
ARPA ORDER NO.; 189-1

R-876-ARPA

March 1972

A New Approach to Programming
Man-Machine Interfaces

R. H. Anderson and W. L. Sibley

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Ro•,•ducod by
NATIONAL TECHNICAL
INFORMATION SERVICE

Sprinfield, Va. 22151

D D C Rannd
SANTA MOWA. CA 904(h,

JU



i. ORIGINATING ACTIVITY 2o. REPORT SECURITY CLASSIFICATION

LUZUTSSIFIM~D __________

The Rand Carporoion 2b. GROUP

3. REPORT TITLE

A Nq APPPLAI Tn P A1RkTING 7N-MACHINE =NTFr'ACt2E

4. AUTHORLS) {Lotl riamo , first nomo, lAiliol)

Anderson, R. H., Wo L. Sibley

5. REPORT OATU 60. TOTAL N'O.OF PAGES 6b. NO. OF REFS.

March 1972 36

7. CONTRACT OR GRANT NO. 8. ORIGINATOR'S REPORT NO.

DAHC15 67 C 0141 R-876-IPPA

9a. AVAI',ABILITY/LIMITAIION NOTICES 9b. SPONSORING AGENCY

DDC--A Ad.vanced Research Projects Aqency

10. ABSTRACT, 1I. KEY WORDS

The application of recent developments in Computer Programming Languages
web languages and machine learning of Adaptive Communicator
heuristics to problems in programming a Artiftcial Intelligence
flexible interface mechanism between a Computers
user and an application program. Thip
report considers an adaptive communi"ator
interposed between an application program
and a set of input/cutput devices. The
communicator is couled with these I/0
devices by programs that transform raw
signals from them into low-level logical
objects. The communicator is envisioned
as a series- of context-analysis systems,
each having a separate context and set
of operating rules, and communicating with
each other by transmitting logical objects.
The report concludes that: (1) A labeled
directed graph, or web, is an appropriate
data-base organization for man-machine
interaction. (2) Web grammars, in the
form of pattern-replacement rules, can be
used to manipulate that data base, (3)
Pattern-replacement rules can be viewed
as heuristics suitable for machine learn-
ing.



ARPA O(RD[R NC).: 1B9q

R-876-ARPA

March 1972

A New Approach to Programming
Man-Machine Interfaces

R. H. Anderson and W. L. Sibley

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONA. AU I 00IT N

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Bibliographies of Selected Rand Publications

Rand mo tniviins a~ numbher ofspecial subject bibitog.~raphirs con taining ,hotravts of
Rand ~t4 h/na tins itt lields (i eid currt' tIn mei Tie olnut1, hihliograph ivs a re

a~ittlablh/ li/;on request..

Aerod 'Nnamnics , Arms Control * Civ il Defenise
(om un tnication Satellittes * (omtmunicatlion S vsteui.'

Commn i nist China * Computecr Simultaa ion *Cornpti ing Technology
Decision making * Gamne Theory Maintenance

Middle East * Polic * Sciences me Program Budgeting
SIMSCRIPT and Its Applications e Southeast Asia

Space Tm"hno/og~v and Planning . Statistics , Systems Anu.,ahsi
USSR/East Europe * Weapon 8 istems Acquisition

Weather Forecasting and Con irciv

To obtain cop)ies at the~se bibliographies, andc to receite infirmalion on hoa- to oh/a at

copies 0/initdit~iduacl public-altios, write to: Commurntications Depctritnew . Rand. 1700)
Main Street. Santa( Monica. ('alifi~rn ic 90406.

Pulflished bs The Rand Corporation



-iii-

PREFACE

If one can picture an engineer being given close and immediate

control over the computer solution of a design problem, it should not

seem too surprising that industry has realized up to eightfold increases

in productivity through close coupling of man and computer. The intimacy

of the engineer-computer interaction, however, requires a man-oriented

scheme for interfacing the engineer with complex data structures and

computer systems.

Han-machine interfaces for complex computer systems are tradition-

ally difficult to build and modify, and they are becoming more complicated

and expensive because, as their use increases, more is demanded of them.

