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PREFACE

During the past two and one-half years, The Rand Corporation has

been conducting a studdy for the Advanced Research Projects Agency of

possible new applications for lasers. Several reports have already

resulted fiom this st,,dy, which is still in process. The results pre-

sented in these reports have depended, in part, on detailed calcula-

tions of the diffraction patterns produced by focused laser beams.

These calculations, described herein, show relationships between char-

acteristics of the beam as it leaves the output aperture and those of

the beam when it reaches a focus on a distant surface.

Some of the general results given in this report have also appeared

elsewhere in the literature. However, almost none of our detailed, spe-

cific results have been available until now. ft was the need for these

data in the larger study that prompted us to undertake the3e calculations.

They are being published here so that they may b- made widely available

for use in the design of laser systems and in the analysis of their per-

formance.

ii
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SUMMARY

Some types of lasers produce (ideally) a monochromatic collimated

beam with a gaussian radial-intensity variation. The beam can be ex-

panded by telescope-like optics, projected from an output averture,

focused onto a distant target, and kept aimed at the same point on the

target for some appropriate time interval. The objective of this pro-

cedure is to achieve a high energy density.

This report examines two of the factors that influence the resul-

tant energy density: diffraction, which prevents the beam from focus-

ing to a point, and jitter of the diffraction pattern, which spreads

energies over a larger area. Diffraction-pattern characteristics are

found from numerical solutions of the Fraunhofer diffraction integral

for circular apertures with circular central obscurations and gaussian

illuminations. For degLribing intensity patterns, we have chosen the

"spot" to be the circular area whose edge lies at the points where the

intensity has fallen to one-half of the peak, central value. Formulas,

tables, and graphs are presented that enable The reader to estimate the

peak intensity, the spot size, the power within the spot, and the av-

erage intensity over the spot. Required inputs are the range, the

radiated power, the aperture diameter, the wavelengtl,' the fraction of

the aperture area that is obscured, and a measure of the amount of

truncation of the gaussian illumination.

The average intensities that result from a jittering beam are

easily estimated if both the jitter statistics and the diffraction pat-

tern are gaussian--the two combine (convolve) to yield another gaus-

sian pattern. This report shows that the higb-intensity portion of a

diffraction pattern can be fitted closely with a gaussian pattern by

choosing the gaussian parameters so as to match the size and power of

Ithe diffraction spot.
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SYMBOLS

A - area within the aperture perimeter = nD2/4

D - aperture diameter

F - obscuration fraction (the fraction (c 2) of area A that is ob-
scured)

f - fraction of power P in the focal plane contained within the half-
i.ntensity circle

f(8) - fraction of power P in the focal plane contained within a circle
of radius 0

G = gaussian power-correction factor (GP is the total power in the
gaussian approximation to a real diffraction pattern)

h = dimensionless angular radius of the half-intensity circle (unit
~ •angle - X/D)

I = intensity (power per unit area) at a point in the focal plane

I = maximum intensity (power per unLt area) in the focal plane

J = the zero-order Bessel function
m - diffraction limit (if 0 is the spot diameter for a diffraction-

limited system, mO is the diameter for an "m times diffraction-
limited" system) aadius D/2

n = taper parameter - beam radius _ w

P = power radiated from the aperture to the focal plane (no trans-
mission losses)

R - distance from ýhe aperture to the focal plane

r = radial distance in the plane of the aperture (see Fig. 1)

s = dimensionless standard deviation of a gaussian approximation to
a diffraction pattern [oD = s(X/D)R]

t = time interval during which the laser beam stays focused on a
target

U = wave amplitude at points in the focal plane (I = ! 2 )
ru = wave amplitude at points in the plane of the aperture

w = I/e2 radius of a gaussian beam incident on thc aperture

w° 1/ radius of a gaussian beam at the focal plane (w° = 2, D

z = dimensionless variablf' of integration denoting radi&l distance
in the aperture plane " 2r/D

a = radial angle subtended by a radial distance o in the focal plane
whet, viewed from the aperture = p/R (see Fig i)

OD = angular standard deviation associated with a circalar gaussian
""difraction pattern = aD/R



proabangular standard deviation associated with a circular gaussian

probability density function = a j/R

dimensionless radial angle = a (see Fig. 1 for a)

e = obscuration ratio (the ratio of the diameter of the central ob-
scuration to the diameter of the aperture) = AF

- wavelength

p = radial distance in the focal plane (see F~g. 1)

a - standard deviation of the two normal distributions that combii.,
to form the circular gaussian distribution

aD = linear standard deviation associated with a circular gaussian
diffraction pattern

aj M linear standard deviation associated with a circular gaussian
probability-density function (jitter)

) dimensionless intensity at a radial angle a in the focal plane;
unit intensity = PA/X 2 R2

OW - dimensionless intensity averaged over a disc of radius a in the
focal plane

00 M maximum dimensionless intensity in the focal plane

S- dimensionless intensity averaged over the half-intensity disc in
the focal plane

I

I
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I. BACKGROUND AND OVERVIEW

Some types of lasers produce (ideally) a monochromatic collimated
(1)

beam wittb a gaussian radial-intensity variation. This beam can be

expanded by telesccpe-like optics, projected from an output aperture,

focused onto a distant target, and kept aimed at that point on the tar-

Fet for some appropriate time interval. The focusing produces a high

power density by concentrating most of the projected power onto a small

spot on the target. Keeping the locaLion of the spot fixed produces a

high energy density.

