§ Call NENDTR
; tc Augment
! Directory
;
: : CaIl WRTTEDIR
B f to Write Out
5 ; Rirectory
g i
! "__ |;
{ Call NEWBASE
; to Add Data
; to Data Base
i

i Call TNDDATA)
i to Terminate
Data Base

: ; Fig. 89. Subroutine MAKEIT

282

W

.f~

e

SUBROUTINE MOVEIT

PURPOSE : To move update data to output buffer; add
the desired data or update identification;
and to add current set and line number to
cutput record.

ENTRY POINTS: MOVELIT
FORMAL PARAMETERS: JHOWTO - Switch to indicate whether input buffer
is to be moved
COMMON BLOCKS : ERRORM, MYOUT, MYINPUT, MYGOODS
SUBROUTINES CALLED: FILEHNR
CALLED BY: NEWDATA :
Method

Subroutine MOVEIT increases the current line number within the set by
one. It examines the input parameter IHOWTO to determine which of two
functions it is to perform., If the argument is equal to a one, MOVEIT
transfers a data record from common block /MYINPUT/ to block /MYOUT/.
It next sets the tenth word of the block to the update identification.
The set and line number are encoded as two four-digit numbers into the
ninth word. If the input argument was a two, only the last function
is performed by MOVEIT; i.e., the set and line number are encoded into
the data recurd. Subroutine MOVEIT is illustrated in figure 90.

- START

Advance Line
Nunber
: (NLINE)

No .:

15 IHOWTO=1?

. es L
f JSET=1SET 4

Move Card From
Input Buffer to

L

[T SRR

i Output Buffer; ,

§ Insert Date of b
§ Update 4
i : 3

30

Add Current SET
and LINE Number ni-—-~—wy
to Cutput Buffer

k RETURN)

i ——

| Fig. 90 Subroutine MOVEIT

284

e .- .

SUBROUTINE NEWBASE

PURPOSE : To prepare or augment the item portion of a data

base tape.
ENTRY PGINTS: NEWBASE
FORMAL PARAMETERS : NT1 - the logical tape number where the base is

to be writtern

COMMON BLOCKS: DIRECTRY, ERRORM, ICONTROL, IENDSET, ITP,

JDESTEST, KKSET, MYGOODS, MYOUT, NOTEST,
PRTOPT, SIDECC, TWORD, XYZ

SUBROUTINES CALLED: COUNTDS, ITLE, NEWDATA, NUMGET, WRARRAY*,
WRWORD*

CALLED BY: MAKEIT

Method

Subroutine NEWBASE employs subroutine NEWDATA to read the item portion
of the data base, check for errors, and write each item on the specified
output tape, NT1.

Four commands are recognized: DEFINE, UNDEFINE, ITEM, and ENDINPUT. 1In
the case cf DEFINE the succeeding fields on the card veginning in
columns 11, 21, 31, etc. contain attribute-value pairs which are to be
made into global definitions in which the first field of the pair is the
BCD name of the attribute, left-justified, followed by the value in the
second field.. The sequence of attribute-value pairs occurring on a card
is terminated by a blank field,

The ITEM curd is as described above except that the definition is local
and the entire sequence of cards is terminated only upon detection of
another command in the first field of a card.

The UNDEFINE card removes global definitions with the names of the
attributes to be undefined occurring in succeeding fields on the card,
terminated by a blank.

The ‘deck of input cards is terminated by ENDINPUT which also causes
NEWBASE to return to the calling program,

* See subroutine FILEHNR.

285

T

L o s e

T B A ST Lo ALk A sttt e it e\ e

Cercimenr m

RIS T AN LT

o

b i i 9 T AT e .l o T s S BN i, et

All cards read by the zoutine are checked for consistency unless
checking has becn turned off by an update PRNTCL option card (sce
subroutine INPRTCL). That is. ¢k~ attribute specified is checked
to determine that it is in £z * .fined in the data base directory
and that the valuc associateu - .sfies any range or list check
specifications for that attribuce. Appropriate error messages arc
emitted when such inconsistencies are detected. The flowchart
(figure 91) consists of four parts. Part I shows the processing

sequence used in NEWBASE. Parts II, III, and IV show the operations of

three local subroutines used by NEWBASE tn nerform the data checks
and, if required, to write error messages. Part II shows the locul
subroutines used to signal undefined attributes (see statement 110)
and to signal an error in the assigned attribute value (see statement
120). Part IIl shows the procedures used to convert and check the
attribute-value pair. Part IV shows the local subroutine check on the
MINKILL and MAXKILL values for the iicm,

CH-1

286

I St w20 L e T

- R S a2

R
H

s Fleld
Blank on Input
Card?

