AD 742447

SEQUENTIAL SEARCH OF AN OPTIMAL DOSAGE: SOME PRELIMINARY RESULTS AND SUGGESTED AREAS FOR FURTHER RESEARCH:

by

B. H. Eichhorn and S. Zacks

Technical Report No. 3

May 1, 1972

PREPARED UNDER CONTRACT

NR 00014-67-A-0404-0009, PROJECT NR 042-276

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government.

Department of Mathematics and Statistics

Case Western Reserve University

Cleveland, Ohio

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Ve. 22151

DISTRIBUTION STATEMENT A

÷.,

Approved for public releases Distribution Unlimited

		·	.*	•	
Course for a fill and for the or					
DOCUMENT CO	NTROL DATA - R	& D	de datore a cenaria a parte de la seconda de la second	a and a second	
(Security classification of little, body of alwinest and index	dig annotation must be	entered when the	overall report in ch	osifiedi	
BRIGINATING ACTIVITY (Compare aution) Descriptionst of Mathematics and		pa, acroar s	CONTY CLASSIN	C A 3701	
Case Western Reserve Universi	ty	2h, GROUP			
Cleveland, Ohio					
Results and Suggested Areas f	al Dosage: S or Further H	Some Prel Research	liminary		
Technical Report		······································			
AUTHORISI (First nume, middle initial, fast name)					
Benjamin H. Eichhorn and Shc	lemyahu Zacl	¢8 ,			
REPORT DATE	74, 101AL ND, 0	DI PAGLE	Th. NO. OF RILES		
May 1, 1972		t 15 REPORTATION			
N00014-67-A-0404-009 . PROJECT NO. NR 042-276	Technical Report No. 3				
	9b. OTHER RUDE (his report)	b. OTHER REPORT HOUSE (Any other numbers that may be as signed this report)			
			وجي به معنوب بين يك فلسويه مد		
	7 4 3 4 5 6				
pistribution of Document Un	111mi ved				
SUPPLEMENTARY NOTES	Logistic: Branch - Washingto	Office (on, D. C.	thematical of Naval Re	Sciences search	
·AB51HAC1			- 		
Sequential search procedures optimal dosage in the following subjected to a certain chemotic hand it is desirable to give dosage. On the other hand, he and it is undesirable to cross toxicity level. The optimal dose for which the proportion toxicity level will not cross present paper we discuss Baye procedures for the optimal do between toxicity level at each the two models under consider (i) the variance at dose $x > x_0$ and is zero for	are described ing blomedles cach individed individe	ed for de al proble reatment dual the reate une limit of efined as s in the ble limit n-Bayesia ing a lin condition a known sume rtional	termining e_{M} . People and on the maximal pe- desirable (f allowable) t f allowable t the maxim population t is γ . an sequenting near regression variance. to $(x-x_0)^2$	an are one ossible coxicity, e el n whose In the al sion oution In for	
(11) the variance does not	depend on t	he dose.		1	
·					
				ł	
1 FORM \$ // / (PAGE 1)	en mariarata antas t	n water at the	a nya teo ata da ana aktor t		
107 INOV 65712 2 47		Secto	ity Clausification		
				· · · · ·	

.

 See	зü	ių	Class	sifi-	lion	_	~ ~ ~	_
			- 1	- 1	The R. Western		a * ·	

.

.'

14		1 L.m	LINK A LINK B LINK C				
		. Rot E	W۲	NOLE	Ŵ١	noti	W T
	Description						
	Bayes					ł	
	Dosage						
	normal distribution						
	optimal					[Į
	posterior					Í	·
	prior						
	search						
	sequential			Î		}	}
	toxicity						
	variance						
•							
		1				ł	l
		[.				{	{
				{			
]
	· · · ·						
`					1		• • •
		{		[]			
	•						
	· · · · · · · · · · · · · · · · · · ·						
	· · · · · ·						
		.[
						1	

DED THOMAS AND A (BACK) (1:461 2) .

.

