
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMOAIM-164

STAN-CS-72-272

FIXPOINT APPROACH TO THE THEORY OF COMPUTATION

00
BY

ZOHAR MANNA

JEANVUILLEMIN

SUPPORTED BY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AND

ADVANCED RESEARCH PROJECTS AGENCY

AR PA ORDER NO. 457

MARCH 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

D D C
SEfKLQE

JUN 1 1972

isEuins
B

DISTRIBOnON STATEMENT A
w^——■■ ■■' '" ■ i ■ i ■■■■■■■■■ i ■ ^

Approved for public reloos«;
Distribution Unlioiitad

ll*pro^>c«d by

NATIONAL TECHNICAL
IKICrtDAlATI/MLl CCBt/t^-f ill.

Stanford Artificial Intelligence Project Anril 1072
Memo AIM-161+ * yi

FIXPOINT APPROACH TO THE THEORY OF COMPUTATION

by

Zohar Manna and Jean Vuillemin

Computer Science Department

Stanford University

1V. . V\
Following the fixpoint theory of Scott, we- propose to define the

semantics of computer programs in terms of the least fixpolnts öf

recursive programs. This allows one not only to Justify OLU. existing-

verification techniques, but also to extend than to handle various

properties of computer programs, including correctness, termination

and equivalence, in a uniform manner. /

K
\

' \

Keywords and Phrases; Verification techniques, semantics of programming

languages, least fixpoints, recursive programs,

computational induction

CR categories; 5.25, 5.2h

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense under Contract
SD-185 and in part by NASA Contract 2FCZ 715.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Project Agency or the U.S. Government.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information. Springfield, Virginia 22151.

Introduction

Substantial progress has recently been made in understanding the

mathematical semantics of progranraing languages as a result of Scott's

fixpoint theory. Our main purpose in this paper is to introduce the

reader to some applications of this theory as a practical tool for

proving properties of programs.

The paper consists of two parts.

In Part 1 we first introduce the notion of a recursive program and

its (unique) least fixpoint. We describe the computational induction

method, a powerful tool for proving properties of the least fixpoint of

a recursive program. We then illustrate how one could describe the

semantics of an Algol-like program P by "translating" it into a

recursive program ?• such that the partial function computed by P is

identical to the least fixpoint of P'. Works in this area include those

of McCarthy [1965a, 1965b], Landin [196^], Strachey [1966], Morris [1968],

Bekic [1969], Park [1969], deBakker and Scott [1969], Scott [1970],

Scott and Strachey [1971]^ Manna, Ness and Vuillemin [1972], Milner [1972],

Weyhrauch and Milner [1972].

In Part 2 of the paper we illustrate some of the advantages of the

fixpoint approach to program semantics. First, we Justify the

inductive assertion methods of Floyd [1967] and Hoare [1969, ly71].

Other verification methods such as recursion induction (McCarthy [1965a],

[1965b]), structural induction (Burstall [1969]), fixpoint induction

(Park [1969], Cooper [1971]), and the predicple calculus approach

(Manna [1969], Manna and Pnueli [1970]) can be justified in much the

same way. Secondly, we emphasize that the fixpoint approach suggests

u natural method for proving properties of programs: given a

program P , we can translate it into the corresponding recursive

program P* , and then prove the desired properties for the least

fixpoint of P' by computational induction. In contrast to other

existing methods, this approach gives a uniform way of expressing

and proving different properties, including correctness, termination

and equivalence. This makes it very convenient for machine implementa-

tion (Milner [1972]).

Warning; The reader should be aware that some of the results

presented in this paper hold only under certain restrictions which are

ignored in this informal presentation.

PART 1. THE FPCPOIMT APPROACH TO PROGRAM SEMANTICS

!•! Recursive Programs

A recursive program is a LISP-like definition of the form

F(x) <= T[F](X) ,

where T[F](X) is a canposition of base functions and the functior

vaiiable F , applied to the individual variables x = (x^z,...) .

The following, for example, is a recursive program over the integers

?0'' F(x,y) <= if x = y then y+1 else F(x,F(x-l,y+l)) .

We allow our base functions to be partial, i.e., they may be

undefined for some arguments. This is quite natural, since they

represent the result of some computation which may in general give

results for some inputs and run indefinitely for others. We include

as limiting cases the partial functions defined for all arguments,

called total functions, as well as the partial function undefined for

all arguments

Let us consider now the following partial functions:

fjtay)i x+i

f2(x,y): if x > y then x+1 else y-1 , and

^j(x#y): if (x > y) A (x-y even) then x+1 else undefined .

These functions have an interesting common property: For each i

(1 < i < 5) , if we replace all occurrences of F in the program P

by fi , the lefthand side and the righthand side of the symbol <=

yield identical partial functions, i.e.,^

*7 "
•J m is an extension of the regular = relation for handling undefined

values. a s b is true if both a and b are undefined, but it is
false if only one of them is undefined.

fJ^y) - if x = y then y+1 else f^f (x-l,y+l)) .

