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DESIGN STUDY OF DAMPING TECHNIQUES

I. SCOPE OF STUDY

Meetings were held with representatives of BuShips Code 375 on
30 June and 27 August at which the scope of this project was

discussed. It was agreed that the studies under the present

contract should cover the following three phases:

Phase I - Damping by Single Homogeneous Layers and by

Simple Constrained Layers.

A. Analytical studies of damping on large plates,

neglecting the effects of boundaries.

B. Analytical studies of the limitations of the

F results of Part A, including:

1. effects of boundaries
2. li:lits on thickness of application

3. limits of temperature and frequency

4. effects of non-linearities
S5. effects of water load

6. effects of plate curvature

C. Eicperli~ental Studies

Work on Part A of this phase is described in the present report.

Worl. on Parts B and C is only nor getting underway.
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Phase II -Extensions of Analysis to Fibrous Damping Layers and
t~o Stiff Damping Layers.

A. An exploratory analysis of the constrained fibrous
damping layer aimed at understanding the mechanism
of damping by constrained fibrous damping layers.

B. Analytical study of constrained-layer damping when
the damping layer is relatively stiff.'

It is planned to initiate work on both parts of this phase during
the October-Decemoer quarter.

Phase III - Study of Combination Damping Treatments

A. Two homogeneous damping layers

or B. A constrdined damping layer with a homogeneous

layer applied over it.

It was agreed that the decision as to which parts of Phase III
would be undertaken would be poatponed until work in Phase II was
well underway.

During this quarter, a memorandum was submitted by the contractor
outlining work that-has been and is being undertaken ih the field
of vibration damping for a number of sponsors. It was indlcated

that although these studies each cover different damping treat-
merts and/or are intended for different applications, each should
benefit from knowledge gained through the others.

-2-3
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II. REPORT ON PHASE I-A: ANALYTICAL STUDIES OF THE DAMPING OF

LARGE PLATES BY SIMPLE VISCO-ELASTIC DAMPING TREATMENTS

Introduction

There are currently two distinct methods of damping the flexural
vibrations of plates with visco-elastic materials. The older and

more common method involves the application of a relatively thickI layer of damping material. An example of this is automobile

undercoat. The equations governing this type of damping were de-

rived independently by Obehst and Li6nardl-/. The damping

mechanism involves the internal losses of the visco-elastic ma-

terial undergoing alternating extensional strains. The damping

achieved is roughly proportional to the product of the resistive

component of the Young's modulus* and the square of the thickness

of the damping layer.

The second type of application for the damping of plate vibrations,

called a "damping tape" or "constrained damping layer", has been

developed recently in the aircraft industry. It consists of a

relatively thin layer of visco-elastic material and a stiff cover-

ing "foil". The damping achieved by such constrained damping

layers involves the shear motion of the visco-elastic material be-

tween the two stiff riedia. The damping achievable increases with

increased stiffness of the constraining layer. There is an optimum

* This component is sometimes called the "loss modulus" to dis-
tinguish it from the elastic component or "storage modulus".

I3

---4 . .



Report No. 561 Bolt Beranek and Newman Inc.

KIN
thickness of the damping material, which may be quite small, and

which is a function of the temperature and frequency range for

which maximum damping is desired. The equations governing the

damping by ccnstrained damping layers were recently derived by
KerwiSn-•,

A more general analysis, in which the constrained-damping-layer

configuration is treated as a special case, has been carried

out by BBN and presented as a report to the Office of Naval

Researchi/. In the past quarter, we have taken the resultant

Sequations and have developed charts whereby the loss factor may

be calculated from knowledge of the geometry of the configuration

and of the elastic moduli of the materials. We have then pre-

sented these results in the form of charts useful in understanding

damping results and in designing damping treatments.

Significance of the Analyses

The analyses of the damping of flexural vibrations by visco-

elastic damping layers given in this Progress Report are ex-

tensions of the analyses reported in Ref 7. As such, they are

limited to- large, flat plates for which the effects of boundaries

can be neglected. None of the secondary effects that might in-

fluence the actual performance of damping treatments on submarine

hulls have yet been included. Specifically-, the effect of plate

curvature, external pressure and of water load have not yet been

considered. Nor have the practical limitations of material

properties been taken into account.