Sequential Search of an Optimal Dosage: Some Preliminary Results and Suggested Areas for Further Research. †)

> B. H. Eichhorn and S. Zacks Case Western Reserve University

1. Introduction.

The present paper summarizes our proliminary results in the area of sequential search for an optimal dosage, and brings forth several suggestions for further research. The search procedures suggested here are based on two statistical models which are specified in the next section. These models seem plausible to us. However, it may be of great interest to investigate how sensitive are the procedures to the assumptions of these models. Suggestions of how to proceed in this study of robustness will be given in Section 7. Similarly, we may try to change the objective function and investigate the possible implications. In Section 2 we specify the models under consideration and the objective functions. Section 3 provides a sequential search procedure for one of these models, in which the response variance is proportional to the dosage squared. Section 4 gives - sequential procedure for a model of fixed response variance. In Section 5 we present Bayesian sequential procedures for the models mentioned abovc. Monte Carlo demonstration is exhibited in Section 6. Section 7 is devoted to open problems and suggestions.

+) Partially supported by Project NR 042-276, of the Office of Naval Research at Case Western Reserve University.

2. The Statistical Models.

Let x designate a dosage and Y(x) the toxicity level at x. Y(x) is a random variable. We consider here the following regression model. The toxicity level is negligible for all $0 < x \le x_0$. From x_0 the expected value of Y(x) is linear in $(x-x_0)$ with a slope b, as illustrated in Figure 1.

This assumption concerning the relationship between the expected toxicity level $E{Y(x)}$ and the dosage x is common to all the models specified below. The assumptions concerning the conditional distributions of Y(x), given x, and how many of its parameters are known constitute the following two models:

Model 1: The conditional distribution of Y(x) given x is normal with mean $b(x-x_0)$ and variance $\sigma^2(x-x_0)^2$, where σ^2 is known, and b unknown. $0 < b < \infty$.

Model 2: The conditional distribution of Y(x) given x is normal with mean $b(x-x_0)$ and a known variance, σ^2 ; b is unknown.

-2-

As seen here, the present paper is based on the assumption that the value of σ^2 is known. Procedures of sequential search which are not based on a given value of σ^2 will be the subject of further investigations.

Let η designate the threshold of dangerous toxicity levels. It is desirable that Y(x) will not exceed η . Since Y(x) is a random variable we cannot guarantee with certainty that $Y(x) \leq \eta$ (unless $x \leq x_0$). We therefore require that for some tolerance probability γ , x will be such that $P\{Y(x) \leq \eta | x\} \geq \gamma$. The <u>largest</u> value of x for which this probability is at least γ will be designated by ξ_{γ} . ξ_{γ} will be called the <u>optimal dose</u>. This is the unknown parameter which we wish to find by sequential experimentation. It is easy to verify that ξ_{γ} is given by

(2.1)
$$\begin{cases} x_0 + \frac{\eta}{b+Z_{\gamma}\sigma}, & \text{under Model 1} \\ x_0 + (\frac{\eta}{-Z_{\gamma}\sigma})/b, & \text{under Model 2}, \end{cases}$$

where $Z_{\gamma} = \Phi^{-1}(\gamma)$ is the γ -fractile of the standard normal distribution. The objective is to determine the dosages, x, at each stage of experimentation as close as possible to ξ_{γ} and not to exceed ξ_{γ} . Thus, the statistical problem is how to utilize the available information on the unknown parameters and determine a sequence of dosages x_1, x_2, \ldots , so that:

(i) For each
$$n = 1, 2, ...$$

(2.2)
$$P_{b,\sigma}\{x_n \leq \xi_{\gamma}\} \geq 1 - \alpha, \text{ for } \underline{all} \quad 0 < b, \sigma < \infty.$$

Any procedure of determining $\{x_n : n \ge 1\}$ which guarantees (2.2) is called <u>feasible</u>.

-3-

(ii) We would further like to guarantee that $\lim_{n \to \infty} x = \xi_{\gamma}$ in probability. Such a procedure will be called <u>consistent</u>.

