
AD

Research and Development Technical Report

ECOM-0084-F2
0 -

A PROGRAM TO TAKE THE
SDERIVATIVE OF REGULAR EXPRESSIONS

TECHNICAL REPORT EER 16-7

By

• " ~William Hartmann, M.S. ,;

i ~ ~~~FEBRUARY 1972 ,, • - \\

i ~ ~~~DISTRIBUTION STATEMENT .•••••% ,

S~Approved for public release:/

S~Distribution unlimited.1

ERCM

it0

UNITED STATES ARMY ELECTRONICS COMMAND - FORT MONMOUTH, N.J.

CONTRACT DAAB07-68-C-0084
Avionics Research Group
Department of Electrical Engineering

Ohio University
Athens, Ohio 45701 R.., d,.d.. bY.

NATIONAL TECH'NICAL
INFORMATION SERVICE

FEBRUARY, V.21 972

•j011 10WWM Is 10TION

!,y

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorizud documents.

The citation of trade names and names of manufacturers in
this report *i not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.

Avionics Research Group UNCLASSIFIED
Department of Electrical Engineering T. C-"oU'°

,OP1hio Un.Lyversit s. Oh ______0_1

• A Program to Take the Derivative of Regular Expressions

, ., OL . P I'1 /1 NOT Ia (f11'po Iu .Pl t I "d I ll, i Ii,,, d. I#.J)

C. AT I ts~~(.rr r.Id,~1J. &,iii mi. last - -!
*, William Hartmann

* *
;G. 0IPk r)A T 7a 7.0.TOT L NJ. ON' PAGIS .N.O Ii*S-

February 1972 --- 112 9
-r., -cumirt'-ia"T E5 4 rAIT NO. O I.1-INA rF..> O p1`(MkfPll)

DAA B07-68-C-0084
A ABoP 7. -CIII84 Technical Report EER 16-7

O- EC aM 00,94- F2

(u.,J O)I•T(IUUVION ITATI•MNT

.: Approved for Public Release; Distribution Unlimited
1,11. 5UPJ L:•.%,4rH'fA1Y W YII :% N,.T h12. SPONIONSO'ING MILITA;IY ACITIVITY

Ro US Army Electronics Command
ITwo Reports required under Contract ATTN: AMSEL-VL-N
" M-0084-Fl and F2 Fort Monmouth, New Jersey 07703

In analyzing a finite state, sequential machine the designer will often use a flowgraph or
Flow-chart to describe the internal characteristics of the machine. From these characteristics
he can obtain a model representing the external performance of the machine. By the external
per ormance of the machine we are rederring to the input, output characteristics; i. e., for
a given set of input signals what is the output?

For simplicity we-wil-only consider machines with two outputs, a 1 or a 0. Thus, the
"i nputs may be divided into two classes, those which produce a 1 output (accepted or desired

inputs) and 'the remainder which produce a 0 output (the rejected inputs). The regular expression
provides a formal method for representing all of the possible inputs which are accepted.

While the regular expression is a powerful tool its use-has been limited by the overwhelming
.amount of work needed to obtain the sequential machine. llis paper describes a program which
was written to find the derivatives of the regular expression. The program was written for use

Swith the SCC 650 digital computer of the Electrical Engineeri -Department, Ohio University.
This program is called REXPRO for Regular EXpression PROcesso

.. , ., -107- UNCIASSIFIED
Sbust CI '.&a(l m I Ic.I 4 tsI II N1

K f-o L.! A t.•JI 13 Lb K C

IjI. Ol YrC tiI HJ L E .. I

Computer Science
Programming
(Program for Derivative of Regular Expressions) I

I

,.I

I,
-1(1- UNLASSFIE

IK ECOM-0084-F2 Reports Control Symbol

February 1972 OSD-1366

A PROGRAM TO TAKE THE

DERIVATIVE OF REGULAR EXPRESSIONS

TECHNICAL REPORT EER 16-7

Contract No, DAAB07-68-C-0084

DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited.

Prepared by

William Hartmann, M. S.

Avionics Research Group
Department of Electrical Engineering

Ohio University
Athens, Ohio 45701

For

U. S. ARMY ELECTRONICS COMMAND, FORT MONMOUTH, N. J.

TABLE OF CONTENTS

C HAPTER
PAGE

I INTRODUCTION

II THE REGULAR EXPRESSION
3

The Derivative Concept
6

Examples Using the Regular Expression 9
III STRING PROCESSING

22

IV USING THE COMPUTER TO FORM THEDERIVATIVE
29

Expanding 'the Derivative
30

Calculating the Eta Function
35

V REXPRO OPERATION
39

Memory Organization
39

Program Execution
42

VI C ONC LL)S I ONS
50

BI BLIOGRAPHY 53

APPENDIX A Program Alphabet and Coding
56

APPENDIX B List of Variables
58

APPENDIX C Program Loading Order and Map 61
APPENDIX D Description of Selected Subroutines

65

LIST OF FIGURES

FIGURE
PAGE

11.1 An Example of a Finite State Machine 5
11.2 The Use of• and 0'

5
11.3 Derivatives of R = (N + NF + IFF)* I1
11.4 Flow-graph for Memory Control System 13
11.5 Derivatives of R = N*Z (N*Z)*N*0 16
11.6 Flow-graph for Machine to Find the Eta

Function
20

111.1 The Use of the NULL Character
26

111.2 An Example of the Use of the Jump-Flag 28
V. I Memory Allocations

40
V. 2 Flow-graph of Program Execution 43

Vi .1 The Derivative D/A/R
52

D.1 The Operation of $'SLVL
67

D. 2 Examples of the Ope,'ation of %'PBSET 72
D.3 Characteristics of Substring,•

79

ii

CHAPTER I

INTRODUCT'ON

In analyzing a finite state, sequential machine the designer will often use

a flow-graph or flow--chart to describe the internal characteristics of the machine.

From these characteristics he can obtain a model representing the external per-

formance of the machine. By the external performance of the machine we are

referring to the input, output characteristics; i.e., for a given set of input signals

what is the output?

For simplicity we will only consider machines wth two outputs, a 1 or a 0.

Thus, the inputs may be divided into two classes, those which produce a 1 output

(accepted or desired inputs) and the remainder which produce a 0 output (the

rejected inputs). The regular expression provides a formal method for represent-

ing all of the possible inputs which are accepted.

The designer is often faced with the inverse problem of trying to design a

machine to accept the set of desired inputs and to reject all others. If the desired

inputs are represented as a regular expression the designer can obtain the internal

characteristics, of the machine, from the derivative of the regular expression.

While the regular expression is a powerful tool its use has been limited by

the overwhelming amount of work needed to obtain the sequential machine. This

paper describes a program which was written to find the deri,-0tf'-- of the regular

expression. The program was written for use with the SCC 650 digital computer

oF the Electrical Engineering Department, Ohio University. This program is called

.-1

REXPRO for Regular EXpression PROcessor. While RýXPRO will not perform all of

the operations needed to design a machine it does do the "dirty work" associated

with the design.

Chapter II defines the regular expression and its derivative for the reader who

is not familiar with this technique. Several examples using the regular expression

are presented in this chapter. Chapter III introduces the concepts of string pro-

cessing; a method by which the computer is used to operate on non-numerical data

such as the regular expression. Chapter IV introduces the methods used in REXPRO

for identifying the form of the regular expression and which rule should be used to

form the derivative. Chapter V presentsan outline of REXPRO and describes its

use.

-2-

CHAPTER II

THE REGULAR EXPRESSION

The finite state, sequential machine is a machine with a finite number of

states that the machine can be in, and the machine can be in one and only one

state at any given time. An output is associated with each of the states. This is

the description of the "Moore" machine. This type of machine will be used

exclusively in this paper, but the results can be modified to include other forms.

The inputs to the machine consist of a set of characters, or symbols, which

ýare dalled literals. When a given input is s~en the machine changcs from the

present state to some new state. The new state is determined by the present state

and the present input. This is shown in Figure I1.1.

Irn this example the machine is initially in state qI and has an output of 0.

If the input symbol is an 'A' then the machine will go to state q2 and produce a

1 output. If a 'B' is seen the machine will go to state q3 and produce a zero

output.

The machine shown in Figure I1.1 may also be described by the sequence,

or string, of characters which will take the machine from a starting state to a

state which will produce a 1. One of the sequences is the string 'A'. The

symbol 'B' will take the machine to state q3 and then a second 'B' will take the

The literals 'A' and 'B' are not to be confused with the letter of the alphabet.
They are the names given to two of the possible-input symbols; e.g., they may
represent the polarity of a voltage.

-3-

machine from stale q3 to state q2 so that the string ' BB' is another sequence which

will produce a 1 output. Continuing we find the strings: 'A' , 'BB', 'BAA',

'BABBA' . 'BABBBA', etc.

The regular set consists of the set of all of the possible input sequences vhich

will produce a 1 output. For this example we obtain,

S = (A, BB, BAA, BABA, BABBA, BABBBA, etc.)

The regular expression is a finite function which represents all of the

sequences contained in the regular set. The regular expression is formed by r3cur-

sively using the Boolean operators (AND, OR, and NOT), the concatenatiorn

operator, and the star operator. For this example the regular expression,

R = A+BB+BAB*A

is obtained. The star operator is defined as,

A* -= X-A+AA+AAA+ +

where the lambda (X) represents the null string, or string of zero length. Another

character which may appear in the regular expression is "0", representing the null

set.

Throughout this paper the AND operator is denoted by the "." the OR by the
"+1, , the concatenation operator by juxtaposition, and the NOT operator by

brackets; e.g., [A] = (A).
-4-

A

Figure II. ! An Example of a Finite State Machine

Start

q~2 I//

Start

A II, q 1 e / B

()R
()R

Figure 11. 2 The Use of X and$

Figure 11. 2a shows the meaning of the lan,bda. In this example the initial

state already has the desired output (1) so a sequence of zero length is needed to

go from the initial state to the desired slate. In Figure 11.2b there is no way to

go from the initial state to a state which will produce a 1 output. Thus, the

regular expression, R =.

The Derivative Concept

For the rest of this paper we are going to be concerned with the inverse

problem; or the design problem. In this class of problems the designer knows the

sequence of characters that is required to produce a I output.

"To design a machine to accept this sequence the concept of the derivative

of a regular expression is introduced. The rules for forming the derivative are

"presented below. The derivation of these rules can be found in [2]

11.1 D a X
a

11.2 D ab f', for b = , b = X, b a I1teral a

11.3 Da(X*) Da(X)X*

,I.4 Da(XY) D,(X)Y+q(X) Da(Y)

11.5 D (f(X,Y)) f(Da(X), Do(Y)

11.6 D (X) Db (Da (X))

Where a and b are literals, X and Y are regular expressions or the result of

taking the derivative, and f is any Boolean function. The eta function is defined

'•:i~, ',ia S,

S11. 7 fX) ifx X XSif X X

4,, ,-,-

11.8 q(XY) = q(x)M ()

11.9 q (f (X,V)) = f (n (X), q (Y))

It can be shown that any derivative can be found by repeatedly applying the above

rules.

To simplify the expression that is formed by using the derivative operation

the following identities are presented. Additional identities can be found in 3]

11.10 Ox x= 1 = 0

11.11 O+X = x+ = X

11.12 XX = XX = X

11.13 0 - X =X.*Y 0

The process of obtaining the machine from the regular expression is a simple 1

but tedious operation. First, associate the regular expression with an initial state

(qI). Second, take the derivative of the regular expression with respect to each

of the literals and assign a state to each one of these derivatives. Eachof these new

states are connected to the initial state via a line directed from the initial state

to the new state. Each of these lines is given a value corresponding to the literal

which produced the derivative that was assigned to that state. Third, take the

derivative of each of the expressions found in step two. This process is repeated

until no new expressions are formed. Fourth, the expression assigned to each of

the states of the machine is tested to see if it contains lambda (this is the same as

the eta function mentioned above). Then a I output is assigned to each state

for which its corresponding expression contains lambda. A 0 output is assigned

to all other states.
-7-

For the example shown in Figure 11. 1 the following expressions are obtained 3 .

