a1}

Research and Development Technical Report

ECOM-0084-F2

Noj ,
— A PROGRAM TO TAKE THE

oy DERIVATIVE OF REGULAR EXPRESSIONS
o

e

g TECHNICAL REPORT EER 16-7

By

William Hartmann, M.S.

FEBRUARY 1972

DISTRIBUTION STATEMENT

Approved for public release:
Distribution unlimited.

000000000000 000000020000000000000000600000000020000330C 0900600000 g

000008008000 000000000000000000

ECOM

UNITED STATES ARMY ELEGTRONICS COMMAND - FORT MONMOUTH, N.J.

CONTRACT DAABO07-68-C-0084
Avionics Research Group
Department of Electrical Engineering
Ohio University
Athens, Ohio 45701

Raproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE A

$piingfiold, Va. 22151

oA —
t.‘.ﬂl WHITE 2K0TION g
e 0UFF BBGTIOR)
(S Da, |

LN T~

TR,

iy

BTN AR ks

NOTICES

Disclaimers

The findings in this report cre not to be construed as an
official Department of the Army position, unless so desig=
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report {s not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein,

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.

e

J T T R P I S}

" L . T DT

5 (Fxcuelty etwasllivutlon of Htle, Eydy of 5o ateact n o o vint sanet i hon pe sl b snetead whot the ol cooned [laaifie)
L1 ORIGIRATIHG AG FIVITY (Carpataie author) 8, REFORT 34 LMY CLASH P IC AN IO
g Avionics Research Group UNCLASSIFIED

b' Department of Electrical Engineering b enouk

i_Ohio University, Arhens, Ohio 45701

"A

|

A RKENSHY TLLE

. A Program to Take the Derivative of Regular Expressnons

G BUT IR PV E NOTES (TYype ulrwpurt and laclunive Catan) |

2

AUTRGIE) (riral nome, rlede Inlflal, 1ast nama)

» William Hartmann

PRI T IS TR T

8. MEPOAT DATH Ta, TOTAL HO, OF PAGKES The NO. OF Lid¥s
| February 1972 1 12 .. 12

Ca, CUNTIACT OH GHANT NO. tu, DRISIMNA fO’l'_':J.'TF,F’O:! [SV L TR}

. DAAB07-68-C-0084 .

A PHOJECT NO. Technical Report EER 16-7

eI T
P

0b, OTHER NEPOAT HDIT) (Any ethar numbere hal ciny be basignsd
thia raport)

‘L‘) - ECOM 0084-F2

{9, DI3TARIDUYION BTATEMENT

éApproved for Public Release; Dlsmbuilon Unlimited

l\l BURPLLWMENTARY NOTHY - 12. SPONSOKRING MILITARY ACTIVITY
US Army Electronics Command
% Two Reports required under Contract ATTN: XMSEL—V L-N
t. QM -0084-F1 and F2 Fort Monmouih, New Jersey 07703
u??manuc‘r
?} In analyzing a finite state, sequential machine the designer will often use a flowgraph or

flow-chart to describe the internal characteristics of the machine. From these characteristics
 he can obtain a model representing the external performance of the machine. By the external
L performance of the machine we-are rel“errlng to the input, output characteristics; i.e., for

£ a given set of input signals what is the outpuf?

; For simplicity we-witl-only consider machines with two outputs, a 1 or a 0. Thus, the

‘g inputs may be divided into two classes, those which produce a 1 output (accepted or desired

' inputs) and the remainder which preduce a O output (the rejected inputs). The regular expression
| provides a formal method for representing all of the possible inputs which are accepted.

While the regular expression is a powerful tool its use hos been limited by the overwhelming
-amount of work needed to obtain the sequential machine. ‘This paper describes a program which
was written to find the derivativas of the regular expression. The program was written for use
Ewith the SCC 650 digital computer of the Electrical EngineerindxDepartment, Ohio University.
This program is called REXPRO for Regular EXpression PROcessoh.

R == Sl ot

P

N

T Loy " 4

)

2
F-‘: b M'\"t' LAC A DD #D;;uh;drl 1 JAS A3, wHICH B badna s = ~ -
'~.-l o -,-;frr‘ R .

Cois prawgal s 4) ONIOLETL +ON ATMY L3R -107- UNCIASSIFIED

Secunty Clasmiilcatian

5

REE R

© T o= T

i?
h
?

Wicadon

beeunity O
[
KeY WwOHOA

LY A

nouwf vt

Computer Science
Programming
(Program for Derivative of Regular Expressions)

.

S BT LA VI L L LT S R RN i TR AT YE M A 0 LA e A W S AT AT LA, LA

-108-

P, It

L L W o8 P a3 1S AT P T ot o, P SRR LA SRS 4 VI =y AT B RGRlr W A TTW SR RS, U TR T IS T TR & TESETC MR LIRSS P e U A R A e, e

Lt ¢

e e Y

UNCLASSIFIED

L

SEm oo a

IR XD D

Ty TET

T T

IR ECOM-0084-F2 Reports Control Symbol
February 1972 \ OsD~1366

A PROGRAM TO TAKE THE

DERIVATIVE OF REGULAR EXPRESSIONS

TECHNICAL REPORT EER 16-7

Contract No . DAAB(Q7-68-C -0084

DISTRIBUTION STATEMENT

. Approved for public release;
distribution unlimited.

Prepared by

William Hartmann, M. S.

Avionics Research Group
Department of Electrical Engineering
Ohio University
Athens, Ohio 45701

For

U. 5. ARMY ELECTRONICS COMMAND, FORT MONMOUTH, N, J.

TABLE OF CONTENTS

CHAPTER
| INTRODUCTION
I THE REGULAR EXPRESSION
The Derivative Concept

Examples Using the Regular Expression
i STRING PROCESSING

v USING THE COMPUTER TO FORM THE
DERIVATIVE

Expanding the Derivative
Calculating the Etq Function
V. REXPRO OPERATION
Memory Organization
Program Execution
Vi CONCLYSIONS

BIBLIOGRAPHY

APPENDIX A Program Alphabet and Coding

APPENDIX B List of Variables

APPENDIX C Program Loading Order and Map

APPENDIX D Description of Selected Subroutines

PAGE

22

30

35

39

39

42

50

53

56

38

61

65

FIGURE
.
1,2
1.3
.4
1.5

it.6

.

.2
V.1
V.2

Vi.l

D.2

D.3

LIST OF FIGURES

An Example of a Finite State Machine

The Use of A and g

Derivatives of R = (N + NF + IFF)*
Flow-graph for Memory Contral System
Derivatives of R = N*7 (N*Z)*N*p

Flow-giaph for Machine to Find the Eta
Function

The Use of the NULL Character

An Example of the Use of the Jump-Flag
Memory Allocations

Flow-graph of Program Execution

The Derivative D/A/R

The Operation of $5LVL

Examples of the Operation of SPBSET

Characteristics of Substrings

PAGE

13

16

26
28
40
43
52
67
72

79

CHAPTER |

INTRODUCT'ON

In analyzing o finite state, sequential machine the designer will often use
a flow=-graph or flow-chart to describe the internal characteristics of the machine.
From these characteristics he can obtain a model representing the external per-
formance of the machine. By the external performance of the machine we are
referring to the input, output characteristics; i.e., for a given set of inpufsignals
what is the output?

For simplicity we will only consider machines with two outputs, a 1 or a 0.
Thus, the inputs may be divided into two classes, those which produce a 1 output
(accepted or desired inputs) and the remainder which produce a 0 output (the
rejected inputs). The regular expression provides o formal method for represent-
ing all of the possible inputs which are accepted,

The designer is often faced with the inverse problem of trying to design a
machine to accept the set of desired inputs and to reject all others. If the desired
inputs are represented as a regular expression the designer can obtain the internal
characteristics, of the machine, from the derivative of the regular expression.

While the regular expression is a powerful tool its use has been limited by
the overwhelming amount of work needed to obtain the sequential machine. This
paper describes a program which was written to find the deri--aticc of the regular
expression. The program was written for use with the SCC 650 digital computer

of the Electrical Engineering Department, Ohio University. This program is called
-

REXPRO for Regular EXpression PROcessor. While REXPRO will not perform c;ll of
the operations needed to design a machine it does do the "dirty work " associated
with the design,

Chapter il defines the regular expression and its derivative ﬂ;r the reader who
is not familiar with this technique. Several examples using the regularl expression
are presented in this chapter. Chapter ll] introduces the concepts of string pro-
cessing; a method by which the computer is used to operate on non~numetical data
such as the regular expression. Chapter IV introduces the methods used in REXPRO
for identifying the form of the regular expression and which rule should be usea to

form the derivative. Chapter V presentsan outline of REXPRO and 'descr.ibes its

use.

CHAPTER 1

THE REGULAR EXPRESSION

~ The finite state, sequenticl machine is a machine with a finite number of
states that the machine can be in, and the ma;hiné can be in one and only one
‘state at any given time. An output is associated with each of fh;a states. This is
the description of the " Moore" machine. This type of machine will be used
exclusively in this paper, but the results can be modified to include other forms,
The inputs to the machine consist of a set of characters, or symbéls, which
‘are called literals. When a given input is seen the machine changes from the
present state to some new srqte.. The new state is determined by the present state
and the present input. This:I is shown in Figure 1.1,
In this example the machine is initially in state q, and has an output of 0.
If the input symbol is an *A' then the machine will go to state 95 and produce a
1 oufput. ifa'B' ‘ is seen the machine will go to state g, and produce a zero
output,
' The machine shown in Figure 1,1 may also be described by the sequence,
or string, of characters which will take the machine from a starting state to a
state which will preduce @ 1. One of the sequences is the string 'A*. The

symbol 'B' will take the machine to state q5.and then a second 'B' will take the

‘ The literals 'A' and 'B' are not to be confused with the letter of the alphabet.
They are the names given to two of the possible input symbols; e.g., they moy
represent the polarity of a voltage. ‘

-3=

machine from state q4 to state q, %0 that the string 'BB' is another sequence which
will produce a 1 output. Continuing we find the strings: 'A', 'BB', 'BAA?',
‘BABBA', 'BABBBA', etc,

The regular set consists of the set of all of the possible input sequences which

will produce a 1 output, For this example we obtain,
S = {A, BB, BAA, BABA, BABBA, BABBBA, etc.}

The regular expression is a finite function which represents all of the
sequences contained in the regular set. The regular expression is formed by r2cur-
sively using the Boolean operators (AMD, OR, and NOT), the concatenation

operator, and the star operator, For this example the regular expression,
R = A+BB+BAB*A
is olofcuined.2 The star operator is deiined as,
A* = NEAFAAFAAAR, ...t

where the lambda (M) represents the null string, or string of zero length. Another

character which may appear in the regular expression is "@", representing the null

set,

Throughout this paper the AND operator is denoted by the ".", the OR by the
“+', the concatenation operator by juxtaposition, and the NOT operator by
brackets; e.g., [A] = ~ (A).

4

Figure (1.1

An Example of a Finite State Machine

Start

9./

Start

Figure 1.2 The Use of A and ")

5

Figure I, 2a shows the meaning of the lanbde. In this example the initial
state already has the desired output (1) so a sequence of zero length is needed to
go from the initial state to the desired state, In Figure ll.2b there is no way to
go from the initial state to a state which will produce a 1 output, Thus, the

regular expression, R = g,

The Derivative Concept

For the rest of this paper we are going to be concerned with the inverse
problem; or the design problem. In this class of problems the designer knows the
sequence of characters that is required to produce a | output,

To design o machine to accept this sequence the concept of the derivative
of a regular expression is introduced. The rules for forming the derivative are
presented below. The derivation of these rules can be found in [2] .

H.1 Da= A
a

.2 Db = g, forb =@, b = X, baliteral # a

1.3 D4(X*) = D (X)X*

1l

o4 Do(XY) = D (X)Ytn(X) D (V)
.5 Do(f(X,Y)) = f(D4{X); D (V))
e D (X) = D, (L, (X))
Where a and b are literals, X and Y are regulor expressions or the result of

taking the derivative, and f is any Boolean function, The eta function is defined

as,

.7 n(x) = fx;fxex
Lgifux

.8 nxXy) = n(X).n(y)

e n(f(X,¥)) = f(n(x), n(v))
It can be shown that any derivative can be found by repeatedly applying the above
rules.

