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Introduction 

Substantial progress has recently been made in understanding the 

mathematical semantics of progranraing languages as a result of Scott's 

fixpoint theory. Our main purpose in this paper is to introduce the 

reader to some applications of this theory as a practical tool for 

proving properties of programs. 

The paper consists of two parts. 

In Part 1 we first introduce the notion of a recursive program and 

its (unique) least fixpoint. We describe the computational induction 

method, a powerful tool for proving properties of the least fixpoint of 

a recursive program. We then illustrate how one could describe the 

semantics of an Algol-like program P by "translating" it into a 

recursive program ?• such that the partial function computed by P is 

identical to the least fixpoint of P'. Works in this area include those 

of McCarthy [1965a, 1965b], Landin [196^], Strachey [1966], Morris [1968], 

Bekic [1969], Park [1969], deBakker and Scott [1969], Scott [1970], 

Scott and Strachey [1971]^ Manna, Ness and Vuillemin [1972], Milner [1972], 

Weyhrauch and Milner [1972]. 

In Part 2 of the paper we illustrate some of the advantages of the 

fixpoint approach to program semantics. First, we Justify the 

inductive assertion methods of Floyd [1967] and Hoare [1969, ly71]. 

Other verification methods such as recursion induction (McCarthy [1965a], 

[1965b]), structural induction (Burstall [1969]), fixpoint induction 

(Park [1969], Cooper [1971]), and the predicple calculus approach 

(Manna [1969], Manna and Pnueli [1970]) can be justified in much the 

same way. Secondly, we emphasize that the fixpoint approach suggests 

u natural method for proving properties of programs: given a 



program P , we can translate it into the corresponding recursive 

program P* , and then prove the desired properties for the least 

fixpoint of P' by computational induction. In contrast to other 

existing methods, this approach gives a uniform way of expressing 

and proving different properties, including correctness, termination 

and equivalence. This makes it very convenient for machine implementa- 

tion (Milner [1972]). 

Warning;  The reader should be aware that some of the results 

presented in this paper hold only under certain restrictions which are 

ignored in this informal presentation. 



PART 1.  THE FPCPOIMT APPROACH TO PROGRAM SEMANTICS 

!•! Recursive Programs 

A recursive program is a LISP-like definition of the form 

F(x) <= T[F](X) , 

where T[F](X) is a canposition of base functions and the functior 

vaiiable F , applied to the individual variables x = (x^z,...) . 

The following, for example, is a recursive program over the integers 

?0''    F(x,y) <= if x = y then y+1 else F(x,F(x-l,y+l))  . 

We allow our base functions to be partial, i.e., they may be 

undefined for some arguments. This is quite natural, since they 

represent the result of some computation which may in general give 

results for some inputs and run indefinitely for others. We include 

as limiting cases the partial functions defined for all arguments, 

called total functions, as well as the partial function undefined for 

all arguments 

Let us consider now the following partial functions: 

fjtay)i  x+i 

f2(x,y): if x > y then x+1 else y-1 , and 

^j(x#y): if (x > y) A (x-y even) then x+1 else undefined . 

These functions have an interesting common property: For each i 

(1 < i < 5) , if we replace all occurrences of  F in the program P 

by fi , the lefthand side and the righthand side of the symbol <= 

yield identical partial functions, i.e.,^ 

*7 "  
•J   m   is an extension of the regular = relation for handling undefined 

values.  a s b is true if both a and b are undefined, but it is 
false if only one of them is undefined. 



fJ^y)  - if x = y then y+1  else f^f (x-l,y+l))  . 

We uay that the functions ^ , f^    and f  are fixpoints 

of the recursive program P . 

Among the three functions, f  has one important special property: 

for any (x,y) such that f^x,y)    is defined, i.e., (x > y) A (x-y even) , 

both fj^y) and f2(x,y; are also defined and have the same value as 

f
5(x,y) . We say tliLt f^ is "less defined than or equal to" f  and 

f2 , and denote this by f^ c ^ and f, C f2 . It can be shown that 

fj has this property not only with respect to f  and f  but with 

respect to all fixpoints of ■' \e  reciirsive program P . Moreover, 

f
5(x,y) is the only function having this property; f  is therefore 

said to be the least (defined) fixpoint of P . 

