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CALIBRATION OF NOL COPPER-BALL ACCELEROMETERS

The information in this report updates the calibration of copper-ball
accelerometers that use 0.1553 inch nominal diameter annealed copper
balls. More detailed information on the general description and use
of copper-bail accelerometers is reported in NOLTR 67-151 and

NOLTR 63-279. The results of static calibration tests on copper balls
are used as a standard of comparison for dynamic tests.

The opinions and conclusions expressed are those of the Environmental
Evaluation Department.

Calibration of NOL copper-ball accelerometers for this report was
conducted in support of the Torpedo MK 48 Mod 1, Task NOL-‘55/0RD-054,
and the Transponder Set AN/WQX-1, Task A370-5330/W4639.

The identification of commercial equipment implies neither criticlism
nor endorsement by the Naval Ordnance Laboratory.
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Captain, USN
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INTRODUCTION

1. Although many advances have been made in the continuous
recording of acceleration data, thexe are still certain recording
situations in which these data are difficult or impossible to obtain.
In these instances, a simple mechanical gage can generally be used to
obtain the peak acceleration response to shock input. The copper-
ball (CB) accelerometer is one of the most widely used gages for this
purpose. Copper-ball accelerometers are used in laboratory and field
tests to measure shock spectrum. A single CB accelerometer will give
an acceleration response at its natural frequency to the acceleration
input. Multiple CB accelerometers with different natural frequencies
will give the overall shock-spectrum response.

2, The copper-ball accelerometer was developed during World
War II. 1It, basically, consists of four principal parts. They are a
housing, an inertia weight, a copper ball, and an anvil or base.
Figure 1 shows five basic CB accelerometer designs currently in use
at NOL. The inertia weight responds to the acceleration input at the
base by deforming the copper ball between the inertia weight and the
anvil., Once the copper ball has been deformed, the spring~loaded
wedge on top of the inertia weight prevents the inertia weight from
"hammering" on the copper ball. A permanent record of the peak
acceleration response to the shock input is obtained in the form of
the deformation of the copper ball. The difference between the
original ball diameter and its final height gives the maximum deflec-
tion of the simulated mass-spring system. Accurate measurements can
be made by a micrometer or dial indicator.

3. Copper-ball accelerometers are a valuable tool in measuring

impulsive shocks. In some NOL facility tests the high g, short dura-

- tion pulse exceeds the capabilities of piezoelectric accelerometers
that are presently available. Such is the case for the impact phase
shock level of two-phase air gun tests. Attempts to measure the

. steel-on-steel shock of the impact phase of these tests with high
frequency piezoelectric accelerometers have been unsuccessful. For
this type shock, copper-ball accelerometers give reliable shock pulse
integration records in the form of velocity change.

4, Recently, certain discrepancies came to light between the
dynamic calibration data for copper balls of reference (a) and dynamic
test data from drop tests at NOL. These discrepancies appeared for
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copper balls of the same general issue (1956 Hartford lot) as were

used for the tests in reference (a). Because of this uncertainty, an ;
extensive effort was initiated to determine the correct dynamic cali- ‘
bration of the copper balls used in copper-ball accelerometers. The

purpose of this report is to document the results of this effort.

Since the supply of 1956 Hartford lot balls was almost depleted, the

major effort centered on calibrating a new supply of copper balls.

Checks on the dynamic characteristics of the old ball supply

(1956 Hartford lot) and the new ball supply (1965 Hartford lot) :
revealed only minor differences. Static calibration tests were

carried out on both the o0ld and’' the new ball supply at the National

Bureau of Standards. In comparing the new static calibrations, it -

was found that there was little difference between the static cali-

bration results from reference (a) for the 1956 ball lot, and the

recent calibration of 1965 lot balls. The results of these tests

indicated that the discrepancies in dynamic calibration tests could

not be attributed to differences in the copper balls.