In order to secure feasibility and avoid certain theoretical difficulties we assume a knowledge of a <u>sais</u> dose $x_0^{\#}$ such that $x_0 < x_0^{\#} < \xi_{\gamma}$. We can therefore restrict attention to procedures which assign losages not smaller than $x_0^{\#}$.

3. A Search Procedure for Model I.

Given the values of x_1, \ldots, x_n , and the associated Y values Y_1, \ldots, Y_n we determine

(3.1)
$$\overline{U}_{n} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i} - x_{0}}$$
.

Let $\overline{U}_n^+ = \max(0, \overline{U}_n)$. The value of x_{n+1} is determined then as a function of \overline{U}_n according to the formula:

(3.2)
$$x_{n+1} = \max \left[x_0^*, x_0 + \eta / \left(\overline{U}_n^1 + \sigma \left(\frac{z_{1-\alpha}}{\sqrt{n}} + z_{\gamma} \right) \right) \right]; \quad n \ge 1.$$

We prove now that this procedure is (i) feasible; (ii) consistent and (iii) optimal in a certain sense.

(i) First, consider the distribution of $U_i = Y_i/(x_i - x_0)$, i = 1, ..., n. Since x_i is a function only of (Y_1, \ldots, Y_{i-1}) , the conditional distribution of U_i given the d-field $\mathcal{F}_{i-1} = \mathcal{F}(Y_1, \ldots, Y_{i-1})$ is normal with expectation b and variance σ^2 . Since b and σ^2 are independent of \mathcal{F}_{i-1} we obtain that U_i is independent of \mathcal{F}_{i-1} and has a normal distribution $\mathcal{N}(b, \sigma^2)$. Hence, U_1, \ldots, U_n are i.i.d. with $\mathcal{N}(b, \sigma^2)$ distribution. This implies that

(3.3)
$$P\left\{x_{0} + \eta / \left(\overline{U}_{n}^{+} + \sigma \left(\frac{Z_{1-\alpha}}{\sqrt{n}} + Z_{\gamma}\right)\right) \leq \xi_{\gamma}\right\} =$$

$$P\left\{\overline{U}_{n}^{+} + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} \ge b\right\} \ge P\left\{\overline{U}_{n}^{-} + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha}^{-} \ge b\right\} = 1 - \alpha .$$

Let $A_{n} = \left\{x_{0}^{-} + \eta / \left(\overline{U}_{n}^{+} + \sigma \left(\frac{Z_{1-\alpha}}{\sqrt{n}} + Z_{\gamma}^{-}\right)\right) \le x_{0}^{*}\right\}$,

and let A_n^c designate the compliment of A_n^{\cdot} . Then,

$$\begin{aligned} \mathbf{x}_{n+1} &= \mathbf{x}^{*} \mathbf{I} \left\{ \mathbf{A}_{n} \right\} + \left[\mathbf{x}_{0} + \eta \left/ \left(\overline{\mathbf{U}}_{n}^{+} + \sigma \left(\frac{\mathbf{Z}_{1-\alpha}}{\sqrt{n}} + \mathbf{Z}_{\gamma} \right) \right) \right] \mathbf{I} \left\{ \mathbf{A}_{n}^{c} \right\} \\ \text{where } \mathbf{I} \left\{ \cdot \right\} \text{ is the indicator function. Finally, since } \mathbf{x}_{0}^{*} < \mathbf{\xi}_{\gamma} \text{,} \\ \mathbf{P} \left\{ \mathbf{x}_{n+1}^{-} \leq \mathbf{\xi}_{\gamma} \right\} \geq \mathbf{P} \left\{ \mathbf{x}_{0}^{-} + \eta \left/ \left(\overline{\mathbf{U}}_{n}^{+} + \sigma \left(\frac{\mathbf{Z}_{1-\alpha}}{\sqrt{n}} + \mathbf{Z}_{\gamma} \right) \right) \right\} \geq \mathbf{\xi}_{\gamma} \right\} \text{.} \end{aligned}$$

This proves that the procedure is feasible.