One of the most Important results related to this topic is due to 

Kleene [1952], who showed that every recursive program P has a unique 

least fixpoint (denoted by f ). 

In discussing our recursive programs, the key problem is: 

What is the partial function f defined by a recursive program P ? 

There are two viewpoints. 

(a) Fixpoint approach:  Let it be the unique least fixpoint f . 

(b) Computational apfproach;  Let it be the computed function C  for 

some given computation rule C (such as "call by name" or "call 

by value''). 

We now come to an interesting point: all the theory for proving 

properties of recursive programs is based on the assumption that the 

. 
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function defined by a recursive program is exactly the least fixpoint f . 

That is, the fixpoint approach is adopted. Unfortunauely, many programming 

' languages use implementations of recursion (such as "call by value" I) 

which do not necessarily lead to the least fixpoint (Morris [1968]).-/ 

Let us consider, for example, the following recursive program over 

the integers 

P1 : F(x,y) <= if x = 0 then 1 else F(x-.l,F(x,y))  . 

The least fixpoint f   can be shown to be 
Fl 

fp (x,y) : if x > 0 then 1 else undefined . 
*1 

However, the computed function C  , where C is "call by value", turns 
P:L 

out to be 

Cp (x,y) : if x = 0 then 1 else undefined . 

Thus, C   is properly less defined than f   — e.g., C (1,0) is 
*1 F1 P1 

undefined while f (1,0) = 1 . 

There are two alternative ways to view this problem:  (e' Existing 

computer languages should be modified, and language designers and 

implementors should seek computation rules which always lead to the least 

fixpoint. "Call by name" is one such computation rule, but unfortunately 

it often leads to very inefficient computations. An efficient computation 

rule which always leads to the least fixpoint can be obtained by modifying 

¥7 :  
-/ it can be shown in general that for every recursive program P and 

any computation rule C , Cp must be less defined than or equal to 

fp , i.e., Cpcfp  (Cadiou [1972]). 



"call by value" so that the evaluation of the arguments of a procedure 

is delayed as long as possible (Vuillemin [1972]).  (b) Theoreticians 

are wasting their time by developing fixpoint methods for proving 

properties of programs which do not compute fixpoints. They should 

instead concentrate their efforts on developing direct methods for 

proving properties of programs as they are actually executed. 

We shall indicate in Part 2 of this paper how the apparent conflict 

between these views can be resolved by a suitable choice of the semantic 

definition of the programming language. 

1.2 The Computational Induction Method 

The main practical reason for suggesting the fixpoint approach is 

the existence of a very powerful tool, the computational induction method, 

for proving properties of recursive programs. The idea of the method is 

essentially to prove properties of the least fixpoint f  of a given 

recursive program P by induction on the level of recursion. 

Let us consider, for example, the recursive program 

P2 :  F(x) <= if x = 0 then 1 else X'F(x-l) , 

over the nstural numbers. The least fixpoint f (x) of this recursive 
F2 

program is tne factorial function xl . 

Let us denote by f (x) the partial function indicating the 

"information" we have after the i-th level of recursion. That is. 



_ > 

f (x) is undefined (for all x ); 

! 
1 f^x) is if x = 0 then 1 else x-f0(x-l) , 

i.e., if x = 0 then 1 else undefined j  , 

f2(x) is if x = 0 then 1 else x-f^Cx-l) ,'    '• 
1 I 

i.e., if x = 0 then.l else X'(if x-1 = 0 then 1 else undefined) , 

or in short, ifx=Ovx = l then 1 else undefined ; 

etc. ' '  • 

i 

i 

In general, for every i , i > 1 , 

f^x) is if x = 0 then 1 else X'f1"1^-!) , i 
~  '  i    .       i 

which is . 

