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A NOTE ON ESTIMATING PROPORTIONS BY LINEAR REGRESSION

Alvin A. Cook, Jr.

The RAND Corporation, Santa Monica, California

The estimation of the parameters of a linear regression model in

which the dependent variable is a fraction or proportion frequently

occurs in statistical analyses. This proportion reflects some specific

activity such as the proportion of income spent on some good and is re-

lated to a number of exogenous characteristics. The estimation of a

proportion relationship is not always performed in isolation. The re-

lationship of the exogenous variables to the remainder of the popula-

tion, or complementary proportions, is usually of equal interest.

An example of such an analysis has been performed by McCall in

studying the movements of people into and/or out of various income

classes over time. In one part of his study McCall calculates a first

order Markov transition matrix of peoples' rovetcrLs into, out of, or

remaining in income classes. Each cell contains a transition proba-

bility reflecting the propensity of individuals to move out of a given

income class or remain in it. The changes in the transition pro- ibili-

ties for each cell are then related to changes in GNP for the period
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from 1958 to 1966. IA each matrix the probabilities sum to one and

* each cell will undoultedly be affected differently by changes in GNP.

In McCall's anýiysis and in many analyses, the probabilities or

% proportions across all cells sum to one in the raw data. For predic-

tion purposes it is desirable that the estimated proportions always

sum to one as well. -n thi-s note we, show that the estimated propor-

tions sum to one and no constraint is needed on the proportions if the

parameter estimates are BLUE. If the parameters are not, then a con-

straint can be constructed using Zellner's
2 technique of Seemingly Un-

related Least Squares (SULS) to ensure that the estimated proportions

sum to one. It is further noted that the results can be generalized to

any system of equations containing the same exogenous variables in each

equation and specifying an exact linear constraint on the dependent

variables for all observations in the raw data.

UNCONSTRAINED LEAST SQUARES

Assume that there are z proportions pi and n observations on each

z

Psuch that Zi. - 1, for every 1, -1n. Each regression

equation can then be written

----
, . Xei + Ci i =i .,z

S(1) Pixi

where each p is a 1 x n vector of observations (Pil' Pin

X - (1, X1 , ... , X ) where each Xk is an n X I vector of observations,

_i is an (s+l) x I vector of regression coefficients, i 2

Arn•ld Zellner, "An Efficient Method of Estimating Seemingly

Unrelated Regressions and Tests fcr Aggregation Bias," Journal of the

American Statistical Association, Vol. 57, June 1962, pp. 348-368.
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E(CiXk) - 0 for all i and k, E(c ijcJ,) - 0, Z P - 1 for all j,

and 0 1 p - 1, all i, J.

The equations in (1) represent actually z-1 independent etuations
z-1

and Z P, . I-pz. Thus pz can be easily calculated, but the separate
.-1

effects of the exogenous variables on Pz are omitted. To ensure that
z
! P, - 1 and to obtain the separate coefficients 8

ik for all i and k,
i-l

it is not necessary to use a Lagrangean constraint. Estimation of (1)

by Ordinary Least Squares (OLS) yields the unbiased estimate

(2) '9, (X'X)-x'pi i - l .... a

and

(3) p i' I - 1 .... .

By summing the estimated proportions over all i, we obtain

J "1 1.1 i.1

Therefore OLS ensures that the Pi sum to one regardless of variances of

each estimate as long as the ii are unbiased. Similarly the variance

of the sum of the estimated proportions is zero using the above result:

(5) Var I E I pi - Pi)

t E[(i 1 ) (ill )- 2V i)(1il pi

-O .

C--
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IMPLICIT CONSTRAINTS ON THE REGRESSION COEFFICIENTS

The fact that the proportions sum to one implies a constraint on

Bik across all i equations. If the 81 are BLUE (and the Xk are fixed

z z a
or independently distributed), then Z p• - 1 implies Z = 0 fororj

i-l i-1
all J. Consider

(6) d( )- Xdi -LdX

z 8

Z ri~ i i ijl dX.

i-: ' ij

:.I J-l

j

(j 11 + 1.. + izIdX 1 + i (js +s "'"+ Azs) dXs

-0 .

Considering a total change in the summation of the pj due to a total

change in any exogenous variable, say Xi, yields

(7) 0 - (S 11 + ... + z1) :2 + ""+ (611 + ... + azJ +""+{ (a + ... +,. 6 : Z
But dX I/dXj - 0 for i - 1, . s; i J. By considering total changes

z , z 0
in E pi due to dXj. j . a, we obtain the result that E Aij

i- i jI

for every J. The summation of intercept terms, however, does not equal

zero:

5

j.1



-5-

and

z i z s

(9) 
io .

Z 3
Based on the above result of E Ba 0 for every j,

i.1 ii

(10) -A 0-.i-a i

It is immediate from (4) that an exact linear constraint on the

dependent variables in the raw data implies the same exact linear con-

straint for the estimated dependent variables across the z equations.

Further, the results of Eqs. (6) to (10) imply that the Bij sum to

zero across i and the BiO sum to the value of the constraint if an

exact linear constraint exists on the dependent variables. Moreover,

as will be seen below, the parameters may be constrained to ensure the

exact linear constraint on the dependent variables if the parameters

are not unbiased.

ESTIMATION WITH THE COEFFICIENT CONSTRAINT

if the parameters are not BLUE, the Pi and iO0 may not sum to one,
z

nor ma, the Z 6 sum to zero for every J. These conditions can be

3Anotaer p:oof of these results was pointed out to me by b. ifron.
Let e represent the (Jxl) vector of ones. Write all z equations Pi
Xii slde by side to obtain X; where.p is n X z. X is n X (s+l),
and ; Ja (s+l) x Z. It is t hen pe, - XUez. but pez - en by equqtion
(4) and X (1,0'...0)' - en by definition. This implies that vez -
(,0..0) which contains the above results.
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forced on the system however by treating the z equations as a system

of seeming unrelated regressions as developed by Zellner. Rewrit.

(l)as

.i 0 ..... 0

0 X2

(1L 0...... ::j [ i-

where each Ai is a vector of independent variables (1, Xil, .  Xis)

and each Bi a vector (a Sil' Si2 .... Iis); Eq. (10) can be simpli-

fied as

(12) p -Xe + u .

Application of least squares yields the BLU estimator,

(13) a - (X'Z 1-X)X'~z-p ,

where Z is estimated by the disturbance variance-covariance matrix.4

By further constraining the Bij to sum to zero across all i equations

"for every j and the 8i0 to sum to one, we obtain simultaneous constraint

estimates5

(14) 8"- B*+ (xEX-)-IQ'[Q(X aX) W-Q'](W-OB

4
See A. Zellner, "An Efficient Method of Estimating Seemingly

Unrelated Regressions and Tests for Aggregation Bias," Journal of the
American Statistical Association, June 1962.

5
See H. Theil, Economic Forecasts and Policy (2nd ed.), North-

Holland Publishing Co., Amsterdam, 1961.
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The estimate 7 satisfies the constraint Q•- W, where Q is a matrix

specifying the combination of the Oj and W is a vector describing

the constraint. For the constraints above the intercepts sum to one

and the slope coefficients across each Xi sum to zero, therefore W -
iS
(1, 0, ... , 0), a 1 x (s+l) vector. Thus all constraints may be forced

in the event that unconstrained OLS is not consistent with the implied

constraints on the 8 ij.

ii

- -A