11.14 R = A+BB+BAB*A

11.15 D/A/(R) X, contains lambda

11.16 D/B/(R) B+AB*A

11.17 D/BIA/ (R) = B*A

11.18 D/BB/ (R) = X, contains lambda

11.19 D/rAA/ (RN X, contains lambda

11.20 DIBAB/(R) B*A = D/BA/(R)

In step 1 the regular expression is associated with the initial state q]. In

the second step the derivative with respect to A was formed. As this is a new

expression it was associated with state q2. Also this expression contains lambda

so this state has an output of 1. The literal A was used to generate this expression

so a transition from q, to q2 occurs for the input A. Repeating the process state

q3 is generated and it is connected to q, by the symbol B.

In step four the derivative, D/BA/ (R) = B*A, is formed. As this is a new

expression it is assigned to state q4 ' By rule 11.6 this derivative can be formed

by, D/BA/ (R) = D/A/ (D/B/ (R)) = D/A/ (B + AB*A) = B*A. As the ex-

pression assigned to state q4 is formed by taking the derivative (with respect to A)

of the expression assigned to state q3 we conclude that a transition occurs from

q3 to q4 for the input symbol A.

3 In keeping with the notation used with REXPRO the slash will be used to indi-
cate the name of the derivat~ve instead of using subscrip~s; i.e., D/A/ (R)
Do (R).

-8-

The process is continued in steps 5, 6, and 7. The expressions formed in

each of these slepsare the some as ones formed in the previous steps. In this case

the expression is assigned to the same state as it was assigned to in the earlier

step. For example, the expression formed in step 5 is assigned to state q1 and a

line is drawn to connect q4 to q4 to indicate the transition for the input B.

The expression assigned to state q2 contains lambda so this state is assigned

an output of 1. None of the expressions associated with the remaining states

contain lambda, so they are assigned output of 0.

Via this set of operations it has been possible to regenerate the flow-graph

of Figure I.. For the interested reader a more detailed discussion of the

derivative of the regular expression is given in [1] and 1 21 . In the following

section several practical, but simplified, problems will be studied. In these

problems the machine is not specified beforehand, but the regular expression is

used to design a machine to meet the given problem.

Examples Using the Regular Expression

Problem I. In a small, general purpose computer, such as the SCC 650,

the instruction repertoire consists of three classes, the nonmemory instructions,

the memory reference instructions, and the indirect memory instructions. The

nonmemory instructions are those which do not refer to data stored in the memory,

while the memory reference instructions decode part of the instruction to find the

address where the data is stored. The indirect instructions first finds the data, as

for the memory reference instructions, and then interprets this data as the address

where the data is stored in the memory.

-9-

A sub-section of the control system is needed to control whether the memory

address Is to be obtained from the PC register or the LC register. The LC, location

counter, register contains the address of the data 4 and the PC, program counter,

gives the address for the next instruction. As part of the computer there is an

instruction decoder which will indicate which class the instruction is in. The

classes will be encoded as N, M, or I for the nonmemory, the memory, and the

indirect instructions, respectively. There is also a memory control system which

indicates when the memory has finished its read (and write) operation. This

completion will be assigned the character F.

Thus the machine which will control the use of the registers has input

sequences of N, or MF, or IFF. Or in terms of the regular expression, R

N + MF + IFF. This is not entirely correct as the machine must be able to accept

an arbitrarily large number of these sequences. Thik problem is solved by the use

of the star operator.

Thus the exDrnssion,

R = (N 4MF + IFF)*

is obtained. In Figure 11.3 the derivatives of this expression are listed as they

were obtained from REXPRO 5 .

4
The problem of how, and when the registers are set will not be considered here.

5
The computer uses the symbol, \ , to indicate the symbol X arnd the ,-, is used
to indicate the symbol 0.

-10-

H-FXP PI'O6RAM- -fFADY
kH(N+MF+IFF)*o
EXECUTE

CHECK COPY#.

D/N/

(N4MF. IFF)*

CONTAINS\
D/M/

L)/M /
IFCN.MF+IFF)*
D/ F/

D/1/

D/ I/--
F(N+MF.IFF' *

D/MN/

D/MM/=

D/MM/=

D/MF/

D/MF/

(N+MF.IFF)*

CONTAINS\

Figure 11.3 Derivatives of R =(N +NF + IFF)*

-)Il-

D/IN/

D/IN/=

D/Im/

D/ I Fl-

D/IF/=

FCN+MF+ I F*F)

D/11/~

D/11N/

D/ IFN/~

D/IFM/=

D/IFMI=

D/IFF/=

(N +M F +IVF) *

CONTAINS\
D/ IFI/

D/IFI/=

Figure 11.3 Continued

-12-

StartF

FMNM 'I ,IM 9

Figure 11.4 Flow-graph for Memory Control System

-13-

Figure 11.4 shows the flow-graph that was obtained from the derivatives. The

state with a 1 output is the one for which the PC register is used. The LC

register will be used with the rest of the states. State q3 is entered when illegal

sequences cf symbols are found. This may be used for error checking.

Problem 2. The reader should be aware of the fact that the finite state,

sequential machine is not restricted to hardware designs, but that the execution of

a computer program can be studied as a sequential machine.

In computing the eta function it is necessary to test a sub-sequence of the

6regular expression to see if it contains lambda . The possible input characters in

this sub-sequence are the literals, which will be denoted by the symbol A; the phi,

denoted by P; the lambda, denoted by L; the star operator, denoted by S; and any

other operators, denoted by 0.

For the sequence to contain lambda it must contain only terms of the form

AS, L, LS, or PS and an arbitrarily large number, but at least one, of these terms.

Thus, the expression,

(AS + L + LS + PS) (AS + L + LS + PS)k

is generated.

An additional requirement is that the sequence be terminated by an operator.

Thus,

(AS + L + LS + PS) (AS + L + LS + PS)*0

6
This is part of the function of the subroutine %'BETAT described in Chapter IV
and Appendix D.

-14-

To this expression the NULL character, denoted by N, is added for complete-

ness. The NULL character has no intrinsic value, but is a blank, or spacing,

character which is placed in the sequence to fill in any unused locations in the

sequence. As an arbritrary number of NULL's, including zero, may appear in the

sequence the NULL will be placed in the sequence as N*. These NULL's can be

placed in the sequence between any and all of the other characters, thus the

regular expression given below is obtained.

R = (N*AN*SN* + N*LN* + N*LN*SN* + N*PN*SN*)

(N*AN*SN* + N*LN*+N*LN*SN* + N*PN*SN*)*N*O

An equivalent, but simpler, form for the regular expression is,

R = N*Z(N*Z)*N*O, where

Z = (AN*S + L + LN*S + PN*S)

Figure 11.5 shows the derivatives which were calculated for this problem.

Figure 11.6 shows the resulting flow-graph. After a sequence has been applied to

this machine the final state will either be q5 or q7 " State q5 has a one output

indicating that the sequence contained lambda; state q7 produces a zero output

for those sequences which do not contain lambda.

It is now a simple matter for the programmer to translate the flow-graph in

Figure 11.6 to a program which will calculate the eta function. Each of the

states, except the terminal states q7 and q5 , is translated into a subprogram which
-15-

R-ELXP PH0GfRAM--kE'AVY
R=N*Z<N*Z)*N*OW
Z=AN *5+ L +L N* S +PN * S
EXECUTE

CHECX COPY--
D(N*(AN*S+L+LN*SePN*S)(N*CAN*S.L.LN*S+PN*S))*N*Oi)
ED/N/

(N)*CAN*S+L.LN*S+PN*S) CN*CAN*S+L+LN*Sc+PN*S))*N*0
D/A/

(N)*S(N*(AN*S+L+LN*S+PN*S))*N*O
D/S /

D/L/

C\+(N)*S) (N*CAN*S+L+LN*S+PN*S))*N*0
D/P /

(N)*S(N*(AN*S+L+LN*SePN*S))*N*0
D/ 0/

D/AN/

D/IAN/=
CN)*SCN*CIAN*S+L+LN*S+PN*S))*N*0
D/AS/

EV/AS
(N*(AN*S+L+LN*S+PN*S))*N*0
D/AA/

D/AA/=

Figure 11.5 Derivatives of R N*Z (N*Z)*N*O

-1 6-

D/AL/

D/AL/=

0/AP/

D/AP/=

D/AO/

D/AG/-

0/A SN/

D/ASN/=

((N)*(AN*5.L*LN*S+PN*S) (N*CAN*S+L+LN*S+PN*S).)*N*0+CN)*g)

D/R SA/

D/ASA/=
(N*S(N*AN*S+L.LN*S4-PN*S)2*N*0
D/ASS/

Q/ASS/=

D/ASL/

D /A SL /
(\+(N)*S)(N*(AN*5+L+LN*S+PN*S))*N*0
D/ASP/

0/A SP/=
(N)*SCN*(AN*S+L+LN*S+P:N*S))*N*0
D/AS2/

0/A $01 =

CONTAINS\
0/A SNN/

DIR SNN/=
C (N)* CAN* S.L+LN*S+PN*S) (N* CAN*S +L+LN*S+PN *$))*N*0+ (N)*0)

'Figure 11. 5 Continued

-17-

D/A £NAI

DIASNA/s=
(N)*SCN*CAN*S+L+LN*S+PN*S))*N*0
D/ASNs/

D/ASr4SI=

D/A SNL/

U/A SNL/=
C\+CN)*S)(N*(AN*S4LtLN*S+PN*S))*N*
0/A SNP/

D/ASN'P/=
CN)*SCN*(AN*S+L+LN*S+PN*S))*N*0
D/ASNO/

DIASNO/n

CONTAINS\
OIL NI

U/LN/=
C (N) *5(N* (AN*S+L+LN*S4HN*S))*N*rui+c(Ný)* CAN*S LLN,+*S(N*CAN*S+L4LN*5+PN*S))*N*@+(N)*S))
D/LA/

[U/LA/=
(N)*S(N*CAN*S+L+LN*S+PN*S))*N*O
OlLS/

(N*(AN*.S+L+LN*S+PN*S))*N*O
IJILLI

D)/LL/=
(\+CN)*S) (N*(AN*S+L+LN*S+PN*S))*N*0
0/Lit'

U/LP/r
(N)*S(N*(AN*S+L+LN*S4pN*$))*N*0

Figure 11 .5 Continued

1)/ L O

CONTAINS\
D/LNN/

U/LNtJ/=
((N)*SCN*UAN*S4L+LN4'S+PN*S))*N*0+C(N)*(AN*S>-L+LN*S(,+. N*2ý)
(N*(AN*S+L+LN*S+PN*S))*N*O+(N)*0))
D/LNA/

D /1-NA/ =
(N)*S(N*(AN*S+L+LN*S+PN*b))*N*O
D/LNS/

D/LNS/=
(N*(AN*S+L+LN*S+PN*S))*N*0
D/LNL/

D/LNL/=
(\.(N)*S)(N*(AN*S+L+LN*S+k-ýN*Si))*N*W
D/LNP/

D/LNP/=
(N)*S(N*(AN~*S+L+LN*S+PN*S))*N*0
D/LNO/

D/LNO/=

CONTAINS\

Figure 11.5 Continued

-19-

S

A,L,PO

rStart

L
L

A, P

-A P

Figure 11.6 Flow-graph for Machine to Find the Eta Function

-20-

will read the next character in the sequence. After this character is read it is

tested by the subprogram to determine which subprogram the program will transfer

to. The transfers from subprogram-to-subprogram are formed directly from the state-

to-state transition as shown on the flow-graph, The terminal states (q5 and q7) are

translated into subprograms which display the results of the test (e.g. a value

is returned to a calling pý,ogram or an appropriate message is printed).

