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ABSTRACT

The mathematical model used in previous Davidson Laboratory adapta-
tions of linearized unsteady lifting surface theory to marine propellers
has been revised by removing the so-called ''stalrcase'’ approximation of
the blade wake and replacing it by an ''exact'' heilcoidal blade w. ke, A
new numerical procedure and program based un the present modal has been
developed to evaluate the steady and unsteady blade loading distributions,
which are used to determine the bearing forces and moments., Systematic
calculations of these forces and moments for a series of propellers show
better agreement on the whole with experimental measurements than did
the earlier calculations for the same series. In addition, the chordwise
loading distributions are much smoother than obtaired previously. However,
the quantitative improvement must be weighed against the considerable
increase In computer time over the old method.
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NOMERZLATURE
Qv
function definad in Eq. (28)
expanded semichord length at each radius, ft
propeller-induced forces iIn x,y,z direction

camberline ordinates from face pitch line at each
radial position

function defined in Eq. (28)

modified Bessel function cf first kind, or order m
defined in Appendix B

defined In Appendix B

defined In Eq. (28)

index

Bessel function of order m

kernel of integral equation

kernel after chordwise Integrations

modified Bessel function of second kind, of crder m

variable of integration

influence functions (Eq. 40)

loading distribution in 1b/ft
spanwise loading distribution In 1b/ft

spanwise loading coefficients of Birnbaum distribution

integer multiple

blade bending moment about face pitch line
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final value of m in summation

index of summation

order of lift operator

number of blades

blade index

order of chordwise mode

normai to surface at loading point

normal to surface at control pcint
pressure

pitch at each radial position
propeller~-induced moments about x,y,z axis
order of harmonic of inflow field
Descartes distanrce,

radial ordinate of control point

propeller radius

propeller 1ifting surface

normat sum of curtailed Birnbaum series
chordwise location as fraction of chord length
time, seac

uniform velocity

Fourier coefficients of velocity distribution
velocity due to camber effects

velocity due to flow-~incidence angles
velocity distribution normal to propeller
longitudinai ordinate of control point

cylindrical coordinate system of control point
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£,0,0

transverse cartesian ordirate
vertical cariesian ordinate
angle In Eq. (18)

half-length of radiel :irip

small length

chesdwise modes (Eq. zl)

&ngu- sr ordinate of loading point

ang. ¢ position >f loading point vith respect to
miG. -4 itua

piroje: tad blade ¢:7at 'ord lengtn, radlans

%11 (ﬂ"), ns ', 2,0."

gecmetric  “*ch angle at cach radial position
angular chordwis: location of Inading point
defined in Appendix 8

defined in Appendix B

oirder of harmonic of loading distribution
variable of integration

longitudinal ordinate of loading point
cylindrical coordinate systom of loading point
radial ordinate of loading point

mass density of +iuid

angular measure of skewness

o -of

Cesaro sum of curtailed Birnbaum series

varlable of integration
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velocity potential
generalized 1ift operator (Eq. 25)
avi 2 ar ordinate of control point

angular oosition of control point with respect to midchord
line

angular chordwise location of control point
acceleration potential
angula. velocity of propeller

angular frequency of loading

refers to control point

refers to control point
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I NTRODUCTION

Iu the course of a series of investigations concerned with adapting
linearized unsteady 1ifting surface theory to marine propellers, Davidson
Laboratory has sought to Improve the mathematical model and techniques for
solving the surface integral equation, and evaluating tihe propeller loading
distributions and resulting hydrodynamic forces and moments (see for
example Refs. 1-5). A new methods has been deveioped for the inversion
of the downwash integral equation which employs the "generalized lift-
operator"” technique. This new approach eliminates many of the numerical
difficulties arising in the commonly used "mode-collocation" method.

Certaln mathematical simplifications have been introduced in these
studies, in addition to those imposed by the linearized version of the
problem. The major simplification is the approximation of the helicoidal
propeller wake by a "stalrcase" function.a in Reference 1, which presents
the exact treatment of the helicoidal wake for a simple sector-form blade
with flat-plate chordwise loading distribution, the results are found to
agree well with those for the same propeller computed with the staircase
approximation of the wake., Admittedly, only one set of calculations was
performed, under several conditions; the complications in the exact wake
treatment considerably lengthened the computation time on a high-speed com-
puter (1BMT090) and appeared too formidable to allow utilizing that method
more fully at that time. [t was felt that use of the exact treatment
should be deferred until a time when more accurate experimental techniques
would be established for measuring the hull wake upon which all calcula-
tions depend, thus justifying greater accuracy in the theoretical treatment.

In the meantime, the numerical procedure in the solution of the
integral equation was being improved, a) by incr2asing the number of
chordv:ise modes, b) by introducing more appropriate numerical schemes to
deal with the sinaular behavior of the kernel function, with the problem
of truncation of infinite series, and with the problem of "overlapping"
of the wake generated by wide blades, and c) by accommodating arbitrary




blade camber varfation. In aadition, the problem of instability of the
chordwise loading distribution was treated and stabiliity achleved.h

The results of a number of theoretical calculations over a wide

range of expanded area ratio have shown that the trends of the hydrodynamic

forces and moments fcllow the experimental trends.h The magnitude of
steady-state thrust and torque have been shown to agree within 5-8% and
the magnitudes of unsteady thrust and torque within 5-15% with those of
NSKDC experiments of a serles of 3-blade ~ropellers operating In an
accurately measured screen-generated wake.

During the period of these investigations also, the computer program
has been converted for the CDC 6600 high-speed digital computer so that
the running time has been reduced cons!derably. Now Information about
steady-state and time-dependent propeller loading distributions and corres-
ponding hydrodynamic forces and moments about blade bending moments and

pressure signutures at various field points can be obtained in a compara~
tively short time.

Because of the avallability of high speed digital computers the task
previously considered formidable has been undertaken, viz., to improve the
mathematical model by removing the so-called "stalrcase" approximation.

A new kernel has been developed which takes into account the exact helj-
coidal wake and the exact blade geometry through the entire range of
expanded area ratio. Thus an exact linearized version of the unsteady
1ifting surface theory as adapted to the propeller case Is established.

A numerical procedure and corresponding computer program Is developed
here which will furnish the blade loading distribution and the resulting
hydrodynamic forces and moments at any desired frequency. In addition,
the program has the capability of evaluating blade bending moments about

the pitch line at any radius and the pressure field around the operating
propeller.

