
COMPUTER SYSTEM MANUAL
* NATIONAL CSM Ps, 9A.6

VOLUME I, PART A
MILITARY 29 FEBRUARY 1972

00
COMMAND
SYSTEM
SUPPORT
CENTER

NM CSSC THE NMCSSC
QUICK-REACTING

GENERAL WAR GAMING
SYSTEM
(QUICK)

DATA INPUT SUBSYSTEM

DEFENSE
COMDICA PROGRAMMING SPECIFI[CATIONSCOMMUNICATIONS

AGENCY MANUAL

THIS DOCUMENT HAS BEEN

PPROVED FOR PUBLIC

STIBUONNATIONAL T NI
ELEASE; OINFORATION SFR /lrE

U L IIT E D Z.

S....'

\\Q,

THIS DOCUMENT IS BEST

QUAL-Y AVAILABLE. TIM COPY

wJRN-ISHED TO DTIC CONTAINED

A SIGNWIFCANT NUMBER OF

EAC 'W,-H ICH D0 NOT

THIS DOCUMENT CONTAINED
BLANK PAGES THAT HAVE REPRODUCED FROM

BEEN DELETED BEST AVAILABLE COPY

Nth e n a N M i l i t a r Q u Ck - R e a t n g S y sen m W a p pr t Ca m n g yt e r (Q U K)

Programming Specifications Manual, Volume 1, Data Input Subsystem

4. OIESCCIP371VE NOTES (7Type airepee ildinclusiv. dates)

II. AULTHOR12I (Linit ntews, M17dle Initial, !-eet .,am*)
NMCSSC: Yvonne Mapily Lambda Corp: Betty J1. Ellis

Donald F. Webb Jack A. Sasseen

4. REPORT CATE
IA. TOTAL NO. *Oy 54 E ;;; - - T . 01. OP 1RaP-I29 February 1972 486 4i

SCONTRACT ONt GRANT NO. ReEPIA A'SFcORT idUW1Kft Ii

DCA 100-70-C-0065 MSSC

6.PROJEC T NO. NIKCSSC Project 631 COMPUTER SYSTEM MANUAL CSM PSM 9A-67

0. Ob. O 1 hge REKPORT NoI&) (Any ,,thet numbers "et Sesy be assigned
this mpoff)

d None

uO. OIS1TRIBLUTION STATEMENT

This document is approved for public release; its distribution is unlimited.

II. SUPPLEMENTARY NOTES 12o. SPONSORING MILITARY ACTIVITY

National Military Command System Support

IS.ASTRACT

* This Is one of three volumes describing the computer prograinmii~g specifications for

the Quick-Reacting- General War Gaming System (QUICK). This !olume addresses computer

programs of the QUICK Data Input Subsystem. It is intended to serve as the basis for

program maintenance activities. Accordingly, it describes the program functions and

contains flow charts for each program and subprogram of the Data Input Subsystem.

Based upon suitable datn base ind] unjer control pairaimeters1 QUICK will flenerate
individual bomber and missile plans suitable for war gamning, and simulate the planned

events. The generated plans are of a form suitable for independenit review and

revision. Subsequently, the planned events are simulated; various. stAtistical SUM-

* mariert are produced to reflect the results of the war game. A variety of force
postures and strategies ca~n be accommodated.

QUICK is documented extensively in a sat of Computer System Manuals (series 9-67)
published by the National Military Command System Support Center (NMCSSC) , Defense

Communications Agency (DCA), The Pentagon, Washington, DC 20301.

row 0REPLACES 00 0`001M 1*78. 1 JAN SC. WHICH ISDI D "Vs1 47 OSO1LUYS P0-05RY61

NATIONAL MILITARY COMMAND SYSTEM SUPPORT CENTER

Computer System Manual Number CSM PSM 9A-671

29 February 1972

THE NMCSSC QUTI CK- REACTING GENERA L WAR

GAMING SYSTEM

(QUICK)

Program-ning Specifications Manual

Volume I - Data Input Subsystem

Part A

Submitted by:

DONALD rWEBB
Major, USAF
Project Officer

I R. E. IIARSIIBARGER BRUCE MERRITT
Technical Director Colonel, USA
NMCSSC Conmmander, NMCSSC

Copies of this document may be obtained froa the Defcnse Documentation
Center, Cameron Station, Alexandria, Virginia 22314.

This document has bcen approved for pul)lic release; distri hution
uni J lii ted.

AC KNOW LE DGMENT

This document was prepared under the direction of :he Chief for Develop-
ment and Analysis, NMCSSC, in response to a requirement of the Studies,
Analysig and Gaming Agency (SAGA), Organization of the Joint Chiefs of
Staff. ,Technical support was provided by Lambda Corporation under
Contract Number DCA 100-70-C-0065.

.11

ii

CONTENTS

Part A

Chapter Page

ACKNOWLEDGMENT ii

ABSTRACT Xiii

I INTRODUCTION 1

2 QUICK SYSTEM FILEIJANDLER 5
Purpose 5
Concept of Operatioi........ S
Functional Description 8

Initialization and Directory Maintenance 8
Output Data Transfer i.11
Input Data Transfer 13
Dump Facility 14
Error Detection and Recovery 14

Common Blocks is
Subroutine FILEHNR.. 21

(Entry ALOCDIR)
(Entry DEACTIV)
(Entry INITAPE (INITAP))
(Entry PRNTLAB)
(Entry RDWORD)
(Entry SETWRITE (SETWRIT))
(Entry WRWORD)

Subroutine RDARRAY 35
(Entry RDARRAY)

Subroutine SETREAD 43
Subroutine TERMTAP 50

(Entry TERMTAPE)
(Entry TERMTPE)

3 SPECIAL-PURPOSE UTILITY ROUTINES 56
Program OUTFILE 57
Subroutine CLOSPIL 67
Subroutine CLRCMON 69
Subroutine GETDF 71
Subroutine INBUFDK 77
Subroutine INERRDK 80

Subroutine IWLAPEL 83

iii

Chapter Page

Subroutine NODIRC 85
Subroutine OPENSPL 87
Subroutine OUTBFTP 90
Subroutine OUTERTP 92
Subroutine SETHEAD 96
Program RELOADF 98
Subroutine ENDTAPE 102
Subroutine GETLOC 104
Subroutine INBUFTP 106
Subroutine INERRTP 108
Subroutine NEXTAPE 113
Subroutine OUTBFDK 116
Sabroutine OUTDF. 119
Subroutine OUTERDK 126
Program DECLARES 129
Subroutine EQUIV 135
Program FILEDUMP 137

4 GENERAL UTILITIES 140
Subroutine ABORT 141

(Entry WARNING)
Subroutine ANOTHER (COMPASS) 143

Function ATN2PI 144
Subroutine CHANGE 146
Function DELLONG 148
Function DIFFLONG 150

(Entry DIFFLNG) A
Function DISTF 152
Function DSTF 154
Subroutine ENDDATA 156
Subroutine ERAZE (COMPASS) 157
Function GETCLOCK 158

(Entry GETCLK)
Function GETDATE (COMPASS) 159
Subroutine GETLIMIT (COMPASS) 160
Subroutine GETVALU162
Function IGET 166
Subroutine INITEDIT 168

(Entry INITEDT)
Subroutine INPITEM 170

(Entry NEXTITEM)
(Entry NEXTITM)

iv

iv

~ ~ .j

Chapter Page

Subroutine INTERP 173
Subroutine INTERPGC 176

(Entry INTRPGC)
Subroutine IPUT 181
Function ITLE 183
Function IWANT 185
Function KEYMAKE 187
Function LOCF (COMPASS) 189
Subroutine LOCREAD 190

(Entry LOCWRIT)
(Entry LOCWRITE)

Subroutine NEWUNIT (COMPASS) 192
Subroutine NEXTFILE 193
Function NUMGET.. 195
Subroutine ORDER 198
Subroutine OUTITEM....... 20o
Subroutine OUThORDS 202

(Entry OUTWRDS)
Subroutine PAGESKP 204

(Entry PAGESKIP)
Subroutine PRITEM 205
Subroutine PRNTBASE 207

(Entry PRNTBAS)
(Entry PRNTBSE)

Subroutine PRNTDIRC 209
(Entry PRNTDRC)

Subroutine PRNTDTA 213
(Entry PRNTDATA)

Subroutine PRNTPGE 216

(Entry PRNTPAGE)
Subroutine READDIR 218
Subroutine REORDER 221
Subroutine SKIP 224
Subroutine SKIPFILE 226

(Entry BACKFILE)
Function SSKPC 227
Subroutine STORAGE 231
Function TIMEDAY (COMPASS) 233
Subroutine TIMEME 234
Subroutine WRITEDIR 237

(Entry WRITEDR)

5 PROGRAM QUIKBASE 240
Purpose 240

V

Chapter Page

Input 240
Program Option Cards 240 :
Data Library File 240
Update Command Cards 241
Item Update Files 242

Output 242
Concept of Operation 243

Creation of a Data Library File (SETID) Option 243
Updating a Data Library File (UPDATE Option) 245
Data Base Generation (QUIIKDBG Option) 246
Printing of a Data Base File (PRINTDB) Option 246

Identification of Subroutine Functions 247
SL'I'ID Option (Creation of Data L-brary File) 247
UPDATE Option (Updating of Data Library File) 247
QUIKDBG Option (Data Base File Creation) 247
PRINTDB Option (Printing of a Data Base File) 247

Common Block Definition 248
External Common Blocks 248
Internal Common Blocks 248

Subroutine ADDSET 2S8
Subroutine BUFFIT 260
Subroutine CARDCK 263
Subroutine COPYDB 265
Subroutine COUNTDS 267
Subroutiie FASTSET 269
Function ILOOK 271
Subroutine INITFAST 273
Subroutine INPRTCL 275
Function IPRINT 277
Subroutine MAKEBAS 279
Subroutine MAKEIT 281
Subroutine MOVEIIT 283
Subroutine NEWBASE 285
Subroutine NEWDATA 293

(Entry NEWCARDS)
Subroutine N}iWDIIR 302
Subroutine OUT 307
Subroutine PRONLY 309
Subroutine PRTCONT 311
Subroutine SETID 313

6 PROGRAM BASEMOD 322
Purpose 322
Input Files 322
Output Files 323

vi

| •' • • '' '• -' ' -. • , -

Chapter Page

Concept of Operation 5.. 323
Identification of Subroutine Functions 323

Post-QUIKBASE Operation 324
Post-INDEXER Operation 324

Common Block Definition 324
External Common Blocks 324
Internal Common Blocks 324

Program BASEMOD 330
Subroutine ADDVAL 332

(Entry PRNTVAL)
Subroutine COUNTDES 334
Subroutine DBMOD 336
Function INDEXTYP 340
Subroutine INDMOD 342
Function MYZONE 345
Subroutine NUMDEL 347
Subroutine PRINTIT 349
Subroutine PRTCOUNT 351
Subroutine RDTYPES 5..353
Subroutine STKRIN 355
Subroutine TARDEFS 357

7 PROGRAM INDEXER 360
Purpose 360
Input 360
Output '360
Concept of Operation 361

General 361
Pass 1 Processing (Sheets 1 to 6, Figure 111). . . . 368
Pass 2 Processing (Sheets 6 to 11, Figure 111) . 370
Pass 3 Processing (Sheets 11 to 18, Figure 111). . . 372

Common Block Definition 376
Subroutine AROVRFL 404
Subroutine COLOCATE 406

(Entry COLOCAT)
Subroutine FINDIT 416
Function ICPL 418
Function IDXF 420
Subroutine INITIND 422
Subroutine READIN 423
Subroutine TDEFSTT 426

(Entry TDEFSTAT)
Subroutine VLRADI 429
Subroutine WRPRNT 431
Subroutine WRSIMT 433

vii

......1

Chapter Page

8 PROGRAM BASESUM 436
Method 436

Common Block Definition 437

APPENDIXES

A. Utility Routine Common Blocks 442
B. QUICK Attribute Names and Descriptions 447
C. Entry Points for QUICK Utility Routines 458
D. Utilization of General Utility Routines 462

DISTRIBUTION 471

DD Form 1473 472

PART B

QUICK Utility Program/Subroutine Listings
The QUICK Filehandler 473
Special Utility Routines 538
General Utility Routines 676

PART C

Data Input Subsystem Program Listings
Program QUIKBASE 841
Program BASEMOD 966
Program INDEXER 1063
Program BASESUM 1205

vii

viii .

ILLUSTRATIONS

Number Page

1 The Data Input Subsystem 2
2 Physical file Format 9
3 Subroutine FILEHNR 25
4 Subroutine RDARRAY 38
S Subroutine SETREAD 45
6 Subroutine TERMTAP 52
7 Program OUTFILE 64
8 Subroutine CLOSPIL ... 68
9 Subroutine CLRCMON 70

10 Subroutine GETDF 73
11 Subroutine INBUFDK 78
12 Subroutine INERRDK 81
13 Subroutine INLABEL 84
14 Subroutine NODIRC 86
15 Subroutine OPENSPL 88
16 Subroutine OUTBFTP 91
17 Subroutine OUTERTP 94
18 Subroutine SETHEAD 97
19 Program RELOADF 100
20 Subroutine ENDTAPE 103
21 Subroutine GETLOC 105
22 Subroutine INBUFTP 107
23 Subroutine INERRTP 110
24 Subroutine NEXTAPE 114
25 Subroutine OUTBFDK 117
26 Subroutine OUTDF 121
27 Subroutine OUTERDK 127
28 Program DECLARES 132
29 Subroutine EQUIV 136
30 Program FILEDUMP. 139
31 Subroutine ABORT142
32 Subroutine ANOTHER 143
33 Function ATN2PI.. 145
34 Subroutine CHANGE 147
35 Function DELLONG. 14
36 Function DIFFLONG 151
37 Function DISTF 153
38 Function DSTF 155
39 Subroutine ENDDATA 156
40 Subroutine ERAZE 157
41 Function GETCLOCK 158
42 Function GETDATE 159
43 Subroutine GETLIMIT 161
44 Subroutine GETVALU 165

"ix ix

~~,|

Number Page

45 Function IGET 167
46 Subroutine INITEDIT 169
47 Subroutine INPITEM 171
48 Subroutine INTERP 175
49 Coordinate System for INTERPGC 177
50 Subroutine INTERPGC 180
51 Subroutine IPUT. 182
52 Function ITLE 184
53 Function IWANT 186
54 Function KEYMAKE 188
55 Function LOCF 189
56 Subroutine LOCREAD 191
57 Subroutine NEWUNIT 192
58 Subroutine NEXTFILE 194
59 Function NIJMGET.. 197
60 Subroutine ORDER 199
61 Subroutine OUTITEM 201
62 Subroutine OUTWORDS 203
63 Subroutine PAGESKP 204
64 Subroutine PRITEM 206
65 Subroutine PRNTBASE 208
66 Subroutine PRNTDTRC 212
67 Subroutine PRNTDTA 214
68 Subroutine PRNTPGE. 217
69 Subroutine READDIR 220
70 Subroutine REORDER 222
71 Subroutine SKIP 225
72 Function SSKPC 229
73 Subroutine STORAGE 232
74 Function TIMEDAY • 233
75 Subroutine TIMEME 236
76 Subroutine WRITEDIR 239
77 Program QUIKBASE 254
78 Subroutine ADDSET 259
79 Subroutine BUFFIT 261
80 Subroutine CARDCK264
81 Subroutine COPYDB 266
82 Subroutine COUNTDS 268
83 Subroutine FASTSET 270
84 Function ILOOK 272
85 Subroutine INITFAST 274
86 Subroutine INPRTCL 276
87 Function IPRINT 278
88 Subroutine MAKEBAS 280
89 Subroutine MAKEIT 282
90 Subroutine MOVEIT 284

x

Number Page

91 Subroutine NEWBALE 287
92 Subroutine NEWDATA 295
93 Subroutine NEWDIR 304
94 Subroutine OUT 308
95 Subroutine PRONLY 310
96 Subroutine PRTCONT 312
97 Subroutine SETID 315
98 Program BASEMOD 331
99 Subroutine ADDVAL 333

100 Subroutine CORDTYES 335
101 Subroutine DBMOD 338
102 Function ITADE.TYP 341
103 Subroutine INDMOD 343
104 Function MYZONE 346
11S Subroutine NC EL 348
106 Subroutine PRINTIT 350
107 Subroutine PRTCOUNT 342
108 Subroutine RDTYPES 354
109 Subroutine STKRIN 3462
110 Subroutine TARDEFS 59
119 PSubogram INDEXER 486
112 Subroutine AROVRFL 405
113 Subroutine COLOCATE 408
114 Subroutine FINDIT 417
115 Function fCPL . 419
116 Function IDXF . 421
117 Subroutine INITIND 422
118 Subroutine READIN 425
119 Subroutine TDEFSTT 428
120 Subroutine VLRADT 430
121 Subroutine WRPP.NT 432
122 Subroutine WRSIMT 434

!23 Program BASESUM 439

xi

TABLES

Number Page

1 Filehandler Label Content 7
2 Filehandler Common Blocks 17
3 Common Blocks (Programs OUTFILE and RELOADF) 59
4 Data Block Format for DATADB File 243

Data Base File (Logical Record Format) 244
6 Program QUIKBASE Common Blocks 249
7 Program BASENOD Common Blocks 325
8 Indexed Data Base File (Logical Record Format) 362
9 SIMTAPE Format 364

10 Warhead, ASM, Payload, and DBL Data 373
11 Structure of a Word in the Array STATUS 375
12 Structure of a Word in the Array IOVERLAP 375
13 Program INDEXER Common Blocks 377
14 Description of COLOCATE Arrays 407
15 Program BASESUM Common Blocks 438

4

xi"i

ABSTRACT

The computerized Quick-Reacting General War GamingSystem (QUICK) will
accept input data, automatically generate global strategic nuclcar wor
plans, simulate the planned events, and provide statistical output
summaries. QUICK has been programmed in FORTRAN for use on the NMCSSC
CDC 3800 computer system.

The QUICK Programming Specifications Manual (PSM) consists of three
volumes: Volume I, Data Input Subsystem; Volume I1, Plan Generation
Subsystem; Volume III, Simulation and Data Output Subsystems. The
Programming Specifications Manual complements the other QUICK Computer
System Manuals to facilitate maintenance of the war gaming system. ;This
volume, Volume I, provides the programmer/analyst with a technical
description of the purpose, functions, general proced'res, and programm-
ing techniques applicable to the programs of the Data Input Subsystem
and to the utility programs/routines which support the system. This
volume is in three parts: Part A provides a de'scription of the
programs/subroutines; Parts B and C contain the associated program
listings. Companion documents 4re:

1. GENERAL DESCRIPTION
Computer System Manual CSM GD 9A-67
A nontechnical description for senior management personnel

2. ANALYTICAL MANUAL
Computer System Manual CSM AM 9A-67 (three volumes)
Provides a description of the system methodology for the non-
pXogrammer analysts

3. USER'S MANUAL
Computer System Manual CSM UM 9-67 (two volumes)
Provides detailed instructions for applications of the system

4. OPERATOR'S MANUAL
Computer System Manual CSM OM 9A-67
Provides instructions and procedures for the computer operators

xiii

I
CIAPTER I

INTRODUCTION

The QUICK system consists of four functional subsystems: the Data .aput,
Plan Generation, Simulation, and Data Output subsystems. In addition,
QUICK employs a general-purpose utility package. This utility package
consists of pr6grams, subroutines, and functions which perform a variety
of support tasks common to two or more system programs.

This volume of the Programming Specifications Manual describes the
programs which make up the QUICK Data Input subsystem and provides
a description of the programs, subroutines, and functions which
comprise the QUICK utility package. The organization of this volume
is described below.

Since the utility programs performed are common to all of the programs of
the Data Input subsystem, these programs are presented first in Chapters 2-
4. Chapter 2 is a description of the file handling system (subroutine
FILEHNR) used by all QUICK programs for tape and disk operations to speed
read/write operations. Chapter 3 provides a description of the purpose,
functions, and operation of the special-purpose programs listed below.

1. OUTFILE and RELOADF. These programs provide a restart capability
used in conjunction with the Plan Generation subsystem. They
enable the user to interrupt processing in the middle of the sub-
system and either repeat or resume processing at a later time.

2. DECLARES. This program is used to assist the NMCSSC analyst in
writing and maintaining programs which process QUICK data base
tapes. It places into programs the proper FORTRAN COMON,
EQUIVALENCE, and TYPE statements required for the data base
being processed.

3. FILEDUMP. This program provides the capability to print specific
portions of a magnetic tape, written in binary mode, or a disk
file.

Chapter 4 describes the remaining programs, subroutines, and functions of
the utility package, which perform a variety of tasks through the system.

The subsequent chapters provide detailed descriptions of the programs of
the Data Input subsystem. A description of the data flow within this sub--
system, shown in figure 1, and the programs involved are summarized below.

i1

DIataX
QUIKBASE

Game
Data
Base

BASEMOD -g

Game
Data
Base

- - Modified

BASESUM
(Optional)

4 -

INDEXER

Indexed
___Data Simulator

Base Data

BASEMOD
(SIMULATE)

~odified
Indexed
Data
Base

(PLANSET)

Fig. 1. The Data Input Subsystem

2

I

1. Program QUIKBASE performs the primary function of creating a
game base file which defines the general data to be used by
succeeding programs of the Data Input subsystem. This program
accepts as input the data library (in tape or card form) and,
based on uscr-input parameters, modifies the file to create a
game base file (QUIKDB). As an optional feature, this program
provides the facilities to print the game base file (QUIKDB)
in a format meaningful to the user.

2. Program BASEMOD was developed in response to a specific NMCSSC
support task. As described herein, the main function of program
BASEMOD is to alter the content or characteristics of a data
base in order to adapt it to the specific scenario for which a
plan or set of plans is being developed. As indicated in
figure 1, this program may be used after program QUIKBASE and
after program INDEXER to introduce user-desired modifications
in the game file.

3. The purpose of program BASESUM is to summarize a game base file
and to print these summaries in tabular form. While figure 1
reflects the program operating after program BASEMOD, the
program may be used to summarize the data base contained on the
output tapes produced by programs QUIKBASE, BASEMOD, or INDEXER.
This program, while not a part of the data flow, provides a
means for further checking the input data and is a record of the
information contained on any game base tape.

4. To provide for efficient data handling and communications
between the programs of the QUICK system, it is necessary
to assign index numbers to various kinds of data in the
base. Program INDEXER is designed to perform this important
task and is also responsible for forming complex targets and
collocation islands. While the program is capable of accepting
a game base as created by program QUIKBASE (QUIKDB) in the
NMCSoC mode of operation, the modified data base output by
BASEMOD (QKMODDB) serves as the primary input. In a like
manner, the output game base (INDEXDB) is suitable for input
to the Plap Generation and Data Output subsystems. However,
in the NMCSSC mode, INDEXDB may be input to program BASEMOD
for additional processing and/or modification. An additional
output of INDEXER is the SIMTAPE, which contains selected
weapon and target data and is subsequently input to the Simu-
lation subsystem.

Appendix A contains a description of the common blocks associated with
all utility programs except OUTFILE and RELOADF. For the filehandler
(subroutine FILEHNR), only those common blocks used by the calling
programs for data transfer are included in this appendix. Appendix B
contains a list of QUICK attribute names and their descriptions.
Appendix C contains a list of the entry points within the utility
programs. Appendix D contains a list of the programs/subroutines which
call the general utility routines described in chapter 4.

Users of this manual are encouraged to submit comments or recommendations
for changes to improve the manual. Comments should be forwarded to the
Commander, National Military Command Syztem Support Center, Defense Com-
munications Agency, Attn: B220, The Pentagon, Washington, D.C. 20301.

I
I

I "

CHAPTER 2

QUICK SYSTEM FILEIIANDLER

PURPOSE

The QUICK system filehandler is a set of subroutines which provides for
data transfer from core memory to either magnetic tape or peripheral disk
storage (CDC 814 disk unit). The filehandler provides for fully buffered
read/write operations with a maximum of 10 files active at any one time.
The filehandler provides input/output (I/O) error checking and correction
service to the calling programs. The data are received by the filehandler
as a word stream consisting of blocks of words of varying lengths. The
word stream is blocked to a convenient record size and output to the
peripheral device as a number of physical records. A data dump facility
is provided, whereby the filehandler will print the data as the data are
being transferred. In addition, a list of files on the disk which are
required for the restart capability (programs OUTFILE and RELOADF, dis-
cussed elsewhere in this manual) is maintained on the disk by the file-
handler.

CONCEPT OF OPERATION

The I/O capabilities of FORTRAN are the most complex and cumbersome
feature of the language. The programmer must provide consistency in I
record lengths and data lists, as well as insert all error detection
statements for each data transfer operation. In addition, I/0 is very
slow compared to the speed of the arithmetic operations. The QUICK
system filehandler provides a simplified I/O capability to the programmer.

The input to the filehandler for writing operations consists of a word
stream. This stream consists of any number of blocks of words contiguous'
in the memory. The blocks may be as short as one word or as long as
32,767 words. For reading operations, the output is the same word stream.
The blocks transferred from the filehandler, however, do not have to have
the same length as the input blocks. The word stream can be segmented
by the programmer in any desired way.

The filehandler provides for full double buffering for each file. The
two buffers provide for temporary storage. At any one time, one buffer
is being used for data transfer to or from core memory; the other buffer
is being used for data transfer to or from the peripheral device. When

I., . .. i : • " • . . . _ --- •• 1"•

the core memory transfer buffer is filled (for writing, empty for reading),
the status of the I/O operation on the peripheral data transfer buffer
is checked. If there are no errors, the roles of the buffers are reversed.
In this way, the I/O operations proceed in parallel with the arithmetic
operations, which improves the job execution efficiency.

There are three k~nds of files ava.;' to the uscr of the CDC 3800
system under the SCOPE PFS Operatin, stem. These types are magnetic
tape, permanent disk files, and scratch disk files. Permanent disk files
remain intact from job to job. Scratch disk files are destroyed at the
end of each job. The QUICK system uses no permanent disk files; all
QUICK disk files are of the scratch type. Within that type, however,
the QUICK system discriminates between two file types; active and scratch.
The active files are required by more than one program in the system. If
job termination procedures intervene between executions of two programs
which require a specific active file, the restart capability (programs
OUTFILE and RELOADF) must be used to save the active file on magnetic tape
and restore it at the start of the later job. Scratch files are those
files required by only one program of the QUICK system for tLmporary
storage. Therefore, no procedure is necessary to save these files between
jobs.

NOTE: In all QUICK documentation, the term scratch file refers to those
files which are:

1. Used by only one QUICK program for temporary storage

2. Considered by the SCOPE PFS Operating System to be scratch files.

Although the operating system considers the active files to be scratch
files, they are never referred to in that manner in the QUICK documenta-
tion.

The QUICK system uses no permanent disk files. The scratch file space
on the disk, however, is used and reused by the programs of the QUICK
system.

The physical format of any filehandler file consists of a label, data
records, padding records, and a terminating end-of-file. The filehandler
label is a 32-word physical record containing tape structure information.
Table 1 displays the contents of the file label. The label is the
first record on the tape following the operating system label. On mag-
netic tape files, the label is followed by an end-of-file mark, a dummy
BCD record, and a second end-of-file mark. These marks and the record
are not put on the tape by the filehandler. The operating system places
them there after the tape label has been rewritten after the tape is
written. (This rewrite is necessary, since the label contains the file
length.) On disk files, no end-of-file marks are between the label and
the data.

6

Tfable 1. Filehandler Label Content

WORD(S) DESCRIPTION

1 File logical name

2 LNxxS162 - where xx is buffer number used on write operation

3 Number of words written in file

4 Record length (96 words)

5 Run number (currently blank)

6 Date written (mm/dd/yy)

7 Number of words requested for disk file (zero for tape file)

8 Security classification (currently set always to NOT SET)

9 Format identifier (programmer's option)

10 First disk sector address (zero for tape)

11 Numnber of disk tracks allocated (zero for tape)
12 Number of tracks used (zero for tape)

13 Time of run (hhmmss) j
14 Last sector address used (zero for tape)

15-27 Reserved for future tise
28-32 User comments

The atarecrdsare96-word physical records on both tape and disk.
(Theseqental iskread/write routines of the operating system are used
for isk /0.)Thefirst word of each record contains a record number.

The first record is numbered one, the second is two, and so on. This
numbering is used in the error checking portions of the filehandler to
detect the dropping of a record by the operating system and to correct
for that e~rror. The remaining 95 words of each record contain the data
bufnfers ed too from the program. This is the word stream. (The

bufers ofcouseare each 96 woi.-ds long.) The last record in the file
is a padding record. It consists of 96 words, each containing the word
PADFILE in internal BCD code. This padding file is required by the
double buffering operation. in a double buffer mode of input, the periph-
eral device is reading the record following the record currently being

7

~1

transferred to core. Thus, the last data record must be followed by a
padding record to prevent an end-of-file error when the file is read.
On disk files, bad sectors on the disk may prevent the correct output
of a record. In order to salvage the file, an error record is written
over the bad sector (each sector is 32 words long). This record contains
96 words of the word NODATA in BCD code. When the file is read, all
errors which occur in reading a NODATA record are ignored.

NOTE: All filehandler files are written in binary (odd) parity.

Both tape and disk files are terminated with an end-of-file mark.
Figure 2 displays the physical format of the files.

The filehandler maintains a directory file on the disk. This file is
required by the restart programs, OLMh'FILE and RELOADF. It has a logical
file name of DIRC5162. Its format is one 64-word record. The 64-word
record consists of common block /DRC5162/. This file contains the number
of active files, their logical file names, their lengths, the number of
scratch files, and the length of a scratch file (one million words).
This directory governs the files spilled by OUTFILE to the spill tapes.
The number of scratch files is saved, so that later programs can reuse
space allocated to scratch storage in a previous program.

FUNCTIONAL DESCRIPTION

Initialization and Directory Maintenance

The first program in any job which uses the filehandler should call
subroutine ALOCDIR. This routine allocates disk space to the file
directory and initializes that directory.* Every program which uses the
filehandler must call subroutine INITAPE prior to a call on any other
filehandler subroutine (except ALOCDIR).* INITAPE initializes the
filehandler variables and reads the file directory. (If INITAPE is called
before ALOCDIR, the filehandler corrects the error by calling ALOCDIR on
its own.) Subroutine ALOCDIR has no input necessary for its function'ing.
INITAPE requires two Inputs, MYIDENT (in block /MYIDENT/) and NOPRINT
(in block /NOPRINT/). NWIDENT is the program name which will be printed
on the console typewriter and the standard output. NOPRINT is a print
switch. If it has the value one, all file initiations will print a
message on the typewriter and standard output. A different value of

*Note that ALOCDIR should be called only once each job. INITAPE
should be called once each program.

8

Di rect iono n -oTape load point
Motion 80 CharactersBCD •Operating system label

32 Words • Filehandler label

/ / / , End-of-file mark
2 Written by

24 Characters Dummy BCD record Operating
BCD J. System

"I/-*nd-of-file mark

96 Words First data record
Binary

96 Words Second data record
Binary

96 Words Last data record
Binary

96 Words Padding record
Binary

r /////• ,End-of-file mark

Fig. 2. Physical File Format
Part 1 of 2: Magnetic Tape File

9

Sector
Address

32 Words Filehandler labelIncreasing 0 Binary
Sector

Addresses
1

96 WordsBinary First data record

3

4
96 Words96Biard Second data record
Binary

6 J

96 Words Last data record
• Binary

* 96 Words Padding record
* Binary

*-End-of-file marker
(BCD)

Fig. 2. (cont.)
Part 2 of 2: Disk File

10

j4

I
NOPRINT will suppress these messages. Therefore, the standard calling

sequence* for INITAPE is:

MYIDENT = 81HMYPROGRN
NOPRINT = I
CALL INITAPE.

The value of NOPRINT can be changed during a run to request or delete
the messages.

Active files are automatically entered in the directory by subroutine
SETWRITE. They are removed by subroutine DEACTIV. This routine removes
the file whose name is contained in MYIDENT. Thus, the standard calling
sequence for DEACTIV is:

MYIDENT = 8HMYFILE
CALL DEACTIV.

Output Data Transfer

Four subroutines are used for output data transfer: SETWRITE, WRWORD,
WRARRAY, and TERMTAP. Subroutine SETWRTTE prepares a file for writing.
Buffers are allocated and pointers initialized by this routine. If an
active disk file is to be created, the file name is entered in the file
directory. Three variables are input to SETWRITE to determine the mode
of the file. The three variables are MYIDENT (block /MYIDENT/), ITP
(block /ITP/), and MYLNGTH (block /MYLABEL/). The use of these variables
is as follows:

1. Tape files
ITP - Is the buffer number and the logical tape unit

number. It must lie between 1 and 10 (inclusive).
MYIDENT - Filchandler label name.
MYLNGTH - Not used.

2. Active disk files
ITP - Must be negative, Absolute value is buffer number.

It must lie between -10 and -1 (inclusive).
MYIDENT - Logical file name; cannot be SCRATCH. If left

blank, a default value of UNAMEDxx is used, where
xx is an arbitrary number assigned by the file-
handler.

MYLNGTH - Number of words to be allocated to t!:e file. If
the file length exceeds this, the operating system
will abort the job.

*MYIDENT and NOPRINT cannot be set by data statements. They must be

set at execution time.

11

III

ri

3. Scratch disk files
ITP - May be positive or negative. Absolute value is

buffer number. Absolute value must lie between
1 and 10.

MYIDENT - Must be SCRATCH. On the disk, the logical file
name will be SCRTCHxx, where xx is a number assigned
by the fiJehandler.

MYLNGTH - Ignored. Length is one million words.

Once a file has been initialized by a call to SETWRITE, further references
to the file can be made through the use of ITP alone. Since each buffer
can be used by only one file, the buffer number is a unique file identifier.
Note that for tape files, every subsequent initialization of the file
must use the same value for ITP, since this is used as the logical unit
number. Similarly, for active disk fires, subsequent initializations of
the file must use the same value for MYIDENT, the logical file name.
Scratch disk files must use the same ITP on subsequent initializations.

The standard SETWRITE calling sequence is:

ITP = NUFF
MYIDENT = NAME
MYLNGTH = LONG 1 Active disk files only
CALL SETWRITE

Note that SETWRITE transfers all the data from common /MYLABEL/ to the
file label. If the program fills this block prior to the call on
SETWRITE, a call on SETREAD will retrieve this information and pass it
to common /FILABEL/.

If one word is to be transferred from core to the file, subroutine
WRWORD is used. This routine transfers *he value of the variable ITWORD
(equivalenced to TWORD) in common /TWORD/ to the output buffer. The
standard WRWORD calling sequence is:

ITP = NBUFF
ITWORD = IOUT
CALL WRWORD

If more than one word is to be transferred, subroutine WRARRAY should be
used. This routine transfers a contiguous block of words from core to
the output buffer. Thes routine has two formal parameters. The first
is the first word to be transferred; the second is the number of words
to be transferred. The standrrd WRARRAY calling sequence is: T f

iTP r NBUFF
CALL WRARRAY (ORIGIN, LENGTH)

A write file is terminated by a call on subroutine TERMN'AV. This routine
clears the buffers, adds the padding record, rewrites the label, and

12

resets the buffer pointers. The standard calling sequence is:

ITP = NBUFF
CALL 'rERMTAP

Input Data Transfer

There are four routines used for input data transfer, SETREAD, RDWORD,

RDARRAY, and TERMTAP.

A file is initialized for reading by a call on subroutine SETREAD. This

subroutine allocates the buffers and initiates reading from the file into
the buffers. Two variables are input to SETREAD: ITP (block /ITP/) and
MYIDENT (block /MIYIDEN'I'/). The value of these variables determines the
type of file which is initialized by SETREAD.

A. Tape files
ITP Must be positive and in the range 1 to 10 (inclusive).

This is the logical unit number and buffer number.
MYIDENT - Filehandler label name.

2. Active disk files
ITP - Must be negative. Absolute value is buffer number.

Range is -10 to -1.
MYIDENT - Logical file name. Cannot be SCRATCH nor can the

first six characters be SCRTCH.

3. Scratch disk files
ITP - May be positive or negative. Absolute value is

buffer number. Absolute value range is 1 to 10.
M.IDENT - Must be SCRATCH or the first six characters must be

SCRTCH.

For scratch files, SETREAD reads the scratch file created using the same
buffer number requested in ITP. Common /FILABEL/ is filled from the
filehandler label. SETREAD reads the first buffer of data and initiates
the reading of the second buffer before returning control. The standard
SETREAD calling sequence is:

ITP = NBUFF
MYIDENT = NAME
CALL SETREAD

After the file is initialized, it may be referred to with only the buffer
number. Since only one file can be attached to a single buffer, the
buffer number ITP is a unique file identifier after file initialization.

13

II

To read one word, subroutine RDWORD is used. The next word in the stream
(buffer) is transferred to variable ITWORD in common /TWORD/. (ITWORD
is usually equivalenced to TWORD for variable type compatability.) Thq
standard RDWORD calling sequence is:

ITP = NBUFF
CALL RDWORD
IN = ITWORD

If more than one word is to be transferred, sdbroutine RDARRAY should be
used. This routine transfers a block of words from the buffer(s) to a
contiguous storage area. There are two formal parameters forsubroutine
RDARRAY. Thaefirst is the first word of core into which the data are to
be transferred; the second parameter is the block length. The standard
RDARRAY calling sequence is:

ITP = NBUFF
CALL RDARRAY (DESTIN, LENGTH)

A read file is terminated by a call on subroutine TERMTAP. for this
type of file (read), TERrMTAP rewinds the file if on tape oT positions
the sector pointer to the first sector (sector 0).

Dump Facility

The program can request a print of the data being transferred through the
filehandler. The array IFTPRNT in common /IFTPRNT/ is used for this
purpose. There is one position in the array for each buffer.: hc,value
of IFTPRNT is used as follows: if zero or'negative, no print is produced;
if positive, data are printed. On calls to RDWORD or WRWORD, only the
one word transferred is printed. On calls to RDARRAY or WRARRAY, the
value of IFTPRNT (ITP) is interpreted as the number of words from each
end of the block transferred to be printed.' For example, if IFTPRNT(3)=20
and the sequence of code is as follows:

ITP = 3
CALL RDARRAY (ARRAY, 100)

the values of ARRAY(i) through'ARRAY(20) and ARRAY(81) through ARRAY(lO0)
will be printed.

Error Detection and Recovery

The filehandler performs two types of error detection and recovery, It
checks for program errors in filehandler use, such as attempting to read
from a write file. The recovery procedures in these cases are either
warning messages, simple corrective actions (such as calling TERMTAP
and SETREAD in the above case), or abort with a memory dump. The other

14

S.... - - - - - .1~

i
error checks are concerned with data transmission errors. End-of-file,
end-of-tape, or parity errors are all detected, and some recovery is
attempted. After an error has occurred, the filehandler will first repeat
the operation several (five) times to determine if the error was of a
transient nature. If the error persists, various recovery procedures are
performed as described below.

1. Tape Outuqt Error
Subroutine ERAZE is called to erase six inches of tape and skip
over the bad spot.

2. Tape Input Error
The tape is skipped forward to the first record following the
troubled record. If this new record has tle correct number,
recuvery is successful. If the record number is wrong, there
is no way to recover, and the job aborts. Note that a tape
produced with output errors as corrected by the filehandler can
be read back by the filehandler.

3. Disk Output Error
A variable LOCNOW in block /FILE/ contains the sector address
of the first sector of the troubled record. The file is I
"backspaced" by positioning the file at that point. A dummy
record containing 96 words of the word NODATA is written over
the troubled sectors. The data record is then written starting
with the next group of three sectors.

4. Disk Input Error
If the troubled record contains the NODATA value, the file is
skipped forward to the next data record. If this record has
the correct record number, recovery is successful. Otherwise,
the job aborts. In addition, if the original error did not
occur in a NODATA record, the job aborts.

COMMON BLOCKS

Table 2 lists the filehandler common blocks. All subroutines of the
filehandler use all these blocks for their operation. The following
blocks are also used by the calling programs for data transfer:

• 15

__-_j

-1

ITP
MYIDENT I
NOPRINT
TWORD All programs
MYLABEL
FILABEL
IFTPRNT
TODAY (Program PLANSET)
DRC5162 (Programs OUTFILE, RELOADF, ALOC)
INTFILE (Program ALOC).

The following blocks are used internally by the filehandler:

FILE
22642626
FILELAB
FORFLS
LOCVAR.

16

V

Table 2. Filehandler Common Blocks
(Sheet 1 of 4)

VARIABLE OR
BLOCK ARRAY* DESCRIPTION

DPCSb162 LENLIST Length of file directory

NOWACTV Number of active disk files

LFNAME(30) Logical file names of active files

NUMPWDS(30) Number of words written on each active
file

NINTRNL Number of scratch disk files allocated
to disk

LINTRNL Length (words) of scratch disk files

INTFILE INTIDNT First six characters of scratch file

name (=SCRTCH)

LINTFL Length (words) of scratch disk files

NOWALOC Number of scratch files used by current
program

MYITP(I0) Buffer number used for each scratch
file written in current program

FILE ACT1VE(l0) Logical array; TRUE if buffer in use

READST(10) Logical array; TRUE if file is in read
status

IAUX(I0) First word in auxiliary buffer for each
file (this is device transfer buffer)

IBEG(lO) First word in core transfer buffer
for each file

TDISKFL(1O) Negative for disk files

IEND(I0) Last word available in data transfer
buffer

IPT(lO) Pointer to next word to be transferred

NAME(I0) Logical file name

NUMRECW(l0) Number of words written on file

*Parenthetz1al valuos indicate array dimensions. All other elements
are single word variables.

17

* •, • , i - , , -. • •,• ' •' " -•

Table 2. (cont.)
(Sheet 2 of 4)

VARIABLE OR

BLOCK ARRAY DESCRIPTION

FILE NEWT(10) Pointer to last good buffer transferred
(cont.) to/from file

LOCNOW(lO) Sector address after last good disk
read/write

22642626* IBUFF(1920) Filehandler buffers

FILELAB LNDIR Length of file label

NDIROUT(32) File label (see table)
NDUMMY(33) Label temporary storage

FORFLS IBADGE =5162

LNGREC Physical record length (=96)

LUN =LN

MODE Data parity (=l)

NPAUL =DIRC (for file directory name)

NSECPRT Number of sectors per track on CDC 814
disk (=32)

NSECTOR Number of words per sector on CDC 814
disk (=32)

ITP ITP Filehandler buffer number

MYIDENT MYIDENT File name

TWORD ITWORD Single word transfer medium

*This number is the word BUFF in internal BCD code. The block is a
numbered common block to take advantage of the luader overlap feature
of the SCOPE PFS loader.

18

Table 2. (cont.)

(Sheet 3 of 4)

VARIABLE OR

BLOCK ARRAY DESCRU-TION

FILAB EL INIDENT Incoming name (word 1 of label)
INRUNNO Incoming run number (word 5 of label)

INDATE Incoming date (word 6 of label)

INFORM Incoming format (word 9 of label)

INSECR Incoming security (word 8 of label)

INTIMIE Incoming time (word 13 of label)

IN1,NGTII Incoming length (word 3 of label)

INCOMM(5) Incoming conuments (words 28-32 of label)

IFTP RNT IFTPRNT({O) Debug print switches

MYLABEL MYFORM Outgoing format (word 9 of label)

MYSECR Outgoing security (word 8 of label)

MYLNGTll Number of words requested for file
(word 7 of label)

MYCOmI(5) Outgoing user comments (words 28-32
of label)

NOPRINT NOPRINT File initiation print switch

TODAY NOWRUNO Current run number (word 5 of label)

NOWI)ATE Current date (word 6 of label)

NOW•PIME Current time (word 13 of label)

LOCVAR IPOINT Pointer to next word transferred

MESS (8) Abort/warning message

MFAKE Used for blank file names (IJNAMED)

NDIR Directory length

NIX Error code

NT Logical unit number for disk

1 9

- -~

Table 2. (cont.)
(Sheet 4 of 4)

VARIABLE OR
BLOCK ARRAY DESCRIPTION

LOCVAR NTR Number of tracks allocated to disk file(cont.) NVERS Blank

NWAIT Disk I/0 completion code
NWRDSAL Number of words allocated to disk file
NTEMP Entry point name

MTT1MP TAPE or DISK: file type identifier
INITFST INITAPE call check variable
KREC(10) Record counter for each file
NULL(96) Storage for NODATA record
NODATA =NODATA

NTIMES Error correction attempt counter

20

-I-

I
|

SUBROUTINE FILEHNR

A

PURPOSE: This FORTRAN subprogram contains entry points
ALOCDIR, INITAPE, DEACTIV, PRNTLAB, SETWRITE,
RDWORD, and WRWORD. The purposes of these entries
are as follows:

ALOCDIR allocates the disk file directory to
the disk and initializes that directory

INITAPE initializes the filchandler variables

DEACTIV removes disk logical file names from
the active list in the file directory

PRNTIAB prints file labels

SETWRITE initializes a file for writing; the
file is activated and the buffers are
allocated

RDWORD transfers one word from the buffer to
common /TWORD/

WRWORD transfers one word from common /TWORD/
to the buffer

ENTRY POINTS: FILEHNR (not used), ALOCDIR, INITAPE (INITAP),
DEACTIV, PRNTLAB, SETMRITE (SETWRIT), RDWORD,
WRWORD

FORMAL PARAMETERS: None

COMMON BLOCKS: DRCS162, INTFILE, FILE, 22642626, FILELAB, FORFLS,
ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABEL,
NOPRINT, TODAY, LOCVAR

SUBROUTINES CALLED: GETDATE, TIMEDAY, ERAZE, RDARRAY, WRARRAY, ABORT,
WARNING, Disk I/O subroutines of SCOPE PFS
Operating System (ALLOCATE, LOCATE, SEEK, LSTATUS,
DREAD, DWRITE)

CALLED BY: All programs of the QUICK system

21

Method:

Entry ALOCDIR: This entry uses operating system routine ALLOCATE to
allocate disk storage for the active disk file directory. The directory
is initialized to show no active files other than itself. ALOCDIR should
be called only once, at the beginning of each job. The directory name
is DIRC5162. If the directory cannot be written without errors, the job
will abort.

Eintry INITAPE: This entry initializes filehandler variables. It should
be called once per program, at the beginning of execution. INITAPE clears
the buffers and retrieves the current date (subroutine GETDATE) and time
(subroutine TIMEDAY). The variable MYIDENT is assumed to be the name of
the calling program. INITAPE prints a program initiation message on the
console typewriter and also on the standard output, if requested. If
ALOCDIR has not yet been called in the job when INITAPE is called, INITAPE
transfers control to ALOCDIR before exiting. Otherwise, the file directory
is read into common block /DRCS162/.

Entry DEACTIV: This entry removes a file name from the list of active
disk files. The name to be removed is placed in variable MYIDENT (block
/MYIDENT/) by the calling program. The file directory DIRCS162 cannot
be deactivated by DEACTIV. Since scratch files are not entered in the
directory, any attempt to deactivate a scratch file is ignored. If DEACTIV
cannot find the requested file in the active list, the routine returns
control to the calling program without further processing. If the fi1c
is found in the list, the name and length are removed from the list and
the li.st compressed.

Entry PINTLAB: This entry prints file labels. The input is the buffer
number ITP and the file name MYIDENT of the file whose label is to be
printed. Since PRNTLAB must move the file to retrieve the label, a call
on PRNTLAB while the file is being read or written (i.e., active) will
be co;isidered an error. Since PRNTLAB is a convenience utility routine,
all errors, including I/0 errors, in its processing terminate PRNTLAB
proces3ing and return to the calling program after printing a warning
message. The format of the file label print is described in the User's
Manual. The print is also produced ,, every call to SETREAD if the
prograin requests it.

Entry SETWRITE: This entry initializes a file using buffer ITP and name 7
MYIDENT. (The Functional Description section of this chapter describes
the interpretation of these variables.) SETWRITE allocates two buffers,
each 96 words iT length, to the file. For all scratch files, SETWRITE
generates a logical file name. The scratch files are named SCRTCHyy,
where yy is a number assigned by SETWRITE. The first scratch file is
SCRTCH 1; the second SCRTCH 2; and so on. If the program calls SETWRITE
with a blank file name, SETWRITE assigns a name UNAMEDzz, where zz is a

22

number assigned in the same fashion a3 yy for scratch files. Various
procedural error checks are performed to see that the file shouid be
written on. For example, a call to SETWRITE on a file currently in read
status will abort the job. For disk files, variable MYLNGTII in /MYLABEL/
is used to determine the number of tracks on the disk to allocate for
the file. MYLNGTH is the maximum number of words expected on the file.
If it is less than one or greater than one million, it is set to one
million (977 tracks). Scratch files are always given lengths of one
million words, since the number of words on the file changes with each
use,

SETWRITE also fills the filehandler label from block /MYLABEL/ and
internal filehandler variables. The label is then written on the file.
For tape files, subroutine ERAZE is then called three times on the file.
This routine erases six inches of tape. (An end-of-file mark is approxi-
mately six inches long.) This 18-inch blank stretch of tape is required
by the operating system. When TERJMTAP is called on this file, the label
will be rewritten so as to contain the number of words written on the
tape. The tape will then be rewound. If a program writes on a tape and
then rewinds the tape, the operating system places on the tape, following
the last write, an end-of-file mark, a dummy BCD record, and a second
end-of-file mark. The dummy record is 24 characters long, of which the
first seven are EOSQUAT and the remaining 17 are undetermined. The
erasure of 18 inches of tape between :he label and the first data record
allows space for placement of these marks written by the operating system.

Entry RDWORD: This entry transfers the next word in the buffer for file
ITP to the variable comprising common block /TWORD/. ITP is the buffer
number for the file. Entry RDWORD uses subroutine RDARRAY to read the
word. This procedure is used so that the error correction procedures
c&oded in subroutine RDARI.AY do not have to be repeated in R9WORD. Note
that if the data debug dump facility of the filehandler is activated
(i.e., IFTPRNT(ITP)>O), then it is deactivated before RDARRAY is called.
The dump facility produces different print formats for calls on RDWORD/
WRWORD and RDARRAY/WRARRAY. Thus, if RDWORD calls RDARRAY, the facility
must be off during the data transfer. When control returns to RDWORD, the
value of IFTPRNT is restored. If the original value is greater than zero,
then the RDWORD format for the debug print is produced.

Entry WRWORD: This routine is very similar to RDIVORD. A call on WRWORD
transfers the data in common block /TWORD/ (one word) to the next location
in the buffer for file ITP. Subroutine WRARRAY is used for the transfer
in the same fashion as RDARRAY is used by RDWORD. The use of the file-
handler dump facility in WRWORD is identical to that in RDWORD.

23

The flow of operations in FILEIINR is shown in figure 3. The flowchartconsists of seven parts. Parts I to V pertain to ertries ALOCDIR,DEACTIV, INITAPE, PRNTLAB, SETWRITE, respectively. Part VI shows entriesWRWORD and RDWORD while part VII illustrates the error processing
operations.

24

Entry ALOCUIR

Identificat ion

Ila Iýr.ocory Yesi
Been In tli zedy 99 NIX *I

No

"Pg.3* Sur outneFIIfIN

PI r Fil ENto AL ocI)I

Aloaed.1 aeFl

SAT Entry DIIAMrV

S-t 'ntrly

Hlas Direcoy N
Been InlitilI~? NIX -1*

yes

I. Is File. to
Be Deactivated a Yes _~-'(9 NI

Scratch File? NIX

No

RRewin d andRead Dir~ectory

703

LSTATUS
Olhe K Status

yC

"eDasctiatus? Pnse

"Ye99 NI

CotnigWt :rrSttL'r

Fig. hd No (c rror)
PatSEEKtryDACT

I~~r O (r_

C 'i1A1HD Entry INITAIII

Set Eintry
I den t i fleat,.n

-700 [IeL I PIIIig

Clear Lrror Code Array
and 1/0 Buffers

Retrieve Current
Date and Time

Wrte Program,
Irtation MeNI saesn(:nole Typewriter

Part Direcntry INITA

Been nitiaized

ITPART rntry PRNTLAB

Set Entry

99 NIX

628

SAT Lfltry SLIWI4ITE

rSet Entry Idcsntificatiun

V Save Input Variables

Cle~ar Label Arrniy

isri eAtie NIX 3

33o

oInpu Nam Ys oi

BlnIr~yNm
No.~* (~n.

Iar V:rtc Filer Ye~hI
Re(uestet 176

No9

I.S
SF iI ile Nm

Has1is File lien e : el(IyAssca~ i nd rcv i 3ias 33 ~e Y~m

Dete(rhint Numoer3)
Tracs toSilv oi

I?

Set Up) Labe I

5I

ý111rfctr Pointers

Set Weh Act lye
It, Write tritutts

Disk Flle7 Ye-1, iit, F:ilIe
l.11hcli ReCord

No

IRwliO and 1/0
1
-1rortI 0 1 in htfition N

Lrate Iao PIlIe 1r tletd

71
Yes

rr 1

rirse 1: Inrliesr 01 Y /

"Iso to Altlow for

l~O~ N;, i-k To iiVariablteu
L i l File

rig, . (Cont.
Pu'rt \': (co ,)

(Shcot .3 of)

31

1 START
Entry

WRWORb

ý D 144
P Yes Cancel Vu

's
p

__ýq= ed?
Request

No
146

WPARRA
Write Next 7Wd

Save Entry
and Record Coý

ly? RETURN
a s Dur-p 4R.ýueted' No

W Wa s; Dump,
Requested

No
Originally?

Yes
147

P i Wo
Print Word Just

Transferred START ntry RDWORD

604

Is Dump Yes Cancel
Requested? Dump

Request
No "s

-60SOS
RDARRAY -Tý

Read Next Word

No

iel/ Dýmp Requested Save Entry Named _and Record Count

Fig. 3. (cont .
Part VI: Entry M ORD RDWnPn

32

PrI
.9.

Yes I
Is Enrtry ANLOCDIR? NX ?WR N

No2

8821

Prit Adddicdtal Prntoriio
PrMassain S~tiaii

Is~ ~~Pr Entry ErrorTE ProcesIXsing57,1031ABR

(Soe 1 of8

830

4830

Do*sNna N
Hatch Previoubly ABR

Used File?

Yes

F I s 3. l (cotiv?.))NI

8838

Yes Sot Buffe Numbej

SUBROUTINE RDARRAY

PURPOSE: This FORTRAN subprogram contains entry points
RDARRAY and WRARRAY. Their purpose is to transfer
blocks of data between core st;orage and the file
buffers and also between th,.. file buffers and the
peripheral I/0 devices. Entry RDARRAY is used
for transfers from the files to core storage. Entry
WRARRAY is used for transfers from core storage
to the files.

ENTRY POINTS: RDARRAY, WRARRAY

FORMAL PARAMETERS: NAR - The first word in core storage to be used in
the transfer

NI(IM - The number of contiguous words to be trans-
ferred

COMMON BLOCKS: DRC5162, INTFILE, FILE, 22642626, FILELAB, FORFLS,
ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABEL,
NOPRINT, TODAY, LOCVAR

SUBROUTINES CALLED: ABORT, WARNING, LOCF, ERAZE, SETREAD, SCOPE PFS
Disk I/0 subroutines (SEEK, LOCATE, LSTATUS,
DREAD, DWRITE), SCOPE PFS Tape I/0 subroutine,
LENGTHF

CALLED BY: All programs of the QUICK system

Method

The formal parameters specify the block of core storage to be used in
the transfer. The parameter NAR is the first word of the block. This
parameter is given a length of one in a DIMENSION statement. This pro-
cedure allows the subroutine to treat the storage block as an array of
any length. The parameter NUM is the number of words to be transferred.

Figure 4 shows the processing operation performed by subroutine
RDARRAY(WRARRAY). The flowchart is presented in five parts. Parts I
and I1 show the initial operations for entries RDARRAY and WRARRAY,
respectively. Part III shows exit processing procedures and is common
to both entries. Error processing operations are shown in Part IV for
entry RDARRAY and in Part V for WRARRAY.

35

A

Entry RDARRAY: This entry is used to read data from a file into core
storage. After checking to determine if the file is active and in read
status, RDARRAY determines if enough words remain in the current buffer
to fulfill the request for NUM words (statement 605). If so, the first
NUM elements of the destination array NAR are filled with the next NUM
words in the buffer (statement 610). The buffer pointers are updated
and control passes to the data dump section (statement 630). If part
or all of another buffer is needed to fill the request, the routine empties
the current buffer into the destination array NAR (statement 640). The
other buffer was being filled by a read operation initiated by a BUFFER IN
operation in either SETREAD or RDARRAY. RDARRAY checks the status of
this operation (statement 607). If there were errors, control passes
to the error correction section (statements 199, 99). If the read operation
was completed successfully, a new read operation is initiated to fill the
buffer just emptied. The buffer pointers are then •iiodified to reverse
the buffer roles. Control then returns to statement 605 to determine if
the remainder of the requested block of data can be filled from the
current buffer. This process continues until all words have been trans-
ferred. For disk files, "dummy" records may be encountered amidst the
data records. These dummy records contain the word NODATA in all 96
words of the record. These records are written to space the disk file
over sectors in which the I/O subroutines are encountering errors.
RDARRAY ignores dummy records. When one is encountered, the next record
is read and so on until the next data record is encountered.

In RDARRAY, two entries to the error processing section are used,
statements 99 and 199. Statement 199 merely increments the error code
NIX by one before transferring control to statement 99. This procedure
allows the error routine to differentiate between parity errors and
unexpected end-of-file marks. The end-of-file error codes are one
greater than the parity error codes. The error correction procedures
for entry RDARRAY begin at statement 805. For unexpected end-of-file
marks, the job aborts (statement 842). For parity errors, the processing
of tape and disk differs. For tape errors, operating system function
LENGTHF is called (statement 870) to determine the length of the record
with bad parity. If the length is correct (i.e., 96 words), there can
be no recovery, and the job aborts. If the record is short, it may be
an error record written previously. In this case, the next data record
is read. If it has the correct record number, recovery is successful.
Otherwise, the job aborts via a transfer to statement 99 with NIX=7
(from a statement following statement 624). For disk errors, five attempts
are made to reread the data. If these attempts fail, the job aborts.

Entr WRARRAY: The processing in this entry closely parallels the
operation o RDARRAY. In this case, however, NAR is the origin array.
Words are transferred from NAR to the buffer and from the other buffer
to the file. Statement 146 parallels the operation of statement 605 in
RDARRAY in determining the number of words to be transferred from the
current buffer. If the current request for NUM words will not fill the

36

buffer, statement 710 performs the complete transfer. Otherwise, statement
740 transfers full buffer loads from core to the buffers, until the
number of words remaining to be transferred is less than the full buffer
size. There is one major difference between the logical flow of RDARRAY
and WRARRAY. Subroutine SETREAD assigns both buffers since they will
both be used immediately. Subroutine SETWRITE, however, allocates only
one buffer, the first to be filled. Therefore, the checking of the status
of I/0 operations starts only after the first write by subroutine WRARRAY.
In addition, no distihiction isimadebetween write parity and write end
of "reel" errors in WRARRAY. There is no end of "reel" error for disk
files, and end-of-reel errors for tape are irrecoverable. Therefore,
WRARRAY uses only statement 99 as entry to the error processing section.

