e ————

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-164

STAN-CS-72-212

FIXPOINT APPROACH TO THE THEORY OF COMPUTAT ION

QD

< BY

Do

:}.‘ ZOHAR MANNA
b JEAN VUILLEMIN

o

et

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AND
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457 D_\ D C
MARCH 1972 e “
s JUN 1 1972
B

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

NATIONAL TECHNICAL 3] Q\

INEADALATILL CRI 28 onpe

Seene— W

W

-
<

Stanford Artificial Intelligence Project April 1972
Memo AIM-164

FIXPOINT APPROACH TO THE THEORY OF COMPUTATION

by

Zohar Manna and Jean Vuillemin
Computer Science NDepartment
Stanford University

Abgtract

{ AN

Following the fixpoint theory of Scott, wel\ propose to define the
semantics of computer programs in terms of the least fixpoints of
recursive programs. This allows one not only to justify a'J_'L.eicisting'
verification techniques, but also to extend them to handle various
properties of computer programs, including correctness, teminafion .
and equivalence, in a uniform manner. (

A\

-

Keywords and Phrases: Verification techri’;lques » Semantics of programming

langueges, least fixpoimts, recursive programs,
computational induction

CR categories: 5.23, 5.2k

The research reported lhere was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense under Contract

SD-183 and in part by NASA Contract 2FCZ 713.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Project Agency or the U.S. Government.

Reproduced in the USA. Available from the Ciearinghouse for Federal
Scientific and Technical Information. Springfield, Virginia 22151.

°
-

e —————

Lo

Introduction

Substantial progress has recently been made in understanding the
mathematical semantics of programming languages as a result of Scott's
fixpoint theory. Our main purpose in this paper is to introduce the
reader to some applications of this theory as a practical tool for
proving properties of programs.

The paper consists of two parts.

In Part 1 we first introduce the notior of a recursive program and
its (unique) least fixpoint. We describe the computational induction
method, a powerful tool for proving properties of the least fixpoint of
a recursive program. We then illustrate how one could describe the
semantics of an Algol-like program P by "translating" it into a
recursive program P' such that the partial function computed by P is
identical to the least fixpoint of P!. Works in this area include those
of McCarthy [1963a, 1963b], Landin [1964], Strachey [1966], Moriis [1968],
Bekic [1969], Park [1969), deBakker and Scott [1960], Scott [1970],

Scott and Strachey [1971], Manna, Ness and Vuillemin [1972], Milner [1972),

Weyhrauch and Milner (1972].

In Part 2 of the paper we illustrate some of the advantages of the
fixpoint approach to program semantics. First, we justify the
inductive assertion methods of Floyd [1967) and Hoare [1969, 1y71].
Other verification methods such as recursion induction (McCarthy [1963a],
(1963b]), structural induction (Burstall [1969]), fixpoint induction
(Park [1969), Cooper [1971]), and the predicale calculus approach
(Manna [1969), Manna and Pnueli [1970]) can be justified in much the
same way. Secondly, we emphasize that the fixpoint approach suggests

u natural method for proving properties of programs: given a

program P , we can translate it into the corresponding recursive
program P' , and then prove the desired properties for the least
fixpoint of P' by computational induction. In contrast to other
existing methods, this approach gives a uniform way of expressing

and proving different properties, including correctness, termination
and equivalence. This makes it very convenient for machine implementa-

tion (Milner [1972]).

Warning: The reader should be aware that some of the results
presented in this paper hold aonly under certain riestrictions which are

ignored in this informal presentation.

PART 1. THE FIXFOINT APPROACH TO PROGRAM SEMANTICS

1.1 Recursive Programs

A recursive program is a LISP-like definition of the form

F(x) <= t[F}(X) ,
where T[F](x) is a composition of base functions and the function
vaiiable F , applied to the individual variables X = (X,¥,2Z,...) »
The following, for example, is a recursive program over the intecgers

By: F(x,y) <= if x = y then y+1 else F(x,F(x-1,y+1)) .

We allow our base functions to be partial, i.e., they may be
undefined for some arguments. This is quite natural, since they
represent the result of some computation which may in gencsral give
results for some inputs and run indefinitely for others. We include
as limiting cases the partial functions defined for all arguments,
called total functions, as well as the partial function undefined for
all arguments

Let us consider now the following partial functions:

fl(x,y): x+l

fg(x,y): if x > y then x+1 else y-1 , and

[}

(x >¥) A (x-y even) then x+1 else undefined .

f-j(x:Y) i if

These functions have an interesting common property: For each i
(L <i<3), if we replace all occurrences of F in the program P,
by fi » the lefthand side and the righthand side of the symbol <=

*
yield identical partial functions, i.e.,

*

X = 1is an extension of the regular = relation for handling undefined
values. a =b is true if both a and b are undefined, but it is
false if only one of them is undefined.

3

fi(x,y) = if x = y then y+1 else fi(x,fi(x-l,y*-l)) .

We say that the functions fl s f2 and f3 are fH‘B. oints
ol the recursive program Po .