-21 -

CHAPTER III

STRING PROCESSING

The preceding chapters discussed the use of the regular expression and how

the derivative can be formed by using manual manipulations of the regular expres-

sion. The problem is to write a program to perform these manipulations. The digital

computer is designed to handle numerical formulas to which a numerical answer can

be assigned. The problem X = A + B(A + C), v.4iere values have been assigned

to A, B, and C, can be easily solved on the computer by means of adding and

multiplying the values of A, B, and C. The results of these operations are then

placed in the location reserved for the answer, X.

In the case of the derivative of the regular expression we have a string of

characters which represents the regular expression; in general this string is of

unknown length. Before studying the process by which the computer fcms the

derivative the concept of string processing is introduced. String processing

provides a method by which the computer can perform the basic manipulations on

the string (e.g., storing, adding, or removing characters from a string) needed to

form the derivative.

A string is defined as a series of characters that are written in a linear form

(e.g., this sentence is a string). The symbol "0" will be used to represent the

string. For this report only strings that are used to represent the regular expression

will be considered. These are strings which contain only the following characters:

the literals, 01 X.,+,. , * (,), [1, D, and R. These characters form the

vocabulary of the string. Also the requirement of validity will be implied.
-22-

A valid string is one in which the operators are used properly. This implies

that the parenthesis and brackets are properly formed and that thb operators are

used only in a valid context. A note should be made that the validity of a string

is determined only by its context and not its content.

To aid in the discussion of the use of strings we introduce the terms: alpha

character, operator, term, and level. The alpha character consists of the literals

plus X and $. The remaining characters (i.e., the +, *, 1* (,r) [, 1 , and D)

are the operators and delimiters.

A term is a logical unit of the string. It is a sub-string consisting of alpha

characters and the star operator, or any sub-string which is contained within a set

of parenthesis or brackets. If a term is followed by the star, the star is considered

part of the term. The level provides a method of ranking the terms in a string.

Terms that are connected by one of the operations of AND, OR, or concatenation

are all of the same level. When several terms are grouped, via a set of paren-

thesis (or brackets), a new term is formed. The new term is of a higher le"A than

the level of the individual terms. The phrase "to go down in level" means that,

rather than testing the large term, the several terms that are enclosed irn a set of

parenthesis are to be tested.

The subroutine %'SLVL has been written for REXPRO to perform the operation

of reading a term. It returns with the first and last characters of the term. %'SLVL

also indicates if the term is followed by more terms of the same level.

A method is needed to store and operate on the strings in the computer.

This is accomplished by a set of linked cells, A cell is simply a location which

can hold one, and only one, character f the string.

To indicate how the Individual cells are joined, to form the string, a linking

system is used. The simplest linking system consists of linearly ordering the cells;

i.e. , the first cell is used to .iore the first character of the string, the second cell

stores the second character of the string, etc.

In REXPRO the number of literals was restricted to 16 and two additional

characters were added. These are the end flag (represented by the symbol "(a ")

which is used to indicate the end of a string and the NULL character. Thus the

vocabulary of REXPRO contains less than 32 separate characters. These characters

can be encoded by a five bit binary word, Appendix A contains a list of the vo-

cabulary and the codes used to store these characters.

The memory system of the SCC 650 consists of a main core with 4096, 12 bit

words. For maximum efficiency, with respect to memory, two cells are stored in

each memory word. To address a given cell a two-word addressing scheme is used.

The MP (memory point) gives the address of the memory word and the HP (half

point) indicates which cell in the work is being addressed. A HP equal to zero is

used for the first cell and a HP equal to one is used to reference the second cell.

A prefix is used to denote the different locations in the string. These are

LE, for level end; L, for level start; LR, for last read; R, for read; T and T2, for

temporary; and W, for write.

To finish the description of string storage we must consider what happens

when characters are added or removed from a string. This can be accomplished

by shifting the characters in the string; however, this introduces the problem of

having the end of the string blocked by another string.
-24-

The problem of removing characteis is considered first. If part of the string

is 'D ((WXYZ))' we see that the string contains an extra set of parentheses which

should be removed. This string is shown in Figure III. la as it would be stored in

memory. Each horizontal block represents a memory word containing two cells.

The number to the left gives the MP location of that word.

In the expansion 7 of the string the inner set of parentheses at ' 5001/08 (the

MP/HP) and at '5003/1 are to be removed. When these are removed scmething

must be placed in these cells so the string remains continuous. The new character

is the NULL character. The NULL character has no value, but is simply a

character used to fill out the string. Figure IIl.lb shows the string after the ex-

pansion with the symbol N being used to represent the NULL character.

The lump-flag is introduced for those cases where it is desired to add

characters to the string. The jump-flag (or more simply the flag) is represented by

placing a one in the sixth bit of the second cell in ihe memory word. In the

examples it is indicated by using an Fin the cell. Placing the flag in a cell indi-

cates that the following word does not contain the remaining part of the string, but

rather an address giving the location where the string is continued.

Figure 111. 2a shows the string 'D (ABC)@: ' as it appears in the memory.

For this example it is desired to replace the chnracter 'B' with the string 'WXYZ',

This is accomplished by removing the character 'B' and replacing it with ' F-W'

7
Any change in the string is called "expanding the string".

8
The apostrophe is used to represent number to the base eight, e.g., '5001
50018 = 256110 -25-

'500 D)

'5001 (W

'5002 X Y

5003 z)
'5004) @

(a)

15000 D (

'5001 N W

'5002 X Y

'5003 Z N

'5004) @

(b)

Rgure 111.1 The Use of the NULL Character.

-26-

(i.e., a flag and the symbol W) and saving the following two characters; the

'C)'. These characters are replaced with the address '5500 where the string is

continued.

At location '5500/0 the remaining characters of the string are added along

with the two characters, the 'C)' , which are removed from the main string. At

location '5502/1 a flag is placed in the string. The address in the following

location refers back to the remaining portion of the string. The resulting storage

in the memory is shown in Figure 111.2b. This string is read as 'D(AWXYZC)(ri '

Several comments should be made about this example. First, as there is no

space left in this method to store information about the half-point the requirement

is added that all strings, and string segments, have to start with a half-point of

zero. Second, a flag may be used only in the second cell; thus, we see the

use of the ' F-N' (flag-NULL) at location ' 5502/1.

This process of removing a character in the string and adding an address is

termed "setting a breakpoint". This is handled by the REXPRO subroutine

'BPSET which not only adds the flag and jump address, but it also saves the

characters that were removed from the string to give space for the address. The

process of adding the jump at the end of the new string segment is termed "return-

ing the break-point" and is executed by the subroutine %'RTBP. This routine also

adds the characters which were removed from the string by 'BPSET.

The subroutine- "READ (string read) and VWRITE (string write) are two

additional routines which are used in processing the string. These four routines

form the bases for all of the string operations performed by REXPRO. A description

of the subroutines %BPSET, %RTBP, and Z'SLVL is given in Appendix D.

-27-

'5000 D

'5001 A B

'5002 c)

'5003 @

(a)

'5000 D

'5001 A F-W

'5002 '5500

'5003

'5500 X Y

'5501 Z C

'5502) F-N

'5503 '5003

(b)

Figure 111.2 An Example of the Use of the Jump-Flag.

-28-

CHAPTER IV

USING THE COMPUTER TO FORM THE DERIVATIVES

The previous chapters introduced the derivative of the regular e'pression

and the concept of string processing. We are now ready to study the processes by

which Le computer forms the derivative. The computer operation will be studied

by fo~lowing an example through the steps needed to form the derivative.

The strategy used in forming the derivative is to repeatedly apply the

following rules until all of the terms are of the form given in Rule IV.7b. These

rules are,

IV. 2a D (S' I = D (%1) %2, 'if

IV.2b D (%I) = (D (,i) X2 +D (2), ifr($l) = ,A

IV.3 D• +•2 = (D ()+ D V2))

IV.4 D([%1) = [D(#)1

IV.5 *

IV.6 D(A)B: D

IV.7a D (AI"A2BI---Bn D ((A1)*A2BI---B

where A, A2 are literals and B1 . .. B are literals or the star
operator.

IV.7b D (A A 2B --- B) where A and B are as defined above.

Iv.8 D (! I *'2= (D(I) . D (, 2))

* The first eight rules are numbered according to the subroutines which use these

rules. Due to a reorganization of the subroutines there is no rule IV.5.
-29-

After all of the terms are of the type given in Rule IV.7b the following rules

are used as the final step in forming the derivative.

IV.9a D/A/ (AIA 2--- A) = X(A 2--- An), if A = A

IV.9b D/A/ (AIA 2---A) 0, if A# A

We should note that these rules differ slightly from those given in Chapter II, but

they are derived from the rules in Chapter II. These rules were modified so that

they would be compatible with the string processing used in REXPRO.

Expanding The Derivative

We will now consider the example D/A/ (R), where R (A*B + C)*AB*.

This would be stored in the computer as,

'D ((A*B + C)*AB*)@C

and the "name of the derivative" is 'A'. It should be noted that the derivot:ve

name is not stored as part of the derivative; e.g., as a subscript. Rules IV. I

through IV.8 are not a function of the particular derivative being formed; thus,

the name can be separated from the derivative and retrieved only where it is

needed.

It is also noted that the derivative is stored with 'D (' and ') ' added to

the string. This provides easily detected delimiters to outline the derivative. A

search is made of the term(s) following the 'D (' and a! list of the characteristics of

these terms is made. For this example we find the two terms '(A*B + C)*' and

'AB*'. Another check is made and we find that the terms are connected by

-30-

juxtaposition, i.e., the terms are concatenated and Rule IV. 2 applies. To deter-

mine if Rule IV.2a or IV.2b is to bz used the eta :function mu~t be evaluated. The

n iethod of evaluating eta will be deferred until the end of the chapter, but it is

found that rq ((A*B + C)*) X. Thus the expression,

'(D ((A*BI C)*)AB* + D(AB*))'

is formed by applying Rule IV.2b.

It is pointýd out that the expansion of the string, produced by'Rule IV. 26,

is formed by using the techniques presented in Chapter III; i.e., adding and re-

moving charactersi from'the string and copyin6 portions of the string. The exact

methods that arewsed in the expansion process are reserved for the description of the

subroutine ýDF2 in Appendix D.

The expression is still not of the form given in Rule IV.7b, th6s the process

is repeated. The string is scanned frorn left to right until the first delimiter, the

'D(', is found. The following operand, '(A*B + C)*, is, then read. This operand

consists of a single term and that term is operated on by the star. Thus Rule IV.1

is used to produce the expanded string,

'(D ((A*B + C)) (A*B + C)*AB* + D (AB*))b

The scanning continues until the second delimiter is found. The following

term, 'AB*, is then read. This operand appears to follow Rule IV.1 as it con-

tains only one term and is followed by~a star. 'The question arises as to what

characteristic will differentiate between terms of the form '(A*B + C)*' and the

-31-

form 'A*'. The difference lies in the fact that in the first case the entire term is

operated on by the star, while in the second case only the one literal is operated

on by the star. This characteristic is easily checked by determining if the first

character in the term is '('. The routine which reads the term (the subroutine

%SLVL) saves the first character for this test. We see that 'AB*' does not follow

Rule IV. I, but Rule IV.7. The subroutine %DF1, which is used to e;'pand this form,

finds that the first literal is not operated on by a star. Under this condition Rule

IV.7b is invoked and no change is made.