This study was sponsored by the Naval Ship Research and Developrent
Center, Hydromechanics Research Program, Contract NOOOI4=67-A«0202~0018.
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LINEARIZED UNSTEADY LIFTING-SURFACE THEORY

The linearized unsteady lifting~-surface theory for a marine pro-
peller, with its blades lying on a heliccidal surface and operating in
nonuniform flow of an Incompressible, Ideal fluld, was formulated by
means of the acceleration-potential method in previous Davidson Laboratory
papers. The development presented here is an adaptation of the previous
developments, tresating the helicoidal wake exactly as in Ref. 1, and
incorporating all the improvements of the later papers, the exact blade

geometry, a large number of chordwise modes, the "generalized 1ift-operator"
technique.

It Is known that evaluation of the blade loading distribution requires
the solution of the following surface integral equation which relates the
known velocity distribution to the unknown blade loading,

W(x,r,p;5t) = Lr L*(Ep,65t) K(x;")q’;g’p)e;t)ds (i)
S

where x, r, 9 and §, o, 8: cylindrical coordinates of control
and loading points, respectively

t: time, sec.
S: propeller surface, ft2

W: known velocity distribution normal
to propeller blades, ft/sec

L': unknown loading distribution, 1b/ft2

K: kernel function representing the self=
induced velocity at a point on the blade
due to unit amplitude lcad at each and
every point on the blade, ft/lb-sec

The oscillatory loading and velocity distributions can be written
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L'(€,0,05t) = 50 Mg, 5, 006N (2)
)\::

W(x,r,p5t) = 50 w(q)(x’ r)‘P)etit (3)
q:

where A and q are positive integers and designate order of harmonic of

the loading distribution and of the inflow field, respectively, the former
to be determined by the analysis. The propeiler rotates with angular
velocity -0;* The velocity W is caused by flow disturbances such as those
due to hull wake, incidence angle or camber of the blades. In the linear
theory their various effects are treated separately and simply added
together.

The kernel function K has Leen developed in Ref. 6 without resorting
to any geometric approximation. iIn that reference, which is concerned
with two interacting propellers of counterrotating or tandem propulsive
systems, a numerical procedure vas suggested but not carried through to
a computer program. Furthermor:. treatment of numerical difficulties,
such as the Cauchy-type singularity in the separable form of the kernel
and a higher-order singularity with finite "Hadamard" contribution in the
spanwise integration, was merely outlined or referenced. The present
development follows that of Ref. 6 but with greater attention to detail.

DEVELOPMENT OF THE KERNEL FUNCTION

tt Is known that the pressure field generated by a (ifting surface
S is glven by distributed doublets with axis parallel to the locai normal,
and with strength equal to the pressure lump across the surface S. Thus
the pressure P at a point (x,r,9) at tiwe t will be given by

1 ) 1
¥(x,r,05t) = o= .” AP(E,p,6;t) ds (1)
l&ﬂpf S oA RY(x,r,p; 599,9)
g

minus sign for right-hand rotation ({1 has absolute value)
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In Eq. (%), ¥ is the acceleration potential function defined

as P/pf

Pe fluld mass density

3/3n normal derivative on the surface $ at the
loading point (&,p,0)

n unit nonnal vector having positive axial
component

oP(E,p,05t) pressure jump across the lifting surface,

f.e., &P = P - P_, pressure difference

between positive and negative oriented
surfaces (with respect to x-axis)

L

R*(x,r,9;8,0,0) [(x'g)a + 1%+ pa - 2"9305(9"?))2
= Descartes distance between the given

control point and loading point

fut

For doublets with pulsating strength AP(E,,,8)e’  at point (&,p,8)

which rotates with angular velocity -, Eq. (4) yields

3 1

¥(x,ry05t) = g==n [[ AP(E,p,0)e! " ds (5)
" ﬂpf J; g dn R'(X,I‘,CP;E,p,eo-Qt)

where o = frequency, radians/sec

90 = angular position with respect to thc blade midchord line

When the relation between velocity potential § and acceleracion
potential Y is utilized, viz.,
| * T!
! Xe
§(x,ryp5t) = - v J" ¥ttt - —U"")dT' (6)

-0

where U = forward velocity and the lifting surface is identified as t'
helicoidal surface of an N-bladed propeller, where both control and loading
points rotate with angular velocity - , then the expression for the

velocity potential is given by
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N = Iaat
(x’ r’ ¢° t) “.‘ l-o hﬂpfu

X
) {.f AP(A)(%P,OO) !,, elrla(r-x)-8, ] % (%)drvds

where a = Q/U

A = w/Q , order of harmonic

5‘,. = 2“/" (n-l)’ ns= ],20000“

R= {(1'=E)2 + r® + p2 - 2rpcos[6°-cp°+'6n-a('r'-x)]l%

P = angular position of control point with respect to blade

mid=chord 1ine

I — St

(1)

The self-induced velocity at (x, r,tpogt) on the helicoldal surface

('aeo, ReH. side of Eq. (')), will be glven by

N & It
<) e
.|.=«S-n—rQ=- 2

n=1 A=0 hﬂpfu

ey & [ L) 2

) an

)dr1ds

(8)

where 33-5, Is the normal derivative on the helicoidal surface at (x,r,¢),

the control point.

The “irectional derivatives normal to the helicoidal surfice, which

Is given by x = cpo/a or £« Bo/a , are:

d

.l (a5 - )
LUV v R T

(9)

I
I
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The L.H. of Eq. (1), viz., |

- s iq(Qt-
w(x,r,cpo;t) = 2 w(‘l) (x’r’%)elqﬂt =3 V(q)(r)e q(qt :po)

q=0 q=°

(1)

which is the known velocity distribution obtained from measurements, has

iqt , whereas the right-hand side,

which Is equivalent to Eq. (8), has time dependence of the form e'hnt.

This dictates that

time dependence of the form e

A=g

hence
| = J‘J‘ L'(q) (P,eo)e‘qm K(r,gpo;p,eo;q)ds (12)
S
where

L'(Q)(p,eo) = ap(M) (p,0,), 1b/ft?

I N _iq8 d X iqa(Tt-x) 3 ,1
oy M e 3 (R’
¢ -0
be 2o (x-8) (13)

and by 8§ ~ 0 Is meant x - ¢°/a and £ -~ eo/a. The limiting process is
Introduced to avoid the difficulty arisinc in the mathematical wanipulation
due to the high-order singularity.

The surface integral given by Eq. (12) is equivalent to

s
R
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p
. J‘eb I{L'(q)(p, eo)elqﬂtK}V_l;:%f_e: ﬁdpdeo (14)
-eg p
where eg is projected semichord length of the propeller blade at the load-
ing point, in radians, and the factor (1 + a2p=/ap) is the result of
changing the integration over the actual propeller blade to integration
over its projection in the propeller plane. [t should be noted that this

does not correspond to placing the dipoles on the projection of the blade
in the x = O plane.

