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Sequential search proceduresa are described for dc termi1ning an
optima). dosage Ini the followinrg biomedical pyvoblelm. People are
subjeetcd to a certain chemotheva put Ic trcatmcnt; and on the one(
hand it io dcsirable to givc each inclilvidual. the~ moLxi~mt,_ passible
dos@Cce. On the other hand, high dosus create undcsivable toxicity,
and It is undesircable to cross a certlain 1.:mit of' allowalble
toxicity lee.The optimal ogeis defined ca- the 1rjsxi-inl
dose0 for v~11.1.0 the Proportion of patients in the populvtilon v.hose
toxicity level. will n~ot cross the allowamble limflit As y *In the
prescnt paper we diiscuss IBhyc suian and ncon-}hy eslan sequcntiv]
procedures fo~r the ojitiiwl dosage,, avsumiwlný- a linear regrev.-ssion
between toxicity and dosagc, arid nouns)l condi1tional. distv':ihuti~on
of thc toxicity levol at ecali dose, with a know.n variniicc. In
the two models under consideration w.e, asesume
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x > X and J.s zero for x <x
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Sequential Search of an Optimal Dosage:

Some Preliminary Re.sults and Suggested

Areas for Further Research. t)

B. H. Eichhorn and S. Zacks

Case Western Reserve University

1. Introduction.

The present paper summarizes our preliminary results in the area

of sequential search for an optimal dosage, and brings forth several sug-

gestions for further research. The search procedures suggested here are

based on two statistical models which are specified in the next section.

These models seem plausible to us. However, it may be of great interest

to investigate how sensitive are the procedures to the assumptions of

these models. Suggestions of how to proceed in this study of robustness

will be given in Section 7. Similarly, we may try to change the objective

function and investigate the possible implications. In Section 2 we

specify the models undor consideration and the objective functions.

Section 3 provides a sequential search proccidure for one of these models,

in which the response varianco is proportional to the dosa'je squared.

Section 4 gives sequential procedure for a model of fixed response

variance. In Section 5 we present Bayesian sequential procedures for the

models mentioned above. Monte Carlo demonstration is exhibited in Section

6. Section 7 is devoted to open problems and suggestions.

t) Partially supported by Project NR 042-276, of the Office of Naval

Research At C -r~c W-, t,:rn R .... r e LfilivcI .mity.
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2. The Statistical Models.

Let x designate a dosage and Y(x) the toxicity level at x.

Y(x) is a random variable. We consider here the following regression

model. The toxicity level is negligible for all 0 < x < x.. From x0

the expected value of Y(x) is linear in (x-xO) with a slope b, as

illustrated in Figure 1.

Y

I

• .... E(Y(x)} b(x.-xo)

,0 X6 Y

This assumption concerning the relationship between the expected toxicity

level E{Y(x)] and the dosage x is common to all the models specified

below. The assumptions concerning the conditional distributions of Y(x),

given x, and how many of its parameters are known constitute the following

two models:

Model i: The conditional distribution of Y(x) given x is normal with

2 2 2
mean b(x-x 0 ) and variance o (x-x0), where 0 is knownj

and b unknown. 0 < b < oo.

Model 2: The conditional distribution of Y(x) given x is normal with

2mean b(X-Xo) and a krnown variance, d j b is unknown.



!II
As seen here$ the present paper is based on the Ossumption that the value

2
Of d is known. Procedures of sequential search which are not based on

a given value of d will be the subject ol further investigations.

Let 11 designate the threshold of dangerous toxicity levels° It

is desirable that Y(x) will not exceed T. Since Y(x) is a random

variable we cannot guarantee with certainty that Y(x) ý 11 (unless x < x0 ).

We therefur6 require that for some tolerance probability y, x will be

such that PfY(x) < Tlx3 Ž y. The largest value of x for which this

probability is at least r will be designated by wl. l ;uii be called

Y Y
the optimal dose. This is the unknown parameter which we wish to find by

sequential experimentation. It is easy to verify that y is given by
Y

x 0 + TV(b+Z e) , under Mrdel 1

(2.1)

x + (T-Z C%)/b under Model 2,
0

where Z = ,- (y) 5s the y-fractile of the standard normal distribution.

The objective is to dctermine the dosages, x, at each stage of experi-

menataUon as close as possible to • and not to exceed { . Thus, the

stati:Lical problem is how to utilize the available information on thu un-

known paremeters and determine a sequence of dosages x1 , x2 , ... , so that:

(i) For each n = I, 2,

(2.2). Pb,51XXn <• <Y 1 - a, for all 0 < b, 0 < 00

Any procedure of determlying jx;n > 1] which guarantees (2.2) is called

feasible.

_ _ _A
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(ii) We would further like to guarantee that lim x = n in prob-
1n.-#

ability. Such a procedure will be called consistent.

