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A THREE-VALUED LOGICAL CALCULUS AND ITS APPLICATION To THE ANALYSIS OF
THE PARADOXES OF THE CLASSICAL EXTENDED FUNCTIONAL CALCULUS

0, A, Boohvar (Moscow)

VFrow Matyematlchyoski Sbornlk (Reousil Mathematiquos) NS, 4 4.938)*
opp 287-308,1

The three-valueO system to which this study is devoted Is of

interest as a logical calculus for two reasons: first, It is based on
formalization of certain basic and- Intuitively obvious relations
satisfied by the predicates "true"s "false" and "meanIngless" as
applied to propositions, and as a result the system possesses a
clear-cut and intrinsically logloai Interpretation; second, the
system provides a solution to a speoifically log1ial problem,
analysis of the paradoxes of classical mathematioal iogtot by
forrrally Proving that certain Pioposltlons are meaningless,

The paper consists of three parts, In the first we develop
the elementary Part of the system -- the proposltional oaloulus -- on
the basis of Intuitive considerations, In the second Part we outline
the "restricted" functional calculus corresponding to the
proposltlonal calculus Toe third and last part uses a certain
"extenson" of the functlonal calculus to analyze the paradoxes of
classical mathematical logic,

We are Indebted to Professor V1.1 Glivenko for much valuable
advice and crlticism# In Particular# he provided a more suitable
definition of the function a (see I# Section 2s subsection 1.),

* [Typist's note: Subscriots are Indicated by 4# and t is used In
place of the logical connective 4 used In the original, S Is used

for capital Sigma,]



PROPOSITIONAL CAL;VLUS

In order to clarify the baslc 14Atures of the proposItlonal
calculus, let us atialyze the lntultl'- properties of the basle tyoes
of prooositions,

First# however, we v',i rigorously determine the
relation between "propos'tbon" an. "sentence"., Following accepted
usage# we shall saY that a Propositf"-, le meaningful if It 's true or
false, Morever, a proposition wil, •e called a sentence If and only
If It Is meaningful; otherwise wo shall call the propositlon
meaningless, Any s;entence Is clearik a proposition, Any proposition
is either meaningless, true, or i.lae, If a proposition A Ismeaningless then the proPosltltmj "A is false" and "A Is true" aremeaningful but falso, The ve•dloates "true," "false" and
"meaningless" may be applied to ar:- prOposition,

Now let A and B be any pr,pooitlons, Consider the following
propositions;

"A" "A Is valid"
"not-A" "A lI false"

"A ano 9" "A is valid and B )s va Id"
"A or 8" "A Is valid or B Is valid"

"If A, then B" "If A Is valid, then B Is valid"

We shall call types I ann I! Internal and external forms of
affirmation, negation, oonJunction, disjunction and Impoloation,

T respectively, "A is meaningless" Is obviously an external form which
does not correspond to any Internal form,

It Is clear that any Internal form and Its oorresoondIng
external form have different "meanings," The esisential difference

* betbwen internal and external forms is easilY indicated by letting A(or B) be a meaningless Proposition, First consider internal forms.
It seefrs quite ObVious that if A Is a meaningless proposition then
"not-A" is also meaningless; similarly, it is intuitively clear that
any combination of a meaningless Proposition A and a proposition B by
the operations 1--- and --- ", "-- or, -111, "If .... then --. can
only Yield a new meaningless proposition,

The •ituat;on Is quite different for external forms, Let A
be a Meaningless oroposition, Then, obviously, Its external
affirmation 'A is valid" is false, but not meaningless, Similarly,
the external negation "A Is false" Is fplse, but not meaningless, If
A Is meaninmless, It is easily scin that the other external forms
are also never meaningless when A Is a meaningless proposition,



In fact, the external forms (conjunction, disJunctlon and
;mplicatlon) are precisely the correspond!ng Internal forms with A
and B replaced bY their external affirmationb, Now, sInce an
external affirmation Is never meaningless, It Is obvious that this
must be true of the external conjunction, external disjunction and
external Implication, (1)

Clearly, the external forms of sentences are formally
equivalent to the corresponding Internal forms, In other words# the
!nternal and external forms of a sentence are either both true or
both false,

This Is a Partial explanation of the ambiguous Intuitive

interpretation, still widespread In the literature of mathematloal
logic, of the primitive connectives of the classical sentential
calculus (2), vlz,j Internal and external forms ae employed
interchangeably fur negation, conJunction, disJurictlon and
Implication (see, for examples PRINCIPIA MATHEMATICA, Volt I, Part 10
Section A), However this ambiguity has nothing to do with the actual
nature of the classical formal sentential calculus, Indeed, the
classicai sentential calculus does not regard affirmateons as
functions of a sentential variable, ie,, it considers only Internal
affirmations and therefore admits Interpretation only via a system of
Internal forms,

We must admit that, In principle, the system of internal

forms Is of course absolutely adequate for an Intuitive
Interpretation of the formalism of classical logio and mathematlas,
since the latter deals with the symbols of the sententla; calculus,
Owing to the Incompleteness of natural language It Is rather
difficult to find a brief and convenlent verbal expression for the
Internal negation of a sentence of the type "A and B"1 nevertheless,
in principle It Is quite clear that thi3 Internal negation Indeed
exists and Is even easily expressed In terms of natural language,
provided one resorts to certain definiltions which In themselves are
Oulte legitimate,

Accordingly, Internal and external forms will be referred to
as classical and nonclassical Intuitive functions of oroposltlonal
variables, respectively.

I3
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SECTION 2, Truth-table form of propositional calculus

"1, BASIC CONCEPTS AND DEFINITIONS, a; b, ot dcl,, $ wIll be
Propositional variables. The set of values for each of these
variables comprises three elements: T (read "true"), F (?'ead "Wai•s")
and U (read "meaningless") and no others,

We Introduce the usual functions of the propositional

variables. Each function is defined by a truth table, as follows.
First list all Possible systems of values for the arguments, In an

arbitrary but fixed order, to the left of the double line; to the
right of the double line enter the values of the function,

As the primitive classical functions we introduce formal

intornal negatlonp ,a (read "not-a") ard formal internal conJunotion
anb (reed "a and b")# defined by the following truth tables:

a- a b amb

TF T- 00~T
F T T F F
U U F T F

F F F
TU Y
F U U
U F U
U U U

Our primitive nonclassical functions will be formal external

affirmation I- a (read "a Is valid") and formal external negation >a
(read "a Is false,"), defined bY the following truth tables:

a I-a a >4

TT F

F F F T
U F U F

The following definitions are Intended solely to slmpllfy the

notation and need no explanation (the symbol a denotes eaualt1y by
definition): D

- I-a = -(I-a),t D

I->a I- a)

D
r L>a -(a

and so on# for any finite sequence of symboIs -, I-, > and the symbol

7; ~4



' to be introduced below,

We now define some classical functions uaing classilcl
negation and conjunction;

(D•,} (a u b) = -(-'a n "b)
D

(042) (a * b) = *(a n "b)
D

('&3) (a = b) = C(a P b) n (L, z a)3

The function aub-.- formal Internal or olassloal IlsJunctlon --- isread "a or b", The function a~b --- formal Internal or classloalImplication --- Is road 'If a# th b", The matrices of thefunctions aub, azb, a=cb are easily onstructed using the above
definitions,

Using formal external affirmation and formal externalnegation, we define the following functions;
(D44) (a A b) = (I-a n 1-b)

(045) (a v b) = (1-a u I-b)
D

(D16) (a b) = (I-a I-b)
D

(047) (a b) c M( b) n (o a)3
D

(D4'8) (a = b) [ (a =,b) r (-,a - -b)3

(D69) a -(I-a u >a)

(D010) a - I-a (3)

The function aAb --- formal external or nonclassical conjunction ...is read "a Is valid and b Is valid", The function avb --- formalexternal or nonclassical disjunction --- Is read "it Is valid or b Isvalid", The function a4b --- formal extarnal or nonclassicalimplication --- Is read "If a Is valid, then b Is valid",, or "theoropcsltion b follows from the proposition a", The function aob isreau "a Is eouipotent to b", The function azb is read "a Isequivalent +,o b".

It Is Interesting to compare eQuipotence and equlvalenoe, Ifabt, then the truth of either of the propositions ab Implies thetruth of the other, but this does not mean that a and b are logicallyequivalent, If one of them Is false, the other need not be false ...it may be meaningless, One oannot Infer from
a14othat

-a-4-b
or that

5
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On the other hand, any proposition following from A Also follows from

b, and vice versa, and tn this sense & and b aro equIpotent,

If
azb,

not only does the truth of either of alb Imply that of the other;

now, In addition, If one is false, so Is the other, and if one Is
meaningless, so Is the other, If two propositions are eQuiValent,
they must be eouipotent, but the converse ts generally false, Note
that the truth tables of equivalent functions are Identical, Hence
equivalence plays the part of 'mathematloal identity" In the
propositional calculus, The functlon -a is read '"a is meantrigless",

FinallY, the function a Is read "a Is nMt v ;td',
using the definitions, we construct the truth tables of

ta and a:
a 'a a

F F F T
U T U T

The truth tables of the functions aAb, avb, a4b# a-b, aEb are

also easily constructed,

We now give a rigorous definition of formula, The definitlon

Is Inductivel
1) Any propositional symbol Is a formula,
2) If A is a formula, then -A, I-A and >A are formulae,
3) If A and B are formulas, then AnB Is a formula,

To simplify the notation for formulas, we shall use the "dot"

notation Cof PrIncipla Mathematlca3,

DThe symbols zo Dc~, 40 00 =s are stipulated to be of equal

rank, higher than that of the symbols n, u, A, v, The latter blnd
more strongly than the former.