The error correction processing for WRARRAY begins at statement 804. For
tape write parity errors, the tape is backspaced over the problem area.
Subroutine ERAZE is called to erase over the bad spot. The record is
then rewritten. If this procedure fails after five attempts (and 30 inches
of tape), the job aborts. For disk files a similar procedure is followed.
The file cannot be "backspaced" in the usual sense. Therefore, a pointer
array LOCNOW is saved in common /FILE/. For each file on disk, LOCNOW(ITP)
contains the sector address of the sector following the last good I/O
operation. (Operating system routine LOCATE is used to determine this
information.) When an error occurs, operating system routine SEEK is
used to reposition the disk file to this sector. This is the disk equiv-
alent to backspacing. Then the dummy NODATA record is written. If this
write operation encounters errors (NIX=S), it is repeated five times.
After five attempts or a successful write, the data record is written
starting with the next sector available after the NODATA record.

Data Dump Processing: Both RDARRAY and WRARRAY share the data dump code :

starting at statement 630. The complex DO loop between statements 3
and 11 is required by the format of the data dump. The value of IFTPRNT(ITP)
is interpreted as the number of words to be printed from each end of the
array NAR. The print is therefore divided into halves. The word counters
for the halves are checked in this loop to determine when to print the
data. Utility subroutine LOCF is used to retrieve the address of NAP
which is printed in the dump heading.

37

.2

_ _ _ _ _ _ _ _ -

Lntry RUARIM

4

SI'ART

Are Any Words No kETURN
to Be Read!

Yoe

Set hntry Identification
and Save Input Variables

Disk Pi 0? "s got Disk File
Identifier

NO

is File No
Active? 99 SIX I d

Yes
604

04 Is File in No
kjad Sta 9!) SIX 2

605 Yes 610
a C urrent Request Yes Fill Destination ýd;,L,.L
Be Fulfilled From Array From 630
Current Buffer? Current buffer Pointer

640
No

Transfer Rematnder
of Buffe7 to

Destination A--

670
Yes

Disk File? Initialize
Error Counter

No
607

60" SID
1/0 Errors on 199 FQF IN Errors on

Last Tape Read? Last Disk Read?NIX NIX 5
Nons Parity Parity No

99
608 520 j

Initia
0 aare, n's..' -622 Update Disk

Key ecord Location Pointet3

624
Initiatenit.ead Yes

-modify Pcinters to Opera to n I a 1119 a
lKeverse buffer Roles Next Reord th"y Record?

No

Is Record %o
Number Correc, t, 99 pdate Disk

L. U. t ioti-Pointers
Yes NIX - 7

Plore Wo rds "oT f
rans

Fig- 4. Subroutine RDARPAY
Part 1: Fntrv RDARRAY

38

d nitot c rn ry Jý it~'c:I I",if rii

Operaio n I f~rl to Povtrc

144 Is Fil IIIrasford

Nig u .(on.

No Curret 1 hnt~r y PonterR

7.30

Fil -- . O>rký;~§ -2rŽin """der~~i. N

63

h al Pe o eirint ePitWrdPit~r

Skip ine Ydd ess Lotfodin

IOrigin/Detinaton.
jntaieParit II DRA/RR.~ xtPoes

Word CunterI3 Do1'Io ll DnWordsTranserre
DOI

NIX.?

840

NIXul 2 RAil

NIX-3In D ter i e Flen t Rig t cn th

NIXw2ABR

NIX-SIsRcr .C I

Fig. 4.i (cant.

Pa ert IV: FDRccrAYdrdrPrCS

41o

Add I to
trror Code 9

Print litr r

Is E~ntry WI1ARRAY? NoEslntry BOARRAY? 80

8040

ethun tr ite t atC

In.heUbiisly rie Re wrt eLs
Oe Ba rs Ovr Record

59 I/Cnui z E rrors16

NIX.SChn,

Pig.~ C. oYn.

416

SLC RstPone

SUBROUTINE SETREAD

PURPOSE: This routine initializes a file for reading. It
allocates two input buffers to the file according
to the buffer number ITP. The input label is
processed, and the first two buffer loads of data
are input.

ENTRY POINTS: SETREAD

FORMAL PARAMETERS: None

COMMON BLOCKS: DRCS162, INTFILE, FILE, 22642626, FILEIAB, FORFLS,
ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABEL,
NOPRINT, TODAY, LOCVAR

SUBROUTINES CALLED: ABORT, WARNING, TER14TAP, SCOPE PFS Operating
System routines (SEEK, LOCATE, LSTATUS, DREAD,
LENGTHF)

CALLED BY: All programs of the QUICK system

Method

SETREAD receives as input from the calling program the buffer number ITP
in block /ITP/, and the logical file name MYIDENT in block /MYIDENT/.
The interpretation of these variables is discussed in the Functional
Description section of this chapter.

Figure 5 shows the processing operations performed by subroutine
SETREAD. The flowchart is presented in three parts: Part 1, Status
Checking and Label Input; Part II, Pointer Setup and Buffer Filling;
and Part III, Error Processing.

SETREAD begins by checking to determine if a scratch file is requested.
If so, control passes to statement 480 where the name of the file is
determined. The file name will be the name used in writing the scratch
file, using the same buffer number. For example, if file SCRTCH 1 was
written with ITP=7, then a call to SETREAD with ITP=7, MYIDENT=SCRATCH
will set the logical file name to be read as SCRTCHI 1.

In any event, SETREAD checks the buffer number to be surc it is in the
right range. If the file is currently being used by the filehandler
for I/O, then subroutine TERMTAP is called to terminate the file. Once

43

the calling procedure errors are checked, SETREAD reads the file label.
Some of the label contents are transferred to block /FILABEL/ where they
can be accessed by tile calling program.

SETREAD then sets the buffer pointers for the two buffers for the file.
The first data record is then read. Note that for tape files, an end of
file will be read beforr the first data -record. (As was discussed in
the Concept of Operation section and the discussion of entry SETMqITE,

two file marks and a dunmmy record are inserted by the operating system
after the label.) This error is error code 4 (i.e., NIX=4). The error
correction procedure for subroutine SETREAD allows this error to occur
seven times without taking any action. In this manner the operating system
insertions on the tape are ignored, and the first data record can be read.

When the first data record has been read, the buffer pointers are set to
start emptying this buffer when RDARRAY is called. The filling of the
other buffer is then initiated before control returns from SETREAD.

The error correction procedures of SETREAD involve attempts to reread the
data. For tape files, five reread attempts are made before the job aborts
in trying to read the first data record. For disk files, SETREAD must
check that the first data record was not replaced by a dummy NODATA record
by subroutine WRARRAY. In any event, up to five reread attempts are made
to input the first data record. Note that SETREAD reads and checks the
first data record. The innediate checking is required since the call to

SETREAD may be followed immediately by a call on RDARRAY to begin data
transfer. The second data record, however, is only read in SETREAD. The
error detection and correction of the second and later data records is
performed in subroutine RDARRAY.

44

I•

J sm-mtr." Identification
and Save ,'i.mc Vrir'lales

Scratch File t ese) O

Fig. S. Subr NoutteSTB
Part I: Statyes Cekn n ae n

C~i iWFi (Sheqest?? I1 of02

N I X - 1 Y e s o 4 0 0NI4 5

480 NI X. I

Is0 Uni[t Reiquested No 9
ni Range? 9

Yes

NI.
46eAcieDl- 9

TV an s f r Variables
From Labol to Co Cr

Is Print Requested? Print Label

No

Suffer P. I n

Tape P i I
N.

Initialize
buffer Pointers

421, 429

Initi

ý ý21,,
, , Fie,

I ljlitialize 1(vad
No

y

Tape Pile? I rror irst 1/0

No
ue-

ted
?

I
"be

Co
421 Print i 14,ord NIX 9

Read First V432
Data Record Yes

429
Yes

Is This

m413 Vummy Record?
NoYes110 Errorv? 99

No NIX 4 Save Record umbe
414 Ir

Save Record Number

No 15 Record Number 1?

Is Record Number I? NO 99 Yes

Yes NIX -'I.' flbd Si fy PolntLrs
or d Suffer

Wdi fy ointers
for Second Buffer

434

I iti2te Read
434 cratlun fo rlnýtiat ' ReadPI L CXt R cordration for0 oFNCxt Record

Savo Current
Buffer Pointor

save Corrent
Suffer Pointer 4891

rI I
Restore Inpot

Va r i ab I s

RETUPN

Fig. 5. (Cont .

Part Il: Pointer Setup and Buffer
Filling

47

NIX it Yes LH'NGTL

No Laile eil IIto o re t

480

..L

AI
809Is 'il$a Ye Whch Rcor

NI X umm Re c rd ?N umb rI
No____ 227228 I

No 4

8101

8121

Part III: (cont.)
(Sheet 2 of 2)

49

SUBROUTINE TERMTAP

PURPOSE: This routine terminates the file using buffer ITP

and returns the buffer for use by other files.

ENTRY POINTS: TERMTAPE, TERWTAP, TERMTPE

FORMAL PARAMETERS: None

COMMON BLOCKS: DRC5162, INTFILE, FILE, 22642626, FILELAB, FORFLS,
ITP, MYIDENT, TWORD, FILABEL, IFTPRNT, MYLABEL,
NOPRINT, TODAY, IOCVAR

SUBROUTINES CALLED: ABORT, WARNING, ERAZE, SCOPE PFS Operating System
Disk I/0 subroutines (LSTATUS, SEEK, LOCATE, DREAD,
DWRITE, DEOF)

CALLED BY: All programs of the QUICK system

.1

Method

The three entry points are at the same location. The three spellings of
the entry correspond to the spellings used in the calling sequences.

The only input from the calling program to TERMTAP is the buffer number
ITP in common block /ITP/.

For read status files, processing by TERMAP is very straightforward. As
shown in figure 6, tape files are rewound (statement 506) and disk files
are returned to their first sector address by subroutine SEEK (statement 505).
The file is set not active (statement 507), and ITP is restored to its
input value (statement 508), since its absolute value was used as the buffer
number.

For write files, processing is more complex for three reasons. First,
TERMTAP must empty the last data buffer onto the file and add a padding
record to the file. Second, the file label must be rewritten so that it
includes the number of words written on the file in its third word. Last,
if the file is a non-scratch disk file, its length must be added to the
disk directory file DIRC5162.

Before writing the last data record, TERMTAP must check the status of the
last write operation. (If the last data record is also the first data
record this check is not performed, as the last write operation was the
label write operation, checked in SETWRITE.) If errors are encountered

So

S0 ,:, .= ,,,•[- , • ,• •< . • •,• . • :• =•,: F : ,' . .: _ = • :• :. •• •. : 2.. , .. .• .. . : • ,: .A .. h .zi'"• .' 5 '

in writing either the last or next to last data record, TEflRNAP applies
the same error correction procedures described in subroutine WVRARRAY for
write operation errors. When all data records have been written success-

fully, a padding record is written. This record contains 96 words of the
word PADFILE. This record is required by the double buffering operation
of RDARRAY. While transferring data from one data record (in the filehandler

buffer), RDARRAY is reading the next data record from the file. Thus,
retrieval of information from the last data record requires a padding
record to follow. If this were not the case, an end-of-file error would
occur whenever data were retrieved from the last data record. If TE.RMTAP
encounters errors in writing the padding record, no attempt is made to
correct the error. Finally, an end-of-file mark is placed after the
padding record. (Operating system routine DEOF is used for this purpose
on all disk files.)

The file is rewound (for disk files, positioned at the beginning), and
the label is read. The number of words written on the file is inserted
in word three of the label and the file again positioned at the beginning.
The new label is then written on the file. No attempt is made to correct
I/O errors in reading or rewriting the label.

For tape files, the tape is then rewound. At that point, the operating I
system inserts two end-of-file marks and a short BC) record between the
label and the first data record. The file buffer is deactivated

(statement 507), and the subroutine returns control to the calling program. *1

For scratch disk files, the label rewrite is followed by the buffer return
processing of statement 507. For non-scratch disk files, the disk file
directory must be updated. The directory is read from the disk. The
logical file name is found in the active file list, and the number of words
wr.'tten on the file is inserted in the list. The directory is then re-
written on the disk file. No attempt is made to cdrrect I/O errors in
reading or writing the disk file directory. Also, if the logical file
name is not found in the active list, (.ly a v.irning message is issued.
In any event, control goes to statement 507 for buffer return processing.

51

Set Entry fdjfltifc~iti o
.Ad Save Input Variabl,

Is Buffer Numbe~r No / *
in Range? VY NZKOL

Yes

Isin Pile
Sctive

Nube 9ofK- 0

(aFiling. a 6. s SYbouin SetFilPonte

Noee NoBginn of '4)c

.3in

*U 507

~~Tape

1/O Lrrori olr yen NX3*
last Wri te 0(L)

No

55535

Save Numbelhi of*
W~ords Kri t tej No Ig

1/0I Errors? 'Q-. O NtX.3 <Ill~' U

NoL
L 5L6 No~dnhrihra

Fill Buffe r ith' L h7~ t(~

I/DI irroto?

N8oN

569 0

Save Last

Sector Written N

o

II r

Write 1:11d of' IH l
anld POs itil Di lk No

poiltuttr at

lDegilliiii g of hmileie

Read Fill Da tan~ inll I'l
Lobhel

No 517~i in i

Ye icos? S 0lit Vt I a~

99i NIX~l - Ii IrI

Fig.6. C lt)

(Shoot of 1

i--A

ktitt

N~xt?
801

N1X-1.2 A I 7 j. 4'I

S 1.
NTX'3 [)etesujtt

81 7

(I 1F trr -. ? YeI~ 1c)-.'tlt thIri Oy

Reset I:r-o"

Courtett'r

NIX=4 Sot l'u it t;IotI o~ I .o More Mian tj or

815 S

NIXIt

[lo~c I rl ~ t. No P ~ ~ j

Fig.C'.(cant)

(Sheect 3iL rf .1

A

803

NIX:v± IE,*IPI

NIX=8, 10 AO- 0

Tig- .c cn
(Sot4 of' l)

CHAPTER 3
SPECIAL-PURPOSE UTILITY ROUTINES

This chapter contains a description of the special-purpose programs
OUTFILE, RELO;\DF, DECLARES, and FILEDUMP. While these programs are
part of the QUICK utility package, 'they are presented in a separate
chapter because of the unique nature of the support functions they
perform.

The common blocks ,ised by programs OUTFILE and RBLOADF are described
in tab!(3 (following the description of program OUTFILE). The
common blocks used by DECLARES and 9ILEDUMP are applicable to other
utility routines and are, therefore, presented in appendix A.

56

i! -

PROGRAM OUTFTTLE

PURPOSE: To read information from disk files and write it
on magnetic tape in such a way that either the
"last program run can be repeated or the next
program can be rin by restarting the subsystem
(using program RELOADF to reload the disk files
from the magnetic tapes).

ENTRY POINTS: OUTFILE

FORMAL PARAMETERS: None

COMMON BLOCKS: BUFFERS, DIG'TARY, DISKIO, DWC5162, DSKHARD,
ERRMESS, ERRNUM, FILENOW, FILEREC, LOCATOR,
MACHINE, SAVWRIT, SUPRVIS, TAPHARD

SUBROUTINES CALLED: CLOSPIL, CLRCMON, GETDF, LOCATE, NODIRC, OPENSPL,
OUTBFTP, OUTERTP, SETHEAD

Method

The primary function of program OUTFILE is to dump information from disk
files used by a program in one of the QUICK subsystems onto spill tapes
in such a way that program RELOADF car be used to reload the disk filesfrom the disk files at a later time so that the QUICK subsystem can be

* restarted where it stopped.

OUTFILE itself does not read or write information to or from tapes or
. disks, but instead calls subroutines which handle these functions. First

it uses CLRCMON to initialize the variables in all of its common blocks.

Then it supervises the process by which the master directory (common/DRCS.162/) is read from the disk file wh("e name is contained in variableNNAMDIRC (common /SUPRVIS/). It reads the directory twice and each time
uses subroutine SEEK* to position the disk read head at the beginning of
the file. The full length of the directory is unknown until it is read;hence, OUTFILE first uses subroutine DREAD* to input 32 (LENLIST = 32)words of the directory. The second time DREAD inputs the full master
directory since now LENLIST = IIRC(1) which is the first word of the
master directory. In the event that end-of-file or parity errors ire

*1FS Disk I/0 subroutine

5%7

encountered during this process, OUTFILE repeats it until the error is
corrected or until it has failed MTIMESR (common /SUPRVIS/) times to
correct the error; in the latter case it calls NODIRC to write appropriate,
error information on the standard output file and to abort the run.

When the full length of the master directory has been read, OUTFILE calls
SETHEAD to determine the values of variables in the major directory
(common /LOCATOR/). This directory contains information about the manner
in which the disk files will be dumped onto the spill tapes; OUTFILE
writes this directory as the first file of the first spill tape. However,
if it encounters an end-of-tape or parity error, it calls OUTERTP with
the argument equal to 1, to correct the operation by repeating it.

Finally, OUTFILE controls the process by which the spill tapes are
written. OPENSPL is called once for each tape to set up and buffer out
the minor directory (common /DICTARY/), which references it, to the first
file of the tape (except for the first spill tape where the minor
directory is the second file). Then, for each record on the tapce OUTFILE
first calls GE-TDF to fill the input buffer from the current disk file(s),
and then calls OUTBFTP for the record to buffer out the output buffer to
the record on the spill tape. When all the records for a spill tape have
been buffered out, CLOSPIL is called to terminate the tapu and see that

OUTFILE terminates its processing after writing error recovery messages

to the computer operator and to the output file.

Table 3 lists the common blocks used by program OUTFIL,*. The flow of
operations in OUTFILE is shown in figure 7.

*Program REiLOADlF also uses these common blocks.

58

Tabc 3. Common Blocks (Programs OUTPIL.
and RELOADF)
(Sheet I of 5)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

BUFFE'RS INBUFF The index of the buffer currently being used
for input (INBUFF=l or 2)

IOUTBUF The index of the buffer currently being used
for output (LOtrfBUP=l or 2)

NSECTBF The number of disk sectors which will fit in
one buffer

LBUFF The length in words of one buffer

IOBUFF The input/output buffer (IOBUFF has the
dimensions LBUFF and 2 - i,e., lOBUFF(LBUFF,2))

DICTARY DICTARY is output as the first file on all I
spill tapes except the first tape where it
is the second file; it is the 'minor directory'
and refers to only one tape

M1A Spill tape number

NRtC Number of records on this tape .

IDENT Spill tape identifier

NUMONME Number of files on this tape

NAMEONT An array containing the names of files on
this tape (it is dimensioned MAXFIIIi - see
LOCATOR block description)

LONT An array containing the word lengths of files
on this tape (it is dimensioned MAXFILIi - see
LOCATOR block description)

DISKIO ISTART Index to the starting word in the input/output
buffer IOBUFF

lEND Index to the ending word in the input/output
buffer IOBUFF

ISTRFC Index to the starting word in the input/output
buffer for this record

IlNI)REC Index to the ending word in the input/output
buffer for this record

59

. ----- -----

I

Table 3. (cont.)
(Shcot 2 of 5)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

DRC5162 DRCSI62 is the master directory; it is main-
tained on the disk by the filehandler and
contains information about the disk files
which are to be spilled

LENIIST Length of the master directory file

NOWACTV The number of active files

LFNAME An array containing the names of the files

NOWORDS An a:ray containing the lengths in words of
the disk files

NINTRNL The number of internal scratch files currently
allocated to the program

LINTRNL The length in words of a scratch file

DSKIIARD This block contains information about the disk

hardware

NIVLSCT The number of words per disk sector

NSCTRAK The number of disk sectors per track

ERRMESS A conmnon block used in conjunction with
subroutine ABORT (see appendix A for description)

ERRNUM NTERRTP The total number of tape read or write errors

NCERRTP The number of tape read or write errors for
tile current tape

NT'INITAP The number of times which the current tape has
been changed

NTERRDF The total number of disk read or writc crrois

NCERRDF The number of disk read or write errors for
the current disk file

(A)

r!
Tab Ic .3. (cont.) j

(Sheet 3 of 5)

VARIABLE

BLOCK OR ARRAY DESCRIPTION

ERRNUM IAM10K An error recovery indicator for the spill tapes *1
(cont.) = 1 Successful error recovery

= 0 Unsuccessful recovery from error not J

on first tape
=-I Unsuccessful recovery from error on first

tape

IRPERR A disk file read or write error indicator
= 0 No error
*GT.O The number of words left in the file

after a parity error

.LT.O End-of-file error

FILE-NOW This common block is a work area for a read/
write operation affecting the current disk
file

NAMLNOW The logical name of the current disk file

NWORDNW The number of words read from/written to the
current file

LIMIT The number of words left to be read from/written
to the current file

LOCNOW The address of the present sector in the
current file

NUMNOW The number of the current file

NXTRAIL The number of trailer words for the current
disk file to be read from/written on the
current spill tape

NXTHEAD The number of header .,ords for the current
disk file to be read from/written on the
current spill tape

FI LREC LFILABL The length of the filehandler disk file label
record

LPIIYREC The length of disk physical records which are
provided by the filehandler

61

Table 3. (cont.)
(Sheet 4 of 5)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

LOCATOR This block is the first file on the first spill
tape and is the major directory for the spill
tapes

NTAPES The number of spill tapes used
NFILES The number of disk files spilled

MAXFILE The maximum number of disk files which can be
spilled

NAMES An array containing the logical file names of
the disk files dumped onto the spill tapes; it
is dimensioned MAXFILE

LENGTHS An array containing the lengths in words of
the disk files which are contained on the
spill tapes; it is also dimensioned MAXFILE

MACHINE IREAD Logical unit number for standard input file

IWRIT Logical unit number for standard output file A

ICOMM Logical unit number for standard comment file
to computer operator

IPUNCH Logical unit number for standard punch output
file

SAVWRIT This common block saves the starting pointers
for the first data on the current spill tape

NUMSPRT The file number of the first disk file on
the current spill tape

LOCSTRT The disk sectjr address for the first data on
the current spill tape

NXTIISV The number of header words to be output on
the spill tape before any disk files are dumped

"NXTTSV The number of trailer words to be output on
the spill tape before any disk files are
dumped

NNDRDSV Number of words already input from the first
disk file and written on the current spill tape

62

Table 3. (cont.)
(Sheet 5 of 5)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

SUPRVIS MAXUNIT The maximum number of spill tape logical units

IUNIT An array containing the three logical unitnumbers of the spill tapes

NOWUNIT The logical unit number of the current spill
tap.-

NAMDIRC The logical file name of the master directory
(i.e., common /D[RC5162/)

MTIMESR The maximum number of times the program attempts
to correct a read error

MTINIFSW The maximum number of times the program attempts
to correct a write error

MCHANGE The maximum number of tape changes allowed
while attempting to correct a tape error

LWRIT The number of words written from the current
output buffer onto the current spill tape
record

LDIM The dimensioned length of the master directory
(common /DRC5162/)

IDNTSAV The value of IDENT which is set in subroutine
CLRCMON

LUNDISK The logical unit number for disk

LNGHDTL The length of the header and trailer blocks
which precede and follow, respectively, a disk
file which is dumped on a spill tape

TAPHARD This block contains information about the
magnetic tape hardware

MXWDSTP The maximum number of words which can be written
on one reel of magnetic tape if the physical
record size is LBUFF (in common /3tJFPlRS/)

IMOI)E The parity mode of tape I/O operations
I if mode is BINARY

I

6/

f START

CalCLRCV1ON

Call TIMAOAY
Call GETVATE

Time and tlate
Are Used in
OutPut Hleading

Ivrite Output I," d in g
to Operator and
to Output File

Set ITIMEA-i
Set LENLIST=3:
Set !TRY-l

/DRC 162/on NAD1RCCall SEEKIR

- jg 7. P rng .fl 'F)I

Read t 1 of D!

64~ i ELITWrso

755

SL irN~ t 't1I UNI! d l)

-0 r IUNý sthe Fi rstc

teFrtSpill Ta pe)

0I
Set O r art Error Rncounterc

ReoerFo FO orst)1
Indicty ror Sucessul

Write fOeadon

teFirst Spill rape

fr
_ac

the Wh

Spi ll
Tapera in

i rg
ý

90g 7. P (orn art y rorEcunee

V , Is Att em t 2o Nof

ReoerF5 HFo

Call OUTBPTPMsaetOeao n
to Optpn Next

Spi. 1Tapep

rro

75Kg 7.no (crctortoJ

(No Sil TpeSucesfl? (Frs Sil Tpe

First~~~
Sp

l i o

.rc1

SUBROUTINEi CLOSPIL

PURPOSE: To terminate the spill tape and to recover from
end-of-tape or parity errors on a spill tape,
if necessary.

ENTRY POINTS: CLOSPIL

FORMAL PARAMETERS: None

COMMON BLOCKS: BUFFERS, DICTARY, EFRNUM, F ILNOW, LOCATOR, MACHI NE,
SAVWRIT, SUPRVIS

SUBIIROUIINEiS CALEID!: OT'I'I'I, ANOTHER

CALLED] BY: OIITFI LE

Me thod

Subroutine CLOSPIL first checks the status of the spill tape which it is
to terminate. If an end-of-tape or parity error was encountered by
OUTFILE when it tried to write on the tape, CLOSPIL calls OUrIiT2P with the
argument equal to 3 to attempt to recover from the error. If recovery is
saccessful, CLOSPIL continues processing the tape as indicated below.
Otherwise OUTERTP aborts thc run.

If and when all records have been successfully written on the spill tape,
CLOSPLL puts an end-of-file mark on the tape. CLOSPIL uses subroutine
ANOTHiER to unload the terminated tape.

CLOSPIL then instructs the c.1mputer operator first to save and label the
old tape and, if another spill tape is to be required on the tunit, to mount
a fresh tape on the same tape unit. CLOSPIL completes its processing by
resetting the variables in common block /SAVWRI T/ m(I writinIg a tiessatge
to the output file concerning the number of errors encountered and col-
rected before the spi.ll tape was successfully written.

Subroutine CLOSPIL is il lusttrated in figure 8.

(7

4-

Opera t Ion What I-t Status of Operation

Parity Eroro l,
Successful W~rite Operation? ini Ir~r

A a P r
ity

E r
r r

o r LoS

Calpu Ii ZrL8S po l R aetcv Fi
,m

T',

Xi. . ubrout on Ti a lS~ L

68tISUFI

SIJBROUTINE CLRCGMN

PURPOSE: To clear or initialize all common blocks for
program OUI'FILE (or program RELOADF).

ENTRY POINTS: CLRCMON

FORMAL PARAMETERS: None

COMMON BLOCKS: BUFFERS, DICTARY, DISKIO, DRC5162, DSKHARD,
ERRMESS, ERRNUM, FILENOW, FILEREC, LOCATOR,
MACIIINE, SAVIVRIT, SUPRVIS, TAPIIARI)

SUBROUT'INES CALLED: None

CALLED BY: OUTFILE (or RELOADF)

Method

Subroutine CLRCMON initializes all the variables in the common blocks used
by program OUTFILE (or program RELOADF). It assumes that the variables

LBUFF, MAXFILE, MAXUNIT, and LDIM have been set by DATA statements at
load time; tho variables are defined in the calling program. There is no
significance to the order in which the common block variables arc initializec

Subroutine CLRCMON is illustrated in figure 9.

69

Initialize "Hardware"l
(/MACIIINL:I, InSKJIARD/, and

/TAPHARD/) C6mnons

Initialize /B[iFF11RS/
Common Block

Initialize Variables
in 'Directories' (/DICARY/,

/DRC 5162/, nnd /LOCATOR/
Common Blocks)

Initialize /SUPRVIS/,
and /ERRNUJM/ Common

Blocks

Initialize Other
Commons (/SAVWIRIT/,

/FILENOW/, /DISKIO/, /FILEREC/)

CREMIRN

i 9. Subroutitic CLRCMON

70

††,.
.

SIJBROUTINE' GIiTDI

PURPOSE: To set up a disk f.ile for input into OUTFIIlI.

ENTRY POINrS: GriTDF

IFORMAL PARA'.IEITIiRS : None

COMMON BLOCKS: BUFFERS, DISKIO, DISKIIARD, IiRRNIIM, FILMLNOW, I1 LEREC,
LOCATOR, MACIHINE, SAVWRIT, SUPRVIS

SUBROUTINES CALLED: TNIIIJFDK, INLIRRDK, INILAI0I,

CALLED BY: OUTFILE

Method

If, when the last call to GETPDF occurred, the last word placed in the
input buffer either immediately preceded a trailer label or was part
of a trailer or header label for a disk file, subroutine GET'P now places
the remainder of the trailer label and the header label (or the re-
mainder of the header label) at the beginning of the input buffer; then
it calls INLABEL to place the filehandler label after these labels
in the buffer.

If the remainder of the input buffer can he filledI from the current disk
file, GETDF determines how many words are needed to fill it and callsINBUFI[K to actually transfer the words from the disk file into tile buffer.

However, if more than one disk file is required to fill the buffer,
GETDU processes one file at a time until the buffer is full. First it
calls INBUFDK to place the reniainder of the current file into the
buffer; after that it places the whole trailer Libel into the buffer it'
it will fit. (Otherwise, part of the label is -.,avcd for the next
buffer.) Then it determines whether the header label for the next disk
file can be added to the buffer and places it there if it fits. (Again,
part of the label Ls saved for the next buffer if it does not fit.)
Finally, it calls INLABE[, to place the filehandler label for the new
file into the buffer. If the buffer is still not full, the length of
the new disk file is compared with the size of the remaining buffer
space to determine whether this file will now fit into the buffer; then
processing continues as described above until the buffer is fiill. I

ihenever end-of-file or parity errors are encountered by INBIIPI)K or INIABIEI.
while these routines are read ing words from the disk fi les, GH'IOF calls

71

#j

INERRDK to attempt to recover from the errors. When the recovery is
unsuccessful, warnings are written to the output file and an appro-
priate amount of the input buffer is filled with the error message
PAR ITYER.

Subroutine GETDF is illustrated in figure 10.

72

72

STAIPT

Set I Eulqi to
index of Current

lInput Hiuffer

Set the First NX I cA I LWrds of thlt I tputi
Buffer fiqua I to the
Name of the LA S t

Current File

set thei Ncevt Mir i7
Words of the Input
Buffer Equal to the

Name of the
C urrent VilIe

NXTRAI L 4 NXrIII'AF - I

F. tiror~~~~~~~~al trvos GTDV fro ror the Bfe egh AIY~

100

Se(See 1ube of Wor)

Read rom Crr7n

A

Se HILNIJ l~qua1 to
the Lengt of

thle Ipt~f

Is Fileliundler

Label fer Cur r nt No
File lNeeded?

Caill INLABEIL
to Inlput

I'llehianjlier Label

it of 6o rds Requested

to Attemptf Nuriber Of Words Isi
Errr tcvei CrrNot Inptega Nuffer 0

tfhe YsictReorArdrsi
of , kamv ~t ile

Cal.11."'

tig .10 (cant.)

oree of inf 4

C

Sot ILNO Equal to
Number of Words

FiYesnlc Is~j Fieado

Filhannd lEN Inlcc

1:0
TRse Ig 10 "cnt .

R(Shet 3 of t)

Call INLRU LWK Ii0 r hhir'i I" Statuis Opowrtt Iji
to Retcover if I"St V isý Read

Prom I rro r P0 1 t > re rt ion'? i n P rogres

180 0vri I on Comp1 le tell

Set NUflki Iqul
to Jel1Co. of Nv ',t

Rei~e Conlm

to Zero

-a l LI

Posi. 10. ()ont
at.~' Be on' g,

ofNe F

SUBROUTINE INBUFDIK

PURPOSE: To fill the input buffer from the current file
on the disk.

ENTRY PoINrs: INBUFDK

FORMAL PARAMETIRS: None

COMMON BLOCKS: BUFFERS, DISKIO, I)SKIIARII), F1I LlNOW, F ILFLREC,
SUPRVIS

SUBROUTINES CALLED: INERRDK

CALLED BY: GETDF, INLABEL

Method

Subroutine INBUFDK first determines how many whole physical records must
be read from the current disk file to fill the input buffer from ISTART
to IEND; it calls DREAD* once for each record to actually fill the buffer.
Before each call to DREAD, INBtJFIK calls LS'rATUS* to determine whether
the last disk read operation has been successfully completed. If an
end-of-file or parity error has been encountered, INERRIDK is called to
attempt a recovery from the error. Finally, if only a part of a physicll
record must be read to finish filling the buffer, a last call to DREAD
is made to perform the operation.

Subroutine INBUFDK i- illustrated in figure 11.

*P'FS 1/0 disk subroutines

77

|I I I I I I I I I I I I I I I I I I

the Inde.x cf tlho
Current I !)JI Sut r B1 I -

Fore What is

Call Call the SLaI

to Attempt trror ut ReadtO
R e c o v e ry . r O p u r a !o n o th e D is k I

F jr '-w FI'ut1 Li -nc' I I oJV)K

No s Nmbe o Words 2

tob 7ed8 rmDs

sos

Call ~ ~ al I)RI:AUK L ý7I
to Attemp 01'tol 1 14u Read

(Simc at 2 oil 2;)vjl

Pravius N k~li6 Crr79

SUBROUTINE 1NELRRDK

PURPOSE: To repeat a disk file read operation which
terminated because of an end-of-file or parity
error in order to correct the read if this is

possible.

ENTRY POINTS: INERI.DK

FOR14'L PAILAMET'-RS: I - An error type indicator.
I = I if input end-of-file error
I = 2 if input parity error

COMMON BLOCKS: BUFFERS, DISKIO, DSKIIARD, ERRMESS, ERRNUM,
FILLENOW, MACHINE, S11PRVIS

SUBROUTINES CALLED: WARNING

CALLED BY: GETDF, INBU17DK

Method

Subroutine INERRIJK calls WARNING to write a disk read error message on
the output file. Then it calls SEEK* to reposition the current disk
file at the beginning of the physical record so that DREAD* can be used
to repeat the attempt to read the physical record. If the read cannot be
successfully completed in NI'IMESR (common /SLIPRVIS/) correction attempts, .
INERI)DK writes the message; IIRRECOVIiRABLE RMA) LOF (or PAR ITY) ERROR ON
DISK FILE to the co:mputer operator and on the standard output file,
Th'len it uses WARNING to write a DISK FILE ABANDONED message on the standard
output file. Finally, INIPRRDK fills each word - corresponding to a word
of the physical record which cannot be read - with END FHA;' or PARIJI'YLI
depending on the type of error,

Subroutine INERRDK is illustrated in figore 12.

*IFS Disk I/0 sub rout i neS

ND!

STA RT

I c Al PIredy 1lvi {ljI N'

No

S t .1 1q aIto
rrr liyL, Iod ic tol

Inc reinvit,

1:ro rrourit

nCa I IvA I N r ,1(

lie rL'.¶vnIt 1.rii

Curr,.jit D)irkIII

linve Ynn~
Ilven 11. lie'

No

1 to Rl-eoitio Il,)i.I

Hic~ for ai Rea;d

Cal I IlilIAI)
to 1111 t I'll. .I iZ. I
Pecord I 1 11 1

to'I 'I-t.O : io I
L(1

I''A

12 I Su rill

1000

Encode Disk
File Name for
Error Mtessage

Call'WARNING

1200
Errot OTcuredo Parity Fill Rest of

During the Disk Read? Error PARITYER Message

00 Reset Counter for

Fill RestSlioof 2orsLf t 2) Cure

Fil2(

SUBROUTINE INLABEL

PURPOSE: To read the filehand]er label for each disk file.

ENTRY POINTS: INLABE[L1

FORMAL PARAMETERS: FLAG - Is a logical variable having the value
.TRUE. if the filehandler label must be
input and . FALSF. otherwise

COMMON BLOCKS: DISKIO, ERRMESS, FILIiNOW, FILFI1C

SUBROUTINES CALLED: INBUFDK, WARLNING

CALLED BY: GETDF

Method

Subroutine INLABE1, tests the value of FLAG; if it is FALSE, the call to
INLABEL was extraneous and INLABEL calls WARNING to write the message
EXTRANEOUS CALL FOR LABEL INPUT on the standard output file. If FLAG is
TRUE, INLABEL resets the TEND index to correspond to the last word of the
filehandler label and calls INBUFDK to input the label from disk. Then
it resets the ISTART and TEND indices as well as the word counter for
words read from the disk file so far. Finally i.t sets FLAG equal to
.FALSE..

Subroutine INLABEL is illustrated in figure 13.

83

START

10

Should Filchainiilr Yes av ILND Index

Curn Pig. Fie a~.Sbrotfc, ISAVNDAL

No.

SUBROUTINE NODIRC

PURPOSE: To print an error message and abort the run if
program OUTFILE (or RELOADF) is unablc to read
the master directory, common /DRC5162/, or if
RELOADF is unable to read the major directory,
common /LOCATOR/.

ENTRY POINTS: NODTRC

FORMAL PARAMETERS: None

COMMON BLOCKS: DRC5162, ERRMESS, MACIHINE, SUPRVIS

SUBROUTINES CALLED: ABORT

CALLED BY: OUTFILE (or RELOADF)

Method

Subroutine NODIRC writes the message UNABLE TO READ DIRECTORY OF ACTIVE
FILES to the computer operator and dumps the contents of the current
directory. Then it calls ABORT to abort the run.

Subroutine NODIRC is illustrated in figure 14.

85

' t

START

Write Error
Mess age

to Computer
Operator

Write Current ./Directory Contents
o n Out~put File/

Encode an IAbort Message

Call ABORT

the Run

RETURN

I-ig. 14. Subroutine NOIJRC

86

SUBROUTINE. OPUNSPL

PURPOSE: To set up a spill tape for writing information
from disk file(s).

ENTRY POINTS: OPENSPL

FORMAL PARAMETERS: None

COMMON BLOCKS: BUFFERS, DICTARY, ERRNLM, FILENOW, LOCATOR,
MACHINE, SAVWRIT, SUPRVIS, TAPIIARD

SUBROUTINE'S CALLED: OUTERTP

CALLED BY: OUTFILE

Method

Subroutine OPENSPL determines how many of the current disk files not yet
writter, on spill tapes will fit on this spill tape. Then it determines
how many records on the tape should be written to contain the disk file
information. The length of each record is the length of the input/output
buffer. During these determinations, it sets the values of the parameters
which are used during the tape writing process. (These parameters are
contained in common block /DICTARY/.)

As soon as these tape write parameters have been calculated, OPENSPL
determines the logical unit number for the spill tape and rewinds tile
tape if it is not the first spill tape to be written. Then it writes
the minor directory (common /DICTARY/) on the tape and also on the output
file. If the write operation to the spill tape fails because of an
end-of-tape or parity error, OPENSPL calls OUTERTP with the argument
equal to 2 to repeat that operation until it is successful or impossible
to complete. In the latter case, the run is aborted. Finally, SEEK* is
called to reposition the disk read head for input.

Subroutine OPENSPL is illustrated in figure 15.

*PFS Disk I/O subroutine

I
871

.!J

CTD
Initialize Number of
Words to Go on Spill
Tape (NMTOGO) at

Naximum Allowed11,

F, by SubtractinR Lengths of Trailer

T Ter, porarily
kesez

Length
of Currint

k and of Block of Wordh Already
I'M Written From the Disk

200

D termli Numlo r of Va for Lachh. - T.R:cords Done Disk File Not A)re.dy
Which Will I [old the Written on Spill Tape 40h. T DoneRemaining Diik FJ le (Do 200 I-NUMOW,

Information NFTLFS)

Subtract Lengths of File and of 11oad rand Irailer Blocks, From Nusnmo to Get NTE 7tP

No Will Entire File
Tape?

RiFit

11.

Value

Pit on Tape?

orR t NUýrrooo
to

Yes (NT[mr is Positive)

,41 r. M1,
Vistelue 0 MIT"I

%U IrOGO to

Set Value of the
Tape File Length

300

Determine Maxi um
Number o f Re Comils
Mich Will F i t

on t he. Tape

theý L'ý",!,h

Restore the Length
of the Current i:iiel

Set Error Recovery
Ind i cator to I

Determine Logical
Unit for the
Spill Tape

Fig. 15, Subroutine OPENSPI,
(Sheet I of 2)

88

Yas Is This the
First Spilll

"4
A

/Rewind the
Taipe

S I s C'' 'I/ ~ U PC No

|-! c.,n RewouTnd

Yet?

Pig.O5perc t io.u)esu

.'.
= Informant io o

pDc_ 'A R a on

(to t~ept ErOutput Ofi

Recovery) Par ity p r tion!D sk
fror aRed [

Fig.upu 15ile~t,

(Sheet 2 of ,

89

- * J - .* -

SUBROUTINE OUTBFTP

PURPOSE: To buffer out the information in the output
buffer to the current spill tape.

ENTRY POINTS: OUTBFTP

FORMAL PARAMETERS: None

COMMON BLOCKS: BUFFERS, DICTARY, SUPRVIS, TAPHARD

SUBROUTINES CALLED: OUTERTP

CALLED BY: OUTFI LE

Method

Subroutine OUTBFTP first checks to determine whether the previous buffer
out operation to the spill tape is completed. If this operation resulted
in an end-of-tape or parity error, OUTBFTP calls OUTERTP with argument
equal to 3 to repeat the operation until it is successful or until too
many rewrite attempts cause the run to be aborted. When the previous
buffer out operation has been successfully completed, OUTBFTP buffers out
the current information in the output buffer to the spill tape.

Subroutine COUTBFTP is illustrated in figure 16.

I

- - - - t.-.--". ..- .~

20910

I

SUBROUTINE OUTERTP

PURPOSE: To repeat a tape write operation when an end-of-
tape or parity error develops, or to abort the
run if the write operation cnnnot be successfully
completed.

ENTRY POINTS: OUTERTP

FORMAL PARAMETERS: I - Is used to determine the nature of the
information being written on tape when the
error developed
I 1 if the major directory (common

/LOCATOR/) was being written on the
first spill tape

I 2 if the minor directory (common
/DICTARY/) was being written on the
current spill tape

I 3 if the current output buffer was
being written on the current spill tape

COMMON BLOCKS: BUFFERS, DICTARY, ERRMESS, ERRNUM, FILENOW,
LOCATOR, MACHINE, SAVWRIT, SUPRVIS, TAPHIARD

SUBROUTINES CALLED: ABORT, ERAZE, NEWUNIT, SKIPFILE, WARNING

CALLED BY: CLOSPIL, OPENSPL, OUTBFTP, OUTFILE

Method

First subroutine OUTERTP calls WARNING to write an error warning message
on the output file. Then it determines whether the major directory, the
minor directory, or the output buffer was being written on the spill
tape when the end-of-tape or parity error occurred. In each of the
three cases OUTERTP positions the tape at the beginning of the record
which was being written, calls ERAZE to erase six inches of tape and
repeats the buffer out operation which was previously unsuccessful.

If the error recurs even after MTIMESR (common /SUPERVIS/) correction
attempts, the tape unit is unloaded and the unit released by calling
NEWUNIT and a fresh tape is mounted on a different tape unit; the disk
pointers are then reset for the beginning of the disk file. (The first
attempt to write on the new tape is made by the calling subprogram; thus,
OUTERTP does not write on the tape unless errors are again encountered.)

92

I]
If the error cannot be corrected after changing the tape NTIMTAP
(common /ERRNUM/) times, it is considered irrecoverable; in this case
appropriate messages recording the nature and number of errors are
written to the computer operator aid to the standard output file, after
which OUTERTP calls ABORT to abort the run.

Similarly, under those circumstances where all the available tape units
have been released because of errors, error messages are written to the
output file and the run is aborted by a call to ABORT.

Subroutine OUTERTP is illustrated in figure 17,

I

• 93

Ira rte

E~ncode Pari ty

lItervneturi

Correct ion

o0f 20 rrc No 30

De cI opI te il

Iig Spi. Tap Rouind Firt CllRTPZ
the Firt One(Sli1Taet to ofa 2)

Inie94v~~

1000
Inicrement tlTrape Change

Counter

11(00
Write error

esaeto Yeq Have EnoughM ess r Tape ChangesComputer

Operator [len lrid?

Encode 1:tror ,,,ttrtor Rccovery
Mescage fur Sub- hadiiator Iiqua to

routine_ AERT - fSpill Tape

Write Contents Write esosage to
of Error Counters /Cooputer Op.rato

i j on Output File Indicating Release
of Tape Unit

Call NEiUNIT
Call ABORT to Unload Tape

to Abort the Run and Release
Tap e Unit

Dceroii LargestRETURN Tape Unit Number

of Units Currently
Used

g .1700
/Is aximm •Uit• O !/ Write Messuge

IS "Uto Couter O-rator)5 to Mount a FreshThan 4? / / Tape and Label It/Y*es
Encode Error

Message Reset the Disk
for Subroutine Poi;iters

ABORT

SEncode a warning

Mes sage

Fig. 17. (cont.)
(Sheet 2 of 2)

95

SUBROUTINE SETIlEAD

PURPOSE: To prepare daia for the major directory (common
/LOCATOR/ before OUTFILE writes it out onto the
first spill tape.'

ENTRY POINTS: SETitEAD

FORMAL PARAMETbRS: None

COMMON BLOCKS: DRC5162, ERRIESS, FILEREC, LOCATER, MACHINE,
SUPRVIS, TAPHARi)

SUBROUTINES CALLED: WARNING

CALLED BY: OUTF FILE.

Method
bedmedo piltp exed thiixmn,~XXEwihcnb de

Subroutine SETHEAD first 'detertnines whether the number orf disk files to;be dumped on spill tape exceeds the maximum, WAF.ILE, which can be handled

by OUTFILE. If it does, WARNING is called to write the message TOO MANY
FILES TO SPILL on the output file; in this case OUTFILE: will daunp only
the first MAXFILE files. I 1 o

Finally, SETHEAD determines the values of the variables in the, major
directory (common /LOCATOR/,).

Subroutine SETHEAD is illustrated in figure 18.

96

3. ,,.

STAR

uIF:Fie.t

Yes CIs Nuber o
RI
TI

"Fig.' 18. Flsubruie SpTiEAD

Me. Grater anl97

I.I

PROGRAM RELOADF

PURPOSE: To reload disk files from the spill tapes pro-.
duced by program OUTFILE so that QUICK subsystem
processing can be continued o'r repeated.

ENTRY POINTS: RELOADF

FORMAL PARAMETERS: None

COMMON BLOCKS: BUFFERS, DICTARY, DISKIO, DRCSI62, DSKMARD,
ERDIESS, ERRNUM, FILENOW, FILEREC, LOCATOR,
MACHINE, SAVWRIT, SUPRVIS, TAPHIARD

SUBROUTINES CALLED: CLRCMION,* UNDTAPE, GETDATE, GETLOC, INBUFTP,
NEXTAPE, NODIRC,* OUTDF, TIDILDAY

Method

Program RELOADF first calls CLRCMON to initialize the variables in all
the common blocks. Then, after writing an output header (using TIMEDAY
to obtain the time and GETDATE to obtain the date) on the output file
and the message file for the computer operator, it calls GETLOC to
input the major directory, /LOCATOR/, from the first spill tape. (GETLOC
calls ABORT to abort the run if this directory cannot be read.)

Next, for each spill tape, RELOADF first cills NEXTAPE to input the
minor directory, /DICTARY/, from the tape. INBUFTP is called to input
the first record from the spill tape. Then, for each of the remaining
spill tape records, the indices of the input and output buffers are
switched, INBUFrP is called to fill the current input buffer from the
spill tape, and OUTIDF is called to set up the disk files by calling
OUTBFDK to transfer tihe data from the output buffer onto the disk file.
Finally, the indices of the input and output buffers are switched again,
and RELOADF calls ENDTAPE to finish reading the current tape, to release
it, and request that another spill tape be mounted (when more than
three spill tapes are used); OUTDF is called once more to transfer the
remaining data to the disk file(s).

When all files listed in the major directory, /LOCATOR/, have been
reloaded, RELOADF calls ENDTAPIE to finish reading the current tape and
discontinues its processing of the spill tapes.

*DcscribcJ in program OUTFILE

98

In all cases, when processing is completed, RELOADF writes tape and
disk error counter messages on the standard output file and on the
output comment medium and also the message PROCESSOR RELOADF COMPLETED.

The common blocks used by program RELOADF are the same as those
previously described for program 'iUTFILE. See table 3.
Figure 19 shows the flow of operation within program RELOADF.

9I[I

I

99

Gp1
Call CLRCHION

to Initialize Com.non Bloc•,

Jmii IMIIPAY
Call GETDAii"

to Get Output ileadcr

r rite OutputHeader to Computer
Operator and to output Plie

Call GETLOC
to Obtain Major Directory

B . Do

Do for Each Done
Spill Tape C

Set llM
Equal to Spell

Tape Number

Call NEXTAIPr
to Load Next
Spell Tape

Call INIIUFIP
to Pill First

LH Buffer Prom Tape

Set NRIECHI Equal u
to One Less Than

the Niumber of Rlecords
on the Tape

Fig. 19. Program RELOADF
(Sheet 1 of 2)

100

A

Do for Each Done Switch the Indices
of the Input and

Record on the 'rope
J O Output Buffers

-ýo
Switch the Indices all ENDTAPE

of the liq to Complete Reading
Output BL Current Tape

Call INBUVTP Call OUTDF
to Buffer in a to Write Buffer

Spill Tape Record H Onto Disk

Call OUTDF Is File Index
to Write Buffer Yes Greater Than

Onto Disk Number of Filem?
r+No

1000

No Is File Index B
Greater Than
Number of-Files?

Yes
3000

Call ENDTAPE
For Early Tape
Termination

C

Write Tape and0 ? EDisk Error MessagesWrit e Tape an dt to Computer Operator
Outp.jand on Output File

.g to/ýWrite Termination
0 Opr.t.r

Message to Computer
perator and onOutputOutput File

Cst-p D

Fig. 19. (cont.
(Sheet 2 of 2)

101

SUBROUTINE ENDTAPE

PURPOSE: "omplete tho reading of the current spill
e.

ENTRY POINTS: ENDTAPE

FORMAL PARAMETERS: None

COM•ON BLOCKS: DICTARY, ERRNUM, LOCATOR, M\ACHINE, SUPRVIS

SUBROUTINES CALLED: INERRTP, ANOTHER

CALLED BY: RELOADF

Method

Subroutine ENDTAPE checks the status of the last tape read operation
for the current tape. If the operation terminated with an end-of-file
or parity error, it calls INERRTP to attempt to reread the record.

When the tape has been successfully read, ENDTAPE calls ANOTHER to
release it and then checks to see if the tape unit will be needed for
another spill tape. If so, ENDTAPE instructs the computer operator to
mount the next spill tape on the tape unit.

The subroutine returns afte printing out error counts which indicate
the number of tape read er.ors encountered on the last tape and on all
the tapes read so far.

Subroutine ENDTAPE is illustrated in figure 20.

102

20

to Rccover From Error EDP or What IS thle Status

Set LhiRIT
E~qual to ihe Length

Of the Current Spill Tape

Call NOTHEIR
to Release the
Current Tape

WriSp Tae BessNgedto
M-Ount a Taeo Thie Unit?

Pig 20 Sbrotin E D~etemn

Spl103 Nme

WriteMessge t

_opue _prao Jo

r!
SUBROUTINE GETLOC

PURPOSE: To read the major directory to the spill tapes

(common /LOCATOR/) from the first spill tape.

ENTRY POINTS: GETLOC

FORMAL PARAMETERS: None

COMMON BLOCKS: DRC5162, ERRMESS, LOCATOR, MACHINE, SUPRVIS,
TAPHARD

SUBROUTINES CALLED: NODIRC, ABORT A

CALLED BY: RELOADF

Method

Subroutine GETLOC first attempts to buffer in the major directory --

common /LOCATOR/ -- from the first spill tape. If an end-of-file or
parity error is encountered during the buffer operation, the tape is
rewound and the buffer attempt is repeated. If this buffer process
is repeated MTIMESR, common /SUPRVIS/, times without success, GETLOC
determines how many words have been read successfully from the tape
and places them (the words) into the master directory (common /DRCS162/)
so that it can then use NODIRC to print out error information and
abort the run.

If, on the other hand, the buffer operation is successful, GETLOC
checks the value of MAXFILE (which is the maximum number of disk files
contained on the spill tapes) against the value of MAXFILE set earlier
in RELOADF If they are not equal, then either RELOADF has not been
updated to correspond to program OUTFILE, or the value read from the
tape is in error for some other reason. In either case, the discrepancy
is encoded into an error message and ABORT is called to abort the run.
The computer operator is also informed of the discrepancy.

In the normal case where the major directory is read successfully and
MAXFILE does not have an unexpected value, GETLOC writes the major
directory on the standard output file and processing control is returned
to RELOADF.

Subroutine GETLOC is illustrated in figure 21.

104

et M;%XLLU Equal to
Maxieum Number of

'Disk PlIcs hihlch Can Be- Spilled

Initializo

ITAY Counter to Zero 7

the Length Of' thhe Numetry of the Msaet

RelceteFirst SilTo

Maser Courntter byitn

PiRwit LNtA More o

thefe iejo /ireATOR/

CaFrl NOPL)IR

aufer Abotteps the Runfe

Fie. 21. Subrutin EncTdeC
t o N m b e o f o r d fl a V a u e o Y e E r r r M s a "

RedFo h is pl aeKX105 Chnet eUs2db 5

- - - ~-.---- ~ No

SUBROUIINE INBUFTP

PUkPOSE: To buffer in a spill tape record into the input

buffer.

ENTRY POINTS: INBIJFTP

FORMAL PARAMETERS: None

CO•MON BLOCKS: BUFFERS, DTCTARY, SUPRVIS, TAPHARD

SUBROUTINES CALLED: INERRTP

CALLED BY: RELOADF

Method

After setting local variable I equal to the index for the current input
buffer, INBUFTP checks the status of the last buffer in operation for
the current spill tape. If the last operation ended with an end-of-file
or parity error, INBUFTP calls INERRTP (with argument=3) to repeat the
operation until it succeeds or until the error is encountered at least
MTrIMESR, common /SUPRVIS/, times; in the latter case, the unfilled
portion of the buffer is filled with the word PARITYER.

Whether the preceding operation ended successfully or not, processing
control returns to RELOADF after INBUFTP first saves the length of
the last record read in LWRIT, cnmmon /SUPRVIS/, and then buffers in
the next tape record into thf input buffer.

Subroutine INBUFTP is illustrated in figure 22.

10
106

S TA RT

Set I E~qual to
the Index for the

teInput IlUffer

20 10

SUBROUTINE INERRTP

PURPOSE: To repeat a tape read operation which terminated
with an end-of-file or parity error in an effort
to correct it.

ENTRY POINTS: INERRTP

FORMAL PARAMETERS: I - An indicator which reveals the nature of the
information being read from tape when the
error occurred
I = 2 if the minor directory was being read

from the tape
1 = 3 if the current input buffer was being

filled

COMMON BLOCKS: BUFFERS, DICTARY, DSKHARD, ERRMIESS, ERRNUM,
FILENOW, LOCATOR, MACHINE, SUPRVIS, TAPHARD

SUBROUTINES CALLED: WARNING

CALLED BY: ENDTAPE, INBUFTP, NEXTAPE

Method

After encoding the error message READ PARITY ERROR OR END OF FILE ON
UNIT , INERRTP calls subroutine WARNING to output the message and
otherer--ror information. Then it attempts to repeat the buffer in
operation which caused the error. First, it backspaces the tape to the
beginning of the record; if the current tape record is to be reread, each
word of the input buffer is first filled with the message PARITYER. Then
depending on whether the formal parameter I is 2 or 3, the minor directory
(common /DICTARY/) cr the current tape record is buffered in from the
current spill tape. In the latter case, the words input from the current
tape record replace the words PARITYER in the input buffer if the operation
is successful.

In either case if the "buffer in" operation is not successful, the tape-
read error counter is incremented and the process described above is
repeated until it is successful or the number of reread attempts exceeds
the value of the variable MTIMESR in common /SUPRVIS/.

If MTI'ESR attempts have been made to correct the read, and if end-of-file
or parity errors are still encountered, INERRTP encodes the message UNABLE

108

TO READ MINOR DIRECTORY ON UNIT if I is 2 or IRRECOVERABLE READ ERROR
ON SPILL TAPE ON UNiT if I-is 3; then it calls WARNING. Further.
if I is 2, 1NER'P determiiin"• whether the variable specifying the maximum

number of records on a tape (NREC) has been changed by the flawed read
operation and whether the number of disk files on the spill tape (NtJMONME
in /DICTARY/) is less than or equal to MAXFILE. If either of these
conditions is not satisfied, NREC or NUMONME, respectively, is reset.
When I is 3, INERRTP determines the starting and ending addresses in the
current disk file being written for the current tape record and writes the
information on the standard output file.

In all cases, before control is returned to the calling subprogram,
INERRTP resets the value of IAMOK, the error recovery indicator.

Subroutine INERRTP is illustrated in figure 23.

1

[109

Inctrement Counterj
for Total Number of
Tape Read Errors

r Increment Counter
for Number of Tape Read
Errors, on Current Tape

Encode Warning

Message for the
Read Error

Call WAR.XINC
t6 Write waring

Hess53ge

+
Set K Equal to

the Index of the
Output Buffe-r

Set ITAP L Eqtu'l
to the Number of

the Current Spill Tape

20
Increment Counter

(NOWERR) for Number of
Attempts to Correct
S This Error

/Have Five ASb mrtisBeen RRYsHad,! 'o Correct Read •- lO
V l~rror?

30 4 No

SBackspace the C" rren7t/

Spill !ape CIT"AI;

Fig- 23.. Subroutine INERRTP

(Sheet 1 of 3)

110

Bufer n, .2 hatWasNatre f 13 F ICu Wrrsent TaeICurren
Minor~~nt Diecor IfrainInput Buf fer

E 7Par"1"Alty
Wt

20~'Bfe infe i peaton

Curet Tro RecoRecrr
IndiInto (IAItnk

Equal toOn

202

F i g 2 .B u c or n' p rt io)

SS het ro.ct o f 3)y

100

04-tvil iIl the I¶Addre54

S t he Add re 4 %

of the as fr fo

th mtnt (1it ffiri

1- tI:(l :l I s tt N

Noitt NIPVC-NR jI I'S r

(kc c 3ott3

I t112 .

SUBROUTINE NEXTAPE

PURPOSE: To read the minor directory from the next spill
tape.

ENTRY POINTS: NEXTAPE

FORMAL PARAMETERS: None

COMMON BLOCKS: DICTARY, LOCATOR, NIACHINE, SUPRVIS, TAPHAR)

SUBROUTINES CALLED: INERRTP, SKIPFILE

CALLED BY: RELOADF

Method

After determining the logical unit number for the next spill tape
(NOWUNIT), and saving the spill tape number as IAMSAVE, NEXTAPE rewinds

NOWUNIT and uses SKIPFILE to skip the first file if the first spill tape
is to be read (because the first file of the first spill tape contains
the major tape directory). Then NEXTAPE buffers in the minor directory
(common /DICTARY/) from the spill tape. INERRTP is called (with
argument-2) to repeat the buffer operation in the event an end-of-file
or parity error is encountered during this process.

When the minor directory has been read from the tape, the actual spill
tape number (IAM) and label (IDENT) are known, so NEXTAPE compares
these values with those it expected. If the values of IAM and IDENT
are not the expected ones, and if the computer operator has not been
instructed to ignore mismatches in tape labels (via sense switch 1),
NEXTAPE then instructs the operator to mount the requested tape.