We uay that the functions ^ , f^ and f are fixpoints

of the recursive program P .

Among the three functions, f has one important special property:

for any (x,y) such that f^x,y) is defined, i.e., (x > y) A (x-y even) ,

both fj^y) and f2(x,y; are also defined and have the same value as

f
5(x,y) . We say tliLt f^ is "less defined than or equal to" f and

f2 , and denote this by f^ c ^ and f, C f2 . It can be shown that

fj has this property not only with respect to f and f but with

respect to all fixpoints of ■' \e reciirsive program P . Moreover,

f
5(x,y) is the only function having this property; f is therefore

said to be the least (defined) fixpoint of P .

One of the most Important results related to this topic is due to

Kleene [1952], who showed that every recursive program P has a unique

least fixpoint (denoted by f).

In discussing our recursive programs, the key problem is:

What is the partial function f defined by a recursive program P ?

There are two viewpoints.

(a) Fixpoint approach: Let it be the unique least fixpoint f .

(b) Computational apfproach; Let it be the computed function C for

some given computation rule C (such as "call by name" or "call

by value'').

We now come to an interesting point: all the theory for proving

properties of recursive programs is based on the assumption that the

.

»

function defined by a recursive program is exactly the least fixpoint f .

That is, the fixpoint approach is adopted. Unfortunauely, many programming

' languages use implementations of recursion (such as "call by value" I)

which do not necessarily lead to the least fixpoint (Morris [1968]).-/

Let us consider, for example, the following recursive program over

the integers

P1 : F(x,y) <= if x = 0 then 1 else F(x-.l,F(x,y)) .

The least fixpoint f can be shown to be
Fl

fp (x,y) : if x > 0 then 1 else undefined .
*1

However, the computed function C , where C is "call by value", turns
P:L

out to be

Cp (x,y) : if x = 0 then 1 else undefined .

Thus, C is properly less defined than f — e.g., C (1,0) is
*1 F1 P1

undefined while f (1,0) = 1 .

There are two alternative ways to view this problem: (e' Existing

computer languages should be modified, and language designers and

implementors should seek computation rules which always lead to the least

fixpoint. "Call by name" is one such computation rule, but unfortunately

it often leads to very inefficient computations. An efficient computation

rule which always leads to the least fixpoint can be obtained by modifying

¥7 :
-/ it can be shown in general that for every recursive program P and

any computation rule C , Cp must be less defined than or equal to

fp , i.e., Cpcfp (Cadiou [1972]).

"call by value" so that the evaluation of the arguments of a procedure

is delayed as long as possible (Vuillemin [1972]). (b) Theoreticians

are wasting their time by developing fixpoint methods for proving

properties of programs which do not compute fixpoints. They should

instead concentrate their efforts on developing direct methods for

proving properties of programs as they are actually executed.

We shall indicate in Part 2 of this paper how the apparent conflict

between these views can be resolved by a suitable choice of the semantic

definition of the programming language.

1.2 The Computational Induction Method

The main practical reason for suggesting the fixpoint approach is

the existence of a very powerful tool, the computational induction method,

for proving properties of recursive programs. The idea of the method is

essentially to prove properties of the least fixpoint f of a given

recursive program P by induction on the level of recursion.

Let us consider, for example, the recursive program

P2 : F(x) <= if x = 0 then 1 else X'F(x-l) ,

over the nstural numbers. The least fixpoint f (x) of this recursive
F2

program is tne factorial function xl .

Let us denote by f (x) the partial function indicating the

"information" we have after the i-th level of recursion. That is.

_ >

f (x) is undefined (for all x);

!
1 f^x) is if x = 0 then 1 else x-f0(x-l) ,

i.e., if x = 0 then 1 else undefined j ,

f2(x) is if x = 0 then 1 else x-f^Cx-l) ,' '•
1 I

i.e., if x = 0 then.l else X'(if x-1 = 0 then 1 else undefined) ,

or in short, ifx=Ovx = l then 1 else undefined ;

etc. ' ' •

i

i

In general, for every i , i > 1 ,

f^x) is if x = 0 then 1 else X'f1"1^-!) , i
~ ' i . i

which is .

