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13, -ARLTINRACH
Sequential search procedurces arce deseribed for determining an
optimal dosage in the following biomedlceal problem, People are
subjectéd to a certain chemotheraputle trcatment and on the one
“hand 1t 1s desirable to gilve caeh individual the maximal possible
dosage. On the other hand, high doscs crcatc undesirable toxileliy,
and 1t is undcsirable Lo cross a certain 1imit of allowuble
toxicity level. The optimal dosepe is defincd as the wmaxinal

dose for uhich the proportion of patilents in the population whosc
toxicity leved will rot cross the allowable limlt is vy o In the
present paper we discuss Boycsilan and non-Bayesian cqucntiul
procedures ror the OpuLMdl dosage, assuming a linear regression
between toxlcity and dosage, and ncumal conditional dJstiLhui1on
of the toxicity level at each dosc, with a known variancc., In

{the {wo models under conslideration we assume ‘ -

(1) the varliance at dose x 3is proportional to (x~xo)“ for
X > X, and Is zero for X < Xoi
(11) the varilance.docs nol depend on the dosc,
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Sequentlal Search of an Optimal Dosage:
Some Preliminary Results and Suggested

Arcas for Further Resecarch. t)

B. He Eichhorn and S. Zacks

Cace Western Reserve University

i 1. Introduction.

The preseni papér summarizes our preliminary results in the arez t
of sequential secarch for an optimal dosage, and brings forth several sug-

gestions for further research. The search procedures suggested here are i

based on two statistical models which are specified in the next sections f
These models scem plausible to use However, ii may be of great inlerest
to investigate how scnsilive are the procedures to the assumptlions of
these models. Suggestions of how to proceed in this study of robustness
will be given in Scction 7. Similarly, we may try io changc the objectlive

function and investigate the possible implications. In Section 2 we

specify the models under consideration and the objective funclions.
Section 3 provides a sequential scarch procedure for one of thesc modcls,.
in which the response variance is proportional io the dosage squared.
Section 4 gives - sequential procedure for a model of fixed responsc
variances In Section 5 we present Bayesian sequeniial procedurces for the
5 models mentioned above. Monte Carlo demonsiration is exhibited in Seclion

6. Section 7 is devoted to open problems and suggestions.

+) Partially supported by Project NR 042-276, of the Office of Naval

Rescarch at Case Vectorn Resorve University.
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2. The Statistical Models.

L

Let x designate a dosage and Y(x) the toxicity level at «x.
¥(x) 1s a random variable. We consider here the following regression
model. The toxicity level 1s negligible for all 0 < x £ xge From X0
the expected value of Y(x) 4is linear in (x-xo) with a slope b, as

1llustrated in Figure 1.

E{Y(x)} = b(x«xo)

This assumption concerning the relatibnship'betwecn the expected toxicity
level E{Y(x)} and the dosage x 1is common to all the models specified
below. The assumptions concerning the conditional distributions of Y(x),
given x, and how many of its paramecters are known constitute the following

two models:

Model l: The conditional distribution of Y(x) given x is normal with
mean b(x-xo) and variance 02(x-x0)2, where 02 is known,
and b unknown., 0 < b < w,

Model 2: The conditional distribution of Y(x) given x is normal with

mean b(x—xo) and a krnown variance, ¢°3; b is unknown.

Bt e i e ARy w e
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[ As seén here, the preseni paper is based on the assumption thati the value
5: of 02 is known. Procedures of sequential search which are not based on
a given value of 62 will be the subject oi further investigations.
Let T designate the threshold of dangecrous toxicity levels. It
1s desirable that Y(x) will not exceed T. Since Y(x) 1is a random

; variable we cannot guarantec with certainty that ¥(x) <M (unless x £ x4).