To complete the programming of a single interface, with traditional

languages and techniques, for the highly interactive systems required

today by government and industry can cost a quarter of a million dollars

and take as long as a year.

And yet this interface, which is difficult to modify, ought to be

flexible oecause computer systems that interact with humans must be

flexible. The technical specialist will find in this report a new

approach toward achieving such flexibility through the use of pattern-

replacement rules capable of operating on complex data structures.

These rules completely govern interface behavior; they are so organized

as to be easily augmented, modified, or deleted, thus altering inter-

face behavior. These pattern-replacement rules are, in effect, a

succinct high-level computer programming language.

This work was done for ARPA's Office of Information Processing

Techniques and is an integral part of an overall program to apply current

computer technology to defense-related requirements. This report, however,

should appeal only to a limited audience of specialists interested in

higher-order computer programming techniques.
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This report discusses the application of recent developments in

web languages and machine learning of heuristics to problems in pro--

gramming man-machine interfaces. It suggests that these problems

arise from the requirements for interface flexibility, the complexity

of data interrelationships, and the use of multiple communication

channels.

The basic theses of the report are that:

o Labelled directed graphs, or webs, are an appropriate data-

base organization for man-machine interaction;

o Web grammars, in the form of pattern-replacement rules, can

be used to manipulate that data base;

o Pattern-replacement rules can be viewed as heuristics suit-

able for machine learning,

The first point draws upon experience gathered over the last ten

years by workers in the field of interactive systems. The relation-

ships of an object or action to other objects (actions) are as impor-

tant as the existence of the object (action). The relationships are

generally represented in various forms of directed graphs, e.g., lists

or ring structures.

A natural extension of normal programming languages (based on

strings of alphanumeric choracters) are languages involving labelled,

directed graphs. These languages are defined by grammars that con-

sist of graph patterns to be matched against the data base, and graph

replacements to be made if the match is successful. One can then con-

sider a collection of such pattern-replacement rules to be a schema

for dynamically controlling the data base.

These rules have two important properties:

"o Their form is homogeneous with that of the data base;

"o They may be individually manipulated.

If each rule is considered as a heuristic describing the behavior

of the interface, then that behavior may be modified by proper adjust-

ment of the rules. The adjustment may require the insertion of a new
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rule, the deletion of an old one, or the modification of several exist-

ing rules. In any case, such rules and adjustments are sufficiently

stylized to pennit machine learning of heuristics.
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I. INTRODUCTION

The man-machine interface for a complex interactive system is

traditionally difficult to build and to change once built. However,

computer systems Lhat interact with humans must be flexible and adap-

tive to meet the changing requirements of various users and problems.

We believe man-macwine interactive systems are inherently multi-

dimensional. By this we mean that the oasic problem is recognizing

patterns of events that occur over multiple input/output (I/0) chan-

nels in both space and time. "oreover, these events do not occur in

isolation, but must be interpreted wiLain a rich and varied context.

The work described in this report was motivated by the desire to

build a flexible interface mechanism between a user and an application

program. Figure 1 shows such an adaptive communicator interposed be-

tween an application program and a set of I/0 devices. We assume that

the communicator is coupled with the I/0 devices by device-dependent

programs that transform raw signals from these devices into such low-

level logical objects as "STROKE" and "POINT," and that perform the

inverse transformation for output devices. We envision such an adaptive

communicator as a series of context-analysis systems, each having a

separate context and set of operating rules, and communicating with

each other by transmitting logical objects from the context of one sys-

tem to the context of another. Each of these context-analysis systems

could deal with logical objects at a particular level of generalization

and, as a result of data-base transformations, could create logical

objects of greater or lesser generality and transmit them to the appro-

priate companion system for consideration within the system's context.