if x < i then x». else undefined , 

This sequence of functions has a limit which is exactly the least fixpoint 

of the recursive program; that is, > I 

UaC^W) = xi . 
1 -»09 

This will in fact be the case for any recursive program P : if P 

is a recursive program of the form F(x) <= T[F](X) , and f^x) is 

i 
defined by « 

i ;    i 

f (x) is Q (undefined for all x ), and.       .      , 

^(x) is rCf1"1]^) for 1>1,^ 

then 

liatf1^)} = fp(x) :. 
i -»OB 

*/ 
T[f " ] is the result of replacing all bccurrenbes of !F in T[F] 

by f1"1 . ' '  ■      , 

'   7 

I !     i 



This suggests ;an induction rule for proving properties of f : To 
i i  ■ P 

show that some property| (p holds for f , i.e., 9(0 , we show that 

q)(f ) holds for all i > 0 , ^nd that (p remains true in the limit; 

therefore we may conclude that »CUafarll , i.e., (p(fj >  holds. 
i -»OB 

1     i 

|   Note that it is not trsie in general that (p remains true in the 

limit. For example, for the recursive program P  introduced above, 

f (x) is the non-total function if x < i then xl else undefined , 
!    ■  i , 

while  lim{f }V'i.e., f  , is the total function xl . Thus for 
i -«eo r2 

cp(f) being " f is not total", we have that ^(f1) holds for all 
i 

i > 0 , while   (p(lim {f1})    does not hold.    However, the limit property 
1 -»09 

holds of a rather large class of (p (called "admissible predicates" — 

see Manna,: Ness an^ Vuillemin [1972]); in particular, all the predicates 
i 

that we shall use later have this property. 

There are two well-known ways to prove that cp(f1) holds for all 

i > 0,, the rules for simple and complete induction on the level of 

recursion. 

i(a) Simple induction: 
i 

,  if <p(f0); holds and Vi[<p(fi) =»(p(fi+1)] holds. 

then' (p(fp) ; holds . 

(b)    Complete induction; 

if    n{[Vj such that j < iMf5)] ^(f1)}    holds ^ 

then   q)(fp)'   holds  . 

*•/ i 75  
-'   Nojte that this includes implicitly the need to prove   <p(f j ,  since 

for    i =0   there is no    J    such that    ,  < i . 

8 



The simple induction rule is essentially the 'V-rule11 suggested by 

deBakker and Scott [1969], vhile the complete induction rule is the 

"truncation induction rule" of Morris [1971]. Scott actually suggested 

tiie more elegant rule 

I 
if <p(fi) holds and Vf[q)(f) =» 9(T[f]) ] holds , 

then q)(fp) holds , 

t 
which does not assume any knowledge of the integers in its formulation. 

These rules generalize easily to systems of mutually recursive 

definitions, 
t 

Example;  Consider the recursive programs 

P5 :  F(x,y,z) <= if x = 0 then y else F(x-l,yfz,z) 

f and 

P^ :  G(x,y) <= if x = 0 then y else G(x-l,yf2x-l)  . 

We would like to prove, using conrputational induction, that 

fp (x,0,x) ■ g^ (x,0)  for any natural number x . 

(Both functions compute the square of x .) 

9 For this purpose, we shall prove a stronger result than the desired 

one by simple computational induction. Proving a stronger result often 

simplifies proofs by induction, since it allows the use of a stronger 

induction hypothesis. So, using 

(p(f,g) : VxVy[f(y,x(x-y),x) = g(y,x2-y2)] , 

we try to show that 

f(«U ,gp ) :   WfyUp (y,x(x-y),x) = *    (y,x2-y2)] 

m 

' 



holds. The desired result then follows by choosing x = y . The 

induction proceeds in two steps: 

(a) q^f^g0) , i.e., fxVylf0(y.x(x-y),x) = g0(y,x -y )] . 

Tri\rLal, since VxVy[undefined ■ undefined] . 

(b) viWfSg1) ^(f^g1*1)] • 

We at; sume 

YxVyU^y^x-y^x) = gi(y,x -y )] 

and prove 

VXYy[fi+1(y,x(x-y),x) = gi+:L(y,x -y )] . 

f  (y,x(x.y),x) = if y = 0 then x(x-O) else fV-l^x-y^x) 

= if y = 0 then x2 else ^(y-^xCx-Cy-l))^) 

s if y = 0 then x2 else gi(y-l,x2-(y-l)2) 

by the induction hypothesis 

-- if y = 0 then x2-02 else gi(y-l,(x2-y2)+2y-l) 

„ i+1,  2    2x 
= ß  (y>x -y )  . 

1.3 Sonantics of Algol-like Programs 

Our purpose in this section is to illustrate how one can describe 

the samantics of an Algol-like program P by translating it into a 

recursi-e program P« such that the partial function computed by P is 

identical to the least fixpoint of p« . The features of Algol we consider 

are very simple indeed, but there is no theoretical difficulty in 

extending them. 