Finally, when the minor directory has been read satisfactorily, NEXTAPE
writes it on the standard output file and resets JAM to IAMSAVE, the
expected spill tape number.

Subroutine NEXTAPE is illustrated in figure 24.

113

STARTI

Dietermine Logical UnitNuiber NOWIJNIT for N,..t
Spill Tape

Save Value of~
__X Las IAPSAVE

to RewndpNext Spellator

1.SkpOn i c n Ye s Thu i s tble Ye
SpiI I'raI i rst Spci l Tapgo ed?

NO

FigIs 24.l Suboupe NENo
(Seady 1tof Pe

140

olle r;it ol t o fli nunt
C~orrect i;1110 on1 to Act
Sennao swi tc hit' La~be,1

Ig nrend

R hould pIalol Tp Nm

S anOutpt rI Ic

C-

SUBROUTINE OUTBFDK

PURPOSE: To buffer out information from the output buffer
to disk.

ENTRY POINTS: OUhTBFDK

FORMAL PARAMETERS: None

COMMON BLOCKS: BUFFERS, DISKIO, DSKHARD, ERRNUM, FILENOW, FILEREC,
SUPRVIS

SUBROUTINES CALLED: OUTERDK

CALLED BY: OUTDF

Method

Subroutine OUTBFDK first determines whether the last disk write operation
terminated with an irrecoverable end-of-file (EOF) or parity error. If
it did, processing control returns to the calling subprogram. Otherwise,
the status of the last operation is checked. If it ended with an LOF or
parity error, OUTERDK is called to attempt recovery from the error.
Again, if the error is irrecoverable, processing control returns to the
calling subprogram, OUTDF.

As soon as the previous disk write operation is successfully completed,
OUTBFDK saves the current disk. sector address and determines the number
of physical records to be written on the disk. It also initializes theindices ISTREC and IENDREC, which locate the record in the IOBUFF array.

Then it uses WRITECK* to transfer each disk physical record from the
IOBUFF array onto the disk; each write operation is checked for a possible
parity or end-of-file error. If one occurs, OUTERDK is called to attempt
error recovery. Finally, processing control returns to the calling
subprogram.

Subroutine OUTBFDK is illustrated in figure 25.

*PFS Disk I/O subroutine

116

Fig. ~ ~ 2.SbOuutin OBuffer

(SEetr1of 2)e

20 11 s

Cal ,.O rf.VK rP o Wht Is- te Satu

Do for Each Record Doe9
t, Be Written

Datermiliu Star~ing
Index of the Record-

ISTHPA

Determine EndnIde
of the Record-

TENDREC

Cail WRITECK
to Write Record on IVisk

to Atempt ecovey [- a ddres of rthOerain C Progent
Di Sertor

Fig. 25. (o t.)s i . N
(S Ee 2orf 2)

W118

soYe

SUBROUTINE OUTDF

PURPOSE: To set up the disk files for output.

ENTRY POINTS: OUTDF

FORMAL PARAMETERS: None

COM4VON BLOCKS: BUFFERS, DISKIO, DSKIIARI), ERRNUI, FILENOW,
FILEREC, LOCATOR, MACHINE, SUPRVIS

SUBROUTINES CALLED: OUTBFDK, OUTERDK

CALLF, D BY: RELGADF

Method

Subroutine OUTFDF is called once by RELOADF each time the IOBUPF array
has been filled from a spill tape. It is used to determine which
portions of the disk files should be filled from IOBUFF qnd to set up
the files for output.

Each time a new disk file is to be loaded, OUThF determines how many
tracks will be needed and uses ALLOCATE* and SEEK* to allocate the
disk tracks and to position the disk respectively. Then it sets the
indices ISTART and IEND so the filehandler label is put out when OUTBFDK
is called.

When the array IOBUFF does not begin with the first word of a new disk

file, OU'rDF first checks the array for trailer words which correspond
to the name of the current disk file (NAMENOW). If it finds a trailer
label, it sets the indices ISTART, [END, and NWORDNW in such a way
that OtrrBPUK writes the remaining portion of IOBUFF corresponding to
the current disk file (excluding the trailer label) onto the disk file.
If no trailer word is found in the rest of the buffer, OLUTDF calls
OUTBFDK to put out the rest of the buffer onto the current disk file.
Sometimes, IOBUFF will contain data for two or more disk files. When
this situation arises, OUTDF first determines which words go onto the
first file and uses OUTBFDK to put them out as described above. Then
it uses DEOP* to put an end-of-file mark on the cirretit file and checks
the header label for the next file. If not all of the header words are
in the buffer, no further data are output to disk files until GUTDF is

*PFS Disk 1/0 subroutines

119

called again. If the buffer contains the whole header, OUTPF sets

up the next new disk file for output and proceeds to empty IOBUFF onto
this new file in the manner described above.

Whenever end-of-file or parity errors are encountered by OUTBFDK in
writing from IOBUFF onto disk files, OUTDF uses OUTERDK to attempt
recovery from those errors. Processing of IOBUFF continues until either
all of IOBUFF is on disk or until no more disk files are to be loaded.
In the latter case, OUTDF informs the computer operator that the last
file has been output to disk. Then processing control returns to the
calling program.

Subroutine OUTDF is illustrated in figure 26.

120

1e Equa to
t e Index of tile
Output Buffer

[Soet Starting Index
ISTART to Index of First
WoWord After H~eader in

(Sheet 1enofh o

212

*.I, 'S. 25 ha d e -,UC - .. ' B-~ 14-, . - e,, =-- - -

30

Determr ille I ndex 1 NIrll, I
of La;t Tra,•ler I'ord If
the First One IIfas Been

Found

d.Yo.• :/Il the 1 railer
t•..i•.td Benen FPound?

0

40

ciet allll, to hldex
of Actuol,- I ,;.a, t Word in

YPecord

Set NLOOt.l to

l"Xiiected Index of

First Trniler 6ordso
T~I.

Soo
Is 60 Wor lidch l one

hard in tie Trailer A

Yaord? ___
S.... ~In the V~ord .

Ye Tr;,i icr Late l A4- ,

Ro 11:,;1 andh e "
NU'iO RIINS 31inceiL r d o f V i l e H a ~s B o o n i o f%' l T ait' l .a l e r

Reached 'J0Chced "No

701+

Lenlgth co the Leongth
I rd f t" p L of al Trailer Block-

Fig. 20 (cont.)
(Shevt 2 of S)

122
• I

r

I'

110

tou the

u ft'cr

ReLast tcrd i NI the Iutt'r

to 1, flt mT) I

', I I h'l III I

Ir'l •' ~ ,,K •

•/ L to Put nufrrer (T1 Disk

130 120

Co I O.ff1 .
ttu

Atterptt .l • IReo very. ['.I..: It t)l

Erol .

[• kv,,ct LO(:.%ol I•LI

(the Address o f t 5)
Current 123 k Pile

of

F, I e s Been Hep I ld?

t o A t t e m p t E~ r r o r af 5 I t 1 , i i k ,h , , I I I

R"ff V rve I- t 1¢ 'X i 0,I

t 0h'rit, IOnF- on
CII'r n DI* l IM :1 i 9k

2g 26, (Collt.
(Shee't 35 Of 5)

12.3

Inkcremencqt NOiINOW
Ifo N1"O.11041 for
NNext_ Di%, File

Reget INAUINo0N,

IENDIUIBl for Next i

11N11111t Cresoa o f %th Ioft Ileader32

IsShe A4 of 5)Ye

licaderin 124

310

Writo Warninig
Illat Ilendur Is for

lkroig VIS1. Vile toothe
Out put 1:11

,IP viider of 1On ris/

I 'teslt.Nnier
ofI~cSeeded tor

CalIl ALLOAI.Iý11
to Allocate 2edd1111

on lJl~k

Cal I SEL1

eset L(EOit

toIrt Word After
Heander Record

to Index ISTARI T
in Ciirront u Iffer?

YeWr sC1rqIO1J1g

N
20

Fig. 26 Ccont .
(Shcot 5 of 5)

125

SUBROUTINE OUTLIRDK

PURPOSE: To repeat a disk file write operation in an
at•tempt to correct an output parity or end-of-
file error.

ENTRY POINTS: OUTERDK

FORMAL PARAMw TERS: I - Is an error type indicator
I = 1 if end-of-file error
I = 2 if parity error

COWION BLOCKS: BUFFERS, DISKIO, DSKI[ARD, ERRM1ESS, ERRNUM,
FILENOW, LOCATe", MACHINIi, SUPRVIS

SUBROUTINES CALLED: WARNING

CALLED BY: OUTBFDK

Method

Subroutine OUTERDK first determines whether the current file (named
NAMENOW) already contains an irrecoverable error. If it does, no
further attempt is made to correct errors in this file and processing
control is returned to OUTBFDK.

Otherwise, error counters are incremented or initialized and a warning
message is transmitted to the standard output file via WARNING. Then
OUTERDK calls SEWK* to reposition the disk and WRITECK* to repeat the
attempt to write the record onto the disk. This procedure is repeated
until the write attempt is successful or until MTIMESW (common
/SUPRVIS/) recovery attempts have failed. In the first case, the
error recovery indicator IRPERR (common /EiRRNUM/) is set to zero. In
the second case, messages concerning the number of attempts made to
correct the write error are written on the standard output file and the
computer operator is informed that there is an irrecoverable write error
on the disk file and that it is being abandoned. Finally, in this
second case, the error recovery indicator IRPERR is set to -100 if the
error type is end-of-file and to the number of woxi-s left in the file
if the error type is parity.

Subroutine OIJTERDK is illustrated in figure 27.

*PFS Disk I/0 subroutines

126

I;p

HICI

I 1 g 27 SuPrint WringŽClLR)

(Set r oil2

NO1 [R7j

II

Erro S to ,U RRrOvitAI.Ir
I~Hlii tt~t SCessful

tse Outut ib In. t3

131, Setor Oporeat

NI teli~Or MV 11ter

nto I'Crso

Wrlite IRRECt A HA~iIIui

toCotiputer Operator

Itnform t in on

11rt essagr tsKte

lEncod til IIt

120D 110

PROCMIXM DECLARES

PURPOSE: DECLARES is a computer program processor which
is used to insert the FORTRAN common, equivalence,
and type statements into programs which process
QUICK data base tapes.

ENTRY POINTb: DECLARES

FORMAL PARAMETERS: None

COMMON BLOCKS: OUTFILES, DIRECTRY, XPRT

SUBROUTINES CALLED: ALOCDIR, EQIJTV, FI LEi INR, NUMCET, READDIR, 'TERMTAPE

Method

Program DECLARES is a tool designed to aid the NMCSSC analyst in
maintaining four QUICK programs which process QUICK data base tapes. The
programs involved are BASEMOD and INDEXER of the Data Input subsystem,
PLANSET of the Plan Generation subsystem, and program READSUM of the Data
Output subsystem.

The programming techniques and FORTRAN ,coding used within each of these
programs are directly related to the structure and content of the
directory associated with the QUICK data base. Changes in the directory
attributes listed therein, will always require a programming modification

to BASENOD, INDEXER, PLANSET, and READSUM. Program DECLARES provides a
relatively sirmple method of implementing the required program modifi-
cations. To use this capability a set of DECLARES command cards are
inserted in the program source code (FORTRAN) deck. Program DECLARES
is then used to process the program deck, effect the required modifi-
cations, and prepare an output tape containing the modified FORTRAN
program. The modified program is subsequently compiled using standard
procedures and is ready for execution. A more specific explanation of
DECLARES and its operation is presented in subsequent paragraphs.

Programs BASEWDD, INDEXER, PLANSET, and READSUM must include: the common
blocks /PROCESS/, /EDITAPE/, and /EuITERf!/; equivalences between the
mnemonic attribute identifiers and words in the array VALUE (common
block /PROCESS/); and the type declarations for these attributes. These
equivalences are changed when: (1) the order of the attributes in the
directory is modified; or (2) the directory is changed by adding or
deleting attributes. Mien such changes are made, program DECLARES is

129

used to automatically insert the common statements, current equivalencc
statements, and associated type declarations into these FORTRAN programs.

The input to DECLARES is a pseudo FORTRAN source program which contains
commands recognized by DECLARES. Based upon these commands, DECLARES
inserts the appropriate common statements, equivalence statements, and
type decJarations in the source program, Additionally, DECLARES inserts
"CALL CHANGE" statements and statements to assign appropriate values to
the commot, variable NC required by subroutine CHANGE.

The action of DECLARES is strictly linear in the following sense: if an
instruction read by DECLARES does not contain one of the DECLARES com-
mands, its image is written on the output tape; if a card contains one
of the commands CDECLAREX, CDECLARE, or CHANGE, the appropriate FORTRAN
statements are written on the output tape. This requires that the
DECLARES commands be placed in the user's source program in locations
which are proper for the FORTRAN statements generated by DECLARES. The
command END also controls the execution of DECLARES but does not affect
the output FORTRAN program. A FORTRAN source program which is to be
processed by DECLARES may contain any nwnber of FORTRAN subroutines,
and must contain the PROGRAM, SUBROUTINE, END, and SCOPE cards which are
normally required by the FORTRAN compiler of tie NWSSC CDC 3800 computer.

Each card image which contains one of the four commands recognized by
DECLARES is regarded as eight fields of 10 columns each; alphamericwords are left-justified in these fields, and integers are right-justified,
The use of these commands, including their placement in the FORTRAN
source program, is described below.

1. CUDECLAREX and CDECLARE Commands. The CDECLAREX command causes
DECLARES to insert in the FORTRAN source program the COMdON
statements for common blocks /PROCESS/, /EDITERM/, and /EDITAPE/.
Additionally, the equivalence statements and type declarations
for the attributes whose names appear in the fields following
CDECLAREX are inserted, If no attributes are listed, the
equivalences and declarations will be inserted for all attributes
in the data base directory. Since this command is replaced inthe FORTRAN program by nonexecutable statements, it must precede
all executable statements in the program or subroutine in which
it occurs. More than one occurrence of CDECLAREX in a program
or subroutine will result in a compiler diagnostic, because
DECLARES would cause duplicate common statements to appear in
the program being processed. When CDECLAREX is used with a list
of more than seven attributes, the CDECLARE command can be used
to obtain the equivalences and declarations for the additional
attributes. Any number of CDECLARE cards can be used; they
must precede all executable statements in the program in which
they appear. Both C)ECLARIEX and CDECLARE cards are terminated
when a blank field is encountered. If required, a hlink card
must he inserted to tcrminate.

130

2. CHANGE Command. The C11ANGE command generates a call on subroutine
IAGE with NC (in common block /PROCESS/) set to the index of

the word corresponding to the attribute ATTR in the array VALUE.

Whenever the value of a data base attribute is changed in a
program, the change must be preceded by the appropriate CHNGE
command.

3. END Command. The END comnmand causes DECLARES to terminate.
This card is at the end of the user's FORTRAN dock following the
SCOPE card, and must be followed by a blank card.

As indicated in figure 28, processing begins by e•tablishing the input/
output logical unit assignments. These assignments are established by
an input parameter card or set to their default values. The pertinent
media are: the FORTRAN source program to be p-ocessed, IOtrr; the data
base tape, QUIKDB; the output FORTRAN source program which will subse-
quently be compiled, IOIJTDEC; and if requested, the listing medium, ILIST.

Prior to processing the input program, subroutine READI)IR is called and
the data base directory is read in its entirety. The source program is
then processed one record at a time. If the record from the source deck
contains CDECLARE(X), the common blocks /EDITAPE/, /EDJTERt,1/, and
/PROCESS/ are inserted and written onto output tape JOUTDE-C. The array
GLOB, which is used to keep track of attributes, is cleared to zeros.
If the record from the source deck contain. CDUCLARE (blank), the common
blocks are not written to tape and the GLOB array is not cleared. In
either case, the remainder of the CDECLARE card is searched for a list
of attributes. If such a list is present, the attributes, one at a time,
are matched against the directory, and the appropriate statement
equivalencing that attribute to a position in the VALUE array is written
onto the IOUTDEC tape. In addition, a type statement for the attribute
(REAL or INTEGER) is written. If a specifir list of attributes is not
included, all attributes are matched to the directory, and the equivalence
and type statements for all attributes are inserted into the source
program.

If the record from the source deck contains CIIANG1E (attribute name), the
following code is inserted into the source program:

NC=-INDEiX (where INDEX is the position of the attribute in the
directory)

CALL CIIANGIE (a call to a subroutine to save the present value of'
the attribute).

The program is terminated by the occurrence of the word END at the be-
ginning of a record or an end-of-filc if the input source program is on
tape.

1,31

START J1call INITAI'i00

Set Input Ad1004
Output Ta1pe :"II
Numbers to RHADI'R IRcord A
Default Values; Fro

IPRMNT - NONE

Read InstnguT
Pramter e

SGlobalI ValuesYe
Scan Card For If Print

NondefauIt

Values (Reset
Input-output R
Unit Assignments T.

If Given) IOUTDEC

• ~~~I Fi s No. o . • '' ';

Print Lis~t O Word Of No 25, I
dInput -Outpt/ Record

IIerA m.
u i gs 28 / olank •301

RBeasd n ---

rr.77

(SeP 1 of NO

I. m

ED ITR F R-EDIT,\PF an d I]rm

? FJH P. 28 . Plrogram l DFICLARES
(Sheet 1 of 3)

A

No / , Listing

yes
440

Print
Blocks

Insero

450
Clea~r Ar~ay
For Global

Values

301 3010

Of Attributes No Uo For
301 On Input All Do Call EQUIV

Record? Attributes

Yes Do
Dn Do For 7

1000 Fields
On Card

~Bl•__ank? Error

___.____ >302 Yes 303

CalEQUIV In N' l InSet Error

Dietoy Switch=2

Fig- 28. (cont.)
(Sheet 2 of 3)

133

I!

Wor Stteen N oYs StE

CallErted00 Wit

Is ~ ~ She 3tr t Sef 3)ro

N3o

SUBROUTINE EQUIV

PURPOSE: To output to tape IOUTDE-C the equivalence and
type statements required for each attribute
defined in the data base directory'.

ENTRY POINTS: EQUIV

FORMAL PARAMETERS: ATTNM - The attribute name
J - Flag to indicate if the attribute is in

directory: 0 if not found; index of
attribute if found

COMMON BLOCKS: DIIIECTRY, OUTFILES, XPRT

SUBROUTINES CALLED: IrLE

CALLED BY: DECLARES

Method

EQUIV uses function ITLE to locate the index of the requested attribute
in the directory. If the attribute is not found, an error flag is
returned to the calling program. If the attribute is located, tho
attribute name is equivalenced by its index to the VALUE- array, and the
statement is written to tape. The typo-of variable is determined by the
value of ICODIE in the directory, and the appropriate statement is written
to tape. If printing has been requested, all items writtun to tape are
also written to the ILISTi meditun.

Subroutine EQUIV is illustrated in figure 29.

135

-i -oII* '

I

i4

Find INDEX

II

SAttribute In No•

K D1MCTRY? J=O

3 Ye REUR
HasN

Set GLOB No Attribute Yes J-INDLX(INDEX)-1 Already Been
•Iden ti fi ed?.•

Write
QUIVALLNCE Is E
Statement qtn obe N

to lOUrroEC M do?

Prrint

EQUIVALENC-E

Statement

Accordin to

ICODE Val

Made? ___'

RIAIRIN, N~U

Fig. 29. Subroutine EQUIV

136

PROGRAM FILEDUMP

PURPOSE: To print specific portions of a magnetic tape,
written in binary mode, or a disk file.

ENTRY POINTS: FILEDUMP

FORMAL PARAMETERS: MODE - Tape or disi. file designator
ITP - (If tape file), logical tape unit number
NAME - (if disk file), logical file name
IFF - First file to be printed
fFREC - First record to be printed in each file
IFW - First word to be printed in each record
ILF - Last file to be printed
ILREC - Last record to be printed in each file
ILW - Last word to be printed in each record

COMMON BLOCKS: ITP, IREC, :ATA, FILEIN

SU3ROUTINES CALLED: NEXTFILE, NUMGLT

Methodyb

The investigation of portions of a data file can be a tedious proc,",
for two reasons. First, printing an entire file is time-consuming d
costly. Second, manual conversion frow, binary data to other modes is

time-consuming and error prone. Program FIL.EDUMP is used to printportions f,f a tape (written in binary mode) or a disk file in a readable
form.

The portion of the tape or disk file to be printed is specified by the
user, He sgecifies the files, records within files, and words w.ithin
records to be printed. The user-input parameters to this program are the
nine formal parameters listed above. These parameters are input on one
data card in the order listed above.

The program prints each word of the requested portion of the file in four
formats: octal (016), fixed point (T16), floating point (E13.6), and
alphameric (AS).

If the data contain illegal alphameric codes, blanks are inserteu for
these characters in the alphameric field. As a further aid, .nach
four-field block of output corresponding to one data word is numbered
with its ordc. of occurrence within the record. If a number of

137

III

consecutive data words are identical, the program does not print each
individual word. Rather, it'prints t1c contents 'of the words onge with
a message listing the range of words which have this value.,

The program also prints the actual length of each record. The maximum
record size that can be accommodated is 20,000 words. If a record
equals or exceeds this length, only tije first 20,OO0Nwords will:be
printed, and the program will print the message RECORD LEN6Ti MAY
EXCEED 20000.

If a read parity error i3 encountered on iiiput, the program will attempt
to reread the record six times. If the parity error persists,'the pro-
gram prints the message PARITY ERROR, SKIP TO.NEXT'RECORD and reads the
next record on the tape or file.

Progr.m FILEDUMP is illustrated in figure 30.

13

II

138

r1

START

Read File
Mode, Desired

Files, Records,

and Words

ISkip to First NEXITTLEi
Desired FileN -

Skip to First

Desired Record

[Reaod Nex

Desired Desired
'rWord s Record ?

VDo
•Yes

Blank Illegal sip o

AlIphamer ic En o Fl

Codes _

S< Last No,

File?•

Prin Yes

Fig. 30. Program FILEDUMP

139

II
CHAPTER 4

GENERAL UTILITIES

This chapter contains descriptions of a variety of subroutines and
functions, performing various tasks, used throughout the QUICK system.
Common blocks used by these programs are described in appendix A. A
list of the programs and/or subroutines which call each utility routine
is presented in appendix D.

140

SUBlROUTI NE ABORT

PURPOSE., E~ntry ABORT: 1'o force a cure dump on demnand.
Enutry WARNING: 'ro print a warning message mnd

possible error di agnost ics.

ENTRY POI NTS: ABORT, VvARN ING

FORMA PARANIWTFIRS: Nonti

COMMON BLOCKS: LERR1COP.i3, IiRRNIiSS

StUBROUTI'NES CALLEI)- Qw)1immiz

Method

This subroutine prinits error diagnostics and an optional core memory
dump. The error diagnostics include:

Urror inesi;age
Contents of A and Q registers
Name of routine (ABORY or WARNING)
A trace of the chain of subprogramm callIs back to the main programi.

The error message is containcd in commton /IiRRM1:SS/. This block consists
of two arrays, each of 10-element length, 1ABORI' anid IWARN.

TIhe message to bie printed is contained in array TABORT for entry ABORT,
and IWAR!N for entry WARNING. The calling program may place any message
in these arrays subject to the following restrictions:

The~ mossage mut enid with a pcii ou (. an coti no i11~d

perioLds.

2. The message length must not exceed 80 characters , includingth
terminating period.

If entry ABORT is used, the error diagnostics will be followed by the
ph rase EXECUTION DI)TELIVI and the job) will terminate w ith a core memory
dump.

Coimmon /EI3RRCODI:/ cons ists of two error codes, KABORT and KWARN They are
presot to KABORT=O ond KWARN= 1. A zero code forces jot) termi nat ion and

141

r%

dump. A nonzero code forces only the diagnostic print and a normal
return. Code KABORT is used by entry ABORT and KWARN by entry WARNING.

Subroutine ABORT is illustrated in figure 31.

STR Entry
START ABORT

Call Q8QERROR
With Abort Code

and Abort
Message

cRETUR

STAR`1' EntrySTAR_' WARN ING

Call QCQL-RROR
With Warning

Code and
Warning Message

RETURND

Fig. 31. Subroutine ABORT

142

SUBROUTINE ANOTHER

PURPOSE: To unload a magnetic tape reel while maintaining

the assignment of the physical unit.

ENTRY POINTS: ANOTHER

FORMAL PARAMETERS: NTOGO - Logical tape unit number

COMMON BLOCKS: None

SUBROUTINES CALLED: UNLOAD

Method

This assembly language subroutine uses the system macro UNLOAD to rewind
and unload a magnetic tape reel. The formal parameter is set to the logical
tape unit number of the tape to be unloaded. The physical unit assignment
is not released. Therefore, another tape reel can be mounted on this unit.

Subroutine ANOTHER is illustrated below in figure 32.

START

Set • UNLOAD MacroAddress • Specifying No[
Pointers Tape Unit Relcasq

Fiv.. 32. Subroutine ANOTHER

143

A

FUNCTION ATN2PI

PURPOSE: To calculate the arc tangent function over the
interval 0 to 2r.

ENTRY POINTS: ATN2PI

FORMAL PARAMETERS: Y, X (floating point numbers)

COMMON BLOCKS: None

SUBROUTINES CALLED: ATANF

Method

This function calculates the arc tangent of the value CY/'X). The arc
tangent returned to the calling program lies within th, interval from 0
to 2r. The operating system function ATANF returns the principal value
of the arc tangent', i.e., over the interval -ir/2 to +7T/2. ATN2PI uses
ATANF to compute the principal value of the arc tangent of Y/X. The signs
of X and Y are investigated to determine the quadravt of the arc tangent.
The principal value is then modified to return a value within the correct
quadrant.

Function ATN2PI is illustrated in figure 33.

144

S, .!

STARTI

2_ 4

ir+TAP(YX) ATANFPIY/X YT2PIOAT0I=i/

Fucio.3. Fn) to ANP

=RETURNRfF145

I.8

SUBROUTINE CHANGE

PURPOSE: To prepare for changing the value of any attribute
in the data base item (record) currently being
processed so that globally defined attributes, if
changed, are restored to their original value in
the followin, items.

ENTRY POINTS: CHANGE

FORMAL PARAMETERS: None

COMMON BLOCKS: PROCESS

SUBROUTINES CALLED: None

Method

If the index (NC) of the attribute to be changed is already contained in
the list of input attribute-value pairs, the subroutine returns to the
calling program. Otherwise, the index is stored in INITEM in the location
equal to twice the number of pairs plus one, and the value is stored in
the following location. The logical array DEF(NC) is set to one to show
that the attribute with index NC is defined. The number of pairs NI is
incremented by one and the number of entries by two. This assures that,
if the attribute to be changed is globally defined, it will be restored
to its original value when a new item is read in.

Subroutine CHANGE is illustrated in figure 34.

11

~1

146

START

For Al 1 NSemt DPar to NT)

No Does te rn~diSt Nowe N efin IIed

Uc _
-1V1

; t r h

toB iCage.? 3triut inruie IA

147 NV

FUNCTION DELLONG

PURPOSE: To compute the signed difference between two
longitudes.

ENTRY POINTS: DELLONG

FORMAL PARAMETERS: A - A floating point longitude
B - A floating point longitude

COMMON BLOCKS: None

SUBROUTINES CALLED: None

Method

The input longitudes are expressed as decimal degrees measured in a
westerly direction. West longitudes are in the range 0-180 degrees;
east longitudes are in the range 180-360 degrees. Longitudes 0 and 360
are the Greenwich Meridian. This function returns the value of the
difference between the two longitudes. The sign of the value is deter-
mined as follows:

Positive if A 21 BNegative if A < B. '

Function DELLONG is illustrated in figure 35.

1III

148

-- 4, ---.. •- . .4. ,2..!J.A-.." - - -- ~ - ~ ~ ..-. .I L,.!~J<,,,,>~4"'

START

- s /A -B/ < 180?

No

10 30)

(A-B) 20? NO DEhLLONG

-.560-A+B

Yes

20

360)- A+ 13

I.0

35~ .~i .t .. .f .iiN..

FUNCTION DIFFLONG

PURPOSE: To compute the difference betweon two longitudes
whose sign is determined by the shorcer direction
of travel from the first meridian to the second.

FNTRY POINTS: DIFFLONG, DIFFLNG* I
FOIvAL PARAMETERS: Xl - Floating point longitudes

X2- Floating point longitudes

COMMON BLOCKS: None

SUBROUTINES CALLEI) : None

Method

The input longitudes lie in the interval 0-360 degrees with west longitudes
in the range 0-180 degrees and cast longitudes in the range 180-360 degrees.
Longitudes 0 and 360 define the Greenwich Meridian. This function returns
a value whose absolute value is equal to the number of degrees of longitude
traversed in using the shorter great circle route from meridian Xl to
meridian X2. The sign is positive if the direction of travel is caftward
and negative otherwise.

Function DIFFLONG is illustrated in figure 36.

*I)uplicate entry for DIFFLONG.

150

TSTART

Compute
Difference in

Longi tude
(D =x - x 2)

Aboue"3Pfet
TValue ofastwarde Sores

(4 2 5 2400 Grat Crcl

Fig. 6. Fnctio IRouLte

15

I .
FUWCTION DISTF

PURPOSE: To compute great circle distances in nautical
-mi les.

ENTRY POINTS: DISTF

FORMAL PARAMETERS: LATI - Latitude of point 1'
LONG1 - Longitude of point .1
LAT2 - Latitude of poinIt 2
LONG2 - Longitude of point 2

COMMON BLOCKS: None

SUBROUTINES CALLED: None

Method ,

The formal parameters are all type real. The coordinates ar~e input in
degrees with south latitude and east longitude coordinrates being
negative. (Lambda format for longitudes' is also acceptable.)

If the difference in longitude is less than -,2 . 8 degrees, a straight-
line approximation to the great circle route is used, Otherwise,'
standard law of cosines'for a spherical triangle is applied to compute
the great circle distance. The radius of the eafth is assuned to bp
3437.74677 nautical miles. The units of the resul]t are nautical miles.

Function DTSTF is illustrated in figunre 37.

152

-01

START

10____

F Convert
Degrees to

Radi ans

20 40Compue Grat CrcleCompute Distance
Distance Using Law J Using Straight-Line

of Cosines for Approximation toSpherical Triangles Great Circle Route

S•-- 30ETURN

Fig. 37. Function DISTF

153

rI
FUNCTION DSTF

PURPOSE: To compute the distance over a straight-line
approximation to a great circle route between
two points.

ENTRY POINTS: DSTF

FORMAL PARAMETERS: XLAT - First point latitude
YLAT - Second point latitude
DLONG - Longitudinal difference between the points

CONIMON BLOCKS: None

SUBROUTINES CALLED: None

Method

The formal parameters are all type real. They are in degrees in standard
Lambda format.

This function computes a straight-line approximation to the great circle
distance between the points defined by the formal parameters. The
Pythagorean law is then used to calculate the distance along that
approximation.
The radius of the earth is assumed to be 3437.74677 nautical miles. The
units of the result are nautical miles.

FLuction DsTrF is illustrated in figure 38.

15 4

START

Convert From
Degrees to

Radians

Determine

the Average
Latitude of

the Two Points

Determine
the Component

Along a Parallel
or Latitude of

the Distance Between
the Two Poirts

Use Right Triangle
Relationship to

Obtain the Distance
Between the
Two Points

Figr 38. Function ISTIF

155

I.,- .- ~jI.,~.,

r!
SUBROUTINE ENDDATA

PURPOSE: To terminate the data file.

ENTRY POINTS: ENDDATA

FORMAL PARAMETERS: NTl - Tape to be terminated

COMMON BLOCKS: ITP, TWORD

SUBROUTINES CALLED: TERITAPE*, WRWORD*

Method

This subroutine terminates an output data base tape by writing the word
ENDDATA on it and calling TERMTAPE. ENDDATA is illustrated in figure 39
below.

START

Write
ENDDATA
on NT1

Call
Ti3RMTAPE

r1',rURN

Fig. 39. Subroutine ENDDATA

*See Filehandlor subroutines.

156

SUBROUTINE ERAZE

PURPOSE: To erase six inches on a magnetic tape to reserve
space for future use or to skip a bad segment of
tape.

EiNTRY POINTS: ERAZE

FORM0AL PARAMETERS: ITP - Logical tape unit number

COMMON 13LOCKS: None

SUBROUTINES CALLED: ERASE

Method

This subroutine uses the system macro ERASE to erase six inches from a
magnetic tape. The formal parameter is the logical unit number of the
tape to be erased. The subroutine will erase tile next six inches of the
tape, and leave the tape in position to write beyond the erased portion.

Subroutine ERAZE is illustrated below in figure 40.

I! CS:TAR T

Set Addrcss
Pointe)s'

Issue
Macro 1! NjSj

Fig. 40. Subroutine ERAZIE.

157

FUNCTION GETCLOCK

PURPOSE: To return the current time in floating point
minutes.

ENTRY POINTS: GETCLOCK, GETCLK (duplicate entry)

FORMAL PARAMETERS: X - A dummy parameter

COMMON BLOCKS: None

SUBROUTINES CALLED: TIWEF

Method

This subroutine calls the system function TIMEF to return the current
time in milliseconds. A division by 60,000 is used to return the current
time in floating point minutes.

Function GETCLOCK is illustrated below in figure 41.

START

GETC LOCK= '
TIMEF/60000

(:RETURN

Fig. 41. Function GETCLOCK

158

I

FUNCTION GETDATE

PURPOSE: To obtain the current date.

ENTRY POINTS: GETDPFTE

FORMAL PARAMETERS: X - A dummy parameter

COMMON BLOCKS: None

SUBROUTINES CALLED, I.ATE

Method

This function calls the system macro DATE to obtain the current date in
the. format MM/DD/YY. When called in a FORTRAN program, this -function
will return the date in a floating point format.

Function GHTDATE is illustrated below in figure 42.

Set Address
Pointers

Issue
Macro I)ATE

IRZlUT R ZND

Fig. 42. Function GETDATE

159

. ... "....! --

SUBROUTFINE GETLIMIT

PURPOSE: To return the limits of available memory in both
banks of the CDC 3800

ENTRY POINTS: GETLIMIT

FORMAL PARAMETERS: None

COMMON BLOCKS: BNKBNDS

SUBROUTINES CALLEP: MEMORY

Method

This subroutine is called by subroutine STORAGE to return the limits of
available memory in both banks of the CDC 3800. The limits are returned
in common /BNKBNDS/ with the lower limits preceding the upper limits.
That is, the four words of storage in this common block are allocated in
order: lower limit in bank 0, lower limit in bank 1, upper limit in
bank 0, and upper limit in bank 1. The system macro NEMORY is used to
determine these liiits.

Subroutine GETLIMIT is illustrated in figure 43.

I6
•" • • '•.' a • .,_ •;.• ?• :•..•a a~;•.. ; ,' Lr•,,•-.• -•-• ~ a••16• '

START D

Set
Address
Pointers

Issue
MEMORY Macro,

Bank 0

Store
Limits,

' Bank 0

Issue,
MEMORY Macro)

Bank 1

Store
Limits,
Bank 1

CRET' URN

Fig. 43. Subroutine GETLIMIT

161

r7
SUBROUTINE GETVALU

PURPOSE: To convert unformatted input data into attribute-

value form.

ENTRY POINTS: GETVALU

FO•MAL PARAMETERS: INPUT - An array containing the input data
NI)ATA - Number of data items found in input array
NAMES - Names of variables found in input array
INVALU - Values assigned to variable in input

array
INDEXI - Value of first Jlldex of array
INDINX2 - Value of second index of array
INDIX3 - Value of third index of array
MORE - Input termination indicator

COMMON BLOCKS: None

SUBROUTINES CALLED: IWANT, NUMGET

Method

This subroutine receives as input all array INPUT which contains 80 [lCD
characters of information. This input is unformatted but consists of a
series of variable names, array indices, and values. Subroutine iGFTVALU
prepares lists of the variables contained in the input, their array
indices, if necessary, and their values.

Consider the input array as an 80-colLUmn card. GIITVAIJ considers the
card to be broken into fields as follows:

1. Parameter Field. Delimited by commn~as (,) with first field be-
ginning in column I and last field terminated by column S0.
Each parameter field may contra-in a number of subfields conta in i ng
the na1(eo of the paranmeter, the array indices for tile parameter,.
and tile value of the parameter.

2. Name SubfLeld. This subfield gives tile name of the vari[able
represented in the [)arametCr field. If the name sahffiCld is
Missing, tile subroutine as . me s that the car' renllt palrlIlotor field
-is for the succeeding element of tile array processed .ill theC]pre-
ceding parameter field. The nam1e subfield begins at the
beginrning of the parameter C'.icld. The first nonb lank characterl

cannot be numeric. Imbedded blanks are ignored. This subfield
is terminated by either an equals sign (=) for simple variables,
or by an open parenthesis (() for array variables.

3. Index Subfield. This subfield gives the indices for an array
variable. If it is not present, the variable is assumed to be a
simple variable. This subfield must follow a name subfield. It
begins with an open parenthesis (() and ends with a close paren-
thesis ()).. Within the parentheses, the array indices are
separated by commas. The maximum number of indices is three.

4. Value Subfield. This subfield may be of two types, allfhameric
or numeric. An alphameric Field is begun and terminated with
an asterisk (*). There may be no imbedded asterisks in the
field. The maximum number of characters (Including blanks) in
all alphameric field is 16. A numeric field consists of the
characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, ., Ii, or 1.
Imbedded blanks are ignored. The maximum number of nonblank
characters in a numeric field is 16.

5. Termination Subfield. This subfield consists of a dollar sign
($). Its appearance in a name subfield as the first nonblank
character will terminate processing of the input data. In

addition, the value of the termination indicator MOREu is set to
zero.

Subroutine GIETVALU processes these fields to produce the following output:

1. NDATA. Number of valid parameter fields processed from the
input data.

2. NAMES. An array containing the names of the variables as J
determined from the name subfields. Maximum name length .s eight
characters.

3. rNVALU. An array containing the characters iin the value subfi elds.
There are two elements in the INVALII array for each element in
the NAMES array. For the variable name in the 1th position in
the NMiSarray, the corresponding value is contained in the
(2*J)-l Vad (2*J) positions of the INVALIU array.

4. INDPXI. ýAn array containing the value of the first index of an
array. For simple variables, its value is one.

S. INDlX2 and INDIIX3. Arrays used similarly to INIIEX1

6. MORE. A termination indicator, set to 0 if a dollar sign (,)
appears as the first nonblank character of a name subfield; set
to I otherwise.

163

The values retur-ned by subroutine GETVALU are in BCD code in the following
formats:

1. Alphameric. Left-justified; blank filled on the right if field
length is less than 16.

2. Numeric. Right-justified with no imbedded blanks; blank tilled
on the left if field length is less than 16.

In this format, the value field (1>4VALU) may be decoded using standard
FORTRAN formats (I, F, A, E., D).

I'hen an array is input, a number of successive elements can be input with-
out repetition of the name and index subfields. If GETVALU encounters a
value subfield prior to a nane subfield within any parameter field, it
assumes that the current value subfield refers to the array element
immediatuly following the element used in the preceding parameter field.
However, the first parameter field in each input array (or on each card)
must have a name subfield. Omission of this subfield in the first parameter
field will be flagged as an error.

Subroutine GETVALU is illustrated in figure 44.

16 I

Note:- Error checking START
is included in the
processing of each field.

LDccodeInput

ProccT~7 No Vali Characte es Pocs

Efo Node
Name ~ armee Field- rintg

LRCh aract eard?

L Ytaetes Is Equls ig

ProcessIsta

rndicesce
N V-IidCh±racte Yr?

UP ode Wz,. Other Ohe

d g 44.lW Tubreintine TTVI

Chaacer

r1
FUNCTI ON IGIiT

PURPOSE: To unpack a data item from a storage area

according to a specified format.

ENTRY POINTS: IGET

FORM•A PARAIMETEIRS: KEY - A key word generated by the function
KEYMAKE I

INDEX - An index to the array IARW; the value
of ICET will be extracted from
IARR(INDEX)

IARR - Tle array from which the data will be
extracted

COMMON BLOCKS: DATPK'

SUBROUTINES CALLED: ABORT II
Method

•iC variable KEY is compared with ISVKEY (the value of KEYr on the
previous call to IGET). If they are not equal, then the KEY is unpacked
and the variables ITYPE, NBITS, and NSIIIFT are set (see description of
function KEYMAKE) . If KEY and ISVKEY are equal, then it is assumed that
ITYPE, NBITS, and NSHIIJIT have been set by a previous call on IGJ'T.

If the data arc unpacked (i.e., ITYPE=4), thlen IGHT is set equal to
IARR(INDEX) and the routine returns. If ITYPEV4, then IARR(INDEX) is
shifted right NSHI 1. bits, and now the rightmost NBITS are placud in
IOUT.

If ITYPE=-, then IGIJT is set equal to IOtUr, and the routine- returns. If
ITYPF=I, then the prop-r sign is ataehod to the value lOUT before

setting the value of IGE to IOste ald returning control to the calling r
program.]

If ITYPI- does not equal 1, 2, or 4, then the subroutine MMORT is called.

FULction IGE'[' is illustrated in figure 45.

166

q

STARI

Yes KEY=
ISVKI3Y?

No

Unpack
KEIY Word

TTYPI Yes I (13T=TO RirN

ITYE=IUR

El . 5 Imct oINDX ii-ru

NoI es

SUBROUTINE INITEI)IT

PURPOSE: To initialize for editing or processing data base

files.

NNTRY POINTS: INTTE)IT, INITEDT (duplicate entry)

FORMAL PARAMETERS: IT - input data base file

COMMON BLOCKS: DIRECTRY, EDITAPE, PROCESS

SUBROUTINES CALLED: READDIR, WRITEDIR

Method

"Thiis subroutine is the basic initialization routine for any processing
of the data base on unit IT, either for ordinary retrieval processing,
or for editing to create one or more output data bases.

In the event that there are one or more output data bases, NOUT in common
block /EDITAPE/ must be filled, prior to calling this routine, with the
number of output bases to be created, and array ITOUT of the same block
must contain tl,c unit numbers assigned to the output data base files. If
NOUT is not set prior to calling INITEDIT. it automatically assumcs the
value 0, and no output files will be created.

In addition, if the unit specified by I1 is negative, it is a signal to
FIIAIINR that the input file is a disk file.

TIhe basic actions of this subroutine are therefore to read the di',ectory
file from the input data base and to output the directory' on tile speci-
fied output data base files (if any) , In addition, the values of all
attributes in memory are set to their default values as specified in tile
directory, and the definition (DEE.) and global definition (LGLOB) flaps
are all set to 0 (FALSE).

Subroutine [NITEDIT is iilustrated i. figure 46.

168

STrARTr

Store the Input
Parameter as the

Input File Number

Call RLADDIl
t Re• a in
Directory

Call WRITHIDIR
to Write the

Directory on All
Output Files

2

Set All Values
to Default

Values

Set All Local and
Global Definition

Flags to 0

RETURN

Fig. 46. SLubrcoitinc INITHI)IT

1 (69

.______________
_______ _________________'

SUBROUTINE INPITEM

PURPOSE: To read items from a data base file.

ENTRY POINTS: INPITEM, NEXTITEM, NEXTITM*

FORMAL PARAMETERS: None

COMMON BLOCKS: EDITAPE, EDITERM, ITP, PROCIiSS, 'flVOI)

SUBROUTINES CALLED: ENDDATA, OUTWORDS, RDARRAY**, RDWORD**, T•RMTAP,**

Method

INPITEM is used to input the first item (record) of a data base prior to
executing the processing logic. Subsequent items beyond the first are
read in by callA on a second entry point, NEXTITEM or NEXTITM.

The action of both these routines is as follows. When called, the data
base contained on unit INTP (common block /EDITAPE/) is read until the
next item has been storod in memory with the values of all attributesassociated with it. Any global definitions or undefinitions which• occur

prior to this item are automatically placed in force by these routines.

After execution of INPITEM or NEXTITEM, the resulting state of memory in
common block /PROCESS/ is as follows. The array VALUE is filled with
the correct value of every attribute which is currently defined and with
the default value of all currently undefined attributes. The logical
array DEF has the value TRUE for all currently defined items and the
value FALSE for all currently undefined items. Finally, logical array
LGLOB has the value TRUE for all attributes which are currently globally
defined and the value FALSE for the remainder.

In addition, if chere are any output files, all global definitions and
undefinitions are automatically transmitted to the set of output data
base files at the same time that they are processed hero.

Subroutine INPITEiM is illustrated in figure 47.

*Dliplieate entry for NEXT1TEM.
"**See filehandler subroutines.

170

fnA W t ry

(10'l PIPl I I Lm.

Stor e iiil VALIJII OL1TlVO-(L

T (1lg to I'l ,.1112
(1Iii to hr

RETURN o for sthet Is te 2)

Fih ;,I WrdI~u or L 1a

START Eatry NEXTITEME DAR (or NEXTITM)

S Do for Alli---
.• Done Pairs i

INITEMx

SFirst Word

of Pair
i s index

Second Word
is Old Value
of Attribute

Stored in
VALUE Array

120

SSet

the 1
Defined Flag]

Equal to
Global Flag

Fig. 47. (cont.)
(Sheet 2 of 2)

172

SUBROUTINE INTERP

PIJRPOSI.: To find by interpolation the poin. (SR, 'I'll)
located some given fraction of the distance
from the point (SI, Il) to the point (S2, T2) I

ENTRY POINTS: INTLRP

FORMAL PARAME1TERS :one

COWION BLOCKS: POLITE

SUBROUTINES CALLED: INTERPGC

Method

The parameters which control the interpolation are contained in common
/POLITE/ as follows,

1. Input parameters:

S1 - l.atitude of first point
T1 - longitude of first point
S2 - latitude of second point
T2 - longitude of ,second point

FACIOR - fraction of distance to be interpolated

2, Output parameters

SR - lazitude of interpolated point

TR - longitude of interpolated poin;t

All latitudes and longitudes are carried internally in the QtJTCK system
in the following format:

North latitude 0. (equator) to +90. (North Polo)
South latitude 0. (equator) to -90. (South PoIC)
East longitude 180. to 360. (Greenwich Meridian)
West longitude 0. (Greenwich Meridian) to 180

The variable FACTOR determi 'es the fraction of the diqt ance from
the first point to the second that is equal to the distance from the
first point to the interpolated point.

173

Subroutine INTERP first determines whether the fraction FACTOR is
within the interval 0 < FACTOR < 1. If not, the result (SR, TR) is
sot to (SI, TI) when FACTOR ý 0, or to (S2, T2) when FACTOR > 1, and
the subroutine returns.

When FACTOR is within range, however, the interpolation is to be
performed. First, the difference in longitude of the two input points,
T12 = 'r2 - Ti, is computed. If that differLnce is greater than 2.8
degrees, INTERP calls the utility subroutine INTERPGC to perform the
interpolation along the great circle route from (Sl, Ti) to (S2, T2),
and then returns.

If /T12/ is less than 2.8 degrees, INTERP performs a straight-line, or
Mercator, interpolation between (S1, TI) and (S2, T2) by putting:

SR = Sl + FACTOR(S2 - Sl) and
TR = TI + FACTORtT2 - TI).

When the resultant TR is less than ý.:ro, 360 degrees are added to it;
similarly, 360 degrees are subtracted from a TR which is greater than
360 degrees.

Subroutine TNTERP is illustrated in figure 48.

17
I-

,i 174t

SIART
II

FACIO 1)?t (' , Ii
I-Ye 11, 1 ,

Nog4 Sbot i oN~R

27

SUBROUTINE INTERPGC

PURPOSE: To perform interpolation over great circle routes.
It determines a point (SR. TR) located a given
fraction FACTOR of the distance from the point
(Si, Ti) to (S2, T2) where the coordinates are
latitude and longitude.

DNTRY POINTS: INTERPGC, 'NI'RPGC (duplicate entry)

FORMAL PARAMETERS: None

COMZION BLOCKS: POLITE, A, B, C

SUBROUTINES CAILED: ATN2PI, DISTF

Method

The parameters which control the interpolation are contained in common
/POLITE/ as follows:

1. Input parameters:

St - latitude of first poinit

TI - longitude of first point
S2 - latitude of second point
T2 - longitude of second point

FACTOR - fraction of distance to be interpolated

2. Output parameters:

SR - latitude of interpolated point
TR - longitude of interpolated point

All Intitudes and longitudes are float.ing point variahles giving the
data in degrees in standard Lambda format. The variable, FACTOR,
determines the fraction of the distance from the first point to the
second that is equal to the distance from the fir.t point to the inter-
polated point,

176

I.
For the purpose of this description, we assume now a right-handed

coordinate system shown in figure 49, where the angle a is the longi-
tude, measured east from the zero meridian (located along the X-axis)
Here the latitude is given by the angle 6. Then the unit vector r.

1

associated with the latitude 6. and longitude a. is given by:1 1

Cos (A Cos 6.

ri sin a. cos 61)

sin 6Si

z

Fig. '49. Coordinate Sysstcm for INIT RNCC

177 '1

Assume we are given the unit vector r 1 located at (C, 6 1), and the unit

vector r2 determined by (a 2, 62), and the angle 0 between them. We wish

to find a unit vector r in the plane determined by r 1 and r. some given

angle 01 from rl" To do this we make use of the following three vector

relations:

(r 1 x r2) r =0

r r cos0 1 0

r 2 r =cos 02

wihcrc 02 = 0 - 01. 2 11
These relations may be expanded as follows: .

(r 2 3 r 1 2 -r 1 3 r 2 2)x + (r 2 1 r 1 3 -r 1 1 r 2 5)y ÷ (r 1 1 r 2 2 -r 1 2r 2 1)z 0
r X.+T , Zi o

r11 .÷ 12 y + v13 z=c~ 1

21 x+22 y + r 2 3 z c cos ,2

where r (x,y,z). This equation .has a unique solution in x, y, andiz
provided 0 j 0 or a j w, since the determinant:

2
(r 1 x r2) =sin0

is not equal to 0. Now since.the resultant vector r is:

x /Cosa Cos6

r= y sin a cos 6 A

z sin 6

then the desired point (a, 6) is given by:

-16 = sin Z

a= tan (

178

where the value of the arc tangent is not necessarily its principal
value. (Function ATN2Pl is used to calculate this value.)

To obtain 0 and 01 when FACTOR is known, observe that:

if: D is the great circle distance from the point (al, 6) to the
point (2) 62) and

R is the radius of the earth

then: 0 = D/R

6 1= FACTOR.-

Subroutine INTERPCC is illustrated in figure 50,

179

CSTART

Convert to
Radians

Compute
Coefficients of

Rows 2 and 3
(Left-Iiand Side)

Compute
Cocfficients of

Row 1
(Left-Hland Side)

Compute
Ri ght-Hand

Side

Compute
Determinant

It

Evaluate
X, Y, and Z

Compute SR, "FR
and Convert to

Degrees

KRETURN
Fig. So. Subroutine INTERPGC

180

SUBROUrTINE IPLUT

PURPOSE: To pack a given data item into a storage area
according to a specified format.

ENTRY POINTS: .IP"

FOR.AL PARAISTEMRS: KEY - A key word generated by the function
KEYHAKEI

INDEX -An index to the array IARR; IVAL will be
packed into the word IAIHR(TNI)I:X)

I VAI. - The data word whicli is to be packed

IARR - The array into which these data are to
be packed

COMMON BLOCKS: DATPK

SUBROUTINES CALLED: None

Method

The variable KEY is compared with ISVKEY (the value of KEY on the
previous call to IPmT). If they are not equal, then the KEY is unpacked,
and the variables ITYPE, NBITS, mid NSIIIFT are set (see description of
function KEYMAKE). If KEY and ISVKEY are equal, then it is assumed that
ITYPE, NBITS, and NSIIIVI' have been set by a previous call on IPUT'.

If the data are not to be packed (i.e., ITYPE=4), then the variables IN
and MSK are set equal to I VAt, and 0, respectively. if ITYPEL4, then IN
is set equal to the rightmost NBITS of IVAL and shifted left NSIIII'
bits. NISK is set equal to MAST(NBITS), shifted left NSItII" bits, and
comp 1 emen ted.

The bits of IARR(INI)EX) .:hcre the data are to be stored are set equal to
zero. The variable IN (which is IVAL shifted to its proper position) is
now added to IARR(INDI)IX).

Subroutine IPUT is illustrated in figure 51.

181

*ISIAB(NEl F?1

Ad N to

122E

FUNCTION ITLE

PURPOSE: To compare an input value with values in a
specified array; to return an index of the
first match found, and to. return zero if no
match is found.

ENTRY POINTS: ITLE

FORMAL PARAMETERS: NX - The value for which a match is to be found

NAR - The array with which NX is to be compared

NMB - The number of words to be scanned in NAR

COMMON BLOCKS: None

SUBROUTINES CALLED: None

Method

The input search value is compared with each member of the array to be
scanned. If no match is found, a value of zero is returned. Otherwise,
the index of the element of the array which exactly matches is returned.
In the case of more than one match, the smallest index value is returned.

Function ITLE is illustrated in figure 52.

S~187,

START
For Al
Value ofFrom 0to NM

Mac TARTJSacig

RETURN

Fig. 52. Function ITLE

184

FUNCTION IWPANT

PURPOSE: To determine the position of an item in an array,
The search is modified by specifying items not to
be searched. 4

ENTRY POINTS: IWANT

FORMAL PARAWETERS: NEED The item to be matchud

IAR - The arrmy to be searched

ISTART - The first element in the array to be
searched

lEND - The last element in the array to be
searched

COMMON BLOCKS: None

SUBROUTINES CALLED: None

Method

This function searches array IAR from element ISTART to element IEND to
find a match for NEED. At each occurrence of an element of IAR with the
value = 1R*; i.e., one-character BCD code for asterisk right-justified
with zero fill to the left, the list is not searched for NEED until after
the next occurrence of the right-justified asterisk. This search method
corresponds to ignoring alphameric value subfields as defined by sub-
routine GETVALU. The value returned by the function is the index to the
element of IAR which is equal to NEED. If no element meets the pre-
scribed conditions, the function returns the value IEND+l

Function IWANT is illustrated in figure 53,

185

_ _ _ ,

TARD

C
S

T

Initialize
Indices

Do From
Starting Index Done --0. Return Ending

to Ending Index

- -- rndox- Plus I

Do
h j

Is This
No Element the

six-le men,I s TDesired RE-TURN
Tj

Flement?

1
Yes

qR ET U R DN

10 50

Is This Return Index

Ot
ELment of Current

L Between Element

Yes

2 0 _;

No Is This
Element an

s
Th

E 1 e ment
As te ri
Asterisk?

Yes

30

Set/Reset
Asterisk
I..nd.i cat-or....

Fig. 53. Function 1WVNT

186

FUNCT'I ON KHYMAKE

PURPOSE: To generate a KEY word for input to subroutine
[pt1r or function [G/I".

IENTRY POINTS: KLYMAKE

FO•MAL P1tARANIFITIRS: 1TYPE - Specifies the type of packing or
unpacking
=1 Signed integer
=2 Unsigned integer
--4 thpacke-d word

NSIIFl T - TLI number of bits from the rightmost
bit of the packed word

N BrS - The number of hits in the packed word

COMMON BLOCKS: None

SIJBROIJTINES CALLED: None

Method

Function KEYMAKIE generates a key word which contains the necessary
packing and unpacking information for input to IPU. or IC;LiT. The format
of the key word is as follows:

Number of Bits 33 0 6

The vari able MD is set eqttalo NSH IFT and :-hi Fted Ieft six i ts. N I'I S

is i(de d Co I 1D, I I:I'1 i(SS i1t LI 0 t t 1-0 1 j it I [TYPt: is nit , s. kldchd
to TIVI•) and tL11c res'u lt p l~lcv kl i n ll iUY l:KI!, id ih vi•'l t' ivu is retu rnoi•d to tihe

c~ll]ing progtlramll

I~mc~in I{/IKI i i lst';tcli ti£ur j1

_START

Set IWD Equal
to NSHIFT

Shift IWD
Left 6 Bits

Add NBITS
to IWD

Shift IWD
Left 3 Bits

Set KEYMAKE
Equal to
IWD+ITYPE

(:R:ETURN

Fig. 54. Function KEYMAKE

188

FUNCTION LOCV

PURPOSE: To retrieve the machine address of an item (e.g.,
LOCIR[Al) uses LOCF to determine the limits of
core to be used in Jile reading and writing).

ENTRY POINTS: LOCF

FORMAL PARAMETERS: X - The name of the variable whose address is to
be returned

COMMlON BLOCKS: None

SUBROUTINES CALLED: None

Method

This assembly lanauage function determines the address of the variable
named in the formnal parameter by retrieving it from the word containing
the parameters for the call to LOCF. The address is returned right-
justified in the accumulator. The bank address is removed before placing
the value of the machine address in the accumulator. Thus, function LOCI'
will not return the bank address of an item.

Function LOCF is illustrated beluo' in figure 55.

START

Set 1
Addres M
Po) i nit o rs

[\'ar';i nhle

A dd ress

Fig. 55. Function LOCFI

189

_ _:w

I

S BJBI ORI' I NE LOC(FiAI'

PURPOSE: To read info rsrat ionl from a file into, or wri te
from, a corc area specified 1)b, beginning rand
cnding addresses, using the filonandler.

IiNTRY POINTSS LOCI.:A1, LOCI' RITIi, LOCITIIi

FORMAL, PARM'1E.TRS: - The name of the last word stored in tile block
of core to he rend or written

1 - The namie of the first word stored ill the
)lock of corc to ho -"-ad or written

JOMNUK)N BLOC:S None

SH"IP OITINUIS CALLEDI): LOCG:, wiMAIMIAY,** l'RA.R'Y**

INe0 t___ Od.

This subroutine uses fuinction LOUC to dcterinil ve {'}e I in it s of core to
he used in1 the file reading or writing. The rending and writing alrral
sulro,itincs, in the filhandler (Rl)ARRAY and WRARRAY) are then used to
transfer the data into or out of this block of storage. Note that
proper usage of this subroutine requires a knowledge of the method of
storagc allocation by FORTtAN, The programmer should also be aware of

the proper use of the filehandler.

StLbi utine IXOC'LAD is i.llustrared in ftigure 50.

*f)il'P i-ati c t'11 Iv for IAWR I 11.

""9;

[Complite, Using1

kMcriory Words to

CI I(It ~

Compute,~ Using
LOCIF, Number of
Memory Wlords to

Be Written

Cal 1
I1* l&\RRAY

'1 'I URN

IND

' I

II
SUBROUTINE NEWUNIT

PURPOSE: To unload a magnetic tape reel and release the
physical unit assignment.

ENTRY POINTS: NEWUNIT

FORMAL PARAMETERS: NTOGO - Logical tape unit number

COMMON BLOCKS : None

SUBROUfINES CALLED-: UNLOAD

Method

This assembly language subroutine uses the system macro UNLOAD 'to rewindand unload a magnetic tape, reel and' release the physical unit assignment.
The formal parameter is set to the logical tape unit number of the tapeto be unloaded and released.
Subroutine NEWUNIT is'illustrated below in figure 57. '

START

Set
Address
loinP'oi nters

UNLOAD MacroSpeciflying Tape
Un it Rele0a1so

Fig. 57. Subroutine NEW11UNIT

1.•

SUBROOTINE NEXTFILE

PURPOSE: To skip to the end of the current file on magnetic
tape or disk, while keeping track of the number
of records skipped.