The symbols -, I-, >, t act only on the letters and
parentheses directly following them,

The symbol always applies to the entire expression below It,

Thus,
avo4bva

denotes the formula
(a v b) 4 (b v a).

The formula

0 a ta b in, a "b v tb ,% a v ta
denotes the formula

6



((a * b) n Ca v(.b v tb)J) * (qa v',a),
The definition of the function a-b may now be written

a a , b a , a b ,n, b a#
D

and so on,

A formula Is said to be Provable In the truth tablePropositional logic If It has the v~lue T for all Possible argument
values, Provable formulas are also known as tautologies' Proof Is
reduced to verification. VerifIcatlon is most systemattcally andsimply carried out by constructing a truth table for the functlon In
question.

A formula which does not take the value T for any values 'of
its arguments Is known as a contradlction, If A Is a

contradictlonther X is a tautology, Moreover, If one of the formulas

"-A, >A, tAo A, Is Provable, then A is a contradlctlon,

A formula which contains only 'propositional variables and
symbols for the classical functions will be called a 'olassloalformula, Let Phi(a41,,.,,a4n) be any formula, with a -glven truth
table, The truth table has 3tn rows, Call the set of rows In which
no argument ever assumes the value U the TF-subtabl. of the formula.
It Is olear that the TF-subtableoontains 2tn rows. The remaining
rows cororlse wlhat we shall call the U-su ,able of the function,
The j-subtable contains 3tn - 2tn rows,

7



2. UNPROVABLE FORMULAS IN THE PROPOSITIONAL CALCULUS,II

THEOREM I. No classical formula Is orovable in the
propositiona,l ca'lculj s,

PROOF, Obvious, sinco any every classical formula assumes
the value. U when one of Its arguments assumes the value U,

I THEOREM, II. No contradiction Is provable In thp

p-opositi:onal calculus,

PROOF, This follows Immedia.tely. from the dflin)tions o0t

Drovable formula'and contradl:ctlon In subsection 1,

Exampl'es of contradictions are the formulas
a A >a#
a., >a,

a "a,

THEOREMH III, No '.ormula whose construction Involves only
nonclassical functions can be equivalent to a classical formula,

THEOREM IV# The f6rmula ta (therefore also A) cannot even be
equlpotent to a classical formul.a.

Theorems III and IV follow Immediately from the #orm of the

truth tables 1 - 6 In subse'ction I,

4.
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3, IMPORTANT FORMULAS PROVABLE IN THE PROPOSITIONAL CALCULUS,
THEOREM V. Any formula Drovable in the classical sententlalcalculus which has the form A D B (4)M where A and B Contain the samevarlables# remains provable In the nonOlagsioal Oal@UlVT If the3ymbol a between A and B It FSPlIaed bY 4and the vaptables areregarded as propositional varlablea,

Similarly, any formula provable In the classical sententialcalculus which has the form A oc S, where A and B contain the same
variables, remains provable In the proposltional calculus If thesymbol ac between A and B Is replaced by . and the variables regarded
as Propositional variables,

We prove the first part of the theorem, It Is obvious thatIf A 2 B Is provable In the classical sentential calculus then @very
row In the TF-subtable of the formula A=. s5510nG the funotlon the
value T,

Now lot one of the variables a6l assume the value U, Since Aand B re classical formulas and both contain 0.l by assumition, theyboth tssu the value U, But by the definiion of a-bp
U4U OT.

Consoquontly, every row in the U-subtable of the formula A4Balso g9vos the formula the value T, This ProvoS the theorem,
THEOREM VI, The truth table oroposlttonal calculus contains

a subsystem Isomorphic to the classlcal truth table sententilacalculusi the formulas of this subsystem are derived from those ofthe classical sententlal calculus by the following transformations(5) (we abbreviate "classical sentential calculus" by o,,o,o and
"propositional calculus" by p,cq);

1) Replace each sententlal variable by the oroposotlonal
variable with the same symbols

2) replace the cos.,c symbol by the p.C. symb(I I
3) # 1 U t it t t t V

4 ) it it to to V it o f5) ift f e y to Vnf it ih t h o
6) of V1 It ac to qf "I

PROOF, It Is easily shown bY truth tables that the #ollowing
formulas are tautologiest

(sb) a 4 a n a(2) anb~bna
(3) a o b to, a n o b n c
(4) a bn, b 4O,, a*O
(5) b 4 ,a ' b
(6) a n, *a b, * b
(7) a " a v b
(8) a Vb b va

K9



{9) a 0,n, b 4a.4 v b

(10') a 4 a b
(11) a- n

(12) a V io

The system of formulas (2) to (12) Is an Isomorphic Image of the

following system of c.sc, formulas:
a za n a
a n b o b n a
a b D, a n o C b n ,
a b ,e, b D c z, a * c
b aza h
an, a b, b
a za u
aubrbua
a C ,n, b z C ,;1 a U b z c

-a z, a b
a b , n a z -b "a
a " •a,

But, as Is well known (6)W this Is an axiom system for the classical
sentential calculus, if the rules of Inference are as followsu

!, Principle of deduction Emodus ponens~i

if a and a.b are provable formulas# then b Is a provable
formtula.

2) Rule of combination:
If a and b ate provable formulas# then anb Is a provable

formula.
3) The substtution prinoiple In Its conventiooal form,

We now deduce from the truth table of the function a~b that

tne deduction Principle is valid In the Propositional calculus In the
followirg form:

If a and a4b are provable formulae, then b Is a provable
form~ula.

Furthermore, examination of the truth table of the

function anb shows that the combination rule also holds In the
propositional calculus:

If a and b are provaole formulas, then anb Is a provable

forwmula,

Finally, It IS obvious that the substitution PrincIple also

remains valid In the propositional calculus, This oomoletes the
proof of Theorem VI.

The Isomorphic Image of the classical sententlal calculus
whose existence we have Just established will be called K6i, It Would
be easY to show that the Propositlonal calculus contalns another
system Isomorphic to sententlal logic; It Is obtained 1rom K&1 by
re laOIng the symbol C by A and the symboi - by 5, This second

10



Isomorphic Image of the clase!cal sentential ocaoulus will be called
the syatem K62 (7),

Theorems V and VI prtelde a tool for ritfinIng varous ollassos
of formulas provable In the oropcsitlonal oaloulus, Thus* Theorem V
is Illustrated bY tho formula8s

(13) a 7- -- a
(15) *-(a n • i .,a f .qb(14) .,a v : .- a -b

(16) "(a • b) E a n "b
(±7) a 2 -a , ."a'

Howevers one should not overrate the operative force of these
formulas; for the formulas on either side of the sYmbols Es * are
alasslQal formulas# and hence Theorem I (subsection 2) to relevant,

i0'



lie now proceed to consider several additlonal, Very Imoortant
formrulas of the Propositional calculus, We first Indicate the basic
formulas which give the relation between classical and nonolassical
formulas:

(18) a - I-a
(19) -a >a
(20) a n b b n a
(21) a u b - b u a
(22) a z b ,*, a * b,

It Is extremely important to note that the last two formulas Involve
only nonclassical implication (in one direction)# while the others
involve equipotence,

The next two formulas give the relation between
meaninglessness on the one hand and classical and nonclassical
negations on the other:

(23) ta E 9 "a
(24) ta E >>at

Formula (25) shows that the externa' affirmation of a
meaningless proposition is false:

(25) ?a . > I-a,

The following formulas are Interesting:

(26) a U a)
(27) >>(a u "a)
(28) >i(a v ýa)
(29) '(a v -a) E *(a v >a)
(30) '(a v -'a) =FR

One sees from formula (26) that the classical negation of the
classical form of "tertium non datur" is always false or meaningless,
Formula (27) states that the nonclassloal negation of the classical
"tertium non datur" is alw•'s false,

Formula (28) states that the nonclassical "tertlum non datur"

cannot be meaninglgss, i,e,, the proposition stating that It Is
meaningless Is always false,

Formula (291} xpresses the fact that the classloal "tertlum
non datur" is meaningless If and only if the nonclassical form Is
false Flnaill, fo=rmula (3o) states tnat the classical "tertium non
datur4 is meaninqjess if and only if the proposItlon Itself Is
meaningless

The following formulas will be particularly Important for the
analysis of paradoxes:

(31) a -.a .E ta
(32) a -ta .• ,a
(33) -ta , a " -a :E ta
(34) a u -a •, a " -a := 9a

12



Note alSO the following formulas;
(35) a * >a = j'a

(36) l-a E >a ,9 '1
However, the formulaa E>a o• 'ta

Is not va Id, If a Is mallnf9lb#s thOhn ta Is va lld, but a • >5 Is
always fal30.

By analogy, note the formrula$

(37) a 'a .=- >a
(38) a 'a t" "a

Also Important are the formulae
(39) "a ". a " b
(40) >a a, .4 b
(41) 'a a, * b

Finally, we present the formulas
(42) a b ,-, .a b
(43) a S b ,* 'a

.13
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RESTRICTED FUNCTIONAL CALCULUS

SECTION 1, Basic concepts# notation and definitions

The variables of the functional calculus fall Into threegroups$

1) propositional variables: a, b, o ,,,,,
2) object varlabies: x# Y, zY s,,
3) variables for functions of any finite number of object

variables: f( )o g( )#, ,, hi ( )l PsI( )#,$.