For example, one system could deal with strokes drawn on a tablet and,

in the appropriate context, could transform them into logical entities,

representing such components as a resistor or a capacitor. These com-

ponents, once discovered, would be transmitted to another system, whose

context consists of individual components. When patterns of components

(e.g., representing filters) are discovered by the operation of that

secc.,d system, Lhey are then treated as higher-level logical objects

and passed to a third system, whose context deals primarily with
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Fig. 1--An Adaptive Communicator as a Communication Interface
to an Application Program

assemblies at that level. In turn, this third system would search for

patterns constituting higher-level assemblies within its context. One

can imagine a circuit-analysis program being sent descriptions of high-

level assemblies drawn in this manner, rather than being required to

recognize structural elements that are of no direct interest. It is

important to realize that the communication between systems within such

an adaptive communicator need not be strictly in order of ascEnding

generality; logical objects discovered by "high-level" systems could be

transmitted back to "low-level" systems to affect the recognition these

low-level systems perform.
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It is generally acknowledged that for flexibility and for repre-

senting the complex interrelationships among data items, lists and

rings are useful data structures in interactive systems. However, the

programming that produces changes in the data is most often performed

using conventional languages. A more natural way of manipulating lists

or rings as data structures would be to search directly for patterns

or subgraphs within that data structure and to alter the data based upon

the patterns found. The Inaturalness of this approach, i.e., 'directly

modifying a directed-graph cdita structure by sets of pattern-replacement

rules, was recognized by Christen1sen in his work on A•BI1i-; [1-3].

Recent work on web grammars by Pfaltz and Rosenfeld [4] and by Montanari
[5'j has prov.ded a formalism for performing pattern watching and replace-.

ment within data structures that essentially are directed graphs.

As an example of using a set of pattern-replacement rules to de-

scribe the interpretation of user actions (on a tablet or with a light

pen) , consider tihe four rules described below. The rules allow the

user to create a set of links and nodes (without loops). (We assu-ne a

stylus action becomes mapped into a graph structure labeled "POINT,"

as discussed a'bove.)

"o If the user points atý,a location (x,y) where there is no node,
create a node theie.

"o If the user points at a node, mark it actiIve.

o If the user points at ip active node, removc the "active"
marker from that node.

" If the user points at a node, and .notLher ijode is marked
"active," create a link from the active node to the one
pointed at; also, remove the "active" marker from the node
so marked.

In the above cases, POINT i.s deleted from the graphl structure.

Figure 2 shows these four rules displayi d Ha the graph notation

used throughout this report. The order in whikh the rules are shown

is the inverse of the ord'cr listed above. Rules may be e.•:,-, in any

order, but the order in which they are ,'. is important, since they

are tested for applicability in that order. ([his qrganization of

pattern-replacement rules is a restricted form of "programmed grammar"

[6].)



-4-

Ru~ 2

it.•Jt .. .
NODE OL

To-n

con ri ta I E A" 5 °n obeot

f is an attribute name.

Rul 2 
A is a category name.

a is a variable name.
,• -- Must! exist and is retoi•ned.

,_..•.•r~i. . .. .. .. rust exist and is dcel tet..

act , t conLain$ is created.

" .. J- must ,lot exist.

poiWA C1 ig a category narme, defined

(See Rule 4)

Rule 3

L -

Rule 4

"POrNT ND

I c X i

Fig. 2--A Set of Four Pattern-Replacement Rules
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To illustrate the meaning of the notation, consider Rule 1, which

is interpreted as follows:

If there is a pattern consisting of two NODEs, one marked
"active" and the other containing a POINT, (a) keep the

structure drawn in solid lines; (b) delete the structure

drawn in dashed lines; and (c) create the structure drawn

in heavy lines.

The specifications for the pattern to be matched ai.. the replace-

ments to be made have been combined into one diagram (see key, Fig. 2).

However, in the discussion below, we speak of the "pattern part" and
"replacement part" of the rule as separate entities.

Several aspects of the notation should be considered. (The nota-

tion is detailed in Sec. II.) First, objects in the data base may

have more attributes than are shown in the rule (see POINT in Rules I

and 4); only the necessary ones need be mentioned. Second, the order

of the rules is important (e.g., interchanging Rules 1 and 4 alters

the interface). Third, information can be gathered for use in the

replacement procedure as the matching procedure progresses. (Greek

symbols are treated as variables that take on values from the context

pattern.)