Among the three functions, i‘3 has one important special property:
for any (%,y) such that i‘3(x,y) is defined, i.e., (x >y) A (x-y even) ,
both fl(x,y) and fz(x,y} are also defined and heve the same value e&s
f3(x,y) . We say thut i‘3 is "less defined than or equal to" £, eand
f, , and denote this by f, = f, and f, c f2 « It can be shown that

b) 1 b)

f; has this property not only with respect to fl and f2 but with

3
respect to all fixpoints of ‘e recursive program PO « Moreover,

fj(x,y) is the only function having this property; f3 is therefore

said to be the least (defined) fixpoint of F,

One of the most important results related to this topic is due to

Kleene [1952], who showed that every recursive program P has a unique

least fixpoint (dencted by fP).

In discussing our recursive programs, the key problem is:

What is the partial function f defined by a recursive program P ?

There are two viewpoints.

(a) Fixpoint approach: TLet it be the unique least fixpoint fP .

(b) Computational approach: Let it be the computed function CP for

some given computation rule C (such as "call by name" or "call

by value").

We now come to an interesting point: all the theory for proving

properties of recursive programs is based on the assumption that the

1

k.

function defined by a recursive program is exactly the least fixpoint fP .
That is, the fixpoint approach is adopted. Unfortunatiely, many programming
languages use implementations of recursion (such as "call by value" !)

which do not necessarily lead to the least fixpoint (Morris [l968]).y

Let us consider, for example, the following recursive program over
the integers
P, : F(x,y) <= if x = 0 then 1 else F(x-1,F(x,y)) .

The least fixpoint fP can be shown to be
1

fP (x,¥) ¢ Af x >0 then 1 else undefined .
1

However, the computed function C_ , where C is "call by value", turns

Py

out to be

CP (x,y) : if x = O then 1 else undefined .
1

Thus, C is properly less defined than f -- e.g., C_ (1,0) is
5 P)

undefined while 'fPl(l,O) =1,

There are two alternative ways to view this problem: (e’ Existing
computer languages should be modified, and language designers and
implementors should seek computation mles vhich always lead to the least
fixpoint. "Call by name" is one such computation rule, but unfortunately
it often leads to very inefficient computations. An efficient computation

rule which always leads to the least fixpoint can be obtained by modifying

¥*
g It can be shown in general that for every recursive program P and

any computation rule C , CP must be less defined than or equal to

fP , l.e., CPE fP (Cadiou [1972]).

F Y BT ANy ¢ Reempaas W I

Y]

5 e 4 T Ty

"call by value" so that the evaluation of the arguments of a procedure
is delayed as long as possible (Vuillemin [1972]). (b) Theoreticians
are wasting their time by developing fixpoint methods for proving
properties of programs which do not compute fixpoints. They should
instead concentrate their efforts on developing direct methods for
proving properties of programs as they are actually executed.

We shall indicate in Part 2 of this paper how the apparent conflict
between these views can be resolved by a suitable chcice of the semantic

definition of the programming language.

1.2 The Computational Induction Method

The main practical reason for suggesting the fixpoint approach is
the existence of a very powerful tool, the computational induction method,
for proving properties of recursive programs. The idea of the method is
essentially to prove properties of the least fixpoint fP of a given
recursive program P by_induction on the level of recursion.

Let us consider, for example, the recursive program

P,

s F(x) <= if x = O then 1 else x-F(x-1) ,

over the netural numbers. The least fixpoint fP (x) of this recursive
2
program is tne factorial function xt .
Let us denote by fl(x) the partial function indicating the

"information" we have after the i-th level of recursion. That is,

fo(x) is undefined (for all x)3
] ' H

fl(x) is if x = O then 1 else ;c-fo(x-l) 9 ' o

e .

i.e., 1f x = O'then 1 else undefi;led

; !

fE(x) is ifx =0 then 1 else x-fl(x-l) 5 i

i.e., if x = O then, 1 else x-(if x-1 = 0 then 1 else undefined) ,
1 i

or in short, if x =0 v X =) then 1 else undefined ;

|
etc. ! :

In general, for every i, i>1, '
}

' . 1
£(x) is if x = O then 1 else x-fl-lfx-l) q !
== = . | !

which is

if x < i then X! else undefined ,

This sequence of functions has & limit which is exactly the leaét fixpoint

of the recursive program; that is,

Un{ti(x)} = xt .
i ~») ! , !

This will in fact be the case for any redursiw;e program P : if P
is a recursive program of the ijom F(x) < 1[F](x) , ,and fi(:-c)‘ is |
defined by ‘ ‘ ‘ _ | ' j
fp(i) is Q (undefined for all %), and.
fi(:'c) is 't[fi:'l](;c) Ifor i> ZIL ,y | |
| i

then

(@)= 0,® . SR
i ~w® ! .

