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ABSTRACT

The detection and false-alarm probabilities fof-maximum likelihood
detection of coherent signals in noise, where the signaleund.noise levels
are unknown, are derived and evaluated. The maximum likelitiood de-
tector is shown to be optimum in the following sense: out of the class
of processors that yields: a specified false<alarm probability without
: Knowledge of the ncise level, it is-uniformly most powerful for unknown
: (positive) signal level.
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For M samples of signal-plus-noise or noise, and N samples of
noiseé-alorie, >urves of detection probability versus signal-to-noise ratio,
with false<alarm probability as a parameter, are presented for values
of M + N ranging from 2 to 27. Curves of signal-to-noise ratio required

for 0.5-detection probability are presented for several values of false-~
alarm prokability.

frs M s S

e

4 Detection perforriaance improves very rapidly as M +.N increases
; from 2 to 4 or 5;/the degree of improvement for larger M + N depends
E on the exact value of false~alarm probability desired. For example,
: . small false-alarm probabilities such as 10-6 require ten or more total
E samples before the performance improvement begins to slacken with
i

the number of samples taken.
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OPERATING CHARACTERISTICS FOR MAXIMUM LIKELIHOOD
DETECTION OF SIGNALS IN GAUSSIAN NOISE
OF UNKNQWN LEVEL

I. COHERENT SIGNALS OF UNKNOWN LEVEL

INTRODUCTION

Signal-detection systems often are required to operate in environments
where ihe background noise level is subject to unknown variations. For exam-
ple, receivers for active sonar (or radar) are called upon to process returns
against interference that includes.time-varying reverberation (ox clutter).
From a practical point of view, it can be expected that both:thé level and the
spectrum of the interference will be unknown and changing with time. In'such a
situation, establishing a noise-level reference for each range (time delay) in-
crement-is obviously necessary if a specified probability of false alarm Pp is
to be maintained. The subject of this report is-a study of a detector that maxi-
mizes the probability of detection Pp .and at the same time maintains a desired
Pp in the presence of Gaussian noise of unknown level and spectral density (or
autocovariance function).

Signal-detection applications .h a stationary environment of unknown noise
power level present a potentially simpler problem than the one addressed here.
In the stationary environment it is likely that the unknown noise parameters can
be estimated independently of the signal detection procedure. Then, prior to
detection, a noise-reference level could be established to any degree of accu-
racy, and the desired false-alarm probability could be approximately realized.

For the more realistic situation of signal detection in a nonstationary en-
vironment with noise of unknown spectral density, a fixed detection-threshold
would yield a varying false-alarm probability dependent on changes in the noise
level and spectral density. This undesirable feature can be alleviated (at the
expense of introducing additicnal noise into the detection procedure) by estima-
ting the noise level at each increment of time in order to establish a detection
threshold that tends to track the noise power level. It is often the case that the
noise background is varying slowly enough in time that independent samples of
noise~-alone,, from the same ensemble as the sample being tested for signal
presence, are available in neighboring time increments. Obviously, extra
samples of noise-alonz can be used to improve the estimate of noise level, and
allowance for them is included in this investigation.
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It is worthwhile remarking that this.report is applicable to problems of
changing noise environments other than just temporally nonstationary examples.
For example, passive receiving arrays generally operate in spatially noniso-
tropic noise fields; if the samples of signal-plus-noise and noise-alone are as-
sumed to be obtained from neighboring-look directions, the results of this in-
vestigation are applicable in a spatial normalization context, Or, if a system
for detecting narrowband coniponents in a broadbgnd:input is considered; the
samples-may be assumed to come from-adjacent rrequency bins, and the results
of this investigation are also applicable in-the:frequency domain. To avoid an
unnecessarily cumbersome discussion, however, the terminology of temporal
nonstationarity will be employed throughout the remainder of the report.

It will be recognized that inability to specify the-spectral density of the
noise places analysis within the framework of a nonparametric detection prob-
lem, for which the goal will be to achieve a constant falee-alarm-rate receiver.
In the following discussion, it will be assumed that the input to the receiving
system has been filtered to remove noise outside the signal band and-that the
prefiltered input is sampled at times sufficiently separated for the samplés to
be-statistically independent. The approach will also agsume that the noise has
a specific statistical structure, namely, Gaussian, thereby casting the originally
nonparametric problem into a parametric form (although the parameters ap-
pearing:in-iae prohobility density functions (PDFs) are unknown).

“a:the genural case, the values of the unknown parameters can be esti-
mated by separately maximizing.the PDFs for the signal present hypothesis Hl
and“signal absent hypothesis Hy. The likelihood ratio (LR) formed under

-these-conditions {principle of maximum likelinood) can be used to obtain a gen-

eralized hkehhood ratio (GLR) test. This procedure was carried through by
Helstrom? for coherent signals in Gaussian noise of unknown ievel and spectral
density (no cxtra noise samples were assumed present in his analysis) and re-
sulted in a t-statistic test. In the coherent detection case, however, & more
powerful result than Helstrom's can be obtained, as shown by Scharf and Lytle2
and as derived in Appendix A ‘to this report, The resultant t-test is, with un-
known signal level, uniformly most powerful (UMP) of all tests which maintain
a specified Py (irrespective of noize level changes) and is optimum (in a
Neyman-Pearson sense) for the same (scaling invariance) class of tests when
the signal level is known.

The problem of detecting a signal of known form (but.possibly unknown
level) in Gaussian noise of unknown level has been the subject of a number of
investigations. In a parametric context, Helstrom! has considered the question
of detecting signals in noise of unknown level but khown normalized autocovari-

- S
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ance function. In a series of problems, he employs a method. of solution based
on 2 maximum likelihood estimate of the noise level, to derive a t-statistic test
whose asymptotic reliability is as good as that of the known-noise receiver;
physical realization of this processor is not practical, however. Scharf and
Lytle have shown that the t-test is UMP-~invariant. In the nonparametric situa-
tion (unknown noise autocovariance), Carlyle and ThomasS have treated the
t-statistic as an asymptotically nonparametric cdetector. Other authors have
censidered réceivers that employ a separate (extra) input exhibiting the same
kind of noise as that which corrupts the signal but is known to contain no signal.
Capon, 4 Hancock and Lainiotis, 5gnd Carlyle and Thomas3 have analyzed a num-
ber ‘of nonparametric receivers adapted from so-called Wilcoxon tests (both
with and without extra aoise-alone samples) and have obtained asymptotic rela-
tive efficiencies for several such detectors. Finally, Spooner, 6 using an aver-
aged likelihood ratio-test, ‘has treated the problem of detecting signals in white
Gaussian noise whose unkaewn random level is assumed to be'gamma dis-

tributed.

