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PREFACE

During the past two and one~half years, The Rand Corporation has
been conducting a study for the Advanced Research Projects Agency of
possible new applications for lasers. Several reports have already
resulted from this study, which is still in process, The results pre-
sented in these reports have depended, in part, on detailed calcula-
tions of the diffraction patterns produced by focused iaser beams.

These calculations, described herein, show relationships between char-
acteristics of the beam as it leaves the output aperture and those of
the beam when it reaches a focus on a distant surface.

Some of the general results given in *“his report have also appeared
elsewhers in the literature. However, almost none of our detailed, spe-
cific results have been available until now. ft was the need for these
data in the larger study that prompted us to undertake these calculations.
They are being published here so that they may b.: mode widely available

for use in the design of laser systems and in the analysis of their per-

formance.
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SUMMARY

Some types of lasers produce (ideally) a monochromatic collimated
beam with a gaussian radf{sl-intensity variation. The beam can be ex-
panded by telescope-~like optics, projected from an output averture,
focused onto a distant target, and kept aimed at the same point on the
target for some appropriate time interval. The objective of this pro-
cedure 18 to achieve a high energy density.

This report examines two of the factors that influence the resul-
tant energy density: diffraction, which prevents the beam from focus-
ing to a point, and jitter of the diffraction pattern, which spreads
energies over a larger area., Diffraction-pattern characteristics are
found from numerical solutions of the Fraunhofer diffraction integral
for circular apertures with circular central obscurations and gaussian
illuminations. For describing intensity patterns, we have chosen the
"gpot" to be the circular area whose edge lies at the points where the
intensity has fallen to one-half of the peak, central value. Formulas,
tables, and graphs are presented that enable .he reader to estimate the
peak intensity, the spot size, the power within the spot, and the av-
erage Intensity over the spot. Required inputs are the range, the
vadiated power, the aperture diameter, the wavelength, the fraction of
the aperture area that is obscured, and a measure of the amount of
truncation of the gaussian illumination.

The average intensities that result from a jittering beam are
easily estimated if both the jitter statistics and the diffraction pat-
tern are gaussian--the two combine (convolve) to yield another gaus-
sian pattern. This report shows that the high-intensity portion of a
diffraction pattern can be fitted closely with a gaussian pattern by

choosing the gaussian parameters so as to match the size and power of

the diffraction spot.
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SYMBOLS

area within the aperture perimeter = nD2/4
aperture diameter

obscuration fraction (the fraction (ez) of area A that is ob-
scured)

fraction of power P in the focal plane contained within the half-
Intensity circle

fraction of power P in the focal plane contained within a circle
of radius 8

gaussian power-correction factor (GP is the total power in the
gaussian approximation to a real diffraction pattern)

dimensionless angular radius of the half-intensity circle (unit
angle = /D)

intensity (power per unit area) at a point in the focal plane
maximum intensity (power per unit area) in the focal plane
the zero-order Bessel function

diffraction limit (if 6 is the spot diameter for a diffraction-
limited system, m6 is the diameter for an "m times diffraction-
limited" system)
aperture radius _ D/2

beam radius w
power radiated from the aperture to the focal plane (no trans-
migsion losses)

taper parsmeter =

distance from :he aperture to the focal plane
radial distance in the plane of the aperture (see Fig. 1)

dimensionless standard deviation of a gaussian approximation to
a diffraction pattern [oD = g(A/D)R]

time interval during which the laser beam stays focused on a
target

wave amplitude at points in the focal plane (I = !U?z)

wave amplitude at points in the plane of the aperture

1/e2 radius of a gaussian beam incident on the aperture

1/e2 radius of a gaussian beam at the focal plane (wD = EuD)

dimensionless variablr of integration denoting radisl distance
in the aperture plane = 2r/D

radial angle subtended by a radial distance ¢ in the focal plane
when viewed from the aperture = 5/R (see Fig 1)

angular standard deviation associated with a cvircular gaussian
diffraction pattern = oD/R
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angular standard deviation associated with a circular gaussian
probability density function = oJ/R

dimensionless radial angle = 7%5 (see Fig. 1 for o)

obscuration ratio (the ratio of the diameter of the central ob-
scuration to the diameter of the aperture) = VF

wavelength
radial distance in the focal plane (see Fig. 1)

standard deviation of the two normal distributions that combiuz
to form the circular gaussian distribution

linear standard deviation associated with a circular gaussian
diffraction patrern

linear standard deviation associated with a circular gaussian
probability-density function (jitter)

dimensionless intensity at a radial angle B in the focal plane;
unit intensity = PA/A2R2

dimensionless inteasity averaged over a disc of radius B in the
focal plane

maximum dimensionless intensity in the focal plane

dimensionless intensity averaged over the half-intensity disc in
the focal plane
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I. BACKGROUND AND QVERVIEW

Some types of lasers produce (ideally) a monochromatic collimated

(1)

beam with a gaussian radial-intensity variation. This beam can be
. expanded by telesccpe-like optics, projected from an output aperture,
focused onto a distant target, and kept aimed at that point on the tar-
fet fur some appropriate time interval., The focusing produces a high
power density by concentrating most of the projected power onto a small
spot on the target. Keeping the location of the spot fixed produces a

high energy density.

TSI AN QIT/RNTRET LT AL R ST WRAANIERR VT 80T WL

For high-quality optics, one of the factors that determines how
much concentration of power is possible is diffraction, Section II of
this report examines the characteristics of diffraction patterns pro-

duced by circular apertures with circular central obscurations. Special

T T SV W VLA § B ARAT

emphasis is placed on the effects of truncation and obscuration. A few

aay e

of the patterns are described in considerable detail; i.e., intensity

- and included power are given as a function of radial distance in the
: focal plane. For more concise pattern descriptions we have chosen the
"spot" to be the circular area whose edge lies at the points where the
intensity has fallen to one-half of the peak, central value. Formulas,
tables, and grapnhs are presented that emnable the reader toc estimate the
peak intensity, the spot size, the power within the spot, aud the av-
erage intensity over the spot that can be achieved by a given laser/
telescope system.