1
R ()

'r[fi'l] is the result of replacing all bccurrences of 'F in <[F)

by £°1 ., ' I |

- ’ 1
} 1
1) : ! . : ¢
This suggests ian induction rule for proving properties of fP : To
! ‘ : ‘ '
I) ;
D © 'show that some property ¢ holds for fp s i.e, (p(fP) » we show that
. . | 3
(p(fl) holds for all i >0, and that ¢ remains true in the limit;
i i .
' - therefore we may conclude that (p(gﬂ{i‘l}) s lees, (p(fP) » holds.
» C | ’ , ': dne .
Note that it is not trie in general that ¢ remains true in the
limit. For example, for the recursive program P, introduced above,
> ' | fi(x) is the non-total function if x < i then x! else undefined ,
while @[fi}',"i.e., -fP » 1s the total function x! . . Thus for
! i —00 2
1 o(f) ‘t}aeing " £ 'is not total", we have that (p(fi) holds for all
® l i 2‘ 0 , while @(lim [fl.}) does not hold. However, the limit property
i-e
1
. | holds of a rather large class of @ (called "admissible predicates" --
. see Manna, Ness and Vuillemin [1972]); in particular, all the predicates
! .] N
| \ that we shall use later have this property.
| " There are two’well-knqwn ways to prove that (p(fl) holds for all
. ?
z 1 >0,, the rules for simple and complete induction on the level of
; v '
I:ecursion.
b ! } :
‘ (a) Simple induction:
i : 1
g ’ .
! , ,if (p(fo); holds and _Vi[(p(fl) > (p(fi+l)] holds ,
| } ! -
. ! then' @(f.) . holds .
o *(fp) |
| . : ' \
3 "(b) Complete induction:
! | .
- L j 3 i -)_(-/
; if Y¥i{[¥j such that j < i)9(£')] = @(£*)} holds ,
i
,)
s then (p(fP) holds .

)) T T

oy]
’ 74 Note that this includes implicitly the need to prove (p(fo) » Since
for i =0 there isno j such that . <i .

'y o . ' - 8

e

The simple induction rule is essentially the "u-rule" suggested by
deBakker and Scott [1969], while the complete induction rule is the
"truncation induction rule" of Morris [1971]. Scott actually suggested

tue more €legant rule

if qa(Q). holds and VY£[@(f) =» @(r[f])] holds ,

then <p(fP) holds ,

which does not assume any knowledge of the integers in its formulation.
These rules generalize easily to systems of mutually recursive

definitions.
Example: Consider the recursive programs

P.

5 ¢ F(x,¥y,2) <= if x = O then y else F(x-1,y+z,2)

and

P : G(x,¥y) <= if x = O then y else G(x-l,y+2x-1) .
We would like to prove, using computational induction, that
£, (x,0,x) = &p (x,0) for any natural number x .
(Both functions compute the square of x .)
For this purpose, we shall prove & stronger result than the desired
one by simple computational induction. Proving a stronger result often

simplifies proofs by induction, since it allows the use of a stronger

induction hypothesis. So, using
' = 2 .2
?(f,8) : VxVy[£(y,x(x-y),x) = g(y,x"-y°)] ,
we try to show that

fv(fP},sph) : VxVy[fPB(y,x(x-y),X) = sph(y,xa-ya)]

eiSTemeeam Ik AW

* RN $

holds. The desired result then follows by choosing x = y . The

induction proceeds in two step:;i:

zp(y,xa-yg)] .

W

(a) ‘P(fo,go) y Ll.e., ’VxVy[fo(y,x(x-y),x)

Trivial, since Vx¥y[undefined = undefined] .

) vile(£heh) = o(£ e] .

We assume

Vavyl £1(y, x(x-y),x) = g (y,5°y°)]

and prove

VXVylfi+l(y,x(x-y),X) = gi+l(y,x2-y2)1 .

i+l
7 (¥, x(x-y),x) = if y = O then x(x-0) else fi(y-l,x(x-y)-o-x,x)
_ 2 i
= if y = O then x~ else £ (y-1,x(x-(y-1)),x)
= if y = 0 then x° else gi(y-l,xe-(y-l)e) ‘
by the induction hypothesis
2 if y = O then x2-02 else gi(y-l, (x2-y2)+2y-l)

i+1, 2 2
& T(y,x"-y°)

1]

1.3 Semantics of Algol-like Programs

Our purpose in this section is to illustrate how one can describe
the semantics of an Algol-like Program P by translating it into a
recursive program P' such that the partial function computed by P is
identical to the least fixpoint of P' . The features of Algol we consider
are very simple indeed, but there is no theoretical difficulty in

extending them.

10

The translation is defined blockwise: to each block B (or
elementary statement) we associate a partial function fB descridbing

the effect of the block (or statement) on the values of the varisbles.
For example,

begin x := x+1; y := y+1 end ,
will be represented by the function

£(x,y) = (x+1,y+1) .
Functions are then combined to represent the whole program using the
rule:

fBl;Ba(i) = fna(fnl("‘)) .

This definition is unambiguous, since composition of partial functions

is associative, i.e.,

fB3(fBl;Ba(i)) = fBl;Ba;BB(i) = fBa;BB(fBl(i)) .