Attributes can be used to represent relations between NODEs and

POINTs. (For example, see Fig. 2, "contains.") These relations and

attributes can be discovered and manipulated by the standard operation

of pattern-replacement rules.

Our approach has a parallel to Waterman's work [7] on generalized

machine learning. Waterman points out that a pattern-replacement rule

is analogous to a heuristic that is normally embedded within an arti-

ficial-intelligence program. The highly stylized form of a rule lends

itself to machine learning. Also, this extreme stylization of the

"programming language" permits a degree of Independence of neighboring

statements and allows a program flexibility not normally found in pro-

granmming languages. With this approach, individual program statements

can be added, modified, or deleted within the set, without affecting

the pattern-replacement function of their neighbors.
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This preliminary discussion raises questions about (1) the exact

nature of the pattern matching and replacement process, and (2) the

use of that process in the operation and modification of the man-

machine interface.

In Sec. II, we discuss the extensions of web notation that are

required in order for web-pattern-replacement rules to represent

heuristics that govern the behavior of a context analyzer.
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II. PATTERN-REPLACEMENT RULES AS A PROGRAMMING SYSTEM

A web is a directed graph, the noaes of which are labeled with

elements of a finite vocabulary. More exactly, let V be a finite set,

called the vocabulary; the elements of V are called symbols. A directed

web, W, over V, is a triple (N, F, A), where N is a set of vertices,

F is a labeling function from N into V, and A is a set of ordered

pairs of elements of N, called arcs. If V has only one element, webs

are clearly equivalent to graphs.

Below, we refer to the programming-system data base as a "context."

This context web should be considered separate and distinct from the

pattern-replacement-rule webs that operate upon this context.

In order to use web notation and concepts in a practical program-

ming system, we must make explicit the notion of a pattern match between

a pattern, F, and a context web, WN. In particular, we need to include,

in P, specifications of structures that must not occur, as well as struc-

tures that must occur in the context web being matched (see key, Fig. 2).

Also, we find it necessary to enlarge the concept of matching becween

the labels on vertices. To this end, we define a pattern match between P

and Wc as a relationship between the vertices in P and Wc. In order to

explicate this relationship, we introduce the concepts of a web map be-

tween two webs over the same vocabulary; a restriction of a web to a

subweb; and an extension of the web map to a superweb. These concepts

are defined in the Appendix. In order to formalize the notion of pro-

hibited structure within a pattern, we define a pattern as a pair of

webs (see the Appendix). Here, however, we informally refer to the

pattern part of a rule as a single web, which has some prohibiting

conditions attached.

Some specialized subwebs are used to represent logical entities,

called "objects." An object is a tree structure whose ro.t vertex is

labeled with an object name; branches of that root vertex, themselves

roots of subtrees, represent attributes associated with the object.

The roots of attribute subtrees are labeled with attribute names.

Branches, if any, of attribute roots are vertices, which represent
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values associated with these attributes. These value vertices are

el ther:

o Labeled with an atomic value-

o The root of an attribute subtree; or

o The root of a tree representing another object.

The vocabulary, V, from which vertex labels are taken, may therefore

be thought of as consistiing of the union of three sets: VNw a set of

object names; V a set of attribute names; and VV, a set of attribute

values. An example of a context consisting of three objectS (two

NODEs and a POINT) is shown in Fig. 3.

LNODE POINT ND

Y e

126 194 130 200 30

Fig. 3--A Context

In representing the pattern and replacement webs within rules, an

additional notational convention, or extension, is used. Note that in

Rule I, Fig. 2, the NODE shown has the same structure as the NODEs in

the con text in Fig. 3. However, the values associated with thL attri-

butes ). and y are labeled with Greek letters representing variable

names, rather than with atomic values. The pal.tern shoWn in Rule 1

matches a corresponding structure within the context if all labels map

onto correspending labels in the context; however, vertices labeled

with Greek letters (variables) may match any corresponding vertex in
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the context. As a side effect, variables become bound to the values

that label the corresponding vertices.

