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ABSTRACT

The mathematical model used in previous Davidson Laboratory adapta-

tions of linearized unsteady lifting surface theory to marine propellers
has been revised by removing the so-called "staircase" approximation of

the blade wake and replacing It by an "exact" heilcoidal blade w, ke. A

new numerical procedure and program based on the present model has been
developed to evaluate the steady and unsteady blade loading distributions,

which are used to determine the bearing forces and moments. Systematic

calculations of these forces and moments for a series of propellers show
better agreement on the wtole with experimental measurements than did

the earlier calculations for the same series. In addition, the chordwise

loading distributions are much smoother than obtair.eJ previously. However,

the quantitative improvement must be weighed against the considerable

increase in computer time over the old method.
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NOMENLATURE

a fl/U

B;,(x) ;Wunction defined In Eq. (28)

b(r) expanded semichord length at each radius, ft

FX~y~z propeller-induced forces In x,y,z direction

f(rs) camberline ordinates from face pitch line at each
radial position

g(W.} function defined In Eq. (28)

Im( ) modified Bessel function of first kind, or order m

) defined In Appendix 8

defined in Appendix B

(IK)m defined In Eq. (28)

Index

Jin ) Bessel function of order m

K kernel of Integral equation
kernel after chordwise Integrations

Km( ) modified Bessel function of second kind, of order m

k variable of integration

k(m"f) Influence functions (Eq. 40)

loading distribution In lb/ft 2

L(r) spanwlse loading distribution In lb/ft

LN(q)P) spanwise loading coefficients of Birnbaum distribution

j £ integer multiple

jb blade bending moment about face pitch line
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M F final value of m In summation

M Index of summation

rn order of lift operator

N number of blades

n blade Index

order of chordwise mode

n norma to surface at loading point

n' normal to surface at control point

P pressure

- P(r) pitch at each radial position

QX~y'z propeller-induced moments about x,yz axis

q order of harmonic of Inflow field

R', R Descartes distance.

r radial orcinate of control point

ro propeller radius

S propeller lifting surface

S; normal sum of curtailed Birnbaum series

s chordwise location as fraction of chord length

I t t ime, sac

U un iform velIoc ity
V (r) Fourier coefficients of velocity distribution

Vc velocity due to camber effects

-Vf velocity due to flow-incidence angles

lv velocity distribution normal to propeller

x longitudinai ordinate of control point

x,r,(p cylindrical coordinate system of control point

viii



R-1509

y transverse carteslan ordinate

z vertical carteslan ordinate

p angle In Eq. (18)

8 half-length of rvdial trip

8 small length

e (n) che•. isu modes (Eq. 21)

e angu •r ordinate of loading point

go ang..'- posit!n wf loading point vith respect to

pi-oje! ;,,d b ld~e 't. ýrd lengto, redilansi! Ob
:A• en 3"a• (ni), n-, .N

0 (r) gecinetric `ých angle at oach radial position

0 angular e,•ordwis' location of loading point

A Wlxdefined In Appendix B

A) (x) defined in Appendix B

x order oF harmonic of loading distribution

x, variable of Integration

longitudinal ordinate of loading point

cylindrical coordinate systcm of loading point

radial ordinate of loading point

Pf mass density of fluid

Cr angular measure of skewness

A ar ap

a- Cesaro sum of curtailed Birnbaum series

variable of Integration

ix _4
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* velocity potential

#(V) generalized lift operator (Eq. 251

ar,; :<.ar ordinate of control point

angular oosition of control point with respect to micchordTo line

IP&• angular chordwise location of control point

y acceleration potential

oangula., velocity of propeller

w angular frequency of loading

Superscripts

r refers to control point

p refers to control point

Ix



R- 1509

I NTRODUCTI ON

Iii the course of a series of Investigations concerned with adapting

linearized unsteady lifting surface theory to marine propellers, Davidson

Laboratory has sought to Improve the mathematical model and techniques for

solving the surface Integral equation, and evaluating the propeller loading

distributions and resulting hydrodynamic forces and moments (see for

example Refs. 1-5). A new method5 has been developed for the inversion

of the downwash Integral equation which employs the "generalized lift-

operator" technique. This new approach eliminates many of the numerical

difficulties arising In the commonly used "mode-collocation" method.

Certain mathematical simplifications have been Introduced in these

studies, in addition to those Imposed by the linearized version of the

problem. The major simplification Is the approximation of the helicoidal

propeller wake by a "staircase" function.2 In Reference 1, which presents

the exact treatment of the helicoidal wake for a simple sector-form blade

with flat-plate chordw:se loading distribution, the results are found to

agree well with those for the same propeller computed with the staircase

approximation of the wake. Admittedlyj only one set of calculations was

performedj, under several conditions; the complications in the exact wake

treatment considerably lengthened the computation time on a high-speed com-

puter (IBMT090) and appeared too formidable to allow utilizing that method

more fully at that time. It was felt that use of the exact treatment

should be deferred until a time when more accurate experimental techniques

would be established for measuring the hull wake upon which all calcula-

tions depend, thus justifying greater accuracy in the theoretical treatment.

In the meantimex the numerical procedure in the solution of the

integral equation was being improved, a) by incraasing the number of

chorcd-Ise modes, b) by introducing more appropriate numerical schemes to

deal with the singular behavior of the kernel function, with the problem

of truncation of Infinite series, and with the problem of "overlapping"

of the wake generated by wide blades, and c) by accommodating arbitrary

!I
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blade camber variation. In addition, the problem of Instability of the

chordwise loading distribution was treated and stability achieved. 4

The results of a number of theoretical calculations over a wide

range of expanded area ratio have shown that the trends of the hydrodynamic

forces and moments follow the experimental trends. The magnitude of

steady-state thrust and torque have been shown to agree within 5-8% and

the magnitudes of unsteady thrust and torque within 5-15% with those of

NSIDC experiments of a series of 3-blade iropellers operating In an

accurately measured screen-generated wake.

During the period of these Investigations also, the computer program

has been converted for the CDC 6600 high-speed digital computer so that

the running time has been reduced cons'derably. Now Information about

steady-state and time-dependent propeller loading distributions and corres-

ponding hydrodynamic forces and moments about blade bending moments and

pressure signdtures at various field points can be obtained In a compard-

tively short time.