(ii) By the strong law of large numbers, $\overline{U}_n \rightarrow b$ with probability one. Hence, since $b > 0 \ x_n \rightarrow \xi_{\gamma}$ with probability one. This proves the (strong) consistency of the procedure.

(iii) The procedure prescribed by (3.1) and (3.2) has the following optimality property:

Among all feasible procedures the procedure $\{x_n : n \ge 1\}$ prescribed by (3.1) - (3.2) is asymptotically uniformly most accurate, i.e., if $\{\hat{x}_n : n \ge 1\}$ is any sequence of dosages which satisfies the feasibility condition (2.2) then

(3.4)
$$P_{b,\sigma}\{\hat{x}_{n+1} < \xi'\} \ge P_{b,\sigma}\{x_{n+1} < \xi'\}$$
 for
all (b, σ); and every $\xi' < \xi_{\gamma}$, and n sufficiently large
(may depend on ξ').

-5-

The proof of (3.4) is based on the fact that $\overline{b}_{\alpha,n} = \overline{U}_n + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha}$ is a <u>uniformly most accurate</u> upper confidence limit for b (see Lehmann # pp. 78-81) for each $n = 1, 2, \ldots$. Hence, if $\hat{b}_{\alpha,n}$ is any other upper confidence limit for b then

(3.5)
$$P_{b,\sigma}\{\hat{b}_{\alpha,n} > b'\} \ge P_{b,\sigma}\{\overline{b}_{\alpha,n} > b'\}$$
 for each $n = 1, 2, ...$

and <u>all</u> (b,σ) and every b' > b.

Let
$$b_{\alpha,n}^{*} = \overline{U}_{n}^{+} + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha}$$
 then for $n > \left(\frac{\sigma Z_{1-\alpha}}{b}\right)^{2}$ we have $\{b_{\alpha,n}^{*} > b^{*}\} \subset \{\overline{b}_{\alpha,n} > b^{*}\}$. Letting $\hat{b}_{\alpha,n} = n/(\hat{x}_{n+1} - x_{0}) - \sigma Z_{\gamma}$ we obtain from (3.5) and (3.2) that (3.4) holds, for these values of n .

4. A Search Procedure for Model 7.

Under Model II there are several complications. We still wish to estimate b by \overline{U}_n , as given by (3.1). However, since the sequence of x_n values is not determined before the observations commence, the sampling distribution of \overline{U}_n is not normal. We cannot even apply the usual versions of the Central Limit Theorem, since U_1, U_2, \dots, U_n are dependent. It is easy to prove that $E\{\overline{U}_n\} = b$ for all (b,d), and furthermore $cov(U_i,U_j) = 0$ for <u>all</u> $1 \le i < j \le n$. Indeed, for all i < j,

(4.1)
$$E\{U_iU_j\} = E\{U_iE\{U_j/S_i\}\} = 5^2$$
.

Hence $\mathbf{U}_{\mathbf{i}}$ and $\mathbf{U}_{\mathbf{j}}$ are uncorrelated. From this result we immediately imply that

(4.2)
$$\operatorname{Var}\{\overline{U}_{n}\} = \frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} E\left\{\frac{1}{(x_{i} \cdot x_{0})^{2}}\right\}.$$

* E.Lehman, Testing Statistical Hypotheses.

-6-

We notice in this formula that $\operatorname{Var}\{\overline{U}_n\}$ may diverge to infinity if $E\{(x_i - x_0)^{-2}\} = \infty$. In order to avoid such a possibility we require that all x_i will be greater or equal to $x_0^{\#}$, where $x_0^{\#} > x_0$. Then,

(4.3)
$$\operatorname{Var}\{\overline{U}_{n}\} \leq \frac{\sigma^{2}}{n(x_{0}^{*}-x_{0})^{2}}$$
.