Note that variable names (e.g., in Rule 1, Fig. 2) also specify

replacements to be made within the context. Values bound to variables

during the pattern-matching process are used wherever these same vari-

able names occur within the replacement specification. Below, we ex-

tend the notion of variables to include optional conditions.

A web-replacement rule formally consists of:

1. A pattern web;

2. A replacement web;

3. Specifications for embedding the replacement web in the
context web;

4. A general condition that must be satisfied. (This is usually
stated as a combination of words and predicates.)

In our extensions of web notation, we attempt to give highly sty-

listic, explicit notations for conditions in order to use rewriting

rules as programming rules. For example:

1. Pattern matches (as formally defined in the Appendix) allow

the description of web structure that must not occur during

the match (see Fig. 4).

2. Within a pattern web, a vertex may be labeled by a pair, c:C;

if a is present, the corresponding label in the context, which

must be atomic, is bound to the variable a; if the categori

name C appears, the context label must satisfy C's test for

the pattern to succeed. For example, in Fig. 2, the category

definition

Clk =_ k<800,

as used in Rule 4 ("6:51"), means that both the variable B and

the dummy vaLiable k are bound to the corresponding value in

the context; then the category test "k<800" is performed. It

is possible that neither a nor C may appear, in which case

the context label is not assigned to any variable, and that

portion of the match is assumed to succeed (see Fig. 2). The

above extends the vocabulary V to include V%, the set of
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variable-category pairs. Of course, if the label is in V-V a

then the match must be exact. Note that this paragraph

defines the relation to be satisfied by the two labeling

functions in the definition of a web map (see the Appendix).

3. Moreover, each rule has a predicate to be satisfied by values

drawn from the context (the default value being true). (See

Fig. 4.)

Rule 0

•':"','zcontains

X Y contains

_ )2

pred: (a - + (g _ 8)2 < 100

Fig. 4--A Rule with Prohibited Structure
and a Predicate
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The use of category names is our parallel to what Waterman has

called a backward form, or "HF," production rule. We assume that our

categories are defined as they are in Waterman's BF rules.

The pattern part of the rule shown in Fig. 4 might be verbally

stated as "there must exist two objects, a NODE and a POINT, such

that the variables a, B, y, 6 bound by these objects satisfy the pre-

dicate and such that the NODE must not have an attribute labeled
'contains,' which in turn points to or has as its value the POINT

object." The replacement part of the rule (Fig. 4) states that if

all these conditions are met, a vertex labeled "contains" should be

created and interconnected, as indicated in the figure.

As mentioned above, we have combined the pattern and replacement

webs into a single diagram that specifies both the pattern conditions

to be met and the replacement to be made if that pattern is success-

ful. Combining both pattern and replacement into a single diagram

makes explicit the embedding instructions associated with that rule.

In our notation, the following embedding rule is assumed throughout:

"o All shown vertices that must exist and that are retained

have embeddings unchanged by application of the rule;

"o All shown vertices that must exist, but are deleted,

also have all emanating and terminating arcs deleted;

"o All created vertices have no arcs connected to them

within the context, except those explicitly shown in

the creation rule.

One further notational extension is uscd in our pattern-replace-

ment rule: if a rule specifies the creation of a vertex, then the

vertex in the replacement part of the rule may be labeled with an

expression containing variable names and atomic values (Rule 1, Fig. 2).

The value placed as a label on the vertex created by this rule is the

value of that expression at the time the replacement is made. This use

of expressions as labels in the replacement part of a web rule corre-

sponds to Waterman's use of expressions in the replacement part of his
" action rule."

We have emphasized that another distinction between our use of

the web notation and web grammars per se is the ordering we impose
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on a set of rules. This ordering implies a flow of control through

the set, depending on the success or failure of the various pattern

matunes. Section III examines our method of control flow, and the

analogy between pattern-replacement rules (discussed above) and

heuristics governing the operation of a program.