Because of the availability of high speed digital computers the task

previously considered formidable has been undertaken, viz., to Improve the

mathematical model by removing the so-called "staircase" approximation.

A new kernel has been developed which takes into account the exact hell-

coidal wake and the exact blade geometry through the entire range of

expanded area ratio. Thus an exact linearized version of the unsteady

lifting surface theory as adapted to the propeller case Is established.

A numerical procedure and corresponding camputer program Is developed

here which will furnish the blade loading distribution and the resulting

hydrodynamic forces and moments at any desired frequency. In addition,

the program has the capability of evaluating blade bending moments about

the pitch line at any radius and the pressure field around the operating

propeller.

This study was sponsored by the Naval Ship Research and Oevelopmnent

Center, Hydromechanics Research Program, Contract N00014-67-A-0202-0018.
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LINEARIZED UNSTEADY LIFTING-SURFACE THEORY

The linearized unsteady lifting-surface theory for a marine pro-

peller, with its blades lying on a helicoidal surface and operating in

nonuniform flow of an Incompressible, Ideal fluid, was formulated by

means of the acceleration-potential method in previous Davidson Laboratory

papers. The development presented here is an adaptation of the previous

developments, treating the hellcoidal wake exactly as in Ref. 1, and

incorporating all the Improvements of the later papers, the exact blade

geometry, a large number of chordwise modes, the "generalized lift-operator"

technique.

It Is known that evaluation of the blade loading distribution requires

the solution of the following surface Integral equation which relates the

known velocity distribution to the unknown blade loading,

W(x..r,cp;t)--S L1Qjp,G,;t) K(x,r.,90;9,pO,;t)dS Mi

S

where x. r, cp and p , 9: cylindrical coordinates of control
and loading points, respectively

t: time, sec.

S: propeller surface, ft 2

W: known velocity distribution normal
to propeller blades, ft/sec

L': unknown loading distribution. lb/ft2

K: kernel function representing the self-
Induced velocity at a point on the blade
due to unit amplitude load at each and
every point on the blade, ft/lb-sec

The oscillatory loading and velocity distributions can be written

as:

3
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L'(gp, Gjt) = LV(M'(gpp)ei)xnt (2)

X=0

W(x, r., tp;t) j w(q)( x, r,•0)e lqnt (3)

q=O

where X and q are positive Integers and designate order of harmonic of

the loading distribution and of the Inflow field, respectively, the former

to be determined by the analysis. The propeiler rotates with angular

velocity -0. The velocity W Is caused by flow disturbances such as those

due to hull wake, incidence angle or camber of the blades. In the linear

theory their various effects are treated separately and simply added
together.

The kernel function K has been developed In Ref. 6 without resorting

to any geometric approximation. In that reference, which is concerned

with two interacting propellers of counterrotating or tandem propulsive

systems, a numerical procedure wvas suggested but not carried through to

a computer program. Furthermore. treatment of numerical difficulties,

such as the Cauchy-type singularity in the separable form of the kernel

and a higher-order singularity with finite "Hadamard" contribution In the

spanwlse Integration, was merely outlined or referenced. The present

development follows that of Ref. 6 but with greater attention to detail.

DEVELOPMENT OF THE KERNEL FUNCTION

It is known that the pressure field generated by a lifting surface

S Is given by distributed doublets with axis parallel to the local normal,

and with strength equal to the pressure lump across the surface S. Thus

the pressure P at a point (xrcp) at time t will be given by

Y(x,r.,cp;t) = N P(CPB;t) I dS (4&)
4Ttp-f S A , - R'(x,rp; ,p,O)

Wminus sign for right-hand rotation (Q has absolute value)
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In Eq. (4), T is the acceleration potential function defined
as P/Pf

Pf fluid mass density

a/bn normal derivative on the surface S at theloading point (•,p,e)

-4

n unit nonnal vector having positive axtalcomponent

Ap(g,p,e;t) pressure jump across the lifting surface,
i.e., AP = P+- P_ , pressure difference
between positive and negative oriented
surfaces (with respect to x-axis)

R'(x,r,;§,;,P,e) C(x-g)2 + r2 + p2 .- 2rpcos(O-qp)]-!

SDescartes distance between the given
control point and loading point

For doublets with pulsating strength AP(t:p,O)e at point (QpY,,)
which rotates with angular velocity -f, Eq. (4) yields

l(xrcp;t) = AP(,P,O)eiWt a b dS (5)•(~r•0t)= 13•f S R R'(x, r. y; gp, 0041t)

where w = frequency, radians/sec

0o = angular position with respect to the blade midchord line

When the relation between valocity potential ý and accelera~ion

potential Y is utilized, viz.,

I(x, r,cp; t) = S x '(r',rcp;t - x-2Z)dT' (6)

where U = forward velocity and the lifting surface is identified as t' .

helicoidal surface of an N-bladed propeller, where both control and loading
points rotate with angular velocity -C , then the expression for the

velocity potential Is given by

5
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#(x..rff;t) -- 2
0ln ~~ 4TTPf U

n- I X-0 ~fU

jf~ &(,, 0) jn (j)dr'dS ()
S -e

where a = C/U

X = W , order of harmonic

On" 21T/N (n-1), n =1,2....N

R = (R, (-)2 + r2 + p2.2roooS[Oo% +Dn-a(T,.x)31

-o = angular position of control point with respect to blade
mid-chord line

The self-induced velocity at (xr,cp 0;t) on the helicoidal surface

(I.e., R.H. side of Eq. (1)), will be given by

Ni X=O 14xtPU.I.-• n= I X-I.0 4TPf U

S o,,a

where , Is the normal derivative on the helicoidal surface at (x,r,0p),

the control point.

The 'lrectlonal derivatives normal to the hellcoidal surfice, which

Is given by x = p0/a or 0 eo/a , are:

r) (a (9)

6P

-1=
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P a (0o)
rn =7+a pPf 7o
The L.H. of Eq. (1), viz.,

W(x, ro;t) = (q) (xrc)eOt = p q rqD (11)0 q=O q=o

which Is the known velocity distribution obtained from measurements, has

tIme dependence of the form eq , whereas the right-hand side,
which is equivalent to Eq. (8), has time dependence of the form e•I)ct.