if x < i then x». else undefined ,

This sequence of functions has a limit which is exactly the least fixpoint

of the recursive program; that is, > I

UaC^W) = xi .
1 -»09

This will in fact be the case for any recursive program P : if P

is a recursive program of the form F(x) <= T[F](X) , and f^x) is

i
defined by «

i ; i

f (x) is Q (undefined for all x), and. . ,

^(x) is rCf1"1]^) for 1>1,^

then

liatf1^)} = fp(x) :.
i -»OB

*/
T[f "] is the result of replacing all bccurrenbes of !F in T[F]

by f1"1 . ' ' ■ ,

' 7

I ! i

This suggests ;an induction rule for proving properties of f : To
i i ■ P

show that some property| (p holds for f , i.e., 9(0 , we show that

q)(f) holds for all i > 0 , ^nd that (p remains true in the limit;

therefore we may conclude that »CUafarll , i.e., (p(fj > holds.
i -»OB

1 i

| Note that it is not trsie in general that (p remains true in the

limit. For example, for the recursive program P introduced above,

f (x) is the non-total function if x < i then xl else undefined ,
! ■ i ,

while lim{f }V'i.e., f , is the total function xl . Thus for
i -«eo r2

cp(f) being " f is not total", we have that ^(f1) holds for all
i

i > 0 , while (p(lim {f1}) does not hold. However, the limit property
1 -»09

holds of a rather large class of (p (called "admissible predicates" —

see Manna,: Ness an^ Vuillemin [1972]); in particular, all the predicates
i

that we shall use later have this property.

There are two well-known ways to prove that cp(f1) holds for all

i > 0,, the rules for simple and complete induction on the level of

recursion.

i(a) Simple induction:
i

, if <p(f0); holds and Vi[<p(fi) =»(p(fi+1)] holds.

then' (p(fp) ; holds .

(b) Complete induction;

if n{[Vj such that j < iMf5)] ^(f1)} holds ^

then q)(fp)' holds .

*•/ i 75
-' Nojte that this includes implicitly the need to prove <p(f j , since

for i =0 there is no J such that , < i .

8

The simple induction rule is essentially the 'V-rule11 suggested by

deBakker and Scott [1969], vhile the complete induction rule is the

"truncation induction rule" of Morris [1971]. Scott actually suggested

tiie more elegant rule

I
if <p(fi) holds and Vf[q)(f) =» 9(T[f])] holds ,

then q)(fp) holds ,

t
which does not assume any knowledge of the integers in its formulation.

These rules generalize easily to systems of mutually recursive

definitions,
t

Example; Consider the recursive programs

P5 : F(x,y,z) <= if x = 0 then y else F(x-l,yfz,z)

f and

P^ : G(x,y) <= if x = 0 then y else G(x-l,yf2x-l) .

We would like to prove, using conrputational induction, that

fp (x,0,x) ■ g^ (x,0) for any natural number x .

(Both functions compute the square of x .)

9 For this purpose, we shall prove a stronger result than the desired

one by simple computational induction. Proving a stronger result often

simplifies proofs by induction, since it allows the use of a stronger

induction hypothesis. So, using

(p(f,g) : VxVy[f(y,x(x-y),x) = g(y,x2-y2)] ,

we try to show that

f(«U ,gp) : WfyUp (y,x(x-y),x) = * (y,x2-y2)]

m

'

holds. The desired result then follows by choosing x = y . The

induction proceeds in two steps:

(a) q^f^g0) , i.e., fxVylf0(y.x(x-y),x) = g0(y,x -y)] .

Tri\rLal, since VxVy[undefined ■ undefined] .

(b) viWfSg1) ^(f^g1*1)] •

We at; sume

YxVyU^y^x-y^x) = gi(y,x -y)]

and prove

VXYy[fi+1(y,x(x-y),x) = gi+:L(y,x -y)] .

f (y,x(x.y),x) = if y = 0 then x(x-O) else fV-l^x-y^x)

= if y = 0 then x2 else ^(y-^xCx-Cy-l))^)

s if y = 0 then x2 else gi(y-l,x2-(y-l)2)

by the induction hypothesis

-- if y = 0 then x2-02 else gi(y-l,(x2-y2)+2y-l)

„ i+1, 2 2x
= ß (y>x -y) .

1.3 Sonantics of Algol-like Programs

Our purpose in this section is to illustrate how one can describe

the samantics of an Algol-like program P by translating it into a

recursi-e program P« such that the partial function computed by P is

identical to the least fixpoint of p« . The features of Algol we consider

are very simple indeed, but there is no theoretical difficulty in

extending them.

10

The translation ic defined bioclwise: to each block B (or

elanentary statement) we associate a partial function f_ describing
B

the effect of the block (or statement) on the values of the variables.

For example,

tegin x := xfl; y :« yfl end ,

will be represented by the function

f(x,y) = (x+l,yfl) .

Functions are then combined to represent the whole program using the

rule:

fB -B ^ = fB (fB &) •

This definition is tmambiguous, since coapositicn of partial functions

is associative, i.e.,

fB (fB -B (i)) ' fB -B ll ® * f* H (fT» (*)) • ß5 ^l'^ 0^2»^ B2,B3 B1
v

All that remains to be done is to describe the partial function

associated with each elementary statement of the language. For

simplicity, we shall first consider only a "flowchartable" subset of a

language, with nc goto statements or procedure calls. We shall also

ignore the problem of declarations.

1) Assignment statements

if B is xi := E(x) where E is an expression,

fB(x) is (^...»X^I^x^j,...,^) .