If the diffraction pattern stays fixed with respect to the target

surface, the vesultant energy densities are easily determined by multai-

P focageen,

plying the power densities by the time interval. Section III addresses

o

the problem of estimating energy densities when the center of the dif-

fraction pattern moves or '"jitterc” about an aim point on the target.

A method for estimating the effect of jitter is presented that depends,

o Ere AT AN Me§ Eapy

in part, on approximating a real diffraction pettern with A gaussian
pattern. Adequate approximations car be constructed by usiug some of
the pattern characteristics developed in Section [,

Some of tbe general results given in this report have also ap-

peared elsewhere in the literature, Mauv of the yite.ences listed a:
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the end of this report include studies of the effects of truncation and,
to a lesser extent, obscuration on the Propagation of gaussian beanms.
But they do not contain the detailed, specific values for the half-
intensity spot sjzes and included powers tkat are given In this report,

It was this lack of data that prompted us to undertake the calculations
reported here,
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iI. DIFFRACTION PATTERNS

This section presents characteristice of diffraction patterns (or
"images") produced by circular apertures with circular central obscura-
tions. The radiation incident upon the aperture is assumed to be a
monochromatic be:m with a conve*ging spherical wave front and a gaussian
radial-intensity variation. The wave front leaving the aperture will
be truncated and sometimes obscured. We will compute the diffraction
pattern that occurs in the geometric focal plane, i.e., in a plane that
18 normal to the beam axis and located at the center of cvryature of
the emerging wave .ront. Results of such computations are o¢ften called
"far-field" results because they also describe the radiaticn pattern

at great J.stances fvor apertures illuminated by plane waves., All are
examples of Fraunhofer diffraction. \

i
\

INPUTS AND M2THODOLOGY

PRGN S YR TIRLATRO DY |

_The emerging beam is centcred in the aperture. Figure 1 shows
the geometry and identifieq some of gre psrameters: D is the aperture

‘, Aperture FOCOE’V

Tyl VRN Rt

TIOR3 T 2O T

Sl
[
]
§

\

Fig. 1 —The geometry and the coordingtes

TR T

* . . .
Througlicut this rep-rt, intersity reiers to power per unit area,
Tn the current literature, this quantity is often called irradiance.)
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4 diameter, €D is the diameter of the obscuration, and R is the distance
E . to the focal plane. Because of the axial symmetry of the output radia-
tion, the diffraction pattern will have the same kind of symmetry. :

. Points in the focal plane are denoted either by their radial distance
p' from the center of the pattern or by the "radial" angle a that p sub-
tends when viewed from the aperture. .
Toints in the aperture plane are denoted by their radial distance
r from the center. The gaussian amplitude distribution of the aperture

iliumination can be expressed as

e(r) = u exp(-r2/w2) (1)

1 \

\
where w is a constant defined to be the beam '"radius.”" The intensity

is given by lulz. Thus w 1s the radial distance at which the intensity
has fallen to 1/e2 of its axial value,

X Note that Eq. (1) describes the amplitude of a plane wave. If it

! became necessary to specify the wave-front cur-ature, u(r) would be
mulqﬁplied by ¢ .mplex phase factor of the form exp(-ian/AR). How-
ever, Eq. (1) is the proper amplit-de expression té use in the equations

that will be presented later.

oL o

Solut*»on for an Infinite Gaussian Beam \

An analyticalvsolution exists for the wave propagation of an ideal
(infinite) beam.(z) Dickson(3) ()

and Bloom have estimated that 1if the

‘ aperture radius is, at least twice as large as the beam radius, the ef-

iects of the truncation are "negligible'" and the analytical solution

is adequate. For this idealized case, the beam remains gaussian every-
1

where. The diffraction pattern at the focal plane has a radius v, given
&)
by

R T ATIIEY

Bl
£
[}
}

AR
o W

*
The quantlty ., which is the ratios of the two diameters €D and D,
is usually called the obscuration ratio.

T Y




where A is the wavelength. The focal-plane intensity distribution I(p)
is then

1(e) = 1, exp(-20° D) 2

The intensity Io at the center of the pattern can be found bv equating
the total incident power P to the integral of I{p) over the focal plane.

The resultant value of Io is

2
Io = —Zg =2 P;Hé 3
wwo AR

The Diffraction Equation

When the output beam is significantly truncated or obscured, the
diffraction pattern is no longer gaussian; rather, it resembles an Airy
pattern, i.e., a bright central disc surrounded by alternate dark and
light rings. To find the intensity at a point in the focal plane, we
must evaluate the Fraunhofer diffraction integral which yiclds the wave
amplitude U(p).* The intensity I is then given by I = iU{Z.