This dictates that

-=q

hence

I Sj' (Oo 0 )eiqft K(r, o0;pjo;q)dS (12)

where

L"(q~e) * P~(~ ,l/t 2
•i:- "q(P'G°) Apm• (P..8) lb/ft

K = - lim--- •o n -q • -

4¶= fo " o n x gl(3
00

r a

and by -0Is meant x -::/a and oa. The limiting processIs

Intodued o aoidthedifficulty arislng in the mathematical ,nanipulat ion
0due to the high-order singularity

and byu8f- e Ismeante x givenby Eq. (12) is equivalent to

0I

Intrducd t avid he iffiult arsin Inthemathmatcalmanpultio

due o th hig-ordr sigulaity

Th sufc nerlgvnb q 1)I qiaett
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{).i qtK Jvl+ Odpde0  (14)

p

where eb Is projected semichord length of the propeller blade at the load-

ing point, in radians, and the factor (J1l + aP2 P2 /ap) is the result of

changing the integration over the actual propeller blade to Integration

over its projection in the propeller plane. It should be noted that this

does not correspond to placing the dipoles on the projection of the blade

in the x w 0 plane.

With the transformation

° - - e cose (15)

whwere e is angular chordwise location of the loading point, and ap is

angular position of the midchord line of the projected blade frcon the

generator line through the hub (aP Is a measure of skewness and Is positive

towards the trailing edge) and letting

L~:Cl) (Po) LqI(), eo) pep (lb/ft) (16)

the Integral becomes

{L (q )e)qntK}I . sInOcdGo, dp (17)

Use will be made of the following expansion scheme for the Inverse

Descartes dIstance

S= I/{(".g)2 + r2 + p2 - 2rp cosY2

I I ke pN I ki r)eI( dk
M=e im(ikip) m

8
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for p < r , where Ira m and K( ) are modified Bessel functions of the

first and second kinds. For p > r, p and r are interc';anged in the

product of the modified Bessel functions. Here 0 = °- cp + n a('-x). I
o 0 n

After taking the derivatives as Indicated in Eq. (13) and Inttgrating i

over T' (see Ref. I), noting that I

SN N for (m-q) = AN A=0, A 1, A2...
e ei(mq)~n = for all other m-q

the kernel function becomes for p < r

N pr lim IM(eo-Cpo)
IITKPr° ° = E(l+a2p2)(l+a2r2)3ý ) m8-0

m=q+AN i

. {ela(Iq)(x'•)Ea2(m-q) + - a2 (m-q) + M Im(alm-qlp) Km(alm-qlr)

m, )ik(x-) I (Iklp) Km(IkIr)
i '(ak + )2-(ak + M)e dk (19)

r ) " "2 k - a(m-q)

It Is obvious from Eq. (13) that in the limit as 8 -" 0, I.e., as

yo ax and °- ag, R will go to zero when p = r. Dn = 0 and T1 = 0.

Appendix A Investigates this singular behavior of the kernel before and

after the I/R expansion of Eq. (18) and shows that the singularity is of

high order with "Hadamard" finite contribution.

In addition, a Cauchy-type singularity is introduced in the k-integra-

tion of Eq. (19) through the series expansion of I/R, which nevertheless

is essential for the reduction of the surface integral equation (IT) to

a line Integral equation. The kernel function is now in separable form

which facilities the chordwise Integration and permits use of the
"generalized" lift operator technique for inverting the Integral equation.

L 9

2'



R- 1509

REDUCTION TO A ONE-DIMENSIONAL INTEGRAL EQUATION

The unknown loading L(q)(p•,%) of Eq. (IT) will be approximated In

the chordwise direction by the Birnbaum mode shapes

L (q(,99.) JL 0 ()01() + L (P 86)j (20)

where L(qn)(p) are the spanwise loading components to be determined by

the solution of the IntegrAl equation and

0(0) = cot

0(;) - sin (n-I)on > 1 (21)

Now after the limit Is taken in Eq. (19) and with the trigonometric

transformation of (15), the 9w-integration can be performed analytically.

Both sides of the downwash integral equation are then operated on

by the "generalized" lift operator, the structure of which is dictated by

the separable form of the kernel (see Refs. 2 and 5). This method ellmln-

etes the yo dependence of the Integral .:quation. Thus a set of line integral

equations Is obtained with maximum order of lift operator ; equal to maxi-

mum number of unknown chordwise modes ;. The solution of the • = n integral

equations Is obtained by the collocation method.

With the transformation

= ar -b costol

where ip0t Is angular chordwise location of the control point and the super-

script r refers to values at the radial location of the control point,

the non-dimensionalized downwash Integral equation is reduced to the

following form for each q • 0 and each 1 o, ... n

10
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I
l•(.q,•)( ro max •(,)(2

r E SL (P) (r,o;q)dp

where from Eo. (Ii)

=r &j . (;) W(q)(r,%)dcp. (23)

;)(r ) l oK(r,%;,, 0 q) ,,9I.p

KTT' Tr K(q rp~a Ps GU ýlap 22i)

and the lift operator function I(f) is

0(l) = 1 - coscp, (the Glauert lift operator)

4(2) = I + 2cosc,

4(;) = cos(&I-)cp, for Fn > 2 (2c)

In explicit form, Eq. (23) becomes:

•('(r) v~)(r) e-lq R rqb(6, ____= ,()q•)(26)

U U
r

I iqebcosipý
where I(mJ(qe;) = S §m I(;)ea d(P

b) 0

The latter Is evaluated in Appendix B.

The modified kernel function, after the chordwise integrations, is
for p < r

All
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rTp tr rim0

w'q+ZN

e {Ie(m-q )&r[a2(m-q) + ..-. [a 2 (m-q) + -m.] i(;)(q r)A( ;)(qOe)

r p

1 Im(aI m-qI p) Km(aIm-qIr)

I k a dk
-3(ak+ -m)(ak+ 2m)el -.1a I rIn)((ImIr~kr k-a(m-q) im(iIp)Km(ikr- r p

(2T)

S^(•(x) -()•IxcosO%

where A 17 f e(x)e ,in9 dG which is also evaluated In
0

Appendix B. In Eq. (2T) all terms outside the first braces are non-

dimensionalized with respect to ro0 as Is also p In Eq. (22), and

a = €a ra _P.