The scan is continued and no more derivative delimiters are found before the

end flag (the '@ '). Thus a new pass is started and the process is repeated. The

first operand which is found is '(A*B + C)'. This has the characteristics of having

only one term, not operated on by a star, and it is enclosed in parentheses. These

characteristics match those of Rule IV.6, thus the result,

'(D (A*B + C) (A*B + C)*AB* + D (AB*))(ci

The scan is continued and the only term found is 'AB*' to which Rule IV.7b

is applied and no change is mode.

A new pass is then started and the operand 'AB* + C' is found. This operand

consists of the terms 'A*B' and 'C' and they are connected by the OR operator.

For this condition Rule IV.3 M used to produce,

'((D (A*B)+ D (C)) (A*B + C)*AB* + D (AB*))(I

-32-

Agin no change is made in the last operand and a new pass is started. The

first operand found is 'A*B'. This operand consists of a single term with the first

character a literal. Thus Rule IV. 7 is used. The subroutine which processes this

rule scans the term and finds that the first character is operated on by the star and

Rule IV. 7a is invoked. This produces the string,

'((D ((A)*B) + D (C) (A*B + C)*AB* + D (AB*))(I

The process is repeated through several more passes and the following ex-

pression is obtained.

'(((D (A) (A)*B + D (B)) + D (C)) (A*B + C)*AB* + D (AB*))&f

A final pass is then made. During this pass all of the operands are found to

follow Rule IV.7b. Thus no changes are made in the string. This indicates the

end of the expansion operations. The final step in obtaining the derivative i to

implement Rules IV.9a and IV.9b. These rules are implemented by the subroutine

%MATCL. In this routine a single scan is made of the derivative. When the

derivative delimiter is found the following literal is compared with the

name of the derivative (in this example the literal A). If the two characters

match, the string is modified by Rule IV.g/a, otherwise the Rule IV.9b is used.

This produces,

(((A)*B + 0) + 0) (A*B + C)*AB* + 0) ýa'

-33-

After this derivative is formed the following rules are used to simplify the results.

IV.IO 10 0 % = 0

IV.12 %= =X

IV.13 = =

The simplifications are performed in a manner to similar to the operation of

expanding the string; i.e. , repeated passes are made until a pass is found in which

no c.ranges were made. The final result is,

D/A/ (R) = I(A)*B (A*B + C)*AB* (@ '

To summarize the operation of forming the derivative:

A. Search the string to find the derivative delimiter and test the
following operand. From this test determine which rule applies.
Appendix D describes in detail the subroutine XDCLAS which
performs this operation.

B. Expand the string according to the appropriate rule. The sub-
routines %DF1, %DF2, %DF38, %DF4, X'DF6, and ODF7 are used
to implement the rules.

C. Repeat A and B until a pass is made with no change in the
string.

D. The derivative is taken by the subroutine %MATCL which

implements Rules IV.9a and IV.9b.

E. Simplify the string.

In this example the derivative was taken with respect to the single r'-aracter

'A' . If the derivative with respect to a string of characters is desired, for example

D/AB/ (R), the rule D/AB/ (R) = D/B/ (D/A/ (R)) is used. In other words the

-34-

derivative, D/A/ (R),is formed as given above. Then the process is repeated,

using the above results, to form the derivative with respect to B.

Cakulating the Eta Function

A technique is now introduced which will allow the eta function to be cal-

culated by the computer. The eta function is defined as,

IV. 14 if($x,01 if x /

V. 16 n• '2)-nOis) + 21
IV.7 15 (% .%(= Vj(I'). ri (Z)

1 2 12

IV.18 n(=$']) tr Mn$

From the first rule we see' that the eta function is a binary function; i.e.,

it has only two values X and 02. The other rules state that any eta function can

be formed by finding the eta function for simplier terms.

We first consider the types of expression for which the eta function can be

found directly.

A. A simple term consisting only of alpha characters and the star
operator; e.g., A*B, ABC, or A*B*. For this case we consider
each alpha character at a time.

ri (A*) X, by the definition of the star
operator

q (A) 0 , A any literal or

ri (X) X, by definition of the eta function

For several characters which are concatenated we use Rule IV. 15

-35-

and the fact that X. $ = 0. From this we conclude that the
eta value of a simple term equals lambda if, and only if, each
alpha character is a lambda or is operated on by a star. This
test can be easily performed on the computer by scanning each
character from left to right and testing the characters to see if
they are lambda or if they are alpha characters followed by a
star. This is the method that was presented as the second ex-
ample problem in Chapter II.

B. A complex term of the form (%)*. Again by the definition of the
star operator we find that r9 (z(-)*) X.

C. A complex term of the form (). For this case the eta function
cannot be directly determined; i.e., the terms enclosed in the
parenthesis have to be tested to find the resulting eta function.

This process of testing the terms was written into the subroutine XBETAT.

This subroutine returns the three results, the eta value equals lambda, equals phi,

or is undetermined.

For the cases with more complex expression we will use the following rules.

IV.19 X .X = X

IV.20 X+X = X

IV.21 x -

IV.21 + X X, where X is either lambda or phi

These rules are derived from the fact that the values of the eta function (i.e.,

lambda or phi) are binary values.

With these rules in mind we consider the example r9 ((A* + B) A+ C*).

This would be stored in the computer as '((A* + B) A + C*)' with a pointer to the

first left parenthesis at the start. The term ' ((A* + B)A + C*)' is tested and it is

founa to be undetermined. Thus it is necessary to "go down in level" to evaluate

the expression. This is performed by stepping the pointer one location to the right.

The term '(A* + B)' is then tested and it is also found to be undetermined.
-36-

The process of going down in level is repeated and the tarm 'A*' is tested

and found to have an eta value of X. This term is followed by the OR operator.

From equation IV. 20 we see that result will be lambda, even without testing the

remaining term. Thus the term 'B' is passed over without being evaluated and the

operator ')' is read. This ivdicates the end of the present level and the need to

determine "what to do next".

In this example the ,erm '(A* + B)' was found to have a value of lambda

and it is concatenated with the following term (the 'AW). By equation IV. 15 we

see that in evaluating concatenated terms they are treated as being "AND'ed".

Thus by IV. 19 we find that tie value of expression '(A* + B) A' is determined

solely by the term 'A'. The term 'A' is tested and found to have a value of phi.

The value of that part o'f the expression which has been evaluated is phi

and the following operator is OR and by IV.22 we see that the result is determined

solely by the following term. This term, the 'C*I , is tested and found to have a

value of lambda. The only remaining character is a right parenthesis which indi-

cates the end of the expression being evaluated. Therefore, the eta value of the

expression being tested is X.

This example has shown a method by which the eta function can be found by

a process of scanning the expression from left to right and using Rules IV. 19 to

IV.22 to determine which terms are tested and which are passed over. While this

example was admittedly simple the same technique can be used to evaluate any

expression. For the interested reader Appendix D describes the operation of the

-37-

subroutines ATATT and PETAT. The subroutine $ATATT performs the operation of

deciding "what to do next". iBETAT is called by AETATT to evaluate single terms.

-38-

CHAPTER V

REXPRO OPERATION

Memory Organization

The 4096, 12 bit, word memory of the SCC 650 is divided into three distinct

areas for this program, as shown in Figure V. 1. The first section consists of the

first 64 words. These words can be addressed from the entire computer memory via

the direct memory instructions.

The direct memory area is further divided into four sub-sections. The first

section occupies locations '0 to '17 and holds the symbol table. This table stores

the literals that have been entered. The literals are stored as trimmed ASCII

characters. These literals are stored in the string as a four bit character which

corresponds to their location in the table. A flag is placed in the seventh bit if

the character was seen as a part of the regular expression string as opposed to a

substitution string.

The second section of the direct memory contains the substitution table and it

is stored from '20 to '37. This table contains the addresses of the characters which

are placed in the regular expression string as the name of substitution strings which

are to be substituted into the main string. The table is referenced by adding ' 20

to the location in the symbol table where the corresponding character is stored.

For example, if the character 'A' is the third character which is stored in the

symbol table it will be replaced with '02 and its substitution string address will be

stored at '22. If no substitution string has been stored the corresponding location

in the substitution table contains '0000. -39-.

10000 Symbol Table

S0020 Substitution Table

Derivative Name

'0040

Constants and Variables

'0100

P
r
0

9
r
a
m

'4704 Program Entry

'4760
Regular Expression String

Substitution Strings

Work String

'7540
Loader

'7777

Figure V. 1 Memory Allocations

-40-

The third section contains the converted (via the symbol table) literals that

are used to name the derivatives. As this data is used at a point in the program

execution at which the substitution table has already been used the derivative name

is also stored from ' 20 to '37. The derivative name is stored as a string, packed

two characters per word. Therefore, the derivative name is also referred to as the

derivative string. A maximum length of 31 characters can be used to specify the

derivative name (one cell being reserved for an end flag).

The last section of the direct memory (from '40 to ' 77) contains the non-

string variables. The information contained in this section consists of string starting

addresses, sti:ng working addresses, temporary character and address storage, input

mode information, and a program start address. A detailed list of the information

stored in this section is contained in Appendix B.

The next section of the memory is allocated to the storage of the program

itself. This section runs from ' 100 to '4757. The program starts execution at

'4704.

The remainder of the core is used to store strings. The first string which is

stored is the regular expression string. This is followed by the substitution strings,

if any. The last string is the work string. The work string is a copy of the regular

expression string, with subst!tutions made. The work string is the string which is

expanded to form the actual derivative.

There is no fixed length for these strings. The only limitation on length is

the fact that they have to fit the area from '4760 to ' 7540. (The upper lirmi was

designed to save the loader. It can be increased to give more working area or de-

creased to save other programs). -41-

Program Execution

The program is executed in four distinct phases as shown in Figure V. 2.

Phase I. During the first phase (controlled by MAINLINE) the program

initializes the direct memory by clearing the symbol table, the substitution table,

and the string addresses. This phase also sets the input mode for the teletype key-

board, loads the prog.-am starting address (in the variable RESTRT) and sets NEW.

NEW defines the free area where strings can be stored. At the end of Phase I the

message "R-EXP PROGRAM--READY" is printed and the program enters Phase I1L

Phase Ii. This phase is the main input phase and is controlled by the routine

MAINLINE. During this phase either control words or strings may be entered into

the computer. The program receives the first character from the teletype which is

not a carriage return, line feed, space, or tape leader. A second character is

then received. If the second character was a letter it is assumed to be port of a

control word. Otherwise it is treated as a string. The first two characters of the

control word are stored. When a line feed is received the two characters are

tested and the control word is executed. The functions of the control word& are

listed below:

"TAPE" - Input via paper tape
"KEYBOARD" - Input via the keyboard
"EXECUTE" - Enter Phase III
"TERMINATE" - Return to Phase I

If the operator makes a mistake or desires to make a change he may type a

left arrow before the line feed. The operator can then enter a new string or con-

trol word. The entering of an incorrect control wcrd will cause the following to

be printed: "UNDEFINED CONTROL WORD".
-42-

Str

PhaseI

Phase 2

Word WordStorin

String

Phase 3

Figure V. 2 Flow-graph of Program Execution

-43-

Phase 4
B

Copy

String

Ei n ter
Derivatve Name
orA
Control Word

SExpand

SString

No Lot Yes

•-Der. Char .

Form Form
Derivative Derivative

FPgure V. 2 Continued
-44-

If the ,iecond character entered was not a letter, the program checks

to see if it is the Start of the string.. The first sfing $hat is stored must be the

regular expression string and it is denoted by an 'R' , followed by optional spaces,

followed by an . If the string does not contain an '=' the message "STRING

DOESN' T CONTAIN N.S. " is printed. The "N.S. " indicates thi thie string

is not stored.