Assign 287
to NCHLK

Call local) Subroutine

Lo Convert and Check

Attritute and Value
{See Part 111)

Attribute

P
Attribute
Value

Cal) ITLE
Lock up
Attribute Name

43
itma i+ yMo_y [hasign 45
pirectory? to NAT

Yes

“w v 4

Write Call Local Sub-

Undefined routine to Signsl
Signal (-2) Undefined Attribute
rd on Tape (See Parc II,
4 Statement 110)

Attribute

Sat Global
Definition for
This Attributs

to 1

0 ¥

Set Global
Definition Flag to O
Assign 45 to MIKCUK

!

Advance
‘Lh Caxd Field
Lo 1+2

Finished
With This
Cord?

Csll lLocal Subroutine
to Check MINKILL and MAKKILL
Attribute Values
(See Part [V, Statement 1000)

Set Global
bDefinition Fiag
to 0

s ¥

Advance Y

Card Field -t
) RLA]

Finished
With This
Caprd?

Fig. 91. (cont.)

Part I: (cont.)
(Sheet 2 of 3)

288

$1

13 the
| Attribute Yes

' Fleld

[Blank?

Call Local Subroutine

to Convert and Check

Atiribute and Velue
(See Part III)

53
Store Attribute
and Value in
Temporary
Arrays

=

Advance
Card Field
I e 102

Fig. 91.

Call NEWCARDS
Read New
Card)

1=l

Output Number
of Pairs
in Current
Iten

Output All
Attribute

Value
Pairs

(cont.)
Part I: (cont.)
{Sheet 3 of 3)

289

CH-1

130

Local Subroutine

1o Convart and

Chack Attribute
and Value

I

(Y YTV
Look

Atribute Name
in Divectory

— v

$et trvor
Flag to O

—
Attribute Name
__in Directory?

133 ves

Store Format of

This Attribute
in Decoding
Format Array

t
1111'1E£l1‘!=ﬁf"

outing tu
Signal Undeflncd
Attridbute

See Purt 11

131

Aasign 132
to NAT
Assign 132
to ILLVAL

Assign 135
to MIKCIK

Y

Coll Locml Subroutine
te Check MINKILL und MAKKILL
Attribute Values
{Sew Part [y}

s the
Value of the
Attribute 8l

Deeads the
Yalue of
the Attyibute

T)

s Taly a
Latizude or Longi-\ Yes
tuds Canversion
(100DE+7,¢

Jat tha
Converted Value
to Spate Cards

790 *

Check Vajuss

A3sign 530
to 1.iVAL

az Specified i Call Local
Sbroutine to
o M
Seject Correct
Checking (Sne Part 11)
Procedure

No

1s
the Vijue

intesert

00 Yrs
Call NIMGET

tv Righte

Justity
Integer Velue

i
No an;cklng
Specified?

Fig. 91. (cont.)

Part III: Local Subroutine for
Attributc/Value Checking
{Shect 1 of 2)

C~1

iy

—_ i

.3
[
..
. N
-
B
R

1000
\ Local Subrautine te Check

Values of MINKILL and MAXKILL

l

Score Decuding Formal
for MINKILL and MAXKILL
Values in NFOR}_!(Q) =

l

Lct MOFLG to !
Yes , :
g —— — Is Attribute Name MINKILL?

T

<s‘Attribute Name MAXKILL?
&Ye:‘.