This report presents a seif-contained statément, including descriptions
and derivations, about the maximum.likelihcod and optimum scaling-invariant
procedures referred to above. The analyses in-the following sections not only
const:tute a.review of previous work on coherent detection of signals in noise of
unknown level, but they also provide a foundation for consideration of phase-
incoherent detection of deterministic signals and for consideration of detection
of stochastic signals in noise of unknown level. In two important respects,
however, the present effort represents extensions of previous work. First,
allowance is made for including extra samples of noise-alone in the maximum
likelihood estimates of the noise power. Second, extensive numerical results
are given for the performance of the maximum likelihood (optimum) detector,
both with and without extra noise-alone samples.

PROBLEM STATEMENT

We have.available M samples of either sxg‘nal-plus-nmse or noise, and
N samples of noise-alone, denoted by {x;}}1 and | yJ}l , respectively. The
observation "vector" R is made up of these M + N saraples:

], (1)

§[x1 LI xMyl * e yN

The samples are assumed to be statistically independent of each other, and the
noise is Gaussian, The PDF of R under H is
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’po(R) = H‘);J(Zmr ) exp(— -—) II I(gm ) exp(- —"-2->§, (2)
i=1 1 2

where it is assumed that the noise variaice. qlz is‘the samé for all M+N sam-
ples. The PDF of R under H, is

2
M %, -m) -1z oy
p(R) = H o) exp( ing(zw) e (—;’F)s &
i !

where it is also.assumed that the signal strength, as reflected by the mean m,
is the same for-all M signal-plus-noise samples.

Various possible cases of kncwledge about m and 02 are summarized
in Table 1. For cases‘(b) and (d), where m is unknown, it is assumed that m
is known to be positive. This means that phase-coherent processing would be
required in the narrowband signal-detection mode;:a phase-tracking device would
be needed in practice.. The quantities aj,p are constants, which are adjusted
to:realize a prescribed. Py.

The optimum processor for caseé (a), in the sense of maximum Pp for
fixed Pp [Ref. 7, pp. 27-28], is indicated in the table. Its performance capa-
bility is guverned by

= m_
P = &(-A), Pp= d(M == &), (4)

where A is a normalized threshold, and the cumulative Gaussian distribution

X

B(x) = Jdt(zw)'l/ 2 exp(-t2/2). (5)

A desired Py can be maintained by choice of A since ¢ is known. The pro-
cessor for case (b) is identical to that for case (a), and is UMP (Ref. 7, pp.

88-92]; its performance i» identidal to that given in (4). Samples {yJ}Il" are of
no use in cases (a) and (b).




Table 1

FOUR CASES OF COHERENT PROCESSORS:
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Case | Mean'm ‘Variance gz i Receiver Processing
- 1. . 5
@). | known known M Optimum
S
Z xi <.a1
Q i=1
- ) \‘
(b) | unknown known M ‘ UMP
’(positive)( ‘ ) ’S-i?%'al
i=1
(c) |known unknown | M M 5 N oy1/2 | Optimum
Z xi,%azfz X, + Z yj) under
¥=) Y\l scaling
invariance
(d) |unknown unknown | M M 5 N 5 1/2 \UM{P
(positive) X 2a X, + Z y under
102 ! J scalin
i£1 =1 1 Sod e
iivariance

I{ the upper inequality is satisfied, declare Hj.
If the lower inequality is satisfied, declare Ho.

Note:

Cases (c) and (d) have unkmown noise variance a2

and are the situations

of interest. Two approaches hove besn considered. The first is to employ the
principle of maximum likelihoad. {#{L) to estimate the unknown parameters.and
to use the GLR.1, 7 In case (c)the resulting test has the disadvantageous fea-
ture that the precise value of m jnust be known in order to realize prescribed
Pp. Incase (d) the resultant ML test is as indicated in Table 1. (Derivations
for these two cases are presented in the next section.)
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The second approach is based upon a scaling invariance developed in
Appendix A [sce also-Ref. 8, ch. 6]. Basically, the idea isdo consider the
(infinite) class of processors that realize a speciiied Py without knowledge of
the noise level ¢2, and to seleci that processor which maximizes Pp. The
resultant processors for cases (c) and (d) are identical’ and are given in Table 1;
for case (cj the processor is optimum under the scaling invariance requrement,
and for case (d) it is the UMP processor under scaling invdriance. The proc-
essor is similar to that considered by Scharf and Lytle.2

Thus the ML-principle and the scaling-invar,ance approaches yield the:
same processor for case (d). Tle two-approaches yield different processors
for case (¢). We have selected the processor indicated in Table 1 for both
cases (c) and (d) because it realizes prescribed Py without knowledge of m
and ¢2 andis optimum in the sense of realizing' maximum Pp. The noise
alone measurements { yj}ll\I enter through the sample power in the measure-
ments,

Case (c) is somewhat unrealistic in that the signal stiength is assuined
known, while the noise level is not., Case (d) is an often epcountered situation
resulting, for example, from a nonstationary noise background and a channel
with.unknown or time-varying attenuation. Nevertheless, since the processors
for both cases are identical under the scaling invariance requirement, the
analysis and performance to be presenied apply equally well to both cases.
The actually altained Pp will depend upon the {xue values of m and ¢2;
these, in turn, depend on the detailed signals transmitted, the noise power re-
ceived, and the receiver filtering. The present analysis will indicate what
value of m/o is necessary in order to realize, for a wide rangc of M and N,
prescribed Py and Pp.

Since the processors for cases (c) and (d) are required to guarantee a
specified Py without knowledge of o2, they will not perform as well as those
for cases (a) and (b), which have knowledge of ¢2. The additional signal-to-
noise ratio (SNR) required will be part of the results of this investigation.