10 



The translation ic defined bioclwise:    to each block   B    (or 

elanentary statement) we associate a partial function   f_   describing 
B 

the effect of the block (or statement) on the values of the variables. 

For example, 

tegin x := xfl; y :« yfl end , 

will be represented by the function 

f(x,y) = (x+l,yfl)     . 

Functions are then combined to represent the whole program using the 

rule: 

fB  -B ^ = fB (fB &)     • 

This definition is tmambiguous, since coapositicn of partial functions 

is associative, i.e., 

fB (fB -B (i)) '  fB -B ll ® *  f* H (fT» (*))  • ß5 ^l'^      0^2»^ B2,B3 B1
v 

All that remains to be done is to describe the partial function 

associated with each elementary statement of the language. For 

simplicity, we shall first consider only a "flowchartable" subset of a 

language, with nc goto statements or procedure calls. We shall also 

ignore the problem of declarations. 

1) Assignment statements 

if B is xi := E(x) where E is an expression, 

fB(x) is (^...»X^I^x^j,...,^)  . 

2) Conditional statements 

if B is if p(x) then B, , 

f (x) is if p(x) thra f_ (x) else x , 
Bl    

11 



and 

if B is if p(x) then B. else B„ , 

fR(x) is if p(x) t^ f_ (i) else f_ (x) . 
Bl       B2 

5)  Iterative statements 

if B is while p(x) do B. , 

fB(x) is the least flxpoint of the recursive program 

F(x) <= if p(x) then F(f_ (J)) else x . 
Bl     

Example;  Let us consider the following program for computing in x 

the greatest natural number smaller than or equal to /a , i.e., 

x < a < (xfl) , vrtiere a is any natural numbei'. (The computation 

method is based on the fact thrt 1+?+ 5+ ...+ (2n-l) » n2 for every 

n > 0 .) 

pt; : 5^05. integer x,y,zj 

x := 0; y := z :« 1; 

while y < a do 

begin x := xfl; *********** 

z  := 2+2; 

y := y+2; 

end; 

end. 

The partial function computed by p  is identical to the least fixpoint 

of P' , where 

P^ : F0(a) <= F(a,0,l,l) 

F(a,x,y,2) <= if y < a then F(a,xH,y+2+2,z+2) 

else (a,x,y,z) . 

12 



I   ii       i I      I  I l|li||IIWIi||lnli|ii|HMi.llHJLLI.J WIWl_„____ .- 

h)      goto statonents 

There has been rauch discussion (see, for example, Dijkstra [1968], 

Khuth and Floyd [1971]* Ashcroft and Manna [1971]) about the usefulness 

of g^to^ statements: they tend to maie programs difficult to understand 

and debug, and one Might prefer to use while or for statements instead. 

Without entering further into this controversy, we shall see that the 

semantics of goto statements is quite complex. In particular, it may 

lead tö systems of mutually recursive definitions, and (not too surprisingly) 

it is indeed harder to prove properties of programs with goto statements. 

We consider two simple cases. 

If we have a block of the form 

begin ... J L: B.. ; ... j B. . ; goto L ; B..n j ... ; B end , 

then we define 

fgoto L'B  '...'B ^  to *e the lea8t fixpoin* of the recursive program 

FL(i) <= fB •   -B &     ' 

If we have a block of the form 

begin ... ;5otoL ; B1 ; ... j B^ ; L: Bi ; Bi+1 ; ... J Bn end, 

then we define 

fgoto L*B -.^.-B (*)  to be the leas,t fixpoint of the recursive program 

h& ^ \,...ta ®   ■ i   * n 

Note that we have revised our rule of composition, since 

fB.Bi(x) ■ fB((fB(x)) is not valid when B is a goto statement. 

Similarly, if we wish to allow goto's which Jump out of 

13 
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iterative statements or branches of conditional statements, then we 

must change their semantic definition accordingly. 

ßcamgle:  Let us consider another version of P , using only the 

operations successor and predecessor . 

P/-: begin integer x.y.z: 

x := 0; y:= z := 1; 

L: if y < a then 

begin integer t: 

x := x+lj 

z := z+1; 

t := z+1; 
■ 

M: if t > 0 then 

begin y := yfl; 

t := t-1; 

goto M; 

end: 

z := z+1; got£L; 

end; 

end. 