For high-quality optics, one of the factors that determines how

much concentration of power is possible is diffraction. Section II of

this report examines the characteristics of diffraction patterns pro-

duced by circular apertures with circular central obscurations. Special

emphasis is placed on the effects of truncation and obscuration. A few

of the patterns are described in considerable detail; i.e., intensity

and included power are given as a function of radial distance in the

focal plane. For more concise pattern descriptions we have chosen the

"1"spot" to be the circular area whose edge lies at the points where the

intensity has fallen to one-half of the peak, central value. Formulas,

tables, and grapnb are presented that enable the reader to estimate the

peak intensity, the spot size, the power within the spot, and the av-

erage intensity over the spot that can be achieved by a given laser/

telescope system.

If the diffraction pattern stays fixed with respect to the target

surface, the resultant energy densities are easily determined by multi-

plying the power densities by the time interval. Section III addresses

the problem of estimating energy densities when the center of the dif-

fraction pattern moves or "jitters" about an aim point on the target.

A method for estimating the effect of jitter is presented that depends,

in part, on approximating a real diffraction pettern with a gaussian

pattern. Adequate approximations cat, be constrtit.ed by usin=g some of

the pattern characteristics dcveloped in Section 11.

Some of the genera! results given in this reot haxe also ap-

peared elsewhere in the literature. Maiv of the t:,tenct~s li.ted a,
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the end of this report include studies of the effects of truncation and,to a lesser extent, obscuration on the propagation of gaussian beams.But they do not contain the detailed, specific values for the half-intensity spot sizes and included powers that are given In this report.It was this lack of data that prompted us to undertake the calculations
reported here.
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11. DIFFRACTION PATTERNS

This section presents characteri3tice of diffraction patterns (or

"images") produced by circular apertures with circular central obscura-

tions. The radiation incident upon the aperture is assumed to be a

monochromatic beam with a converging spherical wave front and a gaussian

radial-intensity variation. The wave front leaving the aperture will

be truncated and tometimes obscured. We ull compute the diffraction

pattern that occurs in the geometric focal plane, i.e., in a plane that

is normal to the beam axis and located at the center of curvature of

the emerging wave front. Results of such computations are often called

"far-field" results because they also describe the radiation pattern

at great L,,stanczs fr•= apertures illuminated by plane waves. All are

examples oZ Fraunhofer diffraction.

INPUTS AND MnTdODOLOGY

The emerging beam is centered in the aperture. Figure 1 shows

the geometry and iden'tifie some of the parameters: D Is the aperture

Aperture Focal plane

r

D__ R
A R

Fig. 1 -The geometry and the coordingtes

Throughout this rep-rt, intens8ity refers to power per unit area.

(In the current literaturG, this quantity ts oftea called irradiance.)
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diameter, 0D is the diameter of the obscuration, and R is the distance

to the focal plane. Because of the axial symmetry of the output radia-

tion, the diffraction pattern will have the same kind of symmetry.

Points in the focal plane are denoted either by their radial distance

Pý from the center of the pattern or by the "radial" angle a that p sub-

tends when viewed from the aperture.

?oints in the aperture plane are denoted by their radial distance

r from the center. The gaussian amplitide distribution of the aperture

illumination can be expressed as

2 2
u(r) = u exp(-r /w2) (i)

OI

where w is a constant defined to be the beam "radius." The intensity

is given by fuj2. Thus w is the radial distance at which the intensity

has fallen to l/e of its axial value. I

Note that Eq. (1) describes the amplitude of a plane wave. If it

became necessary to specify the wave-front cutr ature, u(r) would be

multiplied by e .nplex phase factor of the form exp(-iirr 2/AR). How-

ever, Eq. (1) is the proper ampliiride expression to use in the equations

that will be presented later.

Solution for an Infinite Gaussian Beam

An analytical solution exists for the wave propagation of an ideal
(infinite) beam.(2) Dickson(0 and Bloom(4) have estimated that if the

aperture radius is at least twice as large as the beam radius;, the ef-

Lects of the truncation are "negligible" and the analytical solution

is adequate. For this idealized case, the beam remains gaussian every-

where. The diffraction pattern at the focal plane has a radius w0 given

by(3)

XR
w r

The quantity -, which is the ratio of the two diameters cD and D,
is usually called the obscuration ratio.



"where A is the wavelength. The focal-plane intensity distribution l(P)

is then

1(p) - Io exp(-2p 2/wo) (2)

The intensity I° at the center of the pattern can be found by equating

the total incident power P to the integral of 1(p) over the focal plane.

The resultant value of 1 is

0 2P P

L22
1W A R

0

The Diffraction Equation

When the output beam is significantly tiuncated or obscured, the

diffraction pattern is no longer gaussian; rather, it resembles an Airy

pattern, i.e., a bright central disc surrounded by alternate dark and

light rings. To find the intensity at a point in the focal plane, we

must evaluate the Fraunhofer diffraction integral which yields the wave

amplitude U(p).* The intensity I is then given by I -Ul 2.
For a uniformly illumintated circular aperture with a central ob-

scruation, the Fraunhofer diffraction integral is(5)

D
2

U(a) = 2 u f 3(j ar) r dr

where u is the uniform wave amplitude at the aperture, and J is the

zero-order Bessel function. Note that the integration Is performed

To amplify an earlier comment, Fiaunhofer diffraction appiieu
either in a focal plane or in the far field (R >> :-2/X) of a collimated
beam.( 5 ) Elsewhere, the Fresnel diffraction integral must be used.
Results for such "near-field" intensities produced by tr;incated gaus-
sian apertures are presented in Refs. 6 and 7.
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over the illuminated portion of the aperture and that the radial angle

a is being used to denote the radial location of the point In the dif-

fraction pattern.