Let X = k - a1, then the k-integral of Eq. (27) Is

'k Xn~ so X28

where

g(%) - (IK)m Bm ,(W)e

I (K m =Im al; p) Km(lX+aiNIr) for p < r

Slm (l%+aNllr) Km(lIX+aANIp) for p > r

B-,;(%)- (aX+3 %N+ ir2)aa% + 2.l~~l)(. a bab
1p

: 1 2
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Equation (28) has an Integrable singularity at X. = 0. The value of the

integrand at this singularity is obtained by L'Hospitalas rule, as shown

in Appendix C:

a) when x. 0 and 1 0 0

B-as(0 B-W A(
Xl a m-gn j) m I2- -(IK) B;m(02 9

where the upper sign is taken when 1 > 0 and the low6e ihen £ < 0, and

the derivatives are given in Appendix C.

b) when 0, 1, 0 and m = q 0 0

;-0Im 1 1=•• )"0 (29b)

c) wheii X 0, At 0 and m = q p 0

[g g.-0- 2 flm in IK)

L a m2 2+ am(r.•+ -) ()qe)A(qe.(q)
ar P

jM

. r.p OIlra (0 (q ;)A (;)(qep)-OP (;) (qe )At;) (q8P)11 (29c)

where ¶ ()1 for p < r

lim(IK)m -A-40 m I-0 I ()I~
h40 mi~o ( 4~+ (rIrtiior p> rI -IT

and 1(;)(x) and A (;)(x) are defined In Appendix B. *

13
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Equation (27) can now be written as

K''n~r a" Ig(0) a dXj (30)

m-q+L

where

r r

For large IXI 2- UF9 the Integrand of Eq. (30) tends to zero.