PROBLEM SOLUTION

For case (d), m and o2 in (2) and (3) are unknown; however, m is
known to be nonnegative. According to the procedure for utilizing ML csti-
mates, we choose ¢2 in (2) to maximize pPo(R) for a given observation R,
and we choose m and ¢2 in (3) to maximize pP1(R). Maximization of

Po(R) by choice of ¢2 yields
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(6)

This quantity is the sample variance of all the available samples under hypoth-
esis H,. Maximization of pj(R) by simultaneous choice of m and oZ yields

1 M
m1=max -M'Z xi,O . (7A)
i=l

ZM 2 ZN 2
(xi_m].) + yJ
2 _i=1 =1

%17 M+N (iB)

Here m; is the sample mean of the M signal-plus-noise samples (if non-
negative) and 0'% is the sample variance of all available samples under hy-
pothesis Hj (after subtraction of mj from the signal-plus-noise sampies).
Substitution of (6) and (7) into the LR pq(R)/p,(R) yields

M+N M
(v /a,) if z:ﬁzo
i=1

GLR(R) = (8)

{1 otherwise

Comparison of the GLR with a threshold T thus becomes merely a comparison
of the sample variances under the two hypotheses. The GLR test is therefore to

 \MN M
choose Hl if (;—) >T(21) and if E X, 20; 9
" £ ‘
i=1

otherwise, choose H, . By manipulating (6), (7), and (9), the GLR-test may be
put in the form
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N

N .
E ) r>0 . (10)

=1

-

Yo ey

e

This is the test quoted in Table 1 earlier. The reason for the choice of scale
factor as in (10) is that r need vary only in the range (0,1). This follows by
application of Schwartz's inequality to the left side of (10):

M Mo, 1/2 M

! 1< . . .
in SN xi) for any {.\i}] : (11)
i=1 i=1

The form of the GLR test in (10) is recognized as a comparison of the
sample mean of the signal-plus-noise samples with a scaled version of the sam-
ple root-mean-square (rms) value of all the samples. It is a slight generaliza-
tion of-the one-sided t-test [Ref. 1, p. 820]. The test (10) could be adopted even if
signal component means on the M .samples were unequal, because bettey proc-
essing than (10) provides would require more information than is generaily
available. However,. the present analysis does not cover this more general
casc of unequal means (sec Appendix A),

n D) .
For case (¢), where only ¢* is unknown, the ML estimates are given
again by (6) and. (7B) except than my is replaced by the known value m, The

GLR test takes the form

 M+N
0'0 o
(;—) 2T, (12)

which can be manipulated into the form

L M M 2 N ‘)
Ly eE(y ey )
i=1 i=1 =1

This test requies knowledge of the value of m, as noted earlier, and there-
fore is discarded.
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The derivation of the performance of the GLR test (10) is lengthy and is
carried out'in a series of appendixes. In Appendix B the matrix manipulations
that are:uneeded are reviewed. In Appendix C the method of converting a Her~
mitian form to a sum of squares of uncorrelated random variables (RVs).is-
given, along with the statidtics of the Hermitian form for Gaussian RVs. Ii
Appendix D the actual detection probability of the GLR test is evaluated and
fourd to be

- W' exp(-w’/2)
P, = J oo "("T ) K, @4
0

where*
dT=~fM-?-, K=M+N-2, (15)

The quantity dp can be interpreted as the (voltage) SNR of the RV on the
left side of the GLR test. That is, defining

Z=Z X, (16)

it is easily shown from (2) and (3) that

change in mean of z due to signal presence _ ’\/-— m
. 1
standard deviation of z d'r amn

Thus, 20 log dy can be interpretedas a system output SNR in dB; it can be con-
verted to an equivalent input SNR when the receiver processing and filtering
operations are known,

*If M=1, then N 21 is necessary in the GLR test (10) in order to have
a valid comparison. However, if M =2, then N =0 is acceptable, These
cases are summarized by requiring M =21 and K 2 0 for a meaningful problem.
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The scale factor r in the GLR test:(10) is under our.control, taking
values in the range (0,1), and is adjusted to realize a prescribed false-alarm
probability. The false-alarm.probability is obtained by setting the SNR dp =0
in (14):

P_= wdw v exp(w/2) q><— z w>=f(0 r,K) (18)
| e (T
0

In Appendix E, closed-form expressions ior Py and simple recursive rela-
tions for Ppy are derived. These are used in the foliowing section to obtain
numerical results.

It will be noticed in the GLR test (10) that the signal-plus-noise samples
} are inbred; that is, they are used on both sides of the-.comparison. It is
of interest to compare this with the test that uses the samples, {xi} , only ac-
cording to

M N A\1/2
Z X, z«(Z yf) . @20 . (19)
i=1 =1

The performance for (19) is easily determined when we compare it with (D-27):
test (19) is already in the desired form of a comparison of independent RVs;
however, there are M+ N -1 RVs on the right side of the comparison in
(D=-27), whereas there are only N RVs in (19). Since the addition of more
zero-mean RVs can only help give better estimates of the rms noise level, the
performance of the GLR test (10) must be better than the performance of test
(19).

As N tends to infinity in (10), the estimate of the rms noise level on the
right side becomes perfect. Test (10) then becomes a comparison with a con-
stant, and the detection and false-alarm probabilities are then

Ppy = d(d, ), Pr=d(-A). (20)

These are the values approached by (14) and (18), respectively, as K tends to
infinity and r tends to sero in such a way that a specified Py is realized (by
choice of ).

10




RTTIRITAY SN T TR TR T S PR IR T M"ﬂ%"ﬁm

BT TR

PIRTY T

TR 4243

RESULTS

It will be seen from (18) that the only way that M and N enter Pp is
througictheir sum; that is, K= M + N -2, This is due to the way the GLR test
was set up in (10); it will be noticed that M enters the test separately as a
scaling factor. For Pp= 101, n=1(1)8, and K= 0(1)10(5)25, required
values of r in the test.(10) are presented in Table 2.