Corresponding to these three groups of variables there are
three groups of constants; notation for these will be Introduced as
the need arises,

The symbol f(x) Is road: "x has property f", The symbol
f(xpy) Is read: "x stands In relation f to y", The symbol Cx)o the
basic quantifler, Is called the universal symbol, The symbol (x)f(x)
Is read: "all x have property fi,

The concept of "formula" (sometimes also called an
"expression") Is defined Inductively bY the following rules:

1) Every Propositional symbol Is a formula,
2) Any function symool In which the argument Places are

occupied by names of objects or symbols of object variables Is a
forrmu Ia,

3) If A is a formula and A contains x as a free variable
(depends on x) then (x)A Is a formula,

4) If A is a formula, then .As >A# I-A are formulas,
5) If A and B are formulas, then AnB Is a formula,
6) If a subformula Is In the scooe of a universal symbol fora certain variable, It cannot be In the scope of any other universal

symbol for the same variable,
Definitions (041) to (0410) of I, Section 2, subsection I1

will also hold for the functional calculus, Therefore, If A is a
forrula#

then tA and A are also formulas; if A and B are formulas, then AuB,
ADB, A:cB# AAB; AvB, A-B, A*B, and AEB are also formulas,

We now define three new quantiflers using the basic
quantifier: (ex), 3x0 Vx:(% 11) (ex) f(x) : (x).f ( x

D
(U612) 3x f(x) r (Ex)l-f(x)

D
(D 13) Vx f x) x (x)l-f(x)

3
S.. . % ./1 4



Thus, If A Is a formula containing x as a Ifer vPl bloe, then
(*x)A# 3xA and YXA are formulas,

(Ex)f(x) Is read: "There exists at least one x eilth oroperty f",
3xf(x) Is roadl "'he proposition f(x) Is valid for at leasi one x",
Vxf(x) is read: "The proposition ?(x) Is valid for all X",

Because of the properties of Wx) and (Ox) evident from ihe
above axiom system, we call them the olassloal universal symbol and
classical existential symbol, respectively,

The quantlfiero Vx and 3x Rre. called the nonolasaical
universal symbol and nonclaSSical existence symbol# respectively,

We now adopt the necessary conventions as regard@ subdIvion
of formulas by dots: the symbols ac; mot - o il s o up nj A# V

D predominate over
the quantifiers; the symbols ., ), 9 preceding a quarOtflor act
upon the entire subformula consisting of the quantifier and Its
scope, All other rules remain as before,

Thus, the expression
(x), f(x) g • )

denotes the formula
(x)(f(x) g(x))#

the formula
(x), f(x) n g(x) .( Cx) h(x)

denotes
(x)(f(x) n g(X)) * Cx) h(x)M

and
>(x), f(x) ' g(x)

denotes
>((x)(f(x) O g X)) I

FlnallY, we shall SlmplIfy the formulas (x)f(x), (*x)fix),

Vxf(x), and 3xf(x), replacing them bY

(;)f(x), (ix)f~x)t ixf(w 5x1(x)t

f'.



SECTION 2, Axioms of the restflted functional calculus

We adopt three groups of axioms;

I: Any tautological formula of the propositional oalculus Is
a provable formula,

I II

1142) (x)f(x) - f(Y),
1142) f(y) - 3x f(x),
1143) t(x) f(x) -* 3x ?f(x),

1I'4) 3x *f(x) o t(x) f(x),

III CIn modern terminology# these "axioms" would be
called rules of inference, (Tr,)3:

III,%1) All axioms of II are provable formulas,

111Q2) If A and B are provable formulas, then AnB is a provable
formu la.,

11143) If A and A-B are provable formulas, then B Is a provable
formula (principle of external deduction), Schematicallyi

A
A 48B

11144) Principle of substitution: the following

substitutions, carried out in a provable formula# yield a provable
fornu Ia:

1) simultaneous substitution of the same expression for all
occurrences of a proposltlonal varlable.

2) simultaneous substitution of the same expression,
dependIrg on variables xeyp,., (and perhaps also other variables),
for all occurrences of a functional variable with arguments xy,,,,;

3) an object variable may be replaced throughout by another
object variable Or bY the name of an object In the domain of values
of the variable,

Of course, one should remember that
1) the principle of substitution apolles only to free

var Iab les;
') a variable appearing In the scope of a quantifler cannot

be replaced by an expression depending on the ouantified variable,

"Objects" In the restricted functional calculus are
individuals which belong to a preassigned, suitably delineated
domain,

11145) Quantifier schema:
1) If B(x) Is an expression depending on x, A an expression

not depending on x, and AoB(x) a provable formula, then A4(x)B(X) Is
also a provable formula,
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2) If B(x) Is an expresslon depending on x, A an expression
not Oopendlng on xt and B(x)4A Is a Provabla formula# then 3kewx) Is
also a provable formula*
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SECTION 3, Some provable rules and formulas of the
restricted functional calculus

Theorem VII, The following rule holds In the restricted
functional calculus: If A and AzB are provable formulas, then B is a
provable formula (Princiole of Internal deductlono, SohematiaollY!

A
A*B

Proof, Let A and AzB be Provable formulas, Applying the
principle of external doduction 11143) to the formula A*B and the
provable formula

A B •4, A 4 B
(see formula (28), It Section 2, subsection 3), we get

A 8
A = 6,4, A 49

I.e., A-* Is a provable formula, NOw, since the formula A Is
provable bY assumptions another application of the oprnolole of
external deduction gives

A
A -* B

91 -S- ---

i.e,. B Is a provable formula, o.E,D.
Theorem VIII, The restricted functional calculus oontalns a

subsystem IsomorDhic to the classical restricted functional caloulus.

Proof, The restricted functional calculus contains formulas
(1) to (12) of It Section 2, subse-tion 3, Adding these formulas to
the axioms of groups II and III# we clearly obtain an isomorohle
image of the classical functional calculusi the universal symbol of
the classical calculus corresponds to the ouantlflor x) of our
calculus, and the classical existence symbol to the quantlf or 3x of
our calculus, This Droves the theorem,

We shall retain the notation Ki4 for the isomorphIc image of
the classical functional calculus whose existence we have Just
provedo,

It Is now easy to describe various classes of formulae which
are provable in the restricted functional calculus,

Note the following:

1) Principle of generalization: Let A(x) be a p:ovable

forfrula containing x as a free variable; then the formula
(x)A(x)

;s also provable,



2)(44) ?(n) + 3x f(x)

(where m Is the name of an object belonglng to tho domain of the
variable x)

(45) (x), f(x) M(x) ,., (x) f(x) * (x) OWx),
The following formulas are not In Kill

(46) (ex) O(x) 4 3x f(x)
(47) -(fx) f(x) 5 (x)-f(x)(48) "Mx f(x) (*x)-f(x)

(49) 3x f(x) n -9(*x) f(x) (Cex) f(x),

We recall a further theorem!

Theorem IX, if f(x) Q M(X) Is a provable formula# then
(x)f(x) c Cx)g(x) Is also a orovable formula,
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! III

EXTENDEO FUNCTIONAL CALCULUS AND ANALYSIS OF PARADOXES

SECTION 1, Exturnded functional calculus

To analyze the paradoxes of classical logic with the aid of

the formal calculus developed above, we must be capable of

constructing any classical formula In our new system, Now the

restricted functional calculus Is obviously Inadequate for this

purposes and we therefore need an extension of the calculus, An

extension of this type .;Ill be considered In this section,

First, using only certain elements of the system considered

above, %e construct a new systems which we shall call S40, The first

stage Is the Prooositional calculus of S40, whloh will Include only

two Propositional functions, "a and amnb defined as In I1 Section 2.

Now Introduco the definitions (D04)o (o02)# (043), In other words*

we Introduce the classical conneotives but not the nonclasgical ones.

The concepts of formula and Proposition are obviously more restricted

than those of I# Section 2, Tautologies and contradictions are

defined as before,

It Is easily seen that no formula Is provable In the

Propositional calculus o0 the system S40.

we now construct the restricted functional caloulus S40, We

Proceed as In I1, Section 4A, up to the definition of formula, The

latter concept Is defined by the following ruless

1) Every Propositional symbol (in S41) Is a formula;

2) Every function symbol In which the argument places are

cccuPleo by object names or obJeot-Varlable symbols Is a formulal
3) If A Is a formula containing x as a free varlable, then

(x) A Is a formula;
4) If A Is a formula, then -A Is a formulas
5) If A and B are formulas, then AnB Is a formulai

6) If a subformula of a formula Is In the scope of a

universal symbol, It cannot be In the scope of any other universal

symbol for the same variable,

f Now Introduce definitions (041), (D42), (D43) and (0411).

Now, If A and B are formulas, then AuB, ADB* ApaB are also formulas,

and If A is a formula containing x as a free variable, then (0x)A Is

also a formula,

The notation for formulas remains as before,

The only axioms we retain are I, 11142) and 11144)s i.el,

those Involving classical formulas,

j 20



It Is obvious that no formula Is provable In the res'trtoted
functional calculus S.0,

We now extend the functional calculus S601 this, Is 'done, by
adjoining all functions and Propositions of the system S40 to the setof objects# besides the original Individualso The object In, axioms
114) must also be Interpreted In this extended senest, we are thusdealing with ?unotlons of funotions and proposItIonu with the
argumeOt Places of each function being referred to, a def~nite domainof obJects, An example of such a' domain Is the set of allpropositions In the sense of S40 or* sayt,the set of lunctlons In the
sense of S40, We shall Call the now 'syptem the full system S'0,

It is auite clear that the set of formulas available In the
full system S40 is exactly the same as In the unreotrIoted theory o#types of the extended functional calculus of Hilbert and Ackorhiann
(8). so that If the Initial Oomaln of individuals Is the samei nbothsystems, the variables are also the same,

It Is obvious that the full system S'.0 contains' no provable
formulas; the calculus only "dlsousqes" formulas# so to spep•.