With the transformation

8, = of - eg cos8,, (15)

whwere ea is angular chordwise location of the loading point, and of is
angular position of the midchord line of the projected blade frem the

generator line through the hub (of Is a measure of skewness and Is positive
towards the trailing edge) and letting

{9 (5,00 = L09(5,0.) pf  (16/5) (16)

the integral becomes

| = f: (RO 0s8)e 9Tk} .@ sing_de, dp ()
[}

Use will be made of the following expansion scheme for the inverse
Descartes distance

Lo 1(rre)2 + 2 4 02 - 2rp cossf?

=2 T ™ 4‘: 1 (1k1p) Km(mr)e‘(“‘g)" dk (18)
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for p < r , where |m( ) and Km( ) are modified Bessel functions of the
first and second kinds. For p > r, p and r are intercianged in the
product of the modified Bessel functions. Here B =0 - ¢ + §n - a(Tr-x).

After taking the derivatives as indicated in Eq. (13) and intcgrating
over T' (see Ref. 1), noting that

g RICE) N for (m-q) = N =0, I, 22.,,

O for all other m-q
n=1

the kernel function becomes for p < r

-]
N pr Tim im(8_- )
K(Py9gr050039) = = g —— — L e ©°0F°
e TorD [(1432,2)(14a2r2) 2 5O

M= -

me=q+ 4N

. {Pla(m-Q)(X-g)[aa(m_q) +,£%] [a®(m-q) + j%] |m(a|a_q|p) Km(almmq'r)

P

o0

k k
-5 L‘"" + ilak + F"‘g.),"‘(x-t) 1{1k1) K (ki)

k - a(m-q)

k} (19)

It Is obvious from Eq. (13) that in the limit as § -~ O, l.e., as
P = A% and eo - af, R will go to zero when 5 = r, Gn =0 and ' = 0.
Appendix A investigates this singular behavior of the kernel before and

after the 1/R expansion of Eq. (18} and shows that the singularity is of
high order with "Hadamard" finite contribution,

In addition, a Cauchy-type singularity is introduced in the k-integra-
tion of Eq. (19) through the serles expansion of 1/R, which nevertheless

Is essential.for the reduction of the surface integral equation (17) to

a line integral equation. The kernel function Is now in separable form

which facilities the chordvise integration and permits use of the

"generalized" 1ift operator technique for inverting the integral equation.
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REDUCTION TO A ONE-DIMENSIONAL INTEGRAL EQUATION

o i

The unknown loading L(Q)(p,ed) of Eq. (17) will be approximated in
the chordwise direction by the Birnbaum mode shapes

R g 0w oL

3
3

(9,00 = 3 {9,y o(1) + éa LR () e(hy) (20)

where L(q’")(p) are the spanwise loading components to be determined by
the solution of the integral equation and

T R R e S A R G

i i

0
8(1) = cot -;}

8(n) = sin (a-i)ea , n>1 (21)

Now after the limit is taken in Eq. (19) and with the trigonometric
transformation of {15), the earintegratIOn can be performed analytically.

Both sides of the downwash integral equation are then operated on

A TR A R AT TS A

by the "generalized" 1ift operator, the structure of which Is dictated by
the separable form of the kernel (see Refs. 2 and 5). This method elimin-
ates the ¢o-dependence of the integral -quation. Thus a set of line integral
equations is obtained with maximum order of 1ift operator m equal to maxi-
mum number of urknown chordwise modes n. The solution of the m = n integral
equations is obtained by the collocation method.

il

!
3

With the transformation

m ; 7 e
A A T AU M A e i

r r
¢° =0 - eb cosg,

where ¢ is angular chordwise location of the control point and the super-
script r refers to values at the radlal location of the control point,
the non-dimensionallzed downwash integral equation is reduced to the

following form for each q 2 0 and each m= 1, ... amax’
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LGN ""'5: § L0y R (¢ 5sa3d, (22)
=10
where from Eq. (i1)
- n

w9y < 11 4Ry W9(r,q,)do, (23)
T VN T & S L LU ) R
K™% (rp59) = 5 ! { 8(i) 8(7) ——= L singun,dy,

(2%)

and the 1ift operator function &(m) is

(1)=1- cosy,, (the Glauert 1ift operator)

8(2) =1+ 2cosP,,

3(m) = cos(ﬁ-l)cpa form>2 (25)

In explicit form, Eq. (23) becomes:

'( ;-) m

W q: (r - V(q:( r) e"qu l(m)(qe;) (26)

v

- m o iq8 cosy

where l(m)(qS;) =% I #(m)e by
o

The latter is evaluated in Appendix B.

The modified kerne! function, after the chordwise integrations, Is
for p<r

il
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R(""‘:ﬁ) - Imdo

- N r hd
N { lmpf?ro} me?- m=E..eo

m=q+ AN

AN OB 2 (0 g) + ] [a¥(mea) + 57 1P (0l )AP(qe)
r p

. lm(alm-qlp) Km(alm-qlr)

® (m) kyarya(? kyaf
n ke 1V ((m- 2)60)A ? m- =)8, )
- -,1, g (ak+ -;%)(ak-l- -.%)e' 3% k_:(m'fq) 2 blm(lklp)l(m(lklr)dk}

-]

(27)

(7) 1. -lxcosea
where A' ‘(%) == f @(n)e s!neadea which Is also evaluated In
o

Appendix B. 1In Eq. (27) all terms outside the first braces are non-
dimensionalized with respect to re? 85 is also p In Eq. (22), and
bo = o' - of

=g - gF,

Let A = k ~ agN, then the k-integral of Eq. (27) Is
[ ] (]

1y = 8 0O g smk_d.z; - o/ tho (" 9 oa(h) g (28)
- o

where
I %-Ac

3() = (IK),, B5 (\)e

Iy (1A+a N1 p) Kp(Ix+aNir) for p < r
(1K), =
!m(lx+aler) Km(l1+alep) forp>r

55,7 0= (nsatate ) anea’ v + gl @ (g- 1002 ((a- Dop)
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Equation (28) has an integrable singularity at ) = 0. The value of the

integrand at this singularity is obtained by L'Hospital's rule, as shown
in Appendix C:

A AT

L T LT

a) when \ =0 and g ¥ 0

llm [g‘zl =q(~2) o {(IK)

B(IK)

B‘ '(0) A ll'o} (29a)

where the upper sign is taken when g > O and the lowes <hen g < 0, and
the derivatives are given in Appendix C.

b) when A =0, £t *=0andm=q=0

AT, R b i

[zt =

c)when \ =0, g =0andm=q ¥ 0

i A

IR

{i’g[m)_;—g-(:&)-].zfno (lK) l }

L

3
2
3
F

LG L o

] [k _,_ + ol + 2] 1 aen® o

2 ot ~ - -
i a:,mi i[et:'l(m) (a0r)A ™) (qaf) -0P1 (M (gl )a M (qeg)]} (29¢)
p

H
H

it S

where

Tt

Tﬁ:w_l (-E-)""' forp<r

" W Wbl i

PAGNET AN ) )
b T e

llm(ll\)m =
b"o l}\-o 'm' (l’)lml ’gor p >

and lfm)(x) and A‘(“)(x) are defined in Appendix B.
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Equation (27) can now be written as

@A) [ =N relo & ¢ 4 gW)-g(-\)
{““Pfuzro } l+a‘r" Mo 19¢) n IO A }
g+ 4N

where
0(0) = (1K) {(@ o B ("o 291 (062 (aep }
A= r P

For large 1\l 2 U., the integrand of Eq. (30) tends to zero.

