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ABSTRACT

The detection and false-alarm probabilities for iaximum likelihood
detection of coherent signals in noise, where the sign!!and~noise levels
are unknown, are derived and evaluated. The maximum likelihood de-
tector is shown to be optimum in the following sense: out of the class
of processors that Yields, a specified false-alarm probability without
kn6wledge of the noise level, it isouniformily most powerful for unknown
(positive) signal level.

For M samples of signal-plus-noise or noise, and N samples of
noise-alonie, mi-Ves of detection probability-Versus signal-to-noise ratio,
with false-alarmh probability as a parameter, are presented for values
of M + N ranging from 2 to 27. Curves of signal-to-noise ratio required
for 0. 5-detection probability are presented for several values of false-

alarm probability.

Detection performance improves very rapidly as M +.N increases
from 2 to 4 or 5;lthe degree of improvement 'for larger M + N depends
on the exact value of false-alarm probability desired. For example,
small false-alarm jrobabilities such as 10-6 require ten or more total
samples before the performance improvement begins to slacken with
the number of samples taken.
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OPERATING CHARACTERISTICS FOR MAXIMUM LIKELIHOOD
DETECTION OF SIGNALS IN GAUSSIAN NOISE

OF UNKNOWN LEVEL

I. COHERENT SIGNALS OF UNKNOWN LEVEL

INTRODUCTION

Signal-detection systems often are required to operate in environments
where the background noise level is subject to unknown variations. For exam-
ple, receivers for active sonrx (or radar) are called upon to process returns
against interference that includes time-varying reverberation (or clutter).
From a practical point of view, it can be expected that both the level and the
spectrum of the interference will be unknown and changing with time. In such a
situation, establishing a noise-level reference for each range (time delay) in-
crement-!s obviously necessary if a specified probability of false alarm PF is
-to be maintained. The subject of this report is-a study of-a detector that maxi-,
mizes the probability of detection PD .and at the same time maintains a desired

PF in the presence of Gaussian noise of unknown level and spectral density (or
autocovariance function).

Signal-detection applications xhl a stationary environment of unknown noise
power level present a potentially simpler problem than the one addressed here.
In the stationary environment it is likely that the unknown noise parameters can
be estimated independently of the signal detection procedure. Then, prior to
detection, a noise-reference level could be established to any degree of accu-
racy, and the desired false-alarm probability could be approximately realized.

For the more realistic situation of signal detection in a nonstationary en-
vironment with noise of unknown spectral density, a fixed detection-threshold
would yield a varying false-alarm probability dependent on changes in the noise
level and spectral density. This undesirable feature can be alleviated (at the
expense of introducing additicnal noise into the detection procedure) by estima-
ting the noise level at each increment of time in order to estQb!ish a detection
threshold that tends to track the noise power level. It is often the case that the
noise background Fis varying slowly enough in time that independent samples of
noise-alone,, from the same ensemble as the sample being tested for signal
presence, are available in neighboring time increments. Obviously, extra
samples of noise-alone can be used to improve the estimate of noise level, and
allowance for them is included in this investigation.

m1
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It is worthwhile remarking that this report is applicable to problems of
changing noise environments other than just temporally nonstationary examples.
For example, passive receiving arrays generally operate in spatially noniso-
tropic noise fields; if the samples of signal-plus-noise and noise-alone are as-
sumed to be obtained from neighboring-look directions, the results of this in-
vestigation are applicable in a spatial normalization context. Or, if a system
.for detecting narrowband components in a broadbnd&input is considered, the
samples inay be assumed to come fromWadjacent iiequency bins, and the results
of this investigation are also applicable in thl;frequency domain. To avoid an
unnecessarily cumbersome- discussidn, however, thW terminology of temporal
nonstationarity will be employed throughout the remainder of the report.

It will be recognized that inability to specify the,spectral density of the
noise places analysis within the framework of a nonparamietric detection prob-
lem, for which thegoal will be to achieve a constant false-alarm-rate receiver.
In the following discussion, it will be assumed that the input to the receiving
system has been filtered to remove noise outside the signal'band and -that- the
prefiltered input Is sampled at times sufficiently separated fer the samples to
be~statistically independent. The approach will also assume that the noise has
a specific statistical structure, namely, Gaussian, thereby casting the originally
nonparamefriA •problem into a parametric form (although the parameters ap-
pearingiin 4 probability density functions (PDFs) are unknown).

ý-Ofhe genural Pase, the values of the unknown parameters can be esti-
mated by separately maximizing~the PDFs for the signal present hypothesis H1

and&,signal absent'hypothesis H.. The likelihood ratio (LR) formed under
these-.conditions (principle of maximum likelihood) can be used to obtain a gen-
eralized likelihood ratio (GLR) test. This procedure was carried through by
Helstrom1 for coherent signals in Gaussian noise of unknown level and spectral
density (no extra noise samples were assumed present in his analysis) and re-
sulted in a t-statistic test. In the coherent detection case, however, a more
powerful result than Helstroni's can be obtained, as shown by Scharf and Lytle2

and as derived in Appendix A 'to this report, The resultant t-test is, with un-
known signal level, uniformly mostpowerful (UMP) of all tests which maintain
a specified PF (irrespective of noise level changes) and is optimum (in a
Neyman-Pearson sense) for the same (scaling invariance) class of tests when
the signal level is known.