The partial function computed by   P,   is identical to the least 

flxpoint of   PJ-   where 

p6:   F0(a) ^ y^O,!,!) 

FL(a,x,y,z) <= if y < a then FM(a,x+l,y,z+l,z+2) 

else (a,x,y,z) 

FM(a,x,y,z,t) <= if t > 0 then FM(a,x,y+l,z,t-l) 

else FL(a,x,y,z+l) 

Ik 
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Let us now define the semantics of simple procedures without 

parameters. We shall not discuss problems such as "side effects", 

parameter passing or the procedure copy-rule for call by name. 

5)  procedures 

(a) For the non-recursive procedure 

procedure P;B 

(where P is the procedure name and B is its body), we 

define 

fcallP^ tobe fB(*)  ' 

(b) For the recursive procedure 

procedure P; B[P] , 

we define 

fcall P^ to be the least fixpoint of the recursive 

program F(x) <= fB[p](x) 

where occurrences of call P will be replaced by F in 

the semantic definition of f^rpi • 

6)  An answer to the problem of "call by value" 

Our semantic definition of recursive procedures assumes that the 

implementation of recursion in the language always leads to the least 

fixpoint. If this is not the case, we must change our semantic definition: 

to every program P we associate a recursive program P' such that 

the least fixpoint of P» will always be identical to the partial 

function computed by P . Consider, for example, the program 

integer procedure P( integer x,y); 

P := if x = 0 then 1 else P(x-l,P(x,y)); 

15 



If the implementation is "call by name",  its semantics will be 

fcall ptay)    ls the least fi^cpoint of 

F(x,y) <= if x = 0 then 1 else F(x-l,F(x,y))    . 

However,  if the implementation is "call by value",  its semantics will be 

fcall p(x'y)    iß the leaßt fixpoint of 

r(x,y) <= if (x = 0) A def(y) then 1 else F(x-l,P(x,y))    , 

where the (computable) predicate   def(y)    is true whenever   y   is 

defined, and undefined otherwise. 

16 



PART 2. APPLICATION TO THE VERIFICATION PROBLEM 

Our purpose in the second part of the paper is to illustrate some 

of the advantages of the fixpoint approach to program semantics. 

2.1 Justification of the Inductive Assertions Method 

The most widely used method fo.v- proving properties of "flowchart 

programs" is presently the inductive assertions method, suggested by 

Floyd [1967] and Naur [1966]. We shall illustrate the method on the 

simple program P  above. To clarify our discussion we shall describe 

the program as a flowchart: 

START 

*; 

x ^0 

y-i 
z -1 

| y -y*-z ._.. s: ;y<a 
1 ! ürue ^ S. false 

X  - Xfl CHALT 

r 

z •- z+2 

We wish to show that this flowchart program, whenever it terminates, 

computes the greatest natural number smaller than or equal to /a , i.e., 

2 2 
that x < a < (x+1) , for any natural number a . 

17 



To do this we associate a predicate Q(a,x,y,z) , called an 

inductive assertion, with the point labelled a   in the program, and 

show that Q must be true for the values of the variables (a,x,y,z) 

whenever execution of the program reaches point a  . Thus, we must 

show:  (a) that if we start execution with a > 0 , then the assertion 

holds when point a   is first reached, i.e., that Q(a,0,1,1) holds; 

and  (b) that the assertion remains time when one goes around the 

loop from a to a , i.e., that (y < a) A Q(a,x,y,z) implies 

Q(a,x+l,y+z+2,z+2) . To prove the desired result we finally show 

2 2 
(c) that x < a < (x+1)  follows from the assertion Q(a,x,y,z) 

when the program teiminates, i.e., that (y > a) A Q(a,x,y,z) implies 

x2 < a < (xt-1)2 . 

To verify the program, we take 

Q(a,x,y,z)    to be    (x   < a) A (y = (x+l)2) A (z = 2xfl)    . 

One can then verify easily that conditions (a), (b) and (c) above, 

called the verification conditions, hold. 