All that remains to be done is to describe the partial function
associated with each elementary statement of the language. For
simplicity, we shall first consider only a "flowchartable" subset of a
language, with nc goto statements or procedure calls. We shall also

ignore the problem of declarations.

1) Assignment statements

if B 18 x, := E(X) where E 4is an expression,

2) Conditional statements

if B is if p(X) then B, »

f(x) 1is 4if p(X) then f_ (X) else X ,
B = == "B, =

s ey e
L

if B is if p(x) then then B, else B, ,

fB(i) is if p(x) tuen fBl(i) else fBa(i) :

3) Iterative statements

if B is while p(X) do B, ,

fB(:-c) is the least fixpoint of the recursive program

F(x) <= if p(x) then F(fy (X)) else X .
1

Example: Let us consider the following program for computing in x
the greatest natural number smaller than or equal to Va s 1l.e.,

x& <ac< (xﬂ.)2 » vhere a is any natural numbey. (The computation
method is based on the fact thet 1+3+5+ ...+ (2n-1) = n° for every
n>0.)

P5 ¢ begin integer x,y,z;

X =05y t=12 =13
while y <o do
m:: = X+1;
zZ 1= z+2;
Y = y+z;
end;

w

end.

L o4

The partial function computed by P. is identical to the least fixpoint

5
of Pé » Where

Pé:

Fo(a) <= F(a,o,l,l)
F(a,x,y,2) <= if y < a then F(a,x+1,y+z+2,z+2)
else (a,x,y,z) .

12

;
|
g
:
:
:
:
_t
i
;
|

T RN

eI TR T T ———

ol e

L) goto statements

) There kas been much discussion (see, for example, Dijkstra [1968],

Knuth and Floyd [1971], Ashcroft and Manna [1971]) about the usefulness

of goto statements: they tend to mal'e programs difficulff to understand

) and debug, and one mnight prefer to use while or 22'1; statements instead.

Without entering further into this controversy, we shall see that the
semantices of 521';& statements is quite complex. In particular, it may

lead to systems of mutually recursive definitions, and (not too surprisingly)
it is indeed harder to prove properties of programs with ggﬁg' statements.

We consider two simple cases.

If we have a block of the form

begin ... 5 L: By 3 ... 5 B, , ;5 goto L ; Biyg 5 oo 3 B end,

then we define

by

. . .n (X) to be the least fixpoint of the recursive program
Eoto L’Bi+1""’ N

F ;{ <= £ ;{ 3
L() Bl;...;Bn()

If we have & block of the form

begin...;gotoL;Bl;...;B s L: B, s B

i-l) i] i+l ; s ; Bn end ¥

then we defihe

fgoto LiB, ; ___;Bn(x) to be the least fixpoint of the recursive progrem

F ;{ <= T X .
L() Bi;...;Bn(x)

Note that we have revised our rule of composition, since
fB;B'(x) = fB'(fB(x)) is not valid when B is a goto statement.

Similarly, if we wish to allow goto's which jump out of

13

iterative statements or branches of conditional statements, then we

must change their semantic definition accordingly.

Example: Let us consider another version of P5 » using only the

operations successor and Predecessor .

P6: begin integer Xy¥s23

X =03 y:=2 := 13
L: ify<a EES“.,
begln integer ¢
X = x+1;
Z = z+l;
t 1= z+l;
M: ift >0 then
begin y := y+1;
t = t-1;
goto M3
end;
zZ = z+l; mL;
end;
snvq.‘.

The partial function computed by P6 is identical to the least

fixpoint of Pé where

‘ Pé: Fo(a) <= FL(a,O,l,l)

FL(a,x,y, Z) <= E Yy S & then FM(a,JH'l,y, z+1, z+2)

else (a,x,y,z)

8 Fy(8:%,Y,2,%) <= 1£ t >0 then Fy(8,%,y+1,2,5-1)
else FL(a,x,y, z+1) .
1k

Let us now define the semantics of simple procedures without
parameters. We shall not discuss problems such as "side effects",

parameter passing or the procedure copy-rule for call by name.

5) procedures

(a) For the non-recursive procedure

procedur:: P;B

(where P is the procedure name and B is its body), we

define

0y

call P(x) to be fB(x) 0

(b) For the recursive procedure

procedure P; B[pP] ,

we define

o1l P(x) to be the least fixpoint of the recursive

program F(X) <= fB[P](i)

where occurrences of call P will be replaced by F in

the semantic definition of fB[P] L

6) An answer to the problem of "call by value"

Our semantic definition of recursive procedures assumes that the
implementation of recursion in the language always leads to the least
fixpoint. If this is not the case, we must change our semantic definition:
to every program P we associate a recursive program P' such that

the least fixpoint of P' will always be identical to the partial

function computed by P . Consider, for example, the program

integer procedure P(integer Xx,y);

P := if x = O then 1 else P(x-1,P(x,y));

15

L

If the implementation is "call by name", its semantics will be
fop1l P(x,y) is the least fixpoint of
F(x,y) <= if x = O then 1 else F(x-1,F(x,y)) .
However, if the implementation is "call by value", its semantics will be
r call P(x‘,y) is the least fixpoint of
F(x,y) <= if (x = 0) A def(y) then 1 else F(x-1,F(x,y)) ,

where the (computable) predicate def(y) is true whenever y is

defined, and undefined otherwise.