5. It is recognized that a source of discrepancy in interpreting
calibration data could be attributed to the fact that no allowance
was made in reference (a) for the nonlinearity of the copper ball's
force-deformation characteristics. In this work, the copper ball's
spring rate is determined as a function of permanent set. All cor-
rections for dynamic and nonlinear effects are incorporated in nomo-
graphs that allow the peak g and natui.:l frequencies to be read
directly from the measured permanent set of the copper balls. For
clarity of presentation, only data for the new 1965 Hartford ball lot
will be presented in this report.

STATIC CALIBRATION OF COPPER BALLS

6. Most copper-ball accelerometers in use at NOL use the same
material specification and size of copper balls. Different acceler-
ometer natural frequencies are obtained by varying the mass of the
inertia weight. Since the same copper ball is used in different
accelerometers, a single calibration of the balls applies to all
accelerometers in service with this given ball, Static calibration
tests were conducted at the National Bureau of Standards on ¢ 1553
inch nominal diameter annealed copper balls (1965 production lot 300R
from Hartford Steel Ball Co.) during August 1971 at NOL's request.
Test balls were removed from four boxes of 10,000 units each and
identified as lots 1, 2, 3, and 4 respectively. The results of the
NBS static tests are recorded in reference (b). Figure 2 shows the
static calibration test fixture. A copper-ball accelerometer inertia
weight was used as the ram to compress the balls. The compression
load was provided by a Baldwin hydraulic testing machine. .

7. Eight tests were conducted for each load level with two tests
per lot per load level. Tests were carried out at even increments of
100 pounds from 100 pounds through 800 pounds. The increments were
increased to 200 pounds for testz from 1000 pounds through 2000 pounds.
The span of permanent set results for each compression force level is
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plotted in Figure 3. This span is bracketed by the minimum and maxi-
mum permanent set values for all eight tests with the four ball lots
at each load level. The curve was drawn through the median point of
the spans. Figure 3 is characteristic of the non-linear ‘races that
have been observed from static calibration tests of previous ball
lots.

DYNAMIC CALIBRATION OF COPPER BALLS IN COPPER-BALL ACCELEROMEYTERS

8. It was decided to determine the copper ball's dynamic charac-
teristics using the IMPAC 66 drop tester at NOL. Figure 4 shows
copper-ball accelerometers mounted on the carriage of this tester,
The IMPAC 66 drop tester produces highly repeatable, high g, short
duration shock pulses. Tests with 1/16-inch thick felt shock pads
result in pulse shapes that approximate a haversine with amplitudes
as high as 15,000g. The pulse durations range from 0.13 ms to
0.37 ms. The purpose of testing the copper-ball accelerometers with
short duration pulses was to check the velocity-meter effect of the
accelerometers. The importance of the accelerometers as velocity
meters was discussed in paragraph 3. Accelerometers were selected
with nominal natural frequencies that gave a product of the shock-
pulse duration and the natural frequency of the accelerometer of
less than 0.3. When this condition is met, then the velocity change
for the shock pulse can be approximated as

AV S = W $. (1)

See description of symbols for definitions.

Conversely, if the velocity change of the pulse is known, then the
effective dynamic spring constant of tie copper ball can be determined

from

g 6%. (2)

9, Tests were conductad to calibrate the drop tester for impact
velocity change. The drop tester carriage was instrumented with a
2225 Endeveco piezoelectric accelerometer. The output of the acceler-
ometer was connected to an Endevco charge amplifier, The output of
the charge amplifier was xrnn through an electronic integrator and
then iato the osciiloscope:. A parallel line {rom the charge amplifier
output was run directly to the osc¢illosuvons. Both signals were put
into the oscilloscope simultaneousiy so thar a duael trace was gener-
ated. Two calibration tests per drop height were conducted at drop
heights in 20-inch increments. +$wo shock pulses were recorded fo.
each drop height confirming the high level of repeatability of the
drop tester for the entire test range. Figure 5 gives typical oscil-
loscope traces for the drop tester calibration tests. The top trace
of each picture gives the velocity-change integraticn of the shock
pulse on the bottom trace. The velocity change was obtained by
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electronically integrating the shock pulse. As a check, the shock
pulses were integrated with a planimeter and good agreement found.