Hoare's inductive assertion method is actually a generalization of 

Floyd's method; Hoare [1969,  1971] realized that if we wish to apply the 

method of inductive assertions to prove properties of a large program, we 

shall undoubtedly have to break the program into smaller parts, prove 

what we need about the parts, and then combine everything together. We 

will clearly break the program into pieces in the most convenient way 

for the proof, and, since composition of statements is associative, the 

way in which we group the statements of the program is irrelevant. For 

example, if the given program is of the form 

P:  B^  B2; B5; B^ , 

18 



we can associate the statements in several different ways, e.g., 

((B1; B2); B2); Bj  , 

(B,! (8gJ B,)); Bk     > 

(B^^; Bg)j (B^| B^)  , 
■ 

or 

B1; (B2; (B5; B^))  . 

Although the programs do not look the same, all of them yield the same 

least fixpoint, and therefore they are equivalent.    If we express other 

verification techniques using this notation, we find that Floyd and 

Naur consider only the first possibility,  i.e., grouping statements to 

the left, while McCarthy [1965b] and Manna and Pnueli [1970] only 

consider the last possibility,  i.e., grouping statements to the right. 

Following Hoare, we express this idea by writing    {R}B{T}   -'  to 

mean that if   R(x)    holds before executing the piece of program   B   and 

if   B   terminates, then   T(x)    will hold after executing   B . 

We first apply verification rules to each statement of the 

program.    Examples of such rules are: 
- 

(a)    assignment statement rule: 

R D SEM    implies    {R} X,   := E(x)  {S) 
xi *  

Ef x^ where   S v '    stands for the result of replacing all occurrences 
xi 

of x. in S by E(x) j 

We prefer this notation to Hoare*s R{B}T . 

19 
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(b) conditional ftaüoment rule: 

tR-^B-jT)    and    {R2)B2{T}      implies 

{if p(x) then ^ else R0} if p(x) then B^ else Bn [T] , ^ 
 X g  rw «www  X <wwww  2  l J ' 

(c) iterative statement rule: 

(RAp(x)) B {R}  implies - {R} while p(x) do B {RA~p(x)3 . 
r********^ f****f 

¥e then compose pieces of the program until we get the entire 

program, using the following 

(d) composition rule: 

[R}B1lS}    and    tS}B2{T}      implies      ^B^B^T}    , 

(e) consequence rules: 

R 3 S and tS)B{T}  implies  (R}B{T} , and 

[R3B{S} and S D T  implies  {R}B{T} . 

Example.  A proof of the correctness of the program P_ , given above, 

could be sketched as follows. 

First, we establish, using the assignment statement rule, the 

following results: 

Since a > 0 D R(a,0,l,l) , where R(a,x,y,z) is 

(x2 < a) A (y = (x<-l)2) A (z = 2»H) , we get 

(1)  {a > 0} x := 0; y := z := 1 {R(a,x,y,z)} . 

*7 '—--—~—-~~^-———— 
-*  The reader should be aware of the difference between 

(if p then R1 else R2) in the mathematical language, which stands 

for (p D R,) A (~ p 3 Rj , and (if p then B, else B0) in the 

programming language. 
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Since   R(a,x,y,z) /> y, < a 3 R(a,x+l,y+z+2,z+2)  , we get, 

(2)     {R(a,x,y,z) A y < a} x :» x+1.; z  := z+2; y := yfz  tR(a,x,y,z)) 

! 
i 

By using the iterative statement rule, we get from (2),      , 
i 

(5)     {R(e,x,y,z)} i^l^y < a do begin x := x+l; , 

z := z+2;.y :=y+ziend {R(a,x,y,z) A y > a}  . 

We now combine the results of (1) and (3) using the composition rule 

to obtain i 

(10 {a > 0} P5 [R(a,x,y,z) A y > a} .' 

Since [R(a,x,y,z) A y > a] =3 x2 < a < (xfl)2 , we apply the corisequerice 

rule and finally get 

(5) (a > 0) P5 [x2 < a < (x+1)2} 

It is quite important that all of Hoare's verification rulös can in 

fact be proved from the semantics we gave, just' by using cqnpiAational, • 

induction. We shall illustrate thi? point by Justifying two of the most  ' 

powerful verification rules: the rule for while statements, and the rule 

for call of recursive procedures. For this purpose, we need to relate 

the notation {R} B {T) to our : fE(x) , the partiai function indicatihg 

zhe  change of the values of the variables during the execution of B . 