Reset NOFLG to 2

1001 l
Dccode Value of MINKILL
or MAXKILL from NX and

Store {t in XTEMP
T

1002 *

1 =2
XMIN = XTEMP i—'———‘“< NOFLG? >~———-————>l XMAX = XTEMP

RETURN
Specified
By MMKCHK

1003

M-T“‘—‘

BT =

XMIN < XMAX? Yes RE'IURT\
XM Specified
l lly MMKCHEK

[Writc Error Message L

on Error File /

Fig. 91. (cont.)
Part 1V:

Local Subroutine for
MINKILL and MAXKILL
Value Checking

S T PR

108
e vt s o
Is Thls SsiT
Same s
10LD set?

7

N g
[locs 1H1AKK Show

New Record?

{ Yer
. 8310 |

NOTIST=0

True
IPRINT

(ISLT) ?

!

|

|

; LK
" Gall

I CALLOUT

? False ‘

- Sct ISTAR to
[Blank

3

E

g 84

—_—
b End of
'} Taput?
o A7 I Yes

|

]

! iCOMn4q

[

| !

t TERMTAPE
' DATADB

Write
Record

81

Set TOLOSLT
» this 5t
ALTRY

False RN
Laump taaitay s
True
alou Y
Call
FAGLSKP
3
I
i
4
B
an :
. Write :
o Record to B
DATADBLP g

to
DATADB.JP
TERMTAPE
DATADBUY
RETURN
s
l".
3
A}
Fig. 92. (cont.)

301

(Sheet 7 of 7)

RIOR S ST

e s it i WS At et A e,

SUBROUTINE NEWDIR

PURPOSE : To create a new data base directory.

ENTRY POINTS: NEWDTR |

FORMAT, PARAMETERS : None

COMMON BLOCKS : DYRECTRY, ERRORM, ITP, JDESTEST, MPRTOPT, MYOLIT,
SIDECC, TWORD, XYZ

SUBROUTINES CALLED: ITLE, NUMGET, NEWDATA (Entry NEWCARDS)

CALLED BY: MAKEIT

Method

This subroutine employs subroutine NEWDATA (entry NEWCARDS) to read a new
directory or modify an existing directory. The card format is eight ficlds
of 10 columns each with all quantities left-justified. Two commands in the
first field are recognized: ADD and ENDIRECT., The ENDIRECT card serves to
terminate the subroutine and causes a return to the calling program.

The ADD command is used to add a new attribute to the directoury, or, in
conjunction with a prior delete command, "o change an already existing
attribute in the directory.

With the ADD command there are, in addition to the first field, six
further fields of data on the input card:

1. The name of the attribute .. BCD.

2. The input/output conversion format (FORTRAN) associated with
the values for that attribute,

3. Code number specifying the type of checking to be conducted for
a particular attribute (see below).

4. The default value of the attribute, in the appropriate input/
output format for that attribute as specified by item 2. This
is the value that will be associated with the attribute when
it is in an undefincd state.

302

P

el

5. Checking specifications. This field may contain the word LIST,
which specifies list checking with the list of ullowable
attribute values to follow on subsequent cards; the word NOCHECK,
which specifies no checking of the attribute values; or the
lower value of the allowable range of values for this attribute
in the case of range checking.

6. This field is unused in the event of list checking, or no
checking, and contains the upper value for the range of
allowable values of the attribute in the case of range checking.

[f list checking is specified on the ADD card, this card is followed by
any number of cards containing the list of allowable values for that
attribute, eight per card, in the format specificd for the particular
attribute. The fields for thesc values are the first eight columns of
each 10-column field. The series of allowable values in these cards is
terminated by the first blank field. A blank field can be specified as
an allowable attribute value by including the value BLANK in the list.

Appropriate error messages are written on an error message tape to

point out i.consistent operations such as attempting to issue a command
other than ENDIRECT or ADD, or attempting to add attributes which already
exist in the directory. The error-checking codes permissible for the
third extra field are:

CODE TYPE OF DATA TO BE INPLUT CHECKING SPECIFIED

1 Floating point numeric Range (Min-Max)
2 Floating point numeric List

3 Fixed point numeric Range (Min-Max)
4 Fixed point numeric - List

5 Alphameric List

6 Alphameric No checking

7 Special conversion for Range

latitude, longitude

Subroutine NEWDIR is illustrated in figure 93.