2) Conditional statements

if B is if p(x) then B, ,

f (x) is if p(x) thra f_ (x) else x ,
Bl

11

and

if B is if p(x) then B. else B„ ,

fR(x) is if p(x) t^ f_ (i) else f_ (x) .
Bl B2

5) Iterative statements

if B is while p(x) do B. ,

fB(x) is the least flxpoint of the recursive program

F(x) <= if p(x) then F(f_ (J)) else x .
Bl

Example; Let us consider the following program for computing in x

the greatest natural number smaller than or equal to /a , i.e.,

x < a < (xfl) , vrtiere a is any natural numbei'. (The computation

method is based on the fact thrt 1+?+ 5+ ...+ (2n-l) » n2 for every

n > 0 .)

pt; : 5^05. integer x,y,zj

x := 0; y := z :« 1;

while y < a do

begin x := xfl; ***********

z := 2+2;

y := y+2;

end;

end.

The partial function computed by p is identical to the least fixpoint

of P' , where

P^ : F0(a) <= F(a,0,l,l)

F(a,x,y,2) <= if y < a then F(a,xH,y+2+2,z+2)

else (a,x,y,z) .

12

I ii i I I I l|li||IIWIi||lnli|ii|HMi.llHJLLI.J WIWl_„____ .-

h) goto statonents

There has been rauch discussion (see, for example, Dijkstra [1968],

Khuth and Floyd [1971]* Ashcroft and Manna [1971]) about the usefulness

of g^to^ statements: they tend to maie programs difficult to understand

and debug, and one Might prefer to use while or for statements instead.

Without entering further into this controversy, we shall see that the

semantics of goto statements is quite complex. In particular, it may

lead tö systems of mutually recursive definitions, and (not too surprisingly)

it is indeed harder to prove properties of programs with goto statements.

We consider two simple cases.

If we have a block of the form

begin ... J L: B.. ; ... j B. . ; goto L ; B..n j ... ; B end ,

then we define

fgoto L'B '...'B ^ to *e the lea8t fixpoin* of the recursive program

FL(i) <= fB • -B & '

If we have a block of the form

begin ... ;5otoL ; B1 ; ... j B^ ; L: Bi ; Bi+1 ; ... J Bn end,

then we define

fgoto L*B -.^.-B (*) to be the leas,t fixpoint of the recursive program

h& ^ \,...ta ® ■ i * n

Note that we have revised our rule of composition, since

fB.Bi(x) ■ fB((fB(x)) is not valid when B is a goto statement.

Similarly, if we wish to allow goto's which Jump out of

13

mmmmmmm

iterative statements or branches of conditional statements, then we

must change their semantic definition accordingly.

ßcamgle: Let us consider another version of P , using only the

operations successor and predecessor .

P/-: begin integer x.y.z:

x := 0; y:= z := 1;

L: if y < a then

begin integer t:

x := x+lj

z := z+1;

t := z+1;
■

M: if t > 0 then

begin y := yfl;

t := t-1;

goto M;

end:

z := z+1; got£L;

end;

end.

The partial function computed by P, is identical to the least

flxpoint of PJ- where

p6: F0(a) ^ y^O,!,!)

FL(a,x,y,z) <= if y < a then FM(a,x+l,y,z+l,z+2)

else (a,x,y,z)

FM(a,x,y,z,t) <= if t > 0 then FM(a,x,y+l,z,t-l)

else FL(a,x,y,z+l)

Ik

I

Let us now define the semantics of simple procedures without

parameters. We shall not discuss problems such as "side effects",

parameter passing or the procedure copy-rule for call by name.

5) procedures

(a) For the non-recursive procedure

procedure P;B

(where P is the procedure name and B is its body), we

define

fcallP^ tobe fB(*) '

(b) For the recursive procedure

procedure P; B[P] ,

we define

fcall P^ to be the least fixpoint of the recursive

program F(x) <= fB[p](x)

where occurrences of call P will be replaced by F in

the semantic definition of f^rpi •

6) An answer to the problem of "call by value"

Our semantic definition of recursive procedures assumes that the

implementation of recursion in the language always leads to the least

fixpoint. If this is not the case, we must change our semantic definition:

to every program P we associate a recursive program P' such that

the least fixpoint of P» will always be identical to the partial

function computed by P . Consider, for example, the program

integer procedure P(integer x,y);

P := if x = 0 then 1 else P(x-l,P(x,y));

15

If the implementation is "call by name", its semantics will be

fcall ptay) ls the least fi^cpoint of

F(x,y) <= if x = 0 then 1 else F(x-l,F(x,y)) .

However, if the implementation is "call by value", its semantics will be

fcall p(x'y) iß the leaßt fixpoint of

r(x,y) <= if (x = 0) A def(y) then 1 else F(x-l,P(x,y)) ,

where the (computable) predicate def(y) is true whenever y is

defined, and undefined otherwise.

16

PART 2. APPLICATION TO THE VERIFICATION PROBLEM

Our purpose in the second part of the paper is to illustrate some

of the advantages of the fixpoint approach to program semantics.