We now extend the system S401as followsl

1) Introduce the nonolassleal affirmatlon and negation of
both functions and propositional variables# with the, same cropertles
as in It Section 2* and then Introduos all definitIons {04) to
(0410) and (0412), 0D413)t

2) Correspondingly, extend the conoepts of oro~os'l,,tn ndrfunction, Of Course$ when this Is done the oonolpt of formul. isalso extended, but with one restriction which must bs smohasizedi
Apart from Individuals, the universe of objeots oonialns 0nlyfunctions and propositions In the sense of the full system 860, , Iother hords, the domain of objects remains the some 6 that ofthe
full system S40,

In axioms It 11142)t 11144)t the words "Proposition",
"function"s, "formula" must be understood In the news wjplor song*,
How0vert the objects In part 3) of axlom 11l4)'are Interpreted with
an eye to the above restriction,

3) Introduce the axioms of group lit as weil as afloms
11141)o 11143)o IJI,5), with the words' "function"• "oroDo03tion","formula" understood In their new sense, as 'n the previous
paragraph.

we oPall tho nmi, system S, Obylouply, we must d1,oerentiate
,.•withIn the syg;o•¶ 3 (and ther'e Is nothing to prevent us from so
doing) betwoon funct'onal and propositional variables in the seos'. ofs.. and functional and oroposltlonal varlables In the o•tonced senseof S, Functions (propositions) In the sense of S6 will bo called
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simply functions (propositions) of classical logic; this Is Qulte

legitimate, In view of the 'relation ba.tween S40 and the extended

fýunctlonal, calculus of Hiibort-Ackermann, For the funotlonhl

varlables of classical logic we Introduce the notation
fNk(!)P 94k( ), ,,it phi~k( )o psl~k( ) ,,

The propositlonal variables of classiCes logic will be denoted bY
ask, b4k, ck$,,t

For the function and prooosItional variables of the system S we

retain the nptation of Ill Section 1.

It Is easy! to Drove that the system S cannot contain any

expressions of classical logic eoulpate.nt to the formula 4&4k, First

we poserVe that, in ylew of Theorem IV: (Il Section 2, subsection 2),

It %Ill suffice to show that any expression of classical logic of the

form (b'k)F(a~k,#'k) is meaningless If ta'k Is valid, But this is

clear, for If 'a4k is valid, then a'k Is meaningless; and then

F(a4klb41k) must also be meaningless, so that the formula

, F(a4kob'k)
ip va~llo, ConseoQuently, by axiom 1142),

3b'k tF(aekb~k)
and pow ax:lom I144) gives

f *(btk) FNa~kbik),
O,E,O.

Of course, these arguments presuppose that the system S Is

consistent, The consistencY of this system Is an as yet unsolved

problem, but a'll our &ttempts to obtain a cont~adlctlon have been

unsuccessful, so that there Is a conslderab.le empirical basis for the

assumption that S Is consistent,

The system S will be necessary for our analysis of paradoxes

in the extended functional calculus; It is the framework In which

this analysli Is carried out,.

A]
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SECTION 2, Analysis of DaradOxeO in glasslcal mathematical
logic

1. General Remarks, The paradoxes of the classieas extenosd
functional calculus fall Into two groups, The Paradoxes of the first
group are Purely logical In character and their formulation requirqs
tmc assumptions beyond the realm of logical formulae,. Russell's
paradox Is an example, The Paradoxes of the second group FeQulre the
addition of certain formulas containing symbols for Indlvldugl
objects* functions or sentences, An example Is WayI1s
"heterologlcal" paradox (9),

With regard to the first group of paradoxes# the system S Is
adequate to show that certain Proooeltlons are meaningless, By
contrast, for the second group the results of our analysis will bebased on premises of the type above# since the very formulation of
the paradoxes In the class;oal system diotatis their use,

We shall present an analysis of the paradoxes o# Russell and
Weyl, In this section a functlon of one variable will also be called
a vroperty, Wherever vossible, we shall abbreviate the Symbol phi(
by phi,
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2, Analysis of Russell's oarla%, In the extended

functional calculus of HWlbert and Ak'rmann, Russoil's Paradox
arlseS when one considers theifunctlon

which states that a c ass belongs to Itseltf, Define
Pd(ph ) = hl(Phi),

By the provable formula of classical logic
a Oc as

we can hrite
Phl(ohl) 3c ohi(phi),

or$ bY the definition of the function Pd,
phl(Phl) zc Pd(phl),

The function qPd belongs to the domain of valuo* of the

variable phi, Substituting -Pd for ohl in the last formula, wo guts
-Pd(,Po) *c Pd(-Pd),

This Is Russell's Paradox,

What happens In the system S? Consider the function

Phi~k(phl4k)
and define

Pd(Ohlt k) = ohlk(phlik),
D

Note that the domraln of values of the variable phik is the same as
that of the variable phi Introduced above for the classical version
of Russellfs paradox, But In the system S we cannot use the formula

a zc at
since It Is not provable.

However, we do have the Provable formula

a E a (.0)
Substituting phl4k(phltk) for a In this formula, we get

Phl~k(ohi~k) B oh!•k{onl~k),

Now, bY the definition of the function Pd,
Pd (ohl~Ik) E phi4k(ohl'k),

The function -Pd belongs to the domain of values of the variable
ohl4k, Substituting -pd for Phick In the last formula# we get

(C) Pd ("Pd) E -Pd (-Pd)

The formula
a =- a =- ta (2)

is provable In St and so We find
Pd (..Pa) B .Pd (.PPd) ,t ,Pd (,Pd)t

and# by (O)s
'Pd (-Pd),

Now# by the provable formula
'a " '-a (42)

we get Spd (.Pd),
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A'7

Thu~s the c~roposltlon Pd(..Pd) "Is meaningless@ like Its Internal
negaafon, The external negation of the PrODo31tlom Pd("Pd) Is false#
as Is Its external afflrmatlono

2
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3. Analysis of Weyl's paradox, We first carry out a formal

reconstructIon of Weyl's paradox In the classical extended functional
calculus, The statement that the ,:ymbol z Is heterological Is
expressed by a function H(Z) defined as followstSH(z) phi•Dn ) , R(z~ophl) n --phi(z) (13)

D

Here R(Zophi) Is read "Z designates phi", The domain of values of
the Variable Is the set of symbols desionating a property, and the
domain of variables of phi is the set of proDertles, We adoPt as an
axiom the statement that the symbol "H" denotes the function H alone.
SymbolicallYe this axiom is expressed by the following formulas,

1) R("H"#H),
2) R '"H",ohl) a phi x He

Identity is defined In classical logic by the formula
x = y :, (f f(x) 0 f(y) (14)

Therefore# formula 2) can be rewritten as
2) R("H".phI) 0. (f) , f(phl) : f(H),

it now follows from thA definition of the function H that
(a) H("H") t *(E phi), R('IN",phi) n lphl("H"),

Ry 2) and the provable formula
(f), f(phl) * f(H) 2', g(phl) * g(H)

e get R("H".ohI) , g(ohl) g(H)

Substituting the function -phi("H") for g(ohl) In this formulas we

get
R("H",•hi) *. "lHhl("H))o

Hence we now deduce
R('*"111,hi) n 1ohI¢'%H"#)

%phl("H") n, -ohi h 1("H") * "H("H"),
In view of the formula

-,Phi ("H") n, -ohl ("H"1) * ,H("H1) ,o ,H("H"),
we get

R("H",pohi) n -phi("H") 2 'iH("H")

Applying a well-known rule of the Hilbert-Ackormann functional

calculus# we can write
(e phi), R("H",phl) n -phI("H") , "H("H"),

In view of formula (a), we obtain
(A) H("RH ) q "H('H").

4 On the other hand, bY the provable formula
I ~f(n) ( )f~x),

~i where n is the name of an obJect oblongIng to the domalm of values of

the variable x, we get
R("H"OH) ..H("H") *. (E phi), R("H",phi) n .phI("H")0
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ore by the dottn~t Ion of the function H,
RC"H'IsH) nt qN("1H") a 2 NI~

But since R("IH",N) Is an AxIomr It follows that
:1 HC"H,9*H)H)
Formula$ (A) c'nd (8) In combination give Weyl#3 paradoxi

H~'H"ac qH(ffH"),
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Now consider the situation in the system S, Since the
argument Is quite long, we shall omit references to the formulas of
the propositional calculus used in the proofs, In each Indivldual
case It Is easy to Identify the formula being applied, and to verify
its validity by constructing a truth table,

First and foremost, we must define the function H(Z) Im St

H(Z) r, ((- Phl~k), R(Zophli-k) n -phl~k(Z),

D
For R(ZOhI4k), read; "z designates ohi'k",

The domain of values of the variable z Is the set of symbols

of classical logic which designate properties, and the domain of
values of Phl4k Is the set of properties considered In classil&I
logic, Thus, the variables z and phl4k have the same resoeotive
domains of values as z and phi in the classical formulation of Weyl's
paradox,

Formulas 1) and 2) now correspond to the formulas
1') R("NH"H)
2') R("H'sphi4k) 6, (f'k), f4k(ohl4k) * f~k(H) (15)

By the definition of the function H,
SH("H") -. ((. phl~k), R10"H"•phlik) n -4phl~k(",H"),

Using axiom 1I14,) (IISectlon 2), wG deduce from 2')
R("Ht"ephi'N) -a g4,k(Dhlk) - 4 gk(H),

Substituting -phi4k("H"') for g'k(phlJIk) in this formula, we get
R("H",phi~k) -*, -,phj*k("H") "* -H("H")*

Hence,
R( *H"s ph I k)n nq h i k("H") f*,

"•ohl~k("H") fit -1hI4,k("H")-aH("H"),

Using the provable formula
.- phi4k("H") n1, qDhl4k('H") 1 -)H("H") ,.' -H(l"w")

we got
RC'i.I",phi4k) nl -PhI~kC"H") *ml"H)

Now apply axiom III5 (II, Section 2) (ouivifltr echema) to
formula (e); we get

3 oh.1,k , R("H"',phlik) n hI•h k •" ,* .