To simplify the expression that is formed by using the derivative operation
the following identities are presented. Additional identities can be found in [3] ,

.10 gx = Xg = ¢

o1l g+ X = X+@ = X

.12 M= X\ = X

13 g-X = Xg =g

The process of obtaining the machine from the regular expression is a simple,
but tedious operation. First, associate the regular expression with an initial state
(q]). Second, take the derivative of the regular expression with respect to each
of the literals and assign a state to each ore of these derivatives. Eachof these new
states are connected to the initial state via a line directed from the initial state
to the new state. Cach of these lines is given a value corresponding to the literal
which produced the derivative that was assigned to that state, Third, take the
derivative of each of the expressions found in step two. This process is repeated
until no new expressions are formed. Fourth, the expression assigned to each of
the states of the machine is tested to see if it contains lambda (this is the same as
the eta function mentioned above). Then a 1 output is assigned to each state
for which its corresponding expression contains lambda, A 0 output is assigned

to all other stotes.

-7-

For the example shown in Figure [l.1 the following expressions are obtained?,

i1.14 R = A+ BB+ BAB*A

H.15 D/A/(R) = A\, contains lambda

.16 O/8/(R) = B+ AB*A

.17 D/BA/ R) = B*A

il.18 D/BB/ (R) = A, contains lambda

.19 D/AA/ R = A, contains lambda

H.20 D/BAB/(R) = B*A = D/BA/ (R)

In step 1 the regular expression is associated with the initial state q- In
the second step the derivative with respect to A was formed. As this is a new
expression it was associated with state 9o Also this expression contuins lambda
so this state has an output of 1. The literal A was used to generate this expression
so a transition from 9y fo q, occurs for the input A, Repeating the process state
q3 is generated and it is connected (o q; by the symgol B.

In step four the derivative, D/BA/ (R) = B*A, is formed. As this is a new
expression it is assigned to state QY- By rule 1.6 this derivative can be formed
by, D/BA/R) = D/A/ (D/B/ R)) = D/A/ (B+ AB*A) = B*A. As the ex-
pression assigned to state 94 is formed by taking the derivative (with respect to A)
of the expression assigned to state qq we conclude that a transition occurs from

qq to q, for the input symbol A,

3 In keeping with the notation used with REXPRO the slash will be used to indi-
cote the name of the derivative instead of using subscripis; i.e., D/A/ R) =

D, ®).

-8-

The process is continued in steps 5, 6, and 7. The expressions formed in
each of these siepsare the same as ones formed in the previous steps. In this case
the expression is assigned to the same state as it was assigned to in the earlier
step. For example, the expression formed in step 5 is assigned to state q,and a
line is drawn to connect q toqyto indicate the transition for the input B,

The expression assigned to state q, contains lambda so this state is assigned
an output of 1. None of the expressions associated with the remaining states
contain lambda, so they are assigned output of 0,

Via this set of operations it has been possible to regenerate the flow-graph
of Figure 1.1, For the interested reader a more detailed discussion of the
derivative of the regular expression is given in [1] and {2] . In the following
section several practical, but simplified, problems will be studied. In these
problems the machine is not specified beforehand, but the regular expression is

used to design a machine to meet the given problem.

Examples Using the Regular Expression

Problem 1. Ina small, general purpose computer, such as the SCC 650,
the instruction reperioire consists of three classes, the nonmemory instructions,
the memory reference instructions, and the indirect memory instructions. The
nonmemory instructions are those which do not refer to data stored in the memory,
while the memory reference instructions decode part of the instruction to find the
address where the data is stored. The indirect instructions first finds the data, as

for the memory reference instructions, and then interprets this data as the address

where the dota is stored in the memory.

-9-

A sub-section of the control system Is needed to control whether the memory
address is to be obtained from the PC register or the LC register. The LC, location

4

counter, ragister containg the address of the data ™ and the PC, program counter,
gives the address for the next instruction., As part of the computer there is an
instruction decoder which will indicate which class the instruction is in. The
classes will be encoded as N, M, or | for the nonmemory, the memory, and the
indirect instructions, respectively. There is also a memory control system which
indicates when the memory has finished its read (and write) operation. This
completion will be assigned the character F.

Thus the machine which will control the use of the registers has input
sequences of N, or MF, or IFF, Or in terms of the regular expression, R =
N+ MF+ IFF. This is not entirely correct as the machine must be able to accept
an arbitrarily large number of these sequences. This problem is solved by the use

of the star operator.

Thus the exprassion,
R = (N+ MF+IFF)*

is obtained. In Figure H.3 the derivatives of this expression are listed as they

were obtained from REXPROS.

3
The problem of how, and when the registers are set will not be considered here.
5
The computer uses the symbol, \ , to indicate the symbol A and the , -, is used
to indicate the symbol @,

-10-

R~EXP PRUOGRAM-<KEADY
R (N+MF+1FF)@
EXECUTE

CHECK CoPY..
DCCNAMF+1FF) %)
D/N/

DAN/=
(N+MF+IFF)*%

CONTAINS
Dsms

L/sMr=
F(N+MF+IFF)%
DsFs

D/F/=

Ds1vs

Drlvs=
FF(N+MF+IFF)*
D/7MN/

D/MN/=

D/smms

D/MM/=

D/s7MF/

D/MF/=
(N+MF+IFF)%

CONTAINS N\
Ormts

Drmls=

Figure I1.3 Derivatives of R = (N + NF + JFp)*

-]~

D/IN/

D/IN/=

D/ 1t/

D/1M/=

D/IFs

D/IF/=
FOQI+MF+TFF)
Dr1ts

Dr11lrs=

D/IFN/

D/IFN/=

D/I1FM/s
D/7IFM/=

D/IFF/s

D/1FF/=
(N+MF+IFF)%

CONTAINS N\
D/IF1/

Drs1Fl/s=

Figure 11.3 Continued

-12-

Figure iIl.4 Flow-graph for Memory Control System
-13-

Figure Il.4 shows the flow-graph that was obtained from the derivatives. The
state with 0 1 output is the one for which the PC register is used. The LC
register will be used with the rest of the states. State 9q is entered when illegal
sequences cf symbols are found. This may be used for error checking.

Problem 2. The reader should be aware of the fact that the finite state,
sequential machine is not restricted to hardware designs, but that the execution of
a computer program can be studied as a sequentiol machine,

In computing the eta function it is necessary to test a sub=sequence of the
regular expression to see if it contains lambda °, The possible input characters in
this sub-sequence are the literals, which will be denoted by the symbol A; the phi,
denoted by P; the lambda, denoted by L; the star operator, denoted by S; and any
other operators, denoted by Q.

For the sequence to contain lumbda it must contain only terms of the form
AS, L, LS, or PS and an arbitrarily large number, but at least one, of these terms,

Thus, the expression,
(AS + L+ LS+ PS) (AS + L +LS+PS)*

is generated.

An additional requirement is that the sequence be terminated by an operator.

Thus,

(AS+ L+ LS+ PS) (AS+L+LS+PS)*0

6

This is part of the function of the subroutine 3BETAT described in Chapter IV
and Appendix D.

-14-

To this expression the NULL character, denotad by N, is added for complete~
ness. The NULL character has no intrinsic value, but is a blank, or spacing,
character which is placed in the sequence to fill in any unused locations in the
sequance. As an arbritrary number of NULL's, including zero, may appear in the
sequence the NULL will be placed in the sequence as N*, These NULL's can be
placed in the sequence befween any and all of the other characters, thus the

regular expression given below is obtained.

R = (N*AN*SN* + N*LN* + N*LN*SN* + N*PN*SN*)

(N*ANYSN* + NYLNN*LN*SN* + N*PN*SN*)*N*0

An equivalent, but simpler, form for the regular expression is,

)
]

N*Z(N*Z)*N*0, where

N
]

(AN*S + L+ LN*S + PN*S)

Figure 11.5 shows the derivatives which were calculated for this problem.
Figure 11.6 shows the resulting flow~graph. After a sequence has been applied to
this machine the final state will either be 50" 9 State As has a one output
indicating that the sequence contained lambda; state a produces a zero output
for those sequences which do not contain lambda,

It is now a simple matter for the programmer to translate the flow-graph in
Figure 11.6 to a program which will calculate the eta function. Each of the

states, except the terminal states 95 and Py is translated into a subprogram which
“15-

K-EXP PROGRAM--READY
R=N®Z (N*Z) %N*0¥
Z=ANR*S+L+LN*S+PN*5@
EXECUTE

CHECK C@FPY..

DCNXCANKS+LALNAS+PN®S) (N* CANRS+L+LN*S+PNHS) I¥N*0)
D/sN/ '

D/N/=

(NIY*CANFSHLALNRS+HPNR.S) (N CANKS+L+LN*S+PN%S) I kN#0Q
bsa/s

Dras=

CN) %S (N CANKS+L+LN*S+PN%S)) *N*0
Drss/

Drss5/=

brsLs

DrL/= ,
(NF(NI®S) (N CANS+L +LIN#S+PN*S)) %N*0
psrs

brsp/s=
CNIRSCNKk CANRSHL +LNKkS+PN*S)) kN*0
Drsavs

brar=

-

D/7AN/

D/AN/=
CNYRSCN* CANKS+L+LN*S+PN*S)) kN*@
D/AS/

D/7AS/=
(N* CANKS+L+LN*S+PN*5)) kN*@
D/s7ARA/

D/AA/=

-

Figure 1.5 Derivatives of R = N*Z (N*Z)*N*0

-16~

i

'D/ALs=

D/7AL/

DzAP/

. D7AP/= ‘

D/AB/
D/AG/=
D/ASN/

D/ASN/=
((N)*(AN*S*L#LN*S+PN*S)(N*(AN*S+L+LN*S+PN*5))*N*G+CN)*Q)

 D/ASA/

D/7ASA/=
(N)*S(N*(AN*S+L+LN*S+PN*S))*N*w
D/ASS/ !

Q/ASS/=
D/ASL/ , :

D/7ASL./=
(\+(N)*S)(N*(AN*S+L+LN*S+PN*5))*N*G
D/ASP/

D/ASP /= _
(NI RS CNK CANKS+LALN*S+PN*S)) *N*0
D/AS@/

DrasS@rs= : :
N\

CONTAINS \
D/ASNN/ : '

D/ASNN/= |
CON)FCANKS+L+LNH*SHPNRS) (Nk (ANKS+L+ALNKS+PN*S)) kN*0Q+ (NI *0)

t

‘Figure II.5 Continued
-17-

DrsAasSNAY

D/7ASNA/=
(N)*S(N*(AN*S*L*LN*S*PN*S))*N*G
D/ASNS/

D/ASNS /=

-

D/ASNL/

D/ASNL/=
(\+(N)*5)(N*(AN*S+L+LN*S+PN*S))*N*@
D/ASNP/

D/ASNP /=
(N)*S(N*(AN*S+L+LN*S+PN*S))*N*@
D/7ASNB/

D/ASNO/=
\

CONTAINS N\
DsLN/

D/ZLN/=
((N)*S(N*(AN*S+L+LN*S*PN#S))*N*@+((N)*(AN*S+L+LN*S+PN*R)
(N*(AN*S+L+LN*S+PN*S))*N*@+(N)*@))

D/7LAY

DrLA/=
(N)*S(N*(AN*S+L*LN*S+PN*5))*N*@
D/LS/

DrsLS/=
(NKCANKS+HL+LN*S+PN*S)) %N*Q
DsLL/

DrLL/=
(\+(N)*S)(N*(AN*S+L+LN*S+PN*S))*N*@
DsLP/

D/7LP /=
(N)*S(N*(AN*S+L+LN*S+PN*S))*N*@

Figure I1.5 Continved

-18~-

Dsrers

bsLo/=
\

CONTAINS N\
D/LNN/

D/LNN/=
CONIRSCNHCANKSHL+LNASHPN*SI IRNKD+ C (NI K CANRS AL +LN* S+, Nk 5)
(NACANRSHL+LNHS+PNxS) IRN*Q+ (NI *Q))

D/LNA/

D/INA/=
(NIRSCNRCANKSHL+LN*S+PN*S)) ¥N*Q
D/LNS/

D/LNS/=
CNXCANKSHL+LNKS+PN*S) I *N*0
D/7LNL/

D/7LNL /=

(N4 (NIRSI(NK(ANESHL +LNKS+HPNKS) Ik N*D
D/LNP/

D/LNP/=
(NI*S(N* (AN S+L+LN*kS+PN*3)) kN*0
DsLN@/

D/LNO/=
\

CONTAINS

Figure 1.5 Continued

-19-

Figure [1.6 Flow=-graph for Machine to Find the Eta Function
-20-

will read the next character in the sequence. After this character is read it is
tested by the subprogram to determine which subprogram the program will transfer
to. The transfers from subprogram-to-subprogram are formed directly from the state-
to=state transition as shown on the How-graph. The terminal states (qs and q7) are
translated into subprograms which display the results of the test (e.g., a value

is returned to a calling program or an appropriate message is printed).