For a wniformly illuminated circular aperture with a central ob-

scruation, the Fraunhofer diffraction integral is(s)

roje

2w 2%
U(a) =3RY ‘{ Jo (_): cx,r) r dr

£32

where u is the uniform wave amplitude at the aperture, and Jo ie the

zerc-order Bessel funciion. Note that the integration 1s performed

*To amplify an earlier comment, F:aunhofer diffraction appiies
either in a focal plane or in the far fieid (R >> 22/)) of a collimated
beam.(s) Elsewhere, the Fresnel diffroction integral must be used.
Results for zuch "near-field" intensities produced by truncated gaus-
sian apertures are preasented in Refs, 6 and 7.




over the illuminated portion of the aperture and that the radial angle
o is being used to denote the radial location of the point in the dif-
fraction patl’.em.‘r

If the aperture illumination is nonumiform, the amplitude u(r)
must be brought under the integral sign. For a gaussian illumination,
the result is

U(o) = 2 u exp(-rzlvz) I, (—2% ar) r dr (4)

IR o

(-]
\Nue

€2

The diffraction equation (Eq. (4)) can be cast in a form that is
more suitable for calculating and presenting results. First, we fintro-
duce twc key aperture parameters, n and F, that specify the mount of
truncation and obscuration. They are defined as

o aperture radius _ D/2
beam radius W

F = the fraction of the total circular aperture area (rDzlls) that

ic obscured = cz

(Thege parameters will be discussea in more detail later.) Next, wve in-
troduce the dimenstionless radial angls 8 = T% and change tae variable
of integration to z = 2r/D. As a resul: of these four changes, the dif-

fraction equaticn will become

n

1
-l'x ~
U(s) = —;—- u_ ! o(rcz; z dz
’F

z,
whetre A is the full circular area rD /5.

%
The approximartion ¢ = 1R is used here ancg elsewhere (hroughout
this report.




Finally, we find an expression for u, by equating the total radi-
ated power P to the integral of the intensity over the aperture. That

is,

2 -2n%z2
u e r dr

s -]
[ ]
[ %)
3
Nlo \NIU
(o]

1
= 2Au2 f e-Zn
o
/

F

22
z z dz

2 2
(e-ZFn _ e-2n )

Auz
0
2n2

Thus

-
= () (came?_ 2ol

so the diffraction equation becomes

u(s) = ( ‘;Az)% 2/2n I f e F I (n82) z dz (5)
AR (e-ZFnz _ e-an) /F

An advantage of this formulation is that all of the parameters
that have physical dimensions have disappeared from the integral and
appear together in the single expression PA/AZRZ. This quantity is of

special importance in diffraction theory because it is the expression

e L St LA

it e s ks




for the maximum intensity in the Fraunhofer diffraction pattern produced
*
by a uniformly illuminated aperture of area A. It 18 a natural choice

for a normalizing factor, i.e., a unit of intensity. Therefore, the

final statement of the diffraction formula is as follows: We define a
dimengionlegs intensity ¢(B) by thz expression
2
1l
22
2v2, -
6(8) = ——x - fe“’ I (n82) z dz (6)
2 2 °
e-ZFn -2n ) /F

and use ¢(B) for describing the diffraction-pattern characteristics.

The "physical” intensity can always be found later from

I(B) = ¢(8) + —A N

2232

and linear radif in the focal plane can always be found from a = B8(X/D)

and p = aR.

The Maximum Intensity

The maximum intensity occurs at the center of the image, which cor-

responds to 8 = 0. When B = 0, the function Jo = 1, This simplifica-

tion e¢f the integrand allows the diffraction integral to be evaluated
The resulting expression for the dimensionless maximum

in closed form.
*k
intensity ¢° is
2
" (1-F) _ 1
2
en (1-F) +1

(8)

2
% 2
n

*It is also the maximum possible intensity.
the aperture ifllumination will reduce the maximum.

**Reference 9 presents a closed-form solution for the on-axis in-
tensity for all ranges, including the focal range.

An¥ nonuniformity of
(8
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It is not difficult to verify that

li-oosl—?
0

This is a necessary resuit because n + 0 implies a uniform agerture il-
lmination. In that case we must have

PA’
I ==
[+] x.RZ

wvhere A' = A(]1 - F) is the true aperture area.

Equations for Included Power and Average Inteasity

Other important diffraction-pattern characteristics, aside from
+(8) itseif, are f(3), the fraction of the total power in the focal
plane coatained within a circle of radius 3; and 3(3), the awverage in-

tensity over a circle (or "disc") of radius 2. Starting with

£(8) *‘11; f % 3(2) 21z d:
AR
0

]

and using the relation : = 2(*/D)R, we oktain

2
£(2) = 5 f 2(2) £ ds )
0

To find a useful expressior for :(Z), we start with the required

relationship
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(@) = ’2' 5 £(8) (10)
. B}

Selected Input Vi ues for n and ¥

The equation for #(B8) shows that for a given value of 8, the in-
tensity ¢ depends upon the values of only two parameters, n and F. As
defined earlier, 1 = (D/2)/w. Tbe introduction of n allovs the aperture-
illumination amplitude to be written as u = u, exp[-n Q rlD)Z] At the
edge of the aperture thre inteasity falls to exp(-Zn ) of its axial value.
Figure 2 shows hcw the intensity varies across the aperture for n = 0,
0.5, 1.0, 1.5, and 2.0. These five illuminations encompass a very wvide
range. HNote that n = 0 implies a uniform 111u-ination.* The greater
<he vaiue of n, the more steeply the irteasity curve tapers from the
center to the edgz, Therefore we shall call n the "taper” parameter
in the remaiader >f this discussion. This parameter is a measure of
the nonuniformity of the illumiration.

The obscuration fraction F is the fraction of the total area A that
is obscured. Figure 3 shows the aperture appearances for F = 0, 0.1,
0.2, 0.3, 0.4, and 0.5. Clearly, they encompzss a wide range of obscur-
ations.

Later in this section (pp. 13 - 19), certain specific and aggre-
gate characteristics of diffraction patterns will be presented for all
combinations of n and F.