ENTRY POINTS: NEXTFII1&

FORMAL PARAMIETERS: None

COMMON BLOCKS: T'rP, IREC, FILEIN

SUBRiTlINES CALLEl:) None

Method

This subroutine takes the logical unit of the magnetic tape to be read
from common block /ITP/, which contains one variable, the logical tape
unit number. If this number is negative, the file is on the disk, and
the name given by the variable in common /FILEIN/ is used to retrieve the
data from the disk. Common /IRI.C/ contains one variable which is the
number of records currently read from the file. Subroutine NEXTFTLE
merely buffers in physical records from the tape or disk until it reaches
the end of file.* During this buffering procss, tile number of records
read is added to the variable in common /IREC/. After reaching the end
of file, the subroutine returns with the file positioned to read the first
record after the end of file,

Subroutine NEXTFILE is illustrated in figure 58.

*NEXTFILE positions the I/0 device to the next record following the end
of the current file. Although the physical location of data areas on
a random access device may be in a nonsequential order, the disk 1/0
routines on the CDCN 3800 order ill sectors in a disk file sequentiallv.
Thus,- "next" record is defined for disk files in the correct manner for
N1:XTFI I. .

19~13

Ii

BufferBuo fer l
Ys Edo NoRecord iI Sbrc

Fileon Unisktili From Rcr

Add I to

s Re co r
No Count

2I

Bu -f ubrc IJ

FUJNCTION NUMGI3 f

PU1RPOSEL: To convert the BCD) contents of an array into a
signed in~t: ger number.

EjNTRY POINTS: NUNMGETI

FORMAL PARAIWiI'IRS: NIN - 'The namne of the array or- yairldN ahcWlhcr
the input data are Stored

NO I Tilrh number of characters to he scannvd (thle
3800) restricts integers to IS decimal digits;)

COMMOKN BL.OCKS: Nonc

StIBROUTnINbS CALLEDI: None

Method

Function NtJMC-FT (figure 59) converts integer drita, which have been read into
an array using alphameric (M8) format for each word, into signed integer
numbers with blanks ignored;, i e. c.,suppressed. The number of characters'
to be scanned and the array or variable name are specified in the calling
sequence. If no sign appears, thle number is assumed positive. 11oweverj
the sign may appear anywhere in the specified input field, and NUMCEiT places
it at the beginning of the number. If two signs appear within the same
field, thle last Sign) is aISSu.'ad corrOct. 1

Mhen integer data are read in with I format, Standard FOWI'RAN has a number
of limi ntations. Thle most annoying and tirne-COn1SUring in preparing and
keypunching data for a program are the requirements thiat integers be right-
j usti fi ed and that the sign (if any) precede the nwimbr . NUNIGET' overcomes
these restricti ons. It is not intended to be an error-correcting routine
but rather a con vonien ce and a time 0- sainig rou~tine. Whereas1 l no0rmal0 read,
us ing integer (1) format Of a num.ber1C] such as 77/7 or 77N17 woulId abort
the computer run, NtJNhL1 allows thle program to continueI, tranlSlating tile
numbei~r in each example to 77. Thus the burden of checking the ac:curacy
of thle data remains; onl the aInalyst who hlas input thle data- -but 1ie is able
to check anl entire run at once, rather than having his rUnl abort on the
first illegal field encountered.

Thle program will scan as many contiguous characters as theQ calli ng programn
has requeCsted (formal parameter NCI1) , moving down the array NIN (dimensioned
as I in thle subroutine, since the real size of this array is dotorniined by

195

the array size in the calling program), eight characters at a time* until
NOI has been satisfied. Since the 3800 has only a 48-•t word and the
largest integer that can be translated accurately is 2 -1 (15 decimal
digits), the practical limitation on NCH should be such that, excluding
blanks, the translated integer will fit within the word size.

Perhaps the most common example for NUMG•'T would be the one where the
field width has been defined to be 10 characters (normally read as 110 for-
mat). When using NUMGET, the cqlling program would read the field into
an array of size two using a format of A8,A2. NUMGET would be called with
NCH set to 10, and all 10 characters would be translated to an integer.

F
I.

*Lach word of the 3800 may contain at most eight BCD characters.

196

[So Nu ndwr~o;
1

Clear A 11:GIS'Tiz LsI QthTST
andt Shf .Cl rLt'' WihNxtWr

Into A A~s

Yes

SIJBROVT'II Ni UIl'i)l I

I)IRPOSE To return the i ndi ces of the nutmori.c ordc r n f

the elements in any array.

IEN'TRY POINTSi: ORI)CR

FIG PMAL PARAMlt"'IS! I A - An array of arbitrary values whose
elements are to be indexed

INl)13X - '[he array whi ch •, i I I contain the indices
to [A in increasing nuacrical order

N - The n1umbe, r of elements in IA to be
indexed

COMMON BLOCKS: None

SUBROUTINHS CALLED: None

Method

Given an arbitrary array, IA, of N elements, suhroutino ORDIR returns in
another array, INDEX, tho indices of the elements of IA i~n their

numerical order. That is, INDEX(1) contains the index of the smallest
element in [A, INDEX(2) the index of the next smallest, aid so on.
INDINX(N) contains the index of the largest eleinenL in IA.

'Tlero aro restrictions on the values of the formal parameters. The
numbher of elements to be indexed, N, must be greater than zero. The
array to he ordered and the indexed array must both have at least this
many c, lements. In addition, the subroutine Will not operate correctly
unless the array to bc ordered and the index array occupy different areas
in storage. The array to be ordered, IA, :nay he in either fixed point or
floating point f'ormat. The indices, of course, will be returned in fixed
point format.

SuhlMItin ORD)E'R is illusitrated in filgure 60.

I1)8

Don)D for tiach RstSg
1:10Biti oto

I flitSignllBit

Work Array R ~Ji'
E INORK E JN

Comput c
Frequency

Count

Cop t i Ci. ~rn -

(t Cf L c :1111t.

Compt to~
Now Index

Figi., 60. Sul irou t i iic 0 WROI

SUBROUTINE OUTITEM

PURPOSE: To output the current itemn (record) to the data
base file being created.

ENTRY POINTS: OUTITEM

FORMAL PARAMETERS: None

COMMON BLOCKS: EDITAPE, JIP, PROCESS, TWORD

SUBROIflINES CALLED: WRWORD*

Method

Subroutine OUTITEM uses the filehandler subroutine WRWORD to write the
current item (record) on the data base file specified by JOUT in common
block /EDITAPE/. The output file and the data to be output are communi-
cated to WRWORD via common variables ITP, of common block /ITP/, and
ITIVORD, of common block /TWORD/.

As indicated in figure 61, OUTITEM first' causes the number of attribute
value pairs (variable NI, of common block /PROCESS/) associated with the
item to be output. Two calls to WRWORD are then made to output each
attribute-value pair. i.e., the index of the attribute within the VALUE
array (common block /PROCESS/) is output followed by the attribute value.
When all pairs have been written, control is returned to the calling
program.

Subroutine OUTITHM is illustrated in figure 61.

*Sec filehandler subroutines.

200

START

Set ITP to oT
Current 0."utput

Call WRIVORD
to Write Outbe

Att Vribte Vaue

Pip. 61. Subroutine OtJTITEM

201

SLIBROUHINEh 0I.TrIORL)S

PURPOSEi: Used in processing a data base filec to write
one word onl each of the SPeci fiCL cIiotJ.'ut fi I eS.

ENITRY I'01NI'S: OUTOIU)as ,)UTI'WRUS*

FORMAL PARAMEiTERS: None

COMMON B LOC KS: F I)ITAPI: , IT'P

SUI3ROITr'I NEIS CALLED): KIM~ORI)*

Method

Subroutine OUTIVORDS is c~alled by the utility routine IMPITIV-l (NJ X'IlTHM
to write one word on each output file snecifi ed ill Common block. /LI)ITAPI/.

Subrou~t~ine OUTWVORDS is illustrated in figure 62.

*DLup Ii cate entry for OUTIVORDS).
**See fjI chandler, subroutines.

202

ITR
An Io

Output

es?1

Ye '62s thozicO~VH

II

SUBROUTINE PAGESSP

PURPOSE: To eject to the 'op of the next page on the
standard output.

ENTRY POINTS: PAGESKP, PAGESKIP*

FORMAL PARAMlTPFRS: None

CONZION BLOCKS : None f

SUBROUTINES CALLED: None

Method

This subroutine uses the standard carriage control character (i.e., 1) in
column 1 to eject to tile top of the next page on the standard output. Sub-
routine PAGEiSKP is illustrated in figure 63 below.

* Duplicate entry for PAGESKP

a Pag
in Out]u

CRETUýRNJ

Fig. 63. Subroutine PAGESKP)

2011

S iBI"OU!I' I Nl PR ITII

P'tI I Z S.. I.: To print the defined attribute- val uc pairis of
the data base itei'l currently heiiig processed in
a readab1cle format.

I.NTHflY IO I N'IS :R ITEM

!.OIV'AI, PAIlANI.''RS: None

C(),l;,'(ON RLO(:KS: II RIECTI'Y, R1•0C1(w SS

,,UBI' ' 1.NI.S CALLDI): None

This subr'OUtillC is used in preparing a printout of' the data base. When
called (e;g., by PRNTBASII), tis subroutiac examines all attributes ia

' thu directory to determine if they are defined foi- tile data base item

currcntly being proces:;ed. If so, the attribute name and value are
stored in print arrays. If the de[inition is global the pair is marked
by an asterisk (*) When six pairs have been stored, the line is printed.
,This process is repeated until all pairs have been printed.

Subrout ine I'11I1'. is illustrated in figure 64.

FL
205

9•¢.

START

Skip
One Lfil

4--1
to Zero

Par All

No N LOB,
00 7 1NAN NVAL

Daefine inA I NVAI coh

this itm A,2 ALCutr N

Ye qul.o6

.IIRROUINrI: 1T`I:P'I1 ASI!

PIJII!OSEi TO pri ju the di I'Cet orv in1 r'C.Ldal, I 1 o0 m C011t

Tlo print the attIri1LnitC-va luc pairS dICH'i nd for
cacti data baos i tem.

IWINRY POINTS: IRNTA'lAS3, PNT BAS ,* J)RNTBISPi

FORPM\I. PARAV.IITERS: NIT - Log ico unit numb er of the dnti h as
Filec wb i cl is to~ be printed

CMVt1iON B1LOCKS: ::1 ITAPE, !:!) 1Il .1

SUB3ROUTINEiS CALLED[: [NITAPIi, ** IN ITED IT, INPITEM. NEiXIITIHl, PR 11W,
PRNTD IRC

MethodI

This subroutine prints oult in readaLble format the entire hose contained
on tape unit NTP1. It prints out the eniare directory using subroutine

PRIVID IRC. Then each itemi in the data baso is printed by succossivo callsI
on subroutine PRITI2M. For each lttem the name of every attribute0 derined,
either globally ol locally, for that item is printed togethcr with it~s
value. In adidit ion, an asterisk is printed. hesi do each at tribulte w.hose

VaI10n is currently detcruiined by a global def'ini~tion *

1I1NWlASfi fi rst saves NOUT , the nulMber OF ou1tpu~t tapes , and then sets i t
to zero. Th en through a series of' cal !s on I N TEhD I', P!NWITJRC, I NP ITIN
and PRITEM, the cot ire datla base isc pk 11-oted. NOIJI is 'xCstored to its
Original VaIlue, and the r'outinet eXit-s.

Subrou0Ltine PRNTBASHi is illulstr1ted inl Figure 65.

*jDupIi cnt c cot ri es for PRNJflAs1..
*See ri I ebo nd 1cr sub I-out iIlues.

20 7

_ _IL u

START

Call INITAPiE
to Initialize
Filehandler Call

INPITE&I

Save NOUT -
(Number of

Output Files) IT T°I'E

- Call n

Set NOUT to NEXTTTEn
Zero to Prevent

Fil e.

Creation of
New Output Files

Call •--'•_•• Restore

Ca iNOU __
INIT D1fT

.• t ... _.RETURN

Call
P RNTrD IR3C

Fig. 65. Subroutine PRNTBASE

208

• ~
I I."

I!
SUBROUTINE PILNTIDIRC

PURPOSI'.: To print the directory contents in readable

format.

ENTRY POINTS: PRNTDIRC, PRNTDRC (duplicate entry)

FO(•AL PARAMETERS: None

COMMON BLOCKS: DIRECTRY

SUBROrIf'INES CALLED: PAGI'SKP

Method

Subroutine PRNTDIRC is called to print the contents of the data base
directory. The directory consists of a list of all the attributes which
can he used to describe the data items defined in the data base. In
addition to the mnemonic name assigned to the attribute, the directory
includes information about the range of values which may be assigned
to the attribute and the value which is given it when it is not
specifically defined for an item, i.e., the default value. Information
is also included for checking the data input to the data base.

When called, subroutine PRNTI)IRC (figure 66) prints all of the
information contained in the directory for each attribute. This
includes the attribute name, print format, checking code, default
value, and the attribute value range limits or a list of allowed
values specified for the attribute. The arrays which are examined
and printed by PRNTDIRC are:

1. ATTNA4MO: This array contains the name of each defined attribute.
Te pos-ition of the name in this array becomes the index to all
other arrays holding information about this attribute and is the
index which is stored with the attribute value in the item portion
of the data base tape. A data base file is completely dependent
on the order of attributes in the directory.

2. IFORMAT: This array contains the conversion format (e.g., IS) to
convert the value of the attribute to output (printer) format.

3. I,2ODE: The array code numbers (between one and seven) which
r-Foify the type value (e.g., floating point number) for each

attribute and the method of checking (range, list, or none). The
codes currently used are used are indicated below.

209

I CODIb TYIPI. VAIIJ CIuIECKING

I Floating point numeric Range (MIN-MAXJ

2 Floating point numeric LIST

3 Fixed point numeric Range CMIN-MAX)

4 Fixed point nuimeric LIST

5 Al phameric IISI

6 Alphailerie NOCIIECK (none required)

7 Special (see Directory Range (MIN-MAX)
Conventi ons be] ow)

4. NI, N2 (FN] FN2): Those arrays contain either the minimum or
maximum values for the attributes in the case of range checking,
or the beginning and ending indices to a l1ist of all possible
values for the attributes that specify list checking. Thiese arrays
are unused when no checking is called for.

5. DIEFAULT: This array contains values which are to be associated
with any attribute when it is not defined for an item.

6. LIST'CIlK : This logical array is set to "true" for list checking
"and false for range checking or when no checks are requlired.

7. LISTVALS: This array contains the acceptable values for an
attri ute to be used in list checking. In this mode of checking,
the attribute value is restricted to a spiocified list. For

cxamjple, acceptable values of the attribute SIDE Might be limited
to RI) and 111,11.

The sirbrout inC first retrieves the attribate name110 anid dotermines if
there is a default value associated with it. If there is, the
default value -is encoded using the format statement for the selected
attribute. If there is no default val ac, the work BLANK is sub-
stitutcd for the value in the print ine.

'lhe routine next ascertains if list checking has been specified. If
it has, the word LI.ST is inserted in the output line. If list checking
was na~t applicable, the routine determines if "no checking"'
(i.e., ICODL=6) was specified for the attritube. If so, the word
NOClIiECK is inserted in the output line. If neither the list nor
" no checking" options were specified, it is presumed that range
checkring is desLi red. In this case, the minimum and marxinnrm values
specified for the attribute value are retrieved from the arrays

2 10

c'ie" 'i '

N1 and N2. These values are printed using the format obtained from
the IFORlMAT array. Should NJ and/or N2 be founed to contain blanks,
the word BLAINk is inser-tud in the print line). The printed line,
asstimbled by one of the above proco~dures, is of the form: attribute
name, conversion format, code for checking, default value, first check
word, and second check word.

I I

Ii
I:J

k1

C D
Do for Al I
Attributes Done

in the
Directory

Convert De

Value t

Hollerith'2u]

30
60

Range
List No 30 No No Checking

Checking? Checking? Convert
All Values

Yes Yes
so 40

Signal Signal
List No

Checking Checking

90

Print
Attribute

Data, e.g.
ATTNMM

List

No Checking?

Yes

9

Check/Print

Att-
Valu

U 5

Fig. 66. Subroutine PIMI'DIRC

212

SUBROUTINE PRNTDTA

PURPOSE: To print the contents of a data base file in a

compact and readable format.

ENTRY POINTS: PRNTDTA, PRNTDATA (duplicate entry)

FORMAL PARAMETERS: NT1 - Logical unit number of the file containing
the data base

COMMON BLOCKS: DIRECTRY, EDITAPE, EDITERM, PRNTCONM, PROCESS

SUBROUTINES CALLED: INTTAPE,* INITEDIT, INPTTFM, NEXTITEM, PAGESKP,
PRNTDIRC, PRNTPGE

Method

This subroutine prints the contents of any data base file in as compact
and readable a format as possible.

Attributes which have the same value for items on a print page are printed
along with the value in a COMMON ATTRIBUTE block at the top of the page.
Attributes which have different values for items on a print page are
printed in columns in an OTHER ATTRIBUTE block beneath the COWION ATTRIBUTE
block. The column headings are the attribute names, with each item re-
quiring a separate print line. If an attributc is defined for some but
not all items on the page, a BCD slash (/) is inserted in the undefined
locations. If an attribute is undefined fdr all attributes on a page, it
is not printed. A print page is complete and another begun when:
(1) the number of items on a page reaches 35, (2) the number of columns
in the OTHER ATTRIBUTE block exceeds 11, or (3) a class change occurs.

Subroutine PRNTDTA is illustrated in figure 67.

*See filehandler subroutines.

213

I t or.)
Co'll't by (bic

60

S4 t SDAI

At ItH I .. Itv A I., N)C IO

I Af t tI ~i i1 t A

('utut IlosI I triue C~ If i 'e

S av ((II Z nt 2

ouptNI IS ll setN I Ll
toNI

to SilVC COIL~nl~t
Count

Is, StLtch? N10

INITI 1111 IQ aI to 1 Iav?

Vo fori to I D

Attetthibut o joe Al

Set s~itAIIRV S t N.(;IDATA.

t o fALSL Alla t'11 o -o A

AtW t*!1i e ts9s e

Set. sviT SIkfoil Se iRN;IjYI 1\
t ~ ~ ~ ~ ~ ~ ~~.hc FA SLf Ara 2 0PNPA; n f N 9

120 210 No

nlo for Is Attribute
A______I___D_____ In oi'HIMnrh No Is It Dcft]nevd

Ari csAttribute for 1his Item?
AttriutcAArray?

No Have An is 11 Commna '~aIt [I 'fji~ Is It Ye.
A 1 10,111 Hvc% Attri bute I oiI fmr C~iar Already am

I
n

'
Sot5,itJh Set Switvlh qt switoh set S.Itcii

2..

SUBROUTINE PRNTPGE

PURPOSE: To perform the printing of data base information
as directed by subroutine PR.'I'DTA.

ENTRY POINTS: PRNTPGE, PRNTPAGE (duplicate entry)

FORMAL PARAMETERS: J - Number of attributes defined on this page

COMION BLOCKS: DIRECTRY, PROCESS, PRNTCOV4

SUBROUTINES CALLED: PAGESK1P I
Method

This subroutine prints a page of data base information, as directed by
subroutine PRNTDTA. The variables in common /PRNTCOMI/ are interpreted
to determine the number of "common" and "other" attributes. These are
printed on the standard input in the following format.

Attributes which have the same value for items on a print page are printed
along with the value in a CO,1ON ATTRIBUTE block at the top of the page.
Attributes which have different values for items on a print page are
printed in columns in an OTHER ATTRIBUTE block beneath the COM.ON
ATTRIBUTE block. The column headings are the attribute names, with each
item requiring a separate print line. If an attribute is defined for
some but not all items on the page, a BCD slash (/) is inserted in the
undefined locations.

Subroutine PRNTPGE is illustrated in figure 68.

Io(

STA.RT

Set Counter 70
to Zero

Print
Line

PAGUSKV

Yes

Is Count'l.
Creator flinri

Print r Zero?
COTION No

Print
20

Do fo r I I
Attributes

Do
Print

No Is This Column
a Col-non IW(Jings

Attril3ute? Attribute
Namesyes

30
Increinvat
AttribUtC Do for Oil

COUnter All Rows RMTJRN

110 Do

[store Attribute
Name and Value Print Donv 1)0

in Print Line Line for Atl- ISO

Columns

Do
140

No Is Counter
Equal to 6? "1., for

Tec-'e
Print HaiYes

40

Attl'ibuto Valjjc
Print Defilled for Yc:ý

Line This Item'

No
130

60 Undefine Valuo:
Place Slash (/)

Set Counter in Print Line
to Zero

Fig. Subrotitine PjzN'rr)n:

SUBR1OUTINEi READ)IIR

PURPO.31: To read a dlirectory contained on a data base file
into Common blocI /DI~lUc'rRY/.

E3NTR4Y POINTS: RiADI)DR

FORM'AL PARMIETEiRS: [TAPX - Lo0gical Unit number of thle file containing

thc directory

COMMON BLOCKS: 1)1REiCT1'Y, LRRORN1, TITP, TKORD

SUBROLRiINUiS CALLFI) : ABORT, R)ARItMY*, RD)IORD* SLIZ''PAIB*

Method

Subroutine READ)IIR reads the directory from unit 1'FAP, whichl is ISISulmcd to
contain a Intandard data base, into mecmory in cotioon block /i)II-1'C1TRY/.4

TIhis sulbroutine is shown inl figure 69. TIhe routine !"eugiiis by Sett illg the
buffer numiber IT1P to indicate the logical Unit number of the file contain "'lig
the directory. The fi I ehandi or subroutine SiT RIAI) is then ca lied to initial -

ize this file for reading. Su~broutine RI)WORJ is then cal led twice to read
thle first two words fromi the. directory. Th'e first word i-. stored inl I [WE
and specifacos thle number of attitibutes contained in the directory. The sec-
ond word is stored in 1ASTl'r ,IST an indL.i c:tcs thle numbelhr of ontrics .i n thle
value list array LIsTALS , The routine then coaipultes thu maublei- 01' word(s inl
the Alogical arerays ILISTCIIBK and] GLOB (equi va iecoo to LOWI and LU(G2)

A series of callIs onl subroutine RDtARRAY are then made to rea"d Ill tile Content s
of the arrays described boiow.

1. A'1"1NAMIj : T[hi s array cont a isl thle n~IMM Of C;11:11 LIC I'illed a u
[HIC JIIS it~i l O f thle n10me1 ill thiS a r 'beots the 111Le.\ tý tll

(othov arrays ho 1dimni infomwi'lt ion aou th i sa n i btea i s h~e
ildes which is stol-ed w ith the a ti ei but va I ic, in theý it cO portionl

of' the data hasc. tape. A data bae i Ie is rom11p Ietcy J i-pelndenlt
on thr Order of attribates 'il a1C th i i'eeto 0

I ~ ~ l FM A : T is art-nk Cal m i ;i ItS tile I ' er11V un S o rl C 11alt (0..; , 5') t'
colve Et thel 1';: It or' aF th attni ba);t a 101 m atpl itr) ' rý

It 'Ii')Cod ''i CO I '' nab i (IW 1- il O t !14 'It Vt'l I~l sp IN'

10 1, - 1k t ;I t I lill t C

the method of checking (range, list, or none).

4. DEFAULT: 'This array contains values which are to be associated
iE any attribute when it is not defined for an item.

5. N1, N2: These arrays contain either the minimum or maximum values
for t attributes in the case of range checking, or the beginning
and ending indices to a list of all possible values for the attrib-
utes that specify list checking. These arrays are unused when no
checking is called for.

6. LIS'ICHI'K: This logical array is set to "true" for list checking
and "false" for range chocking or when no checks are required.

7. GLOB: This logical array is set to "true" if a global definition
is in force; otherwise, it is set to "false."

8. LISTVALS: This array contains the acceptable values for an attrib-

ute to be used in list checking. In this mode of cheching, the
attribute value is restricted to a specified list.

After transferring these data, the routine checks to ensure that the direct-
ory as read was of the proper length. This is accomplished by determining
if the next word read from the input file is ENDIRECT. If so, control is
returned to the calling program. If not, an error message is printed and
subroutine ABORT is called to terminate the run. The occurrence of this
error signifies either a machine or file error during the process of reading
the directory or an incorrectly mounted file.

, iti

I

Stto 0 lad Array It u id A rra %
Set 1 11 HA~T~T.VO IS I %

to InJtl~tAR~:11 VL
I'll(, Ntiiwer

Cla 1I IAR Y

to Rad At ray

Cal I h01I11)

C:a I I NKiAiRi),W I.tH o w t Il i

St n or t Rad Arrav URN gv IIi o

iii ~~~IN Ier ci (T RI\II

NIo

CealI

to Ru.d A rr.lat
Stl~ _1 Set 1.;i\Io i tel

V 'it n, Wi ror y to RU.Rd Ar raytoSpwlPrc
ionnn lie I T CNI I I ,TtrLYn ro

NI

t ,,,a Ca I Ix

A MR

II

SUBROUTINE REORIDER

PURPOSE: To rearrange from one to seven arrays into tho
sequence specified by the elements of an index
array.

ENTRY POINTS: REORDER

FORMAL PARAMETERS: ISEQ - (Fixed point) sequence key array of the
type produced by subroutinC ORI)FR

NFL - (Fixed point) number of elements to be
reordered in each array

NAR - (Fixed point) ntumber of arrays which are
to be reordered

Ll-L7 - (Fixed point or floating point) names of
the arrays which are to he reordered; if
the number of these arrays is less than
seven, the remaining positions must he
filled by trailing dummy arguments

COMMON BLOCKS: None

SUBROUTINES CALLED: None

Method

Subroutine REORDER operates in the following manner. First, it stores oie
element from each array in a temporary location. It then reads from the
array ISIiQ the element which should go in that posit ion (whi ch may now
be considered empty) and moves it, filling that position and creating a
new blank. This is repeated for the corresponding clement of each array
being reordered. E-ach new blank spot is filled with its proper content.s
as soon as its original contents have been moved, Until the element cur-
rently in temporary storage is required. 1When this happens, subrout inC
REORDER finds another element which is not alrcadV in its seqeiince and
puts it into temporary storage and continues as before uantil no elements
are out of sequence.

The contents of the array ISI'Q are returned to the calling prograill
unchanged, so that subrout ine RIORDI)• mav be called again, uv ing the same
sequence key array if more than seven arrays are to he reordered.

Sutbroutine REORI)DE is illustrated ill tfigore 0.

221

D o I.1~1)

NI: 1, or 0?

NL I

TI MI

I A 0'

4 9

PVo I'ý:A' Si pn1 Of
ISE Th(N)

Set I A=o.
NN= ISiQ (N)

to IA

HF I I Nt 1
IA No7

'NA A71 With Proper

000 _

LN=NN
-L _ O

Yes Reverse Sign

Add 1 1(, ___N)__

NNo
Log~ ~ ~ A- ofIS1Q(N

6021 Add I ,

It) IA

Y es

()02

Fill NtO Spol ini

I ! . :I. A=o i ,)
i hCo l "

-i

SUBROUTINE SKIP

PURPOSE: To skip a number of words on an input file using

the filehandler,

ENTRY POINTS: SKIP

FORMAL PARAME!TERS: NWORDS - The number of words to be skipped on
the tape

COMMON BLOCKS: None

SUBROUTINES CALLED: RDARRAY*

Method

This subroutine is used to ignore (skip) a number of words on an input
file while that file is being read by the filehandler. The subroutine
assumes the file is in read status. This subroutine has a small amount
of internal storage used for temporary data storage. Subroutine SKIP
merely calls the filehandler subroutine RDARRAY to fill and refill this
temporary storage area until the required number of words have been -read.
This leaves the input file in position to read the next word of data
after skipping the number of words specified in the formal parameter.

Subroutine SKIP is illustrated in figure 71. As indicated, RDARRAY
reads 100 words per call except for the final call in which N!,EM words
arc read (NWORDS= (M*100)+NRED).

*.SCC tf'i Ic IVIild I " :,IUl)l'M)It i1t,'s.

224

SSTART

M=NWORDS/ 10 0

NPIiM=
NWO liDS- (100 *M)

NJ Times Done ,.
"NJ1• Ti~mes -

for 100 Wrds

Callb RDARRAY
:or NRFM Words

1dr1tRN

Fin. 71. Subroutinc SKIP

225

SUBROUTINE SKIPFILI'

PURPOSE: To skip to the end of a file on a magnetic'tape.

ENTRY POIN'rs: SKIPFILE, BACKFILE

FOPIJbAL PARAMETERS: LTN - Logical tape unit nunibur

COMMON BLOCKS: None

SUBROUTINES CALLED: None

Method

'Tihis subroutine merely reads records from the tape unit specified in the
formal parameter LTN until it encounters an end-of-file mark. It then re-
turns control to the calling program, leaving the tape in position to read
or write the first record following the end-of-file.

Entry BACKFILL is used to read the tape backwards until the previous end-
of-file mark is reached. When this entry is used, the tape is positionedat the beginning of the end-of-file mark. "

I
This subroutine is part of the CDC 3800 SCOPE system.

A

22(,

II

JUNC(IION SSKI'C

PURIVOUI: To determi ne the single shot kill probability as-
suming a circular norimtl delivery distr-ihut ion.

EINTRY IVO1NI'S: SSKI(C

FORMAL, I1ARAMITITRS: MOI) In teger (Currently I, 3, or 0) ; MOD) deler'mincs
the number of toeri)s used to approximoite c
SSKIC(

A L-ethlal kill rdlius (pos it ivc rual niumr er)
SXY - Standard deviation
RO2 - Offset aiin point distance, sqluared

COMMON BLOC KS: None

SUBiROUT]NINS CALIED•i) None

Method

SSKPC determines the single shot kill prohbai li ty PKIV us i fg t lie Fo~l ow ing
fo rmu l a

2 (y2
(-R02/2 * SXY 2+ Z)2

PKW =- + (Z+ I) +_ + 4Z + 2)
2 SXY 2'

Z3 +q2 +~ (4 +32 +22
Sr (+P

, (Z + 9 2 + 18Z + 6)) + ...•. _ (Z4 + l1,2" + 72i"

3" '

+ 96Z + 24) + , (Z5 + 25Z4 2o2]0Z+

227

MOD)JO MOD) + 1A 2 *SXY 2

'1nd Z 4 SXY 4

The n'ow d i aj~wImn i n fi i nnre 72 i nd i vattes the waiv in w.h j ch th i k
LiiCd to Cal CU1,ate IKW fOr' dif-Yerenlt Values of' 401) (MOD) is the equivajvlet
of' tile parailicet 11 ;Is deser i bCd under lcr ivat ion of* Kill iroblahli ity
Punctioni, Analyticlea Manual, Volume I 1). Note that BETA B, G~AM y.
CI1I GrAt-1M Ii'A =y/ fi and

(-R0O212 * SXY 2 4 Z
C 22 *SXY * IlITA

228

BEiTA = (AN+.SXY22,
FK2 = R02/SxY 4 ,

ani Z rK/.IJ

2 Yes
GB = GAM/Hi1TA

TEiRM =GB.(Z+I)
PK _PKIV+C.TImMRN

IN!OD :0 Two? No

3 Yes

GF12 = CBH2

Z2 =Z2

TFRNI GB2.(Z2.1.-Z+2)/2

PKW ý PKw+C *TI:m

F~ig. 721- rUlctionl SSKPC
(Shect I of 2)

2 29

GB3 w G1

TER G134.(41Z3+72.22+18 Z4?4)/2

PKW aPKW.C*TH:RM

MOD Four?5 No0*3+0Z

+60 .12f)1

TERM 72. (cant.)7-2+6-+d)2

(Shce 2 oK+-f 2)

2OD 30,FvN

To I n(.i1 e Iild r(Fa~ I
ilvi('Iii r'> I ocI it oilS.

F NTI(Y N() I NI'S *YiOiA(1i.

FORNiA I, PARIIATRSiH5 None

COIMMON B i0C K S M.KIMI)iS

Muthod

Tlhi s sub routine cal cula tes tile number of worid s of aval[IahIic mumOvy' Inl bot1h
banks of' the CDIC 3800. It callis subrout ino (IlIL I Ni , wh ichi rot urns t he
li m its of ava ilabie. memoury Alli hothI banks into c ommo n /B1N KiNDS)/ . ST()RAUi
thcnl compuit es thle d i ffe rence Of tile uppe r and l ower Iimi mt s and p'r i lits thelL
11uInu1)mb:r o f w or ds o Iva, i la I 1)1c f or 1) r og r: IiiImuicr L us c 1 3In bt I 13 I i baks . In ad ;iId i t] onI
tile addressecs Of thle Ifirst word and l ast word (11' tile avai f able area are
Wri tt en oil t li St auuda rd outpu11t..

Ini the FORTiRAN I angtiiagc unde r th be')COi`I: ITS 0 le rat lug 'lystoem, all ava liablec
COr no 10t LI t i Ii zed bI1)y te prob1)1ý1)ILem11 -i, - l prga and i ts a ss i;aited s ys tem s illbro i t InCS
is Used for input/outpmut hitl'fer st.)rage. 'Ihis , the informnat ion printed by)
SUbi'onLt inc S'TOlAGIi reflect` 11 lie amoun1t 0C' NV0,1 ;iai a 0Ie OI'0 11t t lie IhtI F FerS
have been al located. Asý a resu It, tile TiasLt usefulI i itormlat i on retturneLd byý
SITORACA: is the tippe' Ii ir it ill hoth h anks. The0 t!L r Illaollnt of available
storagc (i. o,, iginori ng the arbi trary longth FORTRAN 1/0 iburfores is uqufii
to thle amlounlt of* core, froi lie HI JOWCat IValiI;Ih IC 5t-1 o rag local tion * to t ie

For examiplIe , if' SI RAW: pl ii mt. IIs)I huiIipe 01 b4n000liOt (0011 Mal iad li),) (octNIi)
inl banks I anidt 0, r-Csp~~iOvt IyVI, ;illI the ILuweu bouuMidS are I andL 21 (-15 (octa'l)

ilthe banks, the aiiotuint o f ava i:II- lb1ecore is 21)480 words (decimual I I I e
(101)0194 - I - 31 (ol59 - 2058. Any nIIIIumbered C011111ion ill 0he poI)FOglý 9uSI I)(
tIb t rae tevd,

SubroutIne, SiORAGE is iII us~tr,ited in l fgore, 7.:N,

1 In 11 ha il 11Ce t Ie lOW St ;I ta I I alt 1 U I a):ýt i01 en S 1 . 1 I N111 1au4 z i , tIlk-
lowest aVai I alt k' I ()C;i t on11 i t Ilk ie I";' t I c t 101 'on t I I M% i~ tll i 1 L I'' i %iIt

Iiuon I t or' iii 1):ii1, :-c no

START

LCallIGGI.-TL IM1T

Don Print

f0r E~acl Total
Bank Core

AvaiAai able E-TR

101

Itn

I

Pi.73. Sulrolit ine STORAGI,:

-3 2

FU NCT ION TI I MI AY

IFNTPZY P()ES T ~Il MI;IPA Y

-1: 1 X-,--.A'NF E - A -luimmiy pa riniiit e'

Nk't hod

Tl i s a s 0Ci11) 1y 1. I " 1; 1 geIi ('l 1iic t i oil I i t I:i Ul t 0)).Vt t I c c ti r rvi it t i ill(o f d; iy i i

24 -liti r clIock l'oriut. ThV Cil gut charact'tc I' 1liii ;ic rct urnod arc uscuI ast
fo I Ilows : Ili rst cho racl ur, Ma ink ; two cia ract cra , hIourP; tw WI cu rac fI ill if-

lit.c ; two charnuct cr5 secolld. ; ZlIid 0110 T1ha tac c',1) auk hesy I lcm ro
TIME is- liscd to rotr'icve the t imc or da~y ii, this, lformat,1 When c.l lcd iFroll

a FO'HTiRAN p rograin, the resoIdt k rtI-1I Riid ill I I 11ila. I tig 1 tt

huintetion TI MHI)AY Iis i tiut rat cd bc low im fi go r.: 7.1 t

Add lit a a - ----,lI -

I fi. 71. Fliuct i (l I Nil I'AY

.'*1

[NTlRY PDt I NJ'P *I I Ni.II'l

COI -3IDal IHAleS cluck

II 2T Nl I CIca AT vciu

htW atriii I/CS i Siiii.tcris'ii:il d miLtk S'olI~SLL~~ a s W i I : II W I ow!;

1 -3t NILli' ' ;i zI I, Vil II liC' I' O i Lilttl a II Li lll W l ltl II

WIIIL I ta ~I i t M i .\I i :I I i zc at I MUM:I'~ I L ' i iisI '1:I'' I

I.t I .t 11 ifL m i I'. A t' ; I I Cw ill I 10 VC d 1 1'0 11 NLI I l c I a) ' I t Il

I ;w c (II t'IIi F III '-l t:~ tI i JIL' ;11 ill vil't'LI I NI I LC (I Ct' I' ti'l hIt LI1 1 iI i'.' ill C I

T I ll'Ml . i I LIII!l iLll t 0111C111 to IW i t I (liI f I'C I)'ILIII i 1 (I IIIL '11 I ft Vc ('\(' (it
iti mc, I -I'I i f rll l I s at : c;()I' ;'LI (LoIt ri . A coL I iL oil TI II [I l'I wart'h' II."I' i
itll I 211 I liii'. s i If I (I , it:' 1 c tII tit k LL II I it'I k't' II II 1' w IIf I.I ;ID wiV . I t I Lr, L
I IlLrcL I I I S I t' I : i' lit I a It I I'u It I' Fl- ' I I I i 'I IL: I I I L' N 1: 1 aIII I kI I t II'

Ii I t i 11L. I I I I II i ll I I ;'I ti v I, oiI' Cc I lt jIl I L t ':ct ;I IL Itv iI LL - .x (

I~ll ohI LI ý l II I if t jilcp l ; t'c rii i I 11' I L. ' k i F (L I I' 1I11j I J'Cý S LIt I ii j I' ju Ill IL L I Cit

LI Li ti ; Icii Iý t It' C I i i'll i I 111) A k jiIltI LL I i t 1i I t I! Iif Ifit i tt t)I I �I I liI t'i ~ jl IILI'w m l d c ll~ t h c ;l~ c(I ilil' h ro ~ ldtd 111 t-I' I c (i I'l 1- li :t
lilt ýl r a , ;IIld I b ;Id rd li o C I I f, IIf(ilic . I I I -

I I Ild c f nII'IIit , 1111 [I) t i ne,; by 1: I II Iu ca I I w it 11 1 -2 A t II

A ca i I I %v I = I sc;I e the d i I' ier ii T'C l Ii I cli I Mi :11111 1iVt ' d V i 1' 10 eiit hi NI lilt'

r nra:l ; 14 1 be pri itI cdl , 'I; wt- I I :Is tilt' t ot a I I i 11ev t lit, I il II. ront andi I liii slilii
o I'I v,; c' Iwo, or I liv I o ah ehI cI ;led t I hue

'I'll nee cl ,1r w:I ria ni ig,:, lay be i sue-d from TI MhIMI

(fI J 0)

2. HOOPIiI STA'OP' AThITiNIPTIih) WIHil CLOC)K AIkXiAPY >IOITiil

fi t wo sil ccctMIsVv Ca1 I; w it I -2 areu iclI w i tliot It ill iII U'IenVeLi--
lilt L.l I wi tit 1 -.1

HWtiOll - UhiSlAN'I AlThiMPITii WIT CLOC:~xK ACi I Vi:

(I' t wo~ sm.ik. sS Vc (%I I I wit Ii II 1 3 a1 re nItlc witI holut a 11 i III crvcll up.

C.h I WI Iti I -2

Af I't v c acl o I' t lie :;-;ves I li siibini'iit lie ret inw 1it niuo 1*11nt iw prucs 1

'141) r ilti li, TI N M I: i I is tr~jI e i 1 fi)tI II

sTAHr

I;N 1 1.1.1 A l I I lll till

CURT I MI - 1:0

IS I OP: P Pr 1 n t (K.

K-1 fill t j.1i I
1). 1 iNlI (J) .(1 01' 0
I T I MI: -0

ct) H I I Nil -STOP I 11, 9 t Nilm,] I Nil.

IIIIINI,
IINIJ

TLOST- 1) 1 -(.1 H lo(:k

1, 1 ME L SIOPI INH ST.0 Y) -!;Io;.l I-11

CURTINII Wifilml;

SIN
TOTAIA Los i

TTI
TI I

P r,ý nt.10 APri nt,LOS r,
lo'l-ý I

r
L c
.,I 'kTOJAL- S I lki

1 O'l Al.4 DI I Nil
I:rrt)r PrintI JI) I t I'm, Pr

I All I I Ill"I 1 11 N i M A I i I kill 11
AC I t VI'I

L
f ý-I' I I tIll - I I I I kil

Ol'i N liz I , k

Olvi I I - I IIN

I LOS I ý I I.W; IIn
I Iml I IlT 0

l IllwN
c

R

a

75. Sub rout i ne TI MP11'

I
SUBOtl IJrlNE WiR I'rlil)l I]

Il~ltI'(IlT o1 write C 1 da ta i.S.U: di reco'y as1 (.olltdaillt'd ill
co1211on0 blo'k /ck Ili:ClT'/ ouHt a specli ri cd fi ie.

ENT'RY IPOINI'S: WiImITIDI I, WI I1wIIII)It

HM~MAI, PARtAMIi'i:IS : IL AI'X - Itogi ca I un i t 1111ii1l1W I- Of I he C Ii V Oll wlii Chi
the directory is to he writt.en

COMMON lB lOCKS :-I)11I.ilrY, Ir , 'IW()I'I)

,slilOirrl'lNlES CALII,;I) Sl'lWlNl'rl* WRIMAR AY• I 11MR PIV(I'

Met Ihd

l'bis sul~h rout ill' Wri t es the cOnIitelit s of cuommon block /OiI1ItC'l'TIY/ on no it

ITAIX. Sutlrout ilnc WItlil)I It is i Ilust rated i n fi•gur, 7o. As indicated,
the 'ilehiai'dler ullhbrolt in, WIRARRAY i:; calaled to write the contents of
the aurrays d(,cscrihed below onto the dceis nated init . I vlaing trant•ferredt
these data, .the end of the directory is sign:allcd by writinug the wo)rd
ENI)IRICT oil t •ie out put 'i I ' |lSili, Sil)|Vt)llt iln WtWOItI).

I. ATTNAMI:: This a rray co)11a;i1:s the nmII of' each de'fi ned altrihute.

2. I -ORMAT: lbhis irray contailis thi COliV , rs ion forl t (e.g.,, I t) to
cOnlVert't thtalue o C t1 e at ttlri!'1[ltC to Oiltplnt (printer) forlait.

3. 1 (:01)1: T'he air ray code nuluhbr.; (h'ottween onc and seven) which
spec i fy thie type val ic (,.g., floatting point nuimber) for cach
attribhut e and the methhod of chlck ilng (r:ange, is St , or non0e).

4. DIFAULT: This array),ontains values which aire to h(e associated
withi 7ny attrikht(c when it is not de fineCd for :11 iteuil.

S. NI , N2 : These arrays contain eitlher the inimunml1l1 or maxiI mumul
values for the attributes in the case of' range check ilng , or t he
beginning and ending indices to a list of all possible values
for the attributes th.bt speucily Iist clihcking. Ihese arraysý ar..'
unused when'no checking is called for.

6. I.IS'I(lIII IKl: This logical array is se' to "t rue" for list checkingi
and "false'" for range checking i)r when no0 checks a-rc required.

See fi le llandlle m rmi)i'nlt i i,'.

S~237

7. IANXOB: 'I i I o gi cam I array i " ;tet to I e' wte 1.a" WvII;I oba I
(I(f i ii it i oil i L; i ii hI rcc andl ;ct t 0 '' l 01 I se ' fo h w iSC

6.1.i1ISIVA I.S : Ti , array cont ;I inS tilt aCcepit 'IhIe VNIIne! 1'or in1
:T) -[I~t' -C to hev lsed ill list check~ i lyg. ill thliis nlode of, ch1ckilug"

111V at tribu'.t va Iiw is res!t rict ed to ai spec r ie I .I

0xii Xle) , a c c p)t 11h 1c v a l Ices of t1 IIcIt t r i hut I e S I I ill vi gh t he I i ll i t ed

23 8

ST .,ART. of, Wor,,,ds in oWrt
LogicalI Array:;-I Array

to Output Cal 1 WRARRAY Cal 1IARIAY
File Number to Write to writeArray Array

S~~~~A'r'r'N M l; 1 l s I

Call
SETWIZTI' to Ca Ill WRARRAY
Initial IzeO to Write

File I Array
II ;O1DIAT'I'

Set ITWORI) Uqual
to IF Number, ICall WRARRAY
of Attributes to Write I'WORI
in Directory Array to

• U ICODE I!NlTRI:CTl!

Call1 WRWqORID

to Write Call WRARRAYCall WIOR

I'IWORI) to Write t rt
on IIP Array I'IOR). D FAULT oil FIT'

Set JIWORD Equal
to Last Locat ion Call IVIZARRIAY PFRof I) iRECTRY to Write II

SCommon Block Array

NI

Ca 11 WRWO;) Ca 1 WAIRAY
to Write

ITWORID to Write
Ar ray
N2

Pig., 70. SuLh3routit!I' ITEDI R

-. 3.

5 1TH
PROGRAM QuIKBASVi

PURPOSEi

The main purpose of program QUI KIASIA is to ecr te a game hose filIe,
composed of a number of items defined by a set of attribute-value pairs,
wh ich defi nes the data base that will beC used by SUCC-Ccdi g programs in
the QUICK system. In addition, program QUI KIASFi has the capabi lit y to
crcat c or to update a data library filIc, as well as theC Cpal) iii tyv to
print tile gamic base file in a format which is mean ingful to thle user.

INPUT

The input to program QU1IDASI: can be separated into four major categories:

program option cards, a data library file, updato command cards, and item
update files. Those inputs are merged to create the gamc data base file.

Program Option Cards

These user-input parameter cards spocify the mode of operation of program
QUI KBASIE. Trhe four major options are: creation of a data library file
from card images (SUTTID option); updating of a data library file to
create a new library file (UPDATE option); generation of a game base file
from the data library file (QUTKDIBG option) ; and printing of thle game
base file (PRINTD13 opt ion) . These options may be, exercised singly or in
groups to perform the des ired operations. Each opt ion has a series of'
subparameters which control programn operation (e.g. , print ing) during the
execution of each option.

Data 1Library File

This file, namied DATADI3, contains; a series of card images wi. the
addition of card identifiers consi sting of a sot number, a linv number,
and an update ident ifieor (e. g. , the dlate) . The card images, arc J ivided
into sets, eaých with a unique number. Within each set , each card is
assigned ;i consecutive line nu-mber. Thus, each card is uniquely defined

240U

by its Set Und lineC IlUI1Iior. The update identifier is an eight-character
word which aids the user in determining the run which introduced the
card into the data library' file.

Il -some appl icati ons of' program QLJIKHASE , there is no ex ist ing data
library filo. In this case, thc SE'JTID opt ion may he exercised to
create this file from a card dock or a tape containing BCD) card
images ,The i nput f iILe is then callecd the DATAFI L.

The card images On the data library file (PA'IADB3) are data base creat ~or
carlds . 'Ibis set of cards is constructed as f'ollows:

1 . D)i rec tory Card lImages . Tihe set of di rectory cards is iii the
T7format o'F ight words of 10 columns each with all quantities,
including integers, left-justified. Two commands appearing in
word one are recognized: ADD1 and ENDI)IICT. The Atli) command
is used to add a new attribute to the directory and is followed
lby cards containing information about the QUICK data base
attributes. The ENI)IRECT card terminates the deck of directory

cards. _______

2. Data Base CardnimagsL. Thu lINDI)RECT card is followed by the
deck of item cards, Four' commliands arc rccognizcd: DE I NI:,
IT'IlM, IJNDIE:I NLE, and END INPUT. The DEFINE command is used to
produce global definitions; i.e., attrib~ute values which will
rema in in force until removed by an IJNDiF INE command Words 2,
4, and 6 contain attribute naMLS, whi le words 3, 5, and 7
contain their associated values. A b)lank word terminates the
sequence. The ITEM command is used to provide values of attri-
butes for the current item only. Words 2, 4, and 6 of the
car'd conltainl attr i butc names1C, alld Words 3, S, and 7 contain
their associated values. Subsequent cards contain attribute
names in words 1, 3, 5, and 7 aind vaIlues in words 2, 4, 6,
and 8. The sequence is terminated only upon detect ion of a
command in the fi rs t word of a card . IINDF~F INE: removes global
defiii itj ions The name11s Of" the0 attr-ibuteS to l)0 Undefined
occurF inl tihe rema ,iliing wordIs Of the c.m 'd. END INPOT1 termilunat es
tile deck, of items.

U pd ateC Comm anud Carid s

TheseC USe:.- Inpu)t paramoltei' cards spec ify the mode of operat ion in tile
lII'l)AI'L opt ion. TheVy SpOc ify the p1AZ c0 cinet Of nOW Cards il n he e~xist i g
da~ta' Sets , as well a)S the i np111t lied timil for ulpdate iii to rIat i on. The
b~asic1 IIPIIAT I:comminllds are REPLACE, I)I:Lhlii ;, and ADI)AF'lER . The REPL'IACE
comm~fanid ITqueStS, the UpJ ate' card i~mige to replace the ex i st ing card

2.11I

image on the data library file. The DELET- command removes a set of
card images from the data library file. The ADDAFT!3R command inserts
a number of update card images onto the data library file. These
major commands have several suhcommands which control the printing of
information and the input mode for the update card images.

Item Update Files

These files (there may be up to four files used in any single run)
contain update card images to be inserted into the data library file,
The format of these files is either buffered data (56-word physical
records) prepared by program DELDESIG or CARD images on tape prepared
by program DATABACK. These programs support, but are not a part of,
the QUICK system. Th'eefore, they are not discussed further in this
manual.

OUTPUT

There are two major outputs from program QUIKBASE: an .pdaivd data
library file (updated DATADB), and a game base file (QUIKDB).

The updated DATADB file is in the same format as the original DATADB
file. It consists of a series of card images with two words appended
to each image (see table 4). The two words are the set number and
line number (both contained in one word), and the update identifier. I
The QUIKDB file is the data base that will be used by the succeeding
QUICK programs. It consists of a directory, which defines the
structure of the attribute-value pairs, and a series of items defined
by a set of attribute-value pairs. (Table 5 shows the format of the
data blocks on this file.) This file contains most of the information
on the weapon forces and target systems that will be used in the game.
The conversion of the data library cards to the data base items is
discussed in the next section.

242

Table 4. Data Block Format for DATADB File

WORI) DESCRIPTION

1 Columns 1-8 of card image.

2 Columns 11-18 of card image,

3 Columns 21-28 of card image.

4 Columns 31-38 of card image.

5 Columns 41-48 of card image.

6 Columns 51-58 of card image

7 Columns 61-68 of card image.

8 Columrns 71-78 of card image,

9 Set and line number. First four
characters arc set number; last
four characters are line number.

10 UPDJATEI identifier.

CONCEPT OF OPIIRA'I'ION

The main processing flow of program QIIIKK.ASI. is best vicwe., as consisting
of four separate steps or options. Not all steps nccd he, accomllplished to
create the game base filc. The . ,lection of the options to be exercised
ill each run depends on the Form of the iuptlit and tile desired output.
Since a complete run of' QUIIKIIASF coald in:l ude aiil four options, thi,;
section describes the operi'ation as iC all four were to he exercised.

Creation of a Data 1 i.b:arv File (S1llII)) 0,ption

This option reads an input Cile of' card images and cre;ate.s{ a data l ihrar'
file. The input set of card iages is d ivided into sul sets, herei aa ter
called C sets. 1he CdiVisio0I of the input t' ice into sets ij not merelIc for
addre'ssilg vconvelli ct'•. [HC QII N('K i M. ta baSe 1o .pt t'01' Io f lol,]

Table 5. Data Base File (Logical Record Format)

BLOCK TYPE ARRAY LENt;TII DESCRIPTION

Directory IDIEF 1 Number of attributes

IASTLIST 1 Number of entries in value list

AITNAME INEF Attribute names

IIFORMAT IDEF Ilollerith format codes

ICOIE IDEF Error checking code

DIPFAULT ID1PF Attribute default value,

NI IDEF Minimum allowable attribute value

N2 IDEF Maximun allowable attribute value

LISTCMIIK IDEF Logical array to specify list
checking

lIGI,Ob IDI F Logical array to specify global
definitions

1, ISTVAI,S LASTLIST List of values to be chocked

Item NI 1 Number of attributes defined
locally for this item

INITEM 2*NI Array containing attribute index
(from directory) in odd elements
and attribute value in even
elements 4

Define NI 1 -1 as DEFINE block indicator

L 1 Attrihute index from directory

VALUE 1 Attribute value

u1

Urrdefil1, NT 1 -2 as IJN[tF[INIE block indicator

I, I Attribute index from directory

VALII I New attribute value

"rerminlatr NI I = ENDIATA as torminator block
ind i cator

24 1

definitions of attribute values. That is, anl attribute Can1 bec def"InedI
(by a DEFPINE~ command) to retain a value for a number of consecutive
i tems . This capability allows compression of' the DATAI)H file wi thout
loss of information, since the value for globally defined attributes
need not be repeatod for every item, The global definition remains ill
effect until either an 1JNflI]F1NE command is encountoecd or the end of al
set is reachcd. Thus, division of thle input file into sets dotermiiie '
thle maximum range of global definitions. A global definition cannot
exceed one set unless it is recreated by a now DFINiPN command.

In addition to divis ion of the Input file in1to sets, this option app'Ži~ls
a 1line number and anl update identifiecr to each card image . The(liine
numbers run consecutively with in each set , beg inn og at onie aIt the st:,rt
of each set . Fach set may cunta in no more than 9,999 card i n11-2
Ltpdato identifier is an eight -charactcr word which idenitifies the runl
which1 Inserted thle card Image. Table 4 Shows13 thle formfat Ol' the, data
blocks in the data. library file, flATAIIB. There Is one data block Vol,
each card Image,

The user options concerning set division are discussed inl the description

of subroutine unnr.

!1pdatiij~a Data__Libra~ryFile (UPDATE, Option)

This Opt ion replaceS, dele-tes, or inserts infor'mat~ion onl the data I.ihvarv
file, DATADB . Thle output is an updated DATIADII file :in the same, for mat -,.is
the original DA'rAiJH file, The upd atC comman111d.S 11111t I)C ill theL same orderý
WS the illfOrmlA tIon On the l)ATAI)B file, Iii ere ore , the process used iln
this Option is ver-y simlple.

The program read., tho DAYN\l) file one image at a t ime. If' thle set aid
1.1l no unibel rOf the inpu~lt im1Age7 doe0s not miatch th e set andl line nuimber
Of thle ne0xt up1dalte c0ininajid , the cnurrent image is wr i tten onl thbeipda ted
l)A'ADI) file, The next ca edl imiage is then reaid from th 1w ATAI)I F i e.
It' the set and line number does maltch the set an~d JIC inc 11)LI 0uuh 1 nthe
nex-,t updlatc Command, the(programl proceeds" to r-M ise the card hi siage

If* the command is RIWI'ACI-., 01h2 npd~i ye ilmagere I- afIces the i opt' t 1 'llihI o11
the updated I)ATAIIR f~ile. I f thle -oilinandk i s Illill"i, no in fri nsa t ion is
!r Itt en onl the DATADIM fie. It' thl. comisuand is \I)I1AFTILR , iinFolisa t on is
inserted ZlFter thle currenOlt car1d imion the aupL;ifokl I)ATI..\fi~ l Ic

IF

Thi QI KO C Kit t Le coils i s ts o f aI numbI)er of' da~ta MoI.cks !;d1C1'I Ied ill
tahe Th[le 1`1 rst block onl the f~ile isý the DillP~iBY' bIol 'I'her

is oil.] v onc)1 IRBCTRY bl 1ock onl fthe file10. Thi is b)1(I ,loc I. df*iTic theC a t t 1 -

hute to Itaes anld ebiirae tori st~i e . it p rovides aI Swi HlimnIV0 'tic ninura t ('

IV11i Ch1 wil be I LISCd to d010eleinjnc attI'ihLItC v ý'IIeS . Inlatl e Lr theL
1)1RilhRY (]e.' nCS theWo I OStiC'1 Of' CoP I eahIt I r hot il N vale ;a I noaay (V:AI'Mi
Ini add ti en, 111C unldeo f 01 rror check inp l f,) ' + 0;11 Itt; i 'at isq det t' mljIni t
byin' loiiollaiollt o ill the illitCTtY.

The I)IRB(PRY block is follolved by a mnumbr oF i1I'M, HIP I NP, andI ltNDITiINT
b)1 locs . Bach scpa mate datai baso item genecrates onle [IBHMolck. Ba;Ch
global dulint i tt.Oni gmorat! tone DtO ITINI block. I.iacii retitova I of g I lolvin
de!.i nit ion generates anl JNDITPI NB block. ('Ihtosc blocks areý [enerat ckl by
thle data ; base commands of' the smile nmeis Thu. lAlADiit 1.1, i i s enfti u.'t ed
by) al te 'itlitintot bilock . The corm in~td I iNi1)ihAl A gen c- t es t I Ii ; hi Ic

The proces's uSed to gencratec these blocks is It L' btuw ' h
dI i F0 Ct I'- t :r conIi;: iaIndks A i')1);IIi d 1BN1) 1 RII C t o go e a I' t cL 1) 1 :I kiti Y hi ~: oI
Flie dose r'i)t iol ai f subiroutiino NiIVI) I e xpIa ins thle use oft these coutulanis.
The I*11M Commaind g;oncrates one Mi bid bock. ba;chi DIi:P NI' or IINDFi NI:
conianIIIl, g01enerates one block (DIJTINli or iiNN'iiilNi respect ilelylv for ecJ h
a t t r, 11) 11 to 0 i " t 0LI.,e'I1 k1 ihi 1) j t io ,o 0 1 !si 0 1' 1 o Ii' t i1 no N 1: 1 AM P1 oI 1 a in te 10

1) n jit in i of' a Pata Bas c V1 Ic (P'R ENTIDU Option

T10 I I ;I IM bas fI- 1e Q11 i Kihi may be pr' i ft ci i n aI reaidabl tcfi rui;i.1I ;' i i

ncr: I uhc n th ci tier subr:opt i'i*iP of, ýz- cy th moth I~ PiRItINIM op t ci off

1 11 0 ilk: Ii t her Sub ro"t i Il Pk ~ PA';- ().ir, ,1 -A ikI1'ii i ltt1 u e k; f- 1 s Ilt ,I'i : d ý1 10 1.i1V i! 1*< k I' h ~ : 'i
ýIih rol lic, (-\p i 1)S tlie r i11

Pr.,,a IIBS nthe tiami cLonftroliVrogrmi. Ills imwprogn mus the

Al I ýth1e0) 01 rnc. t i ott1; of f. his ot iF aL

All hL, 111Cti~S Ofthi Oj~iml rkpe r'fotrifted by' Mi1l) ranlt i lie SI > 1II.