16

PART 2. APPLICATION TO THE VERIFICATION PROBLEM

Our purpose in the second part of the paper is to illustrate some

of the advantages of the fixpoint approach to program semantics.

2.1 Justification of the Inductive Assertions Method

The most widely used method fox-proving properties of "flowchart

programs" is presently the inductive assertions method, suggested by

Floyd [1967] and Naur [1966]. We shall illustrate the method on the

simple program P5 above. To clarify our discussion we shall describe

the program as a flowchart:

BTART
X «0
3 o
2 -1
L i a
|
l Y - vz
P i
¢

L &
| We wish to show that this flowchart program, whenever it terminates,
I computes the greatest natural number smaller than or equel to Va » l.e.,
’
! LM that x° <a< (x+l)2 » for any natural number a .
E x 17

81

Lor

At

To do this we associate a predicate Q(a,x,y,z) , called an

inductive assertion, with the point labelled & in the program, and

show that Q must be true for the values of the variables (&,X,y,z)
whenever execution of the program reaches point & . Thus, we must
show: (a) that if we start execution with & >0 , then the assertion
holds when point o is first reached, i.e., that Q(a,0,1,1) holds;
and (b) that the assertion remains true when one goes around the
loop from o to «, i.e., that (y <a) A Q(a,x,y,2) implies
Q(a,x+l,y+z+2,2+2) . To prove the desired result we finally show

(¢) that x° <a< (x+1)2 follows from the assertion Q(a,x,y,2z)

when the program terminates, i.e., that (y > a) A Q(e,%,y,2) implies
x2 <a< (x-t-l)2 .

To verify the program, we take

Q(eyx,y,2) to be (x2 <a)A(y= (x+1)2) A (2 = 2x+1) .

One can then verify easily that conditions (a), (b) and (c) above,

called the verification conditions, hold.

Hoare's inductive assertion method is actually a generalization of
Floyd's method; Hoare [1969, 1971] realized that if we wish to apply the
method of inductive assertions to prove properties of a large progrem, we
shall undoubtedly have to break the program imto smaller parts, prove
what we need about the parts, and then combine everything together. We
will clearly break the program into pieces in the most convenient way
for the proof, and, since composition of statements is associative, the
way in which we group the statements of the progrem is irrelevant. For
example, if the given program is of the form

P: B;B2; B3; Bh s

18

'\

L

we can associate the statements in several different ways, e.g.,
((Bys By)s By)s By
(Bys (Bps B5))s By
(Bl; Be); (33; 34))
or
Bl; (32; (Bﬁ; Bh)) .
Although the programs do not look the same, all of them yield the same
least fixpoint, and therefore they are equivalent. If we express other
verification techniques using this nota.tion; we find that Floyd and
Naur consider only the first possibility, i.e., grouping statements to
the left, while McCarthy [1963b] and Manna and Pnueli [1970)] only
consider the last possibility, i.e., grouping statements to the right.
%
Following Hoare, we express this idea by writing {R}B{T} ¥/ to.
. .
mean that if R(x) holds before executing the piece of program B and

if B terminates, then T(x) will hold after executing B .

We first apply verification rules to ea.ch statement of the

program. Examples of such rules 'a.re:

(a) assignment statemeut rule:

R D sf:(’-‘) implies {R]} X, i= E(x) {S}
i

where S}E{(x) stands for the result of replacing all occurrences
i

of x, in 8 by E(x) ;

i

*
¥ We prefer this notation to Hoare's R{B}T .

19

-

(b) conditional ciaicment rule:

{Rl}Bl {T} and {R2 }32 {T} implies

0 - - *
{if p(x) then R, else Ry} if p(x) then B, else B, {r}, ¥/

(c) iterative statement rule:

{(RAp(x)} B {R} implies - {R} while p(X) do B {RA~p(X)} .

We then compose pieces of the program until we get the entire

progrem, using the following
(d) composition rule:

{R}B, {8} and {S}B,{T} implies (R}B;B,{T} ,

(e) consequence rules:

RoS and {S}B{T} implies {R}B{T} , and

{R}B{S} and S o>T implies {R}B{T} .

Example. A proof of the correctness of the program P5 » given above,
could be sketched as follows. |

First, we establish, using the assignment statement rule, the
following results: |

Since a >0 o R(a,0,1,1) , where R(a,x,y,z) 1is

(¥ <a) A (y = (x#1)%) A (z = 20¢1) , we get

1 {R(a,x,y, ;) .

(1) {a>0}x:=0;y :=2z:

ﬁ The reader should be aware of the difference between
(if p then R, else R2) in the mathematical language, which stands

for (p > R)A(~p>D R2) » and (if p then B, else Ba) in the
programming language.
20

Since R(a,x,y,2z) A Y. < a D R(a,x+1,y+2z+2,2+2) , we get,
i . 2l
(2) {R(a,%,¥,2) Ay <8) x 1= x+1§ 2 1= 242; y := y+z R(a,%,y,2)} . |

i
1

By using the iterative statement rule, we get from 2.
- . ' H

(3) {R(e,x,y,2)} while y < a do begin x := x+1; i) .