"-•-
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Despite these limitations, we believe that the analyses have

appreciable practical value. The results are indicative of the

-a imum damping that can be achieved by these mechanisms. The
calculations are also useful in comparing various damping mecha-

SJiZms and in ,caling from one structure to another. It is to be

expected that many of the secondary effects, such as water load

and plate curvature, will have similar effects on different

damping treatments. Thus, many comparisons made for flat plates

will also apply qualitatively to submarine structures.

No experimental confirmations of the analyses are given in the

present report. We feel that the experimental confirmations

already reported in Refs 5 and 7 have established confidence in

the basic theories involved.

Homogeneous Damping Layers

The equations governing the damping of homogeneous visco-elastic

applications are well known, having been drived and rederived

many times (See, for example, Refs 1, 3 and 7). An approximate

L relation, which holds over much of the useful range is:

E1  1

where:

ij is the loss factor*
E is Young's modulus

H is thickness

subscript I refers to the base plate

subscript 2 refers to the added damping layer

* The relationships of • to other measures of damping are covered
in Appendix B.
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This equation can be expressed in terms of the weights, W, per

unit area of the material through "Uhe re ,tion:

W=yH (2)

where y is the weight per unit volume.

The resultant expression is:

(112 E2' fv \2 (w2 (

There is a wide variety of homogeneous-layer damping materials,

having best damping at different temperatures or having different

mechanical properties, e.g., adhering, drying, etc. We may esti-

mate the dampino achievable with the better products when applied

to steel plate by taklng.the best combination of parameters that

we have found for available materials-J. These are:

72H2 =4 x 100 dynes/cm2

= 38.5 lbs/ft-'

E = 2 x 1012 dynes/cm"?

71 = 48o lbs/ft 3
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The resultant expression for the xraximum damping factor is:

%max 4 
(4)2

iU•,h•,ugh the properties of the various compounds vaiy widely, the

g.:-eral tendency is to have a higher resistive stiffness (loss
modulus) rE associated with denser materials, so that the coef-
ficient in Eq (4) will tend to remain constant*. Using Eq (4),

we have constructed Fig I to show how the approximate maximum

damping varies with the weight of the. application relative to

that of the plate. In Fig 2, the maximum damping is given as a

functLon of the weight of the treatment for the range of plate

ý',knessrs likely to be encountered in submarine construction.

L The important conclusion from the foregoing analysis is that,
although the relative weight of the damping material is not a
fundamental variable in the damping equations, for practical

purposes it is the controlling facto7 in determining the amount
of damping that can be achieved with homogeneous-layer damping

•- treatments.

Constrained Damping Layers

'When a thin layer of damping material is constrained by a
stiffener layer, the resultant damping is almost entirely attribu-
table to the shear motion of the d.,ping layer. Analyses of this

* If anything, the coefficient will be somewhat lower with denser A

materials.

• ~-7-
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mechanism are to be found in References 5 and 7. Because this:: n
theory may not be familiar to some of the readers of this report,
a brief version is presented in Appendix A. The final theoretical

V equation of Reference 7 is not in a form convenient kor calculations;

but, it is possible to rearrange the terms and obtain an equation
more suitable for numerical work. This has been done in Appendix A.

The resultant equation is:

i + cr + D(I l )I

where: • is the loss factor of the shear modulus of the
damping material. (c• = G2 (l+J$)).

r is the basic parameter governing the shear damping.

(r 7 2 0 G2( -r 0 T C for steel or aluminum plates.)

-A, C and D are functions of relative thicknesses of
the foil, damping 2ayer and base plate and of the
materials of the foil and base. They are inde-

pendent of the properties of the damping layer.

The Appendix also contains charts whereby A, C, D and r may be cal-
culated from the material properties and dimensions of the layers.
Other charts then allow the calculation of the resultant damping
factor. Finally, a sample calculation is carried through to
illustrate the use of the charts.

I
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An important result of the analysis of the shear damping mecha- f
nism is the dependence on the properties of the damping 2ayer as

[given -by the shear parameter, P. For low values of this parameter,

corresponding to a damping layer with little resistance to. shear

motion, the damping is relatively low. As the layer becomes stiffer,

and r increases, the damping increases. The damping becomes a maxi-

mum at a moderate value of r (say, 0.01 < r < 0.1), and then de-
creases with further Increptse of r, as the layer becomes "too stiff". A

The peak of the curve is relatively broad, the loss factor dropping

to one-half its maximum value for r about two octaves either side

of the optimum.