Proper Interpretation of 7 and A

Before we present results, some words of caution are appropriate.
i1t is important to remember that the power P in the expression PA/) R

is the power radiated from the aperture (to be even more precise, P

Y
By having earlier factored P and D out of the diffraction equation,
we have avoided the impiication that no power is radiated if n = O.
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F=0 F=0.3 F=0.2
F=03 F=0.4 F=0.5

Fig.3—Aperture appearances for var'ous obscuration froctions, F

should bz the nower that reaches the f~ral plane, but we will assume no
transmission losses). The power of the laser beam that enters the beam—
expansion optics is not necessarily the same. To formulate the diffrac-
tion equations, wWe postulated that the wave is a: idea. gaussian before
it is truncated and obscured by the apertvre. For such a case, it is
easy to show that if the power of the ideal beam were P', then the power

transmitted by the aperiure would be

2
) (11)

2
p=p' - (e-ZFn _ e—2n

the losses being caused by truncation and obscuration. But a real beawm-
expander might not work this way. This study has not examined methods

for estimating such losses.
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A second point to reemphasize is that the area A in the eapcession
PA/\zl2 is not necessarily the illuminated area of the aperture. It 1is
2
alvays equal to the full circular area »D“/4. 4hen there ‘s obscurationm,

the illuminared area is ecual to A(1 - F).
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RESULTS

First we will present, in detail, ihe patterns corresponding to a
selected set of four paixs of values for n and F. Less dctailed results :

will then be presented for the 30 pairs considered.

Detailed Diffraction-Pattern Characteristics

Figures 4 through 6 show intensity ¢ versus radial angle 8 for a
selected set of tapers and obscurations. The tapers are n = {, corre-
sponding to unifors illumination, and n = 1, corresponding to a gaussian
truncated at the 1/e2 radius. The obscurations are none (F = 0), and 10
percent (? = 0.1). The results in Figs. 4 thrcugh 6 were cbtained by
direct numerical integration of the diffraction integral. No general
closed-form solution exists.* However, series solutions that may con-
verge vapidly have been devised.(7’10)

Figure 4 shows that tapering the illumination decreases the maxi-
mum intensity, widens the central disc, and reduces the intensity of
the rings. Figures 5 and 6 show that obscuration decreases the maximum
intensity, narrows the central disc, and increases the intensity of the
first ring.

Figure 7 displays the fraction of the total power in the image

x
For uniform illumination (n = 0), $(B) can be found analytically.(s)

The solution, first found by Afiry, is

2J, (nB)
"(‘””131:[ L -

2
ZJl(cﬁB)]
F

Ll enf

where J, is the first-order Bessei function. Results obtained from
this formula and from the analytical formula for ¢, were compared with
reguits obtained bv numerical integration to assess the accuracy of

the numerical methods. For all comparisons, quantities agreed to with~
in at least three siznificant figures.
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Fig. 5 —Diffraction patterns for n=0 {uniform illumination)
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Disc angular radius (unit angle=\/ D)
Fig.7 —Fraction of image power within disc

that lies within circles (i.e., discs) of various radii. The curves
show the behavior of the central portion of the patterr; they have ‘een
stopped at the first null., TIf they were extended farther, they would
zesémble gstep ftunztions as successive rings are included within the
circle. Thede curves illustrate the main effect of a central obscura-
tion: It Jdiffracts power into the rings.

Figure 8 displays the average intensity as . functica of the size

of the disc over which the average is taken. In laser-application stud-

ies, an average intensity is often useg to describe the diffractiou
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E £ Fig.8-—Averoge intersities within disc
§ pattern, yet there is no agreement among investigators about what disc
£

size should be chosen for taking the a\}erage. Figure 8 shows ‘that the
average inteasity can be a strong function of this choice,

Table 1 summarizes some of the major characteristics of the central

o PREEETER R ITY WEAY e

2
portions of these four patterns. The full central dis., the "1l/e™

disc, and the "half-intensity" disc are considered. The radii of the

latter two extend to the points where the intengity has fallen, réspec-

B

tively, to 1/22 and one-half of the peak value,

R T




T, . TRRETETIS WA Y

S T T

WV A QST AT

3
"]
)
o
it
VT‘ 3
."'” 3
"3
LY
%
J."
£
&

n PAEATINTE S g S B LT S S AR Y

v Ay ke

h x| SRS T TN IR, TIY TAIY MU ey ¢

R A

-19-

Table 1

DLFFRACTION-PATTERN CHARACTERISTICS

Value
Gauvssian I1lumination
Uniform Illumination | with 1/e?2 Truncation
No Obacu~| 102 Obsicu- | No Obscu- | 102 Obscu-
Characteristic ration ration ration ration
Peak intensity® | 1.000 0.900 0.924 0.844
Full Central Disc
Angular radius® | 1.22 1.13 1.43 1.20
Power fraction 0.838 0.668 0.955 0.720
Average intensity| 0.229 0.220 0.191 0.203
1/e2 pisc
Angular radius 0.823 0.773 0.915 0.830
Power fraction 0.767 0.615 0. 866 0.663
Average internsity| 0.459 0.417 0.419 0.390
Half-Intensity Disc
Angular radius 0.514 0.488 0.566 0.522
Power fraction 0.475 0.385 0.530 0.412
Average intemnsity| 0.727 0.655 0.671 0.613

a1t intensity = PA/AZRZ,
bUnit angle = A/D.

kesults for the Half-Intensity Disc

The maximun intensity 40 is an important descriptor of a diffrac-
tion pattern, but because it describes the power density at a single
point, it gives no infurmation about hcw much power can be concentrated
into some finite-sized spot. For the following presentation of results
we have chosen the half-intensity disc as the spot to be described.