If the aperture illumination is nonuniform, the amplitude u(r)

must be brought under the integral sign. For a gaussian illumination,

the result is

D

u(c) 2v 2
U~a ~ 0  j exp(-rv JW (L- arj r dr (4)

D

The diffraction equation (Eq. (4)) can be cast in a form that is

more suitable for calculating and presenting results. First, we intro-

duce two key aperture paramters, n and F, that specify the mmount of

truncation and obscuration. They are defined as

aperture radius . D/2
bern radius V

2
] F the fraction of the total circular aperture area (YD /4) that:

is obscured = 2

(These parameters will be discussed in more detail later.) Next, we in-

troduce the dimenrioncress radio'Z zwl a = I and change toe variable

of integration to z - 2r/D. Aq a resulz of these four changes, the dif-

fraction equation will become

i = 2

2 -()z (Ez) z dz

where A is the full circular area rD0 .

The approximation c xR is h .ere and elscwhere thr-ugho-ut
this report.
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Finally, we find an expression for u by equating the total radi-
o

ated power P to the integral of the intensity over the aperture. That

is,

D
2

1~ 22

f
-2u2 f 2 n z zd2

Au 2 2

o 2- f e-2Fn -2n2

2n 2

Thus

2P n

so the diffraction equation becomes

(2PA (2rn -n 2z2
U(8) PA2RJ f /F (irz) z dz (5)

(_2Fn -2n2) 0
e -

An advantage of this formulation is that all of the parameters

that have physical dimensions have disappeared from the integral and

appear together in the single expression PA/2 R . This quantity is of

special importance in diffraction theory because it is the expression
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for the maximum intensity in the Fraunhofer diffraction pattern produced

by a uniformly illuminated aperture of area A. It is a natural choice

for a normalizing factor, i.e., a unit of intensity. Therefore, the

final statement of the diffraction formula is as follows: We define a

dimensionless intensity *(8) by the expression

2 4 2/n 2n z

00) e f en ~ z) z dz (6)-2Fn 2 -2n 2 e J(•z

and use O(S) for describing the diffraction-pattern characteristics.

The "physical" intensity can always be found later from

18) - 8(B) PA (7)

and linear radii in the focal plane can always be found from a - 8(X/D)

and P - aR.

The Maximum Intensity

The maximum intensity occurs at the center of the image, which cor-

responds to 8 - 0. When 8 - 0, the function J3 - 1. This simplifica-

tion ef the integrand allows the diffraction integral to be evaluated

in closed form. The resulting expression for the dimensionless maximum
intensity 00 is

en2 (1-F) (8)
n en 2(1-F) + 1

It is also the maximum possible intensity. Any nonuniformity of
the aperture illumination will reduce the maximum. (8)

Reference 9 presents a closed-form solution for the on-axis in-

tensity for all ranges, including the focal range.
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It is not difficult to verify that

lim to I- F

n-00

This is a necessary resuit because n . 0 implies a uniform aperture il-

lination. In that case we must have

PAs
0 a i2R2

where A' = A(I - F) is the true aperture area.

Equations for Included Pover and Average Inteasity

Other importamt diffraction-pattern characteristics, aside from

4(0) itself, are f(B), the fraction of the total power in the focal

plane contained within a circle of radius 5; and s(i), the average in-

tensity over a circle (or "disc") of radius ý. Starting with

f 0 f "A aý' -. ýfiB - (1 2 . d 2

0

and using the relation c = :(I/D)R, we obtain

2 f
0

To find a useful expression for :(E), we start with the required

relationship

PA f(.;) • P:(:) =
2R2 •2



-10-

- obtain

00 f(=) (10)

Selected Input Va.ues for n and F

The equation for #(8) shows that for a given value of 8, the in-

tensity # depends upon the values of only two parameters, n and F. As

defined earlier, 2 = (D/2) Iv. The introduction of n allows the aperture-

illumination amplitude to be written as u - u exp[-n2(2r/) 2]. At theo 2
edge of the aperture tke intensity falls to exp(-2n ) of its axial value.

Figure 2 shows hce the intensity varies across the aperture for n - 0,

0.5, 1.0, 1.5, and 2.0. These five illiminations encompass a very wide

range. Note that n = 0 implies a uniform illumination. The greater

zhe vaiLue of n, the more steeply the ittens ity curve tapers from the

center to the edge, Therefore we shall call n the "taper" parameter

in the remainder if this discussion. This parameter is a measure of

the nonuniformity of the illumination.

The obscuration fraction F is the fraction of the total area A that

is obscared. Figtre 3 shows the aperture appearances for F = 0, 0.,

0.2, 0.3, 0.4, and 0.5. Clearly, they encompass a wide range of obscur-

ations.

Later in this section (pp. 13 - 19), certain specific and aggre-

gate characteristics of diffraction patterns will be presented for all

combinations of n and F.

Proper Interpretation of ? and A

Before we present results, some words of caution are appropriate.

It is important to remember that the power P in the expression PAP2 R2

is the power radiated from the aperture (to be even more precise, P

By having earlier factored P and D out of the diffraction equation,
we have avoided the implication that no power is radiated if n - 0.
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1.0

0n

00.5

0.8.

> 0.4

"6 , 1.5

4--II

2.0

0

0.2

Intensity at center e2n2

0!