-21-

CHAPTER 1l

STRING PROCESSING

The preceding chapters discussed the use of the regular expression and how
the derivative can be formed by using manual manipulations of the regular expres-
sion. The problem is to write a program to parform these manipulations. The digital
computer is designed to handle numerical formulas to which a numerical answer can
be assigned. The problem X = A+ B(A+ C), where values have been assigned
to A, B, and C, can be easily solved on the computer by means of adding and
multiplying the values of A, B, and C. The results of these operations are then
placed in the location reserved for the answer, X,

In the case of the derivative of the regular expression we have a string of
characters which represents the regular expression; in general this string is of
unknown length. Before studying the process by which the computer fcrms the
derivative the concept of string processing is introduced. String processing
provides a method by which the computer can perform the basic manipulations on
the string (e.g., storing, adding, or removing characters from o string) needed to
form the derivative.

A string is defined as a series of characters that are written in a linear form
(e.g., this sentence is a string). The symbol "g" will be used to represent the
string, For this report only strings that are used to represent the regular expression
will be considered. These are strings which contain only the following characters:

the literals, @, N\, +, ., *, (,), 1,1, D, and R. These characters form the

vocabulary of the string. Also the requirement of validity will be implied.
-22-

A valid siring is one in which the operators are used properly. This implies
that the parenthesis and brackets are properly formed and that the operators are
used only in a valid context. A note should be made that the validity of a string
is determined only by its context and not its content.

To aid in the discussion of the use of sirings we introduce the terms: alpha
character, operator, term, and level. The alpha character consists of the literals
plus A and @, The remaining characters (i.e., the '+, ., *, (,), [, 1, and D)
are the operators and delimiters,

A term is a logical unit of the string. It is a sub=string consisting of alpha
characters and the star operator, or any sub-string which is contained within a set
of parenthesis or brackets. If a term is followed by the star, the siar is considered
part of the term. The level provides a method of ranking the terms in a string.
Terms that are connected by one of the operations of AND, OR, or concatenation
are all of the same level. When several terms are grouped, via a set of paren-
thesis (or brackets), a new term is formed. The new term is of a higher lev=l than
the level of the individual terms. The phrase "to go down in level" means that,
rather than testing the large term, the several terms that are enclosed in a set of
parenthesis are to be tested.

The subroutine 8SLVL has been written for REXPRO to perform the operation
of reading a term. |t returns with the first and last characters of the term, FSLVL
also indicates if the term is followed by more terms of the same level.

A method is needed to store and operate on the strings in the computer.

This is accomplished by a set of linked cells. A cell is simply a location which

can hold one, and only one, chcructerzéaf the string.

To indicate how the individual cells are joined, to form the string, a linking
system is used. The simplest linking system consists of linearly ordering the cells;
i.e., the first cell is used to siore the first character of the string, the second cell
stores the second character of the string, etfc,

In REXPRO the number of literals was restricted to 16 and two additional
characters were added. These are the end flag (represented by the symbol "@.")
which is used to indicate the end of a string and the NULL character. Thus the
vocabulary of REXPRO contains less than 32 separate characters, These characters
can be encoded by a five bit binary word, Appendix A contains a list of the vo-
cabulary and the codes used to store these characters.

The memory system of the SCC 650 consists of a main core with 4096, 12 bit
words., For maximum efficiency, with raspect to memory, two cells are stored in
each memory word. To address a given cell a two-word addressing scheme is used.
The MP (memory point) gives the address of the memory word and the HP (haif
point) indicates which cell in the work is being addressed. A HP equal to zevo is
used for the first cell and a HP equal to one is used to reference the second cell,

A prefix is used to denote the different locations in the string., These are
LE, for level end; L, for level start; LR, for last read; R, for read; T and T2, for
temporary; and W, for write,

To finish the description of string storage we must consider what happens
when characters are added or removed from a string. This can be accomplished

by shifting the characters in the string; however, this introduces the problem of

having the end of the string blocked by another string.
~24 -

The problem of removing characters is considered first. If part of the string
is 'D ((WXYZ))' we see that the string contains an extra set of parenthases which
should be removed. This string is shown in Figure lll, 1a as it would be stored in
memory., Each horizontal block represents a memory word containing two cells.
The number to the left gives the MP location of that word.

In the expansion 7 of the string the inner set of parentheses at '5001/08 (the
MP/HP) and at '5003/1 are to be removed. When these are removed scmething
must be placed in these cells so the string remains continuous. The new character
is the NULL character., The NULL character has no value, but is simply a
character used to fill out the string. Figure 1l1.1b shows the string after the ex-
pansion with the symbol N being used to represent the NULL character.

The jump-flag is introduced for those cases where it is desired to add
characters to the string. The jump=-flag (or more simply the flag) is represented by
placing o one in the sixth bit of the secand cell in the memory word, In the
examples it is indicated by using an Finthe cell. Placing the flag in a cell indi-
cates that the following word does not contain the remaining part of the string, but
rather an address giving the location where the string is continued,

Figure 111, 2a shows the string 'D (ABC)@ ' as it appears in the memory.

For this example it is desired to replace the character 'B' with the string 'WXYZ'.

This is accomplished by removing the character *B' and replacing it with 'F-W"*

7
Any change in the string is called “expanding the string" .
8
The apostrophe is used to represent number to the base eight, e.g., '5001 =
SOO!8 = 2561 .
10 ~25-

! 5000 D (

' 5001 (w

' 5002 X Y

' 5003 Z)

' 5004) @
(a)

' 5000 D (

' 5001 N | W

' 5002 X Y

' 5003 Z N

' 5004) @
(b)

Figure 1.1 The Use of the NULL Character,
26~

(i.e., a flag and the symbol W) and saving the following two characters; the
'C)'. These characters are replaced with the address ' 5500 where the string is
continued.,

At location *5500/0 the remaining characters of the string are added along
with the two characters, the 'C)', which are removed from the main string. At
location '5502/1 a flag is placed in the string. The address in the following
Incation refers back to the remaining portion of the string. The resulting storage
in the memory is shown in Figure I}, 2b. This string is read as 'D(AWXYZC) * .,

Several comments shouid be made about this example. First, as there is no
space left in this method to store information about the half-point the requirement
is added that all strings, and string segments, have to start with a half~point of
zero. Second, a flag may be used only in the second cell; thus, we see the
use of the 'F-N' (flag=NULL) at location ' 5502/1,

This process of removing a character in the string and adding an address is
termed "setting a breakpoint" . This is handled by the REXPRO subroutine
SBPSET which not only adds the flag and jump address, but it also saves the
characters that were removed from the string to give space for the address. The
process of adding the jump at the end of the new string segment is termed "return-
ing the break-point" and is executed by the subroutine JRTBP. This routine also
adds the characters which were removed from the string by $BPSET,

The subroutines JREAD (string read) and WRITE (string write) are two
additional routines which are used in processing the string. These four routines

form the bases for all of the string operations performed by REXPRO. A description

of the subroutines $BPSET, SRTBP, and §SLVL is given in Appendix D.
-27-

' 5000 D (

' 5001

A
15002 c |)
' 5003 @

(@)
' 5000 D | (
' 5001 A |E-w
' 5002 ' 5500
' 5003 @
S
' 5500 X |y
' 5501 z | ¢
' 5502) |F-N
' 5503 ' 5003
(b)

Figure 11,2 An Example of the Use of the Jump-Flag.

-28-

CHAPTER IV

USING THE COMPUTER TO FORM THE DERIVATIVES

The previous chapters introduced the derivative of the regular expression
and the concept of string processing. We are now ready to study the processes by
which (e computer forms the derivative, The computer operation will be studied
by foilowing an example through the steps needed to form the derivative.

The strategy used in forming the derivative is to repeatedly apply the

following rules until all of the terms are of the form given in Rule IV.7b. These

rules are,
V.l D ((®)*) = D () &)
V.22 D §,) = D)8, ifn@) = ¢

V. D (f, %)= (0()5,+DE,)) ifnGE) =)
V.3 D@ *+5)=(0E)*DE))

tv.d D (I81)=[D@]

Iv.s

V.6 D(®) = D (¥

IV.7a D (A] Azal---Bn) =D ((Al) A Bl"-Bn)'

2

where A_, A_ are literals and B

7r .B are literals or the star
operator, n

v.n D (A]A B]---B) , where A and B are as defined above,
n

2

Iv.8 Dwrgg=mgpoww

* The first eight rules are numbered according to the subroutines which use these
rules. Due to a reorganization of the subroutines there is no rule V.85,

-29.

After all of the terms are of the type given in Rule IV.7b the following rules '
|

are used as the final step in forming the derivative.

n

IV.% D/A/ (A‘A2-—-An)
IV.9b D/A/(AJA---A)

A(Az—--An), if A‘= A
g, ifA# A]

i

]

We should note that these rules differ slightly from those given in Chapter H, but

they are derived from the rules in Chapter 1, These rules were modified so that

they would be compatible with the string processing used in REXPRO,

Expanding The Derivative

We will now consider the example D/A/ (R), where R = (A*B + C)*AB*,

This would be stored in the computer as,
'D ((A*B + C)*AB*)@ '-

and the "name of the derivative" is "A'. It should be. no.ted that the derivative
name is not stored as part of the derivative; e.g., asa subscript. Rules IV.1
through IV.8 are not a function of the particular derivative being formed; thus,
the name can be separated from the derivative and retrieved only where it is
needed, |

It is also noted that the derivative is stored with 'D (' and '} * oddea to -
the string. This provides easily detected delimiters to outline the derivative, A'
search is made of the term(s) following the 'D (* and a: list of the characteristics of
these terms is made. For this example we find the two terms ' (A*B + ‘C)*' and

AB', Another check is made and we find that the terms are connected by

-30-

1
0 . ! ' !
juxtaposition, i.e., the terms are concatenated and Rule IV.2 applies. To deter-

mine if Rule IV.2a or IV.2b is to be used the eta function must be evaluated. The
method of evcluahng eta wull be deferred until the end of the chapter, but it is

found that n ((A*B + C)*) A Thus the expression,
C (@O B"+D(AB*))"' ;

is formed by applying Rule IV.2b,

It is pointed out that the expansion of the -stréng, produced by Rule IV.2b,
, .
is formed by using the techniques presented in Chapter lll; i.e., adding and re-

‘ , .

moving characters from the string and copying portions of the string. The exact

methods that are'used in the expansion process are reserved for the description of the
I

i

subroutine $DF2 in Appendix D.
The expression is still not oFlrhé forr;1 given in Rule iV.?b, thus the process

is rf;pechled. The string is scanned from left ta right until ‘the first delimiter, the

‘D(', is found. The Followmg operand '(A*B + C)*, is then read. This operand

)
consists of a single term and thot term is operated on by the star. Thus Rule V.1

fs used to produce the expanded string,

"D ((A*B+C)) (A*B + C)*AB* + D (AB*))i *

The scanning continues until the second delimiter is found. The following
term, *AB*, is then read., This operand appears to follow Rule 1V.1 as it zon-

tains only one term and is followed by a star. The question arises as to what

characteristic will differentiate between terms of. the form '(A*B + C)*' and the
' -31-

form 'AB*', The difference lies in the fact that in the first case the entire term is
operated on by the star, while in the second case only the one literal is operated
on by the star. This characteristic is easily checked by determining if the first
character in the term is '(*. The routine which reads the term (the subroutine

ISL VL) saves the first character for this tesi. We see that ' AB*' does not follow
Rule IV.1, but Rule IV.7. The subroutine $DF1, which is used to expand this form,
finds that the first literal is not operated on by a star, Under this condition Rule
IV.7b is invoked and no change is made.