10. With the drop tester calibrated for velocity change, it was
decided to conduct a series of tests with copper-ball accelerometers
to determine the copper-ball permanent set for the calibrated drop
heights. Four copper-ball accelercmeters with 80.4~gram inertia
weights were tested to check variations among accelerometers. Copper
balls were selected from the same forr lots that were used in the
NBS static calibration tests. .[The results of the dynamic tests with
the 80.4-gram accelerometers. are recorded in Table 1. Each set of
readings is the result of a separate drop test. As can be seen, the
variation in permanent set between the four 80.4-gram accelerometers
for any given drop height is small. The variation between readings
for the different copper-ball lots is also small. In order to extend
the permanent set range for the dynamic tests, an accelerometer with
a ~¢5-gram inertia weight was tested at two of the higher drop heights.
The rvesults of these tests are recorded in Table 2.

DETERMINATION OF EFFECTIVE DYNAMIC SPRING CONSTANT (Kp)

11. Average permanent set values from Tables 1 and 2 were used
to compute effective dynamic spring 'constant'values from Equation (2).
These values are plotted as a function cf copper-ball permanent set
in Figure 6. Figure 6 shows that the dynamic spring '"constant'does
not remain constant for varying permanent set.

12, A review of Figure 3 shows that the static force versus
permanent set trace is nonlinear as well. For any given permanent set
value of Figure 3, the effective static spring constant can be inter-
preted in two ways. The effective static spring constant can be
taken as the static force divided by the permanent set. This effec-
tive static spring constant is denoted as Kp in the i.lustration of
Figure 7. Kp would be applicable to long duration input shock pulses
where the peak response acceleration of the inertia mass is approxi-
mately the same as shock input peak acceleration. Another interpre-
tation of the effective static spring constant would be to assume
that it averages the energy under the static force versus permanent
set curve. This effective spring constant is illustrated as Ky in
Figure 7. Ky would be applicable to very short duration input shock
pulses where the peak response acceleration of the inertia weight
occurs at a significant time after the input shock. The mathematical
interpretations of Ky and Kp are

i=0
K =
v (3)
2
61‘1
FP
K, = 2 (4)
Gn

o ——— s

d
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Table 3 records the computed values of Ky and Kp as functions of
permanent set from the data of Figure 3.

13. The values of Ky and Kp are plotted in Figure 6. It can be
seen in Figure 6 that the Ky and Kp curves, from static calibration,
bracket the dynamic calibration curve of Kp. This shows that the
copper ball's dynamic deformation characteristics are approximately
the same as its static deformation characteristics. It also shows
that the dynamic response of the copper-ball accelerometer is influ-
enced by both the static velocity meter and peak force effects. It
should be noted thet the dynamic calibration tests were conducted
with short duration pulses; whereas, the static calibration tests
were conducted with a long~duration pulse. Since the effective
spring constants for the dynamic and static tests are essentially the
same, it may be assumed that the effective dynamic spring constant

applies to all shock pulses.

APPLICATION OF DYNAMIC CALIBRATION RESULTS TO COPPER-BALL
ACCELEROMETER READINGS

14. The effective dynamic spring'constant'is too variable with
permanent set to be treated as a constant. Greater accuracy in the
interpretation of data can be achieved if Kp is allowed to vary with
8. This can be done by selecting the appropriate values of Kp for
each accelerometer reading from Figure 6. With this value of Kp
determined, the shock spectrum functions of peak acceleration and
natural frequency can be mathematically determined £from

a = W (5)
n - 27 W (6)

15, The mathematical conversion of Kp into working functions of
peak g and natural frequency have been carried out for the reader's
convenience. Data from Figure 6 are used in Equation (5) to determine
peak g nomographs of Figures 8 and 9. Figure 8 gives peak g for
copper-ball accelerometers with deformation on the top and bottom
surface of each ball. This is the most common type accelerometer in
use. In order to increase the effective spring constant for high g
readings, the Mod 8 copper-ball accelerometer was developed. This
accelerometer gives nine individual spectrum readings. The balls in
this accelerometer are supported so that deformation occurs on only
the top surface of each ball. Reference (a) gives details on the
characteristics and operation of this accelerometer. Fiqure 9 is a
peak g nomograph for the masses of the Mod 8 accelerometer. Acceler-
omater natural frequencies associated with the peak g response for
shock spectrum are presented in nomograph form in Figures 10 and 1ll.
Figure 10 is for accelerometers with deformation on two sides of the
ball. Figure 1l is for the Mod 8 accelerometer with deformation on