2.1 Justification of the Inductive Assertions Method

The most widely used method fo.v- proving properties of "flowchart

programs" is presently the inductive assertions method, suggested by

Floyd [1967] and Naur [1966]. We shall illustrate the method on the

simple program P above. To clarify our discussion we shall describe

the program as a flowchart:

START

*;

x ^0

y-i
z -1

| y -y*-z ._.. s: ;y<a
1 ! ürue ^ S. false

X - Xfl CHALT

r

z •- z+2

We wish to show that this flowchart program, whenever it terminates,

computes the greatest natural number smaller than or equal to /a , i.e.,

2 2
that x < a < (x+1) , for any natural number a .

17

To do this we associate a predicate Q(a,x,y,z) , called an

inductive assertion, with the point labelled a in the program, and

show that Q must be true for the values of the variables (a,x,y,z)

whenever execution of the program reaches point a . Thus, we must

show: (a) that if we start execution with a > 0 , then the assertion

holds when point a is first reached, i.e., that Q(a,0,1,1) holds;

and (b) that the assertion remains time when one goes around the

loop from a to a , i.e., that (y < a) A Q(a,x,y,z) implies

Q(a,x+l,y+z+2,z+2) . To prove the desired result we finally show

2 2
(c) that x < a < (x+1) follows from the assertion Q(a,x,y,z)

when the program teiminates, i.e., that (y > a) A Q(a,x,y,z) implies

x2 < a < (xt-1)2 .

To verify the program, we take

Q(a,x,y,z) to be (x < a) A (y = (x+l)2) A (z = 2xfl) .

One can then verify easily that conditions (a), (b) and (c) above,

called the verification conditions, hold.

Hoare's inductive assertion method is actually a generalization of

Floyd's method; Hoare [1969, 1971] realized that if we wish to apply the

method of inductive assertions to prove properties of a large program, we

shall undoubtedly have to break the program into smaller parts, prove

what we need about the parts, and then combine everything together. We

will clearly break the program into pieces in the most convenient way

for the proof, and, since composition of statements is associative, the

way in which we group the statements of the program is irrelevant. For

example, if the given program is of the form

P: B^ B2; B5; B^ ,

18

we can associate the statements in several different ways, e.g.,

((B1; B2); B2); Bj ,

(B,! (8gJ B,)); Bk >

(B^^; Bg)j (B^| B^) ,
■

or

B1; (B2; (B5; B^)) .

Although the programs do not look the same, all of them yield the same

least fixpoint, and therefore they are equivalent. If we express other

verification techniques using this notation, we find that Floyd and

Naur consider only the first possibility, i.e., grouping statements to

the left, while McCarthy [1965b] and Manna and Pnueli [1970] only

consider the last possibility, i.e., grouping statements to the right.

Following Hoare, we express this idea by writing {R}B{T} -' to

mean that if R(x) holds before executing the piece of program B and

if B terminates, then T(x) will hold after executing B .

We first apply verification rules to each statement of the

program. Examples of such rules are:
-

(a) assignment statement rule:

R D SEM implies {R} X, := E(x) {S)
xi *

Ef x^ where S v ' stands for the result of replacing all occurrences
xi

of x. in S by E(x) j

We prefer this notation to Hoare*s R{B}T .

19

mmmtammammamemmmmmmmmm

(b) conditional ftaüoment rule:

tR-^B-jT) and {R2)B2{T} implies

{if p(x) then ^ else R0} if p(x) then B^ else Bn [T] , ^
 X g rw «www X <wwww 2 l J '

(c) iterative statement rule:

(RAp(x)) B {R} implies - {R} while p(x) do B {RA~p(x)3 .
r********^ f****f

¥e then compose pieces of the program until we get the entire

program, using the following

(d) composition rule:

[R}B1lS} and tS}B2{T} implies ^B^B^T} ,

(e) consequence rules:

R 3 S and tS)B{T} implies (R}B{T} , and

[R3B{S} and S D T implies {R}B{T} .

Example. A proof of the correctness of the program P_ , given above,

could be sketched as follows.

First, we establish, using the assignment statement rule, the

following results:

Since a > 0 D R(a,0,l,l) , where R(a,x,y,z) is

(x2 < a) A (y = (x<-l)2) A (z = 2»H) , we get

(1) {a > 0} x := 0; y := z := 1 {R(a,x,y,z)} .

*7 '—--—~—-~~^-————
-* The reader should be aware of the difference between

(if p then R1 else R2) in the mathematical language, which stands

for (p D R,) A (~ p 3 Rj , and (if p then B, else B0) in the

programming language.

20

Since R(a,x,y,z) /> y, < a 3 R(a,x+l,y+z+2,z+2) , we get,

(2) {R(a,x,y,z) A y < a} x :» x+1.; z := z+2; y := yfz tR(a,x,y,z))

!
i

By using the iterative statement rule, we get from (2), ,
i

(5) {R(e,x,y,z)} i^l^y < a do begin x := x+l; ,

z := z+2;.y :=y+ziend {R(a,x,y,z) A y > a} .