The scan is continued and no more derivative delimiters are found before the
end flag (the '@ *). Thus a new puss is started and the process is repected, The
first operand which is found is '(A*8 + C)'. This has the characteristics of having
only one term, not operated on by a star, and it is enclosed in parentheses. These

characteristics match those of Rule 1V.6, thus the result,

'(D (A*B + C) (A*B + C)*AB* + D (AB*))(@

The scan is continued and the only term found is ' AB*' to which Rule IV, 7b
is applied and no change is made.

A new pass is then started and the operand ' AB* + C' is found. This operand
consists of the terms 'A*B' and 'C' and they are connected by the OR operator,

For this condition Rule 1V,3 t, used to produce,

"((D (A*B)+ D (C)) (A*B + C)*AB* + D (AB*))@

-32-

S

e L T T T e

Again no change is made in the last operand and a new pass is started. The
first operand found is ' A*B'. This operand consists of a single term with the first
character a literal. Thus Rule 1V.7 is used. The subroutine which processes this
rule scans the term and finds that the first character is operated on by the star and

Rule IV.70 is invoked, This produces the string,
‘(O ((A)*B)+D (C)) (A*B+ C)*AB* + D (AB*}))

The process is repeated through several more passes and the following ex~

pression is obtained.
"(((D(A) (A)*B+D (B))+D (C)) (A*B+ C)*AB* + D (AB*))(r '

A final pass is then made. During this pass all of the operands are found to
follow Rule IV.7b. Thus no changes are made in the string. This indicates the
end of the expansion operations. The final step in obtaining the derivative is to
implement Rules 1V.%a and IV.9b, These rules are implemented by the subroutine
SMATCL. In this routine a single scan is made of the derivative, When the
derivative delimiter is found the following literal is compared with the
name of the derivative (in this example the literal A). If the two characters

match, the stringis modified by Rule 1V.%a, otherwise the Rule 1V.9 is used.

This produces,

"((N(A)*B+ @)+) (A*B+ C)*AB* +) « *

-33-

After this derivative is formed the following rules are used to simplify the results.
V.10 g% = 30 = ¢
vl g+g=g+g =g
V.12 A = gA= A
Va3 g.3=8.0=¢
The simplifications are performed in a manner to similar to the operation of
expanding the string; i.e., repeated passes are made until a passis found in which

no cnanges were made. The final result is,
D/A/®) = '(A)*B (A*B+ C)*AB* G

To summarize the operation of forming the derivative:
A. Search the string to find the derivative delimiter and test the
following operand. From this test determine which rule applies.
Appendix D describes in detail the subroutine $DCLAS which
performs this operation,
B. Expand the string according to the appropriate rule. The sub-
routines $DF1, §DF2, $DF38, $DF4, $DF6, and ZDF7 are used

to implement the rules,

C. Repeat A and B until a pass is made with no change in the
string.

D. The derivative is taken by the subroutine SMATCL which
implements Rules 1V.9a and 1V.%b,

E. Simplify the string.
In this example the derivative was taken with respect to the single <haracter

"A'. If the derivative with respeci to a string of charactersis desired, for example

D/AB/ (R), the rule D/AB/ R} = D/B/ (D/A/ R)) is used. in other words the

-34-

derivative, D/A/ (R),is formed as given above. Then the process is repeated,

using the above results, to form the derivative with respect to B,

Caiculating the Eta Function

A technique is now introduced which will allow the eta function to be cal~

culated by the computer. The eta function is defined as,

V.14 n(®) =[r,ifred
g,ifNLS

V.15 n@F) = nE).n@)
V.16 n@+3) = a@)+ne)
V.7 0 @ .5’2) n@). n(ﬁfz)
V.18 n ([8]) = [n @)1

N

]

From the first rule we see that the eta function is a binary function; i.e.,
it has only two values N and @. The other rules state that any eta function can
be formed by finding the eta function for simplier terms,
We first consider the types of expression' for which the eta function can be
found directly,
A, Asimple term consisting only of alpha characters and the star
operator; e.g., A*B, ABC, or A*B*. For this case we consider

each alpha character at a time.,

n(A*) = A, by the definition of the star

operator
n(A) = g, Aany literal or §f
n(A) = \, by definition of the eta function

For several characters which are concatenated we use Rule IV.15

-35-

and the fuct that A . @ = @. From this we conclude that the
eta value of a simple term equals lambda if, and only if, each
alpha character is a iambda or is operated on by a star. This
test can be easily performed on the computer by scanning each
character from left to right and testing the characters to see if
they are lambda or if they are alpha characters followed by a
star. This is the method that was presented as the second ex-
ample problem in Chapter I,

A complex term of the form (¥)*. Again by the definition of the
star operator we find that n ((§)*) = A,

A complex term of the form (8). For this case the eta function
cannot be directly determined; i.e., the terms enclosed in the
parenthesis have to be tested to find the resulting eta function.

This process of testing the terms was written into the subroutine $BETAT,

This subroutine returns the three results, the eta value equals lambda, equals phi,

or is undetermined,

For the cases with more complex expression we will use the following rules.
V.19 M. X =X
A

g

IV.21 @+ X = X, where X is either lambda or phi

V.20 A+ X

It-

v.21 g.X

These rules are derived from the fact that the values of the eta function (i.e.,

lambda or phi) are binary values.

With these rules in mind we consider the example n ((A* + B) A+ C*),

This would be stored in the computer as '((A* + B) A+ C*)' with a pointer to the

first left parenthesis at the start. The term '((A* + B)A + C*)' is tested and it is

founa to be undetermined. Thus it is necessary to * go down in level” to evaluate

the expression. This is performed by stepping the pointer one location to the right,

The term '(A* + B)' is then tested and it is also found to be undetermined.

-36~

The process of going down in level is repeated and the tarm *A*' is tested
and found to have an eta value of A, This term is followed by the OR operator,
From equation 1V.20 we see that result will be lambda, even without testing the
remaining term. Thus the term *B' is passed over without being evaluated and the
operator ') is read, This indicates the end ot the present level and the need to
determine " what to do next".

In this example the jerm *(A* + B)* was found to have a value of lambda
and it is concatenated with the following term (the 'A'). By equation IV.15 we
see that in evaluating concatenated terms they are treated as being "AND'ed".
Thus by V.19 we find that tie value of expression '(A* + B) A' is determined
solely by the term 'A'. The term 'A' is tested and found to have a value of phi.

The value of that part of the expression which has been evaluated is phi
and the following operator is OR and by 1V.22 we see that the result is determined
solely by the following term, This term, the 'C*', is tested and found to have a
value of lambda. The only remaining character is a right parenthesis which indi-~
cates the end of the expression being evaluated, Therefore, the eta value of the
expression being tested is A,

This example has shown a method by which the eta function can be found by
a process of scanning the expression from left to right and using Rules IV, 19 to
1V.22 to determine which terms are tested and which are passed over. While this
example was admittedly simple the some technique can be used to evaluate any

expression. For the interested reader Appendix D describes the operation of the

37

subroutines SETATT and 3BETAT. The subroutine SETATT performs the operation of

deciding " what to do next", ZBETAT is called by S8ETATT to evaluate single terms.

-38-

CHAPTER V

REXPRO OPERATION

Memory Organization

The 4096, 12 bit, word memory of the SCC 650 is divided info three distinct
areas for this program, as shown in Figure V,1. The first section consists of the
first 64 words. These words can be addressed from the entire computer memory via
the direct memory instructions.

The direct memory area is further divided into four sub-sections. The first
section occupies locations '0 to '17 and holds the symbol table, This table stores
the literals that have been entered. The literals are stored as trimmed ASCII
characters, These literals are stored in the string as a four bit character which
corresponds to their location in the table. A flag is placed in the seventh bit if
the character was seen as a part of the regular expression string as opposed to a
substitution string.

The second section of the direct memory contains the substitution table and it
is stored from '20 to '37. This table contains the addresses of the characters which
are placed in the regular expression string as the name of substitution strings which
are to be substituted into the main siring, The table is referenced by adding ' 20
to the location in the symbol table where the corresponding character is stored.

For example, if the character ' A' is the third character which is stored in the
symbol table it will be replaced with '02 and its substitution string address will be

stored at '22, [f no substitution string has been stored the corresponding location

in the substitution table contains '0000.

-3¢~

' 0000
Symbol Table
1]
0020 Substitution Table
Derivative Name
10040
Constants and Variables
'0100
P
r
o
g
r
a
m
Y4704 Program Entry
14760
Regular Expression String
Substitution Strings
Work String
' 7540
Loader
V7777

Figure V.1

Memory Allocations
-40-

The third section contains the converted (via the symbol table) literals that
are used to name the derivatives, As this data is used at a point in the pregram
execution af which the substitution table has already been used the derivative name
is also stored from ' 20 to '37. The derivative name is stored as a string, packed
two characters per word. Therefore, the derivative name is also referred to as the
derivative string, A maximum length of 31 characters can be used to specify the
derivative name (one cell being reserved for an end flag).

The last section of the direct memory (from '40 to ' 77) contains the non-
string variables, The information contained in this section consists of string starting
addresses, shing working addresses, temporary character and address storage, input
mode information, and a program start address. A detailed list of the information
stored in this section is contained in Appendix B,

The next section of the memory is allocated to the storage of the program
itself. This section runs from '100 to '4757. The program starts execution at
'4704,

The remainder of the core is used to store sirings. The first string which is
stored is the regular expression string, This is followed by the substitution strings,
if any. The last string is the work string, The work string is o copy of the regular
expression string, with subst’tutions made. The work string is the string which is
expanded to form the actual derivative,

There is no fixed length for these strings. The only limitation on length is
the fact that they have to fit the area from '4760 to * 7540, (The upper lirit was

designed to save the loader. [t can be increased to give more working area or de-

creased to save other programs),

-41-

ProErom Execution

The program is executed in four distinct phases as shown in Figure V.2,
Phase |. During the first phase (controlled by MAINLINE) the program
initializes the direct memory by clearing the symbol table, the substitution table,
and the string addresses. This phase also sets the input mode for the teletype key-
boord, loads the program starting address (in the variable RESTRT) and sets NEW.
NEW defines the free area where strings can be stored. At the end of Phase | the
message "R-EXP PROGRAM~-READY" is printed and the program enters Phase 11,
Phase 11, This phase is the main input phase and is controlled by the routine
MAINLINE. During this phase either control words or strings may be entered into
the computer. The program receives the first character from the teletype which is
not o carriage return, line feed, space, or tape leader. A second character is
then received. If the second character was a letter it is assumed to be part of a
control word. Otherwise it is treated as a string, The first two characters of the
control word are stored. When a line feed is received the two characters are
tested and the control word is executed. The functions of the contro! words are
listed below:
"TAPE" = Inpuf via paper tope
"KEYBOARD" =~ Inpur via the keyboord
"EXECUTE" ~ Enter Phase Il
"TERMINATE" - Return to Phase |
If the operator makes a mistake or desires to make a change he may type a

left arrow before the line feed. The cperator can then enter a new string or con-

trol word. The entering of an incorrect control werd will cause the following to

be printed: "UNDEFINED CONTROL WORD ",
-42-

Start
Phase 1
Initialize
Phase 2
' Execute A Load
Control Control String
Word Word

I Store
| String

Phase 3 #

Form
Substitution
String

Figure V.2 Flow-graph of Program Execution
-43-

Phase 4

String R

Enter

Derivative Name
or ! A \ .)

Control Word

Expand
> String
l 3
Last |
as
Mo Der. Char. Yes
Form Form
Derivative Derivative
Reform - l
String Print
Results !