Thus we consider the following procedure: After observing Y_1, \ldots, Y_n at $\hat{x}_1, \ldots, \hat{x}_n$ compute $\overline{U}_n = \frac{1}{n} \sum_{i=1}^n Y_i / (\hat{x}_i - x_0)$ and set

(4.4)
$$\hat{\mathbf{x}}_{n+1} = \max\left(\mathbf{x}_{0}^{*}, \mathbf{x}_{0} + (\mathbf{1} - \mathbf{Z}_{\gamma}\sigma) / \left(\mathbf{\overline{U}}_{n} + \frac{\sigma}{\sqrt{n}} \mathbf{d}_{\alpha}\right)\right),$$

where d_{α} is determined so that \hat{x}_{n+1} is a feasible and consistent sequence. Employing the Chebytchev's inequality one could use, for example $d_{\alpha} = \alpha^{-\frac{1}{2}} (x_0^* - x_0)^{-1}$. This is however a very conservative approach. There is no doubt that more refined bounds could be determined, so that a faster convergence could be expected.

5. Bayes Procedures for Model 1 and Model 11.

In a Baycsian framework we assume that the unknown parameter is a random variable having some prior distribution. After observing n observations (n = 1, 2, ...) of Y_1 , ..., Y_n at dosages x_1 , ..., x_n we convert the prior distribution of b to a posterior distribution given \mathcal{F}_n . We then determine x_{n+1} so that the posterior probability of $\{x_{n+1} \leq \xi_{\mathbf{v}}\}$ given \mathcal{F}_n will be at least $1 - \mathfrak{a}$. This will assure that the

and a second expectation of the left hand side of (2.2) with respect to the prior distribution of b will be at least 1 - a. This property does not imply the feasibility condition (2.2). The property that we attain is somewhat weaker and actually depends on the prior distribution assumed. We shall therefore say that a procedure is <u>Bayes-feasible</u> with respect to a prior distribution H of b if

(5.1)
$$P_{H}\{x_{n+1} \leq \xi_{\gamma} | \mathcal{F}_{n}\} \geq 1 - \alpha$$
 for every $n = 1, 2, ...$

and all σ , $0 < \sigma < \infty$, $P_H \{x_{n+1} \leq \xi_{\gamma} | \mathcal{F}_n\}$ designates the posterior probability with respect to the distribution of b.

We provide now explicit formulae for the determination of $\{x_{n+1}, n = 1, 2, ...\}$ satisfying (5.1), for a normal prior distribution of b, $\mathcal{N}(\beta, V_0)$; with prior mean β and prior variance V_0 . We remark here that one could use the same methodology to derive proper formulae for other prior distributions of b. Let $X_n = x_n - x_0$, n = 1, 2, ... and as before $U_i = Y_i / X_i$, i = 1, ..., n. To give a general framework for Model I and Model II, let

(5.2)
$$\tau_n^2 = \begin{cases} \sigma^2 X_n^2, & \text{under Model I} \\ \sigma^2, & \text{under Model II} \end{cases}$$

Given Y_1, \ldots, Y_n and X_1, \ldots, X_n , it is easy to prove that, if b has a prior normal distribution $\mathcal{N}(\beta, V_0)$ then, its posterior distribution is also normal, $\mathcal{N}(\beta_n, V_n)$, with posterior mean

(5.3)
$$\beta_n = \beta_{n-1} + (Y_n - \beta_{n-1} X_n) X_n V_{n-1} / (\tau_n^2 + X_n^2 V_{n-1}), \quad n = 1, 2, ...$$

and posterior variance

and the second se

(5.4)
$$V_n = V_{n-1} \frac{\tau_n^2}{\tau_n^2 + X_n^2 V_{n-1}}$$
, $n = 1, 2, ...$

From the recursive formulae (5.4) we obtain that the posterior variance of b is

(5.5)
$$V_{n} = \begin{cases} \frac{\sigma^{2}}{n + \sigma^{2}/v_{0}}, & \text{for Model 1} \\ \sigma^{2}/\left(\sum_{i=1}^{n} x_{i}^{2} + \sigma^{2}/v_{0}\right), & \text{for Model II}. \end{cases}$$

Thus, if all $X_i \ge X_0^*$ then V_n is in order of magnitude (in probability) of n^{-1} ; i.e., $V_n = O_p(n^{-1})$ as $n \to \infty$.