We therefure require that for some tolerance probabllity vy, x will be
5 such that P{Y(x) < M|x} > y. The largest value of x for which this
probability is at least vy will be designated by §Y. QY w11l be called

the optimal dose. This is the unknown parameter which we wish to find by

sequential experimentation. It is easy to verlfy that EY is given by

-
&
]
ol e it it s L iyt e sl sl i, s o it L

Xg + ﬂ/(b+Zyo) , under Mrdel 1

’ (2.1) g 1
i Xo + (ﬂ-zyo)/b ’ under Model 2,

[

- where ZY = dfl(y) je the y-fractile of the standard normal distiribution. }
The objective is to determine the dosages, x, at each stage of experi-
3 mentation as close as possiblé to §Y and not to exceed §Y. Thus, the

statistical problem is how to utilize the available information on the un-

known paremeters and determine a sequence of dosages X1y Xy seey SO ithats

(1) For each n =1, 2, ...

(2.2). Pb,d{xn < §Y} >1l-a, forall 0<by, 6 <o

~ Any procedure of determining {xn;n > 1} which guarantees (2.2) is called

feasible.
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(1) We would further like Lo guarantee that 1lim x = ;Y in prob-
R n.-e «
ability. Sucli a procedure will pe called consistent.

In order to secure feasibhility and avold certain theoretical diffi-
culties we assume a knowledge of a sa:: dose xg such that x0<(x6*:§y.

We can therefore restrict attention to procedurces which assign Jorfages not

smaller than xg.

3. A Search Procedure foi Model I.

Given the values of Xjs eees Xoo and the assoclated Y values

Yl’ ooy Yn we determine

(3.1)

(=t

it

b o
JL 042
e

Let U: = max(O,Un). The value of x ., ls determined then as a function

of Un according to the formula:

. Z
— + _ ™~ l-a
(3.2) Xp4) = max | XX )/Gn + 0(/,', + Z>> 3 n>1l.

We prove now that this procedure is (i) feasible; (ii) consistent and

(iii) optimal in a certain sense.

.

(i) First, consider the distribution of U, = Yi/(xi =xy)s 1= 1, weey e
Since X is a function only of (Yl, ceey Yi-l)’ the conditional distribu-
tion of U, given the o-field ¥ _; =& (Y}, +«ey Y, ,) is normal with

expectation b and wvariance 02. Since b and 02 are independent of

31_1 we obtain that Ui is independent of 31—1 and has a normal distri-

bution %(b,og). Hence, Ups »eey U are i.i.de with ﬁ(b,oz) distribu-

tion. This implies that

s koL i e b
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Let An = {XO + 11/(\Un + 0&76“' + ZY)) < X6 ’

and let As designate the compliment of An’ Then,

o =2 0+ B o/ o2 2 )

where I{'} is the indicator function. Finally, since xg < §Y,

Plonia € 5 2 g+ /(1) # o0 2) 26}

This proves that the procedure is feasible.

(i) By the c¢trong law of large numbers, En + b with probabilily one.
Hence, since b >0 x_ gY with probability one. This proves the (strong)

consistency of the procedure.

(11ii) The procedure prescribed by (3.,1) and (3.2) has the following
optimality property:

Among all feasible procedures the procedure {xnzn 2 l} prescribed

by (3.1) - (3.2) is asymptotically uniformly most accurate, i.e., if

{in:n > 1} is any sequence of dosages which satisfies the feasibilitiy

condition (2.2) then

(3.4) Pb,c{;‘n1-1 <E'} > P otXn < €'} fox

11 (byo0); and every §'_< EY, and n sufficiently large

(may depend on  §1),

]
[
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The proof of (3.4) is based on the fact that b _=U + 2 Z
C.’n 1l A/E

2 is a uniformly most accurate upper confidence limit for b (sec Lehmann #

l-a

pp. 78-81) for each n=1; 2, ... « Hence, if Lﬂ n is any other upper 1
?

confidence limit for b then

e

~

. Iy ' = LIRS
(3.5) pb,o{ba,n >hb'} > Pb,(_]{b'_“n > b'} for each n =1, 2,

and all (b,o) and every b' > b.