Figure V.2 Continued
-44 -

(f the second character entered was not o Iétter, the program checks

to see if iil' it the start of the string.. The F{rst siving ?haf ils stored must be the
regular expression string anc; it is denoted by an 'R', followed by optional spaces,
’iollo;ved by or; '=' . If the string dces not contain an '=' the message "STRING
(:)OESN'TC.ON'ITAlN ‘= N.S." is prinfed.' The "N.S," indicates thot the string
" is not stored.

After the equal mark alny valid input clncra;:ter may be entered, These
characters are listed in Appendix A along with the code in which they are stored,
An iqvalidi cha'racfer‘ will'cause a ' ?' to be printéd and the character is not stored.
To aid in the locdling of a string, acarniage reflurn,! a line feed, or a space may be
enterec:l at any time after the equal sign.

To co_,rre-ct:mistakes in l;xlding a string the t;perotcr may use a ieft arrow or
a verti‘ccl arrow. The left arrow dumps the string that wlas beiqg stored ‘and allows
a new siring, or control w\;ord, to be entered. :The vertical arrow removes the last
| character(s) which were entered; one character is removed for each vertical arrow.
The vertical cannot remove the characters to the left of the string; li.e. , the term
'R”'I; These editing aides must be used before the string is terminated.

' The actual storage of t:he string is handlecji by 3STORE and it is stored at the
iocotion gi;/en by NEW, The pr'ogram a‘dds a'D (‘.preﬁx to the string and a ')*
suffix. Tll1e5e characters ore;needed for proper execution of the string.

An ‘(@ ' is enfered to terminate the string. At this point the FOPCK,

S”FBCK_, and FAOCK subroutines are called 1o tesi the sirings. They test for the

‘proper context of the various operators, for properly formed parentheses and
| : '

1 “45_

brackets, and for use of the ill-defined and~or operation (e.g., A+ B.C). If any
of these errors are found,the respective messages " ILL-FORMED OPERA. -N.S5.",
"ILL-FORMED () OR [] =N.S.", are printed. It should be noted that the
testing is halted when the first error is found. If no errors are found the string is
"stored" by updating NEW and storing the starting location of the string. Also
all of the literals that were entered with the regular expression sirings are given

a flag in the seventh bit,

If there was an error, a new siring moy be entered; this string is written over

the old string. A new string may be entered to replace a sfring which has already f
been stored. This does not remove the original string, but sets a pointer to the
new string.

After the regular expression string has been stored substitution strings may
be entered. These are entered in the form 'A = ====<!; where the 'A' is the
literal in the regular expression string which is to be replaced by the string to the
right of the equal mark. Only one ievel of substitution is permitted; thus the name
of the substitution string (e.g., 'A') must have been entered in the symbol table
and it must also have a flag set in the seventh bit. If this is not met the message
"SUBSTITUTION NOT SEEN=N,S." is printed. Except for this test and the fact
that the siring is prefaced by (' instead of 'D(' the loading, testing, and storing
of the string is the same as the regular expression string.

When the strings are formed the subroutine which forms the symbol table
checks to see if it is full (more than 16 entries). [f it is full the error message

"TABLE FULL--EXEC. HLT." is printed. Likewise during the loading of the
~46-

string (or during any other phase in which characters are being written in the string)
the program checks to see if there is room lefi in the memory. If not *MEMORY
FULL-EXEC, HLT." is printed. (The upper limit of the available memory, a
normal ' 7540, is stored at location '0764 and can be changed. It should be set
at five less than the desired upper limit). Both of these errors are unrecoverable
so the program automatically re-enters Phase |.

Phase IIl. When the program enters Phase 111 the routine $SUB is called.
This routine inserts the substitution string, if any, in the regular expression string.
A copy of the regular expression siring is then printed so that the operator can
check the string, [f no string was stored a ' ?* will be printed and control returns
to Phase 11, otherwise the program goes to Phase IV,

Phase 1V, This phase performs the actual operation of taking the derivative
and it is controlled by DCONT. This phase starts by calling JDRCPY to form a
work copy of the regular expression siring.

The subroutine $DIN is called. This is a specialized form of MAININ. The
only control word that can be entered is " TERMINATE" and it is tested when a
line feed is received. This control word causes the program to return to Phase I.

If the first cheracter that was entered was a 'D* then the program enters a
derivative name storage section of JDIN., The name has to be prefixed by 'D/*.
and then the operator inputs the string of characters which forms the derivative
name. The only valid characters are the literals which were entered in the reg-

ular expression string, An invalid character will cause a ' ?' to be printed. A

test of the length of the derivative name is made and if it exceeds 31 characters

~47-

then "DERIVATIVE § FULL-N,S." is printed and the name is not stored. During
this phase all of the information is received via the keyboard.

As in Phase 11 o left arrow and a vertical arrow can be used to edit the name
ar the control word, When the name is followed by a '/' the routine returns to
DCONT, If no string has been stored a ' ?' will be printed and the routine remains
in $DIN.

When the program returns to DCONT the subroutine $DCLAS is called to
classify the forms of the derivative of the string. $DCLAS inturn calls DF1, $DF2,
$DF38, §DF4, ¥DF6, and $DF7 to expand the siring.

After one pass through the work string the program returns to DCONT. At
this point a check is made to see if any changes were made in rhe work string, If
a change was made, then the program returns to DTONT,

This is repeated until a pass is made with no changes in the string. At this
point the string consists only of terms of the type 'D{" followed only by literals
which are inturn followed by a ')'. These terms can be combined by any of the
valid regular expression operators,

DCONT then finds the first character in the derivative name and passes this
to §MATCL, This routine has two purposes, The first is to perform the final

operation of taking the derivative, This uses the rules:

FMATCL then calls four subroutines to simplify the string using the regulcr
48~

expression identities, As in FDCLAS this is an iterative operation which is repeated
uniil there are no changes in the string.

DCONT then reforms the work string by adding *D(* to the front and *)* to
the end as these were removed by $MATCL, The program then goes back to
SDCLA; and the procedure is repeated using the second character in the string
name. The total process is repeated until the last character in the derivative name
is used, When this occurs the results are printed along with the name of the de~
rivative. SETATT is then called to see if the string contains lambda and it prints
"CONTAINS \" if the test passes.

At this point one complete derivative has been found and DCONT returns to
the routine DRCPY to obtain a new work string and the process is repeated. The
program remains in Phase IV until the control word " TERMINATE" is entered.

(The user who wants to study the oparaiion of the progrom can replace the
following "MOPS" with calls to the printing routines. Ar location '4554 {oad
'5301 and at '4555 load '1200. This causes the string to be printed for every pass
through "$DCLAS" ., At location '4610 he can load '5301, at location '4611
load '1233, at *4612 load '5301, and at '4613 load ' 1200, This causes the de~-
rivative name and the string to be printed for each pass through MATCL, Due to
the large amount of data that is produced and the slow speed of the printer these

changes are not recommended for normal use).

~49-

CHAPTER VI

CONCLUSION

This poper has described a practical digital computer program which can be
used to find the derivative of a regular expression. Chapter Il shows how useful
the regular expression can be in the design of a finite state, sequential muchine.
The remaining chapters describe the techniques us: 1 to implement REXPRO and its
use,

The usetulness of this program can be seen by studying the second example
in Chapter 1. The optional prints were added, as described in Chapter V, to print
the partial results for every pais through the subroutine SDCLAS. These partial
results are formed in approximately the same manner in which a designer would
form the derivative. The partial results, shown in Figure V1.1, were those obtcined
during the process of calculating the derivative D/A/R. When one considers the
amount of work needed to form this derivative, and that this is only one of the
several derivatives that are needed for this example, this program drastically
reduces the amsunt of work {and thus the possibility of errors) needed to use the
regular expression in design work.

This example shows one of the problems that are involved in using the
derivative of the regular expression, In the flow-graph which describes the machine
designed for example two, Figure [1.6, it can be shown that state 9y and q are

identical, This implies that the derivatives associated with these states are also identical.

These derivatives are,

DA/ =(/ +MN"S) (N* (AN*S + L + LN*S + PN*S) (*N*O, and
D/LN/ = (N*S (N* (AN*S +L +LN*S +PN*S)) *N*O + (N* (AN*S +L + LN*S

+ PN*S) (N* (AN*S +L +LN*S +PN*5)) *N *O + N*O))

which are not obviously the same.

The question appears at this point; how can these two derivatives be tested to
show that they are the same? Can this testing be done by the program so that
the operator does not have to monitor the operction of the program? Can we
guarantee that a machine will be formed with a minimum number of stotes?

Arother question arises from this work. Can the regular expression be
forced to generate a machine of a specific form? This machine would not necessarily
be a minimal state machine, but rather a machine with certain desired characteristics;
€. g., o machine that is easily implemented by a particular type of hardware.

It is hoped that by using this program as a tool that these questions can be

answered.

R-EXFP PROGRAM--KEADY
R=N*Z (N*Z I xN*Q@
Z=AN®S+L+LN*S+PN* 5@
EXECUTE

CHECK COPY ..
DNk CAN*S+L+LN*S+PN»*S) (N (AN S+L+ALN¥S+PN*S)) kN*@)

Dras

CDONX) CANKS+L+LN*S+PN*S) (N (AN*S+L+LN*S+PN#*S) Y :N*¢+ D¢ (AN
RSHL+NRSHPN.S)) (N (ANRS+L+LN*S+PN*kS)) %N*Q)

CDCCNI*) CANRSHL+LN*S+PN*S) (N* CANKS+L+LN*S+PN*5))kN*Q+DC(A
NXS+L+LN*S+PN®.S) (N* CANKS+L+LN*S+PN%S) IxN*Q)

CDCANI Y CNI R CANKSH+L AL NRS+PN%S) (N CAN*S+L+LN*S+PN*S)) *N#0 +
(DCAN*S)I+(DCLI+ (DCLN¥S)Y+D(P(NI*S)))) (N* CANKS+L+LN*S+PN* 5
) IkN*Q)

(DINI (NI R (ANRS+L+LN*S+PN%S) (N* (CANKS+L+LN*S+PN*5) I *N*Q+ (D
CAINI*SI+(DCLI+(DCLINI*SI+D(PICINI*S)) 3 (N* (AN®S+L+LN*S+PN
*S) IkN*QD)

C(DCNI (NI R (ANRS+L +LN*S+PN%S) (N (AN*S+L+LN*S+PN*S5)) kN*Q+ (D
CAY(NI®S+(DLI+ (DL (NI*RS+D(PY(NIRSI I (NKk CANRS+L+LN*S+PN
5))kN@)

CDINI(NIRCANRSHLILNXS+PNZS) (NR (NkSHL+LNKS+PN*S) I*N*Q+ (D

€AY (NI*kS+(DCLI+ (DCLY(NI*3+DCPICNI%RS))) (N¥k CANKS+L+LN*S+PN
*S) IkN*D)

DrAa/s=
(NIRS (NKk CANKS+L +LMNXkS+PN%S5)) %N*Q

Figure VI.1 The Derivative D/A/R
-52-

BIBLIOGRAPHY

BIBLIOGRAPHY

REFERENCES SIGHTED IN TEXT

Booth, T. L., Sequential Machines and Automata Theory, John Wiley and
Sons, New York, Chapter VI, pp. 214-243,19%7.

Brzozowski, J A., "Derivatives of Regular Expressions" , J. Assoc, Comp.
Mach., Vol. 11, pp. 481-494, October 1964,

Ghiron, H., "Rules to Maninulate Regular Expressions of Finite Automata",
IRE Trens. Electronic Computers, Vol. EC-11, pp. 574-575, August 1962,

ADDITIONAL REFERENCES

Arden, D. N., "Delayed Logic and Finite State Machines", Proc. AIEE
Second Annual Symposium on Switching Tircuit Theory and Logical Design,
Detroit, Michigan, pp. 133=151, October 1981,

Brzozowski, J. A., "A Survey of Regular Expressions and State Graphs for
Auvtemata" , IRE Trans. Electronic Computers, Vol. EC-11, pp. 324-335,
June 1962,

Brzozowski, J. A., and McCluskey, E. J., "Signal Flow Graph Techniques
for Sequential Circuit State Diagrams" , IFEE Trans, Electronic Computers,
Vol. EC-12, pp. 67-76, April 1963,

Elgot, C. C., and Rutledge, J. D., " Operations on Finite Automata",
Proc., AIEE Second Annual Symposium on Switching Circuit Theory and
Logical Design, Detroit, Michigan, October 1961,

Kleene, S. C., "Representation of Events in Nerve Nets and Finite Auto=~
mata®, Aufomata Studies, Ann. Math Studies, Princeton, New Jersey,
p. 122, 1956,

McNaoughton R., and Yamda, H., "Regular Expressions and State Graphs
for Automata" , IRE Trans. on Electronic Computers, Vol. EC-9, pp. 39-47,
March 1960.