Table 2 shows the values of the maximum intensity ¢° for all com—
binations of the taper parameter n and the obscuration function F. In
similar fashion, Tables 3 through 5 display the radil of the half-intensity
discs (denoted by h), the power fraction within them (denoted by f), and
thier average intensities (denoted by 3).*

t

Although three quantities are presented for the half-intensity
disc, only twe are independent. The three must satisfy the relation-
ship o = 4E/n7n2,
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Table 2

MAXIMUM INTENSITY2

Maximam Intensity, o
Obscuration Taper Purawater, n
Fraction, F|] 0.0 0.5 1.0 1.5 2.0
0.00 1.000] 0.995§ 0.924] 0.719 | 0.482
0.10 0.900| 0.896] 0.844] 0.682 | 0,473
0.20 0.800| 0.7971 0.760| 0.637 | 0,461
0.30 0.700| 0.698] 0.673} 0.584 | 0.443
0.40 0.600| 0.599] 0.583{ 0.523 | 0,417
0.50 0.500]| 0.499} 0.490] 0.453 | 0.381

Lyuit intensity = PA/A R,

Table 3

HALF-INTENSITY RADIAL ANGLE2

Half-Intensity Radial Angle, h
Obscurstion Taper Parameter, o
Fraction, F| 0.0 0.5 1.0 1.5 2.0

0.00 0.514| 0.526] 0.566] 0.646 | 9.773
0.10 0.488| 0.496) 0,522} 0.571 | 0.639
0.20 0.466| 0.471] 0.483] 0.519 | 0.561
0.30 0.44G] 0.450]1 0.461] 0.481 | 0.507
0.40 0.430{ 0.432| 0.439 | 0.451 ] 0.468
0.50 0.415] 0.416] 0.421] 0.428 | 0.438

*Unte angle = A/D.

Table 4

FRACTION OF IMAGE POWER WITHIN THE
HALF-INTENSITY CIRCLE

Fraction of Image Powsr, f
Obscuration Taper Parsmsster, n
Praction, ?| 0.0 0.5 1.0 1.5 2.0
0.00 0.475| 0.494] 0.530] 0.536 | 0.514
0.10 0.385] 0.396] 0.412] 0,398 | 0,347
0.20 0.312] 0.318] 0.325 | 0.307 | 0.260
0.30 0.251] 0.254] 0.257 ] 0.243 | 0.205
0,40 0.199] 0.201] 0.202} 0.191 | 0,164
0.50 0.155] 0.155] 0.156 | 0.149% | 0,132
Table 5

AVERAGE INTENSITY WITHIN THE
HALF~-INTENSITY CIRCLE?

Ave Intensity, §

Obscuration aper Pa

Praction, P{ 0.0 0.5 1.0 1.3 2.0
0.00 0.727] 0.722] 0,671 ]| 0.521 | 0,349
0.10 0.655] 0.6352] 0,613 0,495 ] 0,344
0.20 0.582] 0.380] 0.333] 0.46) | 0.133
0.30 0.310] 0.309] 0.4%0 | 0.425 | 0,322
0.40 0.437] 0.436] 0.4251 0,381 | 0,304
0.30 0.364] 0.364] 0.337] 0.330 0,278

%nit intenstty = PA/ATR,
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To display the trends and to facilitate interpolation, we have
presented these results graphically in Fige. 9 through 12.

As an 1llustration of how these general results can be applied to
a specific case, consider a hypothetical system that radiates 30 kW of
continuous-wave power at a wavelength of 10.6u from an aperture 30 cm
in diameter. (These parameters are consistent with the performance of
002 gas-dynamic lasers reported in Ref. 11.) We wish to compute the
diffraction-pattern characteristics, using the half-intensity disc, when
the beam is focused at a range of 500 m. First, we compute the unit
Intensity, PA/AZRZ, as 7,550 w/cnz. In this example, we assume that
the aperture illumination is gaussian with 1/e2 truncation and 10 per-
cent of the aperture area is obscured (n = 1, F = 0.1). Then, using
the appropriate numbers from either the fourth column of Table 1 or
from Tables 2 through 4, we find

Peak intensity = 0.844 (7,550) = 6,370 w/cm®

Average intensity = 0.613 (7,550) = 4,630 w/cm2

The radius of the spot of interest is 0.522 (A/D)R, which yields a spot
diameter of 1.84 cm, about the size of a dime. The power within the
spot is C.412 P = 12.36 kW. It is easy to verify that this power di-
vided by the spot aree (2.67 cmz) yields the average intensity computed
above.

It must be remembered that the power densities computed by this
method are theoretical upper limits. However, to illustrate the effect
of such a high power density, if the target were indeed a silver dime
and if 1t absorbed 10 percent of the incident radistion, it would melt
in less than a second. (The reader is cautioned that melting silver

dimes with laser beams is neither cost-effective nor legal.)

An Empirical Relationship Between Maximum and Average Intensities

When the taper and the obscuration vary, the maximum intensity ‘o
and the average intensity § each vary over a wide range. However, the

ratio 3/¢o is very nearly a constant. We computed this ratio (¥ from
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Table 5; ¢° from Table 2) for each of the pairs of values for n and F
and found that

ril

0.724 < < 0.729 (12)

%
Therefore, the relationship'$ = 0,727 ¢°, which is correct for the Airy
pattern (n = 0, F = 0), remains correct within 0.5 percent over the en-
tire range of tapers and obscuration considered in this study--a very
broad range.

Apparently, the central portioas of these diffraction patterns--
out to the half-intensity circle at least--have a characteristic shape.
That is, one curve of ¢ versus R can probably be transformed very nearly
into any of the others simply by changing scales.

The plausibility of this result is indicated by the following ar-
gument.* The Bessel function Jo(x) can be expressed as a power series
that has the form Jo(x) =1 - azx2 + a414 - a6x6 + ..., where the a's
are known constants, If Jo(wsz) in the diffraction integral (Eq. (5))
were replaced by its series and the term-by-term integration completed,
the resultant expression for the amplitude U(B) would have the form
U(B) = bo - b282 + b484 - b666 + ..., where the b's are constants. In
the region of interest, B remains small; therefore, the first two terms
may dominate the series. Assuming this to be true, it is easy to show
that 1if U(B) = b0 - b282, then 3/¢o = 0,736, independent of the values
of b0 and b2.