Sujiro~t inc FASTS'I'r is the main cmarntalor Ifor' this- option. It caills sub-
routines IN ITEM'!' and N'IIVIAIA to i nthjilZi:u t ho vartaliles ndli ntrrvS Used
it th is option. Subraut ine INIRIVI. reoads andi iinterprtlts p1,1 I reque~sts.
The l'pda to catiitnand(S a tored 1-,M s))' ron '1.t ilC (:ARII(K . 'Ihoy a re i atvlepreCted!

by st h rout ino NFIitiA'FA (en t v INI3IARI)S), and the ir correctnies s is checked

by) subrout ine CAPiICK . If some Of the0 .1npu1t Informaltion is Olt~itaiO nodon)
filels fromi Jrograid Ili3LL)IIS I(, subrou01.tine B11W:IT is 'so;(d to road tliis
a I) rin11:1 t io *-i.SuI'routtilnes MOV13 i, I PRINIT, ADtlSl~I', OUTI, COIJNH)S , (:0PYIli

PIC I(ONI', amad 11.00K are' used ti o vrfarfi Wr3 or ut ili.ty Amnctions Ear t his

If t1 kult; b{j in(ata i se criva Jo mmrowati wta at irr il qii
suruieMAKEI :onitral lie data baegeneration Othuerie sub-

routin NIncMAKAS is utiliized. The data base di rectory' commnands are i ntcvr-
~reted. hy subrou~tine NlHMIJ IL Abe !:lILC'IRY block- is writ ten 1y uit ility

st-b1rootitno IVRIII)TbIK.) '''ho data aIso i temt commands are inlto rl'p rt edI'
subl011 ti ti1C NIkt\IASI: (l11C d'a titalise fi t. I) uc l~s foa the bse c ominiattik n t'e
1<Iil it 11i lit ii t' s'till'ont i fios IV 'J 1and lUT)hIi'v)IDS The tvlcc~iii t or
bl kb I j. " I' i • I il Iy ' ii ty t' s'! ou ic II AL\.

lR 1 NlIt (lj. ptit i lP~riLitit P: a l ; i- I ' k F :i I',)

I I' t. bit on I y' opt. i 'aI one, rL' i .ý tlit,']': I NTini op t j on, sa 'oni i noii IT()t\

coatii' s It 'unt' o l'xi't ionl' t rn sI sti1itit no' jty5L' kktt bi~'
IMKL " b vi I II Lý)lli ltlW i0 it I a d it ~ at IIi'tl n i

filL' iý p it.'tc'i'iiid Iy alt ilitý ' Kb nt i a> l'N'lASF, pl\'l'It'l\, anai l'lllI:M.

COMM6N BLOCK DEFINTTION

External Common Blocks

Program QUIKBASE references the following utility routine common blocks,which are described in appendix A of this' manual: /DIRrwCTRY/, /rRRORhI/,/FILABEL/, /lFTPRNT/, / tTP/, /MPR'roPr/, /,MYI DENf/, /MYLAIB.L/, /NOPRINT/,.PRTOPT/, /TODAY/, and /T7)ORD/.

Internal Common B'locks

Table 6 lists the common blocks used within progrzinn QIJIKI1AS. mnddentifies the associated arrays.

------------- --------------------------- -

TablIe (i Program QUJIKPASIF CoJmmon Blocks

(Shect I of S)
VARIAB LE

BLOCK OR ARRAY [).SCRI IT ION

1 NSAVI" Array to store defind attributes and valutes

during default run

NF Array for storage of attribute names from

di rector'y

IIISTI NOPSUSI) An array in which the option specifiers

(e.g-, IIPDATII and SETID) arc stored in the

order they are executed

NUSI1I) The number of options called for during)on

QU1KBASI" run

I CKTST I CKTST Set to 0 if attribute v Iw.les are Io be

checked ag;ainst the data base directorv;

set to I if input data card indicates

checking not desired

ICONTROL ICOM I if ITEM; 2 if IOIFtNINE; 3 if UJNI)UFINI:; 4 if

IlNINlNII'rI; 5 if none of the above

IDES I nI+ (;,s Array where alphaLct ic part of tnar,,et desii,-

nato.nI's - stored

I)IiS I ;NO ,,rtra WIhe rc ta'gets'C arIVC count ed b1)' 1'gI2o0

I NI)SI'T I1 NI)SIT "IT Tr e ii " all fAII AI)IM has been ra 11 ; f, I es if

110t

Table 6. (con t.
(Sheet 2 of 5)

VARI ABLE
BLOCK OR ARRAY IDISCRITP'I ION

ITSTUFF MI'STUFF Array where buffered data are read and stored

IIWSIID IWS I) 11olleritth print oonstants RE) and BiLUI

JI.)IISTiSTl' ,JIS JI)EST Position of DES I; att rib ute in ATITNAME array

KKSET KKSE1T Set to I or 2 to control storage of target

Idesignator codes

IOGFI,A(, LAST TRUE if [AST update item has been read

I CN'I' TRUIi if there is an unprocessed update card

"TAPIT IN TROJ.i if 1CI) t'apc dat a to he addod

IAI) 'ADTRIlP i f last cont rol card was A DI)AFIIT R

'II, ITRIJ if last control caJrd waIs I)llIi'l'l

RLIl'Irl' l'RUEII if laist control c(:1%d ,as flPH'..ACII

A I)DIT "I'RUlI if' card in hiit'ffcr Ii to hc added to hIse

1 ERROR Not LuLs(d

MYCCOODSY; N 1, I.N 1. I Ic 111I'c Of C'111 nI' I IAI) I Ii inC lltrlIn

I S li " F[1t l111C I'I 'I' IP I tI)tl;It L t ;1 L it r : C111. 1t0 .

t I I' ll kitI I icd

Ta I) 0 .- n

(Shct Sof, s)
VAR I All LF

13I,OC:K 011 ANPAY JSR1PIO

Set numbeicr Of CarX'QI t IjA'IAIB set

tapo i torn1

~iY I I'1iI I NSTU 1. 1 Array ilcre nux ii I''tint a aro ruad i f wioi I L
Stom"S or S(ot rC ho ilag addod

myin MSTIT Araywhom hAA'I3\IjI tcjI is roadc and useod

1~Y'd' S1 AN kI Bank i of Old datn ai tom1 * if' owv Wint a itu

~IN) 1 :INiII TR IP;I (or P:A I.Sl) if I ast i tcum was ,, tlei'Ii n

ca rd

N IiŽIiN 1: 1:TII~IJI (or, BAI..'-) i f I zist itor cm a a-is nrnm I w d r'i

c; Ird

IA) rIII.j \ 1bP ta~ ii ci; ci ri;j `MIII I H.1 (I)

P1 \ I~I II n[IKIH i I a vI C

N1 I:, : I I

Ta':hle 0 (cont,
(Sheet 4 of,5

VAJ I Al l ;,1,
IO K O)R ,APPIAY I)ISCR I PT"I I{N

NtJVSl:T NI1: NSIFT Set itimilier to be i :;gned to now' se t j

NOI)S NOIMIIS I 'ot;J count hv side of tirijel desi iwitor codes

NO RRIOR S NOI N HORS lIrror count of edit command card errors

.,'iV tHU)F 211d, 3 I-d, 1and "1th fields onlAST card of

NidPli0 cc] di t d(ck; usual I Iy name nod ph one numh, r of

I WANHI III pe srol who stihniitted ioh s

NOTIFT N(lTI S'I Swi tch to colnt ro I datl cThe eck ifi; () o chIeek,

1 o IzcIno i I Io chec I a I p requIi red

OI'T IONS ,%CON Array i nto wh i ch opt i on card i s read NCON.((;

passed on as date evident

I NIA.P I ip f1 i ('p I ;L- I) I•I ate for tie.' i'll

.IMJTl (!t pit t (1) 1i 111.1 I I;pe t ' r I- ltC 1

MWt1l2 SeCConRd oat]Mt t ;OPC I' ;1M") peil to t')'till

N IIIk if ' print !-elected; 2 i" 11ot

N IJIMI flog i fill il1.1' j1L,[i l. nI.III 11111h r ,o t SF 1 1! Se(t

'OPSIT O)pt i oil swi t clI for SIl'!I); lSdc1't1l t , 2=. ide,

3 C cI ;Is:;, s ide 0f C, a I-, 5C I in w all l

TablIec 6 (cont.)
(Sheet 5 of 5)

VARIABIi;
BLOCK OR ARRAY DlSCRI I rTON

OPTIONS (cont.)

I SliTS I Z largest allIoiA) liciie number in a set made

by default option of SIlTI)D

SI•'I D)D) II) Array where set number to he printed is

stored

INDIX 9999 i.f all sets are to be printed; 0 if

none are to be printed; count of' number of

sets to be printed if list read Lii

,JNI)LiX 0 i f no sets to be printed; equal to lNlliX

i f list road in; equal to number of cti

up dnted i f I ATJ'lO= 1

I AUTO 1 1 F updated sets arc to be printed; 0 i.f

not

- A ,i-

STA RT

70

Yes

Is First Is;

0(1"I I o %ovd

/-- Lyt Ca I

~;i I? 0ORl N I'II

No

P k I Nit CT1.]VZ=
Ni

hurd NoI[P(

Mail k

Yes

- 'Are I i s .1
Set tl, I.Otet rs ofO rdm I1i e r I'AI

M"'t ,

-I

20
[)ecodc o rnd (:hcc , i'y n

Numbers ; Jzoiw i ml

Print Ap c Fimbrst 'ŽIallorAl he Spcccjjc(Lot s F br

L M e sage~ lY e s

4043)~
Is IN'JATAPS C)

Y~ Yeses

PrintRu T pe Nuinhert 'oi n

Error~~(;I AlT osSoi lc-I

I. i I n t INlA :

3 0 0
D A L N

I nput ?aeltifiýlt ol

Given?
Y es _ ý ,1

e3 Y s

Opt Dk i

011) iu lA

No NO I'R INT
SclecOC I\Lil1)z(,

DesI it I.Qd

(Prkit 3 oF

Pa rai t e

d2O

s GalsWo d 2Ae

C l

22 q 7

- -....1)

SUtBROUTINE• AI)DSET

PURPOSE: To add a sot number to the list of sets to be
printed,

ENTRY POfNT'S: ADI)SET

FORMAL PARAMETERS: I - The set numb1er

COMMON RLOCKS: SE'rlII)

SUPROUTINES CALLEI): I LOOK

CAIJAI) BY: CARI)CK

Method

Subroutine ADDSIT adds a set number (f) to the array tII and increases the
pointer (JNDIEX) under which the set number is stored, An error message
is printed if more than 5O sets are requested. Subroutine ADDSE'T is
illustrated in figure 78.

I
i

~~-~--t

Call I1.00K
IDctunnIIi ne sets

to lie ~rin.1]

Is This N

a New

0f It , No

SUBIROUTINEi BUFFIT

PURPOSE: To read in buffered data ind to return one logi-
cal record (eight words) to calling program.

liNTRY POINTS: BUFFIT

FORMAL PARAMETERS: TDONE - Flag to show end of tapie data;
0 If not done
1 if done

COMMON BI.OCKS: ITSTUFF, MYTAPES, MYG(OOI)S, MYYINPUT, 1'M!WSIA'

SUBROUTINES CALLED: None

CALLED BY: NI'WCARDS

Method

Subroutine BUFFI'r reads a physical record of 56 words (seven eight-word
items), compares the set number of buffered data with the desired set
number and, if they are the same, returns a data record to the calling
program through common block /NlYINPUT/. If a record is being returied,
the formal parameter IDONE is set to 0. l(hcn the data for the set are
exhausted, either because the end of set or the end of the data is
reached, IDONI. is returned as a 1. If a parity error is encountered on
the input tape, an error message is printed and the job is terminated.
Subroutine BUFFIT is illustrated in fJgti're 79.

I

26(1

(SIA RTI

IN

56 WO-vIS

/tffc Opi.Žlti

Uinit Uised ill
8U fCIL jC-;tint i np

I> P~~~Untl ty Y2. * 11

lirror? 1 ' 1. SI

3 No

NM Tof' 1:1 LI Of' Ye s Row 1In
F iglhthI WordI HiIQ? Tape

S1tIls]

JS10 I ~ of 2)

52

I.; Lf) ;1, ~ Mov j gjl t) 0 oicl R cr
-3 RecorI - o f INiI' of llys cR al

Yes N. o

Is i"< f Cc I, y " c SI tI 'ul°te'rs
S..i?i-t .j Irfor Next ILoyi cal

_____Record

Advanc "'~1W RIRUNN
PC]it litur

Fig, 79. (cont
(ShQet 2 of 2)

262

-- -•- •_ E • - - • -' -' • __ -'•''. "'7 ___'___ ,

SLJB•OTIJ 1 NI CARDCK

PURPOSE: To read i.I and store on a se ratch file -,ll F
the US Or- i IIpu t ed it i nlg comManaIdS aI)d data hN ISe
ulpdates to he useud to modiff a I)AlAI)U tape.

IENTRY PO [N'rS: CARlCK

FOR•IAL PARAMIL[IS: None c

CXOMMJON BLOCKS: O11T'ONS, MYI'APIS, NO~iIRORS I

SUBROU'ITINES CALLIIR ADi}SETI', F I LIII NR, NIIl1ii ,

CALLED BY: FASTSET

Method

Subrout inC CARDCK reads in a card, determines LF it is an editing command
g., ADDA'TER , [JtLliTJE, 1Wli PLACE) , and takes appropr late action. Non-

command cards are assumed to he dat t base items and bce written di rectly
to tape; command items are examined For proper SeqILenc ing of set and]in-,
numbers and for legal commands, AlI cards arc printed. ErrorS aoie
counted and error messaigcs arc printed if illegal cor ids ire encountered, I
Subroutine CARI)CK is illustrated in figure 80.

2 • ,3

NO III I ' ~ i

LA 1111 V,. -iiI,.

J71~

LAIýA Wri , OHI

Fel Set (011 ii Ol I XVh\ (

Ca I - 1' int C rd

Vcs

A ? R, I It_ NO WAOi Btlock]
ItI1111

Nol I ai N: 1 ;. Nt 1 %1. 7'.

to Iii ', lI I'Il i

Q~)r.t- r

a ~~~ig- 80-.Sbru n CARl)CK

204i

SUBROUTINE COPYMB

PUIUOSE: To make a copy of the updated DATADB tape.

EN'RY POINTS: COPYDB

FORMAL PARAMIETIRS: None

COMMON BLOCKS: ITIP, MYTIIENT, OPTIONS

SUBROUTINES CALLED: FILEIINR

CALLED BY-: IASTSET

Method

Subroutine COPYDB copies the updated DATADB tape generated by a FASTSET
update run from NOUT1 to NOUT2. Copying is terminated by the word
ENDINPUT. Subroutine COPYDB is illustrated in figure 81.

2

I

265

START

IfInitialize
NOUTI to

READ

Jnitial ize
NOUT2 to

WR I TE

Read a
Record

Write a
A{ecord

Is it No
Last.

ord ?
Yes

2
Terminate READ
Tape; Terminate

WRITE Tape j

RETURN

Fig. SI. St�brutit inc (()I'II)

SUBROUTINE COUNTDS

PURPOSE: To tally the number of targets by region and

target type.

ENTRY POINTS: COUNTDS

FORMAL PARAMETERS: WYIJESIG - The target designator code in AS
formu t

COMMON BLOCKS: KKSIT', IDESI;S, NOI)ESIGS

SUBROUTINES CALLED: None

CALLED BY: NEWBASE

Method

Subroutine COIJNTDS decodes the five alphamneric characters (two letters
and three kibglts) transmitted to it via MYM.hSIG into two letters and
three numbers. The integer portion of the target designator code
MYDESIG (attribute DESIG in the data base) is used to determine the
region IREG to which a target class is assigned for summary purposes.
Three regions are considered to be defined as 1-499, 50-799, and
8001-9991

The target types, indicated by the alpha portion of DTiSI(, are stored in
array IDESIGS by side as they arM encountered and 'tallied by t)I)c alnd
rag io, ii 1 ES I(N() , a two-dimensional array. Subroutine COIJN'T); is ill us-
trated in figure 82.

267

STAR'r?

Decode mYI)lSI(;

Is t-- No Between No 4

- 500 So0? I= R U'G 3

Yes

i. W_ • . ' 2"-

Compute Proper[Search Parameters[

k for Side

Increase Count
iof Type [,by Region J:

i
}__ _, 82. Su_ _routi_ _e CO__N_ _)_S_

-6 ---------

Ii

SUBROUTINE FASTSFT

PURPOSE: FASTSET is the main control and monitoring
routine for an update run.

ENTRY POINTS: FASTSET

FORMAL PARAMETERS: None

COMMON B LOCKS : EREORIM, I TP, MY I I)NT, MYTAPUS, NOU..RRORS, NOP RI NT,
OPT I ONS

SUBROUTINES CALLED: CARDCK, COPYIM, FIL.IN11, INITrAST, INPRTCL,
MAKEI'T, NIENDATA, PAGFSKI), PRTCONT

CALLED BY: QUIKBANS

p1

Method

Subroutine FASTSET calls INITFASI' to initialize all arrays. It assigns
file names and initializes the filehandlcr and all pertinent tapes to
read and write. If manual print control was requested on the option card,
subroutine INPRTCL is called, Subroutine CARDCK is called to read in and
check all the update data. If that subroutine has found errors in the
input deck, FASTSET prints the error messages and aborts the run. If the
update data have no discernible errors, subroutine MAKEIT is called to
perform the major functions of the program. Control is returned to
I:ASTSi-T which again looks for and prints, if present, any orror messages.
The subroutine to print the targct-region summary (PlRICONT) is cilled
and, if requested, a second copy of the updated dat:,a base is c reattd by
subrout ine COPYI)I. Subroutine FASTSI'T is illustrated in figure 83.

2w),

S. .. . • i I I I I

SIN i Ca II

1.0111i W II~ If I'f N I'~~~

K INc' lo ILI If

FCMK

8111 INlIXIM

I H '~~~In -~ (

SlilIUAI) No 793

MI IIWAutJ

F. Ii

II Rt I Col 'v *
1

YIS

Hi i~. Su outI I .\SlTs I

FUNCTION [,OOK

PURPOSE:_ To examine array ID (.set numbe rs to be pr i ntedj
over [N items, for the presence of I (a set

number) . The Vni uC of tile function is 1, if I
was found, 0 if I was not found.

I'NTRY P01 INTS : LOOK

FORMAL, PARAMEIIERS: IN - The nuitmhetr of items to he sea cheL"
I - lIC itoem to search for

COMMON BLOCKS : SlI'II) D

SUBROUTINES CALLEDI: None

CALLED BY: ADI)SE•T, PRIINT

Method

Function ILOOK exatninus the flug INI)AX in common block /SE"I'I)I)/ to deter-
mine if all sets are to be printed, If INDIX is 9999, a is returned.
If thc flag is not sot, array II) in common block /SET[I1))/ (preset by

INPRTCI, and/or ADDSEiT) is examai ned For the occurence of Flunc t ilon
[LOOK i.s illustrated in figure S4.

271

________ ____________________________ ________ _____ ____________ ______________ ________ .

rV ,

K

START

Is Flag
INDEX=9999? Ys ILOOK~lJ I ETR

No

Has IBeen 2e

Stored in Ye LO1Array ID?
No

ILOOK=0 RETURN

S'l :11lctiol]L OKI iý

SUBROUIJIINE 1NI'FEASI'

PUJRPOSE: 'To set constants and clear arrays fol' Subrou(tines.
associatud with Q(J1KEASF-

ENTIRY POINITS I N I'FEASi'

FORMAL PARAMETIERS: None

COMMON BLOCKS: 1)1RCTRY, ERRORM. I OKISI', I CONTROL, I lElS IGS,
I ENDSEi!, TTP , ITSTUFF , fWSIDi, ,JDLS~S'I'LI
KKSHI1, NIPR'I'OP'I' MYGOODIS , MYI I)IN'I, NIYIPIJI',
NIYOU'I', MYPRIN')', MYTAPliS, NCIVSEI, NODISICSl(,,
NOERRORS , NOPRINT , NOTEST', PRI-011T, Sli1l1 111,
TWORI)

SUBROUTINES CALLED: None

CALLED B)IY: CASTISM''

Method

I NI TFAS'l dues noa compul at ion. E ithe r through dat a Statemene its or
exe cut able Stat oenlo(s , it p'reset Scons t ants andl(00rays to the ir
appr'op r iate values. Suh rouit iln IN I TAS'IT ' 11; us t oted ill f i ou IiC

SUBROUTINE INPRTCL

PURPOSE: To read print control cards for FASTSI3T (update)
if print control option was selected, and to sot
appropriate flags to monitor printing during the
execution of the main program.

ENTRY POINTS: INPRTCL

FORMAL PARAMETERS: None

CONMON BLOCKS: ICKTST, SET TIDl)

SUBROUT'INES CALLED: NUMGETF

CALLED BY: FASTSET

Method

Subroutine INPRTCL reads a print control card (option UPDATE) and deter-
mines if the first word is ALL. If it is, flag INDEX is sot to 9999 and
the subroutine returns to the calling program. If the card contains the
word AUTO, the flag TAUTO is set to true, and another card is read. If
the card is CIIECKOFF*, the switch to disai,lv the value checking proce-
dures is turned--on and a card is read. if the card is neither ALL, AUTO,
nor CIIEC, it is assumed to be a sot number or an end flag. The four
characters are translated to digits and, if they are not 9)99, they are
stored in sequential locations in array 11) until the termination flag

9999 is encountered. Counters INDEX and .JNIDX are. set to the nubher of
set numbers stored.

The conmmand ALI, causes all sets to lo printed. The command AlrIl' causes
aI] updated sets to he printed in full. Thc set numbers listed in array
ID) will be1 printed in full whether or not they are updated.

Subroutine INPRTCL is illustrated in figure 86.

k) 1 1 I f'irst t'our let: rs ch'cked. d.

IAU1O-0

10-

Read andJ
Print Cardi

(1 limp)
(4C1 AR)

Yes INDI XW9999

Isj it AUTO I AUTO INPTI

No7

I
FUNCTION IPRINT

PURPOSE: To determine if a set is to be printed.

ENTRY POINTS: IPRINT'

FORMAL PARAMETERS: I - The number of the set

COMMON BLOCKS: 52'!'IDD

SUBROUTINES CALLED: ILOOK

CALLED BYW: NEWDATA

Method

Function IPRINT examines the flag INDEX to see if either all (INDEX=9999)
or none (INDEX=O) of the sets are to be printed. If either condition
exists, IPRINT is set to 1 or 0, appropriately. If INDEX is neither
value, the flag IAUITO is checked for true (all updated sots are to be
printed), or false (specific specified sets are to be printed). If IAUTO
is true, the array ID (list of sets to be printed) is searched over the
length equal to INDEX; if IAUTO is false the length of the search is
INDEX. Function IPRINT is illustrated in figure 87.

277

Sets IPIto PIlRTR
Accrdingtod

Yesu of IOOI

(I lseX , I)X,

ILOOK

Fig. 87. Fmict(Hi I P I NT

SUBROUTINE MAKEBAS

PIJRPOSE.: To call the subroutines required to prepare a
game data base tape QUIKDB from an input data
library tape DATADB when updating of the DATADB
file is not required.

UN'rwf POINTS: MAKE BAS

FORMAl. PARAMETERS: None

CGMNON BLOCKS: ERCORM, Hi-ST, LOGFLAG, OPTIONS

SUBROUTINES CALLED: ENDiJATA FILEIINR, INITFAST, NEWBASE, NEWDATA,
NEWDIR, PRNTBASE, PRN'FDATA, WRITEDIR

CALLED BY: QUI KBASE

Method

Subroutine MAKEBAS is a driver routine which controls the sequencing of
operations required to create the QUIKDB tape when the QUIKDBG option
is exercised. As indicated in figure 60, MAKEBAS calls the filehandler
(FILEIINR) to initialize the read, write, and scratch files. Then,
MAKEBAS calls, in order, the othier subroutines required to write the
QU1KDB tape. In effect, MAKEBAS is essentially the same as a null
UPDATE run.

"279

--..........................----~-~...-.-- ~.-.=-.~~-t

STARV

I NlAI'H IUN) Cal A IfI
or 1.1)N6; O Call INIHrýASI al LCI

III! Sia I '~ Cal SF.RcA C a l I I

Scratch Files lNADBI

Writc

Last on Cal I NEiWIATA p. Call NMIDIR

Call NEiWBASE LCall WIILI)EIR

Call IiNDIIATA .4uT J6 j4 (NOUT)

PlINTRASE No PRNTDA)NA Ca . I I iVTA

I: rFus1 r r o r s ?
No

RETURNRETIUN

Pig. 88. Sulbrouitine MAKE13AS

280

SUBROUTINE MAKEIT

PURPOSE: A driver to call the subroutines necessary to
make a new data base.

ENTRY POINTS: MAKEIT

FORMAL PARAMETERS: NTI - The tape where the QUIKI)B tape will be
written

COMMON BIOCKS: JDESTLST

SUBROUTINFS CALLED): lNI)DATA, 'Ll., N-IVEAS[E, NE1DIl R, WRI TEL)] R

CALLED BY: FASTSET

Method

MAKEIT calls the data base generation subroutines, NEWDIR, WRITEDIR,
NEWBASE, and ENDDATA, which create the game base file, QUIKDB. Its
only computation function is to look up and store for later use the
index number of the attribute DESIC in the data base directory (array
ATTNAME). Subroutine MAKEIT is illustrated in figure 89.

28

281

-r

IICall NEIVDIRj

CJ ll WRI~bT

IJDESTES'J'= Index
Number of DESIG
in ATTNAMEJ

jJCall NEWBASE

ECal,: ENDEATA

CREumN

ED2

SUBROUTINE MOVEIT

PURPOSE: To move update data to output buffer; add
the desired data or update identification;
and to add current set and line number to
output record.

ENTRY POINTS: MOVEIT

FORMAL PAPAMETERS: IHOWTO - Switch to indicate whether input buffer
is to be moved

COMMON BLOCKS: MYOUT, MYTNPUT, MYGOODS

SUBROUTINES CALLED: FILEHNR

CALLED BY: NEWDATA

Method

Subroutine MOVEIT increases the current line number within the set by

one. It examines the input parameter IIJOW'TO to determine which of two
functions it is to perform. If the argument is equal to a one, MOVWIT
transfers a data record from common block /MYINPUT/ to block /MYOUT/.
It next sets the tenth word of The block to the update identification.
The set and line numbcr are encoded as two four-digit numbers into the
ninth word. Tf the input argument was a two, only the last function
I.s performed by MOVv.iTr; i,e., the set and line number are encoded into
the data record. Subroutine NIMEIT is illustrated in figure 90.

283

START

Advance Line
Number
(NLINE-)

No
Is IHO1WTO: 1?

0 Yes20 i

JSET=ISET
Move Card From
Input Buffer to
Output Buffer;
Insert Date of

_Update

30 ____

Add Current SE3T
and LINE Number .4-

to Output Buffer

RETURN

Fig. 90. Subroutine MOVEIT

284

SUBROUTINE NEWBASE

PURPOSE: To prepare or augment the item portion of a data
base tape.

ENTRY POINTS: NEWBASE

FORMAL PARAMETERS: NT1 - the logical tape number where the base is
to be written

COMMON BLOCKS: MYGOODS, KKSET, JDESTEST, PRIOPT, DIRICTRY,
IENDSET, ITP, TWORD, NOTES'r, ERRORM, ICONTROL.
MYOUT

SUBROUTINES CALLED: NEWIATA, WRWORP*, WRARRAY*, ITLE, COUNTIS,
NUMGUT

CALLED BY: MAKLIT

Mlethod

Subroutine NEWBASE employs subroutine NI1WDATA to read the item portion
of the data base, check for errors, and write each item on the specified
output tape, NT1.

Four commands are recognized: DEFINE, UNDLFI.NE, ITEM, and I.NDINPUT. In

the case of DEFINE the succeeding fields on the card beginning in
columns 11, 21, 31, etc. contain attribute-value pairs which arc to be
made into global definitions in which the first field of the pair is the
BCD name of the attribute, left-justified, follow~d by the value in the
second field. The sequence of attribute-value pairs occurring on a card
is terminated by a blank field.

The ITEM card is as described above except that the definition is local
and the entire sequence of cards is terminated only upon detection of
another command in the first field of a card.

The UNDEFINE card removes global d-ýfiniti.ons with the names of the
attributes to be undefined occurring in succeeding fields on the card,
terminated by a blank.
The deck of input cards is terminated by ENDINPIrI' which also causes

NFWBASE to return to the calling program.

*See subroutinc FII.LIINR.

285

All cards read by the routine are checked for consistenCLy unless
chLcking has been turned off by an update PRNTCL option card (see
subroutine INPRTCL). That is, the attribute slucified is checked
Lo determine that it is in fact defined in the data base directory
and that the value associated satisfies any range or list check
specifications for that attribute. Appropriate error messages are
emitted when such inconsistencies are detected. The flowchart
(figure 91) consists of threc parts. Part I shows the processing
sequence used in NEWBASE. Parts 11 and III show the operations of
three local subroutines used by NEWBASE to perform the data checks
and, if required, to write error messages. Part 11 shows the local
subroutines used to signal undefined attributes (see statement 110)
and to signal an crror in the assigned attribute value (see statement
120). Part III shows the procedures used to convert and check the
attribute-value pair.

"so0

Iiwad

De fin11i t i oilbrc1' c

Indi cat orComn

2212

23.

Wri te

ir~~t NCIDIKl N

v i Glo S b a o t t i - Ae INIData,
COM brt I Po ccl s P n cSc ewncc

.2 -10'

26I
41I

Asglnb 28 Signo (-2 1ne e 111

At~~ribibut - iiK8

to Cnver andChvt .1% tr (coo

(See Part 111(1) rct r, to 3)1

288

51 1 ,Read New I

Attribute Ye
Fie ld S6

N D8•oes Yes

to conivert an hk
Attribute an Vau Output Number

(See PartI) of Pairs
Sin Current •,

Err r? OuAttriute All X

53 Value

and Value in
Temporary

A rray s
I t m N

DESIG?_.
54 "-Yes

Adv ance S4
Card Field

I - 1+2Call •
S.....COUNTDES

Fig. 91 . (cont.
Palr t I: (cant,)
(Shecet 3 of 3)

289

110 120
L.ocal si Stl rout i fi'Locl I sub1 1ttI 1

to Signil to Signal
11l1,1V f i le~d • I lie

At t r-ilut e ro r

Set 1 sw t hSe
rorto2 wtoj

1H 121

Write Write
firror Error

Ms. age Message
oJIRR on Jil

speified byT RIHJN

Fig,. 91I . (,centl[.)

Spec'~l l ' ''qi tI ed b

AT I.I.M

Local Suil~routitic
to Conve rt anol
Check Att rihuzt

and Value13

1361
Carl III:Loc Subrouine fo
Attributealu Namein

(ShDiect1ory 2)2

291t

560

Decode
Approprinte hord

to R Format

780
Is

Decimal Form s Convert Word
of LAT or LONG to

Floating Point

No564563 56

Yes - Convert Word

"3F2.0o No
Convert Word Check for

to Appropriate
F3.0, 2F2.0 Limits

esyes Within

Fig. 91. (cont.)

Part III: (cont.)
(Sheet 2 of 2)

292

SUBROUTINE NEWDATA

PURPOSE: To perform the following functions in conjunction
with the FASTSET update of program QUIKBASE:

1. A call on Entry NFWVDATA initializes errors
and constants for NEWCARDS.

2. A call on NEWCARD5 returns the next valid
data base card to the calling program in
OUTS'rUFF.

3. To translate ITE-, DEFINE, tINDIIFINE, and
ENDINPUT to ICOM=l, 2, 3, and 4, respectively.

4. To act on all editing and deleting commands;
to write updated I)ATAD.3,

ENTRY POINTS: NEWDATA, NEWCARDS

FORMAL PARAMETERS: None

COMON BLOCKS: ICK'IS'r, ICONTROL, IENDSTI, I'T'l, MYGOODS, MYINPUT,
MYOUT, MYPRINT, MYTAPES, NEWSET, NO'rEST

SUBROUTINES CALLED: BIJFFIT, FTLEIINR, IPRINT, NK)VE'IT, NUMGEI,, UITY',PAGESKP

CALLED BY: NEWBASE, NEWDIR, 'ASTSET

"Method

Subroutine NEWDATA is an initiating entry which presets constants to zero,
true, or false, as appropriate, and prepares the tape written by CARDCK to
be road.

Entry NEWCARDS is the primary read and command editing subroutine for the
FASTSET update option. A call on NIEWCARDS returns a singl& data base
item to the calling program, The subroutine rea-; a control card record
and determines if a record is to be deleted, replaced, or added. It
watches update data against a DATADI3 tape using the set and line numbers
to control the position of both tapes. The control cares indicate the
source of new data which may be individual BCD) images from card or tape,
or which may be packed, buffcrCd records on tape. Each data card is
examined to see if it is an ITEM, DEFINE, UNDEFINE, or ENPINPUT card. If
one of these is encountered, the common variable ICOM is set to 1, 2, 3,
or 4, respectively. If the card is none of those listed, ICOM is

293

-'-. z.... = -

returned equal to 5. Set and line numbers are added to each record, as
is the run identification. The output tape DATADBUP is written, and the
items are printed if the print option for the set being read was selected.
Error messages are written to the error summary tape and, in all cases
where possible, the run continues noting as many errors as possible. In
the event an error cannot be circumvented (e.g., the data base set numbers
requested on the update command cards cannot be found), the run is aborted.
Subroutine NEWDATA is illustrated in figure 92.

294

START Entry
NEIVDATA

Initial izeConstants

ITP=1O

Call SETREAD .

RETURN

Fig. 92. Subroutine NEWDATA
(Sheet I of 7)

295

START 72 SI

310 50 True

MOTENT True AIII)IT? t a Ise Set 1UpQ Rcud
-ICETST ICNT? Card Vata to of to I)ArmmAdded fo Base

False
33

No
33 tOr-Irue SU JAM)SO?

its
59 S7

C:IIRDA RAY, Cka,11RDWAY Y05 Read
atd Im ge From DATADD From VAIAUBt

Re d Cc tro
a R L,,;o rd

'cx'

34 No

Yes
LAST-True Is It La; t Get 'et Numer (JSFT) Is Ncx Item Yes

No a d Li e Simber From In L't Data 71
35 (JI I 'E)

No is No
D010te C44,11

36 Yes Is This the Start Print Error

of a Now Set?

DEL-TrUc; (;at Maximum ve 3
Lin: Number to

S12
45 11101T

AS nat Ru,ý
t

Got Set Number (ISLT),
Got Line Number

(LINENO)

rue Last Centrol, Card
a Delete Card

'. tLjFalse

Set New Dole

Set ew Da'e

Card Data to Be False

Added lo B.kqe!

46,
"I rue

L AUDI I se

Fig. 92. (cont.
(Sheet 2 of 7)

296

Set JOLUSLY-Thi s
Set Number,

Set NL1NC-O
Set hI;NDS,;I;Te

RIsrd Se toIsLnet
beNlig b es t c be YeLa se3

bD, leted S

Fhig. 92.? (c tLine

Noe" 3 Nf7

Is hi S t s2hi97

37

7
38

Is It a UPLACE Yes
REPUT-TRUh. .15

Card?

No
39

NoIs It an AVDAFTM
Card?

Yes
40 Al 4211
13 Set to be Yet.Added From BCD TA;L. IIN-TROE. clet Unit

Tape? Number

4209
No

4210 a nit Yeq
Number in 42Are Data to Range?

e Added on (Fro
uffered Tape)' 4102 No

42 No Print
E"or

402 -4 IADD=IRUL Message

I s It No 77
NEWSET? 45

Yes
4250

Get Nt:W;I:T
Numbe

Fig. 92. (cont.)
(Slicet 4 of 7)

198

7t.

72 73 NO
I r ... l(Vild ý ' W d IMIEv

72 Tape in? I r.i,, Tape t o Lor

Fa Ise

7322 7

Trtiv
TAPI lQJFF? m

74 77

I ruc.
I CN r- n I A"I V.-I

76
I rue

TA111.1itil:1 ?
76 a ew

Set Number? False

7794
Yes

771o Rewind Tupc

I SLT -NI WSUr
NLINL-0 77tiS

ILNUSLT-I
NE.W517-0

7 60

Call

NIOVI!IT(l) 53

Set Indicator

for

New Record

Fig. 92. (cont.)
(Sheet S of' 7)

299

70

60

False
I ADDi? 7.1

False
70 RL-'- Trre7 1

True [" Ise
62 A)01,I True 71R O• /rdd r" ~ I C N 1I"F ua I 'e •

II ,l
Read a

C ard
1rn:.ge

Tape in?

34Yes I s it 70 Tu

NoINT-Truc

610 No
Cal 11S ru

TAP'I. UF?

ICNTm.,I.SE 7 a I se

REPUT= FALSE
Set ISI"AR tn ShowI Has Card Y'.

New Record ,eel RLrukN

soo
No

Call
lCOM-5 NKdVL 1(2) 3

Fig. 92. (co~;t.)
(Shcet 6 of 7)

30 1

.......

108 at
Is This ISLT No Set IOLDSET

108 Sawý as - Tilis Set
101.11 set? AM

Yes

NO 82 1 c I
Does ISTAk . c". J.)OMP(jSET) 7

New kecord?

Yes
True

8310

NOVýST-O - PAGh-;KP

True
lPkl%*l
(JSLT) ? CALLOLIT

False

Set ISTAR to
blank

as
84 1'r I te
End of No Record to
Input, DATAODUP

Yes
87

ICOM-4
RETURN

TERMTAPE
DATAP8

[

Write
Record
to

DATADBJP

TEOITAPE
DAtAPSUP

RETURNc

Fig. 92. (cont.
(Shect 7 of 7)

301

SUBROUTINE NEWDI R

PURPOSE: To create a new data base directory.,

ENTRY POINTS: NEWDI R

FORMAL PARAMETERS: None

CONMON BLOCKS: DIRECTRY1 ERRORM, ITP, '.PRTI'OPT, mYOIJ'-,
TIORI)

SUBROUTINES CALLED: ITIE, NUNIGET, NI31VATA (ntr y NEWC,'ARDS)

CALLED BY: MAKEIT

Method

This subroutine employs subroutine NEWDATA (entry NEWCARDS) to read a new
directory or modify an existing directory. The card format is eighý fields
of 10 columns each with all'quantitles left-justified. 1Tw6 cornmands-in the
first field are recognized: ADD and ENDIIRCT,- The E.NDIRECT card serves to
terminate the subroutine and causes a return to the calling program.

The ADD command is used to add a new attribute to the directory, or, in
conjunction with a prior delete command, to Change ail already existing
attribute in the directory.

With the ADD command there are, in addition to the first field, six

further fields of data on the input card:

1. The name of the attribute in BCD.

2. The input/output conversion format (FORTRA•)'associated with
the values for that attribute.

3. Code number specifying the type of checking to be conducted for
a particular attribute (see below),

4. The default value of the httribute, in the appropriate ipput/
output format for that attribute as specified by item 2. This
is the value that will be associated with the attribute when
it is in an undefined state.

302

S. Checking specifications. This field may contain the word LIST,
which specifies list checking with the list of allowable
attribute values to follow on subsequent cards; the word NOCIIECK,
which specifies no checking of the attribute values; or the
lower value of the allowable range of values for this attribute
in the case of range checking.

6. This field is unused in the event of list checking, or no
checking, and contains the upper value for the range of
allowable values of the attribute in the case of ronge checking.

If list checking is specified on the ADD card, this card is followed by
any nunber of cards containing the list of allowable values for th.t
attribute, eight per card, in the firniat specified for the particular
attribute. The fields for these values are the first eight columns of
each 10-column field. The series of allowable values in these cards is
terminated by the first blank field. A blank field can be specified as
an allowable attribute value by including the value BLANK in the list.

Appropriate error messages are written on an error message tape to
point out inconsistent operations such as attempting to issue a command
other than ENDIRt.CT or ADD, or attempting to add attributes which already
exist in the directory. The error-checking codes permissible for the
third extra field are:

CODE TYPE OF DATA TO BE INPUT CHECKING SPECIFIED

I Floating point numeric Range (Min-Max)

2 Floating point numeric List

3 Fixed point numeric Range (Min-Max)

4 Fixed point numeric List

h Atphameric List

6 Alphameric No checking

7 Special conversion for Range
latitude, longitude

Subroutine NEWDIR is illustrated in filurc 93.

303

S START

S

Cal I
NEWCARDS

TA"T

Store Card
In

Directory
Bloc k

86 No IC()[)LX.3 Yes 87

ITPAAN I r 4? (Intege ITRAN 2 writeFlag Eirr.r
Message
on JERR

20 21 3
Is the Yes Is Attribute Yes Set Error

Command Already in Switch to
AI)n? Directory? 2

so No

Yes tie 24
UTUNN Command Store Attribute]

ENDrREC
?

Format52 No Decoding Ar ray

Set Error
Switch to

2 Is the 46

Default Value Yes Set It

the Word Equal to

Write BLANK? Space Codes

Message to No
Er:or
Tape

47

Fig. 93. Subroutine NEWMR
(Shect I of 3)

304

472

Decodewabll

(Shec r f3

valus? Vlue

27

27
NrWCARDS
List

Call NEWCARDS
Read List.ardCard

Do for
1p, E i ght

Card
Fields

DU

Do

r

L,

f "r
Ca

rdYes Is the
36 Field

Blank?

g"tDo 'One
29

Increment
List Count
by One

-0

Is theh
f Ye Set It EqualValue of the.

Word Blank? to Spice
Codes

0
eth"

ye
S

'

ank?

t OC.

7S7S'0"t

Integor Y es -C. I-,
Values? N IUMOE T

0tNo
76VaW

D "d
ecode
ruI0IValuo

Fig. 93. (Colit.)

(Sheet 3 of 3)

300

SUBROUTINE Our

PURPOSE: To print an Item from the data base tape DATADIB.

ENTRY POINTS: OUT

FORMAL PARAMETERS: None

COMMON BLOCKS: ICONTROL, WYOUT, MJYJIRINT

SUBROUTINES. CALLED: None

CALrED BY : NEWVDATA

Method

Subroutine OUT examines the "type" switch (ICOM) to determine the print
format. ITEM cards are printed with n preceding blank; DrFINF. cards
are printed with a preceding *; UNDEFINE cards are printed with a pre-
ceding **. Subroutine OUT is illustrated in figure 94.

3r)7

54

I Com I NDEFINE TRUE

ITEM NUNDEF TRUE S5
C RD IAST 211

NDEFINE a FALSE
51

True NUNDFF - TRUEICONI 2

70, DEFINE --*CN D E P IN E e ? IAST - 211*
CAkD PRINT BLANK

False LINE

55 '553

True NDE'FINE - TRUT

Deurmined I COM ft 3 True NUNDEF =FALSE

by Value of UNDEFINE NUNDEF? IAST - 2[1** SS

1COm CARD PRINT BLANK

False LINE

5S

ICOM - 4

ICOM a S

S5

PRINT
I IAST
CARD 55
CARIA STPIMAGE,IMAGE
ISTAR
R

I

NT

RETURN

Fig. 94. Subroutine 0111'

308

SUBROUTINE PRONLY

PURPOSE: To permit the user to print the contents of the
data base tape QUIKDB, as prepared by program
QUIKBASE, in either of two standard output formats.

ENTRY POINTS: PRONLY

FORMAL PARAMETERS: None

COMMON BLOCKS: HIST, MYIDENT, OPTIONS

SUBROUTINES CALLED: INITAP, PRNTBASE, PRNTDATA

CALLED BY: QUIKBASE

MET11OD

The PRINTDB option of program QUIKBASE provides the capabilityof printing
the contents of the data base .tape QUIKDB. Inclusion of. the PRTNTDB
option card in the program run deck serves to select the option and also
identifies the desired output print format.

When this option is selected, subroutine PRONLY is called by QUIKBASE to
determine the desired print format and call the appropriate utility
routine to accomplish the printing.

As shown in figure 95, PRONLY first initializes the filehandler by
calling entry INITAP. The third and fourth data fields of the PRINTDB
option card are then examined to determine the data base print format
which is to be used. Either or both of the standard data base print
formats (i.e., PRNTDATA or PRNTBASIE) may bo obtained.

The order in which the prints are requested is immaterial. PRONLY deter-
mines the first print request and calls the associated subroutine:
PRNTrDATA or PRNTBASE (entry PRNTBAS is used). The second request is
processed in the same manner and control is returned to the calling
program.

Subroutine PRONLY is illustrated in figure 95.

309

Call INV All
to l211ithliiz(e

Fi I chajid Ier

Var~~ II')I

r ~ 2

SUBROUTINE PRTCONT

PURPOSE: To summarize (print) the number of targets by
side, region, and target t)pc.

ENTRY POINTS: PRTCONT

FORMAL PARAMETERS: None

COMMON BLOCKS: IDESIGS, NODESIGS, IWSTDE

SUBROUTINES CALLED: PAGESKP

CALLED BY: FASTSET

Method

Subroutine PRTCONT prints information tallied by subroutine COUNTDS in
common blocks /IDESIGS/ and /NODESIGS/. Subroutine PRTCONT is illus-
trated in figure 96.

311

START

SIDE=BLUE

8620

Print the Number of
Targets of a Given

Type lbat Arc Present
in Each Region

Increment the Total
Number of Targets
Per Region Which
Have Been Printed

Yes More T arget
Types to
Consider?

N

8626

Print the
Totals for

Each
Region

SIDE=RED No SIDE=RED

Yes

RETURN

Fig. 96. SubrouLine PRTCONT

312

SUBROUTINE SE'II

PURPOSE: To begin a data base front cards or card images

and to write the IDATADBI tape.

ENTRY POINTS: SFTII) D

FORMAL PARAMILIERS: None

COMMON BLOCKS: 1, FlI LABIiL, I FTIRNT, I'P, MY TDLN'r, MYILABII.,
NOPRINI, OPTIOINS, TODAY, 'IWORD

SLIBROUTINES CAILLID: FI LIIINRH, NUMCIET

CA1,I,:D BY : QIJ I KBASL

Method

Subroutine SETID is used to create a data library file (DAIAD13) from a
card deck or a tape containing BCD card images. The data library tape
(DATAI.B) is formatted for case it updating the information contained
thereon. The tape consists of a series of card images with three
identifiers for each card. The identifiers consist of a set number, a
line number, and an update identifier; e.g., the date. The card images
are divided into bets, each with a unique number. Within each set, each
card is assigned a consecutive line number. Thus, each card is uniquely
defined by its set and line number. The update identifier is an
eight-character word which aids the user in determining the run which
introduced the card into the data library file.

J'he user may specify that one of three methods be used to divide tile data
library into sets (see SFHID Option, program QUIKBASE , chapter 2, Ulser's
Mlanual, Vol ume I I). The default option (SII)ICLAS) cause,; sets to• be
established considering tile ;ttributos SIDI: and CL.ASS. Under this method,
the data base directory is defined as the first set. The set number is
then increased 1)y one each tinie a DEF:INEi card is processed which incluldes
tile attribute SIDI.i and/or CLASS, "Thle •IAXSE!T option causes; the data to he

I.divided into the largest fe~asible, sets. Under this option, the dir-ectory'

is defined as tile first set, and each succeeding 5,000 cards are defined
as it new' set . Selection of the NIAXSI 'T option also causes the existing
global attribute definition~s to be carried ove.r to the next set. TI e
third option (MfANUAL) en41aCls tile U501' to spec~ify thW eXact points in the
data base where a new set is to Ibe started. The user nijY also establish
the set numIber,-a; however, they must he assigned in, isccnding! ordetr anod the
directory Must he the first set.

that5

the data.base d..is defined.a..the .i....t set."The se

As shown in figure 97, SETID initializes the filehandler and prepares to
write one or two copies of the DATADB tape, as request d. The subroutine
aeads the directory cards; if manual division of sets has been selected,
it loo]<s for and uses (if present), a user-assigned set number. The
directory is read and written to one or two tapes, as directed, until it
reads the ENDIRECI card. Each attribute name is stored in array NS as it
is encountered. On option, each record is printed with its assigned set,
line, and date identification. After the directory has been completed,
the set number is advanced b> one if manual control of sets has been
selected. For all other options, the set number is made two. The item
cards are read and processed according to the set option chosen.

If the card L's neither a DEFINE nor an UNDEFINE card, tile print option is

checked and exercised according to its value; the set and line number and
the update identifiers are inserted into the data record; and the record
is written to one or two tapes. If a card is a DIFINIE card, a NEWSE-T or
Bli(INSET card, or an IINDEFINIh card, processing is as described below:

1. If the occurrence of either SIDE or CLASS is to indicate the
end of one set and the beginning of the next, each DELFINE card
is searched for the key word; i.e., SIDE or CLASS. If the key
word is found, th-ý set number is advanced, the line number is

reset to one, and the processing continues as described above.

2. If manual control hat; been selected, the word BE(INSET or NEWSET

is sought and, if found, the optional set number is sought. If
it is present, it is used; if not present, the set number is
advanced by one and the line number reset to one.

3. If the MAXSET option has been selected, the list of attributes
on each DEFINE card is searched, and the name of the attribute
and its value are saved. The occurrence of an UNDI-FINE card
causes the attribute-value pair to be erased. When the line
number reaches ISETSIZ, the preset maximum* for a set (now set to
S,000), the set number is advanced; the line number is reset to
one; and all defined attribut-value pairs are written to tape
as the beginning items of the new set.

When the card ENDINPUT or LAST is encountered, the tape writing is termi-
nated and, if two tapes have been generated, the tapes are compared. If
discrepancies are found, they are printed. If no errors are found, the
record count, together with the message NO ERRORS, are printed. Cont ro 1
is returned to the call ing progjran QUIKBASE.

*Applroximate number. All I r'M card attributes for the current data base
item arc prucessed before tile set number is changed.

:1 I

Prepare~ 0Output

(NOUrI) 1-1pe

to
Wri te

Is, Second

Copy No
Requi red?

eYe~s

P'repare Second
Tape, (NomJT)

to Write

456

!ýIitia2IzcNSEiT, NDIR, NAT
and NIENI to .1

Call m1mcirlT2

to Obtain Read
Set Numbut, a 10

Ca rd

Is 1107C au r t No Is It J I ' I) li

Ish t It O 7

1d: I UR

A

N,
Ca rd?

ye,

Ri h -jti-At i fy
Integ1 vi- in

Word 4

Store Attribute
Name in NS(NNI)

'Increase

NDhec 2 oid o)

Larg Prin Ye Ivsd SetsMuuo elct
Possiecor tot o BSI e.C SofSt

NSE~~~h2 (rinedl) S~N~T

nlcua x c\V Ar '

End1

ofI

Diir9. ctont,

Yes-

.*13(1U
I I&�-tx t-

.(, (.i'Ii) I Liii '7
__ 'J4 ('_77I��*)Z t� V

A)
B j

\H''.I / r
UI. <� - 'I..

F; I hilt /"\ 2 jiili-2 - *1
V � / i�.I7� M./�N A

b>

/�*�

(6
it --Ti..

/
I,. (Ž1)

I lIlt
1

��1*'�
1

1.1. j

K>' K� i >4 . -

I..
K)

.1' I

I' j

248

INIX): I UF' NE No
ca rd?

A71-

S£No

At tri hl I

Print? -lob

Yen 185

/Wcrr~-B I~cFln~• • JPrinit
Record1 _

Ski p 1Pii:C

' i. 7.(con

26 1Attribut
os In

18 .

262or Ld

Print Error Encode Set nnd/-- - --- - .sageLin e Number ;

/to N01rr'l and/
/If Selected,]

L'to NoMrr'?
777

3? 'se

i ne

F 94!7. (cont.

(:;hd 'et 0• of" '

72

Wasi This YsC 1:RU

Last Carid? to Termilu I
Nfl)] I

• ' 1 N o

.71
/ 1,4 Line Numbertl' • -- '-

Na Greater 'l'haIl.imn ' t RTLIRN

_ ot S ize ,?T O u

X _?°"Wr t t ",,,.
for Currot It(iit 3.ont lit'nIops

BCO

-"Yes

272

111cfva"VSet'rint
1111c),;~ Se t L lt N Mossaj'Nunb o r- 1 ErLrors? N0) _IlOORD /

Nurnhvr1u I LORDS

Yes

Write Curren7t Print Error Message
Global Dcfinitions TAPIS D)0 NOT ACRIIE./

on Tope for DI IFP)RHINCILS
Now Sot T IC~D

Fi.. 97. (cont.)
(Sheet 7 of 7)

321

- •- -

CHAPTER 6
PROGRAM BASEMOD

PURPOSE

The purpose of program BASEMOD is to alter the content or characteristics
of a data base in order to adapt the data base to the specific scenario
for which the plan is being developed. Because of its highly specialized
nature, program BASEMOD should be examined for possible revision each
time a now war plan is to be generated.

INPUT FILES

There are two distinct sets of input tapes which may be required by
program BASFMOD -- one for post-QUIKBASE operation, and one for post-
INDEXER operation.

"When the program is executed in the former instance, the only required
input tape is QUIKDB, the game base tape produced by program QUIKBASE.
If, however, the user desires to exercise either the TARDEF or the ZONE
option, a second tape is required. This tape is produced by program
STACKER, a program of the NMCSSC QUICK Data Base Generator System
(QDBGS).

The input from the QUIKDB tape consists of the entire data base; the
input from program STACKER is contained in two common blocks. Common
/XLAT/ contains the necessary data for the introduction of TARDI.,Fs,
while common /MYZONES/ contains the data required for the determination
of ,ones.

When program BASEMOD is executed post-INDEXER, the only required input
tape is INDEXDB, the indexed data base produced by program INDEXER.
Again, input from this tape consists of the entire data base.

322

OUTPUT FILES

In both post-QUIKBASE and post-INDEXER operation, there is one output
tape produced by program BASEMOD. This tape contains tie modified
version of the game data base. In the former instance, this tape is
QKMODDB, while in the latter instance, the tape is TNMODDB.

CONCEPT OF OPERATION

The exact functions of program BASEMOD are directly related to the par-
ticular war plan being constructed; the program described herein i. one
which currently performs the modifications desired by the NMCSSC. Since
program BASEMOD may be run either after program QUIKBASE or after nrogram
INDEXER, there are two distinct sets of program capabilities and u-'er
options. When BASEOJOD is run after program QUIKBASE3, the program performs
such tasks as: removal of inappropriate targecs (attribute RESERVE-O)
from the game data base; establishing the number of aircraft per
squadron NOPERSQN, number in commission NOINCOM, and number on alert
NOALERT for each bomber and tanker unit; selection of the appropriate
type name TYPE, value VAL, and relative effectiveness EpECTNES for
each fightcr-interceptor squadron. Further, the user has available the
options to specify, for urban/industrial targets, the attribute VAL as
a function of either index of general industrial worth (I11W) or
population (POP); to calculate bomber local defense parameters (TARDIAFs);
and to calculate defensive zones for either or both sides.

When run after program 1NDrXER, BASEMOID provides the capability of
selecting or deleting targets on the basis of geographic location
(i.e., country location, CNTRYLOC).

IDENTI'FICATION OF SUBROUTINIh FUNCTIONS

Program BASEMOD is the main control routine. T1is subroutine reads the
option card which specifies whether the run will be post-QUIKBASBI or
post-INDEXER and calls the appropriate subroutines.

323

tost-QUIKBASF, 2poration

Subroutine ImMMOD is the controlling subroutine for this mode of operation.
Ic calls subroutine RDTYPES to read in the values of the scaling factors
to be used for the calculation of NOINCOM and NOALERT, and it reads in
the remainder of the input parameters itself. If' either the ZONE or
TARDIFF option is to be exercised, it calls subroutine SITKRiN to read in
the required data for the calculations. Subroutine IlBiMOI) performs all of
the required data base Imiodificat ions itself, except for the determination
of TARlIFs (if' desired) which is done in sub rotutine 'lIARI)IES, and the
determination of ZONES (if desired) which is done in subrourtine MY.ZONl.
The record by region, type, and side of the targets deleted F'rom the game
base is kept by subroutine NUMDEL. 'rho record by region, type, and side
of the targets kept is maintained in subroutine COUNTDES.

Subroutine ADDVAL maintains a record of target value by class, type, and
side and prints this suimnary after the processing is completed. Sub-
routine PRINTIT determines, on the basis of the user-specified parameter,
whether a given item from the data base should be printed and, if so,
prints it.

Post-INDEXER Operation

Subroutine INDMOD is the controlling subroutine for this mode of oper-
ation. It reads in all of the user parameters, and it performs the
necessary data base modifications. It calls subroutine COIJNTDIPS to
maintain a record by region, type, and side of the targets kept, and it
calls subroutine NUNDII, to maintain a summary by region, type, and side
of the targets deleted. Subroutine PRTCOLJNT is called -to print the
summaries kept in subroutine COUNrIrES.

(COMMON BLOCK DEF INITION

E:xternal Common B1 ocks

SP rugram BASIEI[NI) references the foll ow i ng uti ti ti y rout i ne common blocks,
whiclh are described in appendix A of this manual: /IDIl\Pl/, /II)ITILRMi
/11 I/, /lYI l)liN!'/, /NOI'VI[NI, and /I'ROCI;SS/.

rn terunl. Common II locks
Table 7 lists the common blocks used within BI.XSCODI and ideoitifies the

arrays contained in them.

32,1

-..