Similarly we obtain that the posterior mean β_n is given explicitly, under Model I, as:

(5.6)
$$\beta_{n} = \overline{U}_{n} (1 + \sigma^{2}/nV_{0})^{-1} + \beta_{0} (1 + \sigma^{2}/V_{0})/(n + \sigma^{2}/V_{0}).$$

Hence, under Model I, $\beta_n \rightarrow b$ with probability one, as $n \rightarrow \infty$. An explicit formula of β_n for Model II is considerably more complicated and we shall use the recursive formula (5.3) with $\tau_n^2 = \sigma^2$. It can be shown that β_n is a consistent estimator of b, for almost every b (with regard to H) also under Model II.

The Bayes procedure specifies the following sequence of desages:

(5.7)
$$\hat{\xi}_{n,\gamma} = \begin{cases} x_0 + \frac{1}{[\beta_n + 2\gamma^{\sigma} + 2_{1-\alpha}\sqrt{V_n}]}, & \text{where} \\ x_0 + \frac{1}{[\beta_n + 2\gamma^{\sigma} + 2_{1-\alpha}\sqrt{V_n}]}, & \text{for Model I} \\ x_0 + (\frac{1}{[\gamma - 2\gamma^{\sigma}]})/(\beta_n + 2_{1-\alpha}\sqrt{V_n}), & \text{for Model II}. \end{cases}$$

6. Monte Carlo Comparisons.

In the present section we compare the various sequential procedures numerically by starting with an initial dose x_1 simulating Y_1 determining x_2 simulating Y_2 etc. We present the results of 50 such iterations. The parameters of this simulation are:

b = 3., $x_0 = 0.$, $x_0^* = 1.$, $\eta = 10.$, $\sigma = 1.$, $\alpha = .05$, $\gamma = .99$. The initial dosage is $x_1 = 3.5$. The value of ξ_{γ} is

$$\xi_{\gamma} = \begin{cases} 1.878 , & \text{for Model I} \\ 2.558 , & \text{for Model II} \end{cases}$$

 $\beta = 2.86$ V₀ = .25

•	Model	1	Model 2			
	N.B.	В.	N. B.	В.		
1	1+1461	1.5878	1.0000	2.0460		
5	1.8042	1.5701	1.1064	2.0513		
3	1.3485	1-5737	1+2211	2.0765		
4	$1 \cdot 4275$	1.5963	1.3313	2.1221		
5	1.4264	1.5778	1.3653	2.1101		
6	1.4955	1+6122	1.4566	2.1652		
7	1.5373	1.6328	1.5206	2.2010		
8	1.5559	1.6395	1.5617	2.2171		
9	1.6235	1.6847	1.6420	2.98.97		
10	1.6194	1.6779	1.6600	2.2787		
11	1.6427	1.6928	1+6986	2.3027		
15	1.6355	1.6845	1.7101	2,905L		
13	1.6409	1.6863	1.7303	2.2010		
14	1.6440	1.6867	1.7473	2.30/2		
15	1.6984	1.7296	1.8068	2.3618		
16	1.6944	1.7250	1.8164	2,358N		
17	1.6896	1.7199	1.8244	2.35.24		
18	1.7051	1.7318	1.8484	2.3700		
19	1.7347	1.7560	1.8836	2.4021		
50	1.7456	1.7646	1.9027	2.4142		
51	1+4551	1.7438	1+8928	2.3893		
55	1+7181	1.7397	1.8983	2.3854		
23	$1 \cdot 7119$	1.7336	1.9012	2.3790		
24	1.7119	1.7330	1.9090	2.3793		
25	1.7298	1.7481	1.9316	2.3986		
26	1.7522	1.7674	1+9576	2.4227		
27	1.7613	1+7751	1.9782	2.4328		
28	1.7758	1.7876	1.9909 .	2.4485		
29	1.7790	1.7902	1,9999	2.4521		
30	1.7742	1.7857	S+0051	2.44.72		
31	1.7666	1.7786	8.0016	2.4392		
32	1 • 7758	1.7860	2.0150	2.4493		
JJ. 24	1.7744	1.7852	5.0195	2 . 4479		
34	1.7712	1.7820	8.0217	2.4/17		
3 0 97	1.7678	1.7787	2.0238	8.4412		
30	1.7618	1.7730	8.0334	8.4350		
01 20	1.7637	1+7745	5.0301	2.4371		
30 20	1.7597	1.7707	5.0301	8 • 4331		
09 40	1.7640	1.7744	2+0387	2.4378		
40 201	1.7639	1+7741	2.0426	2.4377		
491 49	1.7009	1.7712	S•0441	2.4347		
れる	1 . 1 6	1.7837	8.0228	2.4493		
10	1.7030	1.7917	8.0215	2.4588		
4-4 6 5	1.8000	1.7991	8.0818	2.4675		
16	**••••;;;;; *-\$;;())/	1.001	S 0944	2+4751		
17	4 • OUV4 1. \$151	1 8153	S+1035	2+2862		
18	1.8024	1+8196	8.1113	2.4914		
19	1.7024	ままいまだい。	2+1094 5	2.4845		
50	1.8652	1.0048	2+10:17	8.4750		
•	すていいいい	1+6-140	8+1163	2.4655		