Estimates for the 1/e2 Disc

In light of the pattern consistencies describsd above, it seems
plausible that reasonably constant relationships exist between charac-
teristics of the 1/e2 disc and the half-intensity disc. To test this
conjecture, we can manipulate the results presented in Table 1, which

shows characteristics of both discs for four different sets of aperture

*
Developed by W. Sollfrey, of The Rand Corporation.
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conditions. For each set of aperture conditions, the ratilos of results
for the 1/e2 disc to results for the half-intensity disc fall within

the following narrow boundaries:

Kl = ratio of amgular radii = 1.60 * 0,02
K, = ratio of power fractions = 1.62 * 0.02

K3 = ratio of average intensiti:s = 0.630 * 0.007

Consequently, the ratios do appear to be reasonably constart (but
the agreement between Kl and K, is probably a coincidence). Therefore,
if the 1/e2 disc 18 used as the spot, its characteristics can be esti-

mated from the following:

Angular radius = 1.6 h (13)

Power fraction = 1.6 f (14)
Average intensity = 0.63 ¢ (15)

where h, £, and ¢ are the values for the haif-intensity disc.
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1II. ENERGY DENSITIES PRODUCED BY A JITTERING BEAM

For most laser applications, it is necessary to know how much en-
ergy will be delivered to certain areas of the target when the laser
operates for a time interval t. If the diffraction pattern stays fixed
with respect to the target plane, the calculation is straightforward.
The appropriate intensities can be estimated by the methods described
earlier and then multiplied by t to get energies. However, if the pat-
tern moves laterally, the intensities at fixed points on the target
plane do not stay constant during t. This could complicate the energy
calculations by requiring integrations rather than simple multiplica-
tions.

In some situations, random processes may cause the center of the
pattern to “jitter" about an aim point during the time interval t. The
problem of estimating the energy delivered by a jittering beam is sim-
plified 1f the time-averaged intensity at a point can be treated as
being reasonably independent of the value of t. It is further simpli-
fied 1f circular gaussian functions can be used to describe both the

beam motion and the beam shape.

A METHOD FOR ESTIMATING THE TIME-AVERAGED INTENSITY

Let the aim point be the origin of a rect;ngular coordinate system
in the target plane. Let (x,y) denote the locations of the beam center
at randomly chosen instants. We postulate that x and y are independent
and are normally distributed with zero means and identical standard
deviations Ope The probability that the beam center will be located
within a small area dx dy surrounding a particular point (x,y) is thus
given by ¢(x,y) dx dy, where y(x,y) is the product of two normal proba-
bility density functions (pdf); i.e.,

2 2 2 2
1 o X /20J . 1 ey IZOJ

VE‘N OJ \/_Z_w OJ

p(x,y) =
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or more simply,

2

2
e /20y (16)

Y(p) =

ZIOJ

where pz - xz + yz. The function ¥(p) is called the circular gaussian

pdf. For want of a better term, o, is8 often called the "standard devi-

ation" of the circular distributio;, even though it is not the standard
deviation of p.

It was shown in Eqs. (2) and (3) that for a gaussian beam, the in-
tensity I(q) at a radial distance q from the axis of the beam can be

expressed in the form

2,2
I{(q) = Io e-2q /“o

where I° =2 P/lvi, and v is the beam "radius" at the focus. For con-

sistency of notation, it is advantageous to introduce a beam "standard
deviation" by the substitution o

b ™ v°/2. The resulting expression
for 1(q) 1s

2 2
I(q) = o4 /29,

) a17)
o

which is identical in form to a circular gaussian pdf except for the
inclusion of the power P.

As the beam moves, the intensity at a fixed poirt (xo,yo) will
vary. When the center of the beam is at a point (x,y) the intensity

at (xo,yo) is

p x, - 0+ 7, - 9?
I(xonyotxoy) - 2 OXp{—— 2
Zldn ZaD
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To find the expected-value or "average" inteusity I(xo,yo) at the peint

{xo,y 7 we augt evaluate the integral

@« oo

I(‘O’yos = ff I(xovyoix’Y) « y(x,y) dx dy

In Ref. 1” it is shown that this integral yields the result

R}

2 2 2
T?B;T -t —po/2(oD + oJ) (18)
21((0D + 03)

2 2 . . . , .
where Py = X, + yg. This 18 another gaussian distribution. It indicates
that the formula for the average intensities has the same mathematical

form as it would have if the gaussian diffraction pattern had been held

stationary but broadened so that its "standard deviation" became\/;g + oi.
This 18 a most useful result for two reasons: (1) The eanergy calcula-
tions reduce again to simple multiplications by t, and (2) gaussian
functions are usually easy to manipulate. For example, for a gaussian
intensity distribution with total power P and standard deviation o, it

is straightforward to show that the maximum intensity is Io = P/2n02,

the radius of the l/e2 disc is 20, the power within it is 0.865 P, and

(12) For the half-intensity disc,

its average intensity is 0.432 Io'
the corresponding quantities are: radius = 1.177 ¢, contained power

= 0.5 P, and average intensity = 0.721 Io.