-13-

III. PATTERN-RI2LACEMENT RULES AS HEURISTICS

Waterman described a system for encoding heuristics as an ordered

set of pattern-replacement or production rules. He is concerned, as

we are, with learning heuristics by their dynamic manipulation. He

places the following requirements on the representation of heuristics:

1. Permits separation of the heuristics from the main body

of the program;

2. Provides identification of individual heuristics and an

indication of how they are interrelated;

3. Allows compatibility with gencralization schemes.

When Waterman applied his theory to a system for learning the

rules of poker, relatively short fixad-length parameter vectors were

sufficient to encode the program status at any point in the game.

Heuristics were represented by rules consisting of a pattern part

and a replacement part, each symbolically representing these fixed

vectors of parameter values. As mentioned in Sec. I, the complex

needs of an interactive programming system are usually best represented

by a graph structure. Therefore, we use directed graphs or webs as

the pattern and replacement parts of a production rule that represents

a heuristic. In Sec. II, we extended web notation to allow for

Waterman's variable assignment and expression evaluation. Waterman,

in his discussion of a poker-playing program, distinguishes among the

three types of production rules: forward form, backward form, and

action rule. His forward-form rule is a method of creating a synonym

for an expression; our notation contains no parallel to this rule.

His backward-form rule gives a symbolic representation to a particular

atomic value, which is then tested symbolically by the rules. We

incorporated a roughly equivalent notational device in our use of

category names as valid labels within a pattern. His action rules

correspond to what we call pattern-replacement rules.

In Waterman's description of a poker-learning program, the heuris-

tic action rules are used as follows. Each successive pattern is test-

ed against the context, from top to bottom, antil the first successful
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pattern match is found. At this point, the corresponding replacement

specified by that rule is made; this constitutes a "play" by the pro-

gram, and action stops until the other player "makes a play." Then,

another attempt is made to apply the rules to the revised context,

starting fro\i the top. We vary from this approach by testing the pat-

tern part of each successive rule, in order, until the first successful

pattern match is made. We then make the corresponding replacement.

Another attempt is made to apply the set of rules by testing each pat-

tern (in order, from the beginning of the set of rules) until another

successful pattern match is found. This process terminates only when

no rule in the set is applicable to the current context. At this time,

the program pauses until an external source changes the context.

An example of this flow of control through an ordered set of rules

may be seen by considering a set of rules consisting of the rule in

Fig. 4 followed by the rules in Fig. 2, applied to the context in Fig. 3.

On the first "pass" through the rules, Rule 0 applies to the context.

The corresponding context transformation made by an application of

Rule 0 is shown in Fig. 5. On the second pass, which attempts to apply

the set of rules to the revised context in Fig. 5, Rule 1 applies; its

application produces the context shown in Fig. 6. On the third pass

through the set of rules, no rule applies to the context shown in Fig. 6,

and the system becomes quiescent. The net effect of repeated applica-

tions of the rules is the creation of a LINK From a previously "active"

NODE to a NODE just pointed at.

A major contribution of Waterman's research is a discussion of pro-

gram adaptivity, obtainable by modifications to existing sets of heur-

istics. (Also see Evans for a discussion of adaptivity in rule-directed

programs [8,91.) Waterman has isolated three items of training infor-

mation that should be extracted from a user whenever a program driven

by these heuristics makcs an erroneous decision. These items are used

to construct a new heuristic, called a training rule, which is blended

into the existing set to correct that erroneous decision. Waterman

defines tho following items of training information:
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NOE NODE

126- 194
POINT 30 5

x y

130 200

Fig. 5--The Context of Fig. 3 After
the Application of Rule 0
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NODE NODE

X y y

126 194 300 50

CIN

center head to;Il

12 1941 300 5

Fig. 6--The Context of Fig. 5 After
the Application of Rule 1
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1. Acceptability information, i.e., a good or acceptable

decision for the situation. The acceptability informa-

tion forms the righthand side (or replacement part) of

the new training rule.

2. Relevancy information, i.e., the situation elements

ýthat are relevant to mziking this decision.

3. Justification information, i.e., the reason for the

decision, expressed as an evaluation of these relevant

situation elements. The relevancy and justification

information form the lefthand side (or pattern part) of

the training rule.