one side of the ball.
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j16. Velocity change for low frequency accglerometers has already
been given as Equation (1). By use of the values of Kp from Figure 6
in Equation (1), Figure 12 was evolved. Figure 12 gives velocity
change as a function of copper-bail permanent set. Dynamic testdata
from Tables .l and 2 are included in Figure 12 for comparison with the

‘computed curves.

CONCLUDING REMARKS
17. .Dynamic °.:sts show that copper-ball accelerometers .are

remarkably consiccent in results for different stock accelerometers

with copper balils picked at random for the same shock input. ThF
dynamic spring rate of copper balls tested ,at NOL was basically the
same ag the static spring rate of copper balls tested at NBS. Since
the copper balls Were unaffected by load rate, the effective dynamic
spring constant is applicableé to all shock pulses. A more accurate -
shock spectrumcan be determined by allowing for the nonlinearity|
of the\effectlve dynamlc spring rate. Easy-to-use shock-spectrum
parameter nomographs are presented that automatically allow for the

| variations of the effective dynamic spring constant with copper-

ball permanent set. By allowing for the copper-ball non-linear
characteristics, the accuracy of copper-ball shock spectrum is
enhanced. i \
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y
AV - velocity change

Kp - effective dynamic spring constant
1
Ky, Kp - effective static spring constants

!
g - acceleratior. caused by gravity

§ - permanent set

A - incremeﬁt of permanent set

W -~ weight of accelerometer inertia weight
. N * '

‘F - static force on coéper ball \

a ~ response acceleration of accelerometexr '

inertia weight

f

n - natural frequency of acceler?meter

W - natural frequency of accelerometer
F - average force

E % energy consumed by chShed copper bali

DESCRIPTION OF SYMBOLS

- -

in./sec
1b/in.
1b/in.

~386 in./sec?

in.
in.
1b
1b

g units
Hz
rad./sec
1b
in.-1b

g
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Tavle 1

PERMAWENT SET FROM DYNAMIC TESTS OF HARTFORD COPPER BALLS
FROM PRODUCTION LOT 300R OF 11/8/65
WITH ¥OUR 80.4-GM ACCELEROMETERS

Permanent Set -~ in.

ﬁ;ﬁﬁiir' nﬁi@ﬁt Lot 1 |Lot 2 | Lot 3 | Lot 4

No. (in.)

1 20 .0230 | .0225 | .0223 | .0213

2 .0220 | .0227 | .0220 | .0226

3 .0220 | .0225 | .0222 | .0220

4 .0210 | .0220 | .0217 { .0212 | Avg = .0221 in.
1 Lo .0365 | .0360 | .0360 | .0362

2 .0370 | .0360 | .0370 | .0350

3 .0390 | .0370 | .0370 | .0375 |

4 .0360 | .0360 | .0350 | .036C ! Avg = .0364 in.
1 60 L0475 | .0ol70 | 0470 | .0L6O

2 .0473 | .o470 | .0485 | .04T0

3 .0470 | .0b4T70 | .O4TO ! .0LET

) .0L60 | .0k60 | 0460 ‘.0460 Avg = .0468 in.
1 80 .0557 | .0556 | .0550 | .0560

2 0557 | .0556 | .0563 | .0560

3 L0547 | .0555 | .0560 | .0560

L L0540 | .0549 | .0554 | .0560 | Avg = .0555 in.
1 100 .0615 | .0622 | .0637 |.0623

2 0645 | .0639 | .0645 | .0640

3 .0630 | .0630 | .0630 | .0635

b .0630 | .0622 | .0622 |.0625 | Avg = .0631 in.
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Table 2

PERMANENT SET FROM DYNAMIC TESTS OF HARTFORD COPPER BALLS
FROM PRODUCTION LOT 300R OF 11/8/65
WITH ONE 225-GM ACCELEROMETER

Permanent Set -~ in.