THE GAUSSIAN APPROXIMATION

To ugse the simplified treatment of jitter described above, we must
approximate a real diffraction nattern with a gaussian pattern.* Clearly,
the central portiocus where the high intensities occur are the regions we
should try to match most closeiy. It follows that a '"good" gaussian

*
"Real" means only that u pattern has been comput>d from a diffrac-
tion integral.
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approximation will not necessarily represent the delivery of the same
total power as is contained in the real pattern. Therefore, we will
reserve the symbol P for the real total power and define a '‘gaussian
power-correction factor”" G such that GP is the total power in the gaus-—

sizn image. The formula for the gaussian intensity pattern t en beccmes

2 2
1(p) =~ &5 &7 /20, (19)

2noD

A more convenient form for this equation can be achieved by intro-
ducing the same kinds of dimensionless jquantaities as were used in Sec-
tion II. ‘{he variable B and a "dimensionless standard deviation" s
are introduced by using the relationships p = B(}/D)R and oy = s(A/D)R.

The resulting formula for the intensity is

., 2, 2
Pa_ 26 -B"/2s (20)

Then, by again cloosing the unit of intensity to be PA/AZRZ, we obtain

the dimensionless gaussian intensity disiributrion ¢{3)

26 82/7 2
¢(B) = 57 e °8

nms

(21)

In this formulation, all of the characteristics of the gaussian
pattern are determined by the values of the two independent parameters
s and G. 3y choosing an appropriate pair of values for ~hese parameters,

we car match at least two of the characteristics of a real pattern.

Methods for Selecting s and G

Section Il pregented charact~ristice ot real dlrtca‘tivn patterns
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that result from various tapers and ohscurations, In that discucsion,
we emphasized the maximum intensity &0 and three characteristice of the
half-intensity disc: the radial angle h, the power fraction f, and the
average 1ntensity'$. Also 1t was noted that the three half-Iatensicy
quantities are not independent because of the relationship $ = Af;wzhzn
Consequently, ¢°, h, £, and ¢ repr2sent cnly three irdependen* charac-
teristics.
A gaussian approximation can fit two of these three independent

characteristics. The method congists of first using Eq. (21) to 2xpress
¢0, h, £, and'$ for a gausaian in terms of 8 and G. The maximur inten-

sity ¢° is

To find the half-intensity radial angle h, we set exp{-bh"'25") = £
and obtain

h=38°*7Yné=1,177 s <3

The fraccion € of tbe real image power P witnin the half-intensity

circle is

h
“2
{ = 5 ¢(B) ¢ dB
0

W2, 2
= 6(l - oH /28 Y« Lo

t
) \“.‘
Z

Finally, the sverage intensicty ¢ s
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The above relatfonships cem be used in reverse %o select s and G
when 50 h, £, and ¢ are given for a real pattern. To make the gauss!an

pattern have the same half-intensity radius h.as the reai pattern, we
set

The parameter G can then be chosen so that either ¢° or 3 is matched.
To match the peak intensity,

G = 2“ ) (28)

If we wish to matcih the average intensity %, the proper formula for G
is either

22
G = 1Lj17529_££ 3 (29)

or

(30)

whichever i3 more conveniert.

A Numerical Example and Recommended MHethod

|

Consider the diffraction pattexn that results from the aperture

conditions n = 1 ané F = 0,1. (This is a gaussian illumiration with

truncation aad 10 percent opgecuration, which was examined in de-
talil in Section IL.)

I/e2

From fable 1 (or Tables 2 through 5), we find
¢, = 0894, h o= 0.522, £ = 0.412, and = 0.613.

;
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We approximate 1t with a gaussian that has the correct radius and

average intensity fot the half-intensity disc; i.e.,

= 0.444

R
8 = 1177

C=2f=0.824

For these values the equatfon for the gaussian intensity distribution
(Eq. (21)) becomes

t

2
6(8) = 0.847 e B /0-39% (1)

and the resultant fraction f(8) of the real image power P that is with-

in a circle of radius B can easily be shown to be

2,, 2
- e"B /28 )

v

£(8) = 61

2 .
= 0.824 (1 - e B /0.39%, (32)

In Fags. 13 and 14 the intensities and the power fractions of the
approximation are compared with those of the real diffraction pattern.
This compariscn shows that the gaussian fuaction is an excellent ap-
proximation for the central, high-intensity portions of the pattern.

Note that although we made no explicit attempt toc match the peak
value ¢0, a nearly perfect match occurred (0.844 for the real pattern;
0.847 for the gaussian pattern). This agreement is not a coincidence,
and it is not limjted to the specific example chusen tere. IJn Section
IT '(Eq. (12)), 1t was found that for real diffracriorn patterns, the
relationshiip ; = 0,727 ¢O remainsg correct to within about C.5 percent.
For a gaussian pattern, it is easilv seew frow ¥gs. (22) and (26) that
6; = 0,721 ¢°, These two agquations ave sindlar enough vhat it makes

little difference whether the gaussian is fitted to ! »r

N




)

L N

e e et Faon DM | - 7 T T g
— ~ _‘ A
.- | | Boy
™ [ | | ;
& | \ v
[re ' \ -
. 1 \ ~
A [0 L L=
A ._W“ .# B LR LTI POREREWRRPRIY SO ;.!.....-m. m 4n\.u .!-;In(lf/lrll —_—t .m —_ o~
. b i = \ £ 8
. < y o
M ; i “ £ §
] ] I N 1S
i ! 2 \ g
5 _ € ' g
] g8 \ Ml B “
TECTUINERTEFHES ‘ e —— e e et ] - ~ X - R m —_
w m H’ - M o) \ = ﬁ
=34 '
& « < fod \
{1 | {1 7 2 ! |
L} ' — _ v 1 | v
” ~ ~ ' B m ! \ [ “
‘ i, & E \ !
e omines s o e - o 0. b (3] I =
VN e (o
’ |
o
Z —
R SRS SR~y —— i T =
\\ 1o
- ()
S < < - ~ © e
- o o (] o -
21219 Aisudjui- oy uiyim semod IS, o uondnry
¢ 'Ajsuegu)
8 s Gl 20 AR e e 2= L i O PR PR T TR 1Y PR T R )

Argulor rodius of circle [unit angle= 1,/ 0)

tOrs

. 14 _Comparison of power fract

T ot . e b v Alitoos it oy b B, Y

3

\



g

G . AR & ks s R ey mw - n

-34-

The simplest approach appears to be the one adopted for this ex-
ample. Namely, choose s and G so that the gaussian pattern and the
real pattern yield the same radius and average intensity for the half-

intensity disc. The formulas are

g = —2 -2
To b 1.177
G = 2f

where h and f are as given in Section II.