==

ol )
_ Tt ] l-u3 : = s
¢4 = . — * ' o],
Let ba,n u, - Zl—q then for n>( . we have {ba,n> b } C-{_bu,n>b } Letting

~

— 2 - - 1 . 3., ’ 04
ayn = q/(xn+l xo) o ZY we obtain from (3.5) and (3.2) that (3.4)

*  holds, for these values of n.

il

4, _A Search Procedure for Mcdel 7.

Under Model II there are several complications. We still wish to

estimate b by ﬁn, as given by (3.1). However, since the sequence of

e s D ol e sl

Xy values is not determined before the observations commence, the sampling
distribution of Un is not normal. _We cannot even apply the usual j
versions of the Ceniral Limit Theorem, since Ul’ U2, asey Un are dependent.
It is easy to prove that E@jn} =b for all (bsg), and furthermore

cov(Ui,Uj) =0 for all 1< i<j<n. Indeed, for all i < j,

el sl it il

(4.1) EQu;u;} = E{U;E{U,/%1) = 52,

Hence Ui and Uj are uncorreclated. From this result we immediately

R

imply that

= _d “ 1
(4.2) Var{unj = = Z E{ ——— >~
. n® in) (xinxo)

¥ E.Lehman, Testing Statistical Hypotheces.




We notice in this formula that Varﬁjn} may diverge to infinity if

E{(xi~xo)-2} = o, In order to avoid such a possibility we require that

all x, will be greater or equal to x

$ *
N 0’ where X5 > X0 Then,

(4.3) var{U } < R
Mo ™0

Thus we consider the following procedure: After observing Yl’ ey Yn

. ~ ~ - 3 bord _.i
at X1y eeey X compute Un == 2

n 1:3 Yi/(xi~x0) and set

- _ * 3 = g
(4.4) Xop = maxQo,x0 + (7 Zyd)/<un 4 R da)) ,

where da {s determined so that % is a feasible and consislent

ntl
sequence. Employing the Chebytchev's inequality onc could use, for example
d, = a-%-(xg~x0)-l. This is however a very conscrvative approach. There

is no doubt that more refined bounds could ke determined, so that a faster

¢onvergence could be expected.

5. Bayes Procedures for Model 1 and Model I1I.

In a Baycsian framework we assume that the unknown paramecicer 1s a
random variable having some prior distribution. After obscrving n obser-

vations (n=1, 2, ...) of Yis eeey Y at dosages x;s eeey x o we

converl the prior distribution of b to a poslerior distiribution given

F.e We then determine «x so that the posterior probahility of

ndl

. . " ] Yoo - et e o o+
{xn+1 < éY} given Jn will be al least 1 - go This will assurc ihal the
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expectation of the left hand side of (2.2) with respect to the prior
distribution of b will be at least 1 ~ q. This property docs not

imply the feasibility condition (2.2). The property that we attain is

somewhat weaker and actually depends on the prior distribution assumed. ’

We shall thexrefore say that a procedurc is Bayes-feasible with respect to

a prior distribution H of b if

(5.1) pH{xn'l-l < §Yl5~'n} >1-a forevery n =1, 2, et

and all ¢, 0<o<w, Pyfx < §Y|$n} designates the posterior

probability with respect to the disiribution of b.

We provide now explicit formulac for the determinalion of
{xn+l’ n =1y 2 ...} salisfying (5.1), for a normal prior distribulion
of b, ﬁ(ﬂ,VO); with prior mean 3 and prior variance VO. We remark
here that one could use the same methodology to derive proper formulac
for other prior distributions of b. Let X“ =X, " Xgy DE 1, 2, «..
and as before U, = Yi/xi’ i =1, veey no To give a general framework

for Model I and Model II, let

g Xy under Model 1
(5.2) T, 0=

] ) under Model 11 .