Table 1. Simulated Dosage Determination (x_{n+1}) for the non-Bayes (N.B.) and Bayes (B.) Procedures

-11-

The simulated dosage values which are exhibited in Table 1 illustrate the approach of these sequences of doses to the optimal doses, given by ξ_{γ} . In Model I the Bayes procedure yields dosages which are somewhat closer to the optimal. The differences between the non-Bayes and the Bayes procedures become insignificant as n grows. This phenomenon depends however on a "good" choice of prior parameters for the Bayes procedure. A similar phenomenon is observed in Model II. The non-Bayes procedure (derived in Section 4) yields at the beginning values of x close to x_0^* and the convergence is slow. This is due to the "over pessimistic" choice of the d_a parameter in (4.4). We further observe that in no case the dosages obtained exceed the optimal dose ξ_{γ} . This is valuable characteristic of the proposed procedures.

7. Suggestions for Further Research.

The following suggestions for further research are based on our own speculations concerning the relevancy of the models studied in the previous sections. Our list of open problems is classified into two major classes. (i) Variations of the statistical assumptions and objectives within the framework of the present problem. (ii) Extension of the models into multivariate, multi-dimensional and time dependent problems. Within the first major class we suggest to consider the following problems

-12-

(1.1) The conditional distribution of toxicity levels, Y(x), for a given dosage, x, is normal with mean $b(x-x_0)$ and <u>unknown</u> variance $\sigma^2(x)$. This variant of the statistical model can be further broken up into several special cases.

(1.2) Problems connected with unknown intercepts (place of x_0) and known or unknown variances, assuming still normal conditional distributions.

(1.3) The effect on the procedures caused by deviations from normality of the conditional distributions around the regression lines.

(1.4) Derivation of search procedures when the toxicity can assume valuesonly on a discrete set.

(1.5) Deviations from linearity of the toxicity-dosage regression line.

(1.6) Sensitivity analysis - study of the robustness of the search procedures concerning the basic assumptions on the distributions and on the toxicity-dosage regression.

(1.7) Formulation of different types of objective functions.

an Bellaute and

In the second class of open problems we mention:

(2.1) Multivariate response - the observations consist of vectors of several components, one of which is toxicity.

(2.2) Time dependent problems - patients are subject to continual treatment. The effect of prior treatments on future dosages, employing the information gathered on each individual separately. The determination of the optimal spacing between epochs of treatments.

(2.3) The search for the optimal combination of various drugs.