For large argument Il.-+a.Nl (p or r) of the modified Bessel functions,

(IK) (28ý e-I•-waffil I r-pl

2 /p IkX+aANl

so that

g (g e.'l.Ex+a~l Ir-pl a2(,• ,E -I. (1a,.m ai

arp a(.+ a I + mll (:hX+atN+ -!.) a~

Z/i• X1*X+aANI ar ap

If X and aIl are opposite in sign and IXI-.IajNI, i.e., the arguments are

smal l, then

(IK)m IS21 Iml

where z p/r for p < r and z rip for p>r. In this case

~~~~ ztml In- 2-L.. I• () ()a

. 21ml e ((q; 6) b)A ((q7 a) b) (32)

xr p

When X is large, the product of the 1(m)and A(n)functionis varies as I/%.

Equation (3') is seen to be negligibly small for large X provided that

Iml " Iq+jNI Is not too much larger than X, for example if aIN is smaller

14
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2
than X . Equation (32) tends to zero for both large X and large

Iml k 1F since lxi -. lafNIl.
F

The integral equation given by Eq. (22)'with the kernel given by

Eq. (32) can be solved numerically by the usual collocation method. In

this method the loading L(qn)(p) is assumed to be constant over each

small radial strip, 21 In length. Then only the kernel needs to be

integrated over the radial strip. When p 0 r the Integration of the kernel

In the range p, - 1 < p < pi + 0 is performed by the tangential method.

In the radial strip r - < p < r + 0 which Includes p r, a

high-order singularity occurs, as noted In Appendix A. Its "Hadamard"

finite contribution is evaluated by the Lagrange Interpolation method

described in Appendix D, as suggested by Mangler.9

PROPELLER LOADING AND RESULTING FORCES AND MOMENTS

Loading

*The downwash integral equation (22) is solved for propeller loadings

L(q'n)(p) due to the known velocity distribution w(q'm)(r) normal to the

blades. The velocity distribution of Eq. (26) is the hull-induced dis-

tribution at shaft frequencies q obtained from wake surveys in tie

propeller plane. To the loadings due to thes" wake velocitiL. are added

loadings arising from various disturbances imposed on this flow.

The propeller blades do not coincide with the assumed helicoidal

surface of pitch 1/a but are located on a nearby surface of pitch P(r)
and furthermore they are cambered. (As in previous Davidson Laboratory

papers, thickness is neglected.) The velocities induced by the flow-

Incidence angle and camber effects are independent of time because the

blades are considered rigid, so that only the steady-state loading (q - 0)

will be affected. For the flow angle effect the left-hand side of the

integral equation is replaced by

Uo= (r) 2 2r -n P - tan 1l for r 1,2
l + a r (tan 2nr ar

0 for > 2 (33)

15
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(since this effect depends only on radial position and not on q'o) where

the Incident flow angle is def!ned by the difference between the actual

geometric pitch angle 0 (r) tan (P/2Trr) and the hydrodynamic pitch
-1 p

angle tan (I/ar) of the assumed surface.

For the camber effect the left-hand side of the Integral equatlon

is

(r T'r) Jo•• °r•("U 2Tb (r) o

a rdyo, (34)

where b(r) = semichord, ft.

f(rs = slope of camberline f(rs) given at discrete points6s
measured from face pitch line

s = (I-co3cpcw)/2, chordwise location nondimenslonalized
on basis of 2b(r)

The evaluation of integral (34) is given in Reference 4 for arbitrary

blade camber shape.

Once the values of L due to the various disturbances are

determineA the spanwise loading 4istribution follows from Eq. (20):

L(q) (q)
L ( 'TT L (r,0)sin 0 do

"7 oor=
0

L (q,]) (q,2)
+ 2 (r) (35)

Propeller-Generated Forces and Moments

With the principal components of the propeller-induced forces and

moments defined as follows

Forces: Fx - thrust (x-direction)

F and Fz horizontal and vertical components,
y respectively, of the bearing forces

16
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Moments: C= torque about the x-axis

Q and Q- bending moments about the y- and z-axis,
respectively A

the total forces at frequency AN(A-O,l,2 .,.) acting on an N-bladed pro-
peller will be given by (cf. Ref. 3)

Fx Re Nr° e!at L (AN) (r)cosep (r)dr}
IN lA~ I''r+'()' ingp(r)dr'rNFy- Re (2 e Jt So0 iL (N-1) (r)+L (041+ (r)]sin 4rdr36) -

'Nro e!Mt I rZ!-) (J+) i~~~r
Fz Re •-"0 S' [L (r)-L (r) sin rdr

(with the sign convention adopted In the present Investigation).

The moments are determined by,

QX Re IWO e •t L (r)sinep(r)rdr
20Nr IOc r UN; i ()+ (AN+I) cSp(,r

Re e t e L( i r)+L (r) cose rrdr} (37)

Q- Re a--• •I At i L(• (r)-L(1+l) (r)]coseprrdr}

it may be obser ,ed from the foregoing that the propeller-generated

transverse forces and bending moments are evaluated from propeller load-
ings associated with wake harmonics ax frequencies adjacent to blade
frequercy, i.e., at q = 11I1:1, whereas the thrust and torque are deter-

mined by the loading at blade frequency, The staad4-state thrust and
torque are determined at zero frequency; the corresponding mean transverse

forces and bending moments are determined at shaft frequency.

Blade Banding Moments

The blade bending moment about the 'face pitch line at any radius
rj of a blade is calculated from L (r) at any shaft frequency q as

11 ro eiqnt rj L(q)(r)cos[eo (r)-e (rj)J (r-rj)dr (38)
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The total vibratory blade bending moment dis&ribution Is then obtained from

M b = Re Z] 1Mb(q) e lq~t (35)

q

The computer program, which implements the numerical procedure

developed here, furnishes the blade loading distributions (Eq. 35), the

hydrodynamic forces and moments (Eqs. 36-37), and the blade bending moment

distribution (Eqs. 38 and 39).

The program also implements the procedure developed in Ref. 10 for

the evaluation of the p-opeller-induced vibratory pressure field from the

blade loadings L(q (p). The blade-frequency pressures due to loading,

are shown to be of the form

p ( Z= F Z IL (P~k conJ. L (40)

nal Pa'o p

where the k functions are the so-called Influence functions connecting the

loading points on the blade with the space points.

Also available from Ref. 10 is a computational procedure to deter-

mine the blade thickness effects on the pressure field. Although these

effects are negligibly small in the case of bearing forces, they'are

demonstrably large in the pressure field In the neighborhood of the

operating propeller.

NUMERICAL RESULTS

Using the present development with exact treatment of the helicoidal

wake from the blades, systematic calculations of steady and unsteady blade

loading and hydrodynamic forces and moments were made for a series of

3-bladed propellers of expanded area ratio EAR between 0.3 and 1.2. These

propellers were chosen because they were subjects of earlier papers 3 ' 4