APPENDIX

APPENDIX A
PROGRAM ALFHABET AND CUDING

The following list defines all of the characters that may be used to enter
regular expressions in the computer, their meaning, and coding, The ASCIi code

is the value that is received from the teletype or used to output on the tefetype.

The internal code is the value used to represent the characters in the program.

g

ST MY, D

Character ASC I Internal Code

———— ————

. A~C '01-'03 '0-*17 Literals Assigned
E-Q '05-'21 by Symbol table
S -Z '23-'32
O-1 '60-'61
('50 '20
) '51 '21
{ '33 '33 "NOT" delimiter
] '35 35
\ '34 134 Lambda
- ‘55 '25 g
D '04 '30 Derivative
R 122 not stored R-EXP
= '75 not stored
. '56 '26 “AND"
@ 100 137 End flag
/ '57 v27 Derivative delimiter
* '52 122 Star operator
NULL internal '36 NULL character
+ '53 '23 "OR"
-57-

APPENDIX B o |

LIST OF VARIABLES

The following list gives all of the variables used ire REXPRO, along with .

their location and a description of their meaning. All of these variables are !
: I '

stored in the direct reference portion of the SCC 650 memory.

APLUS 145 ‘ LA temporﬁry storage ' !

ATEMP : ‘45 ; ! ‘A’ temporary sforage
BC' : ‘44 Brackets counter

| CHRMAT 44 . Character match
DCT™ ‘44 : Deriv;ﬂive‘ counter

| DRSTRT '75 | Start o% derivative §

1 DPC : '44 Derivative pass counter '
ETAVAL 45 ETAvalue, n)
c l '43 Li:'le counter
- LEHP '66 | Level'end half point

LEMP ’ ‘67 © Level end mclamory‘ point

! LHP | : 164 . N Level start half point
LMP . 165 Level start memory.poinf
I;RHP ‘ l.62 : , Last read half point
LRMP ‘.63 Last readd memory Poinr
MESST '53 | Message address
MEW | '73 “ . Next available § storage location
PC o 143, | P;:zrenthesis counter
RESTRT I‘77 ! Stari of proéram
RHP 160 " Read half point
RMP | ' ‘61 | Read memory point

-59 -

RSTART
SYMS
SAl
SA2
SRP
TIN
THP
TMP
T2HP
T2MP
WHP
WMP
XPLUS

XTEMP

'74

'56
'50
' 51
52
'72
' 54
'55
' 56
‘57
'70
'71
'46

'47

Start of R-EXP &

Location in symbol table

¢ add one at end of break point
g add two at end of break point
g return address at end of break point
Type of input

Temporary half point

Temporary memory point

Sec. temporary half point

Sec. temporary memory point
Write half point

Write memory point

'X' temporary storage

'X! temproary storage

APPENDIX C

PROGRAM LOADING ORDER AND MAP

This list gives the order in which the various subroutines, and the mainline
program, for REXPRO are loaded in the memory, For those interested in studying
the operation of the subroutines the starting address of each of the subroutines is

given. These addresses are given as octal (base eight) numbers.

61-

ANORTT
BIN
BOUT
CONWRT
DERTST
ENDTST
LITTST
LLTST
NULTST
RLTST
STRTST
SYMF
CRLF
MESS
F1RD
SRONNL
SREAD

FNWRT

SREWRT

SWRITE

0100
0117
0140
0153
0211
0223
0235
0246
0265
0277
0316
0330
0353
0401
0666
0676
0705
0737
0747

0760

ALPHT [1022

READ] 1044
QUES 1074
SYMIN 1112
SYMSRH 1127
CONSYM 1153
FOUT 1200
DTITLE 1233
FSLVL 13046
F1SIM 1416
F25IM 1525
$35IM 1636
F4SIM 1724
FOPCK 1765
gCoPY 2040
FAOCK 2061
IMATCL 2175
SDIN 2317
$PBCK 2506
SBPSET 2616
SRTBP 2724 i
|
~$3- [’

SDRCPY 2761

SSUB 3003
FSTORE 3045
SBETAT 324)
SCTATT 3335
#DF2 3500
SDF7 3655
SDF6 3725
SDF4 3751
gDF38 4033
gDF1 4143
SDCLAS 4213
MATNIN 4246
DCONT 4542
MAINLINE 4704

ol

APPENDIX U

DESCHIPTION OF SELECTED SUBROUTINES

In this appendix a detailed description is given for the subroutines: FSLVL,
SBPSET, SRTBP, $DCLAS, $DF1, $DF2, §DF38, SDF4, $DF6, $DF7, SETATT,
and $BETAT. The first three subroutines are used to perform basic string manipulations,
The remainder are used to form the derivative of the regular expression. These
subroutines were selected to describe the basic operation of REXPRO without
getting involved in the numerous, but necessary, subroutines that perform second -
ary functions; e.g., the routines used for input/output.

These subroutines are described by means of a flowlist. The flowlist presents
the various steps involved in executing that routine, The symbols "A" and " X"
are used to represent the accumulator and index registers. The representations,
(LRMP)*, indicates an indirect operation; i.e., the value stored at the location
LRMP is used as a pointer to the desired location., The remaining terms in the
fiowlist are self-explanatory.

ZSLVL-(String search for level)- This subroutine is used to read one term of
a string and to give o relative classification of the level of the term. A term is
defined as a set of characters consisting of only the alpha characters and the star
operator, or any valid set of characters which are enclosed in a set of parentheses
or brackets, The level of a term indicates its ranking. Several terms that are
connected by the AND, the OR, or the concatenation operators are on the same
level, If these terms are enclosed in parenthesesa new term is formed which has «

65~

higher level than the individual terms. $SLVL gives a relative ranking of the level
by the way the subroutine returns to the calling program. A standard retuin’ is
executed if terms of the same level follow. A non-standard refurn is executed if
the term is followed by either u right parenthesis, right bracket, or an end flag;
i.e., no terms of the same level follow.

The search for a tern is started at the location given by RMP/RHP, This
location should be on or before the start of the term, Upon return §SLVL contains
the following information: the location of the start of the term is stored in LMP/
LHP, the end of the term is given by LEMP/LEHP, the location of the character
following the term is given by LRMP/LRHP, and “"A" contains the character follow-
ing the term.

Figure D, 1 shows several examples of strings and the resulting locations.
These locations are indicated by an arrow. The value of RMP/RHP before $SLVL
is called, is represented by an S; all of the other locations given are those obtained

after a return from $SLVL.

9

A standard return is a return to the location following the call statement. A
non=standard return is a return to the second location following the call state-
ment,

66~

Bl bt sl Bisutiioh

S LRMP/LRHP
+ ¥
(a) ~--A B Y C o4 .
t ?‘ t
LMP/LHP RMPARHP
LEMP/LEHP

1 Standard Return

) LRMP/LRHP
v ‘
(b) i S S Y < G
(' 4 4
: LMP/LHP l RMPAR HP
LEMPALEHP

Standord Return

S LRMP/LRH!
\ \
A B . C)y *» (- .) --

-~ (
¢ T 4
LMP/LHP RMPARHP

LEMP/LEHP
Standard Return

S LRMP/LRHP
\d \d
+

(d) O -t (A B L Ccyy oo

t t
LMP/LHP 7 RMP/R HP
LEMP/LE HP

Non-standard Return

Figure D,1 The Operation of $SLVL,

67~

SSLVL is often used to read all of the terms, in a string, which are on the

saome level, The set of operations needed to perform this is shown below.

— Call: $SLVL

Jump ——— Standard return
Jump -+ A Non=standard return
RMP < LRMP Backspace read
RHP « LRHP

L Jump Read next term
A Continue

An explanation is needed for the use of the read location backspacing.
Examining Figure D.la it is seen that RMP/RHP gives the location of the first
character of the following term so that 8SLVL can be called without modifying
the read address, However, in the example shown in Figure D.1c. RMP/RHP
gives the location of the second character in the following term, but LRMP/LRHP
gives the location of the first term. Thus the read address is backspaced before
calling §SLVL a second time.

An outline of the operation of FSLVL is given in Flowlist D.1.

68~

FLOWLIST D.1 $5LVL

Enter: FSLVL

PC «0 Clear counter
——» Read one cell
yes
I5: cell an alpha char. o A
no
15 cell = (' o [
PC « Term enclosed in
parenthesis
LMP <« LRMP Term start loc,
LHP <« LRHP
—3 Read one cell
no
I5: cell = v(v o v ___
PC « PC +
—~—— Jump
no J
IS cell =yt o oy <
PC «PC -
no
— S: ¢ = 0 Check for end of term
LEMP « |RMP %\j Possible end of term
LEHP « LEHP
Read next non~-NULL char. Check for followir 4 11

yes)
IS: char, = % _~]

Jump - B

no

LMP « IRMP « A

LHF <« LRHP
LEMP <« LRMP

LEHP « LRHP

Read next non=-NULL char, w—

IS: char = alpha or '*!

Continue « B

IS: char = ') or ']' or

Non=standard return

Standard return

yes

I@,l

-70 -

Term consists of
alpha char.

Assume end of term

End of term has been
found and following
character has been
read

No similar level
follows

$BPSET-(String break point set)~ This routine is used to set a break point in
@ string. The purpose of the break point is used to insert characters in a string.

The break point is set after the last character which was read before calling
FBPSET. This character appears in the accumulator andmay be changed by modify -
ing " A" before the call. The index register contains the flag, if any, and may rot
be changed. The first operation of $BPSET consists of rewriting this character in
the string. The following 1, 2, or 3 characters are read and stored in SA1 and
SA2, A flag is added to either SAl or SA2 for use with SRTBP to set the return
breakpoint. SRP is used to store the string return point. This is an address indi-
cating where the string is fo be continued.

After the characters have been stored a jump to the location given by NEW
is added. Figure D.2 shows the memory, before and after the call, for several
different types of sirings. In these examples the break is to be made after the
character 'A' and NEW is equal to '6000.

After $BPSET is called the characters to be inserted in the string are stored
starting at the location given by NEW/0. This can be accomplished by using
FCOPY or SNWRT. ZRTBP is then cailed to insert the charactars which were re -
moved by $BPSET and then sets a return jump to the location given by SRP.

An outline of the operation $BPSET is shown in Flowlist D. 2.

-71 -

Before ' 5000 Al B
C D
After ' 5000 A | F-N '
' 6000 !
SAl = B
SA2 = C, fFd
SRP = '5002
(a)
Before ' 5000 A :
B C
After ' 5000 F-A
' 6000
SAl = NULL
SA2 = B, FC
SRP = '5002
(b)
Before ' 5000 A | F-B
.
' 5500
After ' 5000 A | F-N
16000
SAl = F-B
SA2 = 0
SRP = '5500
(<)

Figure D.2 Examples of the Operation of SPBSET.
-72-

CAPLUS « NULL

FLOWLIST D.2 gBpser

Enter: $BPSET

APLUS < man l
XPLUS « nxo
SA2 < 0 . !

yes

IS: LRHP = g \j
"A" « APLUS + flag

Store in «cell ot loc, given

by LRMP /LRHP

Jump . & A

A"« APLUS -]

" Store in cell at loc. given

yes

by LRMP/LRHP' '

Rqu 2nd cell
APLUS « nav
XPLUS <« "xu

- Store F-NULL qt loc, given

by LRMP/LRHP
IS: XPLUS = '40 « A
Jump & C

SAT « APLUS + XPLUS
LRMP « LRMP + |

Jump & 8

Character last read is re -
placed with modified value
and break point is set in
2hd cell

Character last read is re-
placed with modified value
in st cell

This location is in 2nd cell
]

Did last character read
have flag

SAT contains only character

+ flag removed from string
RMP contains return loc.