1

z i=2+2; y := y+z'end {R(a,x,y,2) Ay >a} .
' i . |

We now combine the results of (1) and (3) using the composition rule
| ! :

Yo obtain
(4) f{a >0} P5 {R(a,x,y,2) A y‘ >a} . ' . .
1 | | |

l .
' |

- !
Since [R(a,x,y,z) A y > a] D.x2 <ac< (x+1)2 » We apply the consequerce

rule and finally get 0 ; ! ; :
\ , !

(5) fa20}p & <a<(mn?) . L

; : o . [
It is quite important that all of Hoare's verification rulés can'in

i | y
fact be proved from the semantics we gave, Jjust ty ulsinlg cqnprl.xlca.t:I.onta.l.I .
induction. We shall illustrate this point by justifying two 'of the most

powerful verification rules: the rule for while statements, and the rule
3 e oo ¥ ’

H . o ! B
for call of recursive procedures. For this Purpose, we need to relate }
Lo o o) '

the notation {R} B {T} to our’ fB(i) » the partial function indicating

the change of the values of the variables during the execution of B.

{R} B {T} simply means that whenever R(x) is true, 'i‘(fB(i)) is either

. \ x I .
true (if B terminates) or'undefined. We can ekpress ‘this by the relation

Co :

R(%) =» T(£, (X)) | ! S

adopting here the convention that & » b is true whenever a or b

is

(a) rule for'while statements

1

ui.defined.) ‘ '

We are ready now to prove the following rules:

- i '
'+ The verification rule for while statements indicates that if the

[
execution of the body of the while s1}:atement leaves the assertion R

invarient s R 'should hold upon termination of the while statement. More

precisely,

RGE) Ap(X)]} B (R(X)} |, implies {R(X)} while p(x) do B {R(X) A~p(X)]} .

We therefore have to prove the following theorem:

0 ERED A B = R(E,R)]

implies
;vi[R(i) .= R(fp(i)) A~ p(fp(i))] where

P: F(X) <=:if p(x) then F(fB(:'c)) else x .
i | i

The proof is by éomputationa.l induction.

l.

Yx[R(x) = R(fo(:'c)) A~ p(fo'(i))] is clearly true according to our

- | -
convention, since R(fo(x)) .and ~p(fo(x)) are undefined.

We assume Vx[R(X) = R(fi(i)) A ~p(fi(;c))] and show
VIR(X) = R(£E) A ~p(£ 1)1 . By definition of £}
we|ha.ve ’ '
R(E4L(R) = 12 p(E) then R(FH(£,()) else R , and
p(£7H(%)) = if p(%) then p(£'(£,(%))) else p(X) .

22

We distin@uish between two cases:t/

Case 2A: p(x) 1is false. Then, R(fi”'(i)) = R(x) and

p(£**1(X)) = p(X) , so thet R(X) = R(£'(R)) A ~p(£H(R)) 18 valia.

Case 28: p(%) is true. Then R(£"}(®)) = R('(£4(H)) ana

(£ (%)) = p(£1(£,(%))) . 3By the sssumption R(X) A p(3) = R(£5(x))
holds, and since by the induction hypotheceis

R(£5(%)) = R(E(£5(8)) A ~p(£1(25(X))) , we get

R(X) =» R(fi(fB(i))) A ~p(fi(fB(i))) . Hence,

R(x) = R(fi+l()'c)) A ~p(fi+l(;:)) as desired.

(b) Rule for recursive calls

Let us consider a recursive procedure

d P; BlP
:8 procedure P; [(p] ,

where P is the name of the procedure and B[P] represents its body.

3
!
E
]
|
}‘
|

The verification rule for proving properties of P is quite similar to

8 computational induction, although its formulation might look rather
paradoxical: in order to prove a property of the recursive procedure P,
one is permitted to assume that the desired property holds for the

'S body B[P] of the procedure! This can be stated as follows:

ve [{R} g {T} implies {R} Blg] {Tr}] implies {R} call P (T} .

8 As Hoare [1971, p. 109] puts it, "this assumption of what we want to
prove before embarking on the proof explains well the aura of magic which

attends a programmer's first introduction to recursive programming".

3 X A more rigorous treatment would require checking also the case in
which p(X) is undefined.

23

The rule however is easy to justify. We nave to prove the

following theorem:

VelVX[R(x) = T(g(x))] implies VE[R(X) = T(fy (X))]]
implies
¥X[R(X) = T(£(x))] where

P: F(i)<=fB[F](i) .

The proof ie again by computaticual induction.
1. vx[R(x) aT(fo(i))] is true, since T(fo(i)) is undefined.