For large argument lA+aNl(p or r) of the modified Bessel functions,

. e-l¢x+ale Ir=pl
(IK)m of (28, ~ :

2 fro la+adN
so that
-l +aNl ir-pl A
= ~ = aZ(xa+atN + -E§)(¢x+azN+ -miée*' a®
2/rp AlxA+asN| ar ap

1@ (@0F byel) AM (@Fded) oD

If ) and agN are opposite in sign and IAl~laNi, i.e., the arguments are
small, then

] Iml
(lK)mas 7Tmi z

where z = p/r for p<r and z = r/p for p>r. In this case

zim] 2 - =
tads e ™ e 21809 ) ((qr 2eNa® (o7 D)) (32)

when ) is large, the product of the l(m)and A(")functions varies as 1/\.
Equation (3') is seen to be negligibly small for large ) provided that
Iml = Iq+NI is not too much larger than ), for example if agN is smaller

14
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than 12. Equation (32) tends to zero for both large ) and large
iml 2 MF since Il = tagNl.

The Integral equation given by Eq. (22) with the kernel given by
Eq. (32) can be solved numerically by the usual collocation method. In
this method the loading L(q’")(p) is assumed to be constant over each
small radial strip, 28 In length. Then only the kernel needs to be
integrated over the radial strip. When o ¥ r the integration of the kernel
in the range pp ~B<P<p;+B is performed by the tangential method.

In the radial strip r = p< p < r + p which includes p = r, a
high-order singularity occurs, as noted in Appendix A, Its '"Hadamard'
finite contribution Is evaluated by the Lagrange Interpolation method
described in Appendix D, as suggested by Mangler.9

PROPELLER LOADING AND RESULTING FORCES AND MOMENTS

Loadlng

‘the downwash integral equation /22) is solved for propeller loadings
L(q n)(p) due to the known velocity distribution w(q m)(r) normal to the
blades. The velocity distribution of Eq. (26) is the hull-induced dis-
tribution at shaft frequencies q obtained from wake surveys In tie
propelier plane. To the loadings due to thesc wake velocitic.. are added
loadings arising from various disturbances imposed on this flow,

The propeller blades do not coincide with the assumed helicoidal
surface of pitch 1/a but are located on a nearby surface of pitch P(r)
and furthermore they are cambered. (As in previous Davidson Laboratory
papers, thickness is neglected.) The velocities induced b9 the flow-
Incidence angle and camber effects are independent of time because the
blades are considered rigid, so that only the steady-state loading (q = 0)
wiil be affected, For the flow angle effect the left-hand sida of the
integral equation is replaced by

Géo'a) ()~ 25 -l 1
5 1+ a“r“(tan” gé%l-- tan" 57) for m=1,2
=0 forms 2 (33)
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(since this effect depends only on radial position and not on qu) where
the Incident flow angle is deflned by the difference between the actual

geometric pitch angle 6 (r) = tan"(P/an) and the hydrodynamic pitch
angle tan'l(I/ar) of the assumed surface.

For the camber effect the left-hand side of the integral equation
is

‘J(O,m)(r) /]_’_a r r Q(m) af(r 52 d

4 uy RRRL AW A
it A L A e, 2 s L A W, A M SR b At N S T

an(r) o
d
] P
2 " j’ 3(m) & —,—f,’% (34)

where b(r) = semichord, ft.

éféﬁ"z = slope of camberline f(r,s) given at discrete points

measured from face pitch line

o S e o A e+ ML 0D AL

s = (I-cca¢u)/2 chordwise location nondimensionalized
on basis of 2b(r)

The evaluation of integral (34) is given in Reference 4 for arbitrary
blade camber shape.

Once the values of L(q’") due to the various disturbances are
determined the spanwise loading Jistribution follows from Eq. (20):

(@) U C)
L - ,0_)sing d
(r) Y 6_)sing,do,

- -f {L9 D ) (recoss,) + 3 L@ (1)sinGi-)o sine Jan,

n=2

o B I G T T Ll Dt L BP0, P ] et

= L(q’])(r) + %. L(q’z) (l’) (35)

Propeller-Generated Forces and Moments

With the principal components of the propeller-induced forces and
moments defined as follows

Forces: F, = thrust (x-direction)

F, and F_ = horizontal and vertical components,
Y respectively, of the bearing forces

16




Moments Qx = torque about the x-axis

Q, and Q- bending moments about the y- and z-axis,
Y respectively '

the total forces 2zt frequency N(£=0,1,2,...) acting on an N-bladed pro~
peiler will be given by (cf. Ref. 3)

Fy ™ Re {Nr of MO I; L(ﬁN)(r)cosep(r)dr}

F, = Re o! a2t j ‘L(IN l)(r)+L(£N+I)(r)]sIne (r)dr} (36)

F, = Re ;;Ee‘f”‘“ L0 (0 8 ) Jtng () ar}

(with the sign convention adopted in the presert investigation).

Tha moments ara determined by -

Qx = « Re {Nrﬁ eiﬁnﬁt f‘ L(lN)(r)sinep(r)rdr}

2
Qy = Re g:& e‘LNQt f LL(ln 3)(r)-H.uN“'(r)-]t:ose (r)rdr} (37)

2
Q, = Re {-f? o it I;[L(ZN")(r)-L(zN+‘)(r)]cosep(r)rdf}

It msy be obser 'ed from the foregoing that the propeller-generated
transverse forces and bending moments are evaluated from propeller load~
ings assoclated vith wzke harmonics ax frequencies adjacent to blade
frequercy, i.e., at q = k], whereas the thrust and torque sre deter-
mined by the loading at blade frequency. The stzady~-state thrust and
torque are determined at zero frequency; the corresponding mean transverse
forces and bending moments ars determined at shaft frequency.