NEW is stored in this loc,

Continve = C

SAl « APLUS

Read one character
Exchange halves of " A"
APLUS « "AM

Read next character -

"All - IIAII + APLUS

yes

IS: "A" = NULL, NULL —
SA2 P IIAII + ﬂag

Jump - B

SAl <« SAl + flag w——0 |
Store NEW at (LRMP)* B
SRP « RMP

Return

~74-

First Character or NULL
removed from §

"A" now contains both
characters, less flag, stored

in loc, following break point,
" X" contains flag.

Are both characters NULL's

Set return flag

Set return flag
Set break address

Set return address

SRTBP-(string return breakpoint)=This subroutine is used to return the break -
point which was set by FBPSET. SRTBP adds the character which was stored in SA1
and then adds the two characters stored in SA2. The return address is stored in the
string and the value of NEW is updated. The read address is set to the string loca-
tion containing the character which was passed via SAI,

It should be noted that before calling SRTBP, WMP/WHP contains the loca~-
tion of the first cell following the inserted string. This address resulted from the
routines which inserted the string; SCOPY, SWRITE, or FNWRT. WMP/WHP may
not be modified before the call to SRTBP.

SRTBP checks the data that was passed via SAT and SA2 to see if they contain
any information, SAI contains only one character and this character will contain
information only if it does not contain o NULL without a flag. 1f SAZ contains any
information it will contain at least a flag, otherwise, SA2 will be zero and a flag

is added to SAl.

The reader should refer to Flowlist D.3 fc outline of the operation of this

routine,

-75-

FLOWLIST D.3 $RTBP

Enter: SRTBP
RMP <« WMP
RHP « WHP

no

IS: WHP = 0

yes
IS: SAl = '36 4+ A

Write NULL in 13t cell

Write SAl in 2nd cell «—

— 15:5A2 =0 « A

Store SA2 ut (WMP)*

WMP -« WMP +

— Store SRP at (WMP)*

NEW <« WMP + 1

Return

-76 =

Set read loc, to 1st string
add loc.

Check loc. of next cell

Next cell is in 1st half
of word, Check SA1 for
NULL-without o flag

SA1l is to be written. Write
NULL to fill 1st cell

Write SAT in 2nd, even if

it does not contain informa-
tion, to fill out word

SA2 contains information,
Store both characters at
once

Store return loc.

Update NEW

FOCLAS ~(string derivative classification)~This subroutine is called by DCONT

to classify the substrings, of the work string, as given below. Afier classitying

SDCLAS calls the appropriate subroutine which does the actual expansion. The

different forms of the substrings are listed below with their expanded form on the

right.
D.1
D.2a
D.2b
D.3
D.4
D.5
D.6

D.7a

D.7

D.8

D(®*) = D &>

D(E)E2) = © @) E2 + DE2)nE) = A
D (1) §2)) = D F1) §2, n(§1) = #

D(E1 + §2) = (D (1) + D (¥2))

D (%) = [D®)

-

It

D((®) =D

D(A*. ...) = D((A)* ...)
or
D{A.....)=D(A....)

D(1.82 = (D) .D(82)), whare 'A' is one or more literals

and '$" represents any subsiring.

IDCLAS starts at the left of the string searches for the 'D' and saves its loca-

tion in THP/TMP. The following ‘(' is then found and its location stored in T2HP/

T2MP,

This parenthesis forms the start of a level, The number and type of the terms

* The first eight forms are numberad according to the subroutines which use these
forms, Due to a reorganization of the subroutines there is no form D. 35,

«]]-

is tested to find the chara:teristics of the substring. Figure D.3 shows the different
characteristics for the different forms and also the set of pointers which gives the
location of parts of the substring. For substrings of the foris 2 or 7 the final testing
needed to indicate the proper expansion is contained in the individual expansion
routines. It should be noted that forms 3 and 8 are identical except for the connec-
tive operator and are expanded by the same subroutine,

After the substring is classified the proper expansion subroutine is called.
These subroutines are titled according to the form they handle; e.g., SDF1 expands
substring of form 1. If any changes were made in the string by the expansion sub-
routines this is indicated by incrementing DPC. When these subroutines return to
S§DCLAS the read address (RHP/RMP) is left pointing to one of the characters in that
portion of the string which was modified. $DCLAS then searches for the next char -
acter 'D' and the process is repeated.

SDCLAS returns to the calling routine when it encounters the end flag. The
calling routine then tests to see if any changes were made in the string. If changes
were made then $DCLAS is called again to see if any new forms were generated during
the last expansion, This process is repeated until there is a pass with no changes.

The reader is referred to Flowlist D.4 for an outline of this routine.

~78-

+sBu4SaANG 3O $D145113§20I0YD g°q anbiy

(
dWYT/dH¥ 4507
dW1/dH1 WDy §S| 4O 13420I0YD 5414
dW3T/dHI1 ([%
SE3INIOd dWZL/dHZL |))))))
451 51 51 5] 5] 5]
dWi/dHl | Qa a a a a a
[]
h
Wi} JO JOYI0I0YD 4siLd VJ
LBy JO 33§DPIDYD ISP A [.
ucyisod
SOILSIHILOVEVH D Jopiadgy YO/ANY -pixnf
dA1O9UUDD)
alow alow
swiis) O JaquNN 1 1 1 07 07 1
ONIY1S9NS 40 WEO0A L 9 14 8/t Z l

FLOWLIST D.4 $DCLAS

Enter: SCLAS
RHP/RMP « O/DRSTRT

Read a character « A

no
~— IS¢ Char, = '@ !
Return
no
= 15: Char. = 'D' & A

THP/TMP <« LRHP/LRMP
Find *(*
Save loc. in T2HP/T2MP

Read a term
yes
IS: Term last in level - B
no -
r— IS: Term followed by '+' or ',

Call: $DF38
Jump - A
= Read next term

no
F— IS: Term last in level

Jump
‘= Call: $DF2

Jump A

Continued on following page

Set string starting address

End of one pass

Save loc, of 'D!

8SLVL

Forms 2, 3or 8

Form 3 or 8

Form 2

Centinued & B
no
— I5: Last char. = ')!

, Call: SDF6

Jump + A
no

= {S: Last char.

4

Call: 3DI4

Jump + A
yes
—— IS: Last char, = '*!

Call: DF7 «

Jump - A
no

—» IS: First Char, = '(* -

Call: $DFI

Jump > A

Loc. of end character given

by LEHP/LEMP

Form 6

Form 4

Form 7

Loc. of first character given

by LHP/LMP

Form 1

SDF1-(string expansion form 1)-This subroutine is called by JOCLAS to expand
strings of the form 'D (($)*)' to strings of the form 'D (8) (3)*'.

An outline of this routine is shown in Flowlist D.5. The reader should note
that this roufine (and some of the other expansion routines) uses the end flag (' @ ')
not only to indicate the end of a string, but that it is also used to indicate the end

of the substring that is being tested or copied. In the flowiist the comments column

is used to represent the string during the different parts of the expansion process.

FLOWLIST D.5 $DFI

Entar: 3DFI
, DPC « DPC + 1 A change is made in string

RHP/RMP <« LHP/LMP

Read term Via gSLVL
Replace following char. with '@ * D ((¥)*@

Set breakpoint Via 3BPSET
RHPRMP LHP/LMP Start of term
Copy term to flag D{@®)@ (8~
Return breakpoint Via RTBP
RHP/RMP < LEHP/LEMP End of term
Read o character Reads '*!
Replace with NULL D((8) @ ()*
Find flug

Replace with ') D(®)(8)*
Return

BDF2-(string expansion form2)-This subroutine is called by FDCLAS to perform

the expansion given below,

D 81) ¢2), n(81) = #
(D (1) (§2) + D (82), n (1) = A

DB (E)) =

It should be remembered from the description of $DCLAS that LRHP/LRMP
points to the last right parenthesis in this substring. This fact is used to set a flag
which indicates the end of the second terin. A flag is also placed at the end of
the first term to indicate its end, Thus when SETATT is called the start of the first
term is given by LHP/LMP and it ends when the end flag is found.,

SETATT is the subioutine used to test a substring to see if it contains lambda;
i.e., ittestsifn (8) = A. The resultis returned via the variable ETAVAL. ETAVAL
is set to one if the substring contains lambda; otherwise, it is set to zero.

The expansion of the form 2 substring is shown in Flowlist D.6,

-84

FLOWLIST D.6 3DF2

Enter: §DF2
DPC <« DPC +)
Repiace last ')" with ' @ ' D ((81) (52) @
RHP/RMP < T2HP/T2MP
Read first ' ("
Read following term
Store following character in XTEMP
Store location in T2HP/T2MP
Replace with * @ D@ g2)«
Test n (31) Via SETATT
no
IS: ETAVAL = 0 » B
RHP/RMP « T2HP/T2MP Does not contain lambda
Replace flag with ') D ((31) (32)
Set breakpoint
Add character stored in XTEMP D (1)) (8@
Return breakpoint
Find end flag
Replace with NULL D ((81)) (82)

Return

Continued on following page.

Contine « B

RHP/RMP <« T2HP/T2MP
Replace flag with ')

Set breakpoint

Add character stored in XTEMP
Return breakpoint

Find end fiag

Set breakpoint

Add 'D(*

RHP/RMP « T2HP/T2MP

Copy second term to flag

Add "))

Return breakpoint

Find flag

Replace with '+!
RHP/RMP < THP/TMP
Read character
Replace with ' (!

Set breckpoint

Add 'D'

Return breakpoint

Return

86~

Contains lambda

D ((81)) F2)@

D (1)) (§2) e D(

Start of second term

Via gCOPY
D((81)) (82 @D ((52)

D{EN)E2 @D ((3)))

D(&1) (82) + D ((52)))

Address of first 'D!

(B (EN) (82) + D ((52)))

g9 F38-(strin§ expansion forms 3 and 8)-§DF38 is called by SDCLAS to expand

the strings given below,
1

(l

D(F1 + 82 = OFE) + 0N

D . 92 = (0@ . D)

The expansion of these two forms are identical except for the operator which connects
the two terms, thus 36F38 can perform both expansions. In fact D738 does nol
test for the Ioperafo:r, but finds it and stores it unltil needed without deter sining
 the operator, The example striné shown in Flowlist D,7 arbitrarily uses the operaior
i

The redder should note that in thi; expansion (and in some of the other ex-
pansion :forms) that the string is expanded from righflfo left. This procedure is
dictated by the subroutine B’BPSFT which is used to see the string breakpoint. When
FBPSET is called several characters in the cells, following the location where the

breakpoint isset, are moved. Thus, this character will no longer be stored in the cells

whose locations were given by THP/TMP, T2HP/T2MP, etc.

-87-

FLOWLIST D.7 3DF38

Enter: SDF38 D (81 + %2

DPC « DPC + |

RHP/RMP = T2HP/T2MP Location of first '(*
Read term Finds end ')!
RHP/RMP <« LEHP/LEMP Location of end ')"

Read a character

Set breakpoint

Add ')

Return breakpoint D 31 +52))

RHP/RMP <+ T2HP/T2MP

Read one character Reads ' (*
Read following term Find ‘+' or '.*
l no
IS: Following character
= l+l or l'l

Save character in XTEMP

Set breakpoint

Replace operctor with ') D (81)32))
Add character stored in XTEMP D (g1)+82))
Add 'D(" D (81)+D (32))

Return breakpoint

e AT

T

RHP/RMP « THP/TMP
Read o character

Set breckpoint

Replace character with ("
Add 'D!*

Return breakpoint

Return

-89~

Reads 'D!

(1) +D(82))

(D (81)+D (32))

$DF4-(string expansion form 4)-§DF4 is called by FDCLAS to expand the

substring given below to the form on the right.