The problem of detecting a signal of known form (but-possibly unknown
Slevel) in Gaussian noise of unknown level has been the iubject of a number of

investigations. In a parametric context, Helstrom1 has considered the question
of detecting signals in noise of unknown level but known normalized autocovari-

2
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ance function. In a series of problems, he employs a ;method, of solution based
on a maximum likelihood estimate of the noise lovel, to derive a t-statistic test
whose asymptotic reliability is as good as that of the known-noise receiver;
physical realization of this processor is not practical, however. Scharf and
Lytle have shown that the t-test is UMP-invariant. In the-ronparanmetric situa-
tion (unknown noise autocovariance); Carlyle and Thomas 3 have treated the
t-statistic as an asymptotically nonpakametrica cietector. Other authors have

censidered receivers that employ a -separate (extra) input exhibiting the same
kind of noise as that which corrupts the signal but is known to contain no signal.
Capon, 4 Hancock and Lainiotis, 5 uand' Carlyle and Thomas 3 have analyzed a num-
ber.,of nonparametric recoivers adapted from so-called Wilcoxon tests (both
with and without extra aoise-alone samples) and have obtained asymptotic rela-
tive efficiencies for several such detectors. Finally, Spooner, 6 using an aver-
aged likelihood ratio-test, 'has treated the problem of detecting signals in white
Gaussian noise whose unkrown random level is assumed to be'gamma dis-
.tributed.

This report presents a self-contained statement, including descriptions
and derivations, about the maximumlikelihood and optimum scaling-invariant
procedures ikeferred to above. The analyses in'the following sections not only
constitute a, review of previous work on coherent detection of signals in noise of
unknown level,, but they also provide a foundation for consideration of phase-
incoherent detection of deterministic signals and for consideration of detection
of stochastic signals in noise of unknown level. In two important respects,
however, the present effort represents extensions of previous work. First,
allowance is made for including extra samples of noise-alone in the maximum
likelihood estimates of the noise power. Second, extensive numerical results
are given for the performance of the maximum likelihood (optimum) detector,
both with and without extra noise-alone samples.

PROBLEM STATEMENT

We haveavailable M samples of either signal-plus-noise or noise, and
N samples of noise-alone, denoted by {xi}M and IyJIN, respectively. The

observation "vector" R is made up of these M + N saraples:

RT [xy (- [l "" M Yl YN] 1

The samples are assumed to be statistically independent of each other, and the
noise is Gaussian. The PDF of R under Ho is

3
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MP2 -1/2 /' 2 - 1/ý (2e (2)
'p () ý J~j (2 wcT) exp( Pro,~i exp(I (2

?=1 j=1

where it 'is assumed that the noise, varianice, o,• is'the same for all M+N sam-
pies. The PDF of R under".H1 is

• M• , 2-1/2 ((x -ni).• . -', N/ x •'y 3

pl,(R) = I i(2w ) exp (2p /(23)
1=1 20, j='ep

where it is alsoassumed that the signal strength, as reflected by the mean m,.
'is the same forall M, signal-plus-noise samples.

Various possible cases of kncwledge ab6ut m and a,2 are summarized
in Table 1. For cases '(b) and' (d), where m is unknown, it is assumed that m
is known to be positive. This means that phase-coherent processing would be
required in the .narrowband signal-detection mode;-a phase-tracking device would
be-needed in practice. The quaiitities al,12 4re constants, which are adjusted
to--realize a prescribed, PF.

The optimum processor for case •(a), in the sense of maximum PD for
fixed PF [Ref. 7, pp. 27-28], is indicated in the table. Its performance capa-
bility is governed by

PF -- (-A), PD=(• m_ A), (4)

where A is a normalized threshold, and the cumulative Gaussian distribution

X

(D W f dt(2r) -1/2 exp(-t 2/2). (5)

A desired PF can be maintained by choice of A since a is known. The pro-
cessor for case (b) is identical to that for case (a), and is UMP [Ref, 7, pp.
88-92]; its performance io identidal to that given in (4). Samples jYjff are of
no use in cases (a) and (b).

4
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Table 1

FOUR ýASES OF COHERENT PROCESSORS,

Case Mean 'm'Variance a2 Receiver Processing

'(a). known known Optimum

i-1

(b) unknown known M UMP-(positive) •• x••a

1=l

(c) known unknown M M 2 1/2 Oiunder
Y2<~( + Optm u mdeFa scalingi~ -i--1 j=1

inVariance

(d) unknown unknown M M N 1/2 UMP
(positive) xF x a 2 ( xý + YJ 2 tinderFa 1 =1 1 Lu ' scaling

11iiariance

Note:

If the upper lnequidltyis satisfied, declare H1 .
If the lower inequality is, satisfied, declare H0 .

Cases (c) and (d) have un1knolyn 'xiose variance a2 and are the situations
of interest. Tivo approaches have'been considered. The first is to employ the
principle of maximum likelihoop>(DML) to estimate the unknown parameters and
to use the GLR. 1, 7 In case (c)'the resulting test has the disadvantageous fea-
ture that the precise value of' ra 4nuet be knowvn in order to realize prescribed

PF. In case (d) the resultant ML test is as indicated in Table 1. (Derivations
for these two cases are presented in the next section.)

5
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The second approach is based upon ,a scaling invariance developed in
Appendix A [see also;Ref. 8, ch. 61. Basically, the idea is to consider the
(infinite) class of processors that realize a specified PF without krnowledge of
the noise level A2, and to select that processor which maiiinizes PD" 'I:