which had used the "staircase" approximation of the wake, and because

experimental data for the three propellers of EAR, 0.3, 0.6 and 1.2, were

available from controlled NSRDC tests in nonuniform flow with wake structure

rigidly specified and vibratory forces made large to minimize experimental

error.
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The tests had been conducted In the NSRDC 24-Inch water tunnel using

the closed-Jet test section with a screen to produce the wake, a 3-cycle

screen for the force along and moment about the longitudinal axis and a

4-cycle screen for the forces along and moments about the transverse and

vertical axes. The tests wero run at a constant speed of 15 rps with

free stream velocity close to 12.5 ft/sec. The design mean thrust coeffl-

cient KT was 0.150 (practically open-water value in the 3-cycle screen

wake).

The propellers, with destroyer-type blade outlines and modified

NACA-66 section with a w 0.8 mean line, were one foot In diameter with

hub diameter 0.2 ft and pitch ratio 1.08 at .7 radius. For the propellers

at other expanded area ratios the pitch variation along the span, RPM and

flow velocity normal to the bladt were considered to be the same and equal

to the corresponding values for the propeller of EAR - 0.6 (taken as the

norm). The camberline variations were determined by linear Interpolation

of the known ratios of maximum camber to chord mr/c shown In the table

below for the propellers witN •AR - 0.3, 0.6 and 1.2.

TABLE I
Ratio of Maximum Camber to Chord, mx/C

Radius EAR - 0.3 EAR w0,6 AR- 1.2

.25 .0370 .0228 .0196

.35 .0388 .0231 .0202

.45 .0372 .0224 .0196

.55 .0340 .0212 .0185

.65 .0312 .0203 .0177

.75 .0290 .0198 .0170

.85 .0270 .0189 .0160

.95 .0247 .01714 .0147

The results of the calculations are shown In Figuros 1-4 andi

Tables 2 and 3. Figure 1 compares the mean thrust coefficients evaluated
by the present method with the earlier computations uting the "staircase"

approximation of the blade wake, and with the experimental value of 0.15.

As can be seen, with the exception of the propeller of 0.3 EAR, the present
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calculations are closer to the measurements. ,Aepeating the calculations

with finer mesh and higher limits for the integration has not changed the

result. The approximately 13% Increase in mein thrust at EAR - 0.3 re-

flects the disproportionately large camber employed with the small blade

area ratio (see Table I).

It Is to be remembered that the blade thickness effect on the loading

has been neglected here as in the previous studies. This effect, which

Is expected to decrease the calculated mean thrust, is probably Insigni-

ficant in most cases, but may be large enough In the case of the unusually

thick propeller of 0.3 EAR to bring the value closer to experiment. This

is the subject of a current investigation at the Davidson Laboratory.

The steady-state spanwise loading distributions are presented in

Figure 2 In terms of EAR. At all EAR the loading is shown to Increase
with radius from 0.25 to 0.85 and then decrease at 0.95. The trends I
versus EAR at every radius with the exception of 0.95 ar'.- consistent.

The rise in all curves at EAR " 0.3 is reflected in the higher mean

thrust coefficient for that propeller.

Figure 3 compares the blade-frequency vibratory thrust and torque

amplitudes computed by the present method with the earlier calculations

reported in Reference 4 which used the "staircase" approximation of the

blade wake, and with the experimental values. The present theoretical

results are quite close to the test data. The proportionately greater

imqrovement In the torque amplitudes over the earlier calculations is

especially gratifying since it Indicates that the radial load distributions

are more accurately determined.

Figure 4 presents the real and Imaginary parts of these redia! load-

Ing distributions versus EAR at first b:ade frequency q - N K 3. The

distributions show smooth trend- w,.h EAR, and a definite pcittern with

increasing radius from 0.25 to 0,85. At 0.95 radius the trend is completely

different. The curves of loading as a functio, of EAR are similar to

tho3e shown In Ref. 4, Figure 10, but are lower In magnitude and without

the inflections at high EAR of the earlier calculations,
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A comparison of the blade-frequ'ncy amplitudes of nondimensional

transverse and vertical force coefficients and coefficients of moments

about the transverse and vertical axes from NSRDC measurements and the

theory is given In Table 2. The coefficients are for the 3-bladed pro-

pellers tested in a 4-cycle screen-generated wake at the design advance

ratio J. (The resolution of forces and moments Is shown In Fig. 5.)

TABLE 2

Experimental and Theoretical Transverse and Vertical Force and Moment
Coefficients for a Set of 3-Bladed Propellers

EAR - 0.3 EAR , 0.6 EAR - 1.2

Amp. x 102 Exp. Theory Exp. Theory Exp. Theory

K 1.08 0.96 1.34 0.98 0.77 0.40
F

KF 1.04 0.95 1.25 I 06 0.57 0.69

0.92 0.87 1.10 0.93 0.77 0.40

K 0.89 0.83 1.06 0.93 0.70 0.53

A comparison of the corresponding ptase angles is given In Table 3

which also presents the phase angles for blade-frequency thrust and torque.

TABLE 3

cp, Phase Angle Ini Degrees

EAR 0.3 EAR - 0.6 EAR 1 1.2

Vibratory Forces Exp. Theory Exp. Theory Exp. Theory

Fx 207 222 238 257 323 331
205 q42 234 77 310 151"

Fy 351 153 32 20Lý 164 332*

Q 356 148' 31 191 100 288*
_y

F 255 255 293 308 77 67

Q 262 247 294 292 2 34

*Approximately 180 deg. out-of-phase with experiment.
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Knowing the magnitude M and phase angle q) of a particular force or

moment Its cosine and sine components can be determined by means of the

expression

M cos (qtot -

This form Is also useful in establishing the lead or lag of the quantity

with respect to the sinusoidal Input wake at a specified radial position
or the location of a maximum relative to the rotating blade.

For all the transverse and vertical force and moment coefficients

the trends with EAR of measured and theoretical values are similar. How-
ever, the correlation between experimentally and theoretically derived
coefficients is not as good as that for the vibratory thrust and torque.

Examples of propeller blade chordwise loading distributions are

shown In Figures 6 and 7 for the two extremes of expanded area ratio,
0.3 and 1.2. These figures compare the distributions obtained by the
normal sum of the Birnbaum chordwise modes (up to finite M - 4) viz.