Using formula (46) (II, Section 3)o we now fif•o
((- phl4k), R("H",phi4k) n %phlvh (X0-) ".I4("H")

or, by the definition of the function H#
(A') H("H") * -H(.H"),

On the other hand, by for'dia (44) (11, Section 3)p we have
(i) R("H",t) fl 9H(H"H) 4,

3 phl'k . R("H",)phik) n "phl4kC"141"),
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4

But by formula (49) (1I1 Section 3) and the definition of the
function Hp S(11) .1H(,,Ho) n, 3 Dri• I

SRV"H1,sphl~k) n 0111hIK(H") s-* HOW%")

It f'ollows from formula (ii) that
(i11) 3 ohl~k .) R(C'H",1rIi(k) n -%phl.kV"H1)

4 1-H(CtH") - H01H1),

Formulas (i) and (i11) give
R("H" H) nf .1H("H") -*, -tH(1Ht t ) 6 WWI4

or
R("H"9,H) 6: "•H("IHII) WH' " * H IH )

Since the formula R("H",H) Is an axiom, we got• .. *4("H"l) -to .tH0"HIP) HVI(H")
or# Interchanging the Dremlses,(B1) -tH "H"1) so -,H(IIHI") W WI"H )

On the other hand, since formula (A%) Is Provableo so Is the formula
(A*') .,H("H") <, HC"H") 4

Formrulas (A") and (9') imply
tH(IIH") *, H("H") *-H("H"),

Hence, by formula (33) (I1 Section 2, subsection 3)o we get the
formula

t04 ( 1H")and now, by formula (23) (Io section 2# subsection 3),

'I

L ,.
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FOOTNOTES

1. The Internal affirmation Is considered to be Identical
with the proposition Itself,

2, In this paper, "classical sententlal calculus" will have

a specific meaning: a truth-table calculus adequate for the
sentential calculus of Hilbert-Aokermann (Grundzuge der theoretlechen
Loglk) and the sentential caloulus of PRINCIPIA MATHEMATICA
(Whitehead and Russell).

3, The symbols -. - >, t act only on the letters and
parentheses directly following them,

4, Here and below we shall assume that the classical
sentential calculus employs the same symbols as those used here for
classical formulas (in the sense defined above),

5, See footnote (4).

6. A, Heytlng, Die formalen Regeln der Intuitlonfstlschen
Loglk, Sitz,-Ber, d, preuss, Akad, d, Wiss, (1930)o pp. 42-,56i A.
Kilmogoroff, Zur Deutung der Intultionistischen Logik, Math, Z. 35
(1932), pp, 58-65.

7. Note that the symbol n may also be replaced In K'I by A
without replacing the symbol o by Bo but this transformation presents
nj special Interest,

8, See Hilbert-Ackermanno Grundzuge der theoretlachen Loglk
(1928)o pp$ 82-115,

9, On the distinction between those two types of caradoxes
see: Hilbert and Ackermann, Grundzuge der theoretisehen Logtk (1928)o
P, 115; F, Ramsey, The Foundations of Mathematics, Proce London Math.
Soc, Sor, 2, Vol, 25, Part 5 (1926)j R, Carnap, Abriss der Logistik
(1929)o p, 21; R. Carnap, Die Antlonomlen und die Unvollstandlgkelt
der Mathematlk, Monatshefte f, Math, und physik (1934)q

10, See If Section 2, subsection 3, Theorem V,

11, See It Section 2, subsection 3, formula (31),

12, See if Section 2, subsection 3# formula (23),

03, See F, Ramsey, The Foundations of Mathematics,

14, See# eg,, R, Carnap, Abriss der Loglstik, p, 151 also: Hilbert
and Ackermanne Grundzuge der theoretisohen Logik, D, 83,

15, This condition Is even weaker than Identity of the funotions
denoted by the symbol "H"1
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ON THE CONSISTENCY OF A THREE-VALUED CALCULUS

DA, Bochvar

EFror MatyematIchyeskl Sbornik (Recuell Mathematlque), NS, .2 (1943),

pp. 353-3693

In our Paper "A Three-Valued Logical Calculus and Its
Application to the Analysis of paradoxes ... "(1) we described a
certain three-valued system of inathematloal Ioglic which we called S
(2),

Within the system S one can formally Prove that oertaln

formulas of the classical extended functional caloulus which lead to
contradictlons are meaningless,

Study of the system S Is thus relevant for the problem of
paradoxes,

Any study of the system S Itself must naturally begin with
the question as to whether one can establish Its consistenoy as a
whole, or, at least, the consistency of a fragment large enough to
yield results sufficiently characteristic of those achlevable In S.

In this Paper we shall present certain results In this

direction; some of them can be extended to a certain type of oaloulus
based or the classical sentential calculus,

ETypist's notei Subscripts are indicated by 4, and f Is used In
place of the logical connective 4 used In the original, The
following lexicographic changes were also medel for Propositional
variables, we use lower case letters rather than oapitals) for
logical formulas, capitals rather than German capitals; for logical
variables, lower case rather than German lower casel and for
classical Propositional calcu:us formulas# Primed capitals rather
than German caoitals with superscript (0), S Is used for capital
Sigma, and w for lower case omega']
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SECTION 1

This section contains a brief resume of the axiom system of

S, The basis for the system S Is the propositional calculus (3).

Let a, b, co... be propositional variables, Each of those

variables can assume one of three truth valueli T (read; "true")% F
(reaad "false")# and U (readl "meaningless").

The Drimitive Propositional functions are; "a (classical or
internal (4) negatlon), anb (classical or Internal conjunction) and
I-a (nonclassical or external affirmatlon), These are defined by
truth tables:
a -a b anb a u-a

F T T F F F F
U U F T F U F

F F F

F U U
U F U
U U U

Using the primitive functlonsp we define the classical

functioms:
(D01) a u b (.(.a n "b)

(062) a z b -(a A -b)
S~0

(043) a Oc b : (a 2 b) n (b ' a)
0

and the nonclassical functions:
(D44) a A b i-a n l-b

(045) a v b I-a U 1-b
0

(046) a 4 b i-a i-b

(067) a " b (a b) n (b a)
0

(0'8) a E b = (a * b) n (-a "-b)
D

(049) >a -a

(D'10) a - I-a
0

(0411) fa -(i-a n >a) (5)
0
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The concept of formula Is defined as usual, A formula Is
said to be provable In the propositional calculus if It takes the
value T for all possible values of the variables, Formula@ Doovable
In the Propositional calculus are also called tautologles, A formula
which does not take the value T for any values of the variables Is
called a contradiction, A formula which contains, besides
Propositional variables, only symbols for classical functions# is
called a classical formula of the propositional calculus,

The following theorems are valid;

1. NO classical formula Is provable In the proposltlonal
calculus,

2, No contradiction Is provable In the ProposItlonal
calculus,

3. A classical formula takes the value U whenever a
propositional variable occurring In It takes the value U,

The prooosltlonal calculus serves as the basis for the

* restricted functional calculus, There are throe kinds of variablest

I* Propositional varlables ajbc,,,,
2. Object variables xypz,,,,
3. Variables for functions of any finite number of obJect

variables: f( )P, g( )its,# phi( )# osl )#,,.

The basic quantifier Is the universal symbol Cx), Formulas

are defined as usual (6).

Using the basic quantifler, one defines new ouantiflers (6*),

3x# Vx:
(0412) (6 x) f(x) : (x),f(x)

D

(D613) 3x f(x) c (E x) I- f(x)
0

(D&14) Vx f(g) (x) I- f(x) (7)

The usual restrictions are imposed on the use of the QUantifiers (8).
The quantiflers (x) and (ex) are called the classical universal and
exlitential symbols, respectively# In view of their ororertles as
defined oy the axioms of the restricted calculus, The auantlfiers
Vx, 3x are called the nonclassical universal and existential symbols,
respectively.

The following axioms CTrt In modern terminology, some of
these axioms would be called rules of Inference, We shall continue
to use the old terminology,; are adopted In the restricted funotlonal
calculus: (9)

2 .
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I, Every tautological formula of the propooitlonal calculus
Is a provable formula,

II. The following formulas are provable:
1, Cx) f(x) * f1(y) (10)
2, f(y) * 3x fCx)
3, t(x)f(x) * 3x 9f(x)
4, 3x 'f(x) * t(x) f(x).