We now combine the results of (1) and (3) using the composition rule

to obtain i

(10 {a > 0} P5 [R(a,x,y,z) A y > a} .'

Since [R(a,x,y,z) A y > a] =3 x2 < a < (xfl)2 , we apply the corisequerice

rule and finally get

(5) (a > 0) P5 [x2 < a < (x+1)2}

It is quite important that all of Hoare's verification rulös can in

fact be proved from the semantics we gave, just' by using cqnpiAational, •

induction. We shall illustrate thi? point by Justifying two of the most '

powerful verification rules: the rule for while statements, and the rule

for call of recursive procedures. For this purpose, we need to relate

the notation {R} B {T) to our : fE(x) , the partiai function indicatihg

zhe change of the values of the variables during the execution of B .

{R} B {T} siuiply means that whenever R(x) is true, ^(fjx)) is either
B

true (if B terminates) or' undefined. We can express this by the relation

R(i) =»T(fB(i)) , i ,

21

•

i ,

■ HMRMMmilMMMnm

■

adopting here the convention that a =» b is true whenever a or b

is uu^efined. | •

We are rejady now to prove the following rules:

(a), rule for!while statements

The verification rule for while statements indicates that if the

execution of -tihe body of the while statement leaves the assertion R
/•^S^WW»^

r>*s*^**s*
invariant, R i should hold upon termination of the while statement. More

precisely,

i

[R(X)AP(X)} B {R(x)} ! implies {R(3c)} while p(x) do B {R(X)A~P(X))

I

i

We therefore have to prove the following theorem:

VX[R(x) AP(X) *R{jrB(x))]

implies

Vx[R(x) =» R(fp(x)) A ~ p(fp(x))] where

P : F(x) <= tit p(x) then FCf^Cx)) else x

the proof .is by computational induction.

1. V^RCx) =, R(f (x)) A ~p(f (x))] is clearly true according to our
i i '

convention,, since R(f (x)) and ~p(f (x)) are undefined.

,!/.*:> ,1/-N 2. ^e assume Vx[R(x) =* R(f (x)) A ~p(f (X))] and show

Vx[R(x) ^ R(f1+1(x)) A ~p(fi+1(x))] . By definition of fi+1

we,have
i . '

R(f1+1(x)) = if p(x) thai R(fx(f_(x))) else R(3c) , and
. ' ~ ' B

Vi^H*)) « if P(x) thai pC^CfB^))) else p(J) .

22

X

*/ We distinguish between two cases:-'

Case 2k: p(x) is false. Then, RCl^^Cx)) S R(X) and

p(fi+1(x)) = p(x) , so that R(i) =» R(fi+1(x)) A -pCf1*1^)) is valid.

Case 2B; p(x) is tnie. Then RCf1"*"1^)) s RC^Cf^x))) and

p(fi+1(x)) = pCfVgCi))) . By the assumption R(x) A p(i) « R(fB(i))

holds, and since by the induction hypothesis

R(fB(i)) => RCf^yx))) A -pCfVjjCx))) , we get

R(x) ^RC^ff^x))) A-pCf^fgCx))) . Hence,

R(x) =» R(fi+1(x)) A ~p(fi+1(x)) as desired.

(b) Rule for recursive calls

Let us consider a recursive procedure

procedure P: B[P] ,

where P is the name of the procedure and B[P] represents its body.

The verification rule for proving properties of P is quite similar to

computational induction, although its formulation might look rather

paradoxical: in order to prove a property of the recursive procedure P ,

one is permitted to assume that the desired property holds for the

body B[F] of the procedure I This can be stated as follows:

Vg [(R) g [T) Implies {R} B[g] {T}] Implies {R} call P {T) .

As Hoare [1971, p. 109] puts it, "this assumption of what we want to

prove before embarking on the proof explains well the aura of magic which

attends a programmer's first introduction to recursive programming".

A more rigorous treatment would require checking also the case in
which p(x) is undefined.

23

The rule however is easy to justify. We have to prove the

following theorem:

Vg[V£[R(x) =»T(g(£))j implies Y*[R(x) =• T(fB[g](i))]]

implies

YX[R(x) => T(f(x))] where

P: F(x) <= fB[F](x) .

The proof ir again by computaticaal induction.

1. Vx[R(x) =• TCf^x))] is true, since 1(iP{x)) is undefined.

2. We assume Vx[R(x) » TCf^x))] and show Vx[R(x) • TCf^Cx))] .

By the induction hypothesis, R(x) =. T^ix)) , therefore, by the

assuarption of the theorem R(x) m T(f . (x)) . Thus, from the
Bit1]

definition of fi+1 we get R(x) =» T(fi+1(i)) , as desired.