Blade Bending Moments

The blade bending moment about the vace pitch line at any radius
rj of a blade is calculated from L(Q)(r) at any shaft freauency ¢ as

MéQ) = ri elant f:j L(q)(r)cos[ep(r)-e (rj)] (r-r )dr (38)
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The total vibratory blade bending moment discribution is then obtalned from

M = ReEMb(q) eloat (3y)

q

b

The computer program, which implements the numerical procedure
deve loped here, furnishes the blade loading distributions (Eq. 35), the
hydrodynamic forces and moments (Eqs. 36-37), and the blade bending moment
distribution (Eqs. 38 and 39).

The program also implements the procedure developed in Ref. 10 for
the evaluation of the p-opeller-induced vibratory pressure field from the
blade loadings L(q'n)(p). The blade-frequency pressures due to loading,

are shown to be of the form

@® ed he g re - el
p(ﬂN) = 23 N {L(uvn) (p)k(u'ﬂN’n)+ conj. LL(uyn)(p)k(u+ﬂN’n)]} (uo)
n=| u®o P .
where the k functions are the so-called influence functions connecting the

loadiny points on the blade with the space points.

Also avallable from Ref. 10 Is a computational procedure to deter-
mine the blade thickness effects on the pressure field. Although these
effects are negligibly small in the case of bearing forces, they are
demonstrably large in the pressure field In the neighborhood of the
operating propeller.,

NUMERICAL RESULTS

Using the present development with exact treatment of the helicoidal
wake from the blades, systematic calculations of steady and unsteady blade
loading and hydrodynamic forces and moments were made for a series of
3-bladed propellers of expanded area ratio EAR between 0.3 and 1.2, These
propellers were chosen because they were subjects of earlier papers3’u
which had used the ''staircase'' approximation of the wake, and because
experimental data for the three propellers of EAR, 0.3, 0.6 and 1.2, were
avallable from controlled NSRDC tests in nonuniform flow with wake structure
rigidly specified and vibratory forces made large to minimize experimental

error,

18
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T

The tests had been conducted in the NSRDC 24=inch water tunnel using
the closed=-jet test section with a screen to produce the wake, a 3«cycle
screen for the force slong and moment about the longitudinal axis and a
becycle screen for the forces along and moments about the transverse and
vertical axes. The tests were run at a constant speed of 15 rps with
free straam velocity close to 12.5 ft/sec. The design mean thrust coeffi-

cient KT was 0,150 {practicslly open-water value in the 3-cycle screen
wake) .

PTRR PN EY e g

The propelisrs, with destroyar-type blade outlines and modified
NACA=66 section with a = 0,8 mean line, were one foot in diameter with
hub diameter 0.2 ft and pltch ratio i.08 at ,7 radius, For the propellers
at othar expanded arsa ratios the pitch veriation along the span, RPM and
flow velocity normal to the blade were considered to be the same and equal
to the corrasponding valuas for the propeller of EAR = (.6 (taken as the
norm). The cambariine variations were determined by linear interpolation
of the known ratios of maximum camber to chord mx/c shown in the table
bslow for the propellers with ¢AR = 0,3, 0.6 and 1.2,

A Wl AN o,

) o
o e > A ML, L b RS b Supdpndolihal y

TABLE 1 %
Ratio of Maximum Camber to Chord, mx/c §
Radlus EAR = 0.3 EAR = 0.6 BAR » 1.2 %
.25 .2370 .0228 ,0196 :
.35 ,0388 0231 0202 :
45 .0372 .0224 .0196 '
.55 .0340 ,0212 0185 ;
.65 .0312 .6203 .0177 3
4 .75 ,0290 .6198 .0176 F3
3 .85 .0270 .0189 .0169 ;
E .95 .0247 L0174 .0147

The results of the calcuiations ara shown in Figures -4 and

e
o ot ok 344 1 R AL B

5%% Tables 2 and 3. Figure | compares the mean thrust coefflcients svaluated % :
¢ by the present method with the earlier computations uzing the “staircase" % %
§§ approximation of the blade wake, and with the experimental value of 0.15, § %
Z% As can be seen, with the exception of the propeller of 0.3 EAR, the present % §
‘ 19 ;
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calculations are closer to the measurements. ARepeating the calculations
with finer mesh and higher limits for the integratlon has not changed the
result. The approximately 13% Increase in mean thrust at EAR = 0.3 re-

flects the disproportionately large camber employed with the small blade
area ratio (see Table 1).

it Is to be remembered that the blade thickness effect on the loading
has been neglected here as in the previous studies. This effect, which
Is expected to decrease the calculated mean thrust, is probably insigni-
ficant in most cases, but may be large enough in the case of the unusually
thick prapeller of 0.3 EAR to bring the value closer to experiment., This
Is the subject of a current investigation at the Davidson Laboratory.

The steady-state spanwise loading distributions are presented in
Figure 2 in terms of EAR. At all EAR the loading is shown to increase
with radius from 0,25 to 0.85 and then decrease at 0.95. The trands
versus EAR at every radius with the exception of 0.95 ar: consistent.

The rise in all curves at EAR = 0,3 is refiected in the higher mean
thrust coefficient for that propeller.

Figure 3 compares the blade-frequency vibratory thrust and torque
amplitudes computed by the present method with the earlier calculations
reported in Reference & which used the ''staircase' approximation of the
blade wake, and with the experimental values. The present theoretical
results are quite close to the test data. The proportionately greater
imnrovement in the torque amplitudes over the earlier calculations is

esnecially gratifying since it Indicates that the radial load distributions
are more accurately determined.

Figure 4 presents the real and imaginary parts of these radial load-
ing distributicns versus EAR at first blade frequency q = N = 3, The
distributions show smooth trends with EAR, and a definite pattern with
increasing radius from 0.25 to 0,85. At 0,95 radius the trund is completely
different, The curves of loading 25 a function of EAR are sim{iar to
those shown in Ref, 4, Figure 10, but are lower in magnitude and without
the inflections at high CAR of the ear!ier calculations,

20
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A comparison of the blade-frequancy amplitudes of nondimensional
transverse and vertical force coefficlients and coefficients of moments
about the transverse and vertical axes from NSRDC measurements and the

theory is given Iin Table 2.

The coefficients are for the 3-bladed pro-

pellers tested in a L4-cycle screen-generated wake at the design advance

ratio J. (The resolution of forces and moments Is shown in Fig. 5.)