0 0.2 0.4 0.6 0.8 1.0
r

D/2

Fig. 2-Aperture intensity distribution
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00
F=O t=O.; F=0.2

F 0.3 F=0.4 F=O.5

Fig. 3-Aperture oppeoronces for var'ous obscurotion fractions, F

should be the power that reaches the fr3a1 olane, but we will assume no

transuisaion losses). The power of the laser beam that enters the beam-

expansion optics is not necessarily the same. To formulate the diffrac-

tion equations, we postulated that the wave is ai. ideal gaussian before

it is truncated and obscured by the aperture. For such a case, it is

easy to show that if the power of the ideal beam were P', then the power

transmitted by the aperture would be

"-2Fn _- 2n2P =P' •(e-2n -e ) (11)

the losses being caused by truncation and obscuration. But a real beam-

expander might not work this way. This study has not examined methods

for estimating such losses.
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A second point to reemphasize is that the area A in the epciession

PA/IX2 - is not necessarily the illuminated area of the aperture. It is
2always equal to the full circular area wD /4. When there 's obscuration,

the illuminated area is equal to A(l - F).

RESULTS

First we wvil. present, in detail, Lhe patterns corresponding to a

selected set of four pairs of values for n and F. Less dctailed results

will Lhen be presanted for the 30 pairs considered.

Detailed Diffraction-Pattern Characteristics

Figures 4 through 6 show intensity v versus radial angle 8 for a

selected set of taper% and obscurations. The tapers are n = 0, corre-

sponding to uniform illumination, and n = 1, corresoonding to a gaussian

truncated at the 1/e2 radius. The obscurations are none (F = 0), and 10

percent (F = 0.1). The results in Figs. 4 through 6 were obtained by

direct numerical integration of the diffraction integral. No general

closed-form solution exists. However, series solutions that may con-

verge rapidly have been devised. (7,10)

Figure 4 shows that tapering the illumination decreases the maxi-

mum intensity, widens the central disc, and reduces the intensity of

the rings. Figures 5 and 6 show that obscuration decreases the maximum

intensity, narrows the central disc, and increases the intensity of the

first ring.

Figure 7 displays the fraction of the total power in the image

AFor uniform illumination (n - 0), *(8) can be found analytically.(5)

The solution, first found by Airy, is

[2J 1 () 2J1 (c8)j2
I•• =1 F r•a F 8

where J is the first-order Bessel function. Results obtained from
this formula and from the analytical formula for €,, were compared with
results obtained by numerical integration to assess the accuracy of
the numerical methods. For all comparisons, quantities agreed to with-
in at least three significant figures.
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__.- - - No obscuration
10 percent obscuration

0.11

Le\

0.01

\\I

0.001 -
0 0.5 1.0 1.5 2,0 2.5 3.0 3.,5

Radial angle, 9

0Fig.5-Diffroctiof patterns for n2. (uniform i 3llmination)
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1.0 SI F T
-....- No obscuration

10 percent obscuration

0.1-1 I-.

0.01

0 0.5 1.0 15 2.0 2.!) 3.0 3.5

Fig.6- Diffraction pat'erns for n f gmusiar, i3 Iumin2ton with

/e2 truxation
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1.0 .. n=

n=01

n 0

0.8

n I

-n

, 0.6

- - No obsL..uration
_______10 percent

0

a. obscuration

S4

U_

0.?

0 0.5 1.0 1.5 2.0

Disc angulaor radius (unit angle= X/ D)

Fig.7--Fraction cf image power within disc

that lies withir circles (i.e., discs) of var 4 ous radii. The curves

show the behavior of the central portion of the patterri; zhey have ýoen

stopped at the first null. If they were extended farther, they would

resfmble step iunztions as successive rings are included within the

circle. Thce curves Illustrate the main effect of a central obscura-

tiun: It diffracts power into the rings.

Figure 8 displays the average intensity as - functica of the size

of the disc over which the average is taken. In laser-applisation stud-

ies, an average intensity is often used to describe the diffractio-a
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1.0

ui=0

C14

I o. -..- __No obscuration
10 percent obscuration

0.6
C

S0.4

S%

01
0 0.5 1.0 1.5 2.0

Disc angular radius (unit angle= X/D)

Fig.8---Average intensities v'ithin disc

pattern, yet there is no agreement among investigators about what disc

size should be chosen for taking the a~erage. Figure 8 shows that the

average intensity can be a strong function of this cboice.
Table I summarizes some of the major characteristics of the central

portions of these four patterns. The full central dtisc, the "l/e"

disc, and the "half-intensity" diLc are considered. The radii oz the

latter two exLend to the points where the intensity has fallen, respec-

tively, to i/e2 and one-ha3f of the peak value.
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Table 1

DIFF38CTION-PATITM CHARAMISTICS

Value
Gaussian Illumination

1aaifori Illuminatntz with l/e2 Trmcatico
mo O~u- 10 Obacu- N1o Obscu-- IO10 Obscu-

Characteristic ate ration ration [ ration

Peak intensitya 1.000 0.900 0.924 0.8"4

Fall Central Disc

Angular radiusb 1.22 J 1.13 1.43 1.20
Power fraction 0.838 0.668 0.955 0.720
Average intensity 0.229 0.220 0.191 0.203

1/e 2 Disc

Angular radius 0.823 0.773 0:915 0.830
Power fraction 0.767 0.615 0.866 I 0.663
Average intensity 0.459 0.417 0.4_19_ 0.390

___ Half-Intensity Disc

Angular radius 0.514 0.488 0.566 0.522
Power fraction 0.475 0.385 0.530 0.412
Average intensity 0.727 0.655 0:671 0.613

Uaunit intensity - PA/A2R2 .
b Unit angle - X/D.