In Figs. 1-14, Py is plotted versus dp, with Py as a parameter, for
K= 0(1)10(5)25. The curve for K=«, :as discussed with respect to (20), is
presented in Fig. 15 for comparison purposes. It is immediately obvious from
the curve for K= 0 that performance for M=2, N=0 or M=1, N=1 is
very poor. Inadequate estimation of the noise level requires a high threshold-
level setting for low Py and thereby forces down the attainable values of Pp.
In fact, even for dp =20, Pp can nof; reach a value of 0,5 for Pp = 10"2.
The situation for moderate Py is quic¢kly improved by the addition of a few
extra samples, as the curves for K='1, 2, .and 3 show. However, high-quali-
ty performance is not realized for very small Pp until many samples are-

‘available; for example, even for dp =20, Pp can not reach a value of 0.5 for
Pp=10"8 until K 28, |

The addition of another independent sample always improves perform-
ance; however, the improvement is greater if M, rather than N, is increased
by one. This may be seen by noting;that increasing N by one increases K by
one, whereas increasing M by one increases both K and dp, Thus, an addi-
tional potential signal sample is always preferable to a noise-alone sample.

The improvement to be gained by collecting additional samples is more
obvious in Figs. 16 and 17, which are plots of the values of dy versus K re-
quired to realize Pp =0.5 for various values of Pp. Figure 17 shows dp in
dB, that is, 20 log dT; straight lines have bévh drawn between points for ease
of interpretation. The horizontal tic marks at the right edges of the figures in-

dicate the required value of dp for K= « and are therefore the asymptotes of
the curves.

For Pp= 10"1, the curve has almost reached its limiting value at
K=1or2, For Pp= 10~2, the required value of dp for K=0 is 21,5, but
the required value of dp for K=1 is 5,83, a drop of 11,3 dB, which is a
marked improvement for the addition of one more sample. For Pp= 10‘3,
however, the curve is still dropping at K= 25.
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Table 2

REQUIRED VALUES OF SCALE FACTOR r IN GLR TEST (EQ. 10)

F
K -
107t 107 107 107% | 10° | 2% | 07| 10®

ol L9511 | .9995 1.00004- 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000
1| .8000 | .9800 | .9980 | .9998 | 1.0000 | 1.0000 | 1,0000 { 1,0000
2| .6870 | .9343 | .9859| .9970 | .9993 | .9999 | 1,0000 | 1.0000
3| .cos4 |.s822 | .9633| .9884 | .9963 | .9988 | .9996 | .9999
4] .5509 | .8329 | .9350 ) .9743 | .9898 | .9960 | .9984 | 9994
51 .5067 |.7887 | .9049 | .9564 | .9799| .9907 | .9957 | .9980
6| .4716 | 7498 | .8751| .9365 | .9674| .2832 | .9913 | .9955
7| .a428 | .7155 | .s467| .9156 | .9531| .o738 | .9853 | .9918
8| .4187 | .6851 | .8199 | .8947 | .9378| .9630 | 9779 | .9868
9| .0081 | .6581 | .7950 | .s742 | .9219 ] .9512 | ,9694 | 9808
10 .3802 | .6339 [ .7717| .8544 | .9060 | .9389 | .9601| .9739
15 | .3170 | .5425 | .6777| .7676 | .8303| .8751 | .9076 | .9313
20| .2774 | .4815 | .6009| .7001| .7665| .8167 | .8553 | .8853
25| .2497 | .4372 | .s587| .c468| .7138| .7662 | .8080 | .8417
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If numerous signal samples are:already available, such as M >°10, Figs.
16 and 17 indicate that it ia not worthwhile to collect any noise-alone samples
unless a very small Py is desired. For example, the curve for Pgp = 10-3 in
Fig. 17 indicates that the required value of dp wovld drop less than 2 dB by
increasing K from 8 to ‘25, which is within one dB of the K= « case. How-
ever, at Pp=10"8, a 7-dB reduction is possible by increasing K from 8 to
25,

The total received signal energy is proportional to Mm?2, If this total
energy is kept fixed, dividing it into more components by increasing M will
increase K while dp remains constant., In Figs, 1-14, it is seen that per-
formance improves monotonically; that is, the more the total signal energy is
fractionalized, the better the performance approaches the K= « limit shown
in Fig. 15: This is due to the fact that coherent addition of the signal compo-
nents is presumed (even at low SNR per component), while the noise-power
estimate becomes more stakle. In practice, the required coherent processing
may be unattainable for low SNRs,

A word of caution is in order regaxrding the use of Figs. 1-17. The quan-
tity dr depends on M, as indicated in (17). Thus, if M changes, both K
and dy change; however, if N changes, K alone changes. The plots pre-
sented here can be used, for example, to compute individual SNR m/o curves
for any values of M' and N, but, in order to keep the number of curves down to
a reasonable level, /this procedure was not adopted, Notice that the case of no
noise-alone samples, N =0, is subsumed under the above results by setting
K=M-2,

Curves of required SNR ior other detection probabilities, such as 0,9 or
0.99, can be easily determined from Figs. 1-15, Operating characteristics
for other ranges of K or SNR can be determined from the general formulas in
Appendix E.

DISCUSSION

Operating characteristics for detection of coherent signals in Gaussian
noise of unknown level have been presented. The processor considered is the
ML detector in the case of unknown signal level. It is the optimum processor °
in the following sense: out of the (infinite) class of processors that yield a
specified Py without knowledge of the noise level, it yields the maximum Pp
for known signal level and is UMP for unknown (positive) signal level. The
scaling-invariance optimum with respect to unknown noise level generally yields

13
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processors that are not UMP with respect to the parameters in the PDFs under
the two hypotheses H, and H;. Thus one must gererally resort to a different
approach, such as the principle of ML, that eliminates unknown parameters.

If the polarity of the mean m in.the PDF (3) is not known to be nonnega-
tive, the least favorable situation occurs when positive and negative values oc-
cur equally often. Then the average LR test takes the form of (10), except that
the left side is replaced by its magnitude. (This test is the same as that yielded
by the optimum processor forced to operate with the samples {xi/yN} and
{yi/yN} (see Appendix A, (A-17) - (A-20)).) Derivation of the performance of
this processor parallels that given in this report up to (D-27), at which point
v1 is replaced by its magnitude. The detection probability is then given by

f K 2
p = | aw? exp(-w /2) [q;( T w) + q;(.. I w)]
D J L, &-1)/2 r(}_{gg) Ay .2 dp 7=7—1_r
= f(dT,r,K) + f(-dT,r,K) . (21)
The false-alarm probability is
P =2(0,.K), 22)

which is double expression (18). The performance of this processor is poorer
than the one analyzed in this report because of less available knowledge. The
exact quantitative behavior may be obtained from (21), (22), and Appendix E,
but has not been pursued.