TABLE 2

Experimental and Theoretical Transverse and Vertical Force and Moment
Coefficients for a Set of 3-Bladed Propellers

EAR = 0.3

Amp. x 102 Exp. Theory
K 1.08 0.9
LY
K 1.04 0.95
Fz
KQ 0.92 0.87
~\ y

2 0.89 0.83

EAR = 0.6
Exp. Theory
1.34 0.98
1.25 1.06
1.10 0.93
1.06 0.93

EAR = 1,2
Exp. Theory
0.77 0.40
0.57 0.69
0.77 0.40
0.70 0.53

A comparison of the corresponding phase angles is given in Table 3
which also presents the phase angles for blade-frequency thrust and torque,

¢, Phase Angle i: Degrees

EAR = 0.3
Vibratory Forces Exp. Theory
Fx 207 222
~ %
Q, 205 42
~ %
fy 351 |53'
Q, 356 148"
Fz 255 255
Q 262 247

[{]

TABLE 3

EAR = 0.6
Exp. Theory
238 257
234 77"
32 204"
31 191"
293 308
294 292

EAR = 1.2
Exp. Theory
323 331
310 151%
164 332"
100 288"

7 67

2 34

”ﬁpproximately 180 deg. out-of~phase with experiment,
21




Knowing the magnitude M and phase angle ¢ of a particular force or

moment its cosine and sine components can be determined by means of the
expression

M cos(qnt - ¢)

This form is also useful in establishing the lead or lag of the quantity
with respect to the sinusoidal Input wake at a specified radial position
or the location of a maximum relative to the rotating blade.

For all the transverse and vertical force and moment coefficients
the trends with EAR of measured and theoretical values are similar. How-
ever, the correlation between experimentally and theoretically derived
coefficients is not as good as that for the vibratory thrust and torque.

Examples of propeller blade chordwise loading distributions are
shown in Figures 6 and 7 for the two extremes of expanded area ratio,
0.3 and 1.2, These figures compare the distributions obtained by the
normal sum of the Birnbaum chordwise modes (up to finite n = M) viz,

‘ 9 M - -
Sp ™ L( )(r) cot -f--r n§2 L(") (r) sln(n-»l)B(Y (41)

with the Cesaré sum
| 6 M- - -
aﬁ _— )(r) cot =& + 1'12-32 (ﬁ-ﬁ"ﬂ)) L(")(r) sln(n-l)ea (42)

The Cesaro summability is a proper procedure for obtaining the limit
of slowly convergent or even divergent series. Use of this method in
Ref. &, where calculations of loading were based on the ‘'staircase'' approxi-
mation of the blade wake, served to stabilize the chordwise distribution

which was particularly erratic in the neighborhood of the leading edge
for large EAR (>1).

The Cesaro and normal sums in Figs. 6 and 7 are both smooth and close
in value. This is an indication that removal of the ''staircase' approxi-
mation with the present exact treatment of the blade wake results in a

more rapidly converging series, and consequently in a smoother chordwise
distribution,

22
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CONCLUSION

The theory which was developed in Ref. 2 in adapting the unsteady
l1ifting surface theory to the marine propeller case has been revised by
removing the so-called ''staircase'' approximation describing the blade wake.
The present ''exact'' mathematical model takes cognizance of the exact heli-

coidal geometry of the propeller blade and its wake, as well as the
presence of interacting blades and the fact that the propeller operates
in nonuniform flow (hull wake). A new numerical procedure has been devised ;
and programmed for the CDC 6600 high-speed digital computer primarily for
the calculation of the blade loading distributions at various shaft fre-
quencies. The resuiting hydrodynamic forces and moments are evaluated
from the loading distributions: thrust and torque, steady and time-
dependent, from the loading at zero frequency and multiples of blade
frequency, the other bearing forces and moments, transverse and vertical, f
from the loading at first shaft frequency for the steady-state case and
from the loadings at one above and one below blade frequencies for the
tima=dependent cases. In addition, the program has the capability of
calculating the vibratory blade bending moment about the face pitch line
at any radius and the pressure field due to the loading of the propeller
when It operates In uniform or nonuniform inflow fields,

The results of this new approach with the exact helicoldal blade
wake have not shown any dramatic changes from the results of previous
calculations, Howevar, it can be stated that an overall improvement has
been witnessed in the correlation of forces and moments with experimental
measurements, which indicates that the radial loading distributions are
more accurately determined. The detalled loading distributions, .both
radial and chordwise, are much smoother than obtained in the previous
calculations by means of the ''staircase' model.

Other unreported calculations for propellers in the wake of a ship,
rather than in the strong blade-fraquency wake generated by a screen,
have shown little difierence in the results by both methods except in

23
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the steady-siate case where the new method yields results closer to the

experimental values.

Unfortunately the machine running time ﬁas increased considerably,
calculations taking about 4 to 5 times longer. It Is felt, at this stage,
that numerical simplifications and other approximations should not be
attempted before extensive use of this program can be made for a better
understanding of the importance of the various contributions to the

e

LR T L AT T
M

solution,

It Is suggested for the present that if detalled and accurate 3
information is required, the program of the ''exact'’ mathematical model :
should be utilized, whereas when integrated effects like forces and :
moments are desired the ''staircase' model Is adequate. This statement :
applies especially when the relative merits and disadvantages of propeller

settings are under consideration. é
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é ) Appendix A

Singularity of the Kerne) Function at p = r

! Before the 1/k Expanslion

If the substitution 7 = 7' - & |s made In Equation (13), the
kernel becomes
-iq © x=€ eiqa(r-x+§)

N
. - n a -é- S —————
(o) g_"'g e EE ) R dv

- 1/2
wherec R = -{72 + %4 p2 - 2rp cos Ceo -9, +8 -a (T-x+§)]} (A-1)

In the limit as 6-0 , R will go to zero when p = r , én =0, and

T =0, Therefore the singular behavior occurs when n=1 and x - § > 0.
For a study of this behavior, only that part of the t-integration need be
considered that is within a small range around T =0, viz,, ~YysSsTSsY
where vy Is a sufficiently small but positive fixed number. Thus part

of the kernel, for n =1 , may be designated by Kl

Y tqa(t~x+E)
Ky= = tim [ % & 8
|

1
eo-o 8§ -y

(po-o ax

—

an' 3n R

-t (A-2)

After taking the derivatives and limit~ Ky becomes

- - Y
Ky = = rp o~ iqa(x £) [ oiaat
1+ 8221 4 a2p? Sy
. aqq_a_____ + Iaaq(Eaarapa + 5'2 +J3?) sin aTt
;15 + 124 0% - 2rp 38 aT (2 + 2 + p" < 2rp cos av)3/2

cont i nued

R S Py

e A SRt i BT

[T

ST T S 21k

=5

= ﬁﬁ-ym[jim-’: et et Krzha i




Mgl S o

. (aapz + 1) (a2r2 + 1) cos at - BLaEga. + 1) (aare + 1) slnaar d'r}
ro(t® + r2 4 o2 - 2rp cos ar)3/2 (2 +r2 492 . 2rp cos a'r)5/2
(A=33
Let p=r + ¢ where ¢ is very small. Then the expressions
Involved in KI can be expanded in a serfes of « and T . After lengthy

algebraic manipuiation and trivial integrations, the singular behavior of
Ky s described by the following expression:

Klﬂ-e

~1qa(x-E) e 21 + a?p2 + _lLae ] } (A-L)
1~ a2 (r2(p - r)2 rvl + a2 5.