The shear parameter is a complicated function of frequency and

temperature, depending as it does on the shear modulus of the damp-

ing material, which is a fuaction of both frequency and temperature.

In addition, r depends on the thickness of the damping layer. For
given operating temperatures and frequencies it is usually possible

to select a damping material and/or layer thickness that will yield

close-to-maximum damping. When this is done, the damping achieved

is primarily a function of the stiffness of the stiffener layer

relative to that of the base plate, and of the loss factor, •, of[ the damping material.

To estimate the damping achievable on flat plates by constrained-
layer damping treatments, we have assumed that the proper choice

of damping material has been made to give optimum damping with a

layer thickness of about 0.030 inches. (This layer thickness was

chosen as the minimum that can safely be applied to heavy steel

plates without requiring better' than normal surface finishes.)

We have also assumed steel as the stiffener material, although

-9-
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aluminum would be slightly more effective on an equal weight

basis. Assuming values of 0 of 0.5, 1 and 1.5, we have plotted

the damping factor as a function of the wtight of the treatment
and the thickness of the stiffener layer. The results are pre-

sented in Figs 3-6 for four typical thicknesses of steel plate:

i/14, 1/2, 1 and 2 inches. The three curves for the three values

of P may be interpreted as "readily attainable", "probable" and

"possible" respectively.

Comparison of the Two Types of Damping

The da..:ping achievable by homogeneous damping layers depends
roughly on the square of the weight of the material, while that
for constrained layers depends approximately linearly on weight.

When we compare the curves of Fig 2 with the corresponding curves
of Figs 3-6, we may conclude that the two types are likely to
give equal values of maximum damping for weights between 10 and

20 percent that of the base plate.

Below 10 percent, the constrained-layer damping will probably be

the more effective; while, in cases where more than 20 percent of

the plate weight can be devoted to damping, then the homogeneous

application should be more effective.

An important corollary of this result is that different types of
damping treatments cannot be directly rank ordered if they are

tested at ratios of treatment to plate weights different from those

which will ultimately be used. An understanding of each damping

mechanism is necessary before meaningful comparisons can be made.

-10-
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APPENDIX A

THE DAMPING OF FLEXLRAL VIBRATIONS BY CONSTRAINED DAMPING IAYERS*

Basic Assumptions

The equations that are presented in this report concern the damping5

attributable to the shear motion of a thin vi3'co-elastic layer be-

tween two stiff plates. Other motions could occur and produt;e
damping, but these are considered negligible relative to the shear

motion. In practice, this means that the thicknesses of the plates

and of the damping layer are all small compared to the shortest

wavelengths of any type of disturbance. As all types of wave

motion are ignored, no damping factor is associated with the mass

per unit length and the damping factor for the composite plate is

simply that of the bending rigidity. All effects of plate curvature

and of water load are ignored in this elementary analysis.

Flexural Rigidity of Composite Plate

Figure A-I represents an element of a three-layer structure in

flexure, showing the shear displacement of the middle layer.

Layer I represents the original undamped plate, the second layer

"is the damping material, and the third layer the stiff constraining

layer. The angle 0 is the flexural angle of the element and the
shear strain, *, Is measured relative to 0 in the opposite direction.
The x-direction is chosen as the direction of propagation of the

straight-crested flexural wave. Xt is assumed that all of the

layers vibrate in phase and that the flexural angle of an element

of foil is the same as that for the corresponding element of the
base.

1 *The equations are derived in more detail in Ref 7. Some of the
figures used here come from that report.

SA-1
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Figure 2 shows the various thicknesses and distances used In the
analysis. The displacement of the neutral plane is represented
by D.

The distribution of extensional strain and stress for the three-

3Jayer element is illustrated in Fig 3. It is assumed that the

stiffness of the damping layer is small compared to that of the

other two layers, so that the net extensional stress of the damping

layer can be neglected. As the net.• force on the composite element

is zero, the individual layer forces of the top and bottom layers

are equal in magnitude and opposite in direction. Letting the

force on the constraining layer be F, we may write:

F 3H-) Kjfý K (A-1)

where i Is the stiffness of a unit area of the ih layer.

The bending moment about the neutral plane of the composite struc-
ture is the sum of the moments of the individual layers about

their oun centers and of the products of the force on each layer

by the distan e of I'-he center ot that layer from the neutral plane

of the composite. The expression for the bending rigidity is

thus:

4-

The problem now reduces to finding the displacement of the neutral -

plane of the composite relative to that of the base. Solving

Eq (A-1) for D:

A-2
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K (
D H31 H (A-3)

K 1 + K3 \ l~

it is seen that this displacement is a function of the relative
strain of the damping layer.