2. We assume VX[R(X) » T(£'(X))] and show VXIR(ZX) = 7(£*1(R))] .
By the induction hypothesis, R(X) = T(£ (X)) , therefore, by the

agsumption of the theorem R(X) = T(f i (X)) . Thus, from the
B{r"]

i+l

definition of 0 we get R(X) = T(£2*1(X)) , as desired.

2.2 Translation to Recursive Programs

In the present state of the art of verifying programs, Hoare's method
is presumably the most convenient for proving the correctness of programs.
However, its main drawback is that it can handle only "partial correctness”
of programs, i.e., we can only show that the final results of the programs,
if any, saiisfy some given input-output relation. The method does not
provide us any means for proving termination, and seems rather ill-fitted
for proving equivalence between programs.

This is another case where our semantic definition of the programming

language pay< off: properties like termination and equivalence can be

2k

R o . |

m_BRU ____ __ ___ ___ '}

4w
r

handled in exactly the same way as partial correctness. The idea is
quite simple: To prove same property of a given program P , translate
it to the corresponding recursive program P' , and tu#z prove the
desired property for fp, » by computational induction. In this method
we actually still benefit from all the advantages of iicare's approach
slnce we may associate the blocks of the program arbitrarily at our

convenience.

To show, for example, that the partial function defined by the
given program P is monotonic increasing, we prove

Vo,y((x <y) = (qu {x) < fPt(Y)} .

Note that it is mather hard to express such a property as an input-output

relation.

(A) Termination

To show that fp

function g which is total on the desired domain, we cannot simply use

is total, or in general that gc fp for scme

computational induction choosing @(F) to be g F, as then Q(to)
will always be false. However, we can overcome this difficulty by
considering the domain over which our data range as defined by a recursive
program.
&
For example, the natural numbers can be characterize by the
least fixpoint mnum(x) of the recursive program

N(x) <= if x = ¢ then true else N{x-1) .

We can now translate any program P over the natural nmbders into the
corresponding recursive program P' and show that P' terminates by

simply proving the relation

2yG:I.ventlmt 0,1, -, +, = have their vwsual meaning.

25

vxmm(x) ¢ (g, ()]

In other words, fp, (x) is defined and its value is a natural number,

whenever x is a natural number.

(B) Equivalence
It should be quite clear at this point that equivalence of two

recursive programs is no mere Zifficult to prove than the other
properties. Consider, for example, the two recursive programs over the
natural numbers |

P7 : F(x) <= if x = O then 1 else x'F(x-1) ,
and

Pg: G(x,y,2) <= if x = y then z else G(x,y+1, (y*l)-z) .
We want to show that

x| £ = 20,1 .
(£ () = gp (x,0,1))

Note that both fP (x) and gpe(x,o,l) computes x! ; but quite
7

differently: p (x) 1is 'going down' from x to O , while gpe(x,o,l)
7
is 'going up' from O to x . This explains why a "direct" computational
induction tails in this case.
However, if we consider the predicate x 2y over the natural
numbers to be characterized by the least fixpoint ge(x,y) of the

recursive program

M(x,y) <= if x = y then true else M(x,y+1)) ,

we can show by computational induction that

VXJV[EE,(K:Y) c [f17(x) = GPS(J‘JY: fPT(y))]] .
Then, in particular, for y = 0 we get

26

]

vx[ge(x,0) = [fP7(x) = Sps(xao:l)]] ’

i.e., for every natural number x , either both fP7(x) and gPB(;c,O,l)

are defined and equal, or both are undefined.

The proof is by computational induction with

o(F) : Vx,y[F(x,y) € [fP7(X) = spa(x,y,fp_((y))]] .
Tt is clear that @(£°) holds. So, we assume that @(£1) holds end
show that @(£2'1) holds, i.e.,
v,y e () € (£, (%) = &y (¥, 2, (¥))]]
)) c P7 SPS 2 Y P7 P)

or in other words

voyl[s « = y then tmve else £'(53+1)] € (£ (5) = g (6,8, (41!

Tae proof proceeds easily by distinguishing between the two cases where

x=y and X fy.

() If x =y we get Vx[truec fP (x) = o (x)] , which clearly holds.
7 7 \

() If x4y we get Vx,yl£i(x,y+1) c [fP7(X) = spa(x,y,fp_((_y))]] .

Using the definitions of fP

[

" and we get
“rg
v,y £ (x,3+1) © [£, () = 6y (63¥1,8p (1))1) 5 vhich nolds

by the induction hypothesis.

' @
References

& ASHCROFT and MANNA [1971]. E. Ashcroft end 2. Manna, "The Translation
of 'Goto' Programs to 'While' Programs", Proceedings of IFIP
Congress 1971.

-, BEKIC [1969]). H. Bekié, "Definable Operations in General Algebra and
s the Theory of Automata and Flowcharts". Unpublished memo, IBM,
! Vienna (December 1969).

BURSTALL [1969]. R. M. Burstall, "Proving Properties of Programs by
Structural Induction", Computer Journal, Vol. 12, No. 1 (February
1969), pp. 41-u48.

| CADIOU [1972]. J. M. Cadiou, "Recursive Definitions of Partial Functions
and their Computations", Ph.D. Thesis, Computer Science Dept.,
Stanford University (to appear).