L(I)(r) cot L+ ) Ln(r) sIn(-1) 0 (41)
n-2

with the Cesaro sum
0 M4

ar_ L)(r) cot + (L. ) In(r) sin(n-I)o (42)

The Cesaro summability Is a proper procedure for obtaining the limit

of slowly convergent or even divergent series. Use of this method in

Ref. 4, where calculations of loading were based on the "staircase" approxi-
mation of the blade wake, served to stabilize the chordwise distribution

which was particularly erratic in the neighborhood of the leading edge

for large EAR (>1).

The Cesaro and normal sums In Figs. 6 and 7 are both smooth and close
In value. This is an indication that removal of the "staircase" approxi-

mation with the present exact treatment of the blade wake results In a

more rapidly converging series, and consequently In a smoother chordwise

distribution,
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CONCLUSION

The theory which was developed in Ref. 2 In adapting the unsteady

lifting surface theory to the marine propeller case has been revised by

removing the so-called "staircase" approximation describing the blade wake.

The present "exact' mathematical model takes cognizance of the exact hell-

coidal geometry of the propeller blade and its wake, as well as the

presence of interacting blades and the fact that the propeller operates

in nonuniform flow (hull wake). A new numerical procedure has been devised

and programmed for the CDC 6600 high-speed digital computer primarily for
the calculation of the blade loading distr!butions at various shaft fre-
quencies. The resulting hydrodynamic forces and moments are evaluated

from the loading distributions: thrust and torque, steady and time-

dependent, from the loading at zero frequency and multiples of blade

frequency, the other bearing forces and moments, transverse and vertical,

from the loading at first shaft frequency for the steady-state case and

from the loadings at one above and one below blade frequencies for the

tima-dependent cases. In addition, the program has the capability of

calculating the vibratory blade bending moment about the face pitch line

at any radius and the pressure field due to the loading of the propeller

when it operates in uniform or nonuniform inflow fields.

The results of this new approach with the exact hellcoldal blade

wake have not shown any dramatic changes from the results of previous

calculations. However, it can be stated that an overall Improvement has

been witnessed in the correlation of forces and moments with experimental

measurements, which Indicates that the radial loading distributions are

more accurately determined. The detailed loading distributions,.both

radial and chordwise, are much smoother than obtained in the previous

calculations by means of the "staircase" model.

Other unreported calculations for propellers in the wake of a ship,

rather than In the strong blade-frequency wake generated by a screen,

have shown little difference in the results by both methods except in
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the steady-sL.te case where the new method yields results closer to the

experimental values.

Unfortunately the machine running time has Increased considerably,
calculations taking about 4 to 5 times longer. It is felt, at this stage,

that numerical simplifications and other approximations should not be

attempted before extensive use of this program can be made for a better

understanding of the Importance of the various contributions to the

solution.

It Is suggested for the present that if detailed and accurate
Infomation is required, the program.of the "exact" mathematical model

should be utilized, whereas when Integrated effects like forces and

moments are desired the "staircase" model Is adequate. This statement
applies especially when the relative merits and disadvantages of propeller

settings are under consideration.
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Appendix A

Singularity of the Kernel Function at p - r

I Before the I/R Expansion

If the substitution T - - • is made in Equation (13), the

kernel becomes

"N eq n x-g eiqa(-r-x+g)
(4•rrp fU) K m.Ilim E ynr 7, •L ... R mId

6-,0 n-I

wheru R T + r + P 2rP cos -o To + 'n a (¶-x+g) (A-I)

In the limit as 6-0 , R will go to zero when p - r ,n = 0 , and

T 0. Therefore the singular behavior occurs when n Il and x - > 0.

For a study of this behavior, only that part of the r-integration need be

considered that is within a small range around T - 0 . viz., - y :5 T I y

where y is a sufficiently small but positive fixed number. Thus part

of the kernel, for n - I . may be designated by K1

K1" - lim Y e lqa(r-x+g (A-2)o- an' Bn R -

eQ -. at -Y ~'~
CP0- ax

After taking the derivattvee and limit• K1  becomes

K . rp _ _ iqa(x-g) e iqaT

J a2r2 vr -+ Y

a 4a q2 + la 2q(2a2 r 2 p2 + r2 + 2 sin aT

1. + rr- + 2 - 2rp "•s aT rp(r 2 + r 2 +p: 2rp cos av)3/2

"continued

A-!
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L(a2p2 + 1) ( r 2 1cos aT ( - + I 6 2 r 2 + I)s I jar
rp(,r2 + r2 + P2 _ 2rp cos ar) 3/2 (.T2 + r2 + P2 - 2rp cos aT)5/2

(A-3)

Let p = r + e where 4 Is.very small. Then the expressions
Involved in KI can be expanded in a series of % and T . After lengthy
algebraic manipu;atlon and trivial Integrations, the slnqular behavior of
K Is described by the following expression:

K K• e-lqa(xC) r2  {2i+ a2r2 + 4a2  I (A-4)

(as P - r)

The first term has a high-order singularity with "Hadamard" finite
contribution which Is evaluated by the method of Mangler. 9 The second
term Is the well-known "Cauchy" type.

ii After the I/R Expansion

For the case of n I I , x-9 > 0 , Eq (19) becomes after the limits
have been taken

K - pr ... . E
[(l+a2p2 ) (!ifa 2 r2))/2 r--

{ra 2 (m.q)+ r-r [a 2 (m-q)+ S!j]lm(a m-q j P)Km(a j m-q J r)e-ia(xg)

e-lam(x-) r (ak+ p-)(ak+ M-)elkkj (A'5)

T jo r2-a (m-q) dk(A-

where (iK)m m k Ip) Km ( r)

A-2
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When j m M I a large, the generaIIzed mean-value theorem can Pe

used' for the Integral term and this in conjunction with the residue theoremI leads to
Sd d

S f(k)p(k)dk d:f(A) S p(k)d c ) A : d-
cc p(k) 1: 0 i

eIk(x-C)
with p(k) -k-alm-q)

eOik(x-C) lek(x-V ,_
cf (k)-ka~mq dk• f (a(m-q)). e-'mq dk

S. lttelia(m-q) (x-C) f(a(m-q))(A)

for (x-C) > 0

Thus for large I ml the Integral term is approximately equal to

the closed term and with I ml k J M >>q KI reduces to

"" or -Iaq x-C
K1  E [(l+c2p 2 ) (i+a2r2)]I/ 2 m-N

• ..--M!- (l+a2r2) ()+a2p 2) Im(amo) Km (am r)• (A-7)

z Nicholson7 showed that the product I m(amp)K (amr) can be approxi-

mated by

Im I Im I

Im (ap)Km(emr) • -(+3 2p2 )(1+a2r2)Jl/ 4  2 1m I r+

e -Jm I ( - y - V *o• ) (A-8)