Results for the Half-Intensity Disc

The maximum intensity # is an important descriptor of a diffrac-
~ 0

tion pattern, but because it describes the power density at a single

point, it gives no information about hcw much power can be concentrated

inzo some finite-sized spot. For the following presentation of results

we have chosen the half-intensity disc as the spot to be described.

Table 2 shows the values of the maximum intensity *o for all com-

binations of the taper parameter n and the obscuration function F. In

similar fashion, Tables 3 through 5 display the radii of the half-iitensity

discs (denoted by h), the power fraction within them (denoted by f), and

thier average intensities (denoted by *).

Although three quantities are presented for the half-intensity
disc, only two are independent. The three must satisfy the relation-i; ~ship• " 4"!f/n2h2.
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Table 2

MAXIMUM INTENSITYa

)maximssm Inte Lty #a
Obscuratoto Tager Farinter _

Fraction. P 0.0 o 0.5 ".o0 1.5 2.0

0.00 I 1.000 0.995 0.924 0.719 0.482
0.10 0.900 0.896 0.844 0.682 0.473
0.20 0.800 0.797 0.760 0.637 0.461
0.30 0.700 0.695 0.673 0.584 0.443
0.40 0.6001 0.599 0.583 0.523 0.417
0.50 0.500 0.499 0.490 0.453 0.381

"aUs Intensity - FAIA12 .2

Table 3

HALF-INTENSITY RADIAL ANGLEa

Half-Intensity iadial Angle, h
Obscuration T r Parmeter. a
Fraction. 7 0.0 0.5 1.0 1.5 2.0

0.00 0.514 0.526 0.566 0.646 0.773
0.10 0.488 0.496 0.522 0.571 0.639
0.20 0.466 0.471 0.48;J 0.519 0.561
0.30 0.4"6 0.450 0.461 0.4,81 0.507
0.40 0.430 0.432 0.439 0.451 0.468
0.50 0415 0.416 0.421 0.428 0.438

allit n-glet - A/D.

Table 4

FRACTION OF IMAGE POWER WITHIN THE
HALF-INTENSITY CIRCLE

Fraction of Loani Power, f
Obacuratn Taper Parameter. a
Fraction, 7 0.0 0.5 1.0 1.5 2.0

0.00 0.475 0.494 0.530 0.536 0.514
0.10 0.385 0.396 0.412 0.398 0.347
0.20 0.312 0.318 0.325 0.307 0.260
0.30 0.251 0.254 0.257 0.243 0.205
0.40 0.199 0.201 0.202 0.191 0.164
0.50 0.155 0.1551 0.156 0.149 0.132

Table 5

AVERAGE INTENSITY WITHIN THE
HALF-INTENSITY CIRCLEa

Av'e lutmetty,
Obscuration Tset erawl or -
Fractlio, I7 0.0 0.5 1.0 1.3 2.0

0.00 0.727 0.722 0.671 0.521 0.349
0.10 0.655 0.652 0.613 0.495 0.344
0.20 0.582 0.580 0.533 0.463 0.335
0.30 0.510 0.509 0.4"0 0.425 0.322
0.40 0.437 0.436 0.425 0.381 0.304
0.50 0.364 0.364 0.357 0.330 0.278

awnit Intensity FA/A2 12 .
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To display the trends and to facilitate interpolation, we have

presented these results graphically in Figv. 9 through 12.

As an illustration of how these general results can be applied to

a specific case, consider a hypothetical system that radiates 30 kW of

continuous-wave power at a wavelength of 10.6p from an aperture 30 cm

in diameter. (These parameters are consistent with the performance of

CO2 gas-dynamic lasers reported in Ref. 11.) We wish to compute the

diffraction-pattern characteristics, using the half-intensity disc, when

the beam is focused at a range of 500 m. First, we compute the unit
2 2 2Intensity, PA/A R , as 7,550 w/cm. In this example, we assume that

the aperture illumination is gaussian with l/e2 truncation and 10 per-

cent of the aperture area is obscured (n - 1, F - 0.1). Then, using

the appropriate numbers from either the fourth column of Table 1 or

from Tables 2 through 4, we find

Peak intensity - 0.844 (7,550) - 6,370 w/cm2

Average intensity - 0.613 (7,550) - 4,630 w/cm2

The radius of the spot of interest is 0.522 (X/D)R, which yields a spot

diameter of 1.84 cm, about the size of a dime. The power within the

spot is 0.412 P - 12.36 kW. It is easy to verify that this power di-

vided by the spot area (2.67 cm 2) yields the average intensity computed

above.

It must be remembered that the power densities computed by this

method are theoretical upper limits. However, to illustrate the effect

of such a high power density, if the target were indeed a silver dime

and if it absorbed 10 percent of the incident radiation, it would melt

in less than a second. (The reader is cautioned that melting silver

dimes with laser beams is neither cost-effective nor legal.)

An Empirical Relationship Between Maximum and Average Intensities

When the taper and the obscuration vary, the maximum intensity # 0

and the average intensity I each vary over a wide range. However, the

ratio POO is very nearly a constant. We computed this ratio (V from
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Table 5; 0o from Table 2) for each of the pairs of values for n and F

and found that

0.724 0 O. 729 (12)

Therefore, the relationship * = 0.727 0,o which is correct for the Airy

pattern (n - 0, F - 0), remains correct within 0.5 percent over the en-

tire range of tapers and obscuration considered in this study--a very

broad range.