11141, If A and A4B are provable formulas, then B Is a provable
formula, Schematically#

A
A 4B

97 -

II!. Principle of substitution, The following substitutions,

performed In a provable formula, yield a provable formulal

1) simultaneous substitution of the same formula for all

ocourrenoes of a propositional variablel
2) simultaneous SUbstitution of the same formula, depending

on variables xtyo,,, (and perhaps also other variables) for all
occurrences of a functional variable with arguments x.Y.,,

3) an obJect var able may be replaced throughiUt b another
object variable or bY the nans of an object In the doma n o values
of the variable,

The p'inciple of substitution applies only to free variables.

Substitution of a symbol containing the variable bound by a
ouartifier for a variable In the scope of th• quantlfier Is not
allowed,

11143, Quantifier schema,

1) If B(x) Is a formula depending on x, A a formula not

dependlng on x, and A4B(x) Is a provable formula, then Ao(x)B(x) Is
also a provable formula;

2) If B(x) Is a formula depending on x, A a formula not

depending on x# ana B(x)4A Is a provable formula, then 3XB(x)4A Is
also a provable formula,
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We now construct an auxiliary system -- So (11),
We first construoc the proposiýlonal oalculus of the system

S40, This construction 3tlllzes only two (classical) ploposltionaifunctions, 'a and amb, defined as before, and then definitions. (D )I(D'2)* (D03), Formules are doefned In the usual manner, Taut'ologlesand contradictions are d6flned as before. It to easy to- see that noformula Is provable In the propositional calculus pf S60, ,
Now# Introducing symbols for funotlor and object variablesand the Quantifier (x)o with the correspondingly defined concept :offormula# we construct the restricted functionsa calfu ju S40. Thequantifier (Ex) is again defined by (DA12), We adopt axiom I of therestricted calculus (reformulated for the system S60) and thereformulated substitution Princlole,

We now extend the functional calculus S40 in precisely thesame way as the classical restricted functional calculus Is extended'by constructing the extended calculus without the theory of tUes(12). The resulting system Is called the full system S4'0 It Isoulte clear that the set of formulas available In the full system S40Is precisely the same as that considered In the, extendedHilbart=Ackermann functional calculus without theory of types,'Obviously# the full system S'0 still contains no Provable formulas,.The system S Is now Obtained bY combining the full system S40 'wlththe restricted functional calculus# using'the following rulesP
1. The unlverse of objoets of the restricted functionalcalculus Is now stipulated to be that of the full system S40, Thus,apart from individual varlables, quantifiers may bound also variablesfor functions and Propositions# though only In the sense o# the fullsystem S40,

2. There are two kinds of functional varlablevi funotlcnalVariables In the sense of the full system S40f:denoted by the symbolsadtef4k( )# g,&k( )0 .*to Dhihk( ), os514k( ),t ,, Iand the functional variables of the restricted funotional catloulus,denoted by
f( )# g( ), .,,o phi( C sil( )p,,,The functional variables of the second kind are tnereby regarded asvariables of a more 'ineral nature, in other lwrds., f'unotionsin thesense of the full system S40 maeY be substituted for ýfinctional,variables of the restricted functional calculus, whereas functionsnot belonging to the full system S40 may not be substituted forfunctional variables of the latter,

Thanks to this last condition, the functional variables ofthe restrlctoj functional calculus now acquire the wider sense offunctional variAbles In the system S as a whole (13),
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I. . I

Analogous conditions are Imposed for the prooosItional
variables,. l~e,, propositionil va lables In the sense Of the full
system S40# similar to the conditions Imoosed on the functions with
subscript k, For~mulas are defined as for the restricted functional
calculugs except that the words "prooosltlon"t "function" now donote
propositions and functions In the sense of both the restricted
functl6nal ca'lculuP a'd the ful.l system S4 0,,

Functions (proposltions) In the sense of the full system S40

wl'll be, called simply functions (propositions) of classical logic.
We shall also speak of formu'las and variables of classical logic,
meanin:g formulat and variables In-general in the sense of the full
system S40,

To abbreviate the meaning, formulas of classical logic will
be, denoted by capitals with 4ubscrl.pt k# and variables o# classical
logic In ge'neral (Irreqpective of their nature) will sometlmeý be
denoted (for brevIty') by lower case letters with subscript k.
classical formu~las of the propositional calculus (±4) will be denoted
by primed caoitals,

4I

'A
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SECTION 2
With an @ye to a rigorou0 formulation of our Problem, weshall first clarify the motives underlying Our soecifio formulation.To this end, we first turn to the classical extended funotionalcalculus without theory of types (in the sense of Hllbart-Ackermann).It Is easily seen that the formulation of Russell's Paradox In fRotrequires only a fragment of the calculus.
Russell's Paradox can actually be derived In a more

restricted axiom system* which we shall call AS (15)1
1. Any tautological formula of the sontentlal calculus

containing a single sentential variable A Is provable,
2, If an expression phi(phi) Is substituted for alloccurrences of A throughout a provable formula# the result Is a

provable formula,

3. Define a functional constant F by
F(Phl) A(Phi(phl))

(where A(PhI(phl)) Is a formula constructed from several expressionsDhi(Phl) using the sententlal conneotives), Any formula obtained bysubstituting F for all occurrences of a functional variablethroughout a provable formula Is again provable,

In fact, define(a) F(phl) Z -1Dhl(nhl),

D

Since the formula
.phl(phl) Dc ,:)h!(phl)

is provable, we can use (a) to deduce that the formulaF(ohl) Dc -phl(phl)
is also provable, Substltuting F for Phi In this formula# we getRussell's adox.

F(F) (
Thus the axiom system AS oontalne ail the formal

Prerequisites of Russell's Paradox,

Turning now to the system So we consider a subsystem which weshall call AS*. Formulas of AS* are defined as followseIt Any Propositional variable symbol Is a formula of AS*

2, Any quantifier-free formula of classical log1o (In thesense of the full system S40) Is a formula of AS*,

3. If A Is a formuln of AS•t then 9A, i-A, >At 9A, and A areformulaý of AS., If AB are formulas of ASo* then AnB, AuB, ADD*
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A'tB, AAB# AvB, A*B, A0B, and AEB are also formulas of AS*,

g The axioms of AS* arel

lot Any tautological formula of the propositional calo'lus

is provable,

2*, If A4k(v~ktj,,,,v v~ktn) Is a formula of AS* belonging

to the full system S40 and depending only on the Variables v4kf]
(l:1,2,,,.,n) (these may be propositional or functional variables),
define a constant function of classical logic bY

F~k~v4Ktjj,,,#v1,ken) .P A~k(v~kvl,,,,,v'Pktn),

0
In this equality the left and right hand sides may be Interchanged in

any formula (and this may be done eitmer throughout the formula or

only at Isolated places) (16),
3*, Principle of substltutlonl

1) If a propositional variable (17) Is replaced at all its

occurrences In a provable formula by a formula of AS* (belonglng to

classical logic (J8) ), the result Is a Provable formula,

2) If a functional variable symbol of classical ioglo is

reDpaced at all Its occurrences In a provable formula by a formula of

AS* (belonging to classical logic), which depends on the same

arguments as the original variable (and possibly also on other
argulents)s the result is a provable formula,

3) If a variable is replaced at all Its occurrences in a

Provable formula bY another variable with the same domain of values

or by a constant (as given by axiom 2,0 and belonging to the domain o#
variables of the original varlable)l the result is a Provable

formula,

4*, Principle of deduction:

If F and F4G are provable formulas, then G Is m provab:e

-2 formula,

tomparing the axiom systems AS and AS*, It Is natural to

expect nat were an analog of Russell's Paradox derlveable In the

system S this would be possible in the narrower axiom system AS*,

Also relevant to a correct evaluation of the system AS* and Its

A ; relation to S Is the fact that the result concerning Russell's
paraSO). (19) which can be Proved in S remains valid In AS*,

We now Present a proof of the consistency of the zxiom system

AS*, For brevity's sake we shall refer to It as the calculus 'So,
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SECTION 3

In this section we shall prove that the calculus AS. Is
cons istcn~to

A basis for the calculus AS. Is a set of formulas containing;

1) every tautological formula of the Propositional calculusi

2) every formula provable bY applying substitution (Cxloms

2** 3*) and deflnitlon of now constants-(axiom 20) to a tiutologloal
formula of the propositional calculus,

We shall denote the operation of substitution by Substo the
operation of definition by Def,

The concept of a maximal classical oomponent of a

Propositional formula (20)p which we now defines Is essential for our
arguments

A component of a formula F Is any subformula G of F, If F
contains G more than once as a subformulas we shall regard each
"copy" of G appearing In F as a component of F, 1f G Is a olassiloal
formula of the orooosItionai calculus (see Section J). we shall call
It a classical component of F,

Any classical component of a formula F will be called a

maximal classical component If It Is not a component of any other
classical component,

As an example# consider the formulU
"a ub 4 "fa u "ib,

The components of this formula are the formulas at be a, be qa, ta,
tb, -tat "*tb - aub, "fa u "#be and - aub 4 vta u #b (21). The
classical components are awbjawb#-a- aub, The maximal classical
components are -aub, as b (22),

Let F be a formula of the Proposltlonal calculus, Delete all
Its maximal ciasslcal components In successions from left to right,
and replace each of them by parentheses enclosing a numeral whioh
counts the maximal classical components In order of oeletion, from
left to right, Denote the resulting symbol (wilch is clearly a
certal operator of the propositional calcuius) by CF3, we can now
wito the formula F as

(1) F =CF3(A'41,,,,,A'4m)
where A'14, ,,# A'4n are the maximal olasslcal components of F (some
of which may coincide) arranged In the order of the numerals assigned
to them when they are deleted from F, It Is obvious that If the form
of the operator [F), all A'4i and their numerals ara known, we can

reconstruct the formula F unicuelY, It Is also obvious that if we
have the formula A and observe4 the above order of operations In
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constructing (A), we can easily carry out this construction, anm it
IS moreover unjouej

Thus. If F Is again the formula
a- ub * "fa u "tb,

CF3 : (1) -* ,(2) u .9(3) (23)

and the expresslon (1) s
F 3 CF)(" aub, a, b),

.In the sequel we shall utilize the notation (1) for formulas of the
propositional Calculus# without further explanation,

We now prove two theorems which serve as the bails for our
method.