After the equal mark any valid input character may be entered. These

characters are listed in Appendix A along with the code in which they are stored.

An invalid character will cadse a ' V to be printed and the character is not stored.

To aid in the loading of a string, acarr.iage return,, a line feed, or a space may be

entered at any time after the equal sign.

To correct mistakes in loading a string the operator may use a left arrow or

a vertical arro-ý. The left arrow dumpý the string that was being stored and allows

a new string, or control word, to be entered. The vertical arrow removes the last

character(s) which were entered; one character is removed for each vertical arrow.

The vertical cannot remove the characters to the left of the string; i.e., the term

'R-'. These editing aides must be used before the string ik terminated.

The actual storage 'of the string is handled by %STORE and it is stored at the

location given by NEW. The program adds a 'D (' prefix to the string and a

suffix. These characters are needed for proper execution of the string.

An (u ' is entered to terminate the string. At this point the $OPCK,

%PBCK, and %AOCK subroutines are called to tesi the strings. They test for the

:proper context of the various operators, for properly formed parentheses and

-45-

brackets, and for use of the ill-defined and-or operation (e.g., A + B.C). If any

of these errors are found,the respective messages "ILL-FORMED OPERA. -N.S.",

"ILL-FORMED () OR f I -N.S." , are printed. It should be noted that the

testing is halted when the first error is found. If no errors are found the string is

"stored" by updating NEW and storing the starting location of the string. Also

all of the literals that were entered with the regular expression strings are given

a flag in the seventh bit.

If there was an error, a new string may be entered; this string is written over

the old string. A new string may be entered to replace a string which has already

been stored. This does not remove the original string, but sets a pointer to the

new string.

After the regular expression string has been stored substitution strings may

be entered. These are entered in the form 'A ------ ; where the 'A' is the

literal in the regular expression string which is to be replaced by the string to the

right of the equal mark. Only one level of substitution is permitted; thus the name

of the substitution string (e.g., 'A') must have been entered in the symbol table

and it must also have a flag set ir, the seventh bit. If this is not met the message

"SUBSTITUTION NOT SEEN-N.S. " is printed. Except for this test and the fact

that the string is prefaced by '(' instead of 'D(' the loading, testing, and storing

of the string is the same as the regular expression string.

When the strings are formed the subroutine which forms the symbol table

checks to see if it is full (more than 16 entries). If it is full the error message

"TABLE FULL--EXEC. HLT. " is printed. Likewise during the loading of the

-46-

string (or during any other phase in which characters are being written in the string)

the program checks to see if there is room left in the memory. If not "MEMORY

FULL-EXEC. HLT. " is printed. (The upper limit of the available memory, a

normal '7540, is stored at location '0764 and can be changed. It should be set

at five less than the desired upper limit). Both of these errors are unrecoverable

so the program automatically re-enters Phase I.

PKhse Ill. When the program enters Phase Ill the routine %SUB is called.

This routine inserts the substitution string, if any, in the regular expression string.

A copy of the regular expression string is then printed so that the operator can

check the string. If no string was stored a ' ?' will be printed and control returns

to Phase II, otherwise the program goes to Phase IV.

Phase IV. This phase performs the actual operation of taking the derivative

and it is controlled by DCONT. This phase starts by calling %DRCPY to form a

work copy of the regular expression string.

The subroutine %DIN is called. This is a specialized form of MAININ. The

only control word that can be entered is "TERMINATE" and it is tested when a

line feed is received. This control word causes the progrom to return to Phase I.

If the first character that was entered was a 'D' then the program enters a

derivative name storage section of %DIN. The name has to be prefixed by 'D/'.

and then the operator input., the string of characters which forms the derivative

name. The only valid characters are the literals which were entered in the reg-

ular expression string. An invalid character will cause a ' ?' to be printed. A

test of the length of the derivative name is made and if it exceeds 31 characters

-47-

then "DERIVATIVE %' FULL-N.S." is printed and the name is not stored. During

this phase all of the information is received via the keyboard.

As in Phase Ii a left arrow and a vertical arrow can be used to edit the name

or the control word. When the name is followed by a '/' the routine returns to

DCONT. If no string has been stored a '2' will be printed and the routine remains

in %DIN.

When the program returns to DCONT the subroutine XDCLAS is called to

classify the forms of the derivative of the string. %DCLAS inturn calls $bDF1, %DF2,

%DF38, %DF4, X'DF6, and 1DF7 to expand the string.

After one pass through the work string the program returns to DCONT. At

this point a check is made to ;ee if any changes were made in rhe work string. If

a change was made, then the program returns to DCONT.

This is repeated until a pass is made with no changes in the string. At this

point the string consists only of terms of the type 'D(' followed only by literals

which are in turn followed by a ')' . These terms can be combined by any of the

valid regular expression operators.

DCONT then finds the first character in the derivative name and passe: this

to W'MATCL. This routine has two purposes. The first is to perform the final

operation of taking the derivative. This uses the rules:

DA (A. ...

D B(A)

%'MATCL then calls four subroutines to simplify the string using the regulrr

-48-

expression identities. As in %DCLAS this is an iterative operation which is repeated

until there are no changes in the, string.

DCONT then reforms the work string by adding 'D(' to the front and ')' to

the end as these were removed by %'MAICL. The program then goes back to

%DCLAý and the procedure is repeated using the second character in the string

namne. The total process is repeated until the lost character in the derivative name

is used. When this occurs the results are printed along with the name of the de-

rivative. $ETATT is then called to see if the sitring contains lambda and it prints

"CONTAINS \" if the test passes.

At this point one complete derivative has been found and DCONT returns to

the routine %DRCPY to obtain a new work string and the process is repeated. The

program remains in Phase IV until the control word "TERMINATE" is entered.

(The user who wants to study the operafion of the program can replace the

following "INOP. " with calls to the printing routines. At location '4554 !oad

'5301 and at '4555 load '1200. This causes the string to be printed for every pass

through "'%DCLAS". At location '4610 he can load '5301, at location '4611

load '1233, at '4612 load '5301, and at '4613 load ' 1200. This causes the de-

rivative name and the string to be printed for each pass through MATCL Due to

the large amount of datai 'hal is produced and the slow speed of the printer these

changes are not recommended for normal use).

-49-

CHAPTER VI

CONCLUSION

This paper has described a practical digital computer program which can be

used to find the derivative of a regular expression. Chapter II shows how useful

the regular expresmion can Vhe in the design)f a finite state, sequential muchine.

The rermaining ch-ipters describe the techniques us,. I to implement REXPRO and its

use.

The usetulness of this program can be seen by studying the second example

in Chapter II. The optional prnts were added, as described in Chapter V, to print

the partial results for every pass thiough the subroutine XDCLAS. These partial

results are formed in approximately the same manner in which a designer would

form the derivative. The partial results, shown in Figure VI. 1, were those obtained

during the process of calculating the derivative D/A/A. When one considers the

amount of work needed to form this derivative, and that this is only one of the

several derivatives that are needed for this example, this program drastically

reduces the an- iunt of work (and thus the possibility of errors) needed to use the

regular expression in design work.

This example shows one of the problems that are involved in using the

derivative of the regular expression, In the flow-graph which describes the machine

designed for example two, Figure 11.6, it can be shown that state q2 and q6 are

identical. This implies that the derivatives associated with these states are also identical.

-50-

These derivatives are,

DA/ (/ + NrS) (N* (AN*S + L + LN*S + PN*S) (*N*O, and

DAN/ =(N*S (NI (AN*S + L + LN*S + PN*S))*N* + (N* (AN*S +L + LN*S

+ PN*S. (N* (AN*S + L +LN*S +PN*S))*N *0 + N0))

which are not, obviously the same.

The question appears at this point; how can these two derivatives be tested to

show that they are the same? Can this testing be done by the program so that

the operator does not have to monitor the operution of the program? Can we

guarantee that a machine will be formed with a minimum number of states?

Another question arises from this work. Can the regular expression be

vorced to generate a machine ol a specific form? This machine would not necessarily

be a minimal state machine, but rather a machine with certain desired characteristics;

v. g., a machine that is easily implemented by a particular type of hardware.

It is hoped that by using this program as a tool that these questions can be

answered.

-51 -

R-EXP Pk0GRAM--READY
R=N*Z (N*Z)*N*O@
Z=AN*S+L+LN*S+PN*Sg
EXECUTE

CHECK COPY--

D(N*(AN*S+L+LN*S.PN*S) (N*(AN*S+L+LN*S+PN*S))*N*0)

0/A/

CD(N*) (AN*S'+L+LN*S+PN*S) CN*(AN*S+L+LN*S+PN*S))*N*C~+DC (AN

*S+L+N*S+PN*S))(N)*CAN*S+L+LN*S+PN*S))*N*0)

(D((N)*)(AN*S+L.LN*S+PN*S)(N*(AN*S+L+LN*S+PN*S))*N*O+D(A
N*S+L+LN*S+PN*S) (N*(AN*S+L+LN*S+PN*S))*N*0)

(DC CN') N)*CAN*S+L+LN*S+PN*S) (N*(ANJ*S+L.LN*S+EPN*S))*N*0+
(D(AN*S)+(D<L)+DCDLN*S)+D(P(N)*S))))(N*CAN*S+L+LN*S+PN*S
))*N*O)

(D(N)(N)*(AN*S+L+LN*S+PN*S)(N*(AN*S+L+LN*S+PN*S))*N*0+(D
(ACN)*S)+(D(L)+(DCL(N)*S)+D(P)(N)*S)))(N*IAN*S+L+LN*S+PN
*S))*N*0)

C D(N) (N)*(AN*S+L+LN*S+PN*S) (N* (AN*S+L+L.N*S+PN*S))*N*0+ CD
(A) (N)*S+(D(L)+ (DCL) (N)*S+#)(P) (N)*S))) CN*(AN*S+L+LN*Sý+PN
*S))*N*0)

SD (N)(N)* AN*S+L4LN *S+PN9.S) (N* CtJ*S +L+LN*S+PN*S))* C D
(A) (N)*S+C D(L)+ (DCL) (N)* 3+D(P) (N)*S))) (N* (AN*S+L+LN*S+PN
*S))*N*0)

D/A/=
CN)*S(N*(AN*S+L+LN*S+PN*S))*N*0

Figure VI. 1 The Derivati,,e D/A/
-52-

BIBLIOGRAPHY

BIBLIOGRAPHY

REFERENCES SIGHTED IN TEXT

1. Booth, T. L.., Sequential Machines and Automata Theory, John Wiley and
Sons, New York, Chapter-VI, pp. 2-"-2 7.•

2. Brzozowski, J. A. "Derivatives of Regular Expressions" , J. Assoc. Comp.
Mach., Vol. 11, pp. 481-494, October 1964.

3. Ghiron, H., "Rules to Manioulate Regular Expressions of Finite Automata",
IRE Trcns. Electronic Computers, Vol. EC-11, pp. 574-575, August 1962.

ADDITIONAL REFERENCES

4. Arden, D. N., "Delayed Logic and Finite State Machines", Proc. AIEE
Second Annual Symposium on Switching C;-cuit Týheor and Logica--la De-gn,
Detroit, Michigan, pp. 133-151, October 1961.

5. Brzozowski, J. A., "A Survey of Regular Expressions and State Graphs for
Autnmata" , IRE Trans. Electronic Computers, Vol. EC -11, pp. 324-335,
June 1962.

6. Brzozowski, J. A., and McCluskey, E. J., "Signal Flow Graph Techniques
for Sequential Circuit State Diagrams" , IFEE Trans. Electronic Computers,
Vol. EC-12, pp. 67-76, April 1963.