T S RN

ST e PR i

TS

Ak

O L

SERIELRE L

VIR

b
3
‘

B T

3
b
i

e e NS | TN P T AT MR

O~

J:J)

+Call
NEWCARDS

v

Pt . g
Store Card
in
Directory
Block

ITRAN = 1

lag~-Qr 4?7 (Integey,

Flag)

No /7 1CODEX=3 \Yes

ITRAN = 2

Sl

Determine Indices
JOESTEST and IXSD for
Attributas DESIG and SIDE
in the Attribute
Name (ATTNAME) Array

Set Error
Switch to

Set XMIN and XMAX
to the Default Values
of MINKILL and MAXKILL

2

\
Write -
Message to

&\— RETURN

Error
Tape

Fig. 93,

Is Attribute
Already in
Directory?

Store Attribute
Format in
Decoding Array

Is the
Default Value
the Word

\: BLANK?

Subroutine NEWDIR

(Sheet 1 of.3)

304

Ycs

write
Error
Messuge
or. JERR

Sdt Error
Switceh to

2
46
Set. It
Equal to

Space Codes

\ J ' y

Scparate Target
Designator Code
into Alphabetic
; ‘ ‘ ' and Numeric Portions

B | o
, i ; E
o - 0]

Determine Region 4
; in which iy

Targut is Located

) . ‘
% 20
g , Have Other Targets —
tf%' ' of this Type No pegin a New
) S been Recorded Category for
! ; for this Side? Item

~, SE . , You
F | | 11 R 2

£ . = L Increment by One the
: : ' Total Number of Such jg
i Targets Kept

1 ' RETURN

- 3 ‘ . Fig. 100. Subroutine COUNTDES

335

SUBROUTINE DBMOD

PURPOSE : To control the information processing when pro-
i gram BASEMOD is run post-QUIKBASE.
|
ENTRY POINTS: DBMOD
&
FORMAL PARAMETERS: None
: COMMON BLOCKS: CUTIGIW, EDITAPE, EDITERM, 1DESIGS, 1TP, LDESIGS,

; LODESIGS, MYIDENT, MYSIDE, NODESIGS, NOPRINT,
NRTYPES, PRINTS, PROCESS

i SUBROUTINES CALLED: ADDVAL, COUNTDES, INITAPE*, INITEDUT, INPITEM,

L MYZONE, NEXTITEM, NUMDEL, NUMGET, OUTITEM,
PAGESKP, PRINTIT, PRNTVAL, RDTYPLS, STKRIN,

f “TARDEFS

CALLED BY: BASEMOD

Method

Subroutine DBMOD effeccts a sequential examination of each item in the o
game data base (contained on the QUIKDB tape). Each item is read in, :
filtered through a series of tests, and assigned appropriote values for
certain of its attributes. " The item is then cither retained or deleted
o from the game data base. The 12 tasks accomplished by this processing

; are:

R AR e R RO

1. Targets which are inappropriate for the plan under considexation,
i.e,, those targets assigned the attribute RESERVE=(, are
excluded from further consideration.

Z. The appropriate number of bombers or tankurs for each bomber or
tanker squadron (NGPERSQN) is selected, depending upon the par-
ticular plan being developed (Initiative, Surprise, or
Retaliatory).

il v 0s s

* See subroutine FILEHNR.

* e ke e L

CH-1
336

AT Vg b1 ST AR THE

()

3. | The number of bombers or tankers in commission (NOINCOM) for
cach bomber or tanker squadron is calculated by specifying that

NOINCOM is equal to a user-specified fraction of NOALERT which
is a fraction of NOPERSQN.

A

4, The number of bombers or tankers which are on alert (NOALERT) f=°
for each squadron i3 calculated by specifying that NOALERT is i
equal to a user-specified fraction of NOINCOM.

it s AT R B T

5. The appropriate value of the attributes TYPE, VAL, and EFECTNES
is established for each fighter interceptor unit based on the :
user-input parameter POSTURE. If POSTURE=1, these attributes -
are assigned the values of the attributes TYPE1l, VALl, and -
EFECNES1, respectively. If POSTURE=2, the values of the
attributes TYPE 2, VAL2, and EFECNES2 are assigned.