2.2 Translation to Recursive Programs

In the present state of the art of verifying programs, Hoare's method

is presumably the most convenient for proving the correctness of programs.

However, its main drawback is that it can handle only "partial correctness"

of programs, i.e., we can only show that the final results of the programs,

if any, satisfy some given input-output relation. The method does not

provide us any means for proving termination, and seems rather ill-fitted

for proving equivalence between programs.

This is another case where our semantic definition of the progranming

language pay^ off: properties like termination and equivalence can be

2k

handled in exactly the same way as partial correctness. The idea is

quite simple: To prove some property of a given program P , translate

it to the corresponding recursive program P» , and thÄ prove the

desired property for fp, , by computational inductiono In this method

we actually still benefit from all the advantages of ioare's approach

since we may associate the blocks of the program arbitrarily at our

convenience.

To show, for example, that the partial function defined by the

given program P is monotonic increasing, we prove

Vx,y[(x<y) => (fp,(x) <fp,(y)] .

Note that it is «ather hard to express such a property as an input-output

relation.

(A) Termination

To show that fp is total, or in general that g c fp for some

function g which is total on the desired domain, we cannot simply use

computational induction choosing q)(P) to be fc c F , as then 9(f^)

will always be false. However, we can overcome this difficulty by

considering the domain ovez which our data range as defined by a recursive

program.

For example, the natural numbers can be characterlzecH' by the

least fixpoint num(x) of the recursive program

N(x) <« if x = C then true else N(x-l) .

We can now translate any program P over the natural nanbers into the

corresponding recursive program P1 and show that P' terminates by

simply proving the relation

j- ___

-' Given that 0,1,-,+,= have their usual meaning.

25

VX[man(x) c rnan(fpi (x))] .

In other words, fp,(x) is defined and its value is a natural number,

whenever x is a natural number.

(B) Equivalence

It should be quite clear at this point that equivalence of two

recursive programs is no mct^ difficult to prove than the other

properties. Consider, for example, the two recursive programs over the

natural numbers

P7 : F(x) <= if x = 0 then 1 else X'F(x-l) ,

and

P8 : G(x,y,z) <- if x . y then z else G(x,yH,(yfl).z) ,

We want to show that

VX[fp (x) > fc, (x,0,l)] .

Note that both f (x) and JL (X,0,X) canputes x! , but quite
7 r8

differently: fp (x) is »going down« from x to 0 , while g^ (x,ü,l)

is »going up» frcm 0 to x . This explains why a "direct" ccwputational

induction fails in this case.

However, if we consider the predicate x > y over the natural

numbers to be characterized by the least fixpoint gefoy) of the

recursive program

M(x,y) <- if x -- y then true else M(x,yH)) ,

we can show by computational induction that

^y[fie(x,y) c [r (x) - « (x,y,f (y))]] .
*? ^8 p7

Then, in particular, for y « 0 we get

26

^[fie(x,0) c [f (x) = A (x,0,l)]] ,
^7 8

i.e., for every natural nmaber x , either both f (x) and g^ (x,0,l)
F7 r8

are defined and equal, or both are undefined.

The proof is by computational induction with

<P(F) 1 Vic,y[F(x,y) c [f (x) = a (x,y,f (y))]] .

It is clear that (p(r) holds. So, we assume that q>(f) holds and

show that <p(f) holds, i.e.,

Vx,y[fi+1(x,y) c [fp (x) = % (x,y,fp (y))]] ,
787

or in other words

ntfilig, x = y then true else f^jn-l)] c [f (x) = &, (x,y,f (y))]l
p7 ^8 p7

The proof proceeds easily by distinguishing between the two cases where

x = y and x / y .

(a) If x = y we get Vx[true c f (x) ■ f (x)] , which clearly holds.
" P7 P7

(b) If x ^ y we get V^yLf^x^l) g [fp (x) = gp (x,y,fp (y))]] .
7 8 7

Using the definitions of f and g^ we get
P7 ^8

fSt,y[^(x,yH) E i** W = gp (x,y*-l,f_ (yfl))]] , which holds
p8 ^8 p7

by the induction hypothesis.

27

«MWMMMMHSi

References

ASHCROFT and MAMA [1971]. E. Ashcroft and Z. Manna, "The Translation
of 'Goto' Programs to »While1 Programs", Proceedings of IFIP
Congress 1971.

BEOC [1969]. H. Beki<J, "Definable Operations in General Algebra and
the Theory of Automata and Flowcharts". Unpublished memo, IBM,
Vienna (December 1969).

BURSTALL [1969]. R. M. Bur stall, "Proving Properties of Programs by
Structural Induction", Computer Journal, Vol. 12, No. 1 (February
1969)* pp. ^l-W.

CADICU [1972]. J. M. Cadiou, "Recursive Definitions of Partial Functions
and their Computations", Ph.D. Thesis, Computer Science Dept.,
Stanford University (to appear).