In order to secure feasibility and avoid certain theoretical diffi-

culties we assume a knowledge of a sa;:? dose x* such that xo<X*< .00 0

We can the-efore restrict attention to procedures which assign Josages not

smaller than x*

0~

3. A Search Procedure foi Model I.

Given the values of x1, ... , xn, and the associated Y values

YIP ""t Yn we determine

n. x "X
n =1 Xi -x0

Let rnmax(O)Un). The value of Xn+l is determined then as a function

of U according to the formula:
n

We prove now that this procedure is (1) feasible, (ii) consistent and

(iii) optimal in a certain sense.

(i) First,.consider the distribution of U= Yi/(xi -xo), i = i, s.., n.

Since x. is a function only of (Yl, ..." Yi-)' the conditional distribu-

tion of U. given the o-field 5i-l =i6 (YI, ", Y 1 )i is normal with
2 2

expectation b and variance o . Since b and o are independent of

si-I we obtain that Ui is independent of 5. and has a normal distri-i-1

bution 71(b,o 2). Hence, Ul, ... , Un arc, i.i.d. with 7ý(b,o ) distribu-

tion. This implies that
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Z

(3.3) Px+o / r + o 4C)) Z

-•.-- Z } + -{I + t Z + b} 1 c'

.L et A X + / + + /+ z
o,,,F-on )

and let AC designate the compliment of An, Then,
nn

n++l 0

where IH{' is the indicator function. Finally, since x* <

+{n4-l +~}Ž ~ 0 + 9 (n+ + Z Y,))Ž

This proves that the procedure is feasible.

ýii) By the .trong law of large numbers, U n + b with probability one.

Hence, since b > 0 xn y with probability one. This proves the (strong)

consistency of the procedure.

(iii) The procedure prescribed by (3.1) and (3.2) has the following

optimality property:

Among all feasible procedures the procedure [xn:n > 1) prescribed

b (3.1) - (3.2) Is asymptotically uniformly most accurate, i.e., if

>n:n > 1) is d se~quence of dosages which satisfies the feasibility

condition (2.2) then

(3.4) P b~oa{Xni1 < P' _ Pb$O{Xn+1 < ' 0

all (b$a); arid every ' < Fy, and n sufficiently ]a!re

(may depond on
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The proof of (3.4) is based on the fact that b U n + 1-a

is a uniformly most accurate upper confidence limit for b (see Lehmann •

pp. 78-81) for each n 1, 2, .... Hence, if b is any other upper
agn

confidence limit for b then

(3.,t) Pb,tb an > b-] _Ž Pb,oafQ,n > k"1 for each n = 1, 2,

and all (blo) and every b' > b.

Let * U+-Z then for O 1>-a wehave lb* >bIJCtbn >b'] Lttn

b = 'V(Xn-l - xo) - a Z we obtain from (3.5) and (3.2) that (3.4)

holds, for these values of n.

4. A Search Procedure for Model 1"..

Under Model II there are several complications. We still wish to

estimate b by Un as given by (3.1)o However, since the sequence of

x values is not determined before the observations commence, the sampling

distribution of i is not normal. We cannot even apply the usual
n

versions of the Central Limit Theorem, since U1, U2, ... , Un are dependent.

It is easy to prove that E[Un} b for all (b,d), ard furthermore

cov(Ui U) 0 for all I < i ( j < n. Indeed, for all i < j,

(4.1) E[Uiu j = E[U!F[Uj/;ij = )2

Hence U and U. are uncorrelatod. From this result we immediately
i

imply that

(4.2) VarUn n2 jlj
J n Tnstic 2t ca E y)2t"

*E.Lohnian, Testing Statis•tical jlypojjjer5ps.
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We notice in this formula that VarCn] may diverge to infinity if

EF(xi-xo)' 2 :. In order to avoid such a possibility we require that

all x will be greater or equal to x*, where x> X0 . Then,

2

(4.3) Var{U3 _<

Thus we consider the following procedure: After observing Y1 " Yn

n
at x^' "'" • compute U = i Yy/(ý 1 -xo) and set

n n n i

(4.4) Xn+l= max 0xIX 0 + (Ti-Z)/ n + " d

where d is determined so that xrn+l is a feasible and consistent

sequence. Employing the Chebytchev's inequality one could use, for example

Sd a = a" -x(-)-. This i', however a very conservative approach. There

is no doubt that more refined bounds could be determined, so that a faster

convergence could be expected.