Table 7, Program BASEMOD Common Blocks
(Sheet 1 of 5)

VARI ABLE
BLOCK OR ARRAY DESCRIPTION

CUTIGIW 1 Dummy constant

JCOUNTRY List of countries to be assigned values of

HINIGIW

NINI(;rW List of minimum allowable values of the attý1-

bute 1GlW

NOIGIWS Number of countries in the list for each side

IDESIGS IDESIGS First two letters of target designator code

DESIGNO Array containing summaries by region and

type of items kept

JCARD JCARD(1) PRINT, if a print of items in the data base

is desired; blank, otherwise

JCARD(2) Frequency of above print

JCARD(3) SELECT, if the items in the country l:ist are

to be kept; DELETE, if they are to be

deleted

KJCAID)(4) Number of countries in the country list

JSIDE JSII) HIollerith side name

LI)ESIGS LDESIGS First two letters of target designator code

LI)ESIGN0 Array containing summaries by region and typo

oF items omitted

325

Table 7. (cont,)
(Sheet 2 of 5)

VARIABLE

BLOCK OR ARRAY DESCRIPTION

LODESIGS LODESIGS Number of different types of weapons deleted

(for each side)

LLMIN Internal index parameter; z1 for BLUE, -251

for RED

MYSIDE MYSIDE Current side

MYZONES Zone data from program STACKER

BLAT Latitude associated with the point of origin

of a leg

BLONG Longitude associated with the point of origin

of a leg

IZIT The BLEGNO associated with the last IPOINT

which describes a zone

ILINK Value of LINK associated with BLEGNO

MINBLUE Mlinimum BLUE zone index number

MINAXBLUE Maximum BLUE zone index number

MINRED Minimum RED zone index number

MAXRED Maximum RED zone index number

MINTEST Internal BLEGNO index parameter

JLINK Internal LINK index parameter

NTEST Internal counter

M IN Internal BLEGNO index parameter

326

Table 7, (cent,)

(Sheet 3 of 5)

VARIABLE
BLOCK OR ARRAY DES CR I PTI ON

NOD)ESIGS NODISSIGS Number of different types of' weapons (for

each side)

KKMIN Tnternal index paramet-r; =1 'or BIiI, =251

for RED

NRTYPES NRTYPES Number of weapon types for current side for

which NOALERT and NOTNCOM are to he scaled

MTYPES Same as NRTYPES, but in alphameric format

NNTYPES Type name of each weapon type for which

NOALFRT and NOINCOM are to be computed

ALERTNO NOALERT scaling factor for each weapon type

COMINNO NOINCOM scal'ng factor For each weapon type

PRINTS IFREQ Desired frequency of prints

IPR'F Index used to count tiumber of items processed

between successive pr its

I PR fNT =1 if prints are desi. rod ; =0 it' iot

TYPENAMFl INDBEG Smallest index number for each type

T'YPENAMPIE Type names in order of increasingq index

number

CUM1NO Cumulat ve number of types in ench class

BlYPEiS Number of BIJUE side types in each class

INI)CLAS Sinallest index n1'umber in each class

327

ri

Table 7. (cont,)
(Sheet 4 of 5)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

XLA'r SAM data from program ST.\CKER

XLAT Array containing the latitude of the centroids

of each SAM site complex (locations I through

500 store BLUE data; 501 through 1,000 store

RMD) data)

XLONC; Array containing the longitude of the centroids

of each SAM site complex (same storage as above)

RADIUS The defensive radius of each SAM site complex
NUMBATTIS Number of SAb~s located within the radius of

the complex

JINDEX Index of the first SAM site in each major geo-

graphical area

LINDEX Index of the last SAM site in each major geo-

graphical area

ATEST Values of longitude which subdivide the

complexes into reasonably well defined sitc,

NBARfAS Not used

NRARMAS Not used

N i'ARSlIT TARDEF number which is associated with a high-

altitude defense of a given strength

NI'ARSLO 'TARDEF number which is associated with a low-

altitude defense of a given strength

NTARTE1ST Contains values which divide the total number

of SAMs into several distinct ranges

328

Tolabe 7. (conl,
(Sheet S of 5)

13 OCKVAR I A13lI
BLOCK___ OR~ ARRAY DElBM(;R] P11

X LAT (cant

x'Irnls'r Factor used to d etc rmIT noif a SAM comp] I x can

iirov ido high- a t i tirde defenlse to a1 targot

[AXiII The m1ax il non 1'ARDhlT w) -']I C,111 !e:)0 g fur'

'uigh-alt i tide cen

NIAXLO The maximum 'IARIDEF which can he ass igned for

low-altitude defcricse

FACLOIV !actor usedl to determine whether a valLue or

'IARDEFLO should heo assigned to a given targot

LARFAS Numnbcr of googrophical arcas into which SAM

sites arc divided

LNLOW The beg inning indices of the arcas i BLUE

and RED) (I and 101 , respectively)

I LOW Lower indx di catjwný whore storage of" data

begin,, for B~LUE and 1,H), respeetivcly, inl

N'lARSI II, NTARSIG , and Nl'AR'FPS'

Till (UI Index 1i odi cat inrg dhc ru tine storage of' data

ends for BIJPE and RI.;)' (7 andI 117, r'CSpe-Ct iV\'el)

inl tile aboverniont ion:Ic d arr'ays

IT'ARTAPF Not used

J. LO 110e Bginn inrg indices a F SAM\ cýomp 1 xes For BLUJF

-'nd RE!) (1 and .501 , respectiv'ely)

JP' IEAS Numbe r of' areas in which -LAM complIe xes are

Ij LOGS Number- of SAM comkjl cxcs for' each side

I'

I

PROGRAM BASEMOD

PURPOSE: To determine whether the program is being run
post-QUIKBASE or post-INDEXER, and to transfer
control to the appropriate subroutine.

ENTRY POINTS: BASEMOD

FORMAL PARAMETERS: None

COMMON BLOCKS: None

SUBROUTINES CALLED: DBMOD, TNDMOD

CALLED BY: None

Method

The variable IALT is read from an input data card. If IALT is zero or
negative, the run is post-QUIKBASE and subroutine DBMOD is called. If
IALT is equal to one or more, the run is post-INDEXER arid subroutine
INDMOD is called. After the subroutine returns the program stops.

Program BASEMOD is illustrated in figui~e 98.

3)0

START!

Pro gram QU I KBASI i

P ro gram IND~i~X li P

ý"-"

Caar]

Surutn Subroutine
DIMDI N DM01]

Fig. 98. Program BASEI-OV

331

SUBROUTINi AI)DVAI,

PURPOSE: To accumulate target value by class, type, and i
side, and to print the information in tabulated
form.

ENTRY POINTS: ADIVAL, PRN1VAL

FORMAL PARAMETERS: IS - Value of attribute SIDE
IC - Value of attribute ICLASS
IT - Value of attribute TYPE
V - Value of attribute VAT,
JC - Value of attribute CLASS

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: DBMOD

Method

Each time the subroutine is entered through the entry point ADDVAL, the
value of the item being considered is added to the total value of the
other items of the same class, type, and s;ide which have already been
considered. In addition, a count of the total number of items kept in
each of the categories (various combinations of class, type(, and side)

is maintained. Ji: the item under consideration is the first with its
class, type, and side characteristics, a new category is created for it.

When the subrout.,ne is entered through the entry point PPN'iVAL, the
summaries which have been maintained are printed out.

Subroutine ADDVAL is illustrated in figure 9)9.

332

I".

Elrnt ry
START AUDVAL

Initial lze

30

Has an Itemn K'ith Start aNow
is CLASS, TYPE, and . Category With

SIDE Been Processed C I hbracteristics
PrCviously, / of This hem

25

Add Value of Item

of Those of Sate j
tt To me

Increment Number
of These Items RETURN

Which Have Been RETURN
Procesned

(1 TA I ERNTVAL

SIDE,,.IILU"

101Piprnt ,Summary/

SSIDE-RED N I1-M)

Fig. 99. Subroutine ADDVAL

333

SUBROUTINE COUNTDUS

PURPOSE3! To keep a tally by region and type of the tar-
gets kept for each side after processing by
subroutine DBMOD.

ENTRY POINTS: COUNTHES

FORMAL PARAMETERS: 11 - Equals I if side is 13LtUl3 2 if side is
RED

MYDESIC, - Designator code of item
IREG - Region in which item is located

COMMON BLOCKS: IDESfGS, NODESIGS

SUBROUJTINES CALLED: None[CALLED BY: DBMOD, INDMOD

Met hod

Each time the subroutine is entered, the total number of items retained
.with the same type, region, and side is incrementted by one. The region
is determined from the target designation code, Subroutine COUNTIiDS is
illustrated in figure 100.

33.1

CSTARITlOC) '

IPI

Separate Target

Designator Code
into Aphabetic

and Numeric Portions

SDetermine Region

Sin which
Tlarget is Located

Y 20

of this Type No Begin a New
been Recorded Category for

, or this, S.ide?,,jIe

lYes

Incremnlet by One the

[Totol Number of Suc-t•, ,
[Targets Kept

Fig. 100. Subroutine COUN~rDs

335

SUBROUTINE DBIOD

PURPOSE: To control the information processing when pro-
gram BASUMOD is run post-QUJKASL'.

ENTRY POINTS: IBMODf

:ORMAL PARAMETIE IS: None

COMMON BLOCKS: CUT'I'; 1W, IEDITAPEE, EDITF PM, IDIESIGS, IT'IP, LDESI(CS,
LODESIGS, WrfIDENT, tYSII)E, NOI)ISIGS, NOPRINT,
N R,'IYPES, P R INTS, P ROCESS

SUBROIIIINES CALLED: ADDVAL, COUNTIDES, INITAPE*, INITEDIT, INPITEM,
MYZONE, NEXTITniM, NUTIDEL NUMGET, OfrITEM,
PAGESKP, PRINTIT, PRNTVAL, RIrFYPE1S, STKRIN,
TARDE FS

CALLED BY: BASEMO .)

Method

Subroutine DBMOD effects a sequential examination of cach iteni in the
game data base (contained on the QUIKDB tape). Each item is read in,
filtered through a series of tests, and assigned appropriate values for
certain of its attributes. The item is then either retained or deleted
from the game data base, The 12 tasks accomplished by this processing
are:

1. Targets wh ich are inappropriate for the p1lan under consideration*
i.e. , those targets assigned the attribute RPESE\VIF=(, are
excluded from further consideration,

2. Tlhe appropriate number of bombers or tankers for each bomcbr or
tanker squadron (NOPERSQN) is selected, depending upon the par-
ticular plan being developed (Initiative, Surprise, or
Retaliatory).

3. The number of bombers or tankers in commission (NOINCOM) for
each bomber or tanker squadron is calculated by specifying that
NOINCOOM is equal to a user-specified fraction of NOPIIRSQN.

*See subroutine IHILHININ,

336

• , , ~ ~ ~ ~ ~~ -,.... , : ., '.:,:k :"• ,v•• 're.'}'

4I The nunibcr of bombers or t aike rs wh~ich are onl alert (NUAILiR1)
for each squadron Js calculated by specifying that NOAM~R'l is
equal to a user-specifiud fraction of NO]NCC)M,

S. Trhe appropri ate value of the attributes TYPE, VAL, and 1FF:CTNEiS
is established for Lach fighter interceptor unit based onl thle
user-i aput parameter POSTURE., If POS'lURIi=l , thuse attributes
are assigned the valuos. of the attributes TYPEl , VALIA, and

E1.']:NL:SI , respect 1 vely. If I)OS'1'IJRE=2, the value., of- the
attributes TYPE 2, VAL2, and IiPE:LCNIS2 are assigned.

6. The re Iat i y value (VAL) of arbani/ indus t r 1 a t ArgC tS i S Cal CU-
latud as a functi on of either general industrial worth (1(31W)
or population (1P01).

7. If thle TARVEF option is exercised, each target (opposing sido)
is processed and thle level of local bomber defense available at
tile target is calculated.

8. If the ZONE option is exercised, items in ICLASS 4 and 5 (defoen-
sive comma)nd andi control sites and interceptor bases, respec-
tively) P'ro procossed to determine the air defense zone in
which the itom is located.

9, Thie value of the attribute IRE:G is drtermincd based onl the
target dosignator code DESIG a~ssigned to the item.

10. Hach B~lue (SIIDE:BLUE-') installation is assigned a value for the
attribute FLAG. The assigned value (numeric code I through
9 establ)ished based onl ICLASS) is subsequently used in program
ALOC to impose user- restri ctions onl thle allocation of weapons;
(see Program ALOC, tiser-input Paraimeters, rLAGRES'1 Function -

Rest-rict ion of Weapon,. Using FLAG Attribute in chapter 3 o''
User's Manual, Volume 11).

11. Targets may be deleted from the game base onl the basis of FASK
or MINI (1W (user-specified parameter which establishes thle
minimjum index of general industrial worth to be considered) .

12. T]he appropriate value of the attribute 013L (probabi lit)y of JeS-

truction before launch) is chosen.

Subrouti ne 1)1111b is illU.Strated in figure 101.

537

Initialize

801

Red InptePrameters:100

300 Norexistnfo, Data Sie , Print

Psue lis, Task, NC-oP Intpurrt al

So Noesg NW

Deerine 101. subotn E
SIDE a TSreet? Int ofmor)

10334

A

ile, Yes Is Item No -- j N'O'P*E-'R'SQ'
Somber, or Missile? N'OOALLR'r.
Tanker? Yes _INCOM

No

NO Is Item Procless,

interceptor? ALER' 1)
NALRTUBL,

Yes
30

Procnis VAL

ELF EC-rN
. TYP

8

Yes 9
40 S OUIc Item 300

Process b OCtted? Yes
VAL ESH' VF.0

950 No

Call Yes Are
TAfturs TARDI:r

Needed?
No

S tem
D e fe M s k v e Yes Are Zone
C trol Assigrivient 3 Yes Call

inlercop- r? or Needed? UnIONE

'No No

Ca I I
COUNTDES

Fw-f 1.70 -va i u"
of I RLG and

92

3300 F 688
1117 ;,1 i tit

(D I u I tI tcms Yes put
oC ns iderod umn.a 1, i v

11-t

No

D R F TIU R N

lol. cot, t

h C'C' t 2 0 C 2

FUNCTION INVEXTYP

PIIPOSI]: To compare the value of NUMBATTS with the value
of N'ARTBS'r until the region in which the value
of NIJMBATTS lies is ascertained.

ENTRY POINTS: INDEXTY!1

FORMAL PARAMi/TI;RS: NUMBATTS - Number of SAMs located within the
radius of the complex being considered

ISIDE - lollerith value of side

COINION BLOCKS: JSII)l], XLAT

SUBROUTINES CALLED: None

CALLED BY: TARDI:,S

Method

This function subroutine is entered with a given value for the parameter
NUMBATTS. The range of allowable values of NUMBATTS has been divided
into (TIIIGH-ILOW+I) equal segments, and the lower and upper limits of
each of the segments have been stored in the array NTARTEST (THIGH and
ILOW are external.ly specified index parameters). A search is then
implemented to determine the segment in which the value of NIAMBATTS under
consideration lies. This segment is characterized by the index number
of the upper limit of the segment (e.g., if NUMBATTS lies between
NTARTEST(3) and NTARTEST(4), tho value of INDEX'YI, for NUMBATTS will
be 4).

Function INI)FX'ITY1 is illustrrated in figure 102.

HI

START

J LOIV- ILOW WJSI Di:)

J1IlI GI I,-- CII IIG (J Sl D1ii)

J= LOW

SHIMfOUIlINJI 'NDMOD

PURPPOSEi Ton contraol thu in:~format ion p rocecLssin~g whon Pro -
gram IWWSI0K'h is run post- INDIWXI R

ENTRY PO INTS: INJ)MOD

FORM~NAL I'ARAMNIIRS: INoun

LODII:SI(;, LI- 1H VI •1 NillS :s',\ PIN! , PPO1.,

P ~ X' ABORT, NIB-WI ; 1. ,r'1.\!hIA:'I, C!i 11.1d], 1.P(I-L
NFIP T 1 1 11I N RIItQ) IJN !,I, I \IGF I ,]III.I , IM S

CAI\LJrII BY H,\SIFMOi

of lI:l j- ii ca I Ic :!it i ol. T II I js'r j '0! I~ hiii l 1). U 'I ;i II):)I I L'Il

ru ;.il- e1l(cic' LS l ai4dfI. ait!'Il. ~l cl eia t c-Ills

SOICLct(. iol I'C Lent ion arc, output tG tl.C TN~NO)1I. t inc,

Still) -ol a;~ c 1 Nj H10 s i ihis t 1-t dc ill fiit:!

STARTAR

0 0

kead
Initialize Input

Paraimeter,/

3SIu 3505

'tr'it ri I t/ o
Into -4 C

SC

ticI I o)I ry u

'S.9!5] c •t/ "iEt I ,- l''

/:<(\ / rtp tI to0
O t' 1, ltc~ it) ti s in tit Not' J

"4,---:-- f t_ 1,
Yes Read] i I 9., in in? R

"No

. t. I(- y , -

/ I., • ,. .

4 6
Call

COUNI DES

ShouldThi Yi

B tem Co Bdrd i Fo
PNDEDBtt

NoIOD

9 ~ hŽ 1 9f2)

FUNCTION M)'ZOlJl

PURPOSE: To determine ir which defensive zone a target
lie .

ENTRY PO)INTS : YZONlI

IORMAL P'ARAMEiTERS: ZLAT - latitude of iteii
ZLONG - Longitude of item

CO1MON BLOCKS: Iqy H:, Y O'.,.;

SIJBROIJl'I Nts CALLEI.) 1) I F:F:QLONG

CALLEI) BY : l)BMOI)

Met hod

The subtoutine considers each defensive zone for the side corresponding to
that of the target, and determines the sum of a]I angles formed by the lines
connecting the target point to two adjacent boundary points of the zone. If
the target is in the zone, or on a boundary, the sum will -be 3600, and if
the target is outside the zone, the sum will be 00, As soon as a target is
found to be within a zone, it is identified as belonging to that zone by
assigning i.t the zo;me index. Thus if the target is on the boundary between
two zones it will be assigned the smaller zone index. If the target is not
in a zone of its side it is assigned a zone index at zero.

Function MYZONE is illustrated in figure .101.

3,•.1

Considernsiý Ye r hre

Next one M re Zonest
CofnSider

1041

Metho 1SPct ion Y)I

34oo

SUBROUTINE NUMDEL

PURPOSE: To keep a tally .by region and type of the targets
which have been deleted for each side after pro-
cessing by subroutine UBMOD.

ENTRY POINTS: NUMDEL

FORMAL PARAMETERS: II - Equals 1 if-side is BLUE; 2 if side is

RED
MYDESIG - Target designator code of item
IREG - Region in which item is located

COMMON BLOCKS: LDESIGS, LODESIGS

SUBROUTINES CALLED: None

CALLED BY: DBMOD, INDMOD

Method

Each time the subroutine is entered, the total of the number of items
deleted with the same type, region, and side as the one under con-
sideration is incremented by one. If the item under consideration is
the first one with its particular characteristics, a new category is
created for it.

Subroutine NUMDEL is illustrated in figure 105.

3-17

r7

100 ýT

SSeparate Target

Designator Code
Into Alphabetic

and Numeric Portions

Determine Region
in Which Target

is Located

20
HOWe OtherTargets of This

TypeoBee Begin a New
Tyeoredeno Category for item

This Side?

Increment by OneeL

the Total Number
fof Such Targets

mDeleted

Fig.i

r

SUBROUTINE PRINTIT

PURPOSE': To determine whether the item being processed by
subroutine DBMOD sholuld be printed and, if so,
prints it.

ENTRY POINTS: PRINTIT

FORMAL PARAMETERS: None

COMMON BLOCKS: PRINTS

SUB ROLUTINFS CALLED: PRTTEM

CALLED BY: DBMOI)

Method

This subroutine maintains a record of the number of items processed and
kept by subroutine DBMOD. Each time it is entered, a chock is made to
determine whether the current item being processed should be printed.
If it is to be printed, subroutine IPRITfM is called to print the attribute-
value pairs for the item.

Subroutine PRINTIT is illustrated in figure 106.

5.1!I

"•.' .•,'• :~~~~~~~~~~.sF111•.......

the Data aset

SUBROUTINE PRTCOUNT

PURPOSE: To effect the printing of the records of target
count by region which were kept by subroutine
COUNTDES for the targets processed and kept by
subroutine INDMOD,

ENTRY POINTS; PRTCOUNT

FORMAL PARAMETERS: None

COMMON BLOCKS: I DESIGS, NODESIGS

SUBROUTINES CALLED): PAGES KP

CALLED BY: INDMOD

Method

A print for each side is made of the targets kept in the data base, by
type and region. Also, the total number of targets in each region is
presented.

Subroutine I'RTCOUNT is illustrated in figure 107.

STAR

SIDEmBLUEi

8620Prn h ubro

1: i ~I Sriat Are Prese~Int

- ,g on

SUBROUHI3 NIN ,DTYPI'S

PURPOSE To read in the values of the scaling factors to
be used for the calculation of NOINCOM and
NOAIE RT.

ENTRY POINTS.: RIDI'YNPIS

FORMAL PARMI'ETIRS : LS I I)D! - IHol I erith val tic of si de

COMMON BLOCKS: NRT'YIIS

SUBIROfI'FINIuS CAL II): N tJM I 1

CALLI'D BY: DBMOI)

Method

This subroutine is entered once to read the data for the BLUE side and a
second time to read the data for the IIil) side, When it is entered, a
card is read which indicates how many cards with scaling factors arc to
be read, and these cards are then read. The numbcr of wveapon types to be
scaled, the scaling factor for NOALEIRT, and the scaling factor for
NOINCOM for the BLUIE side are stored in locations I through 50 of the
arrays NNTY PI', ALERTNO, and COMINNO, whi. le the data for the REI) side are
stored in t,.:cations 51 through 100.

Subroutine 1, (PES is illustrated in figure 108.

3; 3

CSTVART1

oRead Number
of Data Cards

to Follow

Read tihe Data',

NNTYi'ES (N),
AI,IRTNO(N),
'COMINNO (N)

RI-TI IRN

35.1

SUIROlUTINE SIKRIN

PURPOSIE: To read in the arrays in common blocks /XIAT/ and
/MYZONliS/ from the Outpltut tape created by program
S'I'ACKE R and to assign initial values to cervtai n
variables.

ENTRY POINTS: STKRI N

F'ORMAL PAIAMETIII'6R : None

COMMON B LOCKS: I1', .lSlIli , MYIDi)INT, MY-ONIMS, NO(IRINT, XI1AT

SUBRIOUrI'NEIS -CALLID: RI)ARIAY*, Sii'TlIAl), 'I' I API*

CALLE[i) BY: I)BMOI)

Method I
This subroutine rcads in the necessary data from the tape created by pro-
gram STACKEIR to cnable the cal cu 1 ation of TARDIiAs and tie determination l
of ZONES. The data used for thi former task are contained in common
block /XLAT'/, while that icquired for the latter task are contained il
common block /MYZONIES/.

Subroutine STKRIN is illustrated in figure 109.

SeC sub routine FIL:IINNR

!• ,:,5

SSTART

Read
Common
I Block
/X L A F/

Read
Conunori
Block

/MYZONI:S/

Assign Values
to X'IES , 1AXil ,

F:A(I,OIV,

and ,AXIO

C RL.Trii
N

Li.i).Sh•o~ieRKI

SU. 'OrlNE TARDEFS.

I'UIPOSE: To assign values of JTAIIl and J'I'MLIO to charac-
terize a given target. These parameters describe
the amour, of high-altitude and low-altitude
terminal SAM (surface-to-air missile) defenses
that are available to defend the target.

ENTRY POINTS: TARDEIFS

FORMAL PAR.AMlFTI3RS: JTAdIII - Parameter characterizing the level of
high-altitude local bomber defenses

JTARLO - Parameter characterizing the level of
low-altitude local bomber defenses

YLAT - Latitude of target being considered
YLONG - Longitude of target being considered
ISIDE - Hollerith value of side

COMtMON BLOCKS: JS IDTh, XLAT

SUBROUTINES CALLIED: DIFFLONG, DSTF, INDEXTYP

CALLED BY: llBMOD

Method

Within QUICK, the attributes TAIkWiFIII and TARIIILO are defined for each
potential target. The N alIe assigned these attributes represents the
level of local bombcr defenses available to defend the target against

attacks expected at high altitude and at low altitude, respectively.
Nonrally, these attribute-value pairs are defined by NMCSSC with the use
of programs which are external to the QUICK system; however, program
BASEMOD provides an alterniate nmetbd for assigni ng those valtucs. When
this option is exercised, subroutine TARDEFS is called for each target to
compute and to return to the calling subroutine the values of .JI'AlIdI and
JTARL.O, the values that will he assigned to TARI)IliFII and TARKIFLO,
respectively. To perform this task, the location of the target is con-
sidercd, and the number of SAM batteries (NBIATTS) capahle oIf provviding
high and Jow altitude defense for the target are determined. Thi s
information is then used for the calculation of the values of JIAIII1 and
,JTAZL') . The data describing the SAM defenses which are !torcd in common
block /MLAT/ are developed in program KRUNCII, a program r external to the
QUICK system. If the TARI UFS option is to be exercised, these data must

be provided as input to program IVSIiMOD).

357

ri

Program KRUN(.I considers all SAM sites within the target ar',.a and groups
these sites in circular complexes on the basis of the effective range of
the SAM sites. Each SAM complex is characterized by the latitude and
longitude of its ecntroid, its radius, an~d the number of SAM batteties
(NBAT'rS) associated with the complex. Each SAM site is included in one,
and only one, complex. KRUNCII orders and indexes the SAM complexes
according to increasing longitude, and then assigns to each complex a
sector index. These sectors are established to facilitate subsequent
processing and are formed thr6ugh a longitudinal division of the land area
under consideration. When called, ,subroutine TARI)FPS utilizes these data
and determines first the area and then the complexes in which the given
torget lies. On the basis of this information, vpiues of JrrAtIM and
JTARLO, parameters which reflect the amounts of available local bomber
defense, are assigned.

Subroutine TARDEFS is illustrated in figure 110.

S TART

Initialize

22
Determine in

Which Area thoi
Target Lies

Consider First
Site in Area

Is Target N
Ili tj

Site?

Yes

Call
IND E.XT) P

JTARI,=3T~AR-1T '1
+NTA'RSI11 (I:NIX1YP)

Assign No
JTAR LU?

Yes

J'IARLOC- 11 1

11)ISO INEVY1

Consider Next Yes More Sites
Site Within - ithin

Area Area?

No

RETU IRN

Fig. 110. Suh)'outi no I'ARI11hFS

__________0
______ _________________________

CHAPTER 7
PROGRAM INDEXER

PURPOSE,

To provide for economical handling of data and to facilitate communica-
tions between QUICK programs, it is necessary to assign indices to
various data contained in the data base. Program IN)XF, R is designed to
perform this task. In addition, INDEXER processes all potential. targets
and, where appropriate, forms them into collocation islands and complex
targets. Having completed the required processing, INDEXER prepares the
indexed data base tape INDEXI)B and tile simulation data tape SIWfTAPE.

INPUT.

The input to program INI)EXIiR consists of the user-input parameters and
a data base file. The useOr-input parameters identify the print options
to be exercised, and provide parameters used in Miast damage calculations.
The requi-red ukser-inIput parameters and a description of the output prints
provided by INI)]iXlR are presented in chapter 3 of the User's Manull,
Volume 1, and in chapter 2 of the User's Manual, Volume 11.

The data base is input to program INDEXE R via magnetic tape. Thi source
file may be either the QUIKDIB tape created by program QIIIKBASIt or the
QKNOI)I)B tape prepared by program BASINMOl). This is not to imply that
cither source file is aJlwys acceptable. Lf the data base tape QUIKIDB
was proc.:sed 1 by program BASI-HM1) to aadICpt it to tlhi game sccenario, the.
BASIOM]I) output tape QKI'IO •IB is input to INI iiXE R.

0 IJTPtrl'

Program INI)lHXl:II ':,rCparcs two output files: anl indexed dkkt~i hase tape
INI)IMXI)I, and a simulktion data tape SMIAI.PI. The !NI)IEXP tape is used as

I nInt to prog ram IBAI,:iM(WJ (f' used in the post -I NIPEXIR mode,) or Js i npat
to the Plan (enoratioa and Data Output subsystems. The INNIIEXI)I tape is

pt'i'ptatt'od itIs tipI the samei I op 'i cci record f'oritia t as- the i nputt datct base
taipe (QIJI (fB or QKM~ODitlf) except that an index itreakpo i itt :1 it'h is added'
Lo thle f1 1e*,. fTftle 8 shows, the logiecti record Ltrtncit of' this fife.
heHfc SNIIFf' inumc Itds selected weaponl alid t axpet da ta and is p rep'a red tifo'

LIsc in p rogr am S INMU LAIT. [he iii mAiT Format is shown inl tabl 9 P. (The10
SI rlAi1'B is produced by the (21U1CK system fii chant] lc'.Th pitys i ca Itormtili
Of tile 'tape)0 is deCserI hod in Chapter 2, QUICK System 1:1lehand icr.)

CONCEPT O1P 0TiR.A'LI'[N

Gene ralI

Thle data hase whit]ch is input to INDEIXER conta ins those iteins which ore to
be considered in a specific game scenario. The information included in
the data base is categorized by CLASS; e.g., bomber, and by TYPE within
c lass: e,. g, , 3-52. Fifteen classes are uIsed to descr'ibe the toi'getaL1'lc-
typo instal lotions included in the data base (see Data Basec Organization,
chapteri 2, AnctIyt i ca I Manual, Vol1tutt0 I) . To faciIi tate subs egneilt pr'o-
cessi ng, progrtitt INIDicXcl; aissignls vct':iouls indices to these datal itettils

WVhen thle dito' balse it;p'patd each of the targect ckiasses is assigned a
ealtIe, fiatsi I to 15, for' tite alttr-ibute) ICIASS"k Pairing, iNi)1h\IiZ proc'essitng,
;if I target typesC' wlitil Icith]ong to t7im Se i ntlexod L'1:- CS> es C ti.'e ssi ited distinlct
talties of' thle ottlrihltute IlYPL," attd all. types. wi hlt' coati cklttS ore1ssitte
(listintct vailues of thle atttti'itit ITYilt, ittointa in iti" the order estai i sited
hw the iTYP IE cisigntielott Il in~ adiioeitOf riteL, 11dat a itCems is a1ssigned:L
a'In c Ju I InC of th at r i huire [Ni)i,\,NO (index tttiiv-.' ',) .Thte ordet' of*

iude'x iiig is aIs fol) oI()ws Fir'st , al I i teitts of tie ý:ttiw Class cit ttttiet'ed
cottscult i cci '. li i Ilt inl a;sIng class, i teitil at al'o ýotiped acod ti o Ii[li

-1t tI- i li ttle Si f01 (al 11.e 1U.1) 01-' B1lib) I Items a1 Fc 11-ther grouped a]ccord i ti
to tr'PO (cttt t'i littl TYi'I . Ni thin i a tvrte i tuettts i'I csre itr ie iitfe'
actctiidl nto ttilr~e ordt't' ill whit.I ict 110 appecrill tov Iliedtal foist'.

After these0 iod iceicir beetn assigrted, cof iceclitonl is iathfs alnd Comtpiex
at'et ctC'itade til itroit tile cu I fet ott of' ct Iifotettt i ci tcit'etaý fit ems

f'or which ;M) IN0tNL isý del'ined). Colloeatiott is I aids alre define(d by' tile

lie ifc' L i hcts Ic rtt1 S0 t C ii a ýIt or 1'1b 0Lock i S to I I owe, d 1' V i 1)c1tdd1 it lll t'Lco 0'if 11 ti I I
tilLi f-o I'-i 1le iiactk 1)i a.e] ott t t tL. ai ' he stIlhIoti t itteV ff.101fAl (see littpte r
Q1l I IKCSK s t rut 1i i eI ctiu In r d ~ t si ei Ir' b i'e110t i t t;111f e t I'e d as (Ii s-
flitiVQAl in table0 Sý fHi ý I thslt'? tet11it~itta iti4ý t~d ot' fl Ie cynitteti I,\

Seo' ci1))-tIeldiiiX B it01 A t)II' ritite CdetI"1 ittt tilt.ý

Table 8. Indcxed Data Base File (Logical Record Format)
(Sheet 1 of 2)

BLOCK TYPE ARRAY LENGTH DESCRIPTION

Directory IDEF 1 Number of attributes

LASTLIST I Number of entries in value list

ATTNAME IDEF Attribute names

IFORMAT IDEF Hlollerith format codes

ICODE IDEF Error checking code
DEFAULT IDEF Attribute default value

NI IDEF Minimum allowable attribute value
N2 IDEF Maximum allowable attribute value

LISTCHEK IDEF Logical array to specify list

LGLOBIDEFchecking

LGLOB IDEF Logical array to specify globaldefinitions

LISTVALS LASTIST List of values to be. checked

Item NI 1 Number of attributes defined
locally for this itom

INITEM 2*NI Array containing attribute index
(from directory) in odd elements
and attribute value in even
elements

Define NI 1 -1 as DEFINE block indicator
L 1 Attribute index from directory

VALUE 1 Attribute value

Undefine NI 1 -2 as 1INDEFINE block indicator

I, 1 Attribute index from directory

VALUE 1 New attribute value

Terminator NI 1= INDDATA as terminator block
indicator

362

Table 8. (cont.)
(Sheet 2 of 2)

BLOCK TYPE ARRAY LENGTH DESCRIPTION
Breakpoint CUmNO(I) 15 Total number of types within each

Tables class (I = 1 to 15)

BTYPES(I) 15 Number of BLUE types in class I

INDCLAS(I) 15 Beginning index number IND.XNO
for class I

INDBEG(J) 250 Beginning index number IN!)EXNO
for type J

TYPENAME(J) 250 Type name for each type J

363

Table 9. SP.I'API; k Format
(Shect 1 of? 4)

VAR IABLIi MAXIMUM LEiNGTIH 1/
NAMB ACTUAL LENGTh DESCRIPTION

NTYPF Number of target types in classes 1
through 15

INDBIEG 250/NTYPE Smallest INDEXNO assigned to each
target type

TYPIENAME 250/NTYPE Contains the name of each target type
in the order referred to by INDBEG

CUt•NO 15 CUMNO(I) is the total number of target
types in each QUICK class, 1 through I

BTYPES 15 BTYPES(I) is the number of BLUE target
types in class I

INDCLAS 15 Smallest TNDEXNO assigned within each
Class

NAMCLAS 15 Hlollerith name of target class

NVUILN 1 Number of distinct values of' vulner.
ability which occur in the data base

CVULN 63/NVILN List of all distinct values of' VUiLN;
indoxd by IMVIIIN

NCOL 1 Number of collocated targets

COLAR 4000/N('OI, Packed data related to collocated
ta rget s

N7lI.F I Number of targets with terminal hal-
listic missile defenses (BMI))

NTINTX 500/NTIEI: Number of terminal BMI) interceptors;
indexed by ITFIR

NUIA I NT I Number of zones w ith arca WEMI) inter-
ceptors

364

Tabl1e 9. (cont)
(Shieet 2 of 4)

VA[RIARILE M1AX IMUNI LENGTHII,
NAME ACTUAL LENGTH I)ESCR] P1TION

AINTr 60 Numbor of arca interceptors assigned
each antibal listic missile1 (ABM) base

NUMNIINUR 1 Numhor of zones with long-range 13M1)
ridars

NLRR 20 Number of long-range BNIM radars covering
cach zone

NUMIOVO I Numbor of entries in the JOIM"ItAPI
array

IOVI2RLAP 20 Packed radar data (radar index, index
of arca defense zone)

MAXINtI 1 The lIinaxi mu (1 arpOst) indeIx number)Cl
(INDFXNO'l assigned

STATUS 1 2000/M\XINI) Packeod target dIata; indexed by' I N[WIXNO

NWIT I Numbe 1 of miniss ile typo s

Nils 11.8O/11'NMIS Missile type data: Nils Consist., of'
11 arrays , each indexod by' TYIYP *C oll-
taminilg P150, PIART , PEWFS, PEPP , lVIJi,,
rRI-TARw , I REP, ClEP, PKIIS , DELITA, imd
FUINCTlION, respect ively

N B0.'I Number)1 Of 1)o111e0r typeS

13CM 7' 50/7' NI30M Bomber type data: BDM Consists of
Seven1 arrays, each indexed hy *J'IY11i
containing P LAB], YN~IDEL , AllRNIFI, P RAW1I,
CUP, DELTA, and FUJNCT ION, res.pect iUV' ly

Si AN 1, 1 NanImbe of, t anher typcs

TANK 54 05 VSANK T[anker type data: TANK consists of'
five arrays , achII in de xcdI by -ITYPE,
containing PLAl1l , TMI)LIi., AIIRAIL, OP E1TA,
and FUINCT ION, respecýt ivye)

3 0.5

Table 9. (cont.)
(Sheet 3 of 4)

VARIABLE MAXIMUM LENGTH/
NAMF ACTUAL LENGTI I IDESCRI PI ON

NASMT 1 Number of ASM types

ASMT 2.20/2.NASMT ASM type data: two arrays, each
indexed by ASMTFYPH, containing PLA13T
and CUP, respectively

NWJID Number of warhead types defined in
the data base

WHOD 3.50/3.NWIID Warhead type data: three arrays,
each indexed by WlIDTYPE, containing
PDUD, YIELD, and CUP, respectively

NZONES 1 Number of air defense (bomber) zones

ZONES 3.63/3.NZONES Three arrays, each indexed by ZONE:
the first contains AREA; the second
and third contain the accumulated
effectiveness (1-FUCITNES) for classes
Defensive Control CD'-FCONTR) and

Interceptor (INTCPTOR), respectively

NDEF 1 Number of types of defensive command
and control defined in the data base

DliFPOT 20/NDIFF IiFEC'INIiS of each defensive command
and control, type, indexed by JTYI1IE

NI N7 1 Number of interceptor aircraf t types

I NPOT 20/NI91' ELCI'NES oF each interceptor type,
indexed by JTY1I1

N BLIII'LII) 1 Number of BIII payI oads

I PAYLD 5 SO/5- NIILUPLD BLIUE payload type data: fiVe arrays,
each indexed by PAYLOAD, cont aining
NOIOM11, IlI)' 'll, NMlIMS, NI)IFCOYS, and
NARIADIC, respect ively

.i66

Table 9. (cont.)
(Sheet 4 of 4)

VARIABLE NIAXTMUM LENGTH/
NAME ACTUAL LIENGTI I I),SCR I PT I ON

NREDPLD 1 Number of RED payloads

IPAYLD 5*40/5"NREDPLD RED payload type data: same form as
described above for side BLUE

NWHDS 1 Number of words in DBLDATA tables

PSASW IO0/NWDS Destruction before launch probability
assigned a weapon for a specified
time period

TSASW 100/NWDS Time at which a time period ends for
DBL data table; there may be up to
10 time periods for each table

: 3 (*1

following criteria: if the distance between two targets is less than
the sum of the lethal radii of (for convenience) a one-megaton weapon for
the hardnesses of the two targets, then they belong to the same colloca-
tion island; a collocation island consists of all targets which are
linked by this distance criterion; and a single target does not form a
collocation island. Thus, there is no theoretical upper limit to the
size of an island; but, ini practice, islands are usually rather small
clusters. Two targets are said to be collocated if they belong to the
same collocation island; a collocated target is one which belongs to some
collocation j-land. The definition of a complex target is identical to
the definiti,.,', of a collocation island except that the distance criterion
Is one-half the ,tistqnce used for collocation. Thus, ever), complex
target is a subset of some collocation island. Collocation islands are
used in the Simulator in determining the status of targets following
warhead bursts;, complex targets are used in. the Plan Generator.,:

To perform the required processing and prepare the output files, INDIXIhR
makes three passes through the data base. In the first, a temporary index
JTYPE is assigned to selected items, and breakpoint tables reflecting
the as'iignment of index numbers (INDPXNO) by target type and class are
formed. In addition, the various vulnerabilities, i .e., values df the
attribute VULN, assigned to data base items are retrieved. In pass two,
an index number (INDIAXNO) is assigned to each potential target. Theni,
subroutine COLOCATE is called to form collocation islands and complex
targets. In pass three, the indexed data base tape INDEUBXII is prepared,
and the bulk of the data base input for the Simulator is compi led ;ind
written on the ouitptit tape SINAhPB'.

With regard to processing the data base, it should be noted that data
Ltems in classes WARII A)•, ASM, PAYLOAI), and DIL',IATA must preccede all other
items on the data base tape. In addition, it is assumed that the indi-
vidual launch sites assigned to each missile squadron are groupIed together;
i.e., entered sequentially, in the input data base, and that thie val 0e oi
the attribute IStTEi (site number) is set to I for tile first site appearilug
on the tape in each squadron. The use of this technique fac iitates
processing and eases the task of forming offensive weapon groups for use
in tile Plan Generator. When input in this n:anner, the missile squadrons
are viewed as one 1Lunch baso dainlug plan generation, but the ind ividunal
launcher l ocations are used ji n computi ig k ill plv'oab ill t i es dili' i ng
s imulation.

Pass 1 Processing (Sheets I to 6, Figure 111)

Figure 111 reflects the logical flolw withi l pvogram I NIWXBP . [he progiram
begins by eCal I ing subroutine INITIND to in it ial i1:c counters and array:s.
Then, the user-iiput paraneteers are read hy calling subroutine RlIAIIIN.

3o8

After keysk for packing data inl the G:OLAR, IOVERLIAP, and COMI'LLX ri'i'rLs
have hOCII huntel"d and tile l'i lebiud icr in it ia! i zed, pat~t I hugitis. T11w
data ba),c (dire~t tor> i s re'ad inl and wril tt en onto a tempolreir data baise
f'ile (LIN12) esýtabli-shed on theC disk oruag sutirrituries kI.II \111% wild(INTIII.DIK.
Tilcl r ach d at a it eml coait a red (n1 HIi i lUpti 1ca tl a base is Ilead! Oid v i~ktic:; sCe
As oach i toil Is read in, tile value no u t he at t rjhutu I GLASS i s checkeod
I tomns for whi c1 IGLA5S Ciiz (Is LII1.Zero; i , . the Iuxi I inn'Y Cla sses are
copied Onto the sc~ratch data base file created onl the disk, and thle. next
I.temn is road, The itemis for whi1cl)i I CLASS is greater than zero arc!
checked to detporniino; if the i~tem is a oionlead element of- a tillssi Ic
squoadron;, i .ea., an eilement of a Assl ie squadron for wh iclh IS I i' i s not
set to 1 .1Ift so, theL s! to numbeor (iSMil) i s inc reoiueted hr) one, arid t.he
*teni is added to thle data base. The remaining itemiss c.e., muissi le sites
for which [SITE oquii s I and all i tems in classes 2 through 15 (IGIASS -

2,3,... 15) areC 140Cc.;sed aiid aIss gie,10d a tollljpora '>' index iVY 'Ii

The assigning oif JTYPEI takes p1lace Wn the Foillowill riainuner,* I temrs arc
separated acc~ording to side, and the array TYPITNAN1(J , IGIASqS) is searched

7 for a typec namri match (Il sJc40 for side Bluen, and 41 ý.I 3(1 I ir Side Red).
If no match is found, the first b)1ank word is filIled wi th the now type
iiamie, . The at trv t i u AJiP then i as signied the corrospond~inrg vahinc of
the index J . Up to 40 types canl ho sto red fo r ca cl sid!e aird clas I)M f 1
t hi s nuirlkor i s OxcOceded, the iiis sge TYPIiNAPIL TABili TOO SMALL. is printed,
and the run halts,.

lThe. number of* i terrl of c;,ch typie is st tired in the oiwprr i ioiicii

the array' '~ih~, GlASSh liaclrImc thle typeI) is eCorII cru11Ld, tie lunirdlip.I
is i acreornntecl hy JAW), where JAII)P euaIlIs the 11uillhel' 01' site's 1rQlrr 155 Iik'

studol01' 1 Cur' al IiOthier i toU11s

A Iter en cli i tem hias been p roces sod by type , the ;' ray CAIMAN i s sea ic:liud
for the vulnorabi lit)' attribuhato VIII.N do l'i ned tel' that it em. If' lir sa;t cl
is Found, the first, Hiarnk wird is fill c% with th liValule i'f' VU11.. Ih, dI
morie thanl 101) di fferleiit va 1 utS ho Oir Lconnie red1. iliplue IrCs~ing ftie dtk~ hi bse,
an error rilessage is prin ted to irid icato anl array) ovoi')low, tile i terrr is
Wri'tten Oii the scratch tape, and the nex~t item iý YCL icrid OrW I lit' dlilii

*Key' words retal-CIne by the1 Lit iI ite funct ionl NIjYNAKI; whi i cli c'urrt a~
Jins truct ions,. fez' pack inlg and un lpackI ir11g o f dat a aceozI'd irlig to ai spect ifI' ied
fo iruat

qI'i

base, Otherwise, the attribute IVULN* is defined in the data base to be'
the index of the word in the CVULN array which matches the ýtem attribute
VUILN. The item is then written onto the scratch ffle, and the next item
is read.

After all items on the input data base tape have been processed, INDIEX1J'
prepares the breakpoint tables. These tables contain the beginning index
numbers (INDEIXNOs) of each class and type and the number of RED and BLUE
types in each class. The breakpoint tabl6s are used by subsequent
programs to obtain information as to the general, content of the data base
and to facilitate cross-referencing operations; e.g., the class, type,
and side of an item can be determined based on its assigned index number
(INDEXNO). These tables are formed by assigning a begiin ing index(INDBEG)
to each type, starting with the first BLUE type in class I (sep sheet 4).
Each new index is f'ound by incrementing the previous index by the number
of items for the type under consideration (stored in TYPETBL). An index L
to the array INDBEG then is stored in TYPETBL, replacing the number of
items of that type. The number of BLUE types in each class (BTYPES) and
the total number of' types in all classes processed thus far (CUMNO) alsc)
are accumulated. After all beginning, indices have been found, the array
TYPENAME is collapsed so that types aie listed consecutively in the order
established by the INDBEG assignment, with no blank words remaining. ,The
beginning index for each class (INDCLAS) then iscalculated, and the
breakpoint tables and vulnerability (CVULN) array are written! on the
simulation data tape SIMrAPE (see sheet 6).

Pass 2 Processing (Sheets 6 to 11, Figure 111)

Before pass 2 begins, a critical distance for collocation (CRDIST) is
calculated for each value in the vulnerability array CVULN. This di..ance,
which is approximately the lethal radius of a one-megaton weapon corre-
sponding to the value VULN, is stored in degrees of latitude to minimize
computation in forming collocation islands.' The typebeginning indices
(INDBEiG) then are stored in a current index array (INDCUR), and the first
item is read from the data base file written during pass 1 (see statement
200, shect 6). If the item is not a potential target and will not be

* The upper limit of 100 vulnerabilities was established to aid NMCSSC; in
processing large data bases contaaining an unknown number of vuinerability
codes. Up to 100 different codes will be reflected in the print of the
CVUJIN array. Actu'hlly, the system is limited by the structure of the
STATUS array to an tupper limi1. if 63 vulnerabilities. If more than 63
different vulnerability codes arc encountered, the message SIMTAPE
LJNUSABILE---TOO MANY VULNERABILITlES is prinited. This condition does
not preclude the use of the INDIFXDB tape in plan generationi but does
prohibit the simulation of such plans.

370

assigned an index number INDEXNO (i.e., if ICLASS-O), it is copied onto
a scratch disk file (LUN3, see statement 215, sheet 8) and the next item
is read. Otherwise, tile item is assigned a value for the attribute
INDEXNO as follows.

The typu index (L) to the array INDCUR is retrieved from TYPETBL, and the
corresponding value in INDCUR is assigned to the attribite INDEXNO (sheet 7).
Index L then is assigned to the attribute ITYPE. In addition, the index
JTYPE is reassign,-d so that all types w~thin cach class are indexed
consecutively. The value in INDCUR then is incremented by NADD, where
NADD equals the number of sites per squadron for missiles and 1 otherwise.
It is assumed that the first missile site in each squadron is processed
first; subse~quent sites in the squadron are assigned consecutive values
of INDEXNO by incrementing the index assigned to the first site by a
modified site index (ISITF-1).

After INDEXNO has been assigned in the data base, it is stored, along
with the latitude (LAT), longitude (LONG), and critical distance (CRDIST)
for use in forming collocation islands. Due to the restriction of
available storage in the computer memory, most of the collocation data
1tmust be kept on the disk. This"is accomplished by splitting the earth
into 10 longitudinal sectors and writing the information for all sectors
but tl,e first on the scratch disk file (see sheet 8). Information for
items iil the first sector is stored in the arrays lND(INDEXNO), X(LONG),
Y(LAT), and Z(CRDIS'F) for immediate use in subroutine COLOCATL (statement
267, sheet 8). At thi.s point, the item is written on the scratch tape and
the pass continues.

Once all the data for collocation have been collected, a check is made to
insure that no sector contains more than 4,000* items (sheet 9). If this
number is exceeded, the message TOO MANY ITEMS FOR COLLOCATION, together
with the sector concerned and the number uf targets in the segment, are
printed, and the number of targets to be considered is limited to 4,000.
When all sectors have been checked, subroutine COLOCATI, is called to
process the data stored in the arrays IND, X, Y, and Z for the first earth
sector.

When control is returned from COLOCATE, the scratch file is read and the
arrays IND, X, Y, and Z arc filled with the data for the next sector. Thc
data for the remaining sectors are copied onto a second disk scratch file,
and subroutine COLOCATE is called to process the data for the next sector.
This process is repeated, with the input/output roles of the two scratch
files LUN6 and 7 alternating, until all earth sectors have been processed.
(The input and output scratch files used in this process are designated
LIN and LOMr', respectively.)

* Prog rai coding roflects the vari-ihlc %rI'erARSi(C (max mum targets nor sector)
which is set at 1,)O.

Ifhen contrvol is returned from subroutine COLOCATli after processing the
last sector, thc scratch file LUN?2 containing the COLAi< array' (written by

COLCATi)is termninated. A check is then made to onsure that no more
thanl 4,000) target eclments were found to he col located. I f the flUmbor
of col located targets exceeds 4,000, count ers ire set to cause the mcssage
ARRAY OVEiRFLOW~ COI, TGTS (number of coil ocated targets) to he printed in
the final phase of processing.

Pass 3 Processing (She~ets 11 to 18, Fi~gure iii

Befoi c the pass begins, relevant array's arid counter's are initial ized, Revs
are formied for usC inr packing data into the array STIT A lland the ma xi ouni
value of' INDEXN() is retrieved (sheot 11) . The d(i Cýtory 0o' theL data h'ase
1w i ttenl durn g pass 2 t heni is read from LUN3 arid copied onto the final
data base tape lNDI:XDI3.

As each item is read from the data base, it again is tested for class
assignment. Items which are not potential targets (i.e.. ',CLASS=0) are
separated into appropri ate classes (sheot 12) . Relevan~t data for items
in cl~ss(-s, IWARUILAD, ASM, ZONE, arid PIILDATA are stored in the correspond~inlg
array (sec table 10) , and the number of items in each class is accumuIlated.I
Items in class PAYLOAD are separated by side and assigned a new p~ayload
index (NBLUPLD) or NREDPLD) , beginning with "I" on each side. The indeOx
is stored under the old index PAYLOAD) in array KNARRAY, and] the attribute
PAYLOAD is changed in the data base to represent the new index. Relevant
data then are retrieved and stored in corresponding arrays (see table 10)
The item is written onto INDFiXDI, and the next item is read. As each of
the items (data base records) associ ated with these auxiliary classes i'i~
processed, a check is made to ensure that the maximum limit for the class
is not exceeded (for maximum limits, see description of common block /MAX/
in table 13). If the Lipper limit is exzceded, flags are, set to cause anl
array overflow error message to he prinited. The itemn is then written onto
the INDEXOB3 tape without storing the associated data (sheet 1 2j.

With one exception, data ba se items from the oux iiiary cli s.ses P01 Nil
BOUND)ARY , CORR I OR, anld LFGS are melre lv wa it ten onto the I N~kI18X tape and
the n~ext I tent is re'ed . TIhe except ion perl a us. to a Check of claIss
COR I DOIE i tes to ensure thait the corr idor types DUMMY and NA\';\LA I N arc
de fi ned i n the data base (requ ired i f tajcti cal bombers or horihe rs w i th
the art rilute PKNA`V>0 are to hie coiisi dered in plan genlerationl). I1' these
corridor typcs aire not enco~Lite red inlroes ICCSill, tile da1ta ba!e, a
message is printed to alert the user to a possible error. A!s ippropr.;I te,
one or- hothI of the following nes sages i s prinated- DUMMY CORR IDlOR FOR
lACT IC(A1 AlIR NOT DITElNED; and/or NAVAL. AlR CO(RR IDlOR NOT liiPITNP I'.

Table 10. Warhead, ASM, Payload, and DBI, Data

ARRAY POSITION ATT R.IBT1Er DESCRIPTION

WIIlD WIDTYPE, I PDIJD Probability of a dud

W111D W II DTYPIF, 2 YIEILD Yield (megatons)

WIlD WIIOTYIPI1,3 CEP CEP (nautical mile,)

ASMT ASM'YPE,1 PLAIBT Prohab.lity of launch abort

ASIMf ASTYPE,2 CEP CEP (nautical miles)

ZONES ZONE, 1 AREA Area of a defense zone 2

(millions of nautical miles
MIRV PAYLOAD,ISIPE NOBOMBI 'Number of bombs carried by

vehicle

INWHDS PAYLOAD,ISI IDE NWIDS Number of warheads (missiles)

IWIIIHTYPE PAYLOAI),ISiDE WIIDTYPE Warhead type index

INDECOYS PAYLOAD,ISIDE NDECOYS Number of decoys carried by
vehicle

INARIDEC PAYLOAD,,ISIDE NARhADEC Number of area decoys

TMASW TPASW Time for DBL data table

IIBLASW [PSASI" Dill, probabilJ ity for !)BL data
table

Ii

If the item under consideration is a potential target, it is checked for
collocation (logical array COLO), Collocated targcts are so indicated by
packfng a "1" under TCOL in the STATUS array (indexed by INDEXNO (see
table 11)), The logical array COMP then is checked to scee if the collo-
cated target is also a member of a complex. If it is, function ICPL is
called to unpack the index ICOMPLEX from array COMPLEX. ICOMPLEX then is
assigned in the data base,

For all potential targets, the values of the attributes TARDEFIPI, TARDI)FLO,
IVULN, IATTACK, IAREA, ADEFZON, and ADEFCMP are packed iito the STATUS
array (table 11).

Dynamic targets (items assigned the attribute-value pair TGTSTAT--I in the
data base) are so indicated by packing a "I" under the al 've-dcae:
indicator TSTAT and status flag IKEEP in the STATUS array. In addition,
for all itemsi.in ICLASS 4 and 5 (currently classes defensive control
DEFCONTR, and interceptor INTCPTOR), the value of the attribute ZONE is
pocked ipto the STATUS array; the defense potential of the target (attri-
bute EFECTNES) is accumulated in the zone array (table 11); and the
value of EFECTNES,. Which must be the'same for all items of a givel type,
is stored by I.TYPE in the array CPACTY(if the item is the first of its
type. For items. which are antiballistic missile (ABM) bases (ADEFCMP=I
2, or 3), the value of NAINT is stored in the AINT array, doubly indexed
by ABM defense zone (ADEFZON) and ABM defense component (ADIEFCMP). For
items which are radars (ADEFCMPm4), NLRR is incremented by one for each
of the area defense zones AZONI, AZON2, and AZON3 supported by the radar.

In addition, the values of the attributes INDEXNO, AZON1, AZON2, and
AZON3 are packed in a word of the array !OVERLAP (table 12) indexed by
ADEFZON.

Items belonging to ICLASS 1, 2, and 3 (currently classes MISSILE, BOMBER,
and TANKER) now are tested for payload. If the payload index (attribute
PAYLOAD) is defined, the new payload index (NBLUPLL or NREI)PLD) isretrieved from array KNARRAY and assigned to the attribute PAYLOAD in the

data base. Certain data which do not change within a given type arc
stored in the corresponding MISSILE, BOMBER, or TANKEIP array for the first
item of each type (indicated in array CI0K) . The item then is writte in
onto INDEXI)R and the next item is read.

After all items have been processed, the array COLAR, which was written
during subroutine COLOCATE, is read into memory and copied onto the
Simulator tape SIMTAPE (sheet 17). Subroutine TDEFSTT now i. called to
make the final assignment of terminal defense indices (NTDEF) . Whgen
control i•: returned to INDEXER, data for the Simulator are written on
SIMTAP-" in the format shown in table 9, and the tape is terminated.
Subroutine SKIPFILE then is called, so that the index breakpoint tabies
may be wrtl'en at the end of the INDEWI6I tape. Depending upon the print

Table 11. Structure of a Word in the Array STATUS j
BITS VARIABLE VALUES DESCRIPTION

0-1 'rSTAT 0,1 Value equals 1 for (alive) dynamic -ar-
gets, equals 0 for nondynamic targets

2 iKEEP 0,1 Value equals 1 for dynamic targets,
equals 0 for nondynamic targets

3-5 TCOL 0,1 Collocation indicator; l=collocated

6-8 TARDEFLO 0-7 Level of local bomber defenses at low
altitude

9-11 TARDIFIII 0-7 Level of local bomber defenses at high
altitude

12-14 IATTACK 0,1 Selection index for preferential BMD;
value equals 1 if selection is user-
directed

15-20 IVULN 1-63 Index to vulnerability number table

21-23 IAREA 0,1 Value equals 1 if item assigned to an
area BMD zone; i. e., item attribute
ADEFZON > 0, and otherwise set to 0

24-32 IT ERM 0-500 Terminal BMD defense index

33-38 ADEFZON 0-63 Area BNID zone number

39-41 ADEFCMP 0-4 Area BMD component code (ABM base or
radar)

42-47 ZONE 1-63 Bomber area defense zone numnber (ICLASS
4 and S only)

'1

Table 12. Structure of a W•ord in the Array IOVERLAP

BITS VAPIABLE VALUES DESCRIPTION

0-14 1ITAR 1-12000 Index numiber INDFXNO of the radar

15-20 AZON1 0-20 First area B3Ml defense zone covered by
radar

21-26 AZON2 0-20 Second area BMD defense zone covered by
radar

27-32 AZON3 0-20 Tjhi rd area BMIM defense zone covered Ly
radza r

375

?' ••.• • _--- .I -" • -.

controls, the data on SIMEfAPE and in the STATUS array may be printed at
this point. Otherwise, the processing of INDEXER is complete.

Common Block Definition

Program INDEXER references the following utility routine common blocks, ,
which are described in appendix A of this manual: /DIRECTRY/, /EDITERM/,
/EDITAPE/, /ERRORM/, /IFTPRINT/, /ITP/, /MYIDENT/, /NOPRINT/, /PROCESS/,
and /TWORD/.

Table 13 lists the common blocks which are local to this program and
identifies the arrays contained in them.

370

J........ ~-----

Table 13. Program INDEXER Comron Blocks
(Sheet 1 of 9)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

NISL Number of collocation islands

NN Index to COLAR array

NCOI Numbei of collocated targets

NITEM Number of items in segment being processed

X Array containing longitude

Y Array containing latitude

Z Array containing critical distance

IND Array containing index number INDEXNO

STATIJS* Array containing packed da-,. for targets

2 COL Array indicating targets belonging to a

collocation island

CL Array indicating targets belonging to current

collocation island

CLT Array indicating targets in current island

which have not been chocked for further
col locatiol,

CP Arriy indicating targets belonging to a

comp I ex]
I

3 1CUR iComplex index

, ,O "OREi tiex to array CO.PII:X

lqu ix:Ilenc•,d to X to save stcral e space.

377

ii

Tahle 13. (cont.) 2(Sheet 2 of• 9) •

VARIABLE
BLOCK OR ARRAY DESCRIPTION

3 (cont.)

COLAR Array containing packed data for collocated

targets

COMPLEX Array containing packed data for complex

targets

4 NULL Beginning INDEXNO reference point in CUMNO

CUMNO(I) Total number of type

BTYPES(I) Number of BLUE types in class I

INDCLAS(I) Beginning index number for class I

INDBEG(J) Beginning index number for type J

TYPENAM Array containing type names

TYPETBI. Array containing number of items of each type

INDCUR(J) Current index number for type J

MIS(FMIS) Array containing missile type data

BOM Array containing bomber type data

TANK Array containing tanker type data

ASMT Array containing ASN1 data

WIlD Avray containing warhead data

ZONES Array containing zone data

CAPIACTY Array containing effectiveness (]il:EEC'l'N1:S)

""ICIIK Array used to process information pertaining

to all items of the same type

378

r\

Table 13, (cont.)
(Sheet 3 of 9)

VARIABLE

BLOCK OR ARRAY DESCRIPTION

4 (cont,)

MIRV Array containing number of muitiple inde-

pendent re-entry vehicles

ImrDTYP Array containing warhead type index

INWIIDS Array containing number of warheads carried

by vehicle

INDECYS Array containing number of bomber decoys

INARDEC Array containing number of area decoys

NAMCLAS Array containing Hollerith rame of target

classes

5 NTDEF Number of terminal ABM defenses

ITERM Array containing index number of terminally

defended targets

NTINTX Array containing number of terminal inter-

ceptors

7 COLO Logical array which flags collocated targets

COMP Logical array which flags complex targets

I;ERM* Logical array which Flags terminally defended

targets

Equivalenced to COMP to save storage space.