The shear strain of the middle layer is related to the shear stressI and the shear modulus. As shown in Fig 4, the shear ftrce is pro-

portional to the space-derivative of the force experienced by the

foil:

C ')x(A-4)
2

where G2 is the shear modulus of the damping layer. Except near

the edges of the structure, the vibratory motion is characterized

"by expressions of the form:

- e (A-5)

where Pn is the wave-number of the nth mode and w. is the corres-

ponding anWilar frequency. it follows that the ser ond-derivative
of the shear strain is related to the strain itself by:

Pn2 (A-6)

an= it follows that

A-3

A;'
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/ 2

The quantity in parentheses is a dimensionless coefficient that ex-
presses the properties of the shear layer relative to the stiffness

of the basic structure and the wave number of the vibrat!lon. This

is a fundamental parameter of the damping tape problem. Putting

t2
r (A-8)

K1H2P

substituting Eq (A-7) in Eq (A-3), solving for the displacement D

and then using Eq (A-2), the final expression for the bending

rigidity is:

2iB-~ 1 1  + K H3  + 1 3 3  (A-9)

The dissipative properties of the middle layer are considered by

expressing the shear modulus as a complex quantity:

G2*= G2(1 + j3) (A-10)

where both G2 and A are functions of temperature and frequency.

Substituting Eq (A-1O) for G* into Eq (A-8) for I* and then solving

Eq (A-9) for B* one finds:

I ~A-4lI!
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•(1H•1 l) +Ii + j)IrIH
B* K H 2 + 2- nKa3(H~2j +x- (A-11)H312 1 1 12K 3H+ +rLi(-)

(KI+K

The loss factor for the composite structure is:

2pr K H31l
1233 j 2- 1 )_ 2 2 3+2t","K.•"t3- +rR-t/-g-13 +,, +,-, K +, )4+,2)

(A-12)

Form for Calculations

Equation (•i•)for the loss fa.tor of a plate with constrained layer
damping can be rearranged to facilitate calculations. The major
independent variable is the shear parameter r, while the relative
thicknesses of the damping layer and of the constraining layer, as
well as the stiffness of the "foil" and the loss factor of the
damping material, are p•:rameters. First, all properties of the
added layers can be normalized by dividing by the correspondingproperty of the base plate:

Sh 3  H34/1

E H•.3 (A-14)

-4 A-5

4_.Qr
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The distance between the centers of the constraining layer and

the base plate is normalized by dividing-by the thickness of the

base plate: _

11 1

HI
h3 •_•=31 "1H + +-2HI+ H3 _ l(1+2h2+3 (A-15)

This distance appears several places in the calculations, always

in combination with another term; so, we define:

2 212h 31 3(0+2h24bh3 ) (A16
A - + • h - 1 + e h -(A-16)

I +k h I + eh,
3 3 33

For reasons which will become clear later, we define two additiLoa2 4

coefficients that are dependent only on h2 , h3 and e3 (or k3 ):

C A +2 _3 (A-1T)

3N
D 1±~~ [+ A( + k (A-8

With these two additional abbreviations, the equation for the loss

factor reduces to:

(A r IA-19)

1 C. OP + Do( + p) P•

which is a form that is suitable for basic calculations.

A-6

- m ~.-•a=m -A-
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Optimum Damping

The loss factor for a plate with a constrainea damping layerI treatment is highly dependent on the shear parameter of the damping
layer. At low values of P it is proportional to r, while at high
values It varies inversely with r. There is a value of r that gives
maximum damping. If we call this value ropt, we may solve for it
by taking the derivative of Eq(A-19) and setting this eqiual to zero.

The result is:

opt

P 1(e

Equation (A-19) for the loss factor can now be put into its most simple
form by defining three reduced coefficients:

At=A (A-21)

- -(A-22)

24ff

Al. tan (A-23)

The resultant expression for i is:

2, sinl' ( r/tot)
o .(A-2 14)

1 + 2C' cos 1' (r/ropt) + (r/ro )

A-7
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where

rO1t Cos (A-25)

The maximum damping achievable with a given damping treatment is

given by:.