"Elgot, C. C., and Rutledge, J. D., " Operations on Finite Automata",
Proc. AIEE Second Annual Symposium on Switching Circuit Theor and
LogicaT Design, Detroit, Michigan, October 1961.

8. Kleene, S. C. "Representation of Events in Nerve Nets and Finite Auto-
mota" , Automata Studies, Ann. Math. Studies, Princeton, New Jersey,
p. 129, 1795-.

9. McNaughton R. , and Yamda, H., "Regular Expresý,>ins and State Graphs
for Automata" , IRE Trans. on Electronic Compuwers, Vol. EC-9, pp. 39-47,
March 1960.

-54-

APPENDIX

APPENDIX A

PROGRAM ALFHABET AND CODING

The following list defines all of the characters that may be used to enter

regular expressions in the computer, their meaning, and coding, The ASCII code

is the value that is received from the teletype or used to output on the teletype.

The internal code is the value used to represent the characters in the program.

-56-

Character ASC II Internal Code

A - C '01-'03 '0 17 Literals Assigned
E -Q '05-'21 by Symbol table
S -Z '23-'32
0-1 '60-'61

'50 '20

) '51 '21

J '33 '33 "NOT" delimiter

S'35 '35

'34 '34 Lambda
- '55 '25

D '04 '30 Dervative

R '22 not stored R-EXP

S'75 not stored

1 56 '26 "AND"

1L 00 '37 End Flag

/ '57 '27 Derivative delimiter

S'52 '22 Star operator

NULL internal '36 NULL character

+ '53 23 "OR"

-57-

APPENDIX B

LIST OF VARIABLES

The following list gives all of the variables used in REXPRO, along with

their location and a description of their meaning. All of these variables are

stored in the direct reference portion of the SCC 650 memory.

-58-

APLUS '45 'A' temporary sto•rage

ATEMP '45 'A' temporary storage

BC' '44 Brackets v-ounter

CIHRMAT '44 Character match

DCTM 144, Derivative counter

DRSTRT 75 Start of derivative

DPC '44 Derivative pass counter

ETAVAL '45 ETA value, rq (

LC '43 Line counter

LEHP '66 Level'end half point

LEMP '67 Level end memory point

LHP '64 Level start half point

LMP .65 Level start memory point

LRHP '62 Last read hclf point

LRMP '63 Last read memory point

MESST '53 Message address

NEW '73 Next available X' storage location

PC '43, Parenthesis counter

RESTRT '77 Start of program

RHP '60 Read half point

RMP '61 Read memory point

-59-

RSTART 74 Start of R-EXP •'

SYMS '56 Location in symbol table

SAI '50 %' add one at end of break point

SA2 '51 % add Iwo at end of break point

SRP '52 % return address at end of break point

TIN 72 Type of input

THP '54 remporary half point

TMP '55 Temporary memory point

T2HP '56 Sec. temporary half point

T2MP '57 Sec. temporary memory point

WHP 70 Write half point

WMP 71 Write memory point

XPLUS '46 ' X' temporary storage

XTEMP '47 'X' temproary storage

-60-

APPENDIX C

PROGRAM LOADING ORDER AND MAP

This list gives the order in which the various suhroutines, and thc mainline

program, for RIEXPRO are loaded in the memory. For those interested in studying

the operation of the subroutines the starting address of each of the subroutines is

given. These addresses are given as octal (base eight) numbers.

-61-

ANORTI 0100

BIN 0117

BOUT 0140

CONVRT 0153

DERTST 0211

ENDTST 0223

L!ITTST 0235

LLTST 0246

NULTST 0265

RLTST 0277

STRTST 0316

SYMF 0330

CRLF 0353

MESS 0401

'IRD 0666

,RDNNL 0676

XEAD 0705

,NWRT 0737

OEWRT 0747

$¢WRITE 0760

-62-

ALPH1i 1022

READI 1044

QUES 1076

SYMIN 1112

SYMSRH 1127

C ONSYM 1153

%'OUT 1200

DTI i-LE 1233

i'SLVL 1304

%]ISIM 1416

%2SIM 1525

0'3SIM 1636

%4SIM 1724

%'OPCK 1765

,' oPy 2040

%AOCK 2061

X'MATCL 2175

O'DIN 2317

%'PBC K 2506

XBPSET 2616

ATBP 2724

-63-

0'DRC PY 2761

$SUB 3003

%STORE 3045

,OBETAT 3241

,ETATT 3335

;WD F2 3500

,' F7 3655

XD F6 3725

%D F4 3751

XDF38 4033

%D F1 4143

,'DC .AS 4213

MA,',NNIN 4346

DCONT 4542

MAI NLi NE 4704

-64-

APPENDIX D

DESCfIPTION OF SELECTED SUBROUTINES

In this appendix a detailed description is given for the subroutines: %SL.VL,

%BPSET, OTBP, %DCLAS, $DF1, XDF2, PF38, %DF4, ý'DF6, X'DF7, %tTATT,

and %BETAT. The first three subroutines are used to perform basic string manipulations.

The remainder are used to form the derivative of the regular expression. These

sujbroutines were selected to describe the basic operation of REXPRO without

getting involved in the numerous, but necessary, subroutines that perform second-

aýy functions; e.g., the routines used for input/output.

These subroutines are described by means of a flowlist. The flowlist presents

the various steps involved in executing that routine. The symbols "A" and "X"

are used to represent the accumulator and index registers. The representations,

(LRMP)*, indicates an indirect operation; i.e., the value stored at the location

LRMP is used as a pointer to the desired location. The remaining terms in the

fiowlist are self-explanatory.

X'SLVL-(String search for level)- This subroutine is used to read one term of

a string and to give a relative classification of the level of the term. A term is

defined as a set of characters consisting of only the alpha characters and the star

operator, or any valid set of characters which are enclosed in a set of parentheses

or brackets. The level of a term indicates its ranking. Several terms that are

connected by the AND, the OR, or the concatenation operators are on the same

level. If these terms are enclosed in parenthesesa new term is formed v.hich has a

-65-

higher level than the individual terms. %SLVL gives a relative ranking of the level

by the way the subroutine returns to the calling program. A standard retun 9 is

executed if terms of the same level follow. A non-standard rettrn is executed if

the term is followed by either a right parenthesis, right bracket, or an end flog;

i.e., no terms of the same level follow.

The search for a term is started at the location given by RMPiRHP. This

location should be on or before the start of the term. Upon return %'SLVL contains

the following information: the location of the start of the term is stored in LMP/

LHP, the end of the term is given by LEMP/LEHP, the location of the character

following the term is given by LRMP/LRHP, and "A" confains the character follow-

ing the term.

Figure D. 1 shows several examples of strings and the resulting locations.

These locations are indicated by an arrow. The value of RMPAHP before %SLVL

is called, is represented by an S; all of the other locations given are those obtained

after a return from •'SLVL.

9
A standard return is a return to the location following the call statement. A
non-standard return is a return to the second location following the call state-
ment.

-66-

S LRMP/LRHP
S(a) - -- A B * C + (-__

L~MP/LHP RM/l
LEMP/LEHP

Standard Return

S LRMP/LRHp
(b) --- B (-))

+ A+

LMP/LHP RMP/RHP
LEMP/E HP

Standard Return

S LRMP/LR H-

(C) - - - A B• C) *(_)

LMP/LHP RMPAHP

LEMP/LE HP

Standard Return

S LRMP/LRHP

(d) _ - + (A B c))

LMP/LHPRMP//R HP
LEMP/LE HP

Non-standard Return

Figure D. I The Operation of .SLVL.

-67-

%SLVL is often used to read all of the terms, in a string, which are on the

same level. The set of operations needed to perform this is shown below.

Call: XSLVL

Jump Standard return

Jump - A Non-standard return

RMP --c LRMP Backspace read

RHP -4 LRHP

Jump Read next term

A Continue

An explanation is needed for the use of the read location backspacing.

Examining Figure D.]a it is seen that RMP/RHP gives the location of the first

character of the following term so that $SLVL can be called without modifying

the read address. However, in the example shown in Figure D. Ic. RMP/RHP

gives the location of the second character in the following term, but LRMP/LRHP

gives the location of the first term. Thus the read address is backspaced before

calling XSLVL a second time.

An outline of the operation of %SLVL is given in Flowlist D.1.

-68-

FLOWLIST D. I 'SLVL

Enter: $'SLVL

PC -*- 0Clear counter

Read one cell I

yesIS: cell an alpha char. . A
non

IS: cell (' or

PC i Term enclosed in

parenthesis
LMP LRMP Term start loc.

LHP ÷ LRHP

Read one cell
71o

IS: cell '(' or ' .

PC 4-tP+ 1

- Jumpno]
SIS: cell ')' or '!'

PC 4-pc -P
no

is: Ir = 0 Check for end of term
LEMP .+- LRMP __ _Possible

end of term

LEHP ,- LEHP

Read next non-NULL char.
Check for followih '*'

yes
IS: char. '*i

Jump - B
-6ý

LMP LRMP ÷ A Term consists of
alpha char.

LHP - LRHP

LEMP -LRMP Assume end of term

LEHP *- LRHP

Read next non-NULL char.

IS: char alpha or

Continue . B End of term has been
found and following
character has been
read

no
- IS: char ')' or '' or 'I ,

Non-standard return No similar level
follows

Standard return

-70-

ObPSET-(String break point set)- This routine is used to set a break point in

a string. The purpose of the break point is used to insert characters in a string.

The break point is set after the Iawt character which was read before calling

%BPSET. This character appears in the accumulator andmay be changed by modify-

ing "A" before the call. The index register contains the flag, if any, and may r.ot

be changed. The first operation of X'BPSET consists of rewriting this character in

the string. The following 1, 2, or 3 characters are read and stored in SA1 and

SA2. A flag is added to either SA1 or SA2 for use with ZRTBP to set the return

breakpoint. SRP is used to store the string return point. This is an address indi-

cating where the string is to be continued.

After the characters have been stored a jump to the location given by NEW

is added. Figure D.2 shows the mernory, before and after the call, for several

different types of strings. In these examples the break is to be made after the

character 'A' and NEW is equal to '6000.

After O'BPSET is called the characters to be inserted in the string are stored

starting at the location given by NEW/O. This can be accomplished by using

X'COPY or X'NWRT. $RTBP is then called to insert the characters which were re-

moved by A'BPSET and then sets a return jump to the location given by SRP.

An outline of the operation %BPSET is shown in Flowlist D.2.

-71 -

Before '5000

After '5000 A

SAI = B
SA2 = C, F-d
SRP = '5002

(a)

Before '5000

AFter '5000 "- -- '

SAI = NULL
SA2 = B, F-C
SRP '5002

(b)

Before '5000 FA F-B

'5500

After '5000 A

SAl = F-B

SA2 = 0
SRP = '5500

(c)

Figure D. 2 Examples of the Operation of %'PBSET.
-72-

FLOWLIST D'.2 %'BPSET

Enter: %BPSET

APLUS • "A"

XPLUS 14X-

SA2
yes

IS, LRHP ye0

"A" "- APLUS + flag Character last read is re-
Store in :ell at loc. 7given placed with modified value
by LRMP/LRHP a ven and break point is set in2nd cell

APLUS ÷ NULL

Jump.-• A

"A' - APLUS *e---------_

Character last read is re-
placed with modified valueStare in cell at loc. giveninstcl

by LRMP/LRHP' ,in st tell

Read 2nd cell

APLUS - "A"

XPLUS "

Store F-NULL at loc. given This location is in 2nd cellby LRMP/LRHP
yes

IS: XPLUS '40 - A Did last character read

Jump .C have flag

SA APLUS + XPL US SAl contains only character
LRMP • LRMP + I + flag removed from string

RMP contains return loc.Jump B,-
NEW is stored in this loc,

-73-

Continue *, C

SAl 4- APLUS
First Character or NULL

Read one character removed from

Exchange halves of "A"

APLUS -o- "A"

Read next character

"A" o "A" + APLUS "A" now contains both
characters, less flag, storedin loc. following break point.