W79

'reble 13. (cont.)
(Sheet 4 of 9)

VARIABLE1
BLOCK OR ARRAY DESCRIPTION

9 ICHSFLG Array containing names of classes which have

exceeded maximum number of target types per

class

ICItKNUM Array containing number of target types

greater than maximum allowed per class

NCIIKFLG Array containing Hollerith identifier for r

variables and arrays which exceed upper limits

NCIIKNUM Array containing number of items associated

with each- NCIIKPLG entry

10 KNARRAY Array containing payload indices for each
side '

*1
AREADAT AINT Array containing number of area interceptors

NLRR Array containing number of long-range radars

coveriing a zone

IOVERLAP Array containing packed data for radars

1.1

COMP LCOMOP Array containing index numbers of targets in
current colloca"tion island

KEY KEY Array containing koys for packing data into

COLAR

380

Table 13. (cont.)
(Sheet 5 of 9)

VARIABLE
BLOCK OR ARRAY DESCRIPTTON

KEYC KEYCI Key for packing index number into COMPLEX

K13YC2 Key for packing complex index into COMPLEX

MASK1 Mask corresponding to KIFYCI

MASK2 Mask corresponding to KEYC2

KEYS TSTAT Key for packing status flag
(KEYS(l))

TCOL Key for packing collocation flag
(KEYS(2))

TARDLO Key for packing TARDEFLO
(KEYS (3))

TARDHI Key for packing TARDFFHI
(KEYS (4))

KATTACK Key for packing TATTACK
(KEYS(5))

TVULN Key for packing IVULN
(KEYS (6))

KARDEF Key for packing IAREA
(KEYS(7))

K'I'EIhI Key for packing ITIRI
(KEYS (8))

ZON Key for packing ZONE
(KEYS (9))

TKDEFZON Key for packim,, AIIFT.ON
(KEiYS(1O))

KDEFCMI' Key for packing AEI)F(:C!4
(KEIYS(11))

jl 381

Table 13. (cont.)

(Sheet 6 of 9)

VARIABLE
BLOCK OR ARRAY DlESCRIPTION

MAX Array containing maximum limits

MALERT Alert conditions (2)

NtASTN"YP ASM types (20))

MBNDRY Boundary legs (200)

MCCREGN Coiroland/ control (20(,

MCLASS Weapon classes (2)

NICNTRYS Country codes (250)

MCORR Penetration corridors (30)

MCORTYP Corridor types (5) j
MI)PEN Depenetration corridor route points (50)

NDEPNLG flcpenctration legs (50)

MGROUP Weapon groups (200)

MPAYLOD Payload types per side (40)

MRECOVR Recovery bases (200)

NR13CVLG Recovery legs (60)

MREF Directed refuel points (20)

MRTLE; Route legs (200)

NR'PT Route points (200)

SPERM" M�Missile site,; per multiple target (5)

Tah1'Ie 13. (cont.)

(Shoot 7 of 9)

VARIABLli
BLOCK OR ARRAY IDESCRI PT'ION

MAX (cont .
AMrANKBS T"anker bases ((W)

NfI'ARCILS Target classcs (15)

M'ARCOL Col located targcts (4.,00o)

MI'ARCIPX T''rget comp lexes I.1 000)

WfIARI'RS Targets per collocation island (100)

bfI'AIWET 'i'nTrgets (prograwn ALOC limit) (5,000)

WTARINI) Target index numbers (12, 000)

NirARSIi.C Targets per earth sector (4,,000)

NTf'AO•' 1 Targets with terminal 13M1) il vterceptors (,O0)

NUIARTYP Total target types (250)

4FAIRVAL Target complexes with value grenter than zero

(2,500 per side)

mTIEIMCM Target elements per complex (40)

N*1'O'IBAS Weapon bases per group (150)

M1lYPI Weapon types 1missiles plus bomlers per s itI'') (AO)

MVIIIN ; I nerabi lit ics (I 00)

tgflEI~Al'G1I Ivealons per groulp (1, 000)

Mb'III)Y'IIE Warhead types (501)

MZONIPPT Zone points (2001

WZONIES Zones (63)

NfI'ARICTI ' Target types/class (mlissilc Lu d I~cmiK'r .LU: all

othli' ci assks 20)

3 83

Table 13. (r'ont.)
(Sheet 8 of 9)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

MAX (cont.)

MAB MD Z Area ballistic missile defense (WBD) zones (20)

MABMSIT Missile sit'Žs per ballistic missife defense

zone (3)

NAVALTB TMASI' Array containing times for time-dependent DBL

data tables

DBLASW Array 'containing cumulative ,DBL probabilities
for 1)BL data tablcs

ITMAX Maximum number of times per IDBL data table

IDBLMAX' Numb6r of DBL data'tables currently defined

PRNT IPINT Array conthining print controls

RAIDATA PA

PL Arrays containing vulnerability information

QA for subroutine VRAIT

TRANS NAS N FF Number of ASM (ziir-to-surface missile) types

in data base

NVILhN Numbcr o .distinct viIulnoerh iIi ties ass igned

to itelliS Ji1 dgta ibase

3 l 1

~i

lable 13, (cont.)(Sheet 9 w' 9)

VAIABLE
BLOCK OR ARRAY IDSCRI PTION

TRANS (cont,

NBLUPI,I) Number of BLUE, payloads in hase

MAXINI) Number of ir.dex numbers stored in STATUS

array

NRf IA*,) Number of RED payloads" in the data ha!e

[MAX 'Tota I number of types assign,-d index numbers
in data base

WRIT lmR(IWUR) Array used for collocation dat a

NR Array containing number of items in an
"earth sector

XI-ONC: 0cs ignates sector boundaries

i,

f.

I:I

385

START

CAI I I

Ca IIli

LR ':D II N

I IU N

FO IM Kersfkl

COLAR ,ioIHl'

'o All COMPIAVI:A r

IaI t W i I

I IO N ilýtý

- F i t l j ! '~' , ~ v l N.

I" r Nixipj
I M,

INN \i
38o

98

Assign
Next StND oIiilz

Site Numiber Number of Sites Site Index

Add New Numb,-r PevrYe
NoSite Number SquadrionIsTi 1 N

to :qunl Nunbo isie
Data Paso 'Cr Site?

Yes 0100 Ii

to be 1.20 Added to' I
Indexed (AD-

103 101 Ye12

Se YE No Side TYPE. Index
fIndex Range cul nDtaBs

for REDBLE?(1y.

iYes
1024

Erro Lro Cut r

"Fg .11 (cot.No(Shout 21 ofP18

387

,i

IA
11
114

A-.c-.mu I at a
Lumber Adc'-d

Store In
'IYPIU Tahic

Match ~TO Munr~~Saccny Yes

819N ouneSrabi tch temBce

3835

Index
Pointer

Do fo. on
All TargeŽt

StIndices
t~o Considor[Blue Types

12!

Dbone D)o for 10IdxPitri

This Side rmctPone

Do

Store Index Num. Fid idotlNlheIbrfor This ly'hwm ntx ftu Typi,
in Deginrming InlelLL' of i

Fig. 122. Yest
t(Shet of Wf 1re

Th sEqa Ys 389Tpe

SFind Store Tota I
• Beginning I Ntnbe r of

Ind Di ffrrnt

Do forRetrieve
Doti c o fo r Do B 0g11n i ng

L -0 1A11 L;' {-I: 'ye I

All Target E none ntre ei i•

Classes Type Table Index

P-A
0-n.ISO

. s LPointeI

\ Arc, Brer/

l~e• 145 ____

SShift Type]

1149 • • to Position I.i7in tPNI
No point Y0 Table

Write Brakpoint -e

Ta yes14 Z

1ig. 111. (c1nt.)

(Sheet S n'f IS)

39()

_______I

C1)o Contr foo Aol I Cl V.m
Le ing t COlonet an Aruy ad ye n S

rniulnz raI'N6le Breakpoint :1rj
-441 PASst2 BEGNS i

Are, 11 cot.1

(Shnerait b o 18

N39

Index(~bO Missileie ddtoa

IndAddto tnd Total

Attribuoe Sttibtes

ACurien Curren

F ~ ~ ~ ~ b Nuigmbpert ume
-F~dex ithin Adeded

2012

(Sheetf Site1s~

3905

Inres

CH1 t Ica I
Dig t an c

to First 1unC-__ Al I So'givnt, r~

ofvagcts en t- Ligthde

tig 111 (Cot_

Con Nube w, I

Terminate --- LJ
File =6

Initialize
Collocation
Counters

No cation Data Done Do for
to be All -

rinted? Earth Sectors

Yes Do

1009

Print Headers 7Are Thiere Set Numn er of
INDNO, NA, , store Than 4,000 No Items At

IDLAT, ILON, N Targets In Maximum iCOLAR This Segment? (MARSEC)

Yes

23

Call COLOCA" Print Set
to Form TOO MANY Number

Collocation ITEMS FOR of Target:i
s CLLOCATI•O At 4,000

(J-J

Fig. 111. (cont.)

(Sheet 9 of 18)

394

,"I

.~- n l

C

A111 tt' n 11d litputG ;~ (LUR7j Files

Taurmi natc P0110 Do taor 5(

SW itel 111pnt*

Arrgtsy3 FSilennt

No L I

li e

Assigmmen

n2 R'uior o trethve Longi. Trint -'I
I'riit. Lrrur tudi tal htoun-jary Fis --

G -*1H.1%ag Later Por 1-li'.

E Lr ut kI.1ut '5i skit)tra ct N.irnhcr

S Output Files Itere trom Number
ProperT ceteed

Dto for Fnd Number of
Targetq lit tltee
Remainling in ni

se 'mntq emn

Dto
C~~ot A Read index Nuobe

Num'iiloe Latiti.e Latitude,
LoInue Crt. Longitude,

&I Ocate, rrays :r,'t ical Diistamrc

S~s SOtS
Increment Is /w trl~teLý tYne

Array in11ndegtie
y Seg ent.Critical Di:..tan~c

(Shoot 10 of 1,8)

3 9 S;

ra

I

27s

Col locatil Yes Actual 1u ; r"L
I an d Ccornmpl 0x of ComrplextDaaTar.g.ts

liii
Co rU t s• : li . r- prilit

rays for 1. 1t a
De fci

SOD 10 12M~cU
i Makc Up;

Keys fo•.
Pacling Status

Array

11 J Last IUN

I ndcrt-

-i t !rectory 4ifoff INDEWHPASS 3 . GN

IS 314

Directoryv to Prin

Be Printed? Drco)Fl ~No

31Col t

39 o

It'dm

Irn lt Ce

Noo
325 860

Warhead~~ ~~' IWDN , lbaýt
PrbblTyp Pr tLae

(ShLP 12 cir IS)

3267

302

Side Side

Indexx
Index ~2

.qunI ZeNOuu omerbieNr

Ofnbe olu Count Number

Number, of tiedsNti~br~

Pagyloadsnt.
StorSco 3l AroyPy)aý

Str9i8rr)

, I
To Mny P~r)Int 1., at or

Pankdicesn?]

No

343

Call IPUI
Pack TARDIEFLO a I inInto C.1nipl?•.

SauArray

3~37
Call IPUT CalIunction

Puck TARDEFIII ICp . Unpack Store
Into II l PILEX From Overflow

Status Aria Complex Array Data

Yes

Call Irra .hange by niloF I
Pack IAVUL IMPX Too Flany NO Number in ITEre iInto in TerNfLual

Status Array -t yaB Defenses? Array indexed
by INrvii

Call II'tITiceet
lc 1 u"ru

Pack ITVULN
IInto .DefeTls e nal InterceptorJS Intu Cornte NTV in NTrcTX ArraySttsAra y I tndeyed Lby NIP EF

Call IPUT
PackTAR•

.IF place at I InInto ITIIN U2
Status Array Array

Status Array Sl[Ltatus Ar~ryIitrc', ~ Array

Fig. 11I. (cont.)

(Sheet 14 of 18)

399

Call IT Ae lh'r'

Na Item a
I)Ynwic Target
TCrSIAT No Store Number

I CLASS AM() Area 1."r.ep '0.",
ICWS in Al NT Array

- KI
)tvs

Call Illiq
Art -ISTAT andIKJ; I.FP to

in Status Array

Is Iterl an 3 S I

Aren ARM Yo AW r.011"Ifie fe nse
Component Ile I'l led'

ICLASS - 1.1'

NO Yes

Yes Mi Is Item a 9WIC
360 ssile, Bumber, Site; YV5

or Tanker; AI-VPCU.%[P - 1-3
ICLASS - 1.2,3? n Data Base

No

Is Item 0
Doferisive N ARM Loný,
Control or No 'ý,nge Radar; Decrement Find Type
Intercuptor; AUEYCOMP - 4 Index ILL Beginning
TCLASS - 4,0 in vatil 32'e? by I Index

Yes
353

nc rci, it Yes
kI Lj,.'i by I Is Item oreYll 3 Item A.,jigntj for Hite . t ea First of No ivenessZONE ý 0? A, igned Its pacity

NO Zone (AZO 1,3) Typc? ray

35 9 3411
Mark Zon Call II1U1 Calculate Set Flar,Assignment to Pack Radar 4fectiveness2

For "avinjKError 11,L)UNO in ;n one Arra, Stored(11-P 0) MVERLAF Arr4Y (by Zone, L' Fffect4licness

34
Call Ira

380 to.!`Aclý Area Set Index
IMLIS .11 LIC .180

1W RL, 1. Array to .1

3.147

('111

No

Set Index Is Item yes
LC Defonsiýc
to 2 Control

ICI.A.SS - 4

Fig. (CO11t,)
(Sheet 15 Of 181)

400

6306

Typeev te i ig N

32 Yes

Retrieve Stored d Is
i [Ig Thierep

361

Is I t um

380

Call0Url ITLM

Write

377

Print All Is IHD
Attribute-Value to be

IIPairs; Indicate Printed?GlblDfinit ionsT-'-7a• ••

No
378

C1ll Nl- XT I .I'
to ReaJ Next

Dlata Item

Has Last
Item Becen No32
ProcesAid

30 Yes
Read

UN COLAR Arr-ly,20 Teripinat C

File

Call WRSIlrr(3)
.. 'Itc Number
of Collocated

Targets,
COLAR Ariay

to As!sign
Terminal pefentse

__ ndex
CR916 :

CallKRSl•I M(4)
Wir it v R est

of SI],F'rr.\ p E

D

(Sheet 17 of 1S)

40J2

SKSIIPFIL"

(for INDEIXf[)

Wri tic
Breakpoint-N_

Tables K

cal il WPUNT
to Print TYPL~

Datin, and
Statu.s Array
If Rcquested

Call ARO~VRPTL
to Print
'Error

Messages

Write E DEnd of

File

STOP

Fig II1. (cont.)
(Shoot 18 of 18)

C:. -.- sA.-.

SUBROUTINE AROVRFL

PURPOSE: To examine the error message flags which are
written during the running of program INDEXER,
and to print the errors encountered.

ENTRY POINTS: AROVRFL,

FORMAL PARAMETERS: None

COMMON BLOCKS:

SUBROUTINES CALLED: None

CALLED BY: INDEXER

Method

Subroutine AROVRFL (figure 112) checks the arrays JCItKFLC and NC14KFG for
the presence of error flags set by program INDEXER and, if present, writes
an appropriate error message which indicates a data overflow. If a target
class includes too many TYPES, the error message will indicate the number
of excess TYPES, the SIDE (RED or BLUE), and ICLASS index involved. Over-
flows of other selected data arrays will be noted by a message identifying
the array and the total number of items read. The latter message will be
printed if the upper limit for any of the following is exceeded:

CONSTR% INT LIMIT (TOTAL)

Target Types {TYPES) 250

Target Complexes (CPX TGT) 4,000

Collocated Targets (COL TGTS) 4,000

Wiarhcid Types (WARIIEADS) SO

Paylo;id Types, BLUE (BLII PLI)S) 40

Payh.od T')pes, RED (RED PLDS) 40

ASM 'Iypcs (ASMS) 20

Zones (ZONES) 63

Indcx Numbers (INDEXNO) 12,000

410

C ED
Check for Too
Many TYPL.-S
Per Class

Do for All
'L
11

R111) and BLUL Done

s
dr
s

r

Set

Classes

a

r

e

r

C

11.

f 0

RI

Err

r
Y

g

E EX S S TY U S

SeN
g

t
7

L

,

Yes

Print Error
Message Number

ES
s SI De rC 5
XCESS TYPES,L SiDE, rCLASS

Check Array overflows'
MKS, CPX TGTS, COL
TGTS -, WAMIUADS, BLU
PLDS, RED PLDS. ASMS,

ZONES, INDE00)

550

Do for
r-.ach Array Done RETURN
Overflow

Do

Lrroi
N FI.-ig

Set?

Yes

Print
E! rorMessage 141 .]b, r

Items, Ai ry
Designatj

9- 112. SUI= Utirle AR0VRFL

SUBROIUTINE COLOCATE

PURPOSE: To form collocation islands and complex targets
for up to 4,000 targets in a given earth segment.

ENTRY POINTS: COLOCATE, COLOCAT (duplicate entry)

FORMAL PARAMETERS: None

COMMON BLOCKS: 1, 2, 3, 4, 7, KEYC, KEY, COMP, KNARRAY, PRNT,
TRANS

SUBROUTINE3S CALLED: ORDER, RE!ORI)ER, IPLIT, IGET, IXF, FILEIINR

CALLED BY: INDEXER

Method

T'he initial action of COLOCATE, as shown in figure 113, is to call sub-

routine ORDER to arraige the latitude array Y by increasing magnitude.

Subroutine REORDER then is called to place the arrays IND, X, and Z in

the corresponding order (sheet 1).

The search for collocation begins by comparing difference.s in latitude

for consecutive targets in the ordered list, beginning with the first

uncollocated target (sheets 2, 3). When a difference which is less than

.350 is encountered, the arrays COL, CP, and CLT (see table 14) are

tested to find the status of the second target (J). If target J has been

collocated previously and is either a member of a complex or a nonmember

of the cvrrent island, the test for latitude difference between the first

target (I) and the next target on the list continues. Otherwise, the

actual distance between targets I and J is calculated and compared with

the sum of the critical distances for the two targets. Where two targets

are found to be collocated, COL and CL are set to I for both, and ClT is

set to 1 for the secon 1. If the targets are sufficiently close to be

mcmbers of a complex, C11 is set to 1 for both, and the index J is entered

in the arry [COH.,

Target I continues to be tested against subsequent targets on the list

until a difference in latitude greater than .35' is encountered. The

investigation of that target then is considered fin ished, and CLT(1) is

set to zero (sheet 4). If there is an unfinished complex, the next

target in the list LCOMP is compared in the same way to find additional

members of the complex. The process is repezited until all targets in

I-

the list LCOMIP have been investhgated, and the complex is complete. Each
member is flagged in the array COMP as belonging to a complex (sheet 5).
The complex then is assigned the next value of ICOMPLEX (beginning with 1)
which, together with the index number of each member, is packed into the
array COMPLEX.

The search for members of the current island continues until all targets
have been checked for further collocation and complexing (sheet 6). The
island then is ccnsidered complete. The directed horizontal and vertical
distances to each target from the one preceding it in the list (in 50ths
of nautical miles) are calculated and packed, together with index number,
intc the array COLAR (sheets 7 and 8). For the first target in the island,
•the distances are calculated to it from the last target. In addition, the
number of targets in the island (NTA) is included in the data packed for the
last target. For all other targets, NTA is set to zero. The array COLAR
is written on a scratch file, LUN2; the number of c1llocated targets and
collocation islands processed thus far is accumulated; and the investiga-
tion is restarted with the next uncollocated target (COL-O) on the list
(sheet 2). When the list is exhausted, control is returned to INDEXER.

Table 14, Description of COLOCATE Arrays

ARRAY LENGTH DESCRIPTION

COLO 12,000 (logical) Is set to I if corresponding target
belongs to a collocation island

COMP 12,000 (logical) Is set to 1 if corresponding target
belongs to a complex

COLAR 100 Is packed with data required for collo-
cation islands

COMPLEX 4,000 Is packod with data required for complex
targets

COL(J) 4,000 (logical) Is set to 1 if Jth item in array IND
belongs to some collocation island

CL(J) 4,000 (logical) Is set to 1 if Jth item in array IND)
belongs to current island

CLTF(J) 4,000 (logical) Is set to I if ith item in array IND)
belongs to current island but lIas not
been checked for further collocation

CP(J) 4,000 (logical) Is set to I if Jth item in array IND
belor.gs to a complex

LCOMP 40 Contains indices J of items in array IND)
which belong to the complex currently
being investigated

.1(1 /

SUp to 0 Aray i t o OIi.
4,000 Items Arast

_ Done

Find Total
Number of

Target Types

II P rit ne Number,
of t Itu e ms Lo niue

S Criiall ODitnER i
COrrsodnrder

Indices Ide
ItemsArr•) toA

PutIneex 1uober,

Latitude, 1 Logtue

Crtcl<itnei

AI 400=

Do) for

Targets
in Segment

Has TargetAlready Yes

Collocated?
3399 _t99

Find Index(1) for
Thi s

Target (i

Find IndexVIA) for Next

TargetS~in Sector

initialize
Pointers"to

Complex
Array (LCON,1 2

Store Index toimTarget (I) in :
Complex Array !

Retrieve
La t i t ude, ,

F ind [.

Lat it tu f

Fig. 11v• (Cont.
(Shoot 2 o'f, 8)

Set Collo."ktion
flu for Items

Che" Flog Do ono /1-%
102 Remaining In 102

Segment (J)

Yes
Is Latitude

NoDifferencek,3
(Collocati n Index
Criterion) J?

No
so
Is Target R*tr

M Yes Is "at, o" Index 11-f:
Already A '. a dy in Ne r

ollocated. C pies, Inxt Tatle,
COýplex

No No
.10 No

is Print ýlore Ilian
Target (J) No Mokr T M Y- MTEM31(40)
in Current TARGLlS LI texent
Island? 4-AMPLEX Comp, :.,ýhi.,

Yes
31

Compdte Set
Longitudin I Collocation
Distance fr Check Flog to 2

Last Membe

Fill Complex
Yes ray

Lesý Than 180' Ar (LC%1pj
Ith I 'A (J)

1.71, Curnednt Target

E No
41 62

Find Set Complex 1A
Complement Flags in

Status Arrays

42 yes
Dist neeGreater Y.S

Than Within Requirei
Distance or

Complex?

40
No o f5l

C"'T'
Set Collo'ý.At'on Compute Dis

" st.'ýL'o_
"i I , D. ý t ,l-e ' 'I, " Crltýc alwitlinlCstai:tlical Y" Migs in for Co'Pl

ITargets (I' [':stslice? St3ru5 Arrays Olalf of
CrLticitl [list;

S6L!T No".o

Actual Dist-ITIcc Was Target (J) Yes
between Ta r get Ll Alre.,dy Collocated,
and Targe t (.1 l

Fig. 113. (cont.
(Shoot 3 of 8)

I U2

102

Is Last
Targe~t (1) ill No

Cur rent

yes~
0101
H'ag 'rarget I

Completely
lnv'st igatod

Sh ift. I.Cuku
P~ointer
b), nOne

Mig. 13. (cn t

HITc~ 4KN YesS

99 112

IIS
Vo fo Low Increment

All largrets F11141 lndýx of Next
Complex Target to bein Complex Index by I Checked

Do

Index Find Index of Last

Number Target in

Al

I

I

I ISýo
C"

I
Se g"M t

1032

Are Complex 'Print
Data to B I nde x

a te c0rt
Printed Number

W f0rINo

F813g Target as
.lot, Ring t 0 Initialize Do for

Comulex COLAR Index Done Remaining

CONIP) NN to Taigets

Increment
Packing Index' lnitiali;c Is larget in Cur.

(WORL) by I Target Counte rent Island but Not No

NT to Checked for Further
Collocation!?

Yes

Call Ip

to Pack
Index Nurn er 397

Call iivr

to paci,

Complex Index

Fig. 113. (Cont.
(Sheet 5 of 8)'

412

IVI

11,21 111

111n l(10 Counmml.r, UnfIat! Coll1ocation i- pac I, t I tilid

Targets? ..Vvit r C umee k itti

NCur me i Is landt Pritted? C l k I N

Lr~t I I d vxcall 11(111d
Store r~ime 11111`011.1 (M) ri

t v ItIud
OvrlwLuol? hilt I tirl't it, Pi Iiffereite Int o

in~~I itttlicrc itt I e ItA
With Lust tutu~e Into

lind ~~ ~ li Dt Iit liltnc10cihllt
Inm fo~iu dcl ut eeuttcuiut NI~II(l

[10~~Y r l olN

Fi.11.04 ot.

is ~ ~ I'de Ar

Find~ i.Ht I tude lilt'

V ir st It nd Laujs

ut i n 1

i) I'S fi .r c 'lilt .u

I lFind ltitlex
for First
Ta rget (NP)

(Sheet Nuof S)

yet~~~ ~ ~ ~ 1,1eetItt . g . N

1~ -pO

Store ~ ~ ~ ~ io -1~~xEl alIi

Nume .A% Cp ac k Ut~r wpac k
loD MPH of Target I n Lati)L'

tsland (N r)i D' f rilct ,

Ptt ~ k It L e tii l t ' I Ie t ~ h o I, l lt u IM -1

to 0(N: (NH) I')

Call 11111 10 $
berl Intiibor o to et u Arm)

COIIAII (NI:) (NN)L Call I'lIn *eutot c N 14)
Nck lwou of it CollocaNionue of

IntolO.Alt ~Nt) Printed

IAt~c.,I c lilt. W atd s

111 113 Inceietcounter

II o

~ ,J.. .. - K - - ,, 4 ¾ -.

SUBROUTINE FINDIT

PURPOSE: To '()ok up the index number INDEXNO of a target:

ir, che collocation array COLAR.

ENTRY POINTS: FINDIT

FORMAL PARAMETERS: None

COMWN BLOCKS:.,' 3

SUBROIUTINPS CALLED: ABORT

CALLED BY: TDEFSTT

Method

FINDIT receives the length of the array COLAR in ISTORE, and the value
of INDHXNO to be matched in ICUR (both in common /3/). It executes a
masked equality search through COLAR and normally returns, in ICUR, the
index of the word in COLAR which eontains the matching INDEXNO. If no
match is found, ABORT is called to terminate the run. Subroutine FINDIT
is illustrated in figure 114.

1*

i1

START

I
Extract Lveft-
Most 11 Bits

Fr oii
I CURJI

Ua A
I(XII

--•--ll Pifo Le1gt Sbout i ne FINU al lBRI

COLAR

Extract Lef tmost
14 Bits of an

Element a.: COLAR

• -60
r. •] Set ICURNo /Same as Ye.sX IYes to Index of

, ,R COLAR

Fig. 114. Subroutine FINDTJ

.417

FUNCTION ICPL

PURPOSE: To unpack the index ICOMPLEX from array COMPLEX.

ENTRY POINTS: ICPL

FORMAL PARAMETERS: INDEX - The index number to be located in the
COMPLEX array

N - The number of words in the COMPLEX array
which have been filled

COMMON BLOCKS: Z KEYC

SUBROUTINES CALLED: IGET

CALLED BY: INDEXER

Method

ICPL begins by masking all information except the five-digit index
contained in the parameter INDEX and in the array COMPLEX. The array
then is searched until two matching index numbers are encountered. If
no match is found, ICPL is assigned the value zero. Otherwise, function
IGET is called to unpack ICOMPLEX from the word in COMPLEX at which the
search is stopped. Control then returns to INDEXER with this value ofICOMPLEX assigned to ICPL. Function ICPL is illustrated in figure 115.'

41

II

4 1i

- -. !

START

Mask Out
Index Number
ill Calling
Parameter

Do foi,
IN- Length ooff Done Assign Zero

0 fo I'
Ll' XArray * COMPLEX to ICPL

Do

Mask ' Tex

out Ind
Number ill Array)u

COMP LE X

Masked Calling
No Parameter

Equal Masked

VC MPLEX Entry

Yes

Call IGI:T (Unpack
Complex Index; RETURN

(::IZ tTD
Assign as Value

of ICJIL)

Fig. Function jCPL

419

FUNCTION IDXi

PURPOSE: To compute the latitudinal distonce between two
consecutive targets in a collocation island.

ENTRY POINTS: IDXF

FORýAL PARAMETERS: J - Pointer to longitude of first target
K - Pointer to longitude of second target

CO.MlNON BLOCKS-: 1

SUBROUTINES CALLED: None

CALLED BY: COLOCATE

Method

The parameters J and K are indices to the array X in common /1/ which
contains degrees of longitude. After thc corresponding values have been
retrieved from X, the difference between them is calculated and changed,
if necessary, to represent the shortest distance around the earth and
then converted to SOths of nautical milles. The value is returned to
COLOCATE as the value of IIJXF. Function IIJXF is illustrated in figure 116.

I

420

START
F-!

Find Longitude
Di fierences
Between Two

Tari eLs

Absol~ute Value YesSOf Difference]..
• < 1800? /

20
No

Subtract No 15
Difference /o , Difference

From 360 Negative?

Yes
30

Subtract
Difference
From -,360

IConvert-Difference
[to 5Orbs of

Nautical Miles;
l Assign as Value
L--- of][}XF

Fig. 116. Functio'n IDXF

421

-• '-' "! -= - • - • -• : - :'- • • -§k'r::; .~-.
.

... . L, ' * , .--• . I -,x-u";•' = , M w•','j, .jtAY't•.,=' .,.L .. .•.:.

SUBROUTINE INT'IND

PURPOSE: To data set INDEXER common constants and to
clear all common working and storage arrays to
zero. J

ENTRY POINTS: INITINt

FORMAL PARAMETERS: None

COON BLOCKS: AREADAT, EDITAPE_ EDITERIM, IFTPRNT, ITP, KFY, KEYC,
-KEYS, MAX, WI•ENT, NAVALTB, NOPRINT, PROCI'SS,PRNT, RADATA, TRANS, TWORD, WRIT, 1, 2, 3, 4, 5,

7, 9, 10

LSUBROUTINES CALLED: None

CALLED BY: INDEXER

Method

INIrIND dotcs no computation. iEither through data statements or executable
statements, it presets constants and arrays to their appropriate values.
The principal constants preset in'(data statements are those which define
the maximum limits of the system (common block /MAX/), the constants to
determine earth sector boundaries (common block /WRIT/), and certain
masks used in packing and unpacking (,oTnmon block /KEYC/). Subroutine
INITIND is illustrated below in figure 117.

STARTJ

.lcar Clear
Labeled Common Numbered Common - R*(,IiTURN-

Arrays Arrays j

Fig. 117. Subroutine INITIND

422

SUBROMIJINE RFADIN

PURPOSE: To read the card(s) containing print options and
set print controls for INDEXER; to read the cards
containing the VLRAI) input parametcrs; and to
read the card containing the missile vulnerability
parameteCr.

ENTRY POINTS: REAIDIN

FORMAL P\RAMETTERS: None

COMMON BLOCKS: ['RN', RAI)ATA, 3

SUBROUTINES CALLED: None

CALLED BY: INDEXER

Method

This subroutine (figure 118) reads the input parameters contained in the
execution dack. First, the cards indicating the selected print options
are read. These print options are controlled by one or more data cards
containing integers between 1 and 15. These integers, which must be
right-justified in 10-column fields, control the printed output as follows:

PRTNT OPTION DATA PRINTED

I Breakpoint tables

2 INDEXI)B

3 Data base directory only

4 Type data for the Simulator

5 Collocation array

6 Status array/r:.dar and ABIN data

7 Collocation islands

8 Complex targets

9 Reserved for future develo*,ennto

10 Terminal interceptor, payload, and IDIII, tables

11-15 Not used.

423

•"1

Next, the VLRAD input parameter cards are read', and the data are stored
in common block /RADATA/,

The final data card read by READIN contains the missile vulnerability
parameter established to characterize missile launch sites in their
softened condition inniediately after lift-off. This parameter is stored
in the first word of the CVULN array, and control is returned to INDEXER.

II

424

LM

Read

Print
.ltion

12

r; di I YesRead
Bl Iank? -.- VLKAD

Cards

Re ad
CVULN0

Numbr 'V.Ill)n C RETURN?

Corresponding
Dat a

Fig. 118. Subroutine RfiAIIN

425

SUIIROtJ'rlINL TDIJFS'lT

PURPOSE: To make the final assignment of terminal defense
indices so that collocation islands are treated
as single targets for defense purposes.

ENTRY POENTS: T)FFSrAT, TDFFSTT (duplicate entry)

FORMAL PARAMETERS: None

COMMON BLOCKS: KEY, KL.:.YS, 3, 5, 7

SUBROUTINES CALLED: FINP IT, rPUT, IGI"

CALLED BY: IN)FXER

Method

TDEFSTT begins by testing the first location, in the array ITlRM for a
positive value of INDEXNO, which indicates that the item' has terminal
defenses. Whenever a nonpositive value is encountered, control is
returned to INDEXER. Otherwise, the array NTINTX is tested. to see if the
item belongs to a collocation island to which a terminal defeiise indc.,e
already has been assigned.: 'This is indicated, by negating the terminal
defense index assigned to that island and storing it in array WTINTX.
Thus, if the 'value in array NTINTX is found tobe negative, it must be
the terminal defense index to be assigned to all targets in the island.
The index then is reset to its positive value and. packed ;under KTERM in
the status array.

If the value in array NTINTX is found to be positive, the item under con-
sideration is tested for collocation. An uncol!octated targct retains the
original terminal defense index 1, which i's packed under. KTLR in the
STATUS array; a collocated target belonging to a colloca-ion island wilth
no prLviously assigned index is treated in thc followinq manner.

Subroutine FINIIIT is called to retrieve the index to the'word in array
COLAR in which the value of INDEXNO: has been pacLed. The number of
targets in the i--land is then unpacked from the word' for usg in cycling.
through all targets in the island, The attribute INDIXNO is unpacked
from each consecutive word and tes, ýd against'the originAl value of
INUItXN((in ITERM(I)) to see if the cycle is complete. If the two va.lu ,s
do not match, the target is checked for terminal interceptors (logical

426

¾:- - - - - -- - - -. _....

array LTERM). When terminal interceptors are indicated, the number
NrINT is retrieved from array NTINTX(J) and added to the number being
accumulated under the original target (NTINTX(I)). If no terminal inter-
ceptors are indicated, INDEXNO is added to the list in ITERM, since the

target assumes the terminal interceptors of the collocation island and
must be so indicated in the STATUS array. As each additional target in
the island is encountered, the negative index I replaces the number of
terminal interceptors for the target (NTINTX(J)) to indicate that the

target already has been processed.

When the cycle through the island is complete, the index of the original
target is packed under KTiRM in the STATUS array. The next target in the
list ITERM then is considered. When the next item on the list is zero,
control is returned to INDEXER.

Subroutine TDEFSTT is illustrated in figure 119.

427

CýD
XDL F

200 Do for CA I I I pitr
Done FIAXVCF 100 pack I Under RetrieveRETURN Targets in dOX Number I Index Num ber

(1) STATUS Array frowt ITLKM

Do

96

ag Item Do 9 lArget
Taking Ye.% h long to
le-ent 'rev ously Pro.
ndex I as ed Island'

9 Yes Yes
Yes Have All Cos Argo Does-

0 Targets in List No Belong to
ITEM aeon Previvusly Pro. Target I No

Processed! esmej island IiSve Terminal RETURN
Defenses?

No

Call FINDIr to I

Find CDLAR Address Retrieve
in Which I.NL)EXNO Index Number Yos No Store

Is Locatod from LTERM oil 1: t.dl in M

H cNill IGETto Unpack
umb r a Targets
in $land (NT)

from COLAR

Last TCTNo
in Island
(NTýO)?

Yes
13

' Recycle the
Index By Store -1 Y., INOE.i5 No Store

'ec ng in[Svbtrac]ting ill List in
NT NTIN-TX(J) ITE ? NTINTX(NTL1UF)

T
2.2- 1(, 110

Incr is nt Accumulate 7otal Do fer
In e Number of TermLnal Done Rem3i i, I P Add P ill XNO

I Interceptors I Tarjletý to Liýt
%Tl.%TX(l) on List ITERM(%-rDCF)

Call IGLT t Does INI)Lx:ýo Does r r so

Unpack INDEX.400 Equal Indtx No CorresponýLng roncre.,ent
frm Next Word of acg,,,nr,, to tNl)l.x,%o Ila"o T, if, &I ncfense
In COLAR Array T a rge , E. i, Terminal

2
Index ,rD[.F

yes

Fig. 119. Subroutine TDITS-1-1-

'128

SUBROUrINE, VLRADI

PURPOSE: To find the lethal radius of a weapon delivered
against a target of a specified vulnerability, and
to set FN for use by the calling subroutine.

ENTRY POINTS: VLRADI

FORMAL PARAMETEiRS: YIELD Yield of weapon in megatons
NVN - Vulnerability paramameter of target
11OB hWapon height of burst

function

CONNMON BLOCKS: RAI)ATA

SUBROLFUNINS CALLIED: EXPF

CALLED BY: INDEiXF.R

Method

NVN is decoded into the appropriate vulnerability number VN, the letter
(P or Q), and the K-factor XK. The cube root of the yield is extracted.
Then the adjusted vulnerability number AVN is determined by methods
described in "Computer Computation of Weapon Radius," B-139-61, Air Force
lnteiligencd Center. FN is set to six or three for P and Q type targets,
respectively.

Common block /RADATA/ contains four arrays (for the four combinations
of P or Q vulnerability and air-or-surface burst) each of which contains
the natural logarithm of the lethal radius (in nautical miles) of a one-
megaton burst. The data arc at intervals of five vulnerability numbers.
Subroutine VLRADI interpolates in the appropriate array to find the
logarithm of the one-megaton lethal radius for AVN. The lethal radius of
the weapon is then determined !y exponentiating and multiplying by the
cube root of the yield,

A flowchart for VLRADIT is shown in figure 120.

4 29

STARTDecade
NVN toa

VN, LETTER,
XK

[YIRYELD /

Fig.acuat 1203SbrCtil LRtG

DELTA- 0 ELTADELT

SUBROIJTI NE W•IPRN'I

PURPOSE: To execute the prints required when INDEXER
print options 4, 6, or 10 are requested.

ENTRY POINTS: WRPRNT

FORMAL PARANIETERS: None

COMMON BLOCKS: ARFADAT, IFTPRNT, ITP, KEY, KEYC, KEYS, MAX,

WYIDENI, NAVALTB, NOPRINT, RADATA, PRNT,
TRANS, TWORD, WRIT, 1, 2, 3, 4, 5, 7, 9, 10,
PROCESS, ED 'IERMl, EDITAPE

SUBROUTINES CALLED: IGET

CALLED BY: INDEXER

Method

Subroutine WRPRNT is used to print the contents of several data arrays
associated with program INI)EXf'R print options 4, 6, and 10. A I
description of these print options and the associated print formats is
presented in the User's Manual (see Output, Program INDEXER, chapter 2
of Volume I and chapter 3 of Volume 1I).

As shown in figure 121, WRPRNT examines the print option switches to
determine which prints, if any, are required. If no prints tire required,
control is returned to INDEXER. Print option switch 4 is examined
first to determine if the simulation-type data aic to be printed. If
not, switch 6 is examined to determine if the STATUS array and
antiballistic missile (ABM) data are to he printed. As indicated in the
flowchart, switch 10 which controls the print of the terminal ABM data
is only checked if print option 4 was also selected by the user (i.e.,
print option 10 can only be used in conjunction with print ot)tion 4).
Subroutine WRPRNT performs no computation. It merely prints the
indicated data arrays.

1 3

START

489
Simulator

Jr)v I ata to he NO STATUS Arra No
hte I ? rind AIM

ýitcll I) Data to lio -CýE Dcc],YNTS Yes11.11 m"..I Printit I to be No I OVEk LAPPrinted?
NIAZR, and(Switch lo; AINT Arrays

YES
200.5 -
P -filt 1rII:I(

NTI 1%"I'X m, unpacK
S TATUS

Arrays Arraf

4 0.;
Prj tit c,

Poillbel., '111d P 1, 11 t
I'miker STA US
Arrays ARRAY

Pr

zo,", RETURN
Capacity, anc

Pvlonl 'rables
C111 f,

VI i lit 1)[77
O-ita Arrays,
TMASIý anj

PbLASW

Fig. 121. Subroutille 1) RNT

432

SUBROUTINE WRSIMT

PURPOSE: To write the Simulator data tape SIMTAPE.

ENTRY POINTS: WRSIMT

FORMAL PARAMETERS: NOP - A flag which indicates the write operation
to be performed

COMMON BLOCKS: AREADAT, IFTPRN'F, ITP, KEY, KEYC, KEYS, MAX,
MYIDENT, NAVALTB, NOPRINT, RADATA, PRNT, TRANS,
TWORD, WRIT, 1, 2, 3, 4', 5, 7, 9, 10, PROCESS,
EDITERN4, EDITAPE

SUBROUTINES CALLED: SETWRIT, WR(WORhD, WRARRAY, TERMTAl'

CALLED BY: INDEXER

Method

The data base information which is required by the Simulator is written
onto tape SfMTAPE by subroutine WRSIMT. This information includes the
index breakpoint tables; the COLAR array, which contains packed data for
collocated targets; the STATUS array, which contains packed data on all
potential targets; and several other arrays containing characteristics
of wecapon types, characteristics of warhead types, and defense capabili-
ties. When called, this subroutine examines the write option flag
NOP('-4) and writes the appropriate data onto the SIMTAPE. Subroutine
WRSIMT is illustrated in figure 122.

433

i r,•''I•1itl•..... l~pi]•l •wlrll iq I' i I " I 0

I.

START

DLeterminc TapL

I Tap

S~Write option as
set by Calling

Fi.R22oubrutnneSIi•" ~ rout h n e et o__2

_ _ __ ________________ '

, RIM~ WRSIMT(3) RS IMT (4)

S I SETWR IT [Writ rte:'[[O nitiali e Vu ne a il t COLAr "', .iITAE Ara CUN Arrya

Breakpoint R-UNRTR

RETURNP

Fig. 122. Subroutine. WRSJý1-T
(Sheet I of 2)

Conitaininig Number Contpinitig ZNumer
of Lo-rmng of Temina

Wrie ArayWrite Arayoa

ofApprane opriate of /

Miss 20. Bombr, t i)
(Sb' 2e Stat2)

I
C1IAPTER 8

PROGRAM BASESUM

1tfRPOSE: To summarize the input data base and to print
these summaries in tabular form.

LNTRY POINTS: BASESUN

FORAL, PARAMETERS: None

'COMMON BLOCKS: DI.RECrRY, EDITERM, PROCESS, TABLES

S[II3ROI'JTNES CALLED: INITEI)IT, INITAPL*, INPITEM, ITLE, NEIXTITIEM,
PAGES KP

Method

Program BASUSUM provides the capability of summarizing the data base
contained on the output t'apes produced by programs QUIKBASE (QUIKDB
tape), BAStIMOD (QKMODDB or INMODDB tapes), or INDEXER (INDEXDB tape),
The data base tape to be summarized is the only required user input,
and there are no output Files created by BASESUM.

To summarize the contents of a data base tape, two passes are made
through the tape to summarize, in order, the Blue and Red sides. For
each class! e.g., Bomber, 'nd each side, a summary table is printed.
Within these tables, the columns reflect the types within the class, I
e.g., B-S2 and B-58, and the rows reflect the attributes' e.g., RPANGE,
defined for the class,

The following conventions apply to the valucs of the attributes printed
in the table. All floating point values are the average value, and all
integer and PICD values are the first one encountered in reading the
data base tape. If the value changes within an), type, the value in tile
nmatrix ij: marked with an asterisk,

Figure 12', depicts the logical flow of this program. As indicated, a
flag is set to cause side blue to be summarized first. Next, the
array dinmensions are set to correspond to the expected size of tile
data base. The division at the present time is 25 classes, 200 types,
and 1oo attributes per class per side. lF any of these dimensions is
exceeded in processing the data base, an appropriý 'e errolr message is
printed. hli directory and the first item are now read in, and the

S•hatrdlr .dihrouti nes.

Io

* - .,, _

positions of CLASS, TYPE, and SIDE in the VALUE array are founiu by
comparing these attribute names with the ATTNAME array. As each item
is read in, it is examined in sAveral ways. It is skipped if valu3 of
the attribute SIDE is not the side currently being processed. If this
requirement is met, the class name is checked to determine whether it is
a new cla!,s and whether storage is available. If so, the new class is
stored and the class counter is incremented. Next, the typo name is
compared to those previously processed. If no match is found and space
is available, the new name is stored; the type counte- is incremented;
and the index to NAMECLAS is stored. If a type name match is found, a
check is made to ascertain whether the class is the same. If not, n
further check is made to find a name match later in the table. If none
is found, control goes to the new type case. At this point in the flow,
the number-of-items counter is incremented, since both the type and the
class are known. Now all the attribute nimes defined for this class are
examined. The value of the attribute is stored directly for newly
defined attribute names or the first appearance of an attribute in a
type and class,. The procedure differs, however, for attributes previously
defined. A logical array ITEMS is examined for a previous change in
the value of this attribute if zt is not the first item encountered of
this class and type. If the present value is equal to the previous
value, the next item on the data base tape is processed. If the value
is difffrent, that fact is recorded in ITEMS. If the value is integer
or BCD, nothing further is required. If it is floating point, the
previous value is multiplied by the current number of items minus one,
and the present value is then added in.

After the last item has been processed, the floating point values are
averaged, and all of the tables for this side are printed out. The 0
entire process is repeated for side Red.

Common Block Definition

Program BASESUM references the following utility routine conunon blocks,
which are described in appendix A of this manual: /I)IRIiCTRY/, /l4)Il'lM/,
and /PROCLUSS/.

In add ition, BASLStM uses common block /IARLES/ which contains the arrays
described in table 15.

.. ; ' 7

Table 1ý. Program L3ASESUM Common Blocks

VARI ABL~i
BLOCK OR ARRAY DESCRIPTION

TABLES NAI2CLASS Class names

NANII-I'TYPIi Type names

CLASTYPi'I Indcx. of class to which each type belongs

NAMIAT'T For each class, pairs of locations in which
(equivalencud the first is thwe name of the attribute, and
to NWATT) the second is i.ts location in the VALUL array

NUMATT Number of defined attriiiutes for each class

VALATT Value of each attribute for each type
(equiva lenced
to NIVA LATIT)

! ~ITEM!•S Set to I i~f value of attribule has changed;

0 if 11ct

PARRAY Print array

k. "ORKXI' Format of each print line

iI

-,--

rA
6 ... U 1b•ek

Xnc2-rentThrough~ Rest

Nncr-per
of Type~ Tal

Co Nter o I tems
STARTan r 67 N

Set Side I. IlLUI., Incr'itivit 'Iypc
Fill PrI t Format Cotizier, Stcute

aArrayd'l yeadIsC~

Set Maximum
Nulnbor t Of Tlt N Rom o

SPer Cla•s to 10 Store Clas Na TYpe

set Maximi' umbe Storevi~e I "i ..rof
Ilasse

Nub Cl r; Loo i..oi.,,

IPer Sie to 210 \Soae i Cl\ ,:Ye1614i

164 In t a€, • i~ Pr int • Print Is~s . i v.,
Arrays an d II ror I rror I I

Cunstants to Zero hie*c s~sage befnd

18116
N

Call INITAJ'LIs te
to itial I antheSide /
FI c ,andle Bein g d0I
Vaviab les rcssd,

CrIl INITElOITCal NPTACl)IL
to 'rep• re fo to Read Iirst -am ;ato ,indndics

IedrtItems It~

Fig. 123, Prograi BASI'SUI

(hoc-t I of .3)

Al I

Attriute3189

Storelu Tb 1 Nmerofcro

Ye ~~Value? asg

Previousl Thbs2 Ytriut

for ill uirev d Value? t

fin (Sheeto 2 o 3

NO~~~~~~~~I ThsAtiut tr)am de

Bto W ith InptnN.0

tom Uuistor r Do

CNext Pago A TIs C1es AlAtiue

r~ofc ni Types

4.1 1e

I~o f r 1,nc, Si..t

APPENDIX A
UTILITY ROU'rINE COMMON BLOCKS

The following is a description oF the common blocks associated w4th all of
the utility programs except for programs OUTFiLE and RELOAWF. In addition,
only those filehandler common blocks used by the calling programs for data
transfer are included in thi.s appendix. For a complete list oil filehandler
common blocks see table 2.

VARIABLE j
BLOCK OR ARRAY DESCRIPTION

A R Interpolation calculation milatrix

B S Temj-orary interpolation: matrix

BNKBNDS IANLOW Lower storage limit in both banks]

IAMIIGII Upper storage limit in both banks I
C SOL Solution vector for interpolation calculation j

DATA X Storage area for file data

DATPK MASK Table of masking variables

ISIITAB Table of shifting variables

DIRECTRY Contonts of directory

IDIF IFidex of last defined attribute in tables

LASTLIST Index of last entry in IISTVALS

NDIIMI)l N MIaximum si .C of tables

NI)IMLIST Maximum size of LISTVALS

12i

VARIABLE
BLOCK OR ARRAY DESCRIPTION

DIRECTRY ATTNAME Hollerith name of attribute
(coant.) IFORNIAT Input/output conversion format (FORTRAN) for

attribute values

ICODE Code :;pecifying type of values and method of
checking

DEFAULT Undefined value for attribute

IDEFAULT)

NI Minimum allowed value (range check) or index

FNl of beginninig of allowed list in LISTVALS
(list chceking)

N2 Maximum allowed value (range check) or index
F J of end of allowed list in LISTVALS (listFN2 checking)

LISTCHEK Set to TRUE for list checking; FALSE for
range checking

GLOB TRUE when global definition in force; FALSE
otherwise

LISTVALS Contains allowable values for list checking

EDITAPE Data base tape editing information

INTP Logical tape number of input data base

NOUW Number of output tapes

ITOUT Logical tape number of output data bases

JOur Logical tape number of current output tape

L I)'rEiR End of data base tape signal

ISWrI' iRM Set to I if not end of tape; set to 2 if end
of tape

ERRCODE KABORT Abort condition code

XVWARN Warning condition code

2).

•,,i l . . . L-

VARIABLE i
BLOCK OR ARRAY DESCRI PTION

PRRRMiSS IABozr Abort message

I WAIN Warning message

ERRORNI Error signals
JERI? Logical unit number for output error messages

IERSW Set to I if no errors• detected; to 2 if errors
are found

FILABEL INIDENT Eight letters of (input) file name; read from

file

INRUNNO Run number; read from file

INDATE Date generated; read from file

INFORM0 Format; read from file

INSECR Security; read from file

INTIfIW Time generated; read from file

INLNGTJI Length of file

INCOMM Five words available for user comments

FILEIN NANE Logical disk file name

I FTPRNT I FTPRNT Controls debug printout

I REC I REGC Number of records rend from current filc

I'P ITI' Tape current 1 beinug used (unteger valtce
1 to Io) i

W RTOI'T Print control

M1PRTO'IT Set to I to print directora) card images;
0 otherwi se

l.1~1

VARIABLE
BLOCK OR ARRAY DESCRIPTION

MYI DENT MYII)NT Tape identifier

MYLABEL MYFORM Format designation

MYSECR Security designation

WLNGTH Maximum file length (words)

MYCOMM Comments, if any

NOPRINT NOPPINT 1 to print tape label

OUTFILES IOUTDEC Logical tape number on which DECLARES
writes the modified FORTRAN source
program (source code on this tape is
subsequently compiled)

ILIST Logical tape number on which the input
source program is printed

IBODY Not used

POLITE S1 First point latitude

Tl First point longitude

S2 Second point latitude

T2 Second point longitude

FACTOR Fraction of distance to be interpolated

SR Interpolated point latitude

"IR Interpolatod po.int longitude

PROCESS Stores i tom information

NI Number of att:ribute-vaIlue pairs in incoming
i. tem)

NV Twi co. Nl

NC Index of a changed attribute

4

VARIABLE
BLOCK OR ARRAY DESCRIPTION

INITEM Alternate attribute indices and values

VALUE Current value of all attributes

DEF TRUE if attribute currently defined; FALFIE
otherwise

LGLOB TRUE if attribute currently globally defined;
FALSE otherwise

PRNTCOMM Printing informat ion

SAM-fARRY Set 1 if attribute defined for item; 0 A

otherwise

DEFINED Unused

INDXOT1'R Indices of already defined attributes

PAGEDATA Attributes and values changing on page

COMATNAM Names of attributes common to page
COMATVAL Values of attributes common to page

ICOLSAVE Number of columns on page

PRTOPT Print control

NPRTOPT Set to 1 to print item card images; 0
otherwise

TODAY NOWRUNO Current run number (currently not used)

NOWI)A'I'E The date of the run; written on file label
as 6th word

NOW'IMI" The time of the run; written on file label
os 13th word

TIVORl) TWORI) Word where next data stream word is placed

XPRT DIECLAREUS print control for listing input
source deck; ALL if prints required;
otherwise set to NONE

44tA

..'4-

~ .k- ~ -... ~ ~ .

APPENDIX B
QUICK ATTRIBUTE NAMES AND DESCRIPTIOlNS

ATTRIBUTE
NrAE DES CRI PT I ON

ABIRATE Probability of aircraft in-flight abort per hour
of flying time

AIMBLI ALERTDRL probability for initiative attack

ADBLR ALEIRIDBL probability for a reta.iator, attack

ADEFCMP Area ballistic missile defense (BNID) component
index (radar or missile launch site)

ADEFZON Area ballistic missJ.le defense (BMD) zone number

ACX Offset X-coordinate of AGZ (fiftieths of nautical
miles)

AGY Offset Y-coordinate of AGZ (fiftieths of nautical
miles)

A-10B Actual height of burst of weapon (air or ground)

ALERTDBL Probability of destruction before launch (DBL)
of alert delivery vehicle (missil-. or bomber)

AIERTDI.Y Delay of alert vehicle before commencing launch
(hours)

AREA Area of a bomber defense ZONE (millions of
nautical miles 2)

ASMrl'YPE Ai r- to- sur'face missi lc type

ATTRCo R Attr it ion parameter for a hoe•cr corridor (probab-
ility of attiltion per nautical mile)

ATTRL,(; Attrition parameter for cach Yc;ule lc c in bomber
sortie (probability of attrition per nautical mile) ,

A'IT16IJI 1:' Amnotuil of criginal attrition that remains after i

defelnse suppression

-. 2 .~4 4 -

ATTRIBUTE
NAME DESCRIPTION

AZONI First area defense zone covered by a B•'j long-range
radar

AZON2 Second area defense zone covered by a BMD long-
range radar

AZON3 Third area defense zone covered by a BMD long-range
radar

BCODE Code indicating the outcome of a simulated bomber
event

BENO Bombing encyclopedia numlber

BLEGNO Index to boundary line segment

CATCODE Category Code as reflected in Joint Resource
Assessment Data Base (JAD)

CCREL Regional reliability of offensive command and
control (probability)

CEP Circular error probable (CEP), delivery error
applicable to bomber and missile weapons (nautical
miles)

CLASS Class name assigned identify sets of TYPES in data

base

CLASST Target CLPSS

CNTRYLOC Country code for country whcre item is located

CNTRYOWN Country code for country whi ch owns the item

CNTYLOCT Target country code for country where the target
is located

CNTYOWNT Target country code for country which owns the

target

CODE Outcome code for a general event used in siMulation

cp/,crY Capacity of a bomber recovery base (number of
vehi ces) ,

448

[I

ATTRI 0 UJE
MENA DESCRIPTION

DATEIN Earliest Jate in inventory (year)

DATEOUT Latest date in inventory (year)

DEFRANGE Typical range of interceptors at defense bases near
a corridor (nautical miles)

DELAY Delay time (e.. launch delay time) (hours)

DELTA Time interval between successive vehicle launches
from the same base (missile or bomber) (hours)

DESIG Target disignator code, e.g., ABlO0, which uniquely
identifies each target element included in the data
base

DGX Offset X-coordinate of desired ground zero (DGZ)
(fiftieths of nautical miles)

DGY Offset Y-coordinate of DGZ (fiftieths of nautical
mi les)

MHOB Height of burst of weapon (O-ground, 1-air)

EFECNES1 Attributes assigned to fighter interceptor units
EFECNES2j (ICLASS =S in the data base): the value EFECNES1

or EFECNES2 is assigned to the attribute EFECTNES
depending on value of BASEMOD input parameter
POSTURE (if POSTURE-l, EFECNESI is used; otherwise
EFECNES2 value is assigned)

EFECTNES Air defense capability (arbitrary scale) established
by user to indicate relative effectiveness of
air defense command and control installations and
fighter interceptor bases

EVENT Index to event type

EVENTN Index to type of event which did not occur

FFRAC Fission fraction (fission yield/total yield)

FLAG Numeric code (I through 9 permitted) used to impose
restrictions on the allocation of weapons within
QUICK

,149

ATTRIBUTE
NAWd DESCRIPTION

FLTNO Flight number for a sortie

WUNCTION Operational application code for a weapon system
(e.g., ICBMi)

FVA IIl iIrauctior rf value of target in first hardness component

FVALTI Fraction of target value that disappears by T1

(percent)

PVALT2 Fraction of target, value that disappears by T2

(percent)

First hardness component of a targct (VULN)

1'12 Second hardness component of a target (VULN)

' IILOATTR The ratio of the Low..altitude attrition rate to
the high-altitude rate (decimal frvction)

iALLRT Alert status; I = alert, 2 nonalort

I ALT Altitude index (I = high, 0 low)

IATTACK Selection index for preferential area BMD; I forces

target selection for defense.

I l/S Class index assigned for game ,

i CLASST Target class index

I COMP LI-X Complex index

.CORR Bomber corridor index number assigned in progrwii
PLANSI3T

I - Tactical (FLJNCTION-TAC) aircraft corridor

(TYPE name DUMMY in the data base)

2 ,. Naval attack corridor (TYPU. naie NAVALAIR

in the data basC) used by bomber units
with PKNAV greater than zero .c.s

-2 •Othei- corridors used by long range bombers
(FUNCT ON 10 ,1 ,RA) •

.15 o

•• • •: • • o J • g.- ' " : ' ,.. ,.

ATTRI BI3rE
NAME DESCRIPTION

IDBL Index to data tables for time-dependent destruction
before launch probability

IDUD Dud warhead indicator; assigned to weapons which
arrive at the target but fail to detonate; l=dud
warhead

IGIW Indices of General Industrial Worth (IGIW) (dollars)

I:GROUP Group index assigned for weapon grouping during
game

IMIRV identifying index for system with multiple indepen- ,,
dently targetablo re-entry vehicles

INDLXNO Index of a data base item (potential target) used
during processing to identify the itemV!