,sin 13S=A i ' Af• (A- 26)i+ C' ICos+ 13=

The maximum dampirng Is a function of the loss factor of the damping
material -as well as of the relative dimensions of the two layers of
the treatment. At non-optimum values of r, the damping factor is

less than nmax:

.=. 1 (A-27).
Imax (r/r~o~ - 1)2

S+ 2(l + C' Cos P' (rirot)

This function is geometrically symmetric with respect to r/r 0op.

Graphs of General Functions Used in Damping Calculations

The general results of the analysis of damping by constrained damning

layers-are expressed by Eqs (A-25),(A-26), and (A-27) in terms of

Coefficients A', C' and P' which are functions of the physical

properties of the layers making up the treatment. The important

parameter is k 3 , the relative stiffness of the outer layer. Other

parameters are h2 and h3 , the latter being related to k3 through

A-8

27
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k = e h To enable rapid calculations of damping and the later
3 3 3'

development of design charts, graphs are needed for ',he various
•i ~coefficients in terms of the basic physical quantities. ••

For making our calculations, we have chosen values of e 3 of 1/3,

I and 3. If both the foil and the plate are made of1 the same

material, then e 3  1 . If one is of-a light metal and the other

a heavy metal, then the ratio of the Young's moduli will be close

to 1/3 or 3, depending on which one is on top. It is unlikely

that the damping layer will have a thickness greater than a third

that of the plate, so values of h 0, 0.1, 0.2 and 0.3 have been
2

selected.

T.gures 5 to 7 give the dependence of ropt on e3 , h 2 and k
Actually, the three sets of curves are very similar for k < 0.1,

only diverging for the higher values. Within the accuracy of many

calculations, Fig 6 can be used for all values of e3 , and the curve
for h = 0.1 is representative of all values of h2 . The function2 2
of cos 0' needed to complete the calculation of r is given in

opt
Fig 12 as a function of %.

The maximum loss factor is a function of 1 and of the parameters

e 3 , h 2 and k3 . Figures 8 to 10 show its dependence on the latter

group. In this case variations of both h 2 and e3 axe import.•-•t.

The function f(pý is a function of C' as well as of 0. As shown
in Fig 11, C' is a slowly varying function of A', having values
between 1.0 and 1.1;. (That C' should be related to A' was shown
both analytically and empirically before Fig 11 was drawn.) We

may therefore relate all functions of C' to functions of A',

choosing three values of C' as representative of the full range

of A' as follows:

A-9
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0 A'< .3 C' 1.02

.3 <A' < .6 C' 1.10
S.6 <A' < 3 C' = 1.26

In Fig 12, the various functions of f' are plotted against f, using
the three representative values of C' where required. It is clear

that the variations caused by A'; i.e., by k3 , e3 and h2 , are small.
Ai the loss factor of the material is usually not known with any
great precislon, it is reasonable to neglect the small effect ofthese other factors.

Dependence on r/pt

The ratio of the damping for any value of r to the maximum achievable

at r &s primarily a function of the ratio of r to opt and second-
arily a function o~f 0 and the dimensions of the layers. We may
neglect the variation with layer dimensions and consider only the
effect of L. Even this is a slow variation and only a few typical
values of (I + C' cos f') need be used in Eq (A-27). The values used

are the following:

o < < .6 (1 +C',cos A') = 2.00
.6 < •< 1.4 -=1.75

1.4 < A < 3 = 1.50

Figure 13 shows how varies with r/p for these threeTV%= opt
ranges of P. Because of the geometric symmetry of the function

one Cet of curves applies whether the shear parameter be greater
or lesa than optimum. As zhe variation with 1 is relatively
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small, and as 1 is most often between 0.6 and 1.4 for typical
damping materials, it will usually be within the desired
accuracy simply to use the middle curve. To within + 10%:

3.65 ( t) o
OP.. (A-28)

•i~Ia -(1+ r/rop •(-8

no matter what the value of the loss factor (.