6. The relative value (VAL) of urban/industrial targets is calcu-
lated as a function of either general industrial worth (IGIW)

e e e i = s -+ e

g or population (POP),

;3 7. 1f the TARDEF option is exercised, each target (opposing side)
i L is processed and the level of local bumber defense availuble at
» the target is calculated.

8. If the ZONE option is exercised, items in ICLASS 4 and 5 (defen-
; sive command and control sites and interceptor bases, respec-

. tively) are processed to determine the air defense zone in
T which the item is located.

2 9. The value of the attribute IREG is determined based on the
‘ target designator code DESIR assigned to the item.

& 16. Each Blue (SIDE=BLUE) installation is assigned a value for the
attribute FLAG. The assigned value (numeric code 1 through

8 established based on ICLASS) is subsequently used in program
by ALOC to impose user-restrictions on the allocation of weapons

B {see Program ALOC, User-Input Parameters, FLAGREST Function --
- Restricticn of Weapons Using FLAG Attribute in chapter 3 of

2 User's Marual Volume II).

ﬁ: . 11. Targets may be deleted from the game base on the basis of TASK
i . or MINIGIW (usexr-specified parameter which establishes the
; minimum index of general industrial worth to be considered).

i 12. The appropriate value of the attribute DBL (probability of des-
i truction before launch) is chosen.

Subroutine DBMOD is illustrated in figure 101,

. 337
X1

T T T

AT

St]

T R T L

s

LTI e

gz e T

START

Initialize
801 y .

Read Input Parametors: / 10000 s
rrint Frequency, Dara, Side, Print
Posture, Plan, Task, PCT-pPOP, Tnput
TARDEF, ZOJE, NIGIW, List of Parameters

MINIGIW, NO[YPES, Scale Factors

for NOALERT and NOINCOM

o711 §

Call
STKRIN

1 50 No ¥
Determine ves /I8 Item Bring Item
SIDE (%~ a Target?/*1Into Momory [
10 y 4]
T Should It 200
Missilo, Yes ohould Item \ yes .
Bomber, Tanker, Be Omitted? D~ C°1¥ .
or RESERVE = 0 NUMDEL
Interceptor? - -
No Na

EY
300 — Docs Item 636 Y
all No /Exist for Date Assign
NUMDEL ~ ffett——= of Game? Posture
ves 900
B I 300
1s Task® .

No
Acceptabl "\}""““*

Iv".;j

Message

v Call L :
- NUMDEL ;i)

Fig. 10l. Subroutine DBMOD
{Sheet 1 of 2)

338

ek

AR e

T et

; 1
, 4 4
Lo !
g DISTRIBUTION °
Addressee Copies
NMCSSC Codes
’ Bl3) . . o ¢« ¢ 4 4 e a b s e s e s e e e e s et e e e s e 3
" 3122 (.tock) . * . * . » 0 L] [J . . [3 . . 3 8
‘."\ } BQOO.......-.-........... L . T T] 1
T ; Balo . L] . . L] . * * . L] L] L] L L . » L * * * L] L) ¢ [L] 2
; v’.' ! Imzo 2 S T T T SR S T S B S S S YT T T T T S S S R R S Y . 19
:"= [moo L] * L] L] L * L] L] [] [] E] [.] . L] » [] L[] » [} L L] - * . . L[] . 1
’ DCA Codes
1 260 (original document only, no subsequent changes) 1
: 920 L] » *] . L] L] L] L[] L4 . . L] . . L] L] [] L] [L] (] L] [] [[. [] L] 1
,'_ B30 . . . L 6 i e s e e e s s s 8 e e s e s e e s e e e e 1
oJcs
Studies, Analysis and Gaming Agency, ATIN: SFrp,
Room ID987, Pentagon, Washington, D,C, 2030L 5
Cod Commander in Chief, North American Air Defense Command,
3 ' ATIN: NPPG, Int Air Yorce Dase, Colorsdo 80912 , , , . . . 2
b Commander, U.S, Air Force Waspon Laboratory (AFsc),
4 ATTN: AWL, Kirtland Air Force Base, New Mexico 87117 , . . 2
“ 3; Director, 8trategic Target Planning, '
X Otfutt Air Force Base, Nebraska 68113 . . ., ., 2
Chief of Naval Operations, ATTN: OPS623G,
Room 5K331, Pentagon, Washington, D,C. 20350 ., 2