Coherent processing has been presumed here, When the received signal
is narrowband, phase tracking is often difficult to accomplish; then phase-

‘incoherent processing is often adopted with an attendant loss of performance.

Under certain conditions, such as multipath fading, the received signal pos-
sesses no deterministic behavior and is a stochastic process. The two cases
of phase-incoherent and stochastic signal statistics will be the subjects of fu~
ture work.
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Fig, 11, Detection Probability for K = 10
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Appendix A

OPTIMUM PROCESSOR FOR ARBITRARY SCALING

-Suppcse n+l observations Xj,...,%;, +1 are made of a process of
unknown noise power level. Let the PDFs of the observations be p and q un-
der hypotheses H; and H,, respeéfively; the observations need not be statis-
tically independent, We want a processor that yields a specified P without

‘knowledge of the noise power level and that realizes maximum Pp. Since the

desired processor is to realize a specified Py without knowledge of the noise
level, it must operate equally well on the scaled samples CX1y vve y CXp,
CXp+1, Where c is any positive constant, since these could just as well have
been the sample values under H,. Inparticular, we could choose ¢ = |xp+1|~
for the scale factor and still expect the desired processor to perform equally
well,

The optimum processor, in the sense of yielding maximum Pp, for the
scaled samples

*
2y = = 1sksntl, (A-1)

'xn+1|

i3 one that computes the LR of these samples and compares the LR with a
threshold. Noting that zp4q =+1, we have

P(2yreeerz |2, =41)
LR(ZI’ et P T 1) Eﬁ(ziz cony z:llz::i =+1)° (A-2)
Now, under Hj,
Prob(zl< Zl’ eeey zn< Zh|zn+1=il)=Prob(x1< ixn+1|Z1’ ves ,xn< |xn+1|zn|zn+1=i1)
BlZy41) *a+1l%1 *nt11%n

[

= s dxm.*_1 J' dxl... j dxn p(xl,...,xn,xn+1), (A-3)

) -— 00 00

Preceding page blank
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where
(0, ), 2 =+
(A(z ) B, 1)) = . (A-4)
('”’O)’ zn+1 =-1
Then
B(zn+1)
— — n‘
PEyseees2 |2 4 =2 = s ol nal POl o P 2o Fe)
A(zm-l)
n
= J’dxx p(le,...,xzn,_-f_x) . (A-5)
0

A similar relation holds for q interms of q. Then (A-2) becomes

ve 0y Z ’+
fdx X p(Ml, xzn +X)

(A-6)

This is a general relation for the LR and indicates how the scaled samples
{zk} should be processed.

Let us apply the general relation (A-6) to the following example, which is
actually more general than the one considered in the main body of the text. Let

n+l -1/2 (x, -m, )2
p(xl, . ’xn’xn+l) = 3(2” ) exp [— -x—k-—zi-]g (A-T)

k—l 20
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The PDF q is given by the same formula with mk} set equal to zero. The

{m‘k} need not be equal, but they are assumed known for the moment; ¢ is
unknown. Defing

=

=
=]
+
e

2 2
§=) o =) mz, U= ) m,
k=1 k=1 k=1
B ;E‘.Elnﬂ (A_S)
+ NS+1o

Then the numerator of (A-6);is given by

o0 2
o -(n+1)/2 J n [ X (S+1) - 2x(Limn +1) + U]
(21ro' ) dx x exp |-

2 02
0
= [27r(s+1)]_(n+1)/2 exp [—- ;—2—5] det tﬁ exp [—- -;-tz +B :“_t] . (A-9)
0

The denominator of (A-6) follows from (A-9) by setting {mk} equal to zero.
Then (A-6) becomes

-
n 1.2
dt t exp [— 5 t +ﬂ+t]
0 -
2] = * (A-10)
[ n 1.2
dtt exp —Et

U
LR(zl, . ,znlzn+1-i1) = exp [— o

o
0
Without having to evaluate the integrals, (A-10) is seen to be monotonically in-

creasing with B,, as depicted in Fig, A-1. Therefore, comparison of the LR

with a threshold’is equivalent to comparison of B, with a threshold, From
(A-8), this is .
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since o, although unknown, is positive, Using (A-8) and (A-1) we express

n+1

X
n+1 Z k JX +l| n+1| +ll n+1l Z mk

g At S oAb A Y

and

bt

Nyl 1/2 ntl  1/2
1/2 *k 1 2
S +1) _< z st 1) -3 ( z xk) . (A-12)

k=1 *n+1 k=1

Therefore the LR test (A~11) becomes

n+l n+l o \1/2
Z m X, 2 Y (Z Xk) . (A-13)
k=1 k=1

This is the optimum invariant test if {mk} are known; {mk} can be positive,
negative, or of mixed polarities. Threshold vy is chosen for specified PF‘
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The LR test in (A-13) can be expressed as

n+l ntl  1/2

Elm axlxk<y (Z ) , (A-14)

which does not require knowledge of absolute signal level, but only relative
levels, This is a UMP test under scaling invariance for unknown signal level

provided the relative signal strengths {m/ lmmaxl} 2+l which can be mixed
positive and negative, are known.

A special case of (A-14) is afforded by
mk =m>0 for 1<ksM; otherwise, mk =0, (A-15)
where m is unknown. Then there follows
n+l

M 5 \1/2
E % 27 (Z xk) : (A-16)
k=1

k=1

There is no need to know m; this is a UMP test under scaling invariance and
is recognized as the test shown in Table 1, with the identification of n + 1=
M + N,

It is worth noting that if only the n ratios

yk=xxk » 1=ksn, (A-17)
n+l

are available for making decisions, the LR is given by
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o0
r

n
dx |x| p(xyl, cee ,xyn,x)
o

-0 .
LR(ylp LN yn) = oro 0 0 (A.“‘18)
dx [x[" gy, se e s XY oX)

0

From the example in (A-7) there followsm
rd

J dt 1™ exp [-% t2] cosh(3, )

LRy seeesy, )—exp »  (A-19)

Jdt 161" exp | -= t2.|

—— 00

which is even and monotonically increasing in B4. Comparison of the LR with
a threshold is equivalent to comparison of |B4.| with a threshold. By use of
(A-8) and (A-12) the comparison becomes

n+l n+l

1/2
Z mkxk 27(2 hi) . (A-20)

k=1 k=1

Lack of knowledge about the polarity of the samples requires taking a magnitude
of the linear sum, This test will perform more poorly than (A-13) because it is
operating with less knowledge.