The Shear Parameter

The shear parameter defined by Eq (A-8) is a runction- of the shear
modulus and thickness of the middle layer, of tLe stiffness of the

base plate, and of the wave-number of the vibra'tions. The shear
41modulus ai wave-number are both functions of frequency. The

former is a property of the viscous material, while the wave-number

is related to the frequency through the velocity of the flexural
waves by:-

_ _ (A-29)

The flexural velocity is influenced by the added stiffness and

mass of the damping layer. If we assume that this is a second-
order correction, then we may eetimate cB from the properties of

the undamped plate. The formula for the flexural wave velocity

for an undamped plate is:

. A-ll
4330

I-2
- -- A-11
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where c is the usual velocity of sound in the ojate. Using

this relationship, the expression for the shear parameter
becomes:

r : 0 1 2(A-31)
CoorT2 te

For most metal plates, the longitudinal velocity of sound Is
Sclosely 17,000 ft/sec, so that the shear parameter-can be
S~calculated from:

79 G2 7 20 2

(A-32)

where-E is the Young's modulus of the plate material and a
Scorrection has been made for Poisson's ratio.

The value.of Young's modulus is about 7.3 x 1011 dynes/cm2 for
aluminum and 20 x I0II dynes/cm2 for steel. The shear modulus
of visco-elastic materials varies from 106 dynes/cm2 when very

soft to about 10I0 dynes/cm2 when hard. The thickness of the
damping layer could be as small as 10 ft or as large as
2 x 10-2 ft. It follows that possible values of r could vary by

6as much as 10 , at a given frequency. However, sIgnificant
damping can only be achieved in the range: 0.002 < r < 2. By
assuming values of Young's modulus appropriate to the plate

material, we can plot r as a function of the shear modulus of-

the damping material. with frequency and damping layer thickness

as parameters. Fig A4 is such a plot to be used to estimate the

shear paraneter when the base plate is made if aluminum, while

Fig 15 applies to steel plates.

A-12
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Use of the Charts

The charts presented in Pigs 5 through 15 can be used to calculate
the shear damping of a given constrained damping-layer treatment.
Thus, knowinG the thicknesses of the foil and damping layer rela-
tive to that of the base plate, one can readily compute h and h2 .

3 2
The materials of the plate and foil determine e3 and thus-k3.

SGoing into the appropriate chart among Figs 5 through 7, we obtain
r.ot/cos f'. In the same way, Figs 8 through 10 give A' =

Yamy/fMO). These two results are independent of the damping ma-

terial and therefore of temperature and frequency. Given the
properties of the damping material, the appropriate values of the
loss factor can be tabulated for each combination of frequency

-and temperature. Fig 12 gives- both cos p' and f(3) for each value
of •. One can then calculate iLax ani rot for each combination

of frequency and temperature. It then only remains to determine
the actual values of r from Figs 14 or 15 and to calculate the re-

duction in n caused by non-optimum values of r, using Fig 13;

As a•n example of the use of these charts let us carry through the

calculation of the damping curve for a damping treatment consisting

of 1/32 inch polyisobutylene and 1/8 inch steel on a 1-inch steel

plate at room temperature. As the constraining layer is the

same material as the plate, e 1 . From geometry:.

1

k h 3= = .125

A-13
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r
From Fig. 6: 091S~~~~~Cos '= ="9

From Fig 9: A' =.195

From Fig 11: c' = 1.02

From references 8 and 9 (or Fig 14 of Ref 7) concerning the dynamic

mechanical properties of polyisobutylene, we can determine the

shear modulus and loss factor for several typical frequencies at

room temperature:

Frequency G

30 cps 4.2 x 106 dynes/cm2  0.6
100 cps 6.0 0.85

300 cps 9.2 1.2

1000 cps 16.5 1.5

From Fig 12, we obtain cos p' and f(p) and thus calculate r and

')max:

Frequency cos ' opt _max

30 cps 0.85 .077 0.28 .055
100 cps 0.76 .069 0.37 .072
300 cps 0.65 .059 0.47 .092

1000 cps 0.55 .050 0.53 .104

A-14
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From Fig 15, the shear parameter can be read and the ratio to

optimum calculated:

Frequency 1!!2r Gr opt rp

30 cps 0.9 4.2 x 10 .021 0.27 3.7
100 cps 3 6.0 .0085 0.123 8.1
300 cps 9 9.2 .0oo44 0.075 13.5

1000 cps 30 16.5 .0024 0.048 21

Finally, the reduction in Yi caused by non-optimum r is obtained

from Fig 13 and q then computed:

Frequency I-

30 cps o.64 .035

100 cps 0.36 .026

300 cps 0.225 .021
1000 cps o.14 .0145

A-15
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2 dx

•. 1 -'-NUTRAL PLANE __

i•0+ .- Sp•o dx

d3

8x
N~

I-

FIG.A-I ELEMENT OF A THREE-LAYER PLATE IN
FLEXURAL VIBRATION, SHOWING THE
FLEXURAL ANGLE ,P AND SHEAR ANGLE ,.
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/ NEUTRAL PLANESI I OF ADDED LAYERS