Given Yyy «eey Y. and Xys ooy Xn, it is casy to prove that,if b has
a prior normal distribution W(ﬁ,vo) then, its posilerior distribution is

also normal, W(ﬁn,vn), wilh posterior mean

v i WWMH il
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(5.3) = F Y - X)XV 24 x? .
' T ( n” Pa-1%0/ % n-l/('rn+ nvn-l)’ n=ly 2y ..

and posterior variance

2.

Tn
(b¢4) ' =V_ TS TS T Ty n =1, 2’ s o

n n-1 72 + X2 v
n n n-1

From the recursive formulae (5.4) we oblain that the posierior variance

of b 1is

2
——-——"—2~—— , for Model 1
n+g /vO

(5.5) v

i

n
d2/ C?‘Jl xf + 02/v0> R for Model JI .

Thus, if all Xi 2 X, then Vn is in order of magnitude (in probabilitly)

< %

1]

n = 0,(n7Y)

Similarly we obtain that the posterior mean B, is given explicitly,

of n-l; i.eey V as n e,

under Model I, as:

(5.6) B, = Un(l + dZ/nVO)_l T po(l +c2/y0)/(n+a2/vo) .

Henccy under Model T, By b with probabilily oney; as n +®, An explicit

formula of B, for Model Il is considerably more complicated and we shall

2

use the recursive formula (%.3) with T: = ¢, It can be shown that

n

is a consistent estimator of b, for almost every b (with regard to H)

also under Model 11,
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The Baycs procedure specifies the following sequence of dosages:

X = max{x vhere

* o
O,EII,Y]’
xg + Wi, +2 o 42 ./V;] , for Model 1

Y

g+ (0 - zyc)/ B, t 4 ﬁ") y for Model 1I .

6. Monlce Carlo Comparisons.

In the present scction we comparc the various scquentiual procedures

numerically by siarting with an initial dosc X, simulating Yl deter-

mining X simulating Y, etce We presenl the reosults of 50 sich itera-
tions., The paramcters of ihis simulation are:

b = 3., Xg = Oy xg = 1., M = 10., d 7 le, a = «05, Y .99

I

The iriiial dosage is Xy 3.5. The valuc of gY is

1.87¢ ’ for Model 1
5, =

2.558 ’ for Model 11 .
B = 2.86 VO L

T




e

Table 1.

~1}-"
Simulated Dosagc Detexmination {x ) for ihe non-gayns (N.H.)
and Baycs (B.) Procedurer Lt
Model 1 Model 2

n Iqini B. NUB' Bi

1 1.1401 1.L670 1« 0O0D 20000
2 le2GYN e h70} 1«10G6n RN CIEE )
3 ST MY - H757 1.201]) e (/G
a 14227y [+5003 1.4313 Pl
5 beri264 Vo778 136453 21101
(&) 1.4095% 1.61 02 e /1L0G 21064582
1 1.5373 106300 1522006 22010
) 1.56559 1.639% 15017 0171
9 .64 IR RV VoGO0 A L0y
106 16194 161719 leGGOO Pe27EY
11 16227 L. 602K 1.6906¢ 23007
i2 PeGUHY 1.08AY% Y1) 3) 2.008Y
I3 16409 1.64063 17304 23012
14 l«Gn20 1 GEGT 1ent 3 S« 3047
15 1e GO 1.729¢ VLEnAE 23610
16 146944 e 7850 Ve 8164 2. 3500
17 10690 o719 1. 6247 2a3H030
18 1.7051 1.7316 Yo B84 e 3700
19 17347 17560 1. 80306 2«01
20 Le7450 1e 76210 J.00UR7 el e
21 1e702] 17136 1.8928 23893
28 17181 147397 1.6963 e 3554
23 le7119 1.°7336 1.9012 243796
e4 Jett iy 177330 J.9090 2431923
25 le 7298 Le7h8 1.93106 24 398606
26 le7522 1e7G74 149576 2en007
27 Ie71613 Ve 7751 19722 214320
28 Pe1166 L7876 1.9909 - 28085
79 147790 Lo t90U2 1.999¢ 2521
3n lotTny lLe784L7 20001 LelIR
31 176606 1.7780 2.00]6 Cei30p
32 1e7756 1.78560 2.015%0 24103
33. Te 71428 le7852 e.G192 ealinro
34 fet712 1.7620 ¢ (2217 22 0177
35 ,c'l'(.:'/s ll'lrli-'/ 20023& et} 2
3o 1e 7616 177230 203 e i3H0
37 o763 1e7%0% &e 0097 e Ni
38 le7597 17707 20307 e
39 1.7640 1.7 04 e 03079 Za 23778
40 17639 Yo771n0 e 0N e iUt
41 le 7609 17712 e 4ih] 2o N8
Heo 1e7707% et &y Qe (LY 2« 9]
43 1.763¢ Loty Ce 072 20 HL0R
414 1e7917 1.7991 2. GE1E eodiryl,
45 .80 1.809; ey Pe i)
46 | R VA 161463 Sl a0
4% 181 m] 10160 I B N 208014
A€ 1.66G7¢ | R IR IKTE e l00n Lo if
49 | N I | R TS de 02y aninn
Y {] 16055 L8120 e lll AR