"X" contains flag.yes
IS: "A" = NULL, NULL Are both characters NULL's

SA2 - "A" + flag Set return flag

Jump - B

SAl - SAM + flag 9-- Set return flag

Store NEW at (LRMP)* * B Set break address

SRP 4- RMP
Set return address

Return

-74-

$RTBP-(string return breakpoint)-This subroutine is used to return the break-

point which was set by %BPSET. RTBP adds the character which was stored in SA1

and then adds the two characters stored in SA2. The return address is stored in the

string and the value of NEW is updated. The read address is set to the string Ioca.-

tion containing the character which was passed via SAI.

It should be noted that before calling AMTBP, WMPiAVHP contains the loca-

tion of the first cell following the inserted string. This address resulted from the

routines whlzh inserted the string; X'COPY, ýWRITE, or 'NWRT. WMP7WHP may

not be modified before the call to ,RTBP.

RTBP checks the data that was passed via SAI and SA2 to see if they contain

any information. SAi contains only one character and this character will contain

information only if it does not contain a NULL without a flag. If SA2 contains any

information it will contain at least a flag, otherwise, SA2 will be zero and a flag

is added to SAl.

The reader should refer to Flowlist D.3 fc. outline of the operation of this

routine

-75-

FLOWLIST D.3 ,TBP

Enter: ATBP

RMP - WMP Set read loc. to 1st string
add loc.

RHP -WHP
no

IS: WHP 0 Check Ioc. of next cell
yes

IS: SA1 '36 -4- A Next cell is in Ist half
of word. Check SA1 for
NULL-without a flag

Write NULL in 1st cell SAl is to be wrtten. Write

NULL to fill 1st cell
Write SAl in 2nd cell Write SA1 in 2nd, even if

it does not contain informa-
tion, to fill out wordno

-- IS: SA2 = 0 4- A

Store SA2 ut (WMP)* SA2 contains information.
Store both characters at
once

WMP -4 WMP + 1

Store SRP at (WMP)* Store return loc.

NEW *- WMP + I Update NEW

Return

-76-

%DCLAS -(string derivative classifacation)-This subroutine is cal!ed by DCONT

to classify the substrings, of the work string, as given below. After claý.sifying

,XDCLAS calls the appropriate subroutine which does the actual expansion. The

different forms of the substrings are listed below with their expanded form on the

right.

D.1 D ((,M)*) (

D.2a D (%1) 02)) (D (l) S2) + D (:2)), (%l')

D. 2 D ((%1) (2)) = (%]1) (%2), q (I)

D.3 D (%] + %2) = (D (%I) + D (%2))

D.4 D ([) [D

D.5

D.6 D D

D.7a D (A* ..) D ((A)* .)

or

D. 7b D (A . .. D = (A)

D.8 D VI .%'2) (D (1) . D ('2)), whkre 'A' is one or more Iiterals

and '%" represents any substring.

%'DCLAS starts at the left of the string searches for the 'D' and saves its loca-

tion in THP/TMP. The following '(' is then found and its location stored in T2HP/

T2MP.

This parenthesis forms the start of a level. The number and type of the terms

• The first eight forms ore numbered according to the subroutines which use these

forms. Due to a reorganization of the subroutines there is no form D.5.
-77-

is tested to find the chara :teristics of the substring. Figure D.3 shows the different

characteristics for the different forms and also the set of pointers which gives the

location of parts of the substring. For substrings of the forms 2 o.- 7 the final testing

needed to indicate the proper expansion is contained in the individual expansion

routines. It should be noted that forms 3 and 8 are identical except for the connec-

tive operator and are expanded by the some subroutine.

After the substring is classified the proper expansion subroutine is called.

These subroutines are titled according to the form they handle; e.g. , XDF1 expands

substring of form 1. If any changes were made in the string by the expansion sub-

routines this is indicated by incrementing DPC. When these subroutines return to

%'DCLAS the read address (RHP,/RMP) is left pointing to one of the characters in that

portion of the string which was modified. %'DCLAS then searches for the next char-

acter ' D' and the process is repeated.

%'DCLAS returns to the calling routine when it encounters the end flag. The

calling routine then tests to see if any changes were made in the string. If changes

were made then %DCLAS is called again to see if any new forms were generated during

the last expansion. This process is repeated until there is a pass with no changes.

The reader is referred to Flowlist D.4 for an outline of this routine.

-78-

4/))

Uc
LU

z

00

0 E E -

z $. L
4- 4

0

0- CI- CL u~

LL 0 >

0 *0 a -N a- oe

E ~0 0. 2 .. 2o -. j W N w

U-

0 a)0

CNC
E L.

UU-

FLOWLIST D.4 %bCLAS

Enter: %SCLAS

RHPAMP -- O/DRSTRT Set string starting address

Read a character ÷ A
no

IS: Char. =

Return End of one pass
no

---*IS: Char. = 'D' -o- A

THP/TMP 4- LRHP/LRMP Save loc. of 'D'

Find '('

Save loc. in T2HP/T2MP

Read a term ,SLVL
yes

IS: Term last in level -• B
no

IS: Term followed by '+' or * Forms 2, 3 or 8

Call: X'DF38 Form 3 or 8

Jump "- A

Read next term
no

IS: Term last in level

Jump

-- Call: XDF2 Form 2

Jump - A

Continued on following page

-80-

Centinued .,. B
no

IS: Last char. Loc. of end character given
by LEHP/LEMP

Call: XDF6 Form 6

Jump -- A

no
SIS: Last char.

Call: %D1D,4 Form 4

Jump -0 A
yes

IS: Last char. :

Call: %DF7 Form 7

Jump - A

no
SIS: First Char. = - Loc. of first character given

by LHP/LMP

Call: %DFI Form 1

Jump -0 A

-81-

XDFl-(string expansion form I)-This subroutine is coiled by %DCLAS to expand

strings of the forrm 'D (, to strings of the form 'D ,

An outline of this routine is shown in Flowlist D.5. The reader should note

that this routine (and some of the other expansion routines) uses the end flag ('(4 ')

not only to indicate the end of a string, but that it is also used to indicate the end

of the substring that is beinq tested or copied. In the flowlist the comments column

is used to represent the string during the different parts of the expansion process.

-82-

FLOWLIST D.5 ,DF1

Enter: %DF1
DPC ý.- DPC + I A change is made in string

RHP/RMP - I-HP/LMP

Read term
Via O'SLVL

Replace following char. with ' £ D ((S*(TL

Set breakpoint
Via %BPSET

RHP/RMP - LHP/LMP Start of term

Copy term to flag D (($)*@ (,)*

Return breakpoint
Via ,RTBP

RHP/RMP .- LEHP/LEMP End of term

Read a character
Reads '*'

Replace with NULL D(%(o (cO*

Find flog

Replace with ') D (() ()*

Return

-83-

'0DF2-(string expansion form2)-This subroutine is called by 'DCLAS to perform

the expansion given below.

(2() V)(2) + D (S2), V =1) =

It should be remembered from the description of ODCLAS that LRHP/LRMP

points to the last right parenthesis in this vibstring. This fact is used to set a flag

which indicates the end of the second term. A flag is also placed at the end of

the first term to indicate its end, Thus when %ETATT is called the start of the first

term is given by LHP/LMP and it ends when the end flag is found.

XETATT is the subroutine used to test a substring to see if it contains lambda;

i.e., it Yests if ri (M) X . The result is returned via the variable ETAVAL. ETAVAL

is set to one if the substring contains lambda; otherwise, it is set to zero.

The expanc*un of the form 2 substring ik shown in Flowlist D.6.

-84.-

FLOWLIST D.6 %DF2

Enter: $'DF2

DPC 4- DPC + 1

Replace last ')' with ' D ((1) (Z2) ((1

RHP/RMP - T2HP/T2MP

Read first'('

Read following term

Store following character in XTEMP

Store location in T2HP/T2MP

Replace with ' 4)D t ('1)@ý %2)au

Test q M1) Via X'ETATT
no

IS: ETAVAL 0 -o B

RHP/AMP •- T2HP/T2MP Does not contain lambda

Replace flog with)' D (V1) (Z2)c',

Set breakpoint

Add character stored in XTEMP D (%1)) (%2)0,

Return breakpoint

Find end flag

Replace with NULL D (%I)) (ý2)

Return

Continued on following page.

-85-

Continue -0 B Contains lambda

RHP/RMP - T2HP/T2MP

Replace flag with ')'

Set breakpoint

Add character stored in XTEMP D ((%1)) (2)(ý-

Return breakpoint

Find end flag

Set breakpoint

Add 'D(' D VI) V2) (
RHP/RMP ÷ T2HP/T2MP Start of second term

Copy second term to flag Via $COpy

D (VI)) (X<2) (a, D ((5<2)
Add '))' D (51)) (52) 1 D (())

Return breakpoint

Find flag

Replace with '+' D (•5))(52) + D (0(2)))

RHP/RMP 4- THP/TMP Address of first 'D'

Read character

Replace with ' ('

Set breakpoint

Add 'D'
(D ((5<1)) ($2) + D ((52)))

Return breakpoint

Return

-86-

•9F38-(string expansion forms 3 and' 8)-$DF38 is called by 'DCLAS to expand

the strings given below.

D (XI + X'2) (D (%I) + U D ;')

D I .)= (D (%I) .D (/2)

The expansion of these two forms are identical except for the operaaol whlich connects

the two terms, thus ,1)DF38 can perform both expansions. In fact 'D):138 dom- nuo

test for the operator, but finds it and stores it until needed without dete,,inilig

the operator, The example string shown in Flowlist D.7 arbitrarily uses thc opperesor

The re6der should note that in this expansion (and in some of the other ex-

pansion forms) that the string is expanded from right to left. This procedure is

dictated by the subroutine $'BPSET whic'h is used to see the string breakpoint. When

$'BPSET is calledt several characters in the cells, following the location where the

breakpoint isset are moved. Thus, this character will no longer be stored in the cells

whose'locations were given by THP/TMP, T2HP/T2MP, etc.

"-87-

FLOWLIST D.7 $tF38

Enter: %DF38 D (%1 + '2)

DPC .- DPC + I

RHPAMP - T2HP/T2MP Location of First '('

Read term Finds end ')'

RHP/RMP M - LEHP/LEMP Location of end ')'

Read a character

Set breakpoint

Add ')'

Return breakpoint D V1 + '2)

RHP/RMP .- T2HP/T2MP

Read one character Reads '(C

"K Read following term Find '+' or

IS: Following character

= '+' or 1 .

Save character in XTEMP

Set breakpoint

Replace operator with ')' D VI1)52)

Add character stored in XTEMP D My) + $'2)

Add 'D(' D (51)+ D (2))

Return breakpoint

-88-

RHPAMP * THP7/IMP

Read a character
Reads 'D

Set breakpoint

Replace character with '(' ((%1) + D (,2)

Add 'D'

return breakpoint
(D '1) + D ('2))

Return

-89-

%'DF4-(string expansion form 4)-XDF4 is called by 'DCLAS to expand the

substring given below to the form on the right.

D(D() :)

The operation of this expansion subroutine is given in Flowlist D.8

This routine is based on the use of %'SLVL and thus gives the reader a chance

to study the operation of XSLVL without a lot of other operations being performed.

When 'DF4 is called the location of i he start of the inner term (the '1$],) is

given by LHP/LMP. This address is transferred to the read address (RHP/RMP)

and the term is read via $SLVL. 'SLVL returns with the address of the first

character (the '[') in LHP/LMP, the address of the last character (the I') in

LEHP/LEMP, and the address of the following character (the)) in LRHP/LRMP.