& H30

OF COMPOSITE-PLATE

- / NEUTRAL PLANE
OF PRIMARY PLATE

FIG.A-2 DIMENSIONS USED IN ANALYSIS OF
A THREE-LAYER PLATE IN FLEXURE.
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2

-i_ __ __ , __ 7 NEUTRAL PLANE

STRAIN STRESS

FIG.A-3 EXTENSIONAL STRAIN AND STRESS DISTRIBUTIONS
FOR THREE-LAYER PLATE ELEMENT IN FLEXURE.
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FIG. A-4 SHEAR FORCE ON MIDDLE LAYER.
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APPENDIX B

MEASURES OF DAMPING EFFECTIVENESS

Loss Factor,_

The velocity of propagation of flexural waves on an undamped and

un'loaded plate is:

I;c~~i/j (B-1)

where B is the flexural rigidity per unit width and m Is the mass

per unit area. As the velocity is dependent on the frequency,

flexural waves are said to be dispersive. We may treat the damp-

ing caused by the internal friction of the materials composing the

plate by defining a complex flexural rigidl

[B*= B + JB" =B(1 + J%) (B-2)

where is the loss factor. If there is damping caused by rad',-

ation or other wave effects, then the mass Is expressed as a complex

quantity:

m* - Jm" - m(l - j'm) (B-3)

If both types or damping occur, then:

)(1 + JI) (B-4)

B-1
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where the effective ratio of the rigidity to mass is:

S_- -(B-5)
+e I+

and:

(B-6)

As the individual loss factors are seldom greater than 0.2, the

total effective loss for the plate is closely equal to their sum.
If the total loss factor is less than 0.4, thn the expression

for the complex velocity of propagation is . iia.- accurately:

BIn'
The loss factor, n, defined by Eq (B-4) is a common measure of the

effectiveness of damping.

Figure-of-Merit, Q

The frequency response of a finite plate contains many resonances.

Another measure of damping is the figure-of-merit or Q of the

resonances, defined by:

fo
o •--(B-8)

B-2
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where Af is the bandwidth between the two half-power points of

the resonance. The Q of a resonance is equal to the reciprocal

of the loss factor at the frequency of the resonance:

. + (B-9)

provided the damping factor is not greater thn about 0.2.

Fraction of Critical Damping

In many vibratory problems in mechanics the free motion is governed

by a linear, second-order differential equation of the form:

!I
m5 + c* + kx= 0 kB-I0)

Only if the damping coefficient, c, is less than a critical value,

ii c =2 Vii- (B-l1)

is the niotion oscillatory. The ratio of the damping coefficient,

c, to the critical damping coefficient is then a measure of the

damping effectiveness.

For low values of damping the shapes of the resonance curves of a

plate resonance and a lumped-parameter system whose motion is

governed by Eq (B-10) are similar. Therefore a value of c/cc can

be attributed to a given value of the loss factor q. The Q of a

simple mechanical system is given by:

1Co
= (B-12)

B-3
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whence the equivalent fractional critical damping of a plate

vibration is:

0.1

Equation (B-13) can be used as the definition of the fractional

critical damping for flexural vibrationi of plates.

Space and Time Decay Rates

Damping may b- measured by observing the time-rate-of-decay of a

vibration after the driving force is removed, or by measuring the

sa spatial decay when a steady-state force is applied at one place.

For values of I'less than 0.2, these decay rates can be expressed

in terms of • by the following:

Dt = 27.3rjfo (db/sec) B3-Il4)

D N = 13.6-n (db/wavelength) (B-15)
DA = 13.6.n/? (db/unit length) (B-16)

Significance of the Loss Factor

A.cr..ough any of the many ways of describing damping may be used for

small amounts of damping, it is best to express analytical results

in terms of a parameter that has meaning for highly damped as well

as lightly damped structures and which applies tr distributed

systems as well as lumped-parameter systems. The loss factor. T,

defined by Eq (B-4) is quite general. For this reason, we shall

express all of our results in terms of q, and the other quantities

may then be estimated from Eqs (B-9), (B-13), (B-14), (B-15), and

(B-16)ý

-B-
I ~B-il
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