D ({81) = [D(®)

The operation of this expansion subroutine is given in Flowlist D.8

This routine is based on the use of ISLVL and thus gives the reader a chance
to study the operation of FSLVL without o lot of other operations being performed.
When $DF4 is called the location of the start of the inner term { the *[F ') is
given by LHP/LMP. This address is transferred to the read address (RHP/RMP)
and the term is read via FSLVL. $SLVL returns with the address of the first
character (the '[') in LHP/LMP, the address of the last character (the '] ') in

LEHP/LEMP, and the address of the following character (the ')*) in LRHP/LRMP.

R e~ -

=%
=
F

~

FLOWLIST D.8 8DF4

Enter: $DF4 D([8])
DPC « DPC + 1

RHP/RMP < LHP/LMP

Read one term Via gSLVL
Replace following character with '] D ((8]]
RHP/RMP « LEHP/LEMP

Read character Reads ‘|
Replace with ')* D (18)]
RHP/RMP <« LHP/LMP

Read character Reads ' ['
Replace with *(* D((N]
RHP/RMP <« T2HP/T2MP

Read character Reads ' (*
Replace with 'D* DD (31

RHP/RMP < THP/TMP

Read character Reads 'D'
Replace with '[! [D (%)
Return

51

SDF6-(string expansion form é)-This subroutine is used to expand the

substring given below to the form on the right.

D(®) =D

When SDF6 is called the location of the inner left parenthesis is given

by LHP/LMP, while the location of the inner right parenthesis is given by

LEHP/LEMP. This routine replaces the inner parenthesis with NULL's.

SDF7-(string expansion form 7)=This routine is used to expand the form

given below.

D (A*. . . .A) = D ((A)*. . . .A), where A is any member of
the set of alpha characters (the literals, lambda, and phi). If this form does
not exist, no change is made in the string. The purpose of this expansion is to
prepare the string for processing by $DF2 and 3D F1 on the fuilowing passes.

During the last pass through SDCLAS all of the substrings are of the form
'D (A. . . .A)' thus only 3DF7 is called to expand the substrings. As §DF7
makes no change in these substrings DPC is not incremented and its value re-
mains zero. A DPC of zero is used to indicate to DCONT that the last pass has

been made.

The operation of $DF7 is shown in Flowlist D.9.

FLOWLIST D.9 ZDF7

Enter: SDF7

RHP/RMP « LHP/LMP

Read character e
no

—— 1S: It an alpha character

Store location at LHP/LMP

Jump]

yes

‘—a [S: Character = '+ _

Return

DPC + DCP + | w¢—nrl
RHP/RMP <« LHP/LMP
Read character

Store character in XTEMP
Set breakpoint

Replace character with *(*
Add character stored in XTEMP
Add ')

Return breakpoint

Return

Term start

Make no changes

D (A*. . .A)

Reads alpha character

D((*...A
D ((A*. . .A)

D ((A)*. . .A)

-94 -

SETATT ~(string eta function test)~FETATT is called by $DF2 to calculate the
eta function of a substring. The starting address of this string is passed in LHP/LMP
and the end is indicated by the end flag. The eta function is used to determine if
a string contains lambda, thus SETATT is also called by DCONT to test the final
string; giving the operator the information needed to determine the output of the
state associated with this string,

The following equation defines the eta function.

A ifred

g,ifr ¥

From this definition the following rules can be obtained.

D.9 n (L) = @&, where L is any literal

D10 n(A) = A

D.11 n@ =¢

D.12 n(8*) = A, where $is any substring

D13 n(ENE2) = n(g).n (32

D.14 n(f (g1, §2)) = f(n(81), n (82)), where fis any Boolean function.

From these rules we can see that the eta function can be calculated as o
Boolean function if the concatenation operator is treated as the Boolean AND op-
erator. This procedure was used in the design of SETATT. The resulting value of
the eta function was encoded as the Boolean variable ETAVAL with a one representing

the condition where n = A,

The subroutine SETATT is used to implement rules 5 and 6, while 3BETAT is
95~

called to implement the first four rules. To understand the logic of SETATT it is

necessary fo introduce the following Boolean identities.

C.15 1+ X =1
D.16 0+ X=X
D.17 1, X=X

D.18 0 . X = 0, where X is either Tor 0,
These identities are used to determine if a given term of the substring needs to be
tested and how the results are combined. To perform this determination SETATT

was broken down info four modes or sub-~sections.,

AND -Lambda, OR=Phi Mode. This mode is used to implement rules D.16

and D.17. These rules state that if the previous term had o value of one and was
followed by the AND operator (or concatenation) or if the previous term had a
value of zero and followed by the OR operator then the results are determined
solely by the present term. When SETATT is called the results are determined solely
by the term to be tested; thus JETATT starts in this mode. In this mode the term
is read by FSLVL to obtain the starting and end addresses needed by SBETAT,

After SBETAT s called it can return one of three values. |f 3BETAT executes
a standard return then ETAVAL will either be one or zero depending on whether the
term tested contained, or did not contain, lambda. Under this condition SETATT
goes to the NEXT mode which determines the next mode of the subroutine. On the
other hand, a non-standard return is executed by $BETAT to indicate that the term
was too complicated-ro evaluate, To evaluate this terin it is necessary to simolify

the term by " going down in level" .

94~

OR-Lambda Mode. This mode is used to implement equation D,15. This.

equation states that the results are known and that there is no need to test the
following terms on the same level. In this mode each term is read until the end of
the level is reached, at which time control goes to the NEXT mode.

AND -Phi Mode. Inthismode,an implementation of equation D.18, all terms

are read and passed over until either the end of level is reached, or the OR oper-
ator is found. When the end of the level is reached control goes to the NEXT mode.
If the OR operator is found the control will go to the OR~Phi mode.

NEXT Mode. This mode is used to test for the end of a string, find the next
mode, and to implement the operation of negation. When this section is entered
the character following the last tevel has been read and it is stored in the accum-
ulator for testing.

If this character is the end flag then the end of the substring has been found
and SETATT returns with the current value of ETAVAL. If a right bracket is found
(this implies that the corresponding left bracket was passed over in the process of
"going down in level') the present value of ETAVAL is negated. The finding of
the OR operator causes control to go to the OR=~Phi or the OR=-Lambda mode de -
pending on whether ETAVAL equals zero or one. The finding of the AND operator,
or the concatenation operator, tauses control to go to either an AND-Phi or the
AND -Lambda mode depending on the value ETAVAL. The finding of either the OR,
AND, or concatenation operators indicate that a new term follows, Thus control
is passed to the appropriate mode to evaluate this term,

If control has not yet branched to another mode then the character (by
97~

elimination we can see that the character is either the ')’ or the ' |') is.ignored
and the next character is read. Control remains in the NEXT mode and this

process is repeated . , '

The operation of SETATT is shown in Flowlist D. 10.

FLOWLIST D.10 SETATT

Enter: ZETATT
RHP/RMP <« LHP/LMP

Read a term « A

Call: SBETAT | A
yes

IS: Return standard
RHP/RMP <« LHP/LMP
Read first character of term

Jump -+ A

RHP/RMP + LHP/A'MP <—]

Read the term
Jumg -> E

—»Read aterm <« C
no

—— IS: Term last in level

Jump &~ B
Read a term 9

yes
IS: Term last in level - B

no :
— I5: Term followed by '+'

Jump .+ A

Continued on following page.

AND -Lambda, OR-Phi
Mode. Find address for
JBETAT

No decision

Go down in level

Finds character following
term

Find next mode

OR -Lambda Mode

Find next mode

AND -Phi Mode

Find next mode

OR -Phi Mode

Continue 9,
no
—— 1IS: Term followed by '@ *

Return
N
IS: Term followed by ']
ETAVAL <« ~ ETAVAL
no
—- 1S: Term followed by '+'
yes
IS: ETAVAL = 1 & ¢
Jump » A
yes

> IS: Term followedby
Concatenation
yes
IS: Term followed by *.°

Read next character

Jump - B

Continue -

yes

IS: ETAVAL = 1 o

1>

Jump - _l_)

-100~

Finds next mode

Done

OR -Lambda mode
OR~Phi mode

A, '[', or alpha
character

AND ~Lambda mode

AND -Phi mode

FBETAT ~(Basic eta function)~This subroutine is called by SETATT to implement
the first five rules of the eta function (as given in the previous section of SETATT).
The start of the term fo be tested is passed via LHP/LMP while the end of the term
is given by LEHP/LEMP,

If the term i< enclosed in parentheses (or brackets) it will contain lambda if
the star operator follows the term (Rule D.12). This is indicated by executing a
standard return with ETAVAL equal to one. O the other hand, if the term is not
followed by the star operator then lower level term(s) which form this term have to
be tested to determine the results. This is indicated by executing a non=standard
return to SETATT which finds these lower level term(s).

If the term is not enclosed in parentheses then it consists of oaly alpha characters
and the star operator (as given by the definition of "term" in the section on the sub-
routine 8SLVL). From the first five rules of the eta function we can see the term

contains lambda if, and only if, it consists of the following.

D.19 '\

D.20 'a

D.21 "L*', where L is any one literal

D.22 ‘g

D.23 Or any of the above terms concatenated.

SBETAT tests the terms for the above properties and executes a standaord re-
turn when the end of the term is found. At this time ETAVAL will be equal to one

if the term had the above properties, otherwise ETAVAL will be equal to zero.

Flowlist D.11 shows the operation of SBETAT,
-101-

FLOWLIST D.11 SBETAT

Enter: SBETAT
ETAVAL -« 0
RHP/RMP <« LHP/LMP
Read character

IS: Character =

yes
IS: Character an alpha cher,

I(l or l[l

Return
yes
iS: Character = 'N'
Read next character
no
—— IS: Character = '*!
ETAVAL <« 1

Read next character

Jump > A

L—» ETAVAL -« 0O
Return

ETAVAL =« | «

yes
o

L

Read next character
no
— IS: Character = '*!

Read next character

L Jump « A

-—

Continued on following page.

B

A

-102-

Address of st character
of term

Term consists of alpha char.
and ' *!

End of term

A literal or phi must be
followed by a '*'

Does not contain A

A 'N! may, or may notbe
followed by ' **

Continuad « A

' RHP/RMP « LEHP/LEMP

Read character

no
~—— IS: Character = '*!

ETAVAL « 0

Return

—» Non=standard return

-103~

Termisenclosed in paren-
theses or brackets

Reads last character of
term

Contains lambda

No decision made

IMATCL~(string match and clear)~This subroutine is called by DCONT to
perform the operation of taking the derivative and simplifying the string. The ;
final derivative operation is defined as,

- - = 1A - - if =
D/AJAA, - - - A) (8, == =A). A = A

g, iFA # A]

SMATCL performs the above operation by comparing the derivative name
character (passed via CHRMAT) with the first character in the term enclosed by
the characters 'D(' and by ')'. During this operation these enclosing characters
are removed.

When the end flag is found the operation halts and four subroutines (315IM,
F25IM, 3SIM, and $4SIM) are called to simplify the string. Simplification is an
iterative process similar to the expansion process performed by $DCLAS, In other
words multiple passes are made through the simplification routines until a poss is
found during which no changes were made, The number of changes made are tallied
in the variable DPC, [t should be noted that the read address is set to point to the
start of the string before calling, rather than within the subroutines.

The operation of MATCL is shown in Flowlist D, 12,

-104-~

FLOWLIST D.12 gMATCL

Enter: SMATCL
RHP/RMP <« O/DRSTRT Starting address
Read character « A

no

—— IS: Character = * @ !

RHP/RMP + O/DRSTRT ~e—

Simplify string Via g1SIM, 3251IM,
F3SIM, and $4SIM
no
. IS: DPC = 0 Any changes made ?
. Return
no
“—»15: Character = 'D!' - A Find next 'D!'
Replace 'D* with NULL
Read next character Reads ' (*
Replace with NULL
Read next character Reads first alpha character
no
IS: Character = CHRMAT - E
Replace with *A! A match
' Find next *)*
Replace with NULL
Jump & A Find next term

-105-

Continve <« B

Replace character with @
Read next character -
yes
— 1S: Character = ')

Replace with NULL

Jump

—»~ Replace with NULL

Jump » A

-106-

No match

Find next term