Apparently, the central portions of these diffraction patterns--

out to the half-intensity circle at least--have a characteristic shape.

That is, one curve of 0 versus 0 can probably be transformed very nearly

into any of the others simply by changing scales.

The plausibility of this result is indicated by the following ar-

gument. The Bessel function J 0 (x) can be expressed as a power series

that has the form J (x) - 1 - a2x2 + a4x 4 - a6x 6 + ..., where the a's

are known constants. If J (wBz) in the diffraction integral (Eq. (5))0

were replaced by its series and the term-by-term integration completed,

the resultant expression for the amplitude U(O) would have the form

U(S) - b 0 - b2a2 + b 4 a - b60 6 + ... , where the b's are constants. In

the region of interest, B remains small; therefore, the first two terms

may dominate the series. Assuming this to be true, it is easy to show
2that if U(B) - b 0 - b2B , then 0/0o W 0.736, independent of the values

of b0 and b 2 .

Estimates for the i/e2 Disc

In light of the pattern consistencies described above, it seems

plausible that reasonably constant relationships exisr between charac-

teristics of the l/e2 disc and the half-intensity disc. To test this

conjecture, we can manipulate the results presented in Table 1, which

shows characteristics of both discs for four different sets of aperture

Developed by W. Sollfrey, of The Rand Corporation.
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conditions. For each set of aperture conditions, the rat:Los of results

for the l/e2 disc to results for the half-intensity disc fall within

the following narrow boundaries:

K = ratio of angular radii - 1.60 ± 0.02

K2 = ratio of power fractions - 1.62 ± 0.02

K3 ' ratio of average intensities - 0.630 ± 0.007

Consequently, the ratios do appear to be reasonably constar.t (but

the agreement between K1 and K2 is probably a coincidence). Therefore,

if the l/e2 disc is used as the spot, its characteristics can be esti-

mated from the following:

Angular radius - 1.6 h (13)

Power fraction - 1.6 f (14)

Average intensity - 0.63 T (15)

where h, f, and * are the values for the half-intensity disc.
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III. ENERGY DENSITIES PRODUCED BY A JITTERING BEAM

For most laser applications, it is necessary to know how much en-

ergy will be delivered to certain areas of the target when the laser

operates for a time interval t. If the diffraction pattern stays fixed

with respect to the target plane, the calculation is straightforward.

The appropriate intensities can be estimated by the methods described

earlier and then multiplied by t to get energies. However, if the pat-

tern moves laterally, the intensities at fixed points on the target

plane do not stay constant during t. This could complicate the energy

calculations by requiring integrations rather than simple multiplica-

tions.

In some situations, random processes may cause the center of the

pattern to "Jitter" about an aim point during the time interval t. The

problem of estimating the energy delivered by a jittering beam is sim-

plified if the time-averaged intensity at a point can be treated as

being reasonably independent of the value of t. It is further simpli-

fied if circular gaussian functions can be used to describe both the

beam motion and the beam shape.

A METHOD FOR ESTIMATING THE TIME-AVERAGED INTENSITY

Let the aim point be the origin of a rectangular coordinate system

in the target plane. Let (x,y) denote the locations of the beam center

at randomly chosen instants. We postulate that x and y are independent

and are normally distributed with zero means and identical standard

deviations a . The probability that the beam center will be located

within a small area dx dy surrounding a particular point (x,y) is thus

given by *(x,y) dx dy, where *(x,y) is the product of two normal proba-

bility density functions (pdf); i.e.,

e2 2 ____ 
2 /2o2

-x 2/2a 1 -y*(x,y) - 1 e e •

VY-l 2w a- o
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or more simply,

2 P 2* 2 (16)2waj

2 2 2

where p . x + y The function #(p) is called the circular gaussian

pdf. For want of a better term, aij is often called the "standard devi-

ation" of the circular distribution, even though it is not the standard

deviation of p.

It was shown in Eqs. (2) and (3) that for a gaussian beam, the in-

tensity I(q) at a radial distance q from the axis of the beam can be

expressed in the form

I(q) 0 e 02q 20

where I - 2 P/wwo2, and w is the beam "radius" at the focus. For con-
000

sistency of notation, it is advantageous to introduce a beam "standard

deviation" by the substitution -D -w 0/2. The resulting expression

for I(q) is

= p 2 2

I(q) 2 e- /2OD (17)
2TOD

which is identical in form to a circular gaussian pdf except for the

inclusion of the power P.

As the beam moves, the intensity at a fixed point (x 0 ,Yo) will

vary. When the center of the beam is at a point (x,y) the intensity

at (Xo0 yo) is

Nox ,y - x) + (y )- 2
INXoYoXqy) " P 2 x -- " 2

2W 2D 2a2D
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To find the expected-value or "average" intensitv I(xoyo) at rhe pCilnt

(X ,Ye; we 2st evaluate the integral

I(x~y)0 ff I(iopy ,x,y) * p(x,y) dx dy

In Ref. 12 it is shown that this Integral yields the result

2 2 2
-- c'P -2-p 2 /2(a2 + o ) (18)

0 2w2 22
2 i

where p 2  x2 + Y This is another gaussioa distribution. It indicates
0 0 0

that the formula for the average intensities has the same mathematical

form as it would have if the gaussian diffraction pattern had been held-F2
stationary but broadened so that its "standard deviation" became D + J,

This is a most useful result for two reasons: (1) The energy calcula-

tions reduce again to simple multiplications by t, and (2) gaussian

functions are usually easy to manipulate. For example, for a gaussian

intensity distribution with total power P and standard deviation a, it
2

is straightforward to show that the maximum intensity is I = P/272a
2

the radius of the i/e 2 disc is 2a, the power within it is 0.865 P, and

its average intensity is 0.432 1 (2) For the half-intensity disc,

the corresponding quantities are: radius 1.177 a, contained power

= 0.5 P, and average intensity = 0.721 1o.