5. Bayes Procedures for Model I and Model II.

In a Baycsian framework we assume that the unknown parameter 1b a

random variable having some prior distribution. After observing n obser-

vations (n = 1, 2, ... ) of Y,9 . '. Yn at dosages xl, ... , xn we

convert the prior distribution of b to a posLerior distribution given

Y n " We then determine x n41 so that the posterior probability of

{fxn • •y3 given Yn will be at least I - a. This wil] assure that the

iwi-i y 1 T--n



expectation of the left hand side of (2.2) with respect to the prior

distribution of b will be at least 1 -I . This property does not

imply the feasibility condition (2.2). The property that we attain is

somewhat weaker and actually depends on the prior distribution assumed.

We shall therefore say that a procedure is Bayes-feasible with respect to

a prior distribution H of b if

A

(5.1) P [xn+1 < 15F > 1 - a for every n 7 1, 2,

and all d1 0 < d < •, PH{Xn+I _ 15;j designates the posterior

probability with respect to the distribution of b. I
We provide now explicit formulae for the determination of

Ixn+1, n =1 , 2, ...J satisfying (5.1), for a normal prior distribuLion

of b, ($(,V0 ); with prior mean ji and prior variance V0 . We remark

here that one could use the same methodology to derive proper formulae

for other prior distributions of b. Let X n n - n 1 , 2

and as before U. = Yv , i = 1, ... , n. To give a general framework

for Model I and Model 1, let

2 X2 under Model I

(5.2) T"2

n2
0 2 under Model II

Given Y 19 "''. Yn and X,, ... , Xnj it is easy to prove thatif b has

a prior normal distribution 'I(,IVo) then, its posterior distribution is

also normal, "(P[nVn) n with posterior mean

nI
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Pn (Y X )X V /(,r2 +X 2V n) 2(5.3) = , (Y-p x)xv I ,k n-i n 1, 2, .

and posterior variance

2 ."1"l
(5.4) v n_1 2 n _ n 1, 2,

n n n-i

From the recursive formulae (5.4) we obtain that the posterior variance

of b is

2

fl + 1 2/V0
(5.5) Vn=

d ,/ for Model II

Thus, if all X > then V is in order of magnitude (in probability)
~- U n

Of r-lj i.e., Vn 0 p(n) as n - .

Similarly we obtain that the posterior mean p. is given explicit.ly,

under Model I., as:

(5.6) n * Uo(1 + d2/ Vo)-1 + po(l +d 2/IV)/(n +d2IV0 )

Hence, under Model I p n "* b with probability one, as n -*. An explicit

formula of pn for Model I] is considerably more complicated and we shall
i2 2

use the recursive formula (h.3) with T n It can be shown that

is a consistent estimator of b$ for alniost every b (with regard to H)

also under Model 11.



The Bayes, procedure spccifies the following seqluence of do.;sagesi :

max~x vwherexn+1 U 1pl

o v,, + zy0 + Z_,, •for Model 1

)n,y

)I x° 4 (T - zd)/(•, + z1_ W) , for Model 11

6. Monte Carlo Comparisons.

In the pr'esent section we compare thce valious scCjucntial procudcuie•

numerically by starting with an initial dose xI simulating Y deter--

mining x2  simujatin9 Y2 etc. We present thu J,,su)ts of bO sl'ch itera-

tions, Tho parameters of this simulation ale:

b = 3., X0 = 0x0 = 1., T] 10., 1 1., a .05, y .99.

The initial dosage isx 3 . 5 . The value of y id

1.878 for MYodel I

2.558 for Model II

- 2.86 V00 .2b
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Table 1. Simulated Vosaye Detcxininatioll ) fo(Nand Baycs (13.) vpocoedue,. nr tilL iiori -, (

Model I Model 2
n N.f B. N.h. D.

I I - I 1 V, 1 / 1 O0.c ) ,. • /cO2 1."67 1. "70 "1.1 •06!/i , 'b13 l . 3/ifl;5 1. 5'/37 I. , 2211I 2. C0'/CQ[p I P 2" I, ,9(3 1 3 I 3 2.: 1 0 1, C

"7 1 .,3"13 1 •63,g •.5 2.2[51C9
I. 5J- 9 1 • 6396/ 1 51 1I7 6 !, 1 J1I, 9 1 1 61., . c,:.'i7 • ,. 62'1P

10 1.6194 169 .6600 P 1
Ii 1. 6/i3 27 1 * 6928 1 69, 2.. , 02'l12 1 . 6 15 1. 6b/i 1,13 609 1 .6'63 0 303 3p. 301 0.1/4 1. 6i/0 I • 68 " (1 "/7. 3 2. 3(0/715 1 69P/1 '17296 ) 29( ,16 1 .69/i/i 1.7 "25 P -16/ 2. 3 1U0
I? I • 66U96 1. "/199 / •;2/ji 2.I35,j
I 8 I • 1 7 31 El. . /'El 1P 7 W7 !S9 3 • 73/ 1. '/5,60 l.8[36 2.p/ 0/I20 1 • 7/1156 7 "16/J6 1. 9027 2.' /I C'p 1 1 '7221 '1 /13 B I * 892, 2.! q 9322 1,7161 1.7397 1 8 983 2 . 38 ai

p 3 1 .7119 1.'336 1 .*90J2 2.37902i .7'1 19 '1 ,<330 () 99090 2. "79 A25 1 - 7296 1 * 7/'E; I * 9316 2. 3986"26 1.71 737/i 1c ,957,'1 76 9.0 2 "
27 .7613 1.7751 1 912 ..