The procedure in this appendix is useful if it results in a UMP test with
respect to the parameters in the PDFs. Although this happens for the example
considered in this report, it is not generally the case, and realization of a
specified Py is not always attainable. Thus, it is often necessary to resort to
a different approach, such as the principle of ML, that eliminates unknown
parameters.
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Appendix B
MATRIX MANIPULATIONS: CHARACTERISTIC VALUES, CHARACTERISTIC
VECTORS, AND NORMALIZED MODAL MATRIX
Let A bean M xM Hermitian matrix of complex elements. Let*

where @, isan M x1 column matrix, A

g is the 4-th characteristic value of

A, and e is the 4-th (right) characteristic vector of A. Equation (B-1) can
be written

M
2 a,:0p: = Meg 1 sg, isM. (B-2)
j:

Let Q = [@; ... @)]; this is the normalized modal matrix of A [Ref. 9, pp.
37-39 and p. 47]. Also let

M

. (B-3)

Then (A-1) can be expressed as the following sequence of equations:
Aeﬁ = M@y, 1 sf=sM,
[Ael LY AQM] = [)\181 se e ANIOM] 1
A{e1 eM] = (el eM] A,

AQ =Q)\,
A = Q\Ql,

(B-4)
*See, for example, Ref, 9, secs. 1.11 and 1.16.
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Now
e,
GHQ-:= . [el... ‘eM]=l, (B-5)
H
M

since the characterlstlc vectors are orthonormal [Ref. 9, p. 44]. Therefore
QHi=q1 , and (B-4) can be expressed as

A =aza’ #a@\a). (B-6)

Alternatively, we can express

A= QHAG. (B-7)

The j,k-th term of QHQ is
M
= - = * -
o Z ™ = D ek (=
4=1

and the j,k-th term of Q@Y is

M M
Z * ._E * -
£=1 4=1

From (B-4), the following sequence of equations holds:

H H
Q A= )\G ’
H H H H
al °1 e A )‘101
A=A, | = :
1. H H H H
M end Loy Al Doy
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H H
e,A=N@), 1s0=M. (B-10)
If we define the (left) characteristic vectors and numbers of A as v and 7 s

respectively, then

v:{A = yv}, 1s0=M, (B-11)

where vy isan M x1 column matrix, Comparison of (B~10) and (B-11) re-
veals that

= = * < < . -
7_9 )\ﬁs Ya eﬂ’ l—ﬂ—M’ (B 12)

thus the characteristic numbers are equal, whereas the characteristic vectors
are conjugates.
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Appendix C

REDUCTION OF HERMITIAN FORM

Two problems will be addressed in this appendix: converting a Hermitian

form to a sum of squares of uncorrelated RVs and determining the statistics of
the Hermitian form when the RVs are Gaussian.

Let X bean M x 1 column matrix of complex RVs, and let B be an
M x M Hermitian matrix. We do not assume that X is a collection of Gaussian

RVs, so that we allow complete generality in the first problem. The Hermitian
form of.interest is

H
F(X)= X BX . (C-1)
Since B is Hermitian, the form F is real. Let

E{X}=m (C-2)
be the méans of the RVs, and

cov{X} = E{X-myX-m'} = K =K? (C-3)

be the covariance matrix of the RVs; m and K are arbitrary, except that K
must be an allowable covariance matrix (that is, nonnegative definitej.

We define transformed RVs V by

v=zKkY2x, (C-4)

where Z is M x M and is yet to be chosen. From (C-2) and (C-3),
-1/2
E{v} = ZKm,

coviVi=E | ZK "3 x-mx-m k22N = 228, (c-5)

Preceding page blank
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This last matrix is desired to be diagonal, for then the RVs V¥ will be uncor-
reldted. At the same time, the quantity

vivy = xHx V220 y 7 M2x (©-6)

will be set equal to F(X) by choice of Y, which is also M x M. In order to
accomplish this, we must have

/2

K2z vz V22 g, (C-17)

or
z9vz =k?pKk2=p = AL, (©-8)

But A is a known matrix, since ¥ and B arc known; solve for A's nor-

malized modal matrix @ and characteristic value matrix A. Then, from
(B"G) )

A =g, (C-9)
If we choose
z=q", v=\\, (C-10)
(C-8) is certainly satisified. Also, (C-5) becomes, by the use of (B-5),
H
covivVl =@"@=1, (C-11)
which is diagonal as desired. At the same time, (C-6) yields

M
F(X)= VH‘{V = VHAV =Z xﬁlvﬁlz' (C-12)
=1
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Thus F is a sum of (magnitude) squares of uncorrelated RVs V. The only -
remaining statistics are the means

E{v} = QK Yon = 4, (C-13)

obtained by using (C~5) and (C-10).

To summarize, A is evaluated from K and B accozding to (C-8);
Q@ and X are computed (sce Appendix B); then T is given by (C-12),
where RVs V have the covariance matrix | and means u (C-13).

Now we specialize the above results to the case in which RVs X are
Gaussian and real, and B is a real symmetric matrix, Since V is a linear

transformation of X (sec (C-4)), RVs V are Gaussian; they are also real
because A is real. From (C-11) and (C-13), the PDF of V is

M

p(V) = H {(2x)"1/2 exp [—%(vﬂ-uﬁ)z]}. (C-14)
=1

The characteristic function (CF) of form F then follows, from (C-12), as

M
K4) = Elesp§POO) = Efexpli Y M)l
=

= H {Jdvﬁ exp(iskﬂvf)(zﬂ)-l/z e""["%(vf‘f@)z]}

M

2

_ iugapt
= Hg(l-i&\ 26) 1/2 exp(mx , (C-15)
2=1

where A are the characteristic numbers of A given by (C-8), @ is given by

(C-13), and Q is the normalized modal matrix of A. This is the desired
result,
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The PDF of RV F can be obtained via a Fast Fourier Transform of the
CF £, and the cumulative distribution of RV F can be fcund by means of the

techniques descrikbed-in Refs. 10 and 11.