(as p = r)

The first term has a high-order singularity with “"Hadamard" finite
contribution which is evaluated by the method of Mangler.9 The second
term is the well-known ''Cauchy' type.

i1 After the i/R Expansion

For the case of n= 1 , x-§ > 0, Eq (i9) becomes after the limits
have been taken

K, = = _or p)
‘ [(1+a%2) (1+:02r? 12 (e wo

{;az(m-q)+ ?51 [a®(m-q)+ f§]|m(a | m=q | p)K_(a | m-gq | rye-taa(x-E)

d 1K
- d e temeR) o o By ok '-“-é-)a““"'”( n ak}

do r o k=a(m-q

where (lK)m - lm(lklﬁ)Km (k|n

(A-5)

A-2

_&5555§§::a§;§a3$§55§%

=
s 3
i

AL BTA

P R
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When |m Izi H| large, the generalized mean-value theorem can be
used for the integral term and this in conjunction with the residue theorem
leads to

d d
[ fk)p(k)dk ~F(A) [ p(k)d csAsd
Cc C

p(k) 20
elk(x-g) ;
with p(k) = “koalm=q)
ik(x~§ ol k(x-8)

jfk mdkwf(sm-q))j md

lne;a(m'q)(x'g)f(a(m-q)) (A-6)
for (x-£) > 0

P

it U BB

Thus for large |m | the integral term is approximately equal to
the closed term and with |m| 2] M|>>q K, reduces to

K, ps = _or o o-l1aa(x-8)
VT (140202 (142272) 7172 -

2
4 Ex (1+a%r2) (1+a%) 1 (amp) K, (amr)} (A-7)
Nicholson/ showed that the product lm(amp)Km(amr) can be approxi-
mated by
Im | ___im]
i (am)K (amr) P ! ! £ (.‘L—.Lta_eﬁ)
m m [(1+3%3) (1424 2m | " 1+ Vi+a2p2
o lm { V14222 - /i 42%02) (A-8)

for p<r-. (p and r are intercharged when o > v ,)

A=3
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If use is made of (A-8) then for m large, m>> q

-2 e-'ac'(x-g)[(l-ﬁ-aera)(l+a2p2)]'/u ;’ mx™

K
1 e m=M

! 14 /]
where X = 2% 1+a2r2 ) e-( V14222 - Vi+a2p?), 0

AN POV, l+a§p§

It Is known 8 that
[- 4
z mxX™ 5 for X <1
mw] (1-x)

therefore
» M
b m;(m- X 5 - mX"
m=M (1=X) m=1

<r

(A-9)

If only the terms of (A-9) giving rise to high-order singularities
are considered (it is to be noted that the terms of (A-5) in gq which

were neglected give rise to a Cauchy type singularity), then

cpe-iqa(x-8) /1 272 ‘ X
2

1im K' e im 5
pmr r pur (1-X)
-z 192 (x-8) /1, 02,2 2 1
4 5 55 lim 5
r +a“rS p-r (p-r)
X
2
since lim —U—"'L can be shown to be equal to ra/l-raar2
P~ 2
(p-r)

Equation (A=10) is identical with (A-4),

(A-10)

Thus the expansion scheme

for 1/R exhibits the proper singular behavior after the summation over m .

A=l

o T e T i
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Appendix B

Evaluation of the ¢ - and q;m-lntegrals

[ l(ﬁ)(x) __11; Jm Q("-’).lxcosgp do
o
where for m = |

l(')(x) - -T!‘- In(l-cow)e'x°°'¢ dep = Jo(x) - lJl(x)
o

for m = 2

B0y = L [ (142008616059 dp = 9,00 + 120100
and for m > 2
(@) (x) = ?‘y' f: cos (m=1)¢ JXCO!(pc.b - =) b= )
where J (x) is the Bessel function of the First Kind,
. a® () = ;1- j‘: g(é)a""“’" singdd
For n = |
2 y) = %f: cot § stng e™1¥<%0 dg =y (y) - 19, (y)

and for n: I’

n n
A(n) (y) = %J’ sin(n=1)g sing e-lycose do
o

- .(:'_gl'f. [J-_,_ (v) + Ja(v)]

(8-1)
(8-2)
i




i1l. To evaluate the intecrand of the \-integral of Eq. (28) at the
singularity A = 0 (see Appendix C) Ft is necessary to define the

following functions

(m) A" r
31" ((q - Ae,) 8 "
T l - 121, (¢-3)
A=)
and
() Ayaf
A - 9 -
2 ‘;: %) e u _aﬁ 2™ (aof) (8-4)

i
where I(m) (26, ") = -J‘ 3(m)e qebco.'.q)cosq, dep

-1q0lcos6
b do

A§") (qeb) - ;j @(n)singcosp e
(]
a) Form= 1|

100 = - 172 [3,60 = 9,007 + 19,00

for m = 2

1B ) = [9,00 = 9,007+ 19,00

and for m >2

m-Z
l(m)(x) = o [ 950 + 95, 0]

b) For n = 1
(')(Y) --[J (y) - "2‘7)-1 - 1;(y)

and for n > |

|
NOTPIRIC il S YS

L s a0 WSS Spu g ety - g s At
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Appendix C

Evaluation of the Integrand of the A-integral (Equation 28)

at the Singularity ) = 0

The integral of Eq. (28) is

where

l%Ac
g(r) = |m(|h+a£N|p) Kn(124a2Nir) Bﬁ'a(X)e for p 2>

- .

m=gq+ (N

By L'Hospital's rule the irtegrand a. A = 0 becomes

lig g(n) - g9(-n) 9(-x) [ agg-xz] o

c-}

(c-1)

B85 7(0) = (axra’she ) (arva” e _,).("')((q- by A™ (a- Y

(c-2)
It is obvious that
W] o Bﬁ,a('*)lk_o
['m(lx+alep)Km(lk+aler)]A-0 - ['m("*+a‘N'°)Km("X+az~'r)]x-0
and el %‘-Aol)\eo - e"' %AGL\EO
Then

i A i, AN b o

i‘i‘w ol v s

i

‘\

i
E“ )

i
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Wi e S

[ YO 3; —1}‘-0 =2 Ag_ (|K)m|}\=o Baoa(o)

3Bg (A) 3Bz =(-1)
+ (m),,,lm[ B ])\_o
al 1_(1a+aNIp)K_(1x+asi
+ 85’5(0) 3-£Fm( M Zk m M r)]
] i&m(l~)\+aw|p)Km(l-)\+aler):|5 (€3
o) A=0
Here (1K) | o 1 (lasNip)k_(1asIr) for o s r (c-4)
A L
o8 o(1) | 4B (1) ) B e ) ?
- |w0 i Tk |}‘_0 - aee’am 5+ -;-“5)1("‘ (ae)A ™ (o) :

+ %o B v B[ -001 (" (0™ aop)soft ™ a0)n M (aef)]
£

(c-5)
and l;a)(x) and Afa)(x) are as defined in Appendix B.