Comments on a Speclal Case

An aperture illumination that is often chosen as "representative"
is an unobscured gaussian with lle2 truncation (n = 1, F = 0). The
resultant diffraction-pattern characteristics for this case are pre-
sented in the third column of Table 1 in Section II.

Suppose we wish to approximate this pattern with a gaussian that
matches the 1/e2 disc rather than the half-intensity disc. From Table 1,
the disc radius (2s) is 0.915, so we let 8 = (,915/2 = 0,458. The power
fraction, from Table 1, is 0.866. By coincidence, this is almost ex-
actly the correct value for a gauseian (0.865), and therefore, no power
correction is needed (G = 1). Consequently, a gaussian distribution
with a total power P and a standard deviation of op = 0.&58-% R will
match the radius and the average intensity of the 1/e2 disc of the real
pattem.

Now consider a totally different derivation of a gaussian pattern.
An approximation that has gometimes appeared in the literature results
from matching P and choosing oh 80 that the gaussian has the same maxi-
mum intensity as that of the ideal Airy pattern. Equating the two maxima

gives
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which yields

&
o>
L

(33a)

= 0.450 % R (33b)

which, by another coincidence, is very close to **» value of 9% derived
from Table 1.

These coincidences help to explain and to justify equationg devel-
oped by Peckham in Ref. 12. In that report he postulates the same ap-
erture illumination: gaussian with 1/e2 truncation. He then introduces
Eq. (33a), attributes it to Buck (Ref. 13), and states that it predicts
the 1/e2 radius of the real diffraction pattern. Finally, he conjec-~
tures that a gaussian with the same 1/e2 radius (and the same power)
will be an adequate approximation to the real image.*

The analyses presented here show that a gaussian with the same
power and 1/e2 radius as the real image would also have the same aver-
age intensity over the 1/e2 disc. Therefore, they support Peckham's
conjecture that this approximation is adequate (for this particular
aperture illumination).

The method recommended in the present report produces a slightly
different approximation. The power in the gaussian becomes 1.06 P and
the standard deviation increases to op " 0.481‘% R. The high-intensity
portion of the pattern is fitted more closely, but it seems doubtful

that these differences would prove to be important.

FINAL FORM OF THE INTENSITY EQUATION

For the gaussian intensity distribution that results from a jitter-
ing beam, the average physical intensity over the spot is ho. vhere I°

is the maximum intensity and k is a constant that depends only on the

*In subsequent nersonal communications, Peckham explained that he
was aware of Eq. (33a) and discovered that it was consistent with numer-
ical results presented graphically by Buck, but he was unaware of its
derivation.
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definition of spot size. As noted earlier, k = 0.432 for the l/e2 disc

and 0.721 for the half-intensity disc. Here we need only discuss Io' ¥

From Eq. (18), but with P replaced by GP, the proper'formula for
Io is

GP

] = —9r
2 2
Zn(cD + UJ)

o

In this formulation, o, and Oy have the dimensions of length. Since

D
jitter and the beamspread are usually treated as angles viewed from the

aperture, we introduce the angular standard deviations an and oy to get

GP

I =
o 2,2 2 (34)
27R (un + aJ)

and since ay = s%, the equation becomes

GP
o ZHRZ[(s%)Z + a§1

This is a basic equation for the intensity. It explicitly contains the
parameters G and s that are chosen to fit the nonjittering pattern with
a gaussian, However, one alteration is needed to allow the analyst to
introduce a degradation in beam quality: The methods used to obtain the
results presented in Section II imply that the beam is "diffraction-
limited.” 1In Ref. 12 an "m times diffraction-limited" beam is defined
as one for which the standard deviation of the beam is increased from
ap to may,. Thus, introduction of this parameter gives the final form

of the intensity equation,

I - —— GPX 5 (36)
° 2mR [m” (s s) + ai]

This equation is similar in form to one developed by Peckham(lz)

(14)

and used by Davis to study the relative advantages of laser systems

that produce different wavelengths.

LR T o I A
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Equation (36) can be written in many different ways, some of which
might not be immediately recognizable as the same equation. For example,
R. 0. Hundley of Rand, in several publications prepared for ARPA, ex-
presses the intensity as an ideal value wultiplied by a degradation
factor that accounts for jitter (and degradation associated with at-

mospheric effectg). To convert to Hundley's equation, we let m = 1

and rewrite I = k Io as

2 1

AZRZ aJ 2
1+(__)
an

where K = kG/ZﬂSz. The term KPD2/X2R2 is the undegraded intensity. If

I =K

1 is to be the average intensity within the half-intensity circle, then
K is simply'g n/4, where ¢ is found from Section II. One other change
is needed to complete the conversion. As long as the correct value for
the ratio aJ/aD is maintained, other measures of the jitter statistics
or beam dimensions can be used. Hundley uses BJ, the angular diameter
of the circle that contains the beam center 50 percent of the time, and
GD, the angular diameter of the half-intensity circle. These are con-
sistent parameters. He notes that BD a-:/D for a wide range of aperture
conditions (this corresponds to h = 0.5) and uses BJ/(A/D) for the ap-

propriate ratio. The resulting equaticn is

2
I=K Pznz y - 7
2R o2
1+ >
(A/D)

*See Fig. 10.
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