{R} B {T} siuiply means that whenever R(x) is true, ^(fjx)) is either 
B 

true (if   B   terminates) or' undefined.   We can express this by the relation 

R(i) =»T(fB(i))    , i , 
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adopting here the convention that a =» b is true whenever a or b 

is uu^efined.   | • 

We are rejady now to prove the following rules: 

(a), rule for!while statements 

The verification rule for while statements indicates that if the 

execution of -tihe body of the while statement leaves the assertion R 
/•^S^WW»^ 

r>*s*^**s* 
invariant, R i should hold upon termination of the while statement. More 

precisely, 

i 

[R(X)AP(X)} B {R(x)} ! implies  {R(3c)} while p(x) do B {R(X)A~P(X)) 

I 

i 

We therefore have to prove the following theorem: 

VX[R(x) AP(X) *R{jrB(x))] 

implies 

Vx[R(x) =» R(fp(x)) A ~ p(fp(x)) ] where 

P :  F(x) <= tit p(x) then FCf^Cx)) else x 

the proof .is by computational induction. 

1.  V^RCx) =, R(f (x)) A ~p(f (x))] is clearly true according to our 
i  i ' 

convention,, since R(f (x)) and ~p(f (x)) are undefined. 

,!/.*:> ,1/-N 2.  ^e assume Vx[R(x) =* R(f (x)) A ~p(f (X))] and show 

Vx[R(x) ^ R(f1+1(x)) A ~p(fi+1(x))] . By definition of fi+1 

we,have 
i .     ' 

R(f1+1(x)) = if p(x) thai R(fx(f_(x))) else R(3c) , and 
.        '    ~ ' B 

Vi^H*))  « if P(x) thai pC^CfB^))) else p(J) . 
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*/ We distinguish between two cases:-' 

Case 2k:    p(x) is false. Then, RCl^^Cx)) S R(X) and 

p(fi+1(x)) = p(x) , so that R(i) =» R(fi+1(x)) A -pCf1*1^)) is valid. 

Case 2B; p(x) is tnie. Then RCf1"*"1^)) s RC^Cf^x))) and 

p(fi+1(x)) = pCfVgCi))) . By the assumption R(x) A p(i) « R(fB(i)) 

holds, and since by the induction hypothesis 

R(fB(i)) => RCf^yx))) A -pCfVjjCx))) , we get 

R(x) ^RC^ff^x))) A-pCf^fgCx))) . Hence, 

R(x) =» R(fi+1(x)) A ~p(fi+1(x)) as desired. 

(b) Rule for recursive calls 

Let us consider a recursive procedure 

procedure P: B[P] , 

where P is the name of the procedure and B[P] represents its body. 

The verification rule for proving properties of P is quite similar to 

computational induction, although its formulation might look rather 

paradoxical: in order to prove a property of the recursive procedure P , 

one is permitted to assume that the desired property holds for the 

body B[F] of the procedure I This can be stated as follows: 

Vg [ (R) g [T) Implies {R} B[g] {T} ] Implies {R} call P {T) . 

As Hoare [1971, p. 109] puts it, "this assumption of what we want to 

prove before embarking on the proof explains well the aura of magic which 

attends a programmer's first introduction to recursive programming". 

A more rigorous treatment would require checking also the case in 
which p(x) is undefined. 
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The rule however is easy to justify. We have to prove the 

following theorem: 

Vg[V£[R(x) =»T(g(£))j implies Y*[R(x) =• T(fB[g](i)) ]] 

implies 

YX[R(x) => T(f(x))] where 

P:  F(x) <= fB[F](x)  . 

The proof ir again by computaticaal induction. 

1. Vx[R(x) =• TCf^x))] is true, since 1(iP{x))    is undefined. 

2. We assume Vx[R(x) » TCf^x)) ] and show Vx[R(x) • TCf^Cx)) ] . 

By the induction hypothesis, R(x) =. T^ix))  , therefore, by the 

assuarption of the theorem R(x) m T(f  . (x)) . Thus, from the 
Bit1] 

definition of fi+1 we get R(x) =» T(fi+1(i)) , as desired. 

2.2 Translation to Recursive Programs 

In the present state of the art of verifying programs, Hoare's method 

is presumably the most convenient for proving the correctness of programs. 