COOPER [1971]. D. C. Cooper, "Programs for Mechani:al Program Verification",
in Machine Intelligence 6 (B. Meltzer and D. Michie, Eds.), Edinburgh
University Press, pp. 43-59.

DEBAKKER and SCOIT [1969]. J. W. deBakker and D. Scott » "A Theory of
Programs", unpublished memo (August 1969).

DIJKSTRA [1968]). E. Dijkstra, "Goto Statements Considered Harmful",
CACM’ VOlo J-l’ NOO 3 (Ma-rCh 1968)’ ppo l"“?"lh'eo

FLOYD [1967]. R. W. Floyd, "Assigning Meanings to Programs", in
Proceedings of a Symposium in Applied Mathematics, Vol. 19, R
Mathematical Aspects of Computer Science (Ed. J. T. Schwartz),

pp . 19-32 .

HOARE [1969]. C. A. R. Hoare, "An Axiomatic Approach to Computer
Programming", CACM, Vol. 12, No. 10 (October 1969), pp. 576-580, 583.

HOARE [1971]. C. A. R. Hoare, "Procedures and Parameters: an Axiomatic
Approach", in Symposium on Semantics of Algorithmic Langueges,
Lecture notes Mathematice, Vol. 188 (E. Engeler, Ed.), Berlin,
Springer-Verlag, pp. 102-116

KLEENE [1952]. S. C. Kleene, Introduction to Meta-mathematics,
Van Nostrand, Princeton, New Jersey.

KNUTH and FLOYD [1971]. D. E. Knuth and R. W. Floyd, "Notes on
Avoiding 'Goto' Statements", Information Processing Letters 1
(Jaruary 1971), pp. 23-31.

LANDIN [1964]. P. J. Landin, "The Mechanical Evaluation of Expressions",
Computer Journal, Vol. 6, No. 4 (January 1964), pp. 308-320.

28

134

MANNA [1969]. 2. Manna, "The Correctness of Programs", JCSS, Vol. 3,
No. 2 (May 1969), pp. 119-127.

MANNA, NESS, and WILLEMIN [1972]. Z. Manna, S. Ness, and J. Vuillemin,
"Inductive Methods for Proving Properties of Programs", in

Proceedings of ACM Conference on Proving Assertions about Programs,
ACM, New York iJa.nua.ry 19725 c

MANNA and PNUELI [1970]. 2. Manna and A. Pnueli, "Formalization of
Properties of Functional Programs", JACM, Vol. 17, No. 3 (July 1970),
Pp. 555-569.

McCARTHY [1963a]. J. McCarthy, "A Basis for a Mathematical Theory of
Computation". In Computer Programming and Formal Systems,
(P. Braffort and D. Hirschberg, Eds.), pp. 35-70.

McCARTHY [1963b]. J. McCarthy, "T'owards a Mathematical Science of
Computation", in Information Processing: Proceedings of IFIP 62
(Co .Mo PopplEWEll, Edo] Amsterdmn’ North Homnd’ ppo 21'2 []
MILNER [1972]. R. Milner, "Implementation and Applications of Scott's
Logic for Computable Functions", in Proceedings of ACM Conference
on Proving Assertions about Programs, ACM, New York lJa.mxa.ry 1972).
MORRIS [1968]. J. H. Morris, "Lembda-Calculus Models of Programming
Languages", Ph.D. Thesis, Project MAC, M.I.T., MAC-TR-57 (December 1968).

MORRIS [1971]. J. H. Morris, "Another Recursion Induction Principle",
CACM, Vol. 1k, No. 5 (May 1971), pp. 351-35k.

NAUR [1966]. P. Naur, "Proof of Algorithms by General Snaptshots",
BIT, Vol. 6 (1966), pp. 310-316.

PARK [1969]. D. Park, "Fixpoint Induction and Proofs of Progrem Properties",
in Machine Intelligence 5 éB. Meltzer and D. Michie, Eds.), Edinburgh
University Press, pp. 59-78.

SCOTT [1970]. D. Scott, "Outline of & Mathematical Theory of Computation",
Oxford University Computing Lab., Programming Research Group,
Technical Monograph PRG-2 (November 1970).

SCOTT and STRACHEY [1971]. D. Scott and C. Strachey, "Towards a Mathematical
Semantics for Computer Languages", Technical Monograph PRC-6,
Oxford University (August 1971).

STRACHEY [1966]. C. Strachey, "Towards a Formal Semantics", in Formal
es Description Langueges, (T. B. Steel, Ed.), Proc. IFIP
Working Conf. 196k, Amsterdam, North-Holland, pp. 198-220.

VUILLEMIN [1972]. J. Willemin, "Proof Techniques for Recursive Programs",
Ph.D. Thesis, Computer Science Dept., Stanford University (to appear).

WEYHRAUCH and MILNER [1972]. R. Weyhrauch and R. Milner, "Program
Semantics and Correctness in a Mechanized Logic", The USA-Japan

Computer Counference, Tokyo (October 1972).

29