As a special case of (C-15), consider

Ng =X 1SL=M(>0). (C-16)
The CF of the PDF
2
1 b oxy x /2 X
53 exp(— 5- é'X)(;'z';) 1,,(#:];), x>0 (A>0) (C-17)
is [Ref. 12, £q. (3.433)]
iu2>\£ -p-1
exp(poyg) (L-1228) T (C-18)
Therefore the PDT of F follows, from (C-15), as
W2 M/4-1/2
1 T F\ F e F
2N exp( 2 2A>(ﬂ2>\> IM/2-1<“T 'X)’ F20, (€19
T
where
M
2 2
Hp= D 4 (C-20)
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Appendix D

DERIVATION OF DETECTION PROBABILITY

Define the RVs
M M 5 0
Lx= E xi, Sx = z xi, Sy= yj . (D-1)

The GLR test (10) can then be expressed as:

i Adb el

choose Hl if L2 —r2M(S -lsy) >0 and L. > 0; choose H_ otherwise.
X X X o] (D-2)

Now define

2 2
Q=1L -1 M@, ). (D-3)

Then the probability of detection is

P,=Prob(@>0, L > 0|H1) . (D-4)

In order to evaluate Pp, the joint PDF of q and Ly is required.
Using (D-1) in (D-3) yields

T N
2 2
g= XBX -r MZyj, (D-5)
=1
where
' 1-r2M, k=4
X =[x,...x..], B ,= . (D-6)
1 M ke 1, k*d
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To reduce the quadratic form in (D-5) to a sum of squares of uncorrelated RVs,
we rely-on the results and notation of Appendixes B-and C to accemplish this task
without d.plication of effort. From (2) and (3),

E’{xlnk} =md, k=0or1l, (D-7)
where
_{0’ k=0} TR (D-8)
mk . , NP §

The index k, which equals 0 or 1, indicates the two hypotheses Ho and Hq, re-
spectively. The covariance of X under hypothesis Hy is, from (2) and (3j,

Kk=Cov{X|Hk}=azlEK, k=0orl. (D-9)

Thus, the covariance matrix is the same for both hypotheses. It then follows
from (D-9) that the matrix of (C-8) is given by

172
K;/?'BKK/ =e’B=A, k=0 or 1. (D-10)

The characteristic numbers of A are [Ref, 13, Egs. (58) and (60)]

2 . 2 2.2
Al—d (l-l‘ )M, )\2—...— )\M—WUI‘ M. (D-ll)
Alyo, from (C-13), (D-7), (D-8), and (D-9), under hypothesis H,,
m
T
p.k=-7;15- Q1. (D-12)

Letting uip be the £-th component of y,

“kf'?& o1 =X 0. (D-13)
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In order to evaluate these quantities, we refer to (B-1) and’(D-11) to obtain

A’e]“= 02(1-r2)M01 ,

Ae = -azrzM.ﬂ, 250sM. (D-14)

The solution for e, is

= M'l/zt

° , (D-15)

from substitution in the top equation of (D-14); and using (D-10) and (D-6):

Ael = AM'l/ 2y = M'l/ 281 = M'l/ 262(1-r2)M| = 02(1--r2)M01 =)0, .

(D-16)

Therefore, from (D-13) and (D-8),

m m
ke Kl
M= 1 6y ="M~ =M = 5k1‘d'r6k1’ (D-17)
where we have defined
m

d, ="M . (D-18)

This quantity can be interpruted as a (voltage) SNR of the RV on the left side of
the GLR test (see discussict of (16)).

In order to evaluate By 2 for 222, we premultiply the second equation
of (D-14) by §T:

T T
VAy) = -AMley, 250sM. (D-19)
But
T
TA =(A i)T = 02(1-r2)M|T (D-20)
49
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from (D-16), so (D-19) becomes

T T
62(1-r2)Ml ® = -o'2r2M'l o, 2si=sM,

'ITQI =0,.2<{<M. (D-21)

Combining (D-13), (D-17), and (D-21),

dTakl’ 4=1
“k,@: , k=0orl, (D-22)
0, 2<sfsM
Therefore (C-13) becomes
E{v,} =d 8, E{w{a}=0, 2s0<M. (D-23)

The RV q in (D-5) is now expressible as

q= Z -rms = P (rP )My -arMEM:"f“eryj

4=2 =1
2 2 2 2 M 2 al 2,2
= o°M [(l-r V=T (Z vy + Z vj/o )] (D-24)
4= =1
from (C-12), (D-11), and (D-1). But since
v=zKY ’x =§- Q'x (D-25)

from (C-4), (C-10), and (D-9), it follows from (D-15) that

lely _1,,-1/24Tg _ 1 u
==@ ==M - -
V= XK=cM T X = =Fis D% (D-26)

i=1

1
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Defining 2{=y;/s, (D-4) becomes, by using (D-1), (D-24), and (D-26),

M N
) 1/2

PD=Prob(v1> \Ii—rZ-(Zvﬂ + Z zf)

1= =1

Hl). (D-27)

But all the RVs V and Y are independent and Gaussian, Therefore, using
(C-11), (D-23), and (3) gives

1/2

py(v,) = @n 7% exp(-tv,d1)% /) ,

/2

b, ()= @) /% exp(-v/2), 25 L3M,

/2

pl(zj) = (21r)—1 exp(—z?/Z), 1sj<N,. (D-28)

It follows that the PDF of

(Z vj + ZN: z? )1/2 (D-29)

w =
0= j=1
is [Ref. 14, Eq. (26.4)]
K 2
_wexp(-w /2)
P = L &-1)/2 F(K-i-l) » W20, (D-30)
2
where
K=M+N-2, (D-31)
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Then (D-27) becoemes

P, = Prob (v,> ﬁ-wl H,)

= jdw pWw) j rdvl p1("1’
9

by
Vit

[ wh exp(—w2/2) r
= | dw—mr L2 p(d,, - )
J 2(K 1)/2 r(gg}_) dT ;.’.l-rg

= f(dT’ T, K) ’ (D-32)

where

$(x) = | d @2 ) exp( -t /2) = | dté(t). (D-33)

The false-alarm probability follows by setting dp =0 (m=0) in (D-32).