INDV Vehicle index within base

INTAR rarget index (corresponds to INIDXNO)

IPENNMODE Penetration mode; 1 = aircraft uses penetration
corridor, 0 = penetration corridor not used

IPOINT Index to a geographic point

IRECNIOOtL Recovery mode; 1 = aircraft should plan recovery,
0 = aircraft recovery not planned

IREFUEL Bomber refueling code

IREG Index to identify a geographic region

IRU"P Reprogramming index (capability of niss.i I,
squadron)

ISITI: Site number i

ITGT Target inde- number assigned by Plan Genlerati.on
subsys tern

ITII- Index to time periods in time dependent MI1L data
tab1cs

451

~- ~ V -

NNM1E D)ESCRIPTION

ITYPE Type l-ndex assigned for game

rry PET Target type index A ithe't0)C

I VULN Inlyto vleaiiynme al

I WTY 12 Second warlicad type

-JYPE Typc index within clý.ss

JTY PUT 'fai-gct type index within class

KOWS'IY Li1 Parameter to ad3 LLst :iode of' corridor
pen:,t r~ation

LAT Latitude (degredes)`,

LEGNO tndex to line segment

LINK The index of a leg linked to tile current point

LONG Longitudc Cdegirees)~

MAJORMajor reference number ,15 ref.lected in the Joint
Recsource Assessment Data liaýsc (.JAD)

MLAXFIACV Maximnum value of weapon resources to be used relative
to target value (in prc -essing k1AXC0)ST=MAXFRACV)

MAXK I 1L D~esired maximum dav~age ceŽ,rected for a target

MINK ILI, rhe requi red .ninini mui dzimagc est abli shcd for

aI tarret

L~t it~lI nIle d longjitulde MrC (arricd internal1ly in the QUIJCK system in
the following f'o rmat:

Nor1th latitUde 0. (tequator) to +90. (North Pole)
South I at irw± 0 (equat or) to -90 . (Sout h Pc Ic)
Fast I Iongi til"1 1 80. to 300, (CIFUCnW i ChiM id
West long itudnk 0. C Creenwi ch Mcrid u)to 1ISO.

These at triblnt'" Is heIn put inl either thle alx've formlat or in

Lt n a d d l i ' ; oi i) i ol"i

I
ATTRIBUTE

NAME DESCRIP1 i)N

MINOR Minor reference number as reflected in JAD
to identify an item

MISDEF Number of terminal ballistic missile interceptors
for a target

MVA Manufacturing value added (MVA); indicates the
amount of value added by manufacture within a
specific area (expressed in U.S. dollars)

W1 lIDS Number of missile warheads penet rati p area
defenses to terminal defense

.r
NADBLI NALRTDBL for initiative attack

NADBLR NALRTI)B3L for zetaliatory attack

NAINT Number of area ballistic missile interceptors at
an interceptor launch base

NALRTDBL Probability of destruction before launch (iBI,)
of non-alert vehicle

NALTI)DLY Delay of non-alert vehicle before commencinglaunch (hotfrs) '

NAMI Arbitrary alphameric descriptor for any item
included in the data)iase

N ARI7AD 1:C Number of decoys per independent re-entry vehicle '

for area B1D

NASW Number of ASMs carried by a bomber

NCM Number of countermeasures c:nrried by vehi cl '.

NDECOYS Nutmber of decoys on a bomber or number of decoy';
per independent re-entry vehicle for terminal BMD

NDET Number of warheads detonating in current event

NtiX'FZON,,.. The adjacent zone to a side of a defonse zone

NNIPS ITF Numibeyr of missiles per site

453

ATTRIBUT,
NAME DESCRIPTION

NOALERT Number of vehicles on alert a't a base

NOBOMB1 Number of first bomb type carried by vehicle

NOBOMB2 Number of second bomb type carried by vehicle

NOINCOM Number of delivery vehicles in commission

NOPERSQN Number of weapon vehicles per squadron

NOPERSQI) Attributes used in program BASEMOD to compute the
NOPERSQ2 value of the attribute NOPERSQN for bomber units;
NOPERSQ3 numbers 1, 2, and 3 specify surprise, initiative,

and retaliatory attack plans' respectively

NPEN Number of warheads penetrating In current event

NTARG Nuinber of targetý in missile launch event

NTrNT Number of terminal BMD interceptors at target

NWIlDS Number of warheads per independe-it re-entry vehicle
(missiles)

NWPNS Number of weapons in a group

NWTY PE Warhead type

PARRIVE Probability of bonher arrival in current event

PAYLOAD Index which identifies entire weapon and
penetration aid complement on a vehicle

1'DES Probability that launch failure destroys missile

PD1JD Probability a warhead will fail to detonate

PEN Penetration probability for a weapon

PFPF Probability of failure during powered flight
(missiles)

PINC Probability that a miissile is iW• commission

45

,l 5.I

NAMrL~u DESCRUI V'ION

PX,ýj I SProbabilIity a missile fails to penetrate terminal

PKNAV ingloshot kill probability of a weapon agaiinst
anvltarget (a value greater thwi zero restricts

waoiuse to naval targets)

11LAI3T Prob~ib~iliity of veh icl e launch abort

P LACE I ndoý to gcogi-aphic locatioll Uf kil event

PLACEN Index to ,,cographic locato Of an Vent Which

(lid not. occur

POP Population (cities) (thousands)

POSTURE Force roadincss condition

PRABT Probability of refueling abort

PRIMETAR Prime target flag; 1 signifies priority target

in a complex

PSASW Destruction before lalunch pr'ohability assigned a
401apo:L for a specified time period *

RADIUS Size descriptor for area torgets (niautical mi les)

RANE Vehicle range (nautical miles) *

RANCTILTC IRange aucrement for low-al ti tude ii rraft fli Ight
(high range/low range)

RANG I" REP1 Range (nauWtical 1111 l0S) Of bomTber With refulel jog

1'RLL Reliabi Iity' - probiabil ity that weapon System wvill
arrive at target gi ven success mii launch

RES FRV): Techn ique uised to rcmove certain targets from
weapon allocation when PJ'SiERVli = 0

S I DEi [t0M Side nameI, CUrrn~tly/ ci thor "RH) ori-1H'

45 5

AWTRI BUI'E
NAME DESCRrPTION

SITI.NO Site nwuber (currently for individual missile

"POLO 3peed at low altitude (knots)

SPEED Speed (knots)

SQNNO Sqoa'cmna iiitimber

1 'Time .. f departure of first val LIe co0ponent of a
target

T2 rimec of departure of second value component of a
lta r g c f

T3 Time of departure of third value component of a
t a rgot

rAIM Numb or of aim points perceived by terminal defense
in current event

'rARDEIII fLevel of local bomber defense at high altitude*

TARDE-FLO level. of locu I bomnber defenise at low a I t. tudc*

TASK Target task code indicating targeting priority

'J'(TSTAT lndi cates target status as dynamic or nondynami c;
in si mula1to1 statIUs (al ve/deaid) is mai ntained
for dvn amic targets

TI Ml (GiU" time aD t whic (h event occurred (hours)

TI MNN Ti.eC pl) un1ed for c%',Cnt which did not occur (hours)

TMI)I.L 'Wean delay time to relautch after a nondestructive
a6 rc -aIft abort (hours)

Arbitray un its scaled hy oser-input paramltoer in1 Plan ("ncr',ttion

Subsys ten. MinitmIMl value () 0 for no dcfenmso. 1IIgh est allowed do, fns c
level Ji + 7

.1 5 Li

ATTR I Burr-
NAME DUSCZIPFTION

TPASW Time at which a time period ends for DBL data
tables; there may be up to 10 time periods for
each table

TRETARG Time required to retarget for known in-flight

missile aborts (hours)

TTOS Total time on station (for a tanker) (hours)

TVUL Time a missile renains within vulnerable range
of launch site (hours)

TYPE Arbitrary alphameric designator (type name) to
identify smallest sets in data base

TYPET Target TYPE

TYPHl Attributes assigned fighter interceptor units
TYPS2 (ICLASS=5 in the data base): attribute TYPE is

"assigned the TYPEl or TYPE2 value basea on BASEMOD
input parameter POSTURE (POSTURE=l TYPE1 is used;
otherwise TYPI2 value used)

VAL Relative value of an item within its CLASS as
established in the data base by the user

VALU Game value of an item (assigned in plan
generation based on user-iniput parameters)

VALl Attribute:; assigned fighter interceptor units
VAL2 (ICLASS=5 in file data base): attribute VAL is

assigned the VAIl or VAL? value based on BAS!IMOD
input parameter POST1REI (POSTURI-=I, VALI is used;
otherwise VA,2 value is assigned)

VULL Vulnerability number

WACNO0 World aeronautical chart number

WIIDTYPI Warhead type index assigned in the data base

WMIITYPEN Warhead type index (used with EVENTN)

YIELD Yield (MI')

ZONE An area bomber defense zone enclosed by a set of
linked boundary points

UW

APPENDIX C

ENTRY POINTS FOR QUICK UTILITY ROUTINFS

This appendix contains an alphabetic listing of the entry
points associated with all ut~ility programs and subroutines. .

Subrontinos associated with each of these entry points arei~ndicated below. .

ENTRY POINT TO SUBROUTINE

ABORT ABORT

;LOCDIR EI ,EINR

ANO'TI [ER ANOTI [EL
ATN211I ATN2I I

CIMANCE CI IANClM "
CLOSPIL CLOSP 1L1

C LRCMON C LRC{MON

DEACTI V Fi I[XND

DECLARES DECLARES

DEILON I)LIIONC;

D1 I"FLNG. 1)1 FII:,ICNG

DI FFLONG 1)9 FI:IF,0Ni i

D STIS' 1) 1 STI
US'TF ISTF '

I:NDI)A'TA liNIl)MA'f
IiNI.}TAPiliNI)'fAPl• i

IFRAZF ERA7,\2-

IiQU I V IiQU : V ,

F iN� LUM F 1[-U

1: I II)INIR F 1 1,I)1 INR

(:'I'C , (,;l'ftL:.W lK

,158

-__---__II__ IIIIIIIIII_

ENTRY POINTr To SUBROUTINE

GETC LOCK GETC LOCK
GETIJATE GETLVATE

GETDF GETDF

GFTLI MIT GETLIMIT

GETLOC GEI'LOC

GETIVALU GETVALU

I GET IGET

INBUFDI(INBUFDK IINERRDK INERRDK

INL3RRTP IN1IRRTP

IN ITAP FILEIINR

INITAPH FILEHNR

I NT'E D I'T INITEDIT

INITEDT IN ITE DI T

I NL A BEL INLABEL

INPITFM INPITEM

INTL- RI1 INTERP

INTI3RPGC INTERPGC
INTRPGCC INTERPGC

I1'Li ITLE:

I WANT IWANT

KUEYMAKE KEYMAKL

LOCI: LOCF
LOCREAI) LOCITEAD
LACWRiIT LOCREAI)

LO CW R FF LOCREAD
NEiW!NIT N FWIN IT

M: XTAPE N E-XTA IIE

NF XT F I III NE1 XII: I LE

459

E.NTRY POINT O[J3OJII

NEXTITEINI N ITI'I'M
Nh XTV I 1' INITFIT NJ
NODI RC NODI) RC
NIMAIGE N tJMGET'
OPENSP, L OP1iNSi L
OR[)Ii

RI
QUTB FDK OUTI3 P1K
011' 13FIT OUTI3 Ph
CUTUPOOD

01ITIERU OU'I'LRMJ
OUT[3RTP

011113 RTP
OUTH PLE3 OUTP LE3
011IJTITM

ourrium
OUTwoRDS

OUT WORDS
OUTWRDS

OUTWORII)s
PAGIESKIP IAGi3SKP
PAGUSIKP

PACfjSKII
cPP.IThM*N

PR ITEM

PlRNTB ASE P RN'1IASI:j
PRN~h~sI~P RNIII AS

1) RNTDI'BsA PRNTIpAs~

P RNTDTA PRINT' I
PRNT'I) RC I'RN'rpJ I %
P RNTODRC P R.NTDI ~c'
iPRN'r LA B I L

P RN'lPc; iP kNIT IT
RI AR RAY

IMAKRRAy

1410LADIF
R 1: I O.() I

loo~

E3NTRY POINT TO SUBROUJTINE

RJrORI)ZR. RLORDUP
SEiTHEIADS ! .A
SETREAD SF-"IiT'EA 1)
SII'fWRIT Vi LI3IINR

SKIP SUK1P
SSKPC SS KP C
STORAGE S'TORAG[E
lIVVII'IAP TI: RM'IAI'

TE RM~fAPE 'TE R~rl'AF
TB RMT~i '1ERNITAP

'fIMI~DAY TI ILMLAY
TIMJ3ME TI MmEM
WARNING ABORT
WRARRAY RIJARRAY
WRITEDIJR W RIT111)I1R

WRITUiDR WIEI
WRWVORDWI'IIIR

PT UoIN

A P 1)N 1ITX 1)
UTILIZATION OF (1ThNI1101 UTILITY RouTrINIIS

The fol lowing is a list Of 00e prograIMS anld S~dbroutilCS Which Cal I the
genernl utility rout ines closcrihed ini chapter 4.

UTILITY ROUTINE CALLEID 13Y

ABORT ALOC
BOUNDARY
MnL)APE

PI ITI INR
P ND IT
FOO'ITST

MG"ITDATA

4. (GET GROUPI

TGE.'r
TNDMOL)
IN3RRD)K

INIAiRIPl

NIISASGN

NO I) IRC
P R IPA hOC
PRNTNDWV
PROCS IMW
QUID.BASIB

RjAUD IN

SIA'DATA
SET'RHAD
SINIMUA'1E
SO RTOPT

ANOT] I FR CIOSP 1I,

4o2

UTITLITY ROUTI'NE: CALLHID BY

ATN211 I NTERPGC

(1IIAN(;I. DBMNOD
[NDIXER

Mi)LLONG (:ORIlWARNI
GETIVATA

FIF LONG; FINDZONI'
LAtJNCI I
MY ZONE-
'ZARDE PS

DISTF ADJUS'T
CORRP ARM
Du T
flIS'IINlI:
FLYPOINT
(ThNIAID
CIP'I'DAT1A
TN [TiOP'r
I NPO'PGT

LNCI IDATLA
NITSASONh
NI3WCOOR
NOCORR
!P1ANTANK
ROIUlI NG,
S NA POUT
TIARDtiSS

WEAPPR: 1)
FNDDAfTA F NrY.

I NPI'F I

MAR K E I

F RAZE RFAI)SLNI

_______ ____F_ R_
__

A_
_ _ _ _ _ __ _ _ _ _ _

Z__F________

UTILITY ROUTINE CALLED BY

Gt:TCLOCK TI 1MENIE

CBTDATE F I LEAIN?.
I NI'rAPF
I NI 1)1IEMI
Q1ITIIKASI:

R RELOA 1)
OUTlF I LE

GEiTIAMIT STORAGE

GEiTVALU PREPALOC
RDALCRD
RDCARDF
RD ,PRC.MP

IGETr LIDAIAGf-i
BDAMX
B LAUN
CLAIN
COLOCATEi
F LTIROUTF
IPCLI
LATTR IT
MLAUN
NAVCA I

PRECVRAYI

STRKQI.JI

TI~DESTI'

l'iY LAtJN'

IVRRPST RK

I N I'l:) UP BASHuUM
I N)IMI I)
PkI4TIBAS BTARI

TA1I1,1

404

UTILITVY RO)1INiINN CALINI) BY

INITITNI BAIMI)

I N~DMOfl

TAL3CI;N

L INTHIRP ADJULST

NOCOUR

11IN'iPP(INVEiR1

IPUT ALOCCIJT

C LAIJN
COLOCATF.
I NPNNR
NI! AU N
NIORLD1ATIA
NAVATR
N AVCALI
P LAN'AN K

TI'UY TI'

11113' BASL:SIJM

COL I ND

HVAL2

I NTRNI1
L()CRK1'l

Mi K~ FA IT

NNWP I R

ROM UI NiD

UTILITY ROUTINE. CALLED BY

ITLE (cant.) SETUP
TABLE
TGTMODIF
TGTP REP

IWANT 4ETVALU

KEYMAKE ALOCOUT
8DAMX
INDEXER
NMORE DATA
PRERAID
SI MU LATE

LOCF BLAUN
LOCREAD
RDARRAY
TERMBMD
WRARRAY

NEWUNIT OUTERTP

NEXTFILE' FILEDUMP

NEXTITEM TABGEN

NLIMGET BUFF IT
CARDCK
DBMQD'
DECLARES
DEFALOC
FILEDUMP
FIX WEAP
FLAGRST
GFTDATA
GETVALU
INDMOD
TNPRTCL
LNCI IIATA
LOCREST
MI RVREST
MIILCON
NFWhASF
NEWDATA
NI3WDIR
RDALCRD

460(

UTILITY ROUTINE CALLED BY

NUMGET (cant.) RDCARDF
RDPIICMP
RNGCENMOD
SETF I IT
SET I
SETUP
TAn .IN PT
VA LUMOD

ORDER ALOCOII'
BOOST EN
CALCOMP
CO LOCATE
DEGOYADD
EVAL
EVAL 2
F INDZONE
FOOTPRNTr
GISNRAID
IN i TOPT
NEWCOOR
OPTI300ST
PAC K
PLANTANK
PROCCONIP
ROUTINE
SORTII S
STR KOUTr

OUT ITEM DBNIOI
E-N TA P I
INDEX ER
INi)MOI)

OUTIVORDS I N P ITEM

PAGI;iSK!) BASESUINM DDIOD
NWI)i\TA
WiVATAS

7'A(IS I

UTILITY ROUTINE C:ALLED BY

PAGESKPI (cont.) PPNLD I RC
I'RNTPACT
PRTCOUNT 2

S IMULATEj
STATS UNI

PIZ I TENM flBNI)
I Nr)ISER
I NDMO D
PR I NTI T
I1RVI BASE

PRNTBASE MAKE RAS
PRONLY

PRNTDTA MAKEBIAS
P RON bY

PRNRNTIRC

PRNTPGF PRNTDTA

RANORDEiR MLAUN

READDIR DECLARES
INDIE-XE-R
INITEDIT

REORDER ALOCOIJT
CALComP
COLOCATE
DFCOYADI)
1:VA 1.

FINDZONIF
FOOTIPTNT
(;1:N RA 11)
NENCOOR
PAC K
PROCCOMIP
so RT I s
STR KOI I

UTILiTY ROUTINE CALLED BY

SKIP ALOC
FOOTPRNTj
GETI ATA
GF3TGROUP
SETDATA

SKIPPILIB ENDGAMI3
INDEXER
INDMOD
MOREiDATA
NEXIAPE
OUTERTP1
ZAI3ORT

SSKPC EVA\LPLAN
MIOVEi
VMARG

STORAGE ALOC
FOOTPR.NT
I NDMOI)
P R IPA LOC

TIMEDAY FILEI!NR
IN I IAPEi
RH LOADF

TIMEME ALOC
ALOCOIJT
U.N DTA P Li
F LTROUTI3
GISTIATA
MU ECON
OPTRAIDI
P LANIM o mis
PRINTIT
PRNTALI.
P RN'NOW
P ROCCUMP
RIEAI)SUM
RECON
S NAP IT
SNA P0111
STRKOUT
TGTASS N
rI Ir'IPRT

WPRDSTRK

UTILITY ROUTINE CALLED BY

WRITEDIR INITEDIT
MAKE BAS

.•7d)

DEFENSE COMMUNICATIONS AGENCY
NATIONAL MILITARY COMMAND SYSTEM

~SUPPORT CENTER

WASHINGTON, 0. C. 20301

IN REPLY
Rtp~cpTyO: B221 8 November 1972

TO: DISTRIBUTION

SUBJECT: fhan e 2"o Programming Specifications Manual CSM PSM
* ~9A-67, Volume I, Data Input' Subsystem, Part A

1. The purpose of this set of change~ pages is to do'cument changes

necessary to correct a deficiency in identifying the variable CCREL
as a Quick-Reacting General War Gaming System. (QUICK) attribute.
These change pages reflect the currently operational version of
QUICK at the National'Military Command System Support Center.' Ins~ert
the enclosed change pages and destroy the Ireplaced 'pages iccording
to applicable security regulations.

2. A list of Effectiv~e Pages to verify the accuracy of the Manual
is enclosed. This list should be inserted before the title page.
When this change has been posted, make ah entry in the Record of

Changes on the tnside cover.

FOR THE COMMANDER: .'

6 Enclosures J.DOUGLAS ZT
Change 2 pages Chief, Militar Personnel andi

Administrative~ S rvicesOffice

NATIONAL TECHNICAL
INFORMATION SERVICE

I

DISTRIBUTION

Addressee Copies

NMCSSC CodesB1213
B122 (stock)*6B200 .. I
B210 2

B220 29
B600 1

DCA Codes
920 1
950

System Engineering Facility, ATTN: T221
Reston, Virginia 220701

OJcs
Studies, Analysis andGaming Agency, ATTN: SFD,
Room 1D957, Pentagon, Washington, D.C. 20301 5

* Commander-in-Chief, North American Air Defense Command
ATTN: NPPG, Ent Air Force Base, Colorado 80912 2

Commander, U.S. Air Force Weapon Laboratory (AFSC)
ATTN: AWL, Kirtland Air Force Base, New Mexico 87117 . . . 2

Director, Strategic Target Planning
Offutt Air Force Base, Nebraska 68113 2

Chief of Naval Operations, ATTN: OP963G
Room 5E531, Pentagon, Washington, D.C. 20350 2

Defense Documentation Center, Cameron Station,
Alexandria, Virginia 22314 12

70

CH- 2

I -:'i Iillqll II1111 i111 1 iii1 i

EFFLCTIVE PAGES - 20 Septenmber 1972

Thin list is used to verify the accuracy of PSM 9A-67, Volume I after
change 2 pages have been inserted. Original pages are indicated by
the letter 0, change I by the numeral 1, and change 2 by the numeral 2.

Page No. Change No.

Title Page, Part A 0
li-xiii, Part A 0
1-101 0
102-103 1
104-252 0
253 1
254-268 0
269-270 1
271-272 0
273 1
274-278 0
279 1
280 0
281-283 1
284 0
285-286 1
287 0
288-289 1
290 0
291 1
292 0
292.1 1
293 -301 0
302 1
303 0
304 1
305 -335 0
336-337 1
338-447 0
448 2
449-470 0
471 2
472-472A 0

Title Page, Part B 0
ii-vii, Part B 0
473-840 0

Title Page, Part C 0
ii-vi, Part C 0
841-1219 0

CH-2

1

APPENDIX B
QUICK ATTRIBUTE NAMES AND DESCRIPTIONS

ATTRIBUTE
NAIE DESCRIPTION

ABRATE Probability of aircraft in-flight abort per hour
of flying time "

ADBLI ALERTDBL probability for initiative attack

ADBLR ALERTDBL probability for a retaliatory attack

ADEFCNP Area ballistic missile defense (BMD) component
index (radar or missile launch site)

ADEFZON Area ballistic missile defense (BMD) zone nunber

AGX Offset X-coordinate of AGZ (fiftieths of nautical
miles)

AGY Offset i-coordinate of AGZ (fiftieths of nautical

miles)

AHOB Actual height of burst of weapon (air or ground)

ALERTDBL Probability of destruction before launch (DBL)
of alert delivery vehicle (missile or bomber)

ALERTDLY Delay of alert vehicle before commencing launch
(hours)

AREA Area of a bomber defense ZONE (millions of
nautical miles 2)

ASWTYPE Air-to-surface missile type

ATTRCORR Attrition parameter for a bomber corridor (probab-
ility of attrition per nautical mile)

ATTRLEG Attri'cion parameter for each route leg in bomber
sortie (probability of attrition per nautical mile)

ATTRSUPF Amount of original attrition that remains after
defense suppression

447

ATTRIUTrE
NAMIE DESCRIPTION

AZONl First area defense zone covered by a BHD long-range
radar

AZON2 Second area defense zone covered by a BMD lqng-
range radar

AZON3 Third area defense zone covered by' a BMD long-range
radar

BCODE Code indicating the outcome of a simulated bomber
event

BENO Bombing encyclopedia number

BLEGNO Index to boundary line segment

CATCODE Category Code Ls reflected in Joint Resource
Assessment Data Base (JAD)

I

CEP Circular error probable (CEP), delivery error
applicable to bomber and missile weapons (nautical
miles)

CLASS Class name assigned identify sets of TYPES in data
base

CLASST Target CLASS

CNTRYLOC Country code for country where item is located

CNTRYOWN Country code for country which owns the item

CNTYLOCT Target country code for country where the target
is located

CNTYOWNT Target country code for country which owns the
target

CODE Outcome code for a general event used in simulation

CPACTY Capacity of a bomber recovery base (number of
vehicles)

448 CH- 2

DISTRIBUTION

Addressee

N•CSSC Codes
B121 3 Ai
B122 (stock) 6
B200 I
B210 2
B220 29

B600 1

DCA Codes
S920 . .

950

System Engineering Facility, ATTN: T221
Reston, Virginia 22070 1

Studies, Analysis and Gaming Agency, ATTN: SFD,
Room 1D957, Pentagon, Washington, D.C. 20301 5

Commander-in-Chief, North American Air Defense Command
ATTN: NPPG, Ent Air Force Base, Colorado 80912 2

Commander, U.S. Air Force Weapon Laboratory (APSC)
ATTN: AWL, Kirtland Air Force Base, New Mexico 87117 . . . 2

Director, Strategic Target Planning
Offutt Air Force Base, Nebraska 68113 2

Chief of Naval Operations, ATTN: OP963G
Room 5E531, Pentagon, Washington, D.C. 20350

Defense Documentation Center, Cameron Station,
Alexandria, Virginia 22314 12

70

471 CH-2

rI

security C)llsaficuieon I IS

DOCUMENT CONTROL DATA. R 0
f$ecurity cIlaesificatin 0(MMfl, b.eff of 41ttefl d I lN.1610n5l M ofslDpl. must Mhfe• 6111 ,IAd wh wo"tJ a v gt rese to elo•a. • ..

1. GRIGINATINd ACPIyV1 IC*FB*diVt 0Wl) " aWONY mECUtIvy cLASBIVISAYIOS6

National Military Command System Support Center (_ _ _ _ _ __)

Defense Communications Agency (DCA)
The Penthagor
Washington, DC 20301
The QMCSSC Quick-Reacting General War Gaming System (QUICK) ,

Programming Specificstions Manual, Volume I, Data ,Input Subsystem

4. OPDfIWUTH I Vi Nrst" ("am, ai fria rid reIatl i. "0) ii)

NMCSSC: Yvonne Mapily Lambda Corp: Betty J. Ellix
Donald F. Webb Jack A. Sonseen

6 .,- POy OATS Is. YOT AL. NO. OV past*I IN NO, Of 10411P$
29 February 1972 466 4.

C, 'ONTRACT ON GNAN1 NO. 0,S, N,.INAVON*I NEPONT NUMIBN(S

DCA 1OO-70-C-0065 45C

6. PROJSCT NO. NMCS8C Project 631 COIIUTHR SYSTEM MANUAL CSU PSI1 SA-67

d. None

This document is approved for public release; its distribution is unlimited.

* 'IISIIWLErMEN;ANY NOTKI Is. SPONSOUNGI MILITARY ACiTIVIY

National Military Command System Support
Center/Defense Communications Agency

The Pentagon, Washington, DC 20301

W3. ABSTRACT

This is one of three volumes describing the computer programming specifications for

the Quick-Reacting General War Gaming System (QUICK). 7"his volume addresses computer

programs of the QUICK Data Input Subsystem. It is intended to serve as the basis for

program maintenance activities. Accordingly, it describes the program functions and

contains flow charts for each program and subprogram of the Data Input Subsystem.

Based upon suitable data base and uter control parameters, QUICK will generate
individual bomber and missile plans suitable for war gaming, and simulate the planned

events. The generated plans are of a form suitable for independent review and

revision. Subsequently, the planned events are simulated; various statistical sum-
maries are produced to reflect the results of the war game. A variety of force
postures and strategies can be accommodated.

QUICK is documented extensively in a set of Computer System Manuals (series 9-67)
published by the National Military Command System Support Center (NWSSC), Defense

Communications Agency (DCA), The Pentagon, Washington, DC 20301.
rS

i• i I ..472

I
DEFENSE COMMUNICATIONS AGENCY

NATIONAL MILITARY COMMAND SYSTEM

SUPPORT CENTER

WASHINGTON, D. C. 20301

N RLY 1Septmbr 1972
EFER TO B221

TO: DISTRIBUTION

>. SUBJRXCT: Change 1 to CoMputer System manual CSu PSM 9A-67, Volume 1,
Part A, The XMSSC Quick..Reactlng General War Gaming System

(¶) (• (QUICK), Data Input Subsystem, Programing Specifications
"Manual, 29 February 1972.

1. Insert the enclosed change pages and destroy the 'eplaced pages
,* according to applicable security regulations.

/ 2. A list of Effective Pages to verify tke accuracy of this manual is
enclosed. This list should be inserted before the title pare.

3. When this change has been posted, make an lntry In the Record of
Changes on the inside cover.

FOR =3 COANDER:

21 Enclosures
Change 1 pages C f, Vi itar Personn el

Admin ~ ieSorices
S~Office

DISTRIBUTION

NSCCodes 7~~r

B121 3
B122 (stock) 6 DEC ,'I VMOO~~~ ~ I ,Ll.!tIV J~
8200 1 Rewrod,lyd byLE0210 2 NATIONAL TECHNICAL
3220 19 INFORMATION SERVICE I

DCA Codes r :~ A

920 1 Approvod bc" pubLic rI'LeC I

950 1 Dietributlon UnllmL"d

BM~CTIVE PAGES 17 Jualy 72

This list in used to verify the accuracy of CSM 9811 9A-67, Volume 1,
Part A, after change 1 pages have been inserted. Original pages are
indicated by the letter 0, change 1 by the numoral 1.

Page No. Chance no.

Title Page 0
ii-xiii 0
1-101 0
102-103 1
104-252 0
253 1
25,4-268 0
269-270 1
271-272 0
273 1
274-278 0
279 1
280 0

.281-283 1
284 0
285-286 1
287 0
288-289 1
290 0
291 1
292 0
292.1 1

J293-301 0
302 1
303 0

304 1
305-335 0
336-337 1
338--470 0
473k 1

MMOSSC Letter, B221, Change I to Computer System Manual CSM PSM 9A-87,
Volume I, Part A, The NMCSSC Quick-Reacting General War Gaming System
(QUICK) , Data Input Subsystem, !' qgranimi.np, ýpcif ical iow; Mnualu:
29 Feb 72.

OJCS
Studies, Analysls awd Gaminig Agency, ATTN: SFD,

Room ID957. Pentagon, Washington, D.C. 20301 5

Comander in Chlof, North American Air Defense Comand,
ATTN: NPPO, Ent Air Force Base, Colorado 80912 2

Commander, U.S. Air Force Weapon Laboratory (AFSC),
ATTN: AWL, Kirtland Air Force Base, New Mexico 87117 2

Director, Stratogic Target Planwing,
Offutt Air Force Ba•e, Nebraska 68113 2

Chief of Naval Operations, ATTN: OP9630,
Room 51531, Pentagon, Washington, D.C. 20350 2

Defense Documentation Center, Cameron Station,
Alexandria, Virginia 223M4 12

5y

,,-- • , • • Iw '•' ' F " m

LIU for I iih witchC the In dicv,;e

f Switch the I ices Cal F~t IN-AP
of tile IIIu[an to Comtplete Reading,

Output Ru 'ft-I- L.Of Currunt Tale

Fpi g. 19.e Recr onntoDis

Onto(See 2ikNme of 2)es

10101

SUBROIrrNE MINIAITPE

PURPOSE: To completc the reading of the curreynt spi. ll
tape.

ENTP.OI' NTS: INDTAPIE

FORMIA, PARAMqETER';: None

CO.?ION BLOCKS: DICI'ARY, ERRNHMI, IOCAIOR, MACI iPL , SIJPRV;

-SuBROIrI'INES CALIE ,l: INEIM-'P'1, \N(JTJ ER•, NEJIWJN[T

CALI,_) BY RY:

Method

Subrouti~ne ENDTAP" checks the status of the last tape read operation
for the currert tape. If the operation terminated with an end-of-file
or parity error, j.t :alls INERRTP to atteuipt tc yeread the record.

Whon the tape has been successfully rend, ENDTAPE' calls ANOTHER or
NEWUNIT to release it and then checks to see if the tape unit will be
reeded for another spill tape. If so, ENDITAPE. instructs the computer
opnrDt or to mount the next spill tape on the tape unit.

Thl subroutine returns n fter printing out crier counts which l"i"catc
the numbcr of tape read errors encountered on the last tape and oni all
the tapes read so far.

S8.;u1rout iine ,ENIJIAPE Ls f ustJ rated in " .

Gi-

102

k4

II
Cal 1 1 NERRIP H iO: * ht Ithe Status

to Rccovcr From 1'.rror oH theH I Last rape
jJ arity Erro 11vad Opo-ratlon?

_________________ cprat j 1

';(t LIMIT
Lq al. tO the Length

of the C urrent Spill Tapej

IT Call ANOTHER
to Release the

ti Current Tape

350

10urrent TapCountsat! theNee
LogiclýUni Assinmentou Thiput tile

Yee 'aesro

103

II

SJBIROUTINE GETLOC0

PuRP)OSE: To icad the major directrory tc the spill tapes
(common /LOCArOr/v from the first spill tape.

ENTRY PO1IN1'Sc: GETLOC

FORMAL PARAMETERS : None

CXiMMON BLOCKS: DRCS 162, ERRME, S, LOCATOR, MACHIINE, SUPRVIS,
TAPl\ARI)

SUIBROUTI NES CAILI): NOD I Rf , A BORIT.

CAILEI) BY: RELOADF

Method

Subroutine GETLOC first attempts to buffer in the major directory --

common /LOCATOR/ -- from the first spill tape. If an end-of-file or
"parity error is encountered during the buffer operation, the tape is
rewound and the buffer attempt is repeated. If this buffer process
is repeated KHMI'tESR, conmmon /SIJPRVIS/, times without success, GETLOC
determiies how many words have been read successfully from the tape
and plez-es them (the words) into the master directory (common /DRCS162/)
so that it can then use NODIRC to print out error information and
abort the run.

If, on the other hand, the buffer operation is successful, GETLOC
checks the value of MAXPILE (which is the maximum ntumher of disk files
contained on the spill tapes) against the value oF MAXIILE set earlier
in fMLOADF If they are not equal, then either REI,OADF has not been
updated to correspond to program OUTFILE, or the valuu i-ead from the
tape is in error for so1c oheder reason. In either case, the discrepancy
is encoded into vn error message and ABORT is called to abort the run.
The computer operator is also informed of the discrepancy.

thc:ý normal case where the major directory is read siicces--sfol ly andWAXI'ILE does not have an unexpccted value, GEFLOc writes the ooajor
directory on the standard output file and processing control is returned
to RELOADF.

Subroutine GET.OC is illustroted in figure 21.

104

Table 6 . (cont.)
"(Sheet S of 5)

VARIABLE
BLOCK OR ARRAY DESCRIPTION

OPTIONS (cont.)

ISETSIZ Largest allowable line number in a set m.ade

by default option of SETID

SETIDD ID Array where set number to be printed is

stored

INDEX 9999 if all sets are to be printed; 0 if

none are to be printed; count of number of

sets to be printed if list read in

JNDEX 0 if no sets to be printed; equal to INDEX

if list read in; equal to number of sets

updated if IAtTO=1

IAUTO 1 if updated sets are to be printed; 0 if

not

ISIDECC IXSD Position of SIDE attribute in ATTNAME array

XYZ XMIN Value of attribute MINKILL for current item

XMAX Value of attribute MAXKILL for current item

253

SrRINoi ri, .o
START[15 elOrd 4

BACKUIAF

Rcad1 Ca rd1

Is First
Word First lord 'o I

urp [' 0N? [;N [)'! lord

y , so-
Ye s

3 Yes Is Word 2 C.1 I I
30 S H T ID? ABORT NR N P RNo

No Is 1
2 2 Word 32e

UP DATE ?

N WodYes
I

Wod6

Blank?4

Yes
Ar irst 4

Sot th ettrs Of No

oW rd=Darc orSTPL

401 A

Set*I

L NO ri I

L~J

SUBROUTINE PASTSET

PURPOSE: FASTSET is the main control and monitorilig

routine for an update run.

ENTRY POINTS: FASTSET

FORMAL PARAMETERS: None

COMMON BLOCKS: ER~ROR, ITP, MYIDENT, ?MYTAPES, NOERRORS, NOPRINT,
OPTIONS, ICKTST, SETIDD, TWORD

SUIBROUTINES CALLED: CARDCK, COPYDB, FILEIINR, INITFAST, INPRTCL,
F4AXEIT, NEWDATA, PAGESKP. PRTCONT

CALLED BY: QIJIKBASE

Method

Subroutine FASTSET calls INITFAST to initialize all arrays. It assignsA
file names and initializes the filehandler and all pertinent-tapes to
read and write. If manual pritt control was requested on the option card,
subroutine INPRTCL is called, Subroutine CARDCK is called to read in and
check all the update data. If that subroutine has found errors in the
input deck, FASTSET prints the error messages and aborts the-run. If the
update data have no discernible errors, subroutine MAKEIT is called to
perfo-m the major functions of the program. Control is returned to
FASTSET which again looks for and prints, if present, any error messages.
The subroutine to print the target-region summary (PRTCONT) is calledJ
and, if requested, a second copy of the updated'data base is created by
subroutine COPYDB. Subroutine FASTSET is illustrated in figure 83.

269

INITPAS

UI c. I~A

I NCAPR 3? IC, 1

R.Y I IliT8I)T~~.

ITP.JTIITP (I 99DC

NIIDTADB.

Caall

MYIDB T
8S1DATADBU

ITP 10 Irors in eo f

Fig.~ t 83 Sbou±TeFATS
Upd~te es r

27

SUBROUTINE INITFAST

PURPOSE: To set constants and clear arrays for subroutinos

associated with QUIKBASE.

ENTRY POINTS: INITFAST

FORMAL PARAMETERS: None

I COMMON BLOCKS: DIRECTRY, ERRORM, IENDSET, IWSIDE, KKSET,
MPRTOPT, MYGOODS, MYPRINT, WYTAPES, NEWSET,
NODESIGS, PRTOPT

SUBROUTINES CALLED: None

CALLED BY: FASTSET

Method

INITFAST does no computation. Either through data statements or
executable statements, it presets constants and arrays to their
approp:iate values. Subroutine INITFAST is illustrated in figure 85.

"273

I I I I I I I I I I I I i | .

START

Set Common
Variables by

DATA
Statements

Clear
Directory

Area

2

Clear
Array
LISTVALS

(RETURN

Fin. 85. Subroutine INITFASTj

'274

PURPOSE: To call the subroutines required to prepare a
game data base tape QUIKDB from an input data
library tape DATADB when updating of the DATADI3
file is not required.

ENTRY POINTS:)4AIEBAS

FORMAL PARAMETERS: None

COMMON BLOCKS: ERRORM, HIST, ITP, LOGFLAG, MYIDENT, MYTAPES,
OPTIONS, TWORD

SUBROUTINES CALLED: ENDDATA, FILEHNR, INITFAST, NEWBASE, NEIYDATA,
NEWDIR, PRNTBASE, PRNTDATA, WRITEDIR

-. I

CALLED BY: QtJIIBASE

Method

Subroutine MAKEBAS is a driver routine which controls the sequencing of
operations required to create the QUIKD8 tape when the QUIKDBG option
is exercised. As indicated in figure 60, 4AKEBAS calls the filehandler
(FILEHNR) to initialize the read, write, and scratch files. Then,
MAKEBAS calls, in order, the other subroutines required to write the
QUIKDB tape. In effect, MAKEBAS is essentially the same as a null
UPDATE run.

H- 1
279

START'

'NOM, Call AI.OCDIR

Call SF1IWRIT,

1cnd Pi1e 'i j,1 Call I]NI1APHr
9 and 10 DATAITn

Last on Call Nr-IVDATA Cal]uVI

LUNII
Call FNDDAT Ca GNIIASE Call WRITEDIR''

I P 113srT No Yes'~)i
Reque~sted? RcqLic~sted,.; CalIl PRNTDATA

PRXIBASE rn er

Erroors

RE~TURNREUR

F~ig. 88. Subroutinle MAKEBAS

230

t

- ~SUBROUTINE HAKEIT i

PURPOSE: A dr:ve: to call the subroutines necessary to
make a new data base.

ENTRY POINTS- MAKEIT

FORMAL PARANETERS: NTI - The tape where the QUIKDB tape will bn
written

COMMON BLOCKS: MYIDENT

S 'BROUTINES CALLED: ENDDATA, NEWBASE, NEWDIR, WRITEDIR

CALLED BY: FASTSET

Method

MAKEIT calls the data base generation subroutines, NEIVDIR, WRrTEDIR,
$EWBASE, and ENDDATA, which create the game base file,QUIKDB. Its
only computation function is to look up and store for later use the
index number of the attribute DESIG in the data base directory (array "I
ATrNAME•. Subroutine MAKEIT is illustrated in figure 89. 71

F.d

281

ST7R

NEIDK
to Augment
Directo

a
to Write Out

Cal E BASE
to Add Data

to Da aBs

to Terminate
Data Base

RETURN

Fig. 89. Subroutine MAKEIT

282
l-

K)

SUBROUTINE MO01EI1'

PURPOSE: To move update data to output buffer; add
thq desired data or update identification;
and to add current set and line number to
output record.

ENTRY POINTS: HOVEIT

FO1R.AL PARAMETERS: IHCiVTO - Switch to indicate whether input buffer
is to be moved

COMMONI BLOCKS: ERRORM, MYOUT, MYINPUT, MYGOODS

SUBROIJINES CALLED: FILEHNR

CALLED BY: NEWDATA

Method

Subroutine MOVEIT increases the current line number within the set by
one. It examines the input parameter IHOWTO to determine which of two
functions it is to perform. If the argument is equal to a one, MOVEIT
transfers a data record from common block /HYINPUT/ to block /MYOUT/.
It next sets the tenth word of the block to the update identification.
The set and line number are encoded as two four-digit numbers into the
ninth word. If the input argument was a two, only the last function
is performed by MOVEIT; i.e., the set and line number are encoded into
the data recdrd. Subroutine MOVEIT is illustrated in figure 90,

283

START

(NLINEI

20

JSET=ISET

Move Card From
Input Buffer to
Output Buffer;
Insert Date of

R~FWTURN

Fig. 90. Subroutine MOVE IT

284

SUBROUrTINE NEWBASE

PURPOSE: To prepare or augment the item portion of a data

base tape.

ENTRY POINTS: NEWBASE

FORMAL PARAMETERS: NT1 - the logical tape number where the base is
to be writter.

COMMON BLOCKS: DIRECTRY, ERRORM, ICONTROL, IENDSET, ITP,
JDES'FEST, KKSET, MYGOODS, MYOUT, NOTEST,
PRTOPT, SIDECC, TWORD, XYZ

SUBROUTINES CALLED: COUNTDS, ITLE, NEWDATA, NUMGET, WRARRJAY-,
-. WRWORD*

CALLED BY: MAKEIT

Method

Subroutine NEWBASE employs subroutine NEWDATA to read the item portion
of the data base, check for errors, and write each item on the specified
output tape, NTl.

Four commands are recognized: DEFINE, UNDEFINE, ITEM, and ENDINPUT. In
the case of DEFINE the succeeding fields on the card beginning in
columns 11, 21, 31, etc. contain attribute-value pairs which are to be
made into global definitions in which the first field of the pair is the
SBCD name of the attribute, left-justified, followed by the value in the
second field.. The sequence of attribute-value pairs occurring on a card
is terminated by a blank field.

The ITEM card is as described above except that the definition is local
and the entire sequence of cards is terminated only upon detection of
another command in the first field of a card.

The UNDEFINE card removes global definitions with the names of the
attributes to be undefined occurring in succeeding fields on the card,
terminated by a blank.

The '".eck of input cards is terminated by ENDINPLTF which also causes
T' NEWBASE to return to the calling program.

* See subroutine FILEIfNR.

25CH-•j 285

All cards read by the i'outine are chocked for consistency unless
checking has been turned off by an update PRNTCL option card (see
subroutine INPRTCL). Tlat is. ÷t- attribute specified is checked
to determine that it i- in f .fined in the data base directory
and that the value associatcu ,sf~ics any range or list check

, specifications for that attribute. Appropriate error messages are

emitted when such inconsistencies are detected. The flowchart
(figure 91) consists of four parts. Part I shows the processing
sequence used in NEWBASE. Parts II, III, and IV show the operations of
three local subroutines us.!d by N-IEWA•P tn prrform the data checks
and, if required, to write error messages. Part II shows the loct,
subroutines used to signal undefined attributes (see statement 110)
and to signal an error ini the assigned attribute value (see statement
120). P;art III shows the procedures used to convert and check the
attribute-value pair. Part IV shows the local subroutine check on the
MINKILL and MAXKILL valuts for the izeni.

CH- 1
286

()

V
blank on Input Yes 20 yes

Yt
Yea 41 to

"an,
an

Cardl In card,
43 NoNo

41

Assign 21 CAITITL-7-11
to NOICK Lack up

IlAttribute NANO

Cal I Lot al u t i A 41
to Cnve iv.d C A s r, t.Att rt -,cc N_ in Noribut: and .Iut

t 1 1,
See P rSubrio

yes

yes Any
a Error ?

44
NO

29 Wr to Call L a I S b-

Output Lind , f fled you tintot. Slun
Sisn '1 (;2) Undefined Attr buteGlobal A ISignal -1 on T (See Part 11

LU Statement 110)

Clutpu Output
Attrib tt Attribute
Index Indexx

%
Output % outputt

041".1
tAttribute Clef It

Value VOIU*

t
set Glob I

Defini"i lItl.. rl:, to 0a AttrThi DA I MCIIK*fit
to I

10

IP Adv- C
Card F to Ch:clkl ILV I Sub" ;ILL

i11t1.LL,:n1
11111 L

Attr bu
(Sao Part IV, Statement 1000)

v set Global
Definition Flab

to 0

4%
Ad

C.ý&nc

No Finishe Yes Yes Finished No
With Th a 20 With 7his 41

Ye Cla rd T

Fig. 91. (cont.)
Part 1: (cont.)
(Sheet 2 of 3)

CH-1
288

Call NEWCARDS
Read Now
Card)

Is the-;TtrbuteAtIllithe Yes
Field 56
slank?

16

54

C%

Bla k?

No Does Yes

in Curr t

ICON a 5?
No

ICON
a 5? yes

of Pal rs

'tput Nt"ber

Call Local Subroutine No

to Convert and Check 54

Attributc and Vrlue COutput Nm er
(See Part 111) of Pairs

In Current

12 Its*

Yes An
Erro s?

32

Output
All

uu
aa
SAII

0tot

s

No

No Attribute
Iali-
btt

rr

11

tttt-uA0
V V
p p

ppu
a
aia

5846

S

r*53 Value
Store Attribute Pairs
and Value in

Tmporary
Arrays

5 t" No
a 22

DESTG?
S4- Yes

,d Fi
Advance 5846

C4 ield
142 call

MM 6CWmS

No n s 0
With This

Card?

Yes

Fig. 91. (con'..
Part I: (cont.
(Shect 3 of 3)

289

t A~

Check Attribute
and Value

136

Attribute: VauNhekO
in Directo 1$of2)

291 cu-i

A

SLore ecLud LXFi a.

for MINKILL and ~4Xt1,LL
Valut- in NFOiUA(2) L

Set N(IGto I

YeS-A" s Attribuite Name ?4INKILL?

is Attribute Name MAXXILL? pcfe

1001
Decode Va.lue of M1INKILL
or NAXKI1LL from NX and
SoeiStore i~t in XTEMP

1002 1003

YMIMINKMAX anciid MXI.

Part I V: oal Sue broucing o

292.1

lob ISNo Se

101.0 5vt

Yes

New Recordj
IIPe%)ur

I PR ITANT
(JSLT) ? CAI. OUI '

Faite

ISTADBItII
8 4

(ShYeets o 7
301M-

E'MAP

SUBROUJTINE NhWDI R~

PURPOSE: To create. a new data base directory'.

E~NTRY POINTS: NLEWD[I

FORMAT PARAME1TERS: None
C~t~¶N BLCKS: IRJ'CTRY, ERRORM', ITP, JI)EST1EST, NIPRTOPT, M0OIIT,

SIDECC, TWORD, XYZ

SUBROUMNl ES CALLED: ITLE, NUNGET, NEWDATA (Entry NflVCARDS)

CALLED) BY: MAXEIT

Method

This subroutine employs subroutine NEIVDATA (entry NEWCARDS) to read a new
directory or modify an existing directory. The. card foi-mat is eight fields
of 10 columns each with all quantities left-justified. Two commands in the
first field are recognized: ADD and ENDIRECT. The 1MNIRECT card serves to
terminate the subroutine and causes a return to the calling program.

The ADD command is used to add a now attribute to the directory, or, in
conjunction with a prior delete command, -o change an already existing
attribute in the directory.

With the ADD cormmand there are, in addition to the first field, six
further fields of data on the input car-d:

1. The name of the attribute B3CD.

2. The input/output conversion format (FORTRAN) associated with
the values for that attri~oute.

3. Code number specifying the type of~ checking to be conducted for
a particular attribute (see below).

4. The def.oult value of the attribute, in the appropriate input!
output format for that attribute as specified by itcm 2. This
is the value that will be associated with th(o attribute. when
it is in an undefined state.

CH__ 1
302

*!

5. Checking specifications. This field may contain the word LIST,
which specifies list checking with the list of allowable
attribute values to follow on subsequent cards; the word NOC11VCK,
which specifies no checking of the attribute values; or the
lower -value of the allowable range of values for this attribute
in the case of range checking.

6. This field is unused in the event of list checking, or no
checking, and contains the upper value for the range of
allowable values of the attribute in the case of range checking.

If list checking is specified on the ADD card, this card is followed by
any number of cards containing the list of allowable values for that
attribute, eight per card, in the format specified fur the particular
attribute. The fields for these values are the first eight columns of
each 10-column field. The series of allowable values in these cards is
terminated by the first blank field. A blank field can be specified as
an allowable attribute value by including the value BLANK in the list.

Appropriate error messages are written on an error message tape to
point out i.iconsistent operations such as attempting to issue a command
other than ENDIRECT or ADD, or attempting to add attributes which already
exist in the directory. The error-checking codes permissible for the
third extra field are:

CODE TYPE OF DATA TO BE INPUT CHECKING SPECIFIED

I Floating point numeric Range (Min-Max)

2 Floating point numeric List

3 Fixed point numeric Range (Min-Max)

4 Fixed point numeric List

5 Alphameric Libt

6 Alphameric No checking

7 Special conversion for Range

latitude, longitude

"Subroutine NEWDIR is illustrated in figure 93.

303

-

START

(1i- Call
NE WCAR US

Deterine idiin

86 47

to ~ ~ ~ ~ ~ N theEX= Yealsaue h od pc o
of MI~iLL nd NXKILritet

Pig. ~ ~ ~ or 93 SbrutneNED

(She1 1 f3

3004

START

Determine Region
in which

Targot is Located2

of this Type No Begin a New

Targeths Kiept

:RE-TURýN

Fig. 100. Subroutine GOUNTOES

335

SUBROUTINE DBM3D

PURPlOSE: To control the information processing when pro-
gram DASEMOD is run post--QUIKBASE.

ENTRY POINTS: DBMOD

FORMAL PARAWETERS: None

CcPMWK)N BLOCKS: CUTIGIW, EDITAPE, EDITERN, IDESIGS, 1TP, LDESIGS,
LODESIGS, MYIDENT, MYSIDE, NODESICS, NOPRINT,
NRTYPES, PRINTS, PROCESS

SIJBROIUFINES CALLED: ADDVAL, COUNTDES, INITAPE*, INITEDIT, INPITEM,
KYZONE, NEXTITEM; NUMDEL, NUMGET, OUTIWEM,
PAGESKP, PRINTIT, PRNTVAL,: RDTYPES, STKRIN,
?ARDE FS

6 CALLED BY: BASEMOD

Method

Subroutine DBNOD effectr a sequential examination of each item in the
game data base (contained on the QU1KDB tape). Each item is read in,
filtered through a series of tests, and assigned approprite values for
certain of its attributes. 'The item is then either retained or deleted
from the game data base. The 12 tasks accomplished by this processing
are:

1. Targets which are inappropriate for the plan under consideration,
i.e., those targets assigned the attribute RESERVE=O, are
excluded from further consideration.

2. •he appropriate number of bombers or tank,;rs for each bomber or
tanker squadron (NGPERSQN) is selected, depending upon the par-
ticular plan being developed (Initiative, Surprise, or
Retaliatory).

* See subroutine F1IEIINR.

c33- 1
336

"3. The number of bombers or tankers in commission (NOINCOM) forSeach bomber or tanker squadron is calculated by specifying that

NOINCOM is equal to a user-specified fraction of NOALERT which
is a fraction of NOPERSQN.

4. The number of bombers or tankers which are on alert (NOALERT)
for each squadron is calculated by specifying that NOALERT is
equal to a user-specified fraction of NOINCOM.

5. The appropriate value of the attributes TYPE, VAL, and EFECTNES
is established for each fighter interceptor unit based on the
user-input parameter POSTURE. If POSTURE=l, these attributes
are assigned the values of the attributes TYPE1, VALI, and
EFECNES1, respectively. If POSTURE=2, the values of the
attributes TYPE 2, VAL2, and EFECNES2 are assigned.

6. The relativo value (VAL) of urban/industrial targets is calcu-
lated as a function of either general industrial worth (IGIW)
or population (POP).

7. If the TARDEF option is exercised, each target (opposing side)
is processed and the level of local bomber defense available at
the target is calculated.

8. If the ZONE option Is exercised, items in ICLASS 4 and S (defen-
sive command and control sites and interceptor bases, respec-
tively) are processed to deterwine the air defense zone in
which the item is located.

9. The value of the attribute IREG is determined based on the
target designator code DESIG assigned to the item.

10. Each Blue (SIDE=BLUE) installation is assigned a value for the
attribute FLAG. The assigned value (numeric code I through
8 established based on ICLASS) is subsequently used in program.
ALOC to impose user-restrictions on the allocation of weapons
(see Program ALOC, User-Input Parameters, FLAGREST Function --

Restricticn of Weapons Using FLAG Attribute in chapter 3 of
User': Marual Volume II).

11. Targets may be deleted from the game base on the basis of TASK
or MINIMIW (user-specified parameter which establishes the
minimum index of general industrial worth to be considered).

12. The appropriate value of the attribute DBL (probability of des-

truction before launch) is chosen.

Subroutine DBMOD is illustrated ini figure 101.

37-13357

S~START

tii

i Initialize

F Read Input. P~arancetrs: 71000
Posture, Plin, Taisk, 'CT-POP,. Input
TARDI-F, ZOAE, NIGIW, list of Paranc"cr

,,.t. rnliie teBr g Item •\ _

/.,MIssile. \Yes / hud tn\es 300 l ,

161
C I NoB o r Tane Oig--• Scale Factors

for 'UMOE "n L '
IS T�. in c or rint Pror Cal

t So sa0 1 U
SID IntntEr or CNamory

j '

•isFig. 10.1 Subroutine ICaMOl

:,= (Sheet 1 of 2)

338

l '••m r,

DISTRIBUTION

AddresCee

XMCSSC Codes

1121 o... 3
1122 (stock) 6
B200 18210 . 2 '

18220 19

DCA Codes
260 (original document only, no subsequent changes) 1

•i.•920 .

950 .8 ..-. .

Studies, Analysis and Osaing Agency, ATTN: SFD,
Room 1D957, Pentagon, Washington, D.C. 20301

Comander in Chief, North American Air Defense Coeamnd,
ATTN: lPPG, Bnt Air Force Base, Colorado 80912 2

Conmander, U.S, Air Force Waspou Laboratory (AFSC),
ATTN: AWL, Kirtland Air Force Base, Now Mexico 87117 . . 2

Director, Strategic Target Planning,
Offutt Air Force Base, Nebrsaka 68113 2

"Chief of Naval Operations, ATTN: OP9630,
Room 53531, Pentagon, Washington, D.C. 20350 2

Defense Documentation Center, Cameron Station,
Alexandria, Virginia 22314 12

, 60

• i:- -1

4C7-1•:' ~471 i

Se.tiria Clasaftiestion

DOCUMENT CONTROL DATA - R & D
(See'fity CIA.8110tia"t o f atDitle, b6d4' of abstract M.d Indamlng fi,,la~lsti must hle ent*14, Wh*P th l ora V ll Fepm 1. Iclasi f~ied)

O*0IFDPNA YIII4 ACVIVI IV (Ceepshitt a.Ollea) s PO T$1 MIYC SSr A IN

Nional Militi~ry Command S~ystem Support center (NECSSW
Ditfense Communicatt.onii Agouoy (DCA) 47-
The Pentagon
Wabntt D 20:301 ___________

^S APOAT 1LU.1

The NWCSSC Quick-Reacting General War Gaming System (QUJCX)
Programming Specifications Manual, Volume 1, Dlata Input Subsystem

aocscnirP1iva N01611(2'rVIR9 rep'sew and Inclusiv~e datom)

5, A U THDR3I(p15 nm.inV It a. lat '~mis.)

NI.ESSC: Vvonne Mapily Lambda Corp: Betty J. Ellis
Donald F. Webb Jack A. Sae'teen

4- 14t9PONY COATA ?a. TOTAL NO. O PAASa .No. 0 tirs

29 February 1972 4864
V8. -23NTPEAT ON G04A~r N0. S.OIIAOi !P~ U~NO

OA 100-70-C-0065 N CSS

6. 0o-4; T NO. NWCS6C Project 631 OOMPUTER SYSTEM MANUAL CSU PSU 9A-67

¶ Ia. . aTNUN PIRO-Cr NoWS (AM'ny~ tld ltr,.hr* A&(mailb ty g-

(b, DISTRIBUTION STATFAME4Y

This document is approved for public release; its distribution ist unlimited.

it- LSiWO-LKENCYARY NOTED 61.,1110S4114NG NILtYARY ACTIVITY

N ational Military Command System Support
Conter/Defense Communiciatlons Agenc1y

S $T ftP C TThe Pe~ntagon, Washington, XC 20301I

This is one of three volumes describing the computer programming vpocifications fo
the Quick-Reacting General War Gaming System (QUICK). This volume addresses computer
pregrams of the QUICK Data Input Subsystem, It is intended to serve as the banjis for
program maintentance activities, Accordingtly, it describes the program functi.wsn andc
contains fiow chartn for each program and subprogram of tho Dt~sta Inpiut Subsystem.

Baedupinsutale(Itaba,% nd user control parmeerZQIC2.27lgeneaZ
individual boni-ber and mtss'llo planis sultablo for war gaming, ar~d simul.fV! the %Jqnntev.

rovis3 ion. Subsequently, the planned events are SittuiLted; various statistival sum.-
manoer, are produced to reflect the results of the war game. A variety of force
postures and strategies can be accommodated.

QUICK is documented extensively in a set of Computer System Manuals (series q--67)
published by the National Military Command System Support Center (NMCSSC), Defense
Conimunications Agency WDA), The Pentagon, Washington, DC 20301P

046OLVIYC PON ARM.Y V411.

472 drI lsihgo