However, its main drawback is that it can handle only "partial correctness" 

of programs, i.e., we can only show that the final results of the programs, 

if any, satisfy some given input-output relation. The method does not 

provide us any means for proving termination, and seems rather ill-fitted 

for proving equivalence between programs. 

This is another case where our semantic definition of the progranming 

language pay^ off: properties like termination and equivalence can be 
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handled in exactly the same way as partial correctness. The idea is 

quite simple: To prove some property of a given program P , translate 

it to the corresponding recursive program P» , and thÄ prove the 

desired property for fp, , by computational inductiono In this method 

we actually still benefit from all the advantages of ioare's approach 

since we may associate the blocks of the program arbitrarily at our 

convenience. 

To show, for example, that the partial function defined by the 

given program P is monotonic increasing, we prove 

Vx,y[(x<y) => (fp,(x) <fp,(y)]  . 

Note that it is «ather hard to express such a property as an input-output 

relation. 

(A) Termination 

To show that fp is total, or in general that g c fp for some 

function g which is total on the desired domain, we cannot simply use 

computational induction choosing q)(P) to be fc c F , as then 9(f^) 

will always be false. However, we can overcome this difficulty by 

considering the domain ovez which our data range as defined by a recursive 

program. 

For example, the natural numbers can be characterlzecH' by the 

least fixpoint num(x) of the recursive program 

N(x) <« if x = C then true else N(x-l) . 

We can now translate any program P over the natural nanbers into the 

corresponding recursive program P1 and show that P' terminates by 

simply proving the relation 

j- ___  

-' Given that 0,1,-,+,= have their usual meaning. 

25 



VX[ man(x) c rnan( fpi (x)) ] . 

In other words, fp,(x) is defined and its value is a natural number, 

whenever x is a natural number. 

(B) Equivalence 

It should be quite clear at this point that equivalence of two 

recursive programs is no mct^ difficult to prove than the other 

properties. Consider, for example, the two recursive programs over the 

natural numbers 

P7 : F(x) <= if x = 0 then 1 else X'F(x-l) , 

and 

P8 : G(x,y,z) <- if x . y then z else G(x,yH,(yfl).z) , 

We want to show that 

VX[fp (x) > fc, (x,0,l)]  . 

Note that both   f   (x)    and   JL (X,0,X)    canputes   x! , but quite 
7       r8 

differently: fp (x) is »going down« from x to 0 , while g^ (x,ü,l) 

is »going up» frcm 0 to x . This explains why a "direct" ccwputational 

induction fails in this case. 

However, if we consider the predicate x > y over the natural 

numbers to be characterized by the least fixpoint gefoy) of the 

recursive program 

M(x,y) <- if x -- y then true else M(x,yH)) , 

we can show by computational induction that 

^y[fie(x,y) c [r    (x) - « (x,y,f (y))]]  . 
*?    ^8    p7 

Then, in particular, for y « 0 we get 
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^[fie(x,0) c [f (x) = A (x,0,l)]] , 
^7      8 

i.e., for every natural nmaber x , either both f (x) and g^ (x,0,l) 
F7        r8 

are defined and equal, or both are undefined. 

The proof is by computational induction with 

<P(F) 1 Vic,y[F(x,y) c [f (x) = a   (x,y,f (y))]] . 

It is clear that   (p(r )    holds.    So, we assume that   q>(f )    holds and 

show that   <p(f     )    holds, i.e., 

Vx,y[fi+1(x,y) c [fp (x) = % (x,y,fp (y))]]    , 
787 

or in other words 

ntfilig, x = y then true else f^jn-l) ] c [f (x) = &, (x,y,f (y))]l 
p7    ^8    p7 

The proof proceeds easily by distinguishing between the two cases where 

x = y and x / y . 

(a) If x = y we get Vx[true c f (x) ■ f (x)] , which clearly holds. 
" P7     P7 

(b) If x ^ y we get V^yLf^x^l) g [fp (x) = gp (x,y,fp (y))]] . 
7     8    7 

Using the definitions of f  and g^  we get 
P7     ^8 

fSt,y[^(x,yH) E i** W = gp (x,y*-l,f_ (yfl))]] , which holds 
p8 ^8 p7 

by the induction hypothesis. 
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