Delense Documentation Center, Cameron Station,
Al.xmri‘, v’-l“iﬂi. 22314 b e et e e e e 12

==

TRt 1) :
. s-ecurl‘lx Cl;nnllicntlon _ /
DOCUMENT CONTROL DATA-R&LD

{Securlty cleagitioatinn ef Hile, body of abstraci and indexing snnotation must be enteted when the overall repart ia classtiied)
V. OHIGINATING ACYIVITY (Corpordte author) 10, ARPORY BECURITY CLAIBIFICA TION
National Military Command System Support Center (NMCSSQ) :
CL Defease Communications Agoucy (DCA) TRCT LTV

' X b The Pentagon :
Washington, DC 20301
3. AKPORNT TIYLE

The NM18SC Quick-Reacting General War Gaming System (QUICK)
Prcgramming Specifications Manual, Yolumo I, Data Input Subsystem

LTS s ey

ST YR

3

4 DESCIUFTIVE NOTES (Type of repoet and fncivaive dates)
i ‘. N/A -
N ¢ B CAUTHORIS) (FIeaf nacve, (s (8 Initial, Jast name, bt
) : NMCSSC: Yvonne Mapily Lambda Corp: Betty J, Ellis ‘
Donald F, Webb Jack A, Sasseen -

e
s

A
TR e

. REPONRY OATA ra, TOTAL NO. OF PAGKS b, NO. OF NETTS i Y

29 February 1972 486 4 : d

88. CONTHACT ON GRANT NO. 8, OM{AINATOR'S REFORY NUMBER(S) ‘::
NMCHSE

DCA 100-70-C-0086
s wmosxc T o, NMOBEC Project 631 COMPUTER SYSTEM MANUAL CSM PSM 9A-67

N T Ay

b UTHEN NEFORT NOIS) (A th be
¥y 'S‘.o”) {8) (Any olher numbere thai mey be sselgned

e e 3
™

d, Nune

10, DISTRAIBUTION STAYEMENTY

This document is approved for public relemse; its distribution is uniimited, . A

'

8 _ National Military Command System Support
Center/Delense Communications Agency

4
o
‘
k. ?»’} 1t SUFPLEMENTARY NOTES 12. BFONBORING MILITARY ACTIVITY
&
A
;
The Pentagen, Washington, DC 20301

; This 1s one of threo volumes describing the computer programming gpecifications for
. ? the Quick~Reacting General War Gaming System (QUICK). This volume sddresses computer :
. g pregrams of the QUICK Dats Input Subsystem, [t is fntended to serve as the basis for ;

Y;) program maintenance activities, Accordingly, it describes the program functisns aud
2 ! containg flow charts for each program and subprogram of tho Data Input Subsystem.

E} 13. AGSTRACT
d

‘5 i Based upcn suitable data bhase and user control parameters, QUICK will geperate
individual bomber and missilo plans suitable for war gaming, ard simuipte the planned
events. The generated plans are of a form sulcable for independent cveview and
revizfon., Subsequently, the planned events are simulated; various statistical sum- ;
maries are produced to reflect the rosults of the war game, A variety of force -
postures and strategies can be accommodated, 3

Pt acataicoy

QUICK 1s documented extensively in a set of Computer System WManuals (series 9-67)
published by the Nationul Military Command System Support Center (NMCSSC), Defense
' Communications Agency (DCA), The Pentagon, Washington, DC 20301,

Sl S c ol st NRs =1

[

U .

— -

o~
DD FOoaN 14-73 NEPLACKRS DD FORM 1478, | JAN 86, WMICH I8 R
e K OBNOLETK PFOR ARMY VSR, e

; 492 ’ *curty Classilicalion