Waterman discusses the process of "blending" a new training rule,

in the form of a heuris~tic, into an existing set of rules. His algor-

ithm for performing this blending is stated in term" of the training

rule and a set of action rules based on a symbolic subvector that

represents the context. Below, we paraphrase his algorithm in terms

of our representation in an expanded web notation. In addition, we

assume that whenever a heuristic applies during training, the system

tentatively makes the corresponding replacement, and obtains feedback

from the trainer as to the correctness of that decision step. This

procedure simplifies the problem of assigning blame within the set of

heuristics when an incorrect decision is made. The following steps

define our algorithm:

i. Determine the first heuristic or production rule that

applies to.the current context, if in fact any rule

applies. Perform the indicated replacement, if any.

Determine from the system trainer whether or not that

action was appropriate; if it was, repeat this step

until no rule applies. If the decision was not accept-

able, go to step 2.ý

2. Obtainthe training information from the trainer and

use it to construct the training rule. Use the justifi-

cation information to change any category definitions

implied by that information. If in fact a category

definition is changed, go to step 3; otherwise, go to

step 4.
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3. Determine the first heuristic that applies to the current

situation (using the revised category definitions) and per-

form the indicated replacement, If this decision is advo-

cated by the acceptability information, go to step 1; other-

wise, go to step 4.

4. Locate the error-causing rule, i.e., the pattern-replacement

rule (or heuristic) responsible for the unacceptable decision

made in step 3 or step 1.

5. Search the heuristic rules above the error-causing rule for

a target rule, i.e., a rule suitable for moJidf.ationi to

apply to the current context.. If such a rule is found,

modify it so that it applies to the current context, and go

to step 3; otherwise, go to step 6.

6. Search the heuristic rules below the error-causing rule for

a target rule. If (a) such a rule is found, (b) the error-

causing rule is suitable for modification so that it doLs

not apply to the current context, and (c) the rules between

!,the error-causing rule and the target rule either do not

apply to the current context or are suitable for mrodifiicatoion

so that they do not apply, then 'modify the target rule so

that it applies to the current context, modify the error-

causing rule so that it does not apply, and modify the rules

between these two so that they do not apply to the current

context; go to step 3. Otherwise, go to step 7.

7. Place the training rule immediately above the error-causing

rule in the list of heuristics, and go to step I.

If, at some point in the operation of the above algorithm, no

heuristic rule applies to the curr'ent context, then for the purposes

of the algorithm, all existing heuristics can be thought of as "above"

the error-causing rule. In this case, if a rule is to be inserted

"immediately above" the error-causing rule, it should be placed at

the bottom of the existing list of heuristics.

Given a training rule, a particula'r heuristic rule is s:•'t.d'lc

for' mod:7Vfication to appl ' to the current context if (a) the righthand

side (or replacement part) of the training rule and the heuristic rule
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are the same (within a mapping between variable names labeling corre-

sponding vertices), and (b) the lefthand side (or pattern part) of

the training rule and the heuristic rule both have the same structure--

i.e., if they differ only in the labels on vertices representing atomic-

attribute values. Variable names must correspond under the mapping in
(a) above. Modifying the heuristic rule entails changing the labels

on these attribute-value vertices either by creating new category names

encompassing both the information in the training rule and the informa-

tion formerly in the heuristic rule, or by changing the definitions of

categories used for attribute values so that the training information

is embodied in these definitions. An additional possibility for mod.;-
fying a heuristic rule to embody training information is to simplify

(generalize) the structure of the pattern part of the heuristic rule;

however, we have not explored the ramifications of that possibility.

Given a training rule and a heuristic rule, to modify that heur-

istic rule so that it does not appZy to the current context means that

categories can be modified to exclude the values in the current context.
An interesting aspect of the above discussion is that the pattern-

match:Lng procedure used to compare a pattern web within a context can

also compare, for structural similarity, a training-rule pattern web
with a houristic-rule pattern web. To gain this capability, a standard

pattern match must be modified by redefining the relation to be satis-

fied by the labeling functions in the web map used during that pattern

match. Additionally, we must take into account both the required and

prohibited aspects of each pattern. Informally, this means that the

prohibited structures must match and the required structures must match.
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IV. GENERAL CONSIDERATIONS

We envision a pattern-replacement programming system as the basis

for a flexible interface between a user and his application program.