8 1775 I 5 [17876 1•9909
p.9 1 7790 1- 7 9U2 1 9999 2A45"1

I0* 77'2 I P "61/ 2. 0(),! 1 I. 4/ 7,231 1.7066 7 77L6 2.00Q, 2.4312
,2 1 77', b 7 66G 2.0150 2.4/19333. j 774/. 1•785 2.019.
34 1 771 2 1p 7 E;20 2..'0 ?I7 2. 73S 1'7 bv 1.7'/ 2 0 38
36 1 76 1 [; 1. 7730 2.023 2. 0.32 537 •.7637 1 • 7 11i1 <0297 2. i37938 1.75,97 1 /707 0 2.03C ..031
39 1 v.76'i0 p 0 a. 0[17 t.,376dlO *.'139 1,7"til 2. .0'.(, 2.3/4j 1 • 7609 1. 7712 2. 1/:/t 1 2. ,i.,'/1, . 77.i? 1.7 "/,:i' 2.0595)t' 2. 1:4.,93
/:3 1.7t,3 1 • 791 6/ 2.0712 2C!7 *TP.,i1 i 79E 7 I. 79 2.0-; 9 2 -4 5 1 , ( 6 C : c• 7 . 1 : (9 .]2 . "Cr, /g' 2 . ,'ri ,, I
j , •. - , , ,,3 -: * 1 , . 2. E'l 

'; : I
"I E; 0 It ! " U I t6 2. I 13 2. 1:911:

49 , *798:4 1 r .0/ P.t. • I i m 2. •/:7.,r-,%0 .[".07.3 l.[ I/:~c, ,1 6 ' , ..
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iThe simulated dosage values which are exhlbited in Table 1 illustrate

the approach of thcGe sequences of doses to the optimal doses, given by

* In Model I the Bayes procedure yields dosages which are somewhat

closer to the optimal. The differences between the non-Bayes and the

Bayes procedures become insgni ficanit as n grows. This phenomenon depends

however on a "good" choice of prior parameters for the Bayes procedure. A

similar phenomenon is observed in Model II. The non-Bayes procedure (do-

rived in Section 4) yields at the beginning values of x close to x*
0

and the convergence is slow. This is due to the "over pessimn3stic" choice

of the d parameter in (4.4). We further ob.,,erve that in no case thim

dosages obtained exceed the optimal duse . This is valuable character-

istic of the proposed procedures.

7.Suggestions for Further Research.

The following suggestions for further research are based on our own

speculations concerning the relevancy of the models studied in the previous

sections. Our list of open problems is classified into two major classes.

(i) Variations of the statistical assumptions and objectives within the

framework of the present problem. (ii) Extension of the models inlo

multivariate, multi-dimensional and time dependent problems. Within the

first major class we sugigest to consider the following problemsc,
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(1.1) The conditional distribution of toxicity leve)l Y(x), f or a

given dosage, xt is, norma) with; weani b(x-x 0) and unknown variance

2
a (x). Thi5 variant of the Estatistical mode). can be further broler: up

into Several Special cisc's".

(1.2) Problems connected viith unknown intercepts (place of x.) anrd

known or unknowin variancces, assuming still normal condi tional distribu-

tions.

(1.3) Thc effect on the procedures causcd by deviations from nornmality of

the conditional distri butions around the regression lines;.

(1.4) [Derivation of search procedures when tho toxicity can assuwe values

only on a distcrete set.

(1.5) Dleviations fromi lincarity of the toxicity-dobage regress5ion line.

(1.6) SensFitivity analysis - study of the robustness of the search pro-

cedures concerning the baric. assumptions onl the distributions and on the

toxicity-dosage regress.-ion.

(1.7) Formulation of different types of objective funCtionls.

In the second class of open problems we mention:

(2.1) Multivariate response - the ob,,ervationis consist of vecLurs- of

several componentF., one of which Is toxicity.
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(2.2) Time dependent problems patients are subject to conLinual treat-

mont. The effect of prior treatmncuts on future douag!;, employinU the

information gathered on each individual separately. The dcLorminaLion,

of the optimal spacing betweun epochie of treuatimernts.

(2.3) The search for the optimal combination of variiou drugs.

5-l'- 7;)/nif