-90-

FLOWLIST D.8 "DF4

Enter: %DF4 D ({ '1)

DPC - DPC + 1

RHPAMP -, LHP/LMP

Read one term Via $SLVL

Replace following character with ']' D (J I

RHP/RMP +- LEHP/LEMP

Read character Reads '1'

Replace with ')' D (10)]

RHP/RMP - LHP/LMP

Read character Reads '

Replace with '(' D (($cl

RHP/RMP - T2HP/T2MP

Read character Reads '('

Replace with 'D' DD ($1

RHP/RMP -+- THP/TMP

Read character Reads 'D'

Replace with 'I' ID ($I

Return

-91-

'DF6-(string expansion form 6)-This subroutine is used to expand the

substring given below to the form on the right.

D (M)) = D($)

When 'DF6 is called the location of the inner left parenthesis is given

by LHP/LMP, while the location of the inner right parenthesis is given by

LEHP/LEMP. This routine replaces the inner parenthesis with NULL's.

-92-

"ODF7-(string expansion form 7)-This routine is used to expand the form

given below.

D (A* ... A) = D ((A)* ... A), where A is any member of

the set of alpha characters (the literals, lambda, and phi). If this form does

not exist, no change is made in the string. The purpose of this expansion is to

prepare the string for processing by X'DF2 and $DF1 on the foilowing passes.

During the last pass through ODCLAS all of the substrings are of the form

'D (A. . . .A)' thus only X'DF7 is called to expand the substrings. As X'DF7

makes no change in these substrings DPC is not incremented and its value re-

mains zero. A DPC of zero is used to indicate to DCONT that the last pass has

been made.

The operation of %DF7 is shown in Flowlist D.9.

.- 93-

FLOWLIST D.9 ,'DF7

Enter: 'DF7

RHP,/RMP -*. LHP/LMP Term start

Read character
no

IS; It an alpha character

Store location at LHP/LMP

Jump
yes

IS: Character
yes

Return Make no changes

DPC - DCP + 1 D (A*. .A)

RHP/RMP .-o LHP/LMP

Read character Reads alpha character

Store character in XTEMP

Set breakpoint

Replace character with '(' D ((*.A)

Add character stored in XTEMP D ((A*. .A)

Add ')' D ((A)*. A)

Return breakpoint

Return

-94-

%0L'TATT-(string eta function test)-$'ETATT is called by 'DF2 to calculate the

eta function of a substring. The starting address of this string is passed in LHP/LMP

and the ond is indicated by the end flag. The eta function is used to determine if

a string contains lambda, thus ;ETATT is also called by DCONT to test the final

string; giving the operator the information needed to determine the output of the

state associated with this string.

The following equation defines the eta function.

fX,
if Xf x~

0, if X4 %

From this definition the following rules can be obtained.

D.9 q) (L) 0, where L is any literal

D.1O r (X) = X

D.11 n 0) 0

D. 12 q (%*) X, where X' is any substring

D. 13 9 (ý'1) (%2)) q(VI) . 9 (2)

D. 14 q (f (%] , '2)) f (q ($1), 9 (%2)), where f is any Boolean function.

From these rules we can see that the eta function can be calculated as a

Boolean function if the concatenation operator is treated as the Boolean AND op-

erator. This procedure was used in the design of $tTATT. The resulting value of

the eta function was encoded as the Boolean variable ETAVAL witt: a one representing

the condition where q = X.

The subroutine $tTATT is used to implement rules 5 and 6, while ZBETAT is

-95-

called to implement the first four rules. To understand the logic of %ETATT it is

necessary to introduce the following Boolean identities.

D.15 1 + X= 1

D.16 0+ X=X

D.17 1. X X

D.18 0 X 0 where X is either l or0.

These identities are used to determine if a given term of the substring needs to be

tested and how the results are combined. To perform this determination XETATT

was broken down into four modes or sub-sections.

AND-Lambda, OR-Phi Mode. This mode is used to implement rules D.16

and D.17. These rules state that if the previous term had a value of one and was

followed by the AND operator (or concatenation) or if the previous term had a

value of zero and followed by the OR operator then the results are determined

solely by the present term. When ,'ETATT is called the results are determined solely

by the term to be tested; thus 9ETATT starts in this mode. In this mode the term

is read by %'SLVL to obtain the starting and end addresses needed by O'BETAT.

After X'BETAT ;s called it can return one of three values. If O'BETAT executes

a standard return then ETAVAL will either be one or zero depending on whether the

term tested contained, or did not contain, lambda. Under this condition X'ETATT

goes to the NEXT mode which determines the next mode of the subroutine. On the

other hand, a non-standard return is executed by 'BETAT to indicate that the term

was too complicated to evaluate. To evaluate this termn it is necessary to simplify

the term by "going down in level".

-96

OR-Lambda Mode. This mode is used to implement equation D. 15. This;

equation states that the results ate known and that there is no need to test the

following terms on the some level. In this mode each term is read until the end of

the level is reached, at which time control goes to the NEXT mode.

AND-Phi Mode. Inthismodean implementation of equation D. 18, all terms

are read and passed over until either the end of level is reached, or the O, oper-

ator is found. When the end of the level is reached control goes to the NEXT mode.

If the OR operator is found the control will go to the OR-Phi mode.

NEXT Mode. This mode is used to test for the end of a string, find the next

mode, and to implement the operation of negation. When this section is entered

the character following the lasý level has been read and it is stored in the accum-

ulator for testing.

If this character is the end flag then the end of the substring has been found

and ETATT returns with the current value of ETAVAL. !f a right bracket is found

(this implies that the corresponding left bracket was passed over in the process of

"1'going down in level") the present value of ETAVAL is negated. The finding of

thie OR operator causes control to go to the OR-Phi or the OR-Lambda mode de-

pending on whether ETAVAL equals zero or one. The finding of the AND operator,

or the concatenation operator, causes control to go to either an AND-Phi or the

AND-Lambda mode depending on the value ETAVAL. The finding of either the OR,

AND, or concatenation operators indicate that a new term follows. Thus control

is passed to the appropriate mode to evaluate this term.

If control has not yet branched to another mode then the character (by

-97-

elimination we can see that the character is either the o)6 or the ') Is ignored

and the next character is read. Control remains in the NEXT mode and this

process is repeated.

The operation of 'ETATT is shown in Flowlist D. 10.

-98-

FLOWLIST D.IO 1ETATT

Enter: %ETATT

RHPAMP 4- LHP/LMP

Reqd a term 4- A AND-Lambda, OR-Phi
Mode. Find address for

Call: 'BETAT OBETAT

yes
IS: Return standard

RHP/RMP - LHP/LMP No decision

Read first character pf term Go down in level

Jump *'A

RHP/RMP 4 LHP/LMP Finds character following
term

Read the term

Jump . B Find next mode

K Read a term . C OR-Lambda Mode

IS: Term last in level

Jump - B Find next mode

%1o Read a term <- D AND-Phi Mode
yes

IS: Term last in level - B Find next mode
no

IS: Term followed by '+'

Jump * A OR-Phi Mode

Continued on following page.

-99-

Continue •- B Finds next mode
no

I-- IS: Term followed by @ 1

L Return Done

IS: Term followed by ' n'

ETAVAL - ~ ETAVAL
no

IS: Term followed by +
yes

IS: ETAVAL 1 -• C OR-Lambda mode

Jump -. A OR-Phi mode
yes

IS: Term followed by A'('['oralpha
Concal'enation character

yes
IS. Term followed by ' '

Read next character

Jump -o B

Continue -W
yes

IS: ETAVAL =1 - A AND-Lambda mode

Jump - D AND -Phi mode

-100-

0'BETAT-(Basic eta function)-This subroutine is called by ,"TATT to implement

the first five rules of the eta function (as given in the previous section of ,ETATT).

The start of the term to be tested is passed via LHP/LMP while the end of the term

is given by LEHP/LEMP.

If the term ;s enclosed in parentheses (or brackets) it will contain lambda if

the star operator follows the term (Rule D. 12). This is indicated by executing a

standard return with ETAVAL equal to one. Or, the other hand, if the term is not

followed by the star operator then lower level term(s) which form this term have to

be tested to determine the results. This is indicated by executing a non-standard

return to ,ETATT which finds these lower level term(s).

If the term is not enclosed in parentheses then it consists ofoonlyalpha characters

and the star operator (as given by the definition of "term" in the section on the sub-

routine $'SLVL). From the first five rules of the eta function we can see the term

contains lambda if, and only if, it consists of the following.

D.19 'X'

D.20 ' X*'

D.21 IL*1 , where L is any one literal

D.22 '0'*'

D. 23 Or any of the above terms concatenated.

%'BETAT tests the terms for the above properties and executes a standard re-

turn when the end of the term is found. At this time ETAVAL will be equal to one

if the term had the above properties, otherwise ETAVAL will be equal to zero.

Flowlist D.1 shows the operation of 'BETAT.

-101-

FLOWLIST D.11 %BETAT

Enter: %BETAT

ETAVAL -o 0

RHP/RMP -o LHP/LMP Address of 1st character
of term

Read character
yes

IS: Character ='(or 'P B
yes

IS: Character an alpha chr,r. - A Term consists of alpha char.
and ,,*

Return End of term
yes

IS: Character = 'XI

Read next character A literal or phi must be
no followed by a

IS: Character =

E TAVAL - I

Read next character

Jump -b- A

ETAVAL 4 0 Does not contain X

Return

ETAVAL - 1 -4 A 'X may, or may not be
followed by '

Read next character
no

IS: Character

Read next character

Jump . A

Continued on following page. -102-

Continued O- A

RHP/RMP - LEHP/IEMP Term isenclosed in paren-
theses or brackets

Read character Reads last character of
term

no
IS: Character -

ETAVAL 4- 0 Contains lambda

Return

-- Non-standard return No decision made

-103-

%MATCL-(string match and clear)-This subroutine is called by DCONT to

perform the operation of taking the derivative and simplifying the string. The

final derivative operation is defined as,

D/A/(AIA 2---A) A X(A 2---AN), ifA =A

, if A /d A

$'MATCL performs the above operation by comparing the derivative name

character (passed via CHRMAT) with the first character in the term enclosed by

the characters 'D(' and by ')'. During this operation these enclosing characters

are removed.

When the end flag is found the operation halts and four subroutines (%'iSIM,

X2SIM, %'3SIM, and %4SIM) are called to simplify the string. Simplification is an

iterative process similar to the expansion process performed by $'DCLAS. In other

words multiple passes are made through the simplification routines until a pass is

found during which no changes were made. The number of changes made are tallied

in the variable DPC. It should be noted that the read address is set to point to the

start of the string before calling, rather than within the subroutines.

The operation of $'MATCL is shown in Flowlist D. 12.

-104-

FLOWLIST D.12 O'MATCL

Enter: %MATCL

RHP,/RMP -*- O/DRSTRT Starting address

Read character 4. A
no

IS: Character '

RHPAiMP -I O/DRSTRT

Simplify string Via 'ISIM, ,'2SIM,
0'3SIM, and X4SIM

no
IS: DPC = 0 Any changes made?

Return

no
L IS: Character = 'D' "• A Find next 'D'

Replace 'D' with NULL

Read next character Reads '('

Replace with NULL

Read next character Reads first alpha character
no

IS: Character = CHRMAT . B

Replace with 1'X A match

Find next s)I

Replace with NULL

Jump i. A Find next term

-105-

Continue - B

Replace character with • No match

Read next character
yes

IS: Character

Replace with NULL

Jump

SReplace with NULL

Jump-s- A Find next term

-106-