In such an environment, it is useful to think of the user as being in

one of several states. Thus, it is convenient to organi;ne thL heuristic

rules within a programming system into collections of rules called

states. Section III describes the flow of control between rules within

each state. This state organization allows the gross behavior of such

a system to be that of a finite-state machine, with -ertain allowable

transitions between states. If these states are named, the replacement

part of a heuristic rule within a state may specify, as a side effect,

a transfer of control to another state with'.., the system. The use of

state organization for interactive programs is discussed in depth by

Newman (I-11].

Although we have emphasized the adaptive aspects of a pattern-

replacement programming system, we have not ignored the fact that com-

plex systems require considerable a piYoYri knowledge of their subject

area. By allowing the user to treat the sets of patLern-replacement

rules as a succinct, high-level programming language, a pattern-replace-

ment programming system can introduce such a prior,' knowledge in a form

consistent with the adaptive mechanisms.

We have implemented a prototype pattern-replacement programming

system, embodying the concepts presented here, in LISP 1.5. We are

using this system to explore the techniques and concepts discussed.

A difficulty with our prototype implementation of these concepts is

that it does not take into account any of the special properties of

context webs. In particular, a context consists primarily of logical

objects represented by tree structures. A graph-matching algorithm that

takes advantage of this knowledge would be more efficient than the

generalized graph match currently used.
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V. FUTURE WORK

Future work on the ideas discussed in this report will center

on the following areas:

1. Making the pattern-match algorithm efficient so that

large problems may be investigated;

2. Using the scheme in a substantial variety of applications

to test the learning mechanisms and protocols required in

these applications;

3. Imbedding a pattern-replacement programming system within

the larger adaptive communicator framework in order to test

it in situations involving multiple parallel channels and

sophisticated user interactions.
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Appendix

WEB DEFTNITIONS

WEB

Let V be a finite set, called the vocabulary; the elements of V

arc called symbols. A directed ohh W over V is a triple (N, F, A),

where N is a set of vc,'tices, F is a abelinýg fUnction from N into V,

and A is a set of ordered pairs of elements of N, called arcs.

SUBWEB

Given a web W w (N, F, A) over a vocabulary V, the web S - (N,

F , A ) over the same V is called a subw.eb of W if N is a subset of

N, if F (n) - F(n) for all n in N , and if A consists of pairs in A5 s 8

whose terms are both in N . (The definition in Montanari requires a5

subweb to be a section graph. This is not required by the above

definition.)

WEB MAP

Let W = (N, F, A) and W' = (N', F', A') be webs over the same

vocabulary. The L4b- may, T:W-IM' is an ordered pair of maps (M, M*),

such that M:N-•N' is l:1, onto, and for all n in N, F(n) 4 F'(M(n)).

Also, an induced map M*:A-.A' defined so that for all (a, b) in A,

M*((a,b)) = (M(a) ,11(b)) is 1:1 and onto A' (The notation a simply

suggests some well-defined relation.)

WEB hIAP RESTRICTION

Let T:W1-W' be a web map between webs W and W' over the same V,

where T = (M, M*). Let S - (Ns, F, A s) be a subweb of W, and

consider the restriction MIN of M to N and the restriction M*IA
5 S ..

of M* to A s. The .t'st,:,t', TIS of T to S is defined to be the

web map (MIN,M*IAs).
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WEB MAP EXTENSION

Let S be a subweb of the web W and T* be a web map whose

domain is S. T is an extension of T* to W if TIS - T*.

PATTEPRN RATCH

Let S be a subweb of the web 1; the ordered pair P = (W,S) is

called a patternz. Let W4' be a web also over the vocabulary V of 1.

The pattern P ma•tJ-hs the web W' if either of the following is true.

1. N4 S and there is a web map T such Lhat TLS-*W'.

2. W # S and there is a web map T such that T:S-1V' but no

extension of T from S to W exists. (S is the required

part and 1-S is the prohibited part of the pattern.)
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