e i
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The simulated dosage values which are exhibited in Table i illustirate

the approach of these scquences of dosces to the optimul doses, gliven by
EY- In Model I the Bayes procedure yields dosages which are somewhat
closer to the oplimal. The differences between the non-Bayes and the
Bayes procedures become insignificant as n grows. This phenomenon deponds
however on a "good" choice of prior paramelers for the Bayes procedure. A
similar phcnémenon is obscrved in Model I1. The non-Bayes procedure (de-
rived in Section 4) yields at the beginning values of x closec to xg

and the convergence is-slow. This is due to the "over pessimisiic" choice
of the da parameler in (4.4). We further obscrve that in no casec the
dosages oblained exceed the optimal dusc 5\, This is valuable characler-

istic of the proposed procedurcs.

7. Sugqestions for Furither Research.

. The following suggestions for further rescarch are based on our own
speculations concerning the relevancy of the models studicd in ihe previeus
séctions. Qur list of open problems is classified into two major classcs.
(i) Vvariations of the statistical assumptions and objectives within the
framework of lhe present problems (ii) Extension of the models into
multivariate, multi-dimensional and time dependent problems.  Within the

first major class we suqgest to consider the following problems

i

s
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(1.1) The conditional distribution of toxicily levels, Y(x), for a
given dosage, x, 4is normal wilk mean b(x—xo) and unknown variance
2

(

0(x). This variani of the clatistical modcl ¢an be further broken up

into several special cascs. , .

(1.2) Problems connected with unknown intercepts (place of xo) and

known or unknown variances, assuming slill normal condiiional disiribu-

tions,
(1.3) The effect on the procedures causcd by deviations from normality of j
the conditional distributions arourd the regression lines, %

(1.4) Derivation of scarch procedures when the toxicitly can assume values

only on a discrete scti.
(1.5) Deviations from lincarily of the toxicily-dosage regression line.

(1.6) Sensitivitly analysis - study of ilhe robusiness of the search pro-
cedures conhcerning the basic assumplions on the distributions and on the

toxicily-dosage regrossion.
(1.7) Formulation of different types of objective funcilions.
In the sccond class of open problems we mention:

(2.1) Multivariale response - the obscrvalions consist of veclors of

several components, one of which is toxicity.




(2.2) Time dependent problems - patienls are subjecl to continual ireat-
. | ment. The effect of prior treatmenls on future dosages, employing the
information gathered on cach individual separately. The delermination

of the optimal spacing between epochs of treatments, Y

(2.3) 7The scarch for the optimal combination of various drugs.

G
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