The third term of (C-3) Is treated as follows:

a) For A = 0+ and a4N > 0

L (IA+aINID)K (1A+atNIr) = 1 ((A+asN)p)K ((r+asN)r)
and

1 (1= +aNIp)K (1=)+aiNir) = 1 ((aN=A)p)K ((asN-p)r)
so that the third term of (C-3) becomes

. O 3 1 Ot a2 ) (o)) | |
. 3 =0

(for p < r)




= zsﬁ"ﬁ(o){% Km(lazulr)[tm_‘(lamp) + lm,(lamlp)]

- § 111K (agNIE) & K\ (tasir) ] (c-6) K
(Note that for p > r, p and r are interchanged in Eqs. C-3, C-4 and C-6.)
b) For » = 0+ and agN < 0
lm(lx-i-alep)Km(lMaler) - lm((lale-x)p)Km((lale-)L)r)
and
Iy (1=M+atN1p)K - (1-)+asNIr) = 1, (Camni+a)p)K ((1aN1+2)r)
The third term of C-3 then becomes

a[lm((}d-laLN l)p)Km( (\+1a4N l)r)]‘
3A A=0

- 285’6(0) for psr (c-7)

Therefore Eq. (C=~3) con be written ac

Pﬂﬁs;?mﬂ]m -l (“‘)mlm 55,5 ()

38= =(1) d(IK
+ 201K, R | = 28; -0 """""';x )’"I (c-8)
A=0 A=0 . =0
where (‘K)m is given in (C-")
A=0
8= +(0) = (aavs 3 (a2 531 ™ (qo1)A (M (qgP)
4 r p
BBﬁ-n()\)
. is gi in (C=5
3 - s given in (C=5)
3(IK)
—— is glven in (C~6
Y \0 s glven in (C~6)

and the upper sign Is taken when 2 > 0 and the lower sign when £ < 0,




that

Hence

Hence

C-1509

When 4 = m = q = 0, by the Iimiting process, it Is easily shown

lim B= =(0) - 1im £2 = 0

go ™0 (-0

d (1K) 2

2
1im B= =(0) = ~ 1im =0
4.0 N an |k=0 40 J]
Lig (IK)ol * B- 5(0) - 1im 22 logg = 0
A=0 ms 40
38~ =(A) 2

lim (IK)0| A - tim (g+4")loggs = O
2-0 A=0 O\ A=0  £~0

when g = m=q=0

R A) - g(-A
)\8 g(A) )\9( )__.0 (C=9)

When 4 = O0Obutm=q# 0, it is easily shown that

Iml

'2"—:“-'- (%) for psr

lim (1K) | =
mly o imi
-0 A=0 .i-l-l-n‘-l-l- (-g-) for par
tim 30K G | .
0 d\ A=0
for 4 =0, m=q¥0
tim g(A\)=g(-A) _, , {tim ?
A0 A -2 ).»0 ('K)m‘ S
A=0
- - _ 2
. ;l(m) (qo;)z\(")(qog)Ll Aag- T_rmpz + am (:-‘2- + ;l'z-)]

L2 - ) _ i
) ;TI'Z Log'fm)<q0E)A(")(q0§)-og|(m)(qe;)Aln)(qeg)1s
p -

(c-10)
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When q = 0 and Eq. (36h) Is used for the kernal functions, the value
of the Integrand at A = 0 is zero for m=0, Form£0 it can be easily
shown that the integrand at A = 0 when q=0, m= 4N Is

2
(a2 I (o ;'z)lm(amp)Km(amr)

oot @ 0D 0) - o 1 00 P 0) + g 1 )01y P (0)}(c-11)
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Appendix D

Evaluation by the Lagrange Interpolation Methcd
of the p-integration in the Region of the Singnlarity

ki

The p-integration of the kernel function in the reaion of the
singularity is in the form

o

e M(r,p3q)
| = d (D~1)
J‘r--g (p-r)3 P

where M{r,p;q) = (p-r)3 K(a’ﬁ)(f,93Q)o

Since K(m’")varies as (p-r)"'2 as p-»r, il = 0when p=r, For this
reason the function M can easily be expanded about the singularity p = r
by the Lagrange formula

n 1, (p)

M(p) = T
=0 (p - ;) M (p;)

"i+l t=0,1, ...n

where

m.(e) = (p =0 (p-py) «vo (0 ~0,)
(0-2)
my(eq) = é% M, (p) evaluated at p = p,

and Migp = M(p‘) (sse Scarboroughll and Watkins et al‘z).

In the strip fromr - g to r + g (with n = 4 for the 5-point formuia),
Po = F =B=r =26 p)=r -5, etc. where § = p/2. Then

miGoy) = (N* st i1 @i

and
4 t :
M(p) = JE 57 =) (o-r+26) (p-r+s) {o-r) (p-r=s) (p-r-25), L
ot im0 11 (4=1)1 p=r+ (2-1)8 g :
where M3 = 0 since p, = r, (D-3) %

=
I
2
7
|
il
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=
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The Integral | is

r+2§

where

The Cauchy principal value Is to be taken of the second integral:

9 ~

9"

9

93 =

r+2§
re2g

r+26 do

re=24 (p-r)

M!Pl ]
dp =
“re2s (p~r) ° ;ﬂ J‘r-25

r+2§
f9y(p=r) + 5g'Jdp

L2

r+25

= !

r-25

r+28 d

r-2g (p=r)

Mt Mt h,

I 3

205 - M) (4 - W)

b Y

~(M) + M ) » By 4 M)

41 3

“ 3

dp _ 0
p=r

The last Integral is the Hadamard type whose finite contribution is

o Vim e f'*zﬁ ey @

e~0 L (p-r)

. b

Feg, r425, r4e
-r]

| m—1
©

"'-?S» r+e, r-¢

I
'
O e

(p-&)
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Therefore
r+25 g
! ';'1;[69, . pjgnzé - ;5-]
AR T
or
| = ;!i'[ T () - -l-;'(Mu-Mz)] (0-5)
where
"y = 853+ kMM (g u ¢ L gg)
My = 6> k) (g
My, = 62 - K(E"a)(p-r-‘-{)}
MS - 853 . K(ﬁ'a)(p ~r+ 28)
and %
6 = p/2
D-3 :