COOPER [1971]. D. C. Cooper, "Programs for Mechanical Program Verification",
in Machine Intelligence 6 (B. Meltzer and D. Michie, Eds.), Edinburgh
University Press, pp. ^3-59.

DEBAKKER and SCOTT [1969]. J. W. deBakker and D. Scott, "A Theory of
Programs", unpublished memo (August 1969).

DIJKSTRA [1968]. E. Dijkstra, "Goto Statements Considered Harmful",
CACM, Vol. 11, No. 5 (March 1968), pp. lU7-ll*6.

FLOYD [1967]. R. W. Floyd, "Assigning Meanings to Programs", in
Proceedings of a Symposium in Applied Mathematics, Vol. 19,
Mathematical Aspects of Computer Science (Ed. J. T. Schwartz),
pp. 19-32.

HOARE [1969]. C. A. R. Hoare, "An Axiomatic Approach to Computer
Programming", CACM, Vol. 12, No. 10 (October I969), pp. 576-580, 583.

HOARE [1971]. C. A. R. Hoare, "Procedures and Parameters: an Axiomatic
Approach", in Symposium on Semantics of Algorithmic Languages,
Lecture notes Mathematics, Vol. ISO (E. Engeler, Ed.), Berlin,
Sprijiger-Verlag, pp. 102-116

KLEENE [1952]. S. C. Kleene, Introduction to Meta-mathematics,
Van Nostrand, Princeton, New Jersey.

KNUTH and FLOYD [1971]. D. E. Khuth and R. W. Floyd, "Notes on
Avoiding 'Goto» Statements", Information Processing Letters 1
(January 1971), pp. 23-31.

LAKDIN [1961+]. P. J. Landin, "The Mechanical Evaluation of Expressions",
Computer Journal. Vol. 6, No. k (January 196^), pp. 308-320.

28

MHMBtWMMM) MRMI<M*nMMMMHMIMHnMi

\ §

^

i

MANNA [I969]. Z. Manna, "The Correctness of Programs", JCSS, Vol. 5.
No. 2 (May 1969), pp. 119-127.

MANNA, NESS, and WILLEMIN [1972]. Z. Manna, S. Ness, and J. VUillerain.
'Inductive Methods for Proving Properties of Programs", in
Proceedirms of ACM Conference on Proving Assertions about Programs,
ACM, New York (January 1972). " B

MANNA and PNUELI [1970]. Z. Manna and A. Pnueli, "Foiroalization of
Properties of Functional Programs", JACM, Vol. 17, No. 3 (Jlüy I970),

MCCARTHY [1963a]. J. McCarthy, "A Basis for a Mathematical Theory of
Computation". In Computer Programming and Formal Systems.
(P. Braffort and D. Hirschberg^ Eds.), pp. 33-70^

MCCARTHY [1963b]. J. McCarthy, "Towards a Mathematical Science of
Computation", in Information Processing; Proceedings of IFIP 62
(CM. Popplewell, Ed.), Amsterdam, North Holland, pp. 21-25J

MILNER [1972]. R. Milner, "Implementation and Applications of Scott's
Logic for Computable Functions", in Proceedings of ACM Conference
on Proving Assertions about Programs, AHM. WPW York {SSttSy •|97Q)

MORRIS [1968]. j. H. Morris, "Lambda-Calculus Models of Programming
Languages", Ph.D. Thesis, Project MAC, M.I.T., MAC-TR-57 (December i960).

L

r:

MORRIS [1971]. J. H. Morris, "Another Recursion Induction Principle".
CACM, Vol. Ik, No. 5 (May 197I), pp. 351-35^.

NAUR [19661. p. Naur, "Proof of Algorithms by General Snaptshots".
BIT, Vol. 6 (1966), pp. 310-316.

PARK [1969]. D. Park, "Fixpoint Induction and Proofs of Program Properties",
in Machine Intelligence 5 (B. Meltzer and D. Michle, Eds.), Edinburgh
University Press, pp. 59-78.

SCOTT [1970]. D. Scott, "Outline of a Mathematical Theory of Conputation",
Oxford University Computing Lab., Programming Research Group,
Technical Monograph PRG-2 (November 1970).

SCOTT and STRACHEY [1971]. D. Scott and C. Strachey, "Towards a Mathematical
Semantics for Computer Languages", Technical Monograph PRO-6,
Oxford University (August 1971).

STRACHEY [I966]. C. Strachey, "Towards a Foiroal Semantics", in For^l
languages Description Languf.ffesr (T. B. Steel, Ed.), Proc. IFIP"
Working Conf. 1954, Amsterdam, North-Holland, pp. 198-220.

WILLEMEN [1972]. J. VUillemin, "Proof Techniques for Recursive Programs",
Ph.D. Thesis, Computer Science Dept., Stanford University (to appear).

WEYHRAUCH and MILNER [1972]. R. Weyhrauch and R. Milner, "Program
Semantics and Correctness in a Mechanized Logic", The USA-Japan
Computer Conference, Tokyo (October 1972).

29