THE GAUSSIAN APPROXIMATION

To use the simplified treatment of jitter described above, we must

approximate a real diffraction )attern with a gaussian pattern. Clearly,

the central portious where the high intensities occur are the regions we

should try to match most close.Ly. It follows that a "gowd" gaussian

"Real" means only that , pattern has been computsd from a diffrac-
tion integral.



* -29-

approximation will not necessarily represent the delivery of the same

total power as is contained in the real pattern. Therefore, we will

reserve the symbol P for the real total power and define a "gaussian

power-correction factor" G such that GP is the total power in the gaus-

sian image. The formula for the gaussian intensity pattern ten becomes

1P -p/2%D (19)

2ioD

A more convenient form for this equation can be achieved by intro-

ducing the same kinds of dimensionless quantities as were used in Sec-

tion II. The variable 8 and a "dimensionless standard deviation" s

are introduced by using the relationships p = a()/D)R and a D = s(X/D)R.

The resulting formula for the intensity is

PA 2G e-8 2/2s2 (20)

22 

2

Then, by again c.oosing the unit of intensity to be PA/X 2R 2, we obtain

the dimensionless gaussian intensity distribution 0(&)

0(8) = 2 -8 2 (21)
7rs

In this formulation, all of the chdracteristics of the gaussian

pattern are determined by the valuec of the two independent parameters

s and G. By choosing an appropriate pair of values for :hese parameters,

we car match at least two of the chardLteristics of a real pattern.

Methods for Selecting 9 and G

Section II presented characttri.,ti- ot redj- dttte1'loaI patterrns
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that result from various tapers and okscurations. In that disoucsion,

we emphasized the maximum intensity fo and three characteristics or the

half-intensity disc: the radial angle h, the power fraction f, and the

average intensity •. Also it was noted that the three half-•nenaiLy
2 2

quantities are not independent because of the relationahip t - 4,,'.2 h

Consequently, o0,, h, f, and q represent enly three irdependent charac-

teristics.

A gaussian approximation can fit two of these three independent

characteristics. The method consists of first using Eq. (,21) to ex-p.ess

h, f, and • for a gausaian in terms of s and G. The maximum inten-

sity o is

2C
"o 2 271 s

2 *,1) 2To find the half-intensity radial angle h, we set exp.(-nz-s) =

and obtain

h - s • Yn4- 1.177 s (z3a

The Fraccion f of the real image power P witritn the balf-intený1ir

circle is

h
2f

2
0

-2 2
G(I - / ) =

2

FIL1aLlY, rhe arverage intensity q Ls

t '-t4 <

ii
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ar

- 2 0, 7 21 -2_.2 (26)- 22 2

its ,n 4 7rs

The above relationships can be used in reverse to select s and G

when #o h, f, and T are given for a real pattern. To make the gauss'an

pattern have the same half-,intensity radius h as the real pattern, we

set

S 7h (27)s=1,177

The parameter G can then be chosen so that either €o or * is matched.

To match the peak intensity,

2Z
G =-- 2 (28)

If we wish to match the average intensity t, the proper formula for G

is either

22

G = i s 2£n 4 (29)

or

G = 2f (30)

whichevet is more convenier~t.

A Numerical Example and Recommended tMthod

Consider the diffraction pattern that results from the aperture

conditions n = I and F - 0.1. (This is a gaussian illumination with

lI/e2 truncation aid 10 petcent obscuration, which was examined in de-

tail. in Section I[.) vrom idb.e 1 (or Tables 2 through 5), we find

o =U.844, h - 0522, f = 0.412, and € 0.613.
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We approximate it with a gaussian that has the correct radius and

average intensity fot the half-intensity disc; i.e.,

hh- = 0 444s=1.177

C = 2f = 0.824

For these values the equation for the gaussian intensity distribution

(Eq. (21)) becomes

= 0.847 e-a 2 /0.394 (31)

and the resultant fraction f(O) of the real image power P that is with-

in a circle of radius 0 can easily be shown to be

)= G(l - e 1-2/2s2

= 0.824 (1 - e- 2/0.394) (32)

In Figs. 13 and 14 th= intensities and the power fractions of the

approximation are compared with those of the real. diffraction pattern.

This comparison shows that the gaussian funct.on is an excellent ap-

proximation for the central, hi;h-intensity portions of the pattern.

Note that although we made no explicit attempt to match the peak

value o a nearly perfect match occ-utred (0.844 for the real pattern;

0.847 for the gaussian pattern). This agreement is not a coincidence,

and it is not limited to the specific example ch'sen here. in Section

!I (Eq. (12)), I,• was found that for real diffracrion patterns, the

relationship • = 0.727 ¢o remains correct to within about 0.5 pero'ent.