for p < r.. (p and r are Interchanged when p r

A-3



If use Is made of (A-8) then for m large, m >> q

2_ laq(x-g)[ 2r2)( 2 2)21/4 mK r e'I a *;+'-1 rp -r(aXmM

F where X I+v5e;r v p p<r (A-9)

It Is known 8that

; mXn L for X< I
m-1 (l-X)2

therefore

ZMA IN - Em

muM (,_X) 2  Em.

If only the terms of (A-9) giving rise to high-order singularities

are considered (It is to be noted that the terms of (A-5) in q which

were neglected give rise to a Cauchy type singularity), then

"-2e" iqa (x-g).V-,+a2r2 I m X
llm K1  

2  li" -- 2

p-4r r p-4r (I-X)

•-I -2e-lqa(x'•) 2 i

Pd -e 2 -- m --- 2-- (A-10)
r l+a2 r 2  p-r (p-r)

x

since J im (x) 2 can be shown to be equal to r 2 /l+a 2 r2

p-.r -(p-r)2

Equation (A-10) is Identical with (A-4). Thus the expansion scheme

for i/R exhibits the proper singular behavior after the summation over m

A-4
I
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Append Ix B

Evaluation of the O•- and cp -Integrals

I. I ( j) W . 'I, (;)X,•,c • (s-'I)IT 0

where for ;- I

i() (x) - I(-cosya)eXcoscP dyp - Jo (x) I 1(W

for I - 2

1(2) () - 1 ±T(1+2cost)eixcosc dy - Jo(x) + 12J, (x)
TT0

and for m > 2

I(I) ( 1 1_?, lC~q# i-
"(;) O).1 cos(P a IXco5(Pdcpm I " J-I (x)

01

where Jn(X) Is the Bessel function of the first kind.

II A ('(y) " T 8 9,)eiYcosO slnede (B-2)

For • I
^1!) (• . / •ycose

A (o cot s sine e"1 de - Jo(y) - IJl(y)

and for ; > I*

(Y) J sin(;-I)e sine e-lycosG do

- ,l•.2 I JR 2 ( ') + J; (Y ) .

i

i

e- !
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III. To evaluate the interrand of the x-Integral of Eq. (28) at the

singularity X - 0 (see Appendix C) It Is necessary to define the

following functions

3l(1)((q r•)el)j ,-
b l 1  (qe•r) (8-3)

and

81 + I(qO') (8-4)

I lqObcosY,
where I () (2J,) IT §(;)e coscp ckI b 1 f 0I q o ~ c o s O

"A () (q• OP .I/ IT )sinocoso o-• dof b~) = 0 o9

a) For ; ,,rI

,)[)~ I /I ox ) + J(x)] +.,.,¢x)
for • ,2

and for i >2

SI W J x)+'a2 X

b) For I - 1
') (y)'" m o(I) ) lil'" (y)

and for • > I

A()(Y (-0)~~ ;+1

8-2
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Appendix C

Evaluation of the Integrand of the ,-.ntegral (Equation 28)
at the Singularity X 0

The Integral of Eq. (28) is

o Xgk 
CI

where

g(k) . (IX+aANIp) Km(1X,4aANIr) B-,-(,)e a for p 7

akaA+m (a+ ANp(q
B--171 a(x b a b()(..)nr P

minq+ IN

By L'Hospital's rule the irtegrand a., X - 0 becomes

I'-gk 9 -% -bh (C-2)
),4 -X %MO

It is obvious that

Bmn('x)jO B- X(x)

rim(IX+a041p)Km(IX+aýN ir)] Llm(i-a+aANlp)Km(l-a+aANlr)1

and % Aar Aaj
e X"O - e X=O

Then

1

A C-I
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-h =2 1 La- (I K) e;- -(0)
L .%. a mIX n

+ (I K)mIa m,riW

V ~j[lm(I%+aiiNIp)Km(IX+ajN Br)']
+8- -(0) b

a[IM(I-X+aANIp)K m (IX+aNir)1(c)

(ee BK'' 1 m(aANIp)Km(laANIr) for p :g r (c-4)

-(B" 2(x 04 m-L -a2 + m L) m ( q)r (qqi)P
'X-O ~ "0r p

+ 2-(a 2t .. (a 21N+ .2P1)[_Ore R (q r), (;) (qGg)+e P (q, r)A~ (qqP)]

(C-5)

and IR (x and A1 )(x) are as defined In Appendix B.

The third term of (C-3) Is treated as follows:

a) For X -0+ and aAN -. 0

an m(1%+aA~ip)Km(IX+aANIr) I I((X+aAN)p)Km((%+a2N)r)

Ie 0-x+aANIp)Km(I-%+ajN~r) - Im((aAN-X)p)Km((a.1N-X)r)

so that the third term of (C-3) becomes

2% #;(0) 1(XI~t K(xlgl ) (for p e. r)

C -2



R- 1509

- 2- -(O){f.2 Km(1aANlr)tl I(latIp) + 1,,(alaNlp)l

T ma, AN Ip)LKm..I(IaNIr) Km+ ,(,aANir)] (C-6)

(Note that for p > r, p and r are Interchanged in Eqs. C-3, C-4 and C-6.)

b) For x - 0+ and aAN < 0

Im(IX+aANIp)Km(I 0+aANlr) I Im laANiNlX)p)Km((ialNI-')r)

and

Im(I-X+all p)Km(I-X+aANIr) - Im((IaANl+X)p)Km((IaANI+X)r)

The third term of C-3 then becomes

-2B,-(O) I for p g r (C-7)

Therefore Eq. (C-3) can be written as

LW a0 B;,;

+ 2(IK)mI m:k 211; ;(0) ml (C-8)

where ('K)ml is given In (C-')

B-,-(O) (a2 A+ _y) (a2 N+ "D-)1 (q•rq)A,()(qeo)

m:- is given in (C-5)

a(IK)m
S"---m J is given in (C-6)

and the upper sign Is taken when A > 0 and the lower sign when A < 0.

.. C -3
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When A w m - q = 0, by the limiting process, it Is easily shown

that

lim B- -(0)- lim A 0POm,n• •*

,(IK)
lim B- -(0) - 1 rnm 0 0

10m,n XO 14

Jim 2i
•o (o (x ) 2xo p

Jim (IK)o0  Bmn (O) lir A og )-- 0•,-0 X=0 t,0

-(IK) 01 - I (,) l I 0•-0%=O %k =O L-0

Hence when I, - m ,.q -' 0

M g) 0 (C-9)

When I = 0 but m q 0 0, it is easily shown that

l (I ) ImI
2imi for p < r

Jim (IK)j M0
•r"O k=O -..21ml. p• o

rn(IK)('X --I
A-,0 X.0

Hence for A, = 0, m * q • 0

I'm 9 M -92 ilim (K

x=O

S(ý)( )r)A(;(qoP 2 +a
rp r

.r2 p V

(c-10)

C-4
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When q - 0 and Eq. (36b) Is used for the kernel functions, the value
of the Integrand at X a 0 is zero for mm 0. For m + 0 It can be easilyshown that the Integrand at X - 0 when q - 0, im -.*N is

SI (a+ )(a 2+ im)(a Km(amr)
r' p

{A 1i ( 0) A (0)r1 I(o) - ob o + +OI(;)I o)4 )(o)}(C-ll) °

N

M

C-5

Ig•



R-1509

Appendix D

Evaluation by the Lagrange Interpolation Method i -:

of the p-Integration In the Region of the Singularity

The p-integration of the kernel function in the region of the

singularity is in the form

I rnr;q) dp (D-1)I =•r.O (p-r)3 _

where M(r,p~q) =(p-r)3 K mn(r,piq).

Since KOm')varles as (p-r)"2 as p -. r, 4 = 0 when p - r. For this

reason the function M can easily be expanded about the singularity p - r

by the Lagrange formula
n Tin (P)

M(p) =) ' . .Mi+ I = , Is o. n

1=0 (p - Tin

where

fln( (p) (P - l) (P , (P (- 2)(D-2)
Tin~(Pi) =p n(p) evaluated at p pi

and M i+1  M(pl) (see Scarborough 1 and Watkins et al12

In the strip from r - B to r + 0 (with n = 4 for the 5-point formula),
Po = r - 0 - r - 26, P1 = r - 6, etc. where 6 - 0/2. Then

and
M~~p)~ (-1 ' 1 (p-r+2•)(}r6) (•r Pr')(''')

6 i=O II(4-I)I p- r + (2-1)6 - .

where M3 = 0 since P2 = r. (D-3)

D-1
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The Integral I Is

r ' A r+28rP6 [g (p-r) + 6gl~dp
r6(pr) 8 r-26

92 r+26 djp g r+26 do
+62 r-26 p-r r-28 (p-r)2- D4

where
m! + H5 N + m4

4 --- 5 4

0 41

-(1 4 2 + 15) N+ MQ2+14)

41 31

92 + (2 + M

93 2 -- 145) 4( - MO4

41 31

The Cauchy principal value is to be taken of the second Integral:

r+26 a

r-2• p-r

The last Integral is the Hadamard type whose finite contribution is

r,+2 6 dP I rm r r-e r-+ 26 r+c - dP

r-6(-) C-40 Vi + S + f~ I1
r-6 p-)'r-6 r+g r-ej (p-r)2

lmr. I ,r-c, r+26, r+e
e-00 LO -r r-.5, r+e, r-c

-~D-2

6

0,-2
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Therefore

1r+26 -4SI F 691 " P -41

6 r-26

r 6 63

66

or

where

Mm -883 . KrnAfl(p r - 26)

ti2  6 • K(-n63. )(p - r - 6)

S4 - 6~ .K re(p r+ 6)
-5 - 863 K(;n')(p ' r + 26)

and

6 0/2

4

D-3