The above derivation has tacitly assumed M=22, However, it may readily
be shown by a separate derivation that (D-32) is also correct for M=1, N=1,

Therefore (D-32) holds for K 20, as mentioned in the footnote to (14) in the
main text.
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Appendix E

REDUCTION OF EQUATION (D-32)

Interest here lies in evaluating (D-32):

o0

K 2
- -w /2) T
p_=id_,r,K) = dW.-+—W exp(w /2) oy _—Ly) K20, (E-1)
p~ (j L&) ZT(K-;-I) T 2

First, for K=0,

by

J‘"" ¢ )1/2 2,

f(dT,r,O) = | dw\F exp(~w /2) <b(d.T - W)
1~

5 J T

= 2L(0, -J.;-rz A =) (E-2)

(Ref. 14, Eq. (26.3.3)}. Since this last function, L, is fundamental [Ref. 14,
Eq. (26.3.20)], (E-2) can not be reduced, and must be numerically evaluated.

This problem is discussed in Appendix F.

For K =1, integrate by parts, letting

2
0= B, -—r==w), dv=dwwexp(-w /2), (E~3)
. T ]1-1'2
to obtain
fdor,1) = Bid) - ¥ exp(-(1x") dp/2) Bledy). (E-4)
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For K =2, integrate by parts, letting

u= WK-l <1>(dT ——-—1-'—-w), dv=dw w exp(-w2/2) R (E-5)
Jl-r
to obtain
f(dT’ r,K) = f(dT,I', K-2) - g(dT’r’ K"l); K22, (E"G)
where
gy, r.K) = [zK/ 2 l‘<1{-+1)]-1 L J dw W exp(-w>/2) 6(d,.. ~—==w), K 2 0
s Ly = - - ). =Vy
2 Jl—r2 T ~/1-r2
0 (E-7)

and ¢ is defined in.(D-33). Using (E~4), (E~6) can be expressed as

K-1
() - Z g@pr,n), K=1,3,5,...
n=0

f(dT,r,K) - n even ’ (E-8)

K-1
£(dy7,0) - Z gy, mn), K=2,4,6,...
n=1

n odd

where we have noted that the last term in (E-4) is g(dp,r,0); that is, by direct
integration of (E-7) for K=0,

g(dp1,0) = x exp(-(L-r)d7/2) elzdy) (E-9)

Now we have the problem of evaluating the g~-functions in (E-7). Again,
integrate by parts for K 21, letting
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K-1
u=w

r 2

¢d,, -~F===w), dv=dw w exp(-w /2). (E-10)
T Jl-r

Then

o0

[uv] = [— exp(-w2/2) wK-1 ¢(dT - J_E-E-w)] = ¢(dT) 6k1 , (E~-11)
0 1-r 20

and there follows

K+
. e
g(dT,r,K) =r 1»r2 [;rl— exp(-d,zr/2)6 +3T§ r(K g(dT,r,K-l)]
2
= (%) gdpr, K-2), (B-12)

where the last term is absent if K= 1, Therefore

g(dT,r, 1)=rJ1 -r [ exp(-d /2) +\[_d g(d . 0) (E-13)

and

T <K+1)

gd,..,r,K) = rJl-rZ-l———z-— gd, . ,r,K-1)
T 2 /K T
I‘(—z~ + 1)

+5-};—¥ (1-r?) gper.K-2), K22, (E-14)

Thus, g(dr,r,0) is evaluated from (E-9), g(dp,r,1) from (E-13), and, for
Kz2, g{dyp,r,K) from (E-14). Then Pp = f(dr,r,K) is evaluated from (E-2)
and (E-8). For K odd, nothing worse than a $-function need be evaluated.*

*See, for example, Ref. 14, Eq. (26.2.17).
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Also, the recurrence, (E-14), contains only positive terms and thereby retains
accuracy for large K.

The false alarm probability is obtained by setting dp = 0 in the above
results. From (E-1),

PL=10,r,K). (E-15)

Now, for K= 0, using (E-2) and Ref. 14, Eq. (26.3.19), gives
1 1 .
fO,r,0)=2L(0,0,-r)= 5 "7 are sin(r) . (E-16)

The expressions for g(0,r,K) take on very simple forms, as may be seen
from (E-9), (E-13), and (E-14), Then

(K-1)/2 o
11 e fi- r] )
2_2r§: [ , kK=1,8,5,...
T2 )
£(0,r,K) =

K/2-1
%-%arc sin(r) »-7]jr'Jl-r2 Z é%lﬁ['i(l )],0’ K=2,4,6,...
4=0

(E-17)

Equations (E-16) and (E-17) constitute closed~form solutions for the false-
alarm probability (E-15). For each value of K, r can be selected to realize

a prescribed Pyp. Then Pp can be evaluated versus dp from (E-2) and
(E-8).
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Appendix F

EVALUATION OF EQUATION (E-2)

We have, from (E-2),

0 1/2 © )
Bdp,r,0) = jdw(%) exp(-w2/2) j dven 2 exp(-%'(v-d,r)z) (F-1)
0 rw

Let w=p cosfd, v =p sing.. Then, expanding exp(dr p sinf) in a power series
to eliminate cross-product terms,

o /2
fd.,r,0)==exp(-d2/2) | d do exp(-2 0 +d._ psing)
T’ 1 " p( T pp $91 (e TP 54
0 arcsin(r)
ar [ "2
all 2, . Op n+l 2 : _n
.—.-Z ;exp(-dT/Z)-T‘!'; [dp p exp(~p /2) do sin 0
=0 3 ' arcsin(r)
= ZAn(dT) B (). (F-2)

n=0

In the p integration, integrate by parts using u= pn, dv=dpp exp(-pz/Z); do
likewise in the 0 integration, using u= sin-1¢, dv=do sing. The two follow-
ing resulting recurrence relations enable rapid determination of the series
(F-2):
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|

3 1/2

; 1 2 _ x

Aoy =Femi-d/2), A =q,(F) A dp.

H d‘i ’

A @) ==K @) n=2, (F-3)
; and

| B (r)=2 = a-rA)"2

: o(r) = - arcsin(r), B (r)=(Q-r") " ,

. _ 1/2

s P 70?) @B

1 B (r)= - , n=2, (F-4)

INES T o

Ak
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