For a gaussian pattern, it is easily seen from Fq5, (22) and (26) that

00 = 0.721 t These two ewatio-.s are siilar enough chat ýt makes

little difference whether the gaussiao i3 fitted to r
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The simplest approach appears to be the one adopted for this ex-

ample. Namely, choose s and G so that the gaussian pattern and the

real pattern yield the same radius and average intensity for the half-

intensity disc. The formulas are

h h
1.177

G - 2f

where h and f are as given In Section 'I.

Comments on a Special Case

An aperture illumination that is often chosen as "representative"
is an unobscured gaussian with l/e2 truncation (n - 1, F - 0). The

resultant diffraction-pattern characteristics for this case are pre-
sented in the third column of Table 1 in Section II.

Suppose we wish to approximate this pattern with a gaussian that
2matches the l/e disc rather than the half-intensity disc. From Table 1,

the disc radius (2s) is 0.915, so we let s - 0.915/2 - 0.458. The power

fraction, from Table 1, is 0.866. By coincidence, this is almost ex-

actly the correct value for a gaussian (0.865), and therefore, no power

correction is needed (G - 1). Consequently, a gaussian distribution
x

with a total power P and a standard deviation of a - 0.458-1 R will
match the radius and the average intensity of the l/e disc of the real

pattern.
Now consider a totally different derivation of a gaussian pattern.

An approximation that has sometimes appeared in the literature results
from matching P and choosing aD so that the gaussian has the same maxi-

mum intensity as that of the ideal Airy pattern. Equating the two maxima

gives

PD D2
2 4 2R2
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which yields

D- -- (33a)

- 0. 450 -1 R (33b)D

which, by another coincidence, is very close to #' value of aD derived

from Table 1.

These coincidences help to explain and to justify equations devel-

oped by Peckham in Ref. 12. In that report he postulates the same ap-

erture illumination: gaussian with l/e2 truncation. He then introduces

Eq. (33a), attributes it to Buck (Ref. 13), and states that it predicts

the l/e2 radius of the real diffraction pattern. Finally, he conjec-

tures that a gaussian with the same l/e2 radius (and the same power)

will be an adequate approximation to the real image.

The analyses presented here show that a gaussian with the same

power and l/e2 radius as the real image would also have the same aver-

age intensity over the l/e2 disc. Therefore, they support Peckham's

conjecture that this approximation is adequate (for this particular

aperture illumination).

The method recommended in the present report produces a slightly

different approximation. The power in the gaussian becomes 1.06 P and

the standard deviation increases to a - 0.481 • R. The high-intensity

portion of the pattern is fitted more closely, but it seems doubtful

that these differences would prove to be important.

FINAL FORM OF THE INTENSITY EQUATION

For the gaussian intensity distribution that results from a jitter-

ing beam, the average physical intensity over the spot is kTo, where 1I

is the maximum intensity and k is a constant that depends only on the

In subsequent personal communications, Peckham explained that he
was aware of Eq. (33a) and discovered that it was consistent with numer-
ical results presented graphically by Buck, but he was unaware of its
derivation.
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definition of spot size. As noted earlier, k = 0.432 for the l/e 2 disc

and 0.721 for the half-intensity disc. Here we need only discuss 10

From Eq. (18), but with P replaced by GP, the proper formula for

I is

GPI =
o 2•(a2 + a 2

21(D + i

In this formulation, aD and aj have the dimensions of length. Since

jitter and the beamspread are usually treated as angles viewed from the

aperture, we introduce the angular standard deviations aD and ajx to get

GP
10 2iR 2 (aD + aj)

and since aD - s•, the equation becomes

I = GP (35)0 2wR 2 [()2 + aa2

This is a basic equation for the intensity. It explicitly contains the

parameters C and s that are chosen to fit the nonjittering pattern with

a gaussian. However, one alteration is needed to allow the analyst to

introduce a degradation in beam quality: The methods used to obtain the

results presented in Section II imply that the beam is "diffraction-

limited." In Ref. 12 an "m times diffraction-limited" beam is defined

as one for which the standard deviation of the beam is increased from

aD to maD. Thus, introduction of this parameter gives the final form

of the intensity equation,

2 ~20 2 2,r GP(2 (36)
o 2wR2[m(s -) + a

This equation is similar in form to one developed by Peckham( 1 2 )

and used by Davis (14) to study the relative advantages of laser systems

that produce different wavelengths.
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Equation (36) can be written in many different ways, some of which

might not be immediately recognizable as the same equation. For example,

R. 0. Hundley of Rand, in several publications prepared for ARPA, ex-

presses the intensity as an ideal value multiplied by a degradation

factor that accounts for jitter (and degradation associated with at-

mospheric effects). To convert to Hundley's equation, we let m 1 1

and rewrite I - k I as
0

2
PD2 1

I- x 2R2 2

2 2 2 2
where K = kG/27s2. The term KPD A R is the undegraded intensity. If

I is to be the average intensity within the half-intensity circle, then

K is simply T n/4, where _ is found from Section II. One other change

is needed to complete the conversion. As long as the correct value for

the ratio a is maintained, other measures of the jitter statistics

or beam dimensions can be used. Hundley uses 0., the angular diameter

of the circle that contains the beam center 50 percent of the time, and

0D' the angular diameter of the half-intensity circle. These are cen-

sistent parameters. He notes that 8D - I/D for a wide range of aperture

conditions (this corresponds to h - 0.5) and uses e I/(/D) for the ap-

propriate ratio. The resulting equaticn is

P D2  1I-K---- e

X 2 R2 [ee F2]

See Fig. 10.
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