Theorem 1. If
F = :F3(Ai41o,,9oA#4n)

is a tauto!ogIcal formula of the Propositional calculus, then the
formula

G
obtained from F by replacing the maximal classical components A''4 by
classical formulas 9''1 of the oropositional calculus (24) cannot be
a contradiction, ,e.,, the formula

EF3(B'41?,,,,B'4mý

cannot be a tautology,

PROOF, Assign the value U to all propositional variables
appearing In the formulas In Question (see Seotlon I), Then all the
components A'41 and B1'i take the value U (25), and therefore both
formulas F and G take the same value, To since by assumption F to a

tautology, But then, obviously, G cannot be a contradlotion, and G
cannot be a tautology of the prooositIonal calculus, QsEsD,

Theorem Il, If a basis of the calculus AS* oontains formulas
A and B, It must also contain the formula AnB,

PROOF, Suppose that a proof of the formula A consists of

some combination of the operations Subst and Deft, aoplted to a
tautological formula F of the prooosltlonal vt"leulueo while 8 is
Proved by similar ooerations on a tautology G, Obviously, the
formula FnG Is a tautý ogy of the Propositional calculus, If
necessary, rename the propositional variables o! F and G in such a
way that all substitution operations can now be applIed In FfnG
Independently to the left and right of the connective n, It Is now
clear that, by applying to the formula FnG the same cOmbinations of
Subst, Def (exceot for the names of the variaeles) as applied In the
proofs of A and B, and then renaming the variables (If neoessary), we
Jet the required formula AnB, Q,E,D,
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We now Introduce some additional definitions, Given a

formula F of ýhe calculus AS*, we define an elementary component of F
to be any subformula of F which does not have one of the forms .At

IwA, >A, 9A, Ap AnB, AuB, ADB* AcB, AAB, AvB, A-B, A*B, A!B (26),

Associate a propositional variable with each elementarý,

component of F, In such a way that different elementary components

correspond to different propositional variables, Replacing eaoh

elementary component of F at all Its occurrences by the corresponding

propositional variable, we get a formula which we call a prototype of

F, denoted by w(F), Obviously, ,(F) Is always a formula of the

Propositional calculus, Ite,, It contains only prooosltlonmcl
variables and connectives (27),

Call a formula F of the calculus AS. Irregular if w(F) Is a

contradictlon of the propositional calculus, i.e., It never takes the

value T,

We can now prove the following:

Theorem III. A basis of the calculus AS* contains no

Irregular formulas,

PROOF, Assume that a given basis contains an irregular

formula, F say, Its proof starts with some tautology A of the

Propositional calculus, and proceeds bY application of Subet and Def.

Now It 18 clear that the only changes affected by these operations In

the structure of the maximal classical components of A, and

thereafter In the structure of the resulting formulas, are such that

the maximal classical components become either formulas of classical
loolc or formulas which contain, apart from formulas of classical

logic, only unchanged propositional variables, We may therefore state

that If A has the form[ACA3('41#s#,,A'&n}#

then the prototype of F must have tha form

Hence, by Theorem I# r(F) cannot be a contradiction of he

propositional calculus, However, this contradicts our assumotton
concerning F, and the proof is complete, Thus, In particular, a

basis for the calculus AS* cannot contain formulas of the form

F+k(F~k) * F~k(F4k)s

since their prototypes are

whichisa A to A,#
which Is a contradiction of the propositional calculus,

We now proceed to a consistency proof for the calculus AS*.

To this end we need another definition,

- '' Consider the proofs carried out In the calculus AS*,
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We define a normal proof to be any proof In which the
Principle of deauctlon (axiom 4,. Section 2) Is applied at most once,and thcn only at the end of the proof, Obviously, In a normal proof
the principle of deduction Is applied (If at all) to basis formulas.
we now have the following theorem;

Theorem Iv, Any provable formula A In the calculus AS* has a
normal proof.

PROOF, The theorem Is trivially true for basis formulas.
The Proof will Obviously be complete If we prove the followIng two
assertions:

a) If a formula G' Is obtained by the operations Subst and
Def from a formula G which has a normal Proof, then G' also has a
normal proof,

b) If a formula G Is proved by applying the orlnolile of
deduction to formulas F and F4G which have normal Proofs, then G also
has a normal proof,

We first Prove a), Suppose that G Is Proved via the schema
F
F*G

Where, by assumltlOn, F and F*G are basis formulas, Ap•ly to F*G cli
Subst and Def operations needed to convert G to G's and call the
resulting formula F'-G', Apply to F all Subst and Def operations
neeced to convert F to F', The resulting formulas F' and F0*G'
obviously belong to the basis,

Now the Proof of G' via the schema
F I

F7 I -*G

is clearly normal, so that we have proved a).
We now Prove b), Suppose that G Is Prcvod via the schema

F
F#G

By assumptions the basis contains formulas F41 and F414F from whoh
the formula I is proved, By Theorem 11 It follows that the basis
also contains the formula

F41 m (1741 4 F),
Analogous reasoning shows that the basis contains formulas

F&2, 0 42 - (F * G), F62 m (FQ2 ) (F o G)),
Again by Theorem 11, we see that the basis also contains the formula

(1) F41 n (F41 F) n F42 n (V42 . (F G)),
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We now use the following tautology of the propositional calculust
(a) a n (a 4 b) n c 4 (c • Cb * d)) *d4

Replace the variables apbood by the formulas w(F61)# w(F)P,(F42),
w(G), respectively, Obviously the resulting formula

(P) w(F~4) n (v(F41)4v(F)) n
w(FA2) A (r(F42)*(x(F)4,(G))) 4 P(G)

is also a tautology, and Is therefore contained In the basis, In
deriving (P) from (a)# we ensure that the propositional variables In
all prototypes are so chosen that the substitutions converting
w(F41), w(F), .(F42), F(G) to F61o Fo F42o Go rospoctIvelyo can be
Performed Independently In (P), Performing these substitutions, we
clearly got the formula

(2) F41 n (F41 F) n F42 n (F12 4 (F 4 G)) 4 G, (28)
which Is in the basis, With the formulas (1) and (2)M we can now
construct the resuired normal Proof via the schema

F41 n (F41 4 F) n F42 A (Fs2 * (F * G))
F41 n (F41 * F) n F42 n (CF2 * (F * G)) 4

ThIS proves b)o and thereby Theorem IV,

Theorem V, No Irregular formula Is provabl, In the calculus
AS*

PROOF, Assume that an Irregular formula A Is Provable In the
calculus AS*, Then by Theorem IV# there Is a normal proof of As Now
thts normal Proof obviously starts with a basis formula and ends with
an apDlication of the deduction Prinoiple?

B
8AB,*A

A
where 8o B*A are basis formulas, By assumptlon, the prototype w(A)
Is a contradiction of the propositional calculus, By Theorem III,
,(B4A) cannot be a contradiction, Now (84A) Is the same as
,(B)4w(A) (29), Conseouently, we can find an assignment of truth
values (30) for R(B)4,(A) such that

?(B) * x(A) a To
Now, Obviously, since u(A) Is a contradiction, this assignment of
truth valua3 must make

w(B) a F or w(A) a To
Hence the formula

C (B) m (w(B) * v(A))
Is always a cortradlctlon of the propositional calculus, But this
formula Is a prototype of the formula

B n (B 4 A),
which Is In the basie, by Theorem II, This implles that the basis
contains an Irregular formula, contradicting Theorem 111, oED.