Acceler~ | Drop
ometer |Height |Lot 1| Lot 2 | Lot 3 { Lot 4
No. (in.)
5 60 .0756 | .0757 | .0773 | .0T760
l .0758 | .0763 | .0750 | 0754
.0736 | .OT4T | .0755 | .0730 | Avg = .0T757 in.
80 .0832 | .0856 | .0847 | .0870
l .0843 | .0840 | L0845 | .0836
Y .08L44 | ,0848 | .0870 | .0B61 | Avg = .0849 in,
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Table 3

KV AND KA AS FUNCTIONS OF PERMANENT SET
FROM NBS STATIC CALIBRATION

s | F | F AE E Ky Ky
in, | 1b 1b |in.-1b| in.-1b | 1b/in. | 1b/in.
50
.005 | 100 .250 .250 | 20,000 | 20,000
.010 | 170 13 675 .925 | 18,500 { 17,000
.015 | 220 1% .975 1.900 { 16,890 | 14,670
.020 | 270 z:: 1.225 3.125 | 15,620 | 13,500
.025 | 324 1.485 | 4.610 | 14,760 | 12,970
.030 | 380 3% 1.760 6.370 | 14,170 | 12,670
.035 | 4ho izz 2.050 8.420 | 13,770 | 12,580
.0lo | 496 528 2.340 | 10.760 | 13,430 | 12,400
.0b5 | 560 2.640 | 13.400 | 13,230 | 12,450
.050 | 630C Zzz 2.975 | 16.375 | 13,100 | 12,610
.055 | T06 3.340 {19.715 | 13,020 | 12,830
.060 | 800 73 3.765 | 23.480 | 13,050 | 13,330
.065 | 900 °50 4,250 | 27.730 | 13,110 | 13,850
.070 | 1010 lzii h.775 | 32.505 | 13,270 | 14,420
.075 | 1130 12(')5 5.350 | 37.855 | 13,470 | 15,080
.080 | 1280 1365 6.020 | 43.875 | 13,720 | 16,000
.085 | 1450 1555 6.820 |¢£..695 | 14,040 | 17,070
.090 | 1660 7.770 | 58.465 | 14,430 | 18,450
.095 | 1920 1720 8.940 | 67.405 | 14,950 | 20,200

2E

T

g
AVss/\l-K-%-ﬁg K, =

o jtd
we




SI948UWCIDTI00Y TRUOTIUSAUOD T °*ITd

2uo urt gassew sassew sseu aup ssew auQ
ST9]19WoIaTasor aTqesburyoisjutg afqeabueyozajuyg
DUIN ®ATI sosn 29IYyy sesn

NOLTR 72=67

x 2T
LovZvys al
ggoegeve
‘oN BMa ajond
ﬂMODm € PO v > SlLG66C AT
8 POW . ; ayond
90vCHs a1 O
auond 0O POWN T MW
Z POH
Sobehs a1
qiaond
T PORW
T R L o da 2w o -
LA T St B o A e—— wo— oo o




e

NOLTR 72-67

Rt it e oo
.h».?f.Zuaﬂ.&&.ﬁ»&

Iy vy ¥ e s
e g ?ﬁp%&:guf,&nwe 02
ad o5 7L

R PP

el t~ovem

AN

TR G e

AR e Y 2
ey R A AN

-

FIG. 2 COPPER-BALL TEST SETUP FOR STATIC CALIBRATION
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25 fps/cm
AV =28 fps

5000 g/cm
0.05 ms/cm

25 fps/cm
AV = 28 fps

5000 g/cm
0.05 ms/cm

. FIG. 5 100-INCH DROP ON 1/16-INCH FELT SHOCK PAD FOR DYNAMIC CALIBRATION
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STATIC FORCE

Ka

PERMANENT SET

TN K S S b e £ T O O & A e

FIG. 7 SCHEMATIC OF Ky AND Kj FOR STATIC CALIBRATION CURVE,
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