An obvious corollary of Theorem V Is:

Theorem VI, The calculus ASo Is oonsistent.
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SECTION 4

This section Is devoted to several remarks on the above

consistency proof,

The constructive (finitary) character of this proof Is

self-evident, Without essential changes In the proofs certain
restrictive conditions In the axioms of AS* can be eliminated,

Axiom 2* orrmits introduction of definitions only #or

constant functions which are functions of classical logic, This
restriction is Quite natural, for In general there Is no Interest In
considering In S constant functions defined by formulos of
nonclassical logic, Moreover, It does not in fact weaken the results
for such functions do not belong to the universe of objects of the
system So and so may always be easily eliminated from all proofs,

Axiom 3* permits substitution only of formulas In the sense

of AS* which are formulas of classical logic. This restoricton Is
also Inessential, For any substitution of formulas of AS which
involve nonclassical connectivos may algaYs be reduced (31) to
substitutions of the permitted variety, This can be Achieved by
suitable choice of the Initial tautologies of the oropositional
calculus, and this choice In turn may be affected by the method used
In the proof of Theorem IV, The required reduction Is made possible
by the fact, that, by axiom I*, any tautological formula of the
propositional calculus Is provable in AS*, The condition that the
calculus AS* contains no functional variables without subscript k
(ie, functional variables In the general sense of the system S) Is
also Inessentlalt for the previous remark easily shows that their
introduction has no effect on tne structure or the nature of the
proof,

Thus we see that all the restrictions adopted above have a
single purpose -- to simplify the arguments without essentially
weakening the result,

It follows that the consistency proof presented in Seotion 3

may he regarded as a consistency proof for the system S without
quantifiers and the relevant axioms and rules, It Is Interesting
that sore of our results may be extended to other formal systems of a
oertain, SO to speak elementary, structure, We refer here to
extended functional calculi based on the classical sentontial
calculus in the same way as the calculus AS* Is basod on the
propositional calculus, (32)

Consider a calculus of this type, In w'hich the admissible
types of variables have been described and the formulas defined.
AssUMe, moreover, that the axioms of this calculus make every
tautological formula of the sentential calculue provable, Introduce
the principle of deduction In Its usual form, a-nd Indicate the
admissible types of definition and substitution,
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Call a calculus of this kind an elementary extenslon of the

functional Calculus,

Under these assumptions# the concepts of basis, prototyoe,

Irregular formula and normal Proof are defined exactly as for the
calculus AS*. Hence it Is easy to prove the following theorem1

Theorem VII, A necessary and sufficient condition for

consistency of an elementary extension of the functional calculus Is
that no basis contain Irregular formulas.

Thus, for example, the elementar.y calculus derived from the

system AS (see beginning of Section 2) by adjoining the princIple of
deduction Is inconsistent, since Its basis contains an Irreaular
forrrula (Russell's paradox),

We now briefly show how the above oonsistoncy proof will

yield a nonfinitary consistency proof for the entire system S, Only
the rain lines of the proof will be Indicated,

We first construct a newo nonflnltarily formulated calculuso

which we call AS*4w, To this end the propositional calculus Is
enriched by admitting countable conjunctlons and disJunctions (both
classical and nonclasslial)# defined as follows:

1) The classical countable conJunctlon
a~1 m a42 n *,$ n a~n A

has the value U If for some I (I :

It has the value F if for all I (I ,

but for at least one I (121,#2,,,.,nt .)

ai z F ;
and the value T If for all i (al,2,o.,,lon,,)aal = T.

3) a•l ^ ... u a~n v ... n "a . n "-a&n A ..D

3) a64 A ,,, A a4n A ,,, I'. a4l m ,.o n a4mn m
D

4) a41 v ,*v ain v a, uI a4i u *,u I-a4m y
D

Tautologles, contradictions and classical formulas are defined as

before,

Because of the Introduction of countable conJunctions and

disjunctionst the concept of formula In the sense of AS* and the
axiorS 1*, 2*, 3* are now replaced by formula In the sense of AS* 4 w

and axioms 1*4w, 2*4w, 3"*w, resoectlvly, The principle of
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deduction Is of course unchanged, As before, we deflne the concepts

of basis, maximal classical component (33), elementary component,

prototype, Irregular formula and normal oroof, Using these tools one

can now prove %he consistency of the calculus AS*&w, The proof

Proceeds formally as before, but now the arguments are no longer

fInItary ,

Now observe that the set of constants Introduced by

definitions In the system S (34) Is countable, Let these beal, a42p ,,,# &6nj e,,

This being so, any proof In the system S can be converted into a

proof In the system AS*4w, by reinterpreting the formulas (x)f(x),

(Ex)f(x)p Vx f(x), 3x f(x), respectively, as followrl
• .f~a, l~l) A . n f(asl.&n) n ...

f(a4141) u ,V , u f(ai64n) Uf f(a~l61) A .,. .^A fCa4 14,n ) it ,.
f(aWit) v ,,, v f(a&414n) v

where I is the domain of values of the variable X.

when this Is done, the axioms and rules for quantifiers In S become

Provable formulas and derived rules of the system AS*6w (35) This

transformation converts any contradictory formula of S Into a

contradictory formula of AS*4w, Since AS*4w Is consistent, It mow

follows that the system S Is consistent,
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18. !,e., a formula of classical logic In the sense of Section 1,

19o IcOC. cit, Dp. 304-305,

20, By a prooositlonal formula we mean a formula contplning only

Propositional variables and Propositionai connectives.

21, It Is convenient to regard the entire formula as a component of
['self, In view of the possibility that the formula Itself Is
classical and Is therefore Its own (unique) maximal classical
component.

22. ObviouslYe one copy of a formula 0 may occur In a formula F as a
maximal classical component# while another copy of the same formula G
occurs In F as a nOnmaximal classical component,

23, Note that even If F and G are different formulas, It may hapoen
that CF3=:G]; thus# If the formulas F and G are Identical so are the
symbols EF3 and EG3, but the converse need not be true,

24, B1i need not contain the same variables as A'41. It Is clear
that 8'4k will be the maximal classical components of the formula G.

25, It follows Immediately from the truth table of the functions "As
AnB that a classical pronOsltlonal formula takes the value s whenever
at least one of Is arguments takes this value,

26. Thus# If
F1k(ohl4k) = A'k(phlk)t

D
then F4k(Phl4k) Is clearly an elementary component of any formula of
which It Is a subfOrmula, But A4k(phi6k) cannot be an elementary
component of any formula of which It Is a subformula.

27, The prototype of a formula F Is clearly unique up to the names

of Its Propositional variables, if necessary, this remaining
ambiguity can be removed by fixing the propositional variables In a
given Proof once for all, so that each elementary component appearing
In the proof will correspond throughout the proof to the same
propositional variable,

28, Direct substitution of the formulas F41i Fe F42* G for the
variables ABC,0D In (a) Is not permitted by the axioms of AS*,
since they nued not be formulas of classical logic, However# this
restriction Imposed In AS* Dy the axioms for substitution, is not
essGential (see below, Section 4).

29, See footnote (27),

30, See Section 1,
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31o In the sense that the final result Is the same formula,

32, Ie,, not Containing quantiflees and ýhe relovat axioms and
rules,

33, The construction of the symbol CP3 must now Involve also
transfiite numbers of the second number class for enumeratleon of the
maximal classical components,

34, Of course, there are those oqnstants Intrqduced by deflniltons
in the classical extended functiehnal calculus without theory of tYDes
(which Is Inconsistent),

35. Axioms containing a free variable must first 'be DrefIxed by the
corresponding (classical) universal symbol, and then the axioms In
the neh Interpretation become basis formulas~of the calcullus AS*6w.
Axtofr 11143 (see Section 1) corresponds In AS*4W to a derived iet.,
deducible from the axioms of AS*4w ) rulev constating 'of the
following two assert;qns:

1. Given a seauence of formulas
B41, st , BPn, too if the for'mula A*B13n Is provable

for each np then so is the formula
A * B41 A o n B Mn

2, Given a sequence of formulas
841, to$ , Bin, ... I• the formula Bon-A Is -provabl

for each nt then so Is the formula
B& I ,v , v 3,n v o A,
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Review of aochvar's "On 'a tflree-valued logical Oalculuv,,,"t by Alomzo
Church# from the Journal of Symbolic Lo9ic, 4#2 (June 1939)o Do 99,

The author employs a three-valued prooositional calculus
Whcie character 'May be Indicated by -the following tYpioal
truth-tables: C.,, Church gives at this paint the truth tables for

-1 I-0 >, 0 fs s m 2cp - and i ,..2 0n this basis he dove Do It
(three-v~alued) system of logic, introduoing first a functional
calculus of first order, and then an extended functional calculus --
analogously to the treatment, Of Hllbert-AckerMann (365#1)o but
without a theory of types#

This system Is used icr an "analysis". of the Dar-adoxes of
Russell and Grel I ig, these paradoxes being thought of go taken f 'o
a twoinvalU~d system and therefore expressed In terms of the negationm

-oIIf Q Is the formula' which' leads to the Russell paradix In a
two-valued:$systm, by means of thie ecuivaleces Q c -%o, then, In the
,three-valued system, 0 = %a Is demonstrable but# musted of leading to
parAdOo, leads only to ;0.

The author ove'rlooks that the three-Valund system 10 Itself
incomsist'smt through the presence In It Of another form of the

Russell paradox, in which the neqatlon appears lnsteb'l Of "so

Additional Commen~t by Church iA Journal of SymbOlic Logic review, 5.3
(Septemter 1940)e p. 119#

The reviewer would take'this opportunity to oorrect an error
made im a 'review of C800hvar's "On a three-valued so. "3, In' that
oaper trio author does not propose an unrestricted three-valued logic
'without a theory of types,~ Insetead# he first Introduces an
auxiliary system (extended f unctional calculus) S'0, which has no
rule of types, !but which employs as procositlonal oonmectIves only
sflb an ..a and'. connective: ~efIntble In terms of these (see
truth-tables in thq rev;iew leferred to). Then he extends his
three-valued functional calculus of thKe first order by allowing
formulas of' S60 to appear In place of 'the froe Individual vai lables
and (propositionsil or functi~onal) variables of S&0 to appear In the
place of bound individual variables, The resulting system does mot
have the Immedlat* In'consistency which the reviewer charged, On -the
oontrar~o the suggested alternative 'to the theory of typoes Is far
fromt devoid of Interest, The major question# It would seem, Is mot
that of qonalstemeY, but whether It Is possible to obtain along these
Iii~mes a system adeqiuate to the purpose$ for which the extended
funictional calcul 'us I1s usually 'employed, eg., to the theor4 of
finito cardinal numberl Or- to FtnalYsIs -,-.Boehvar does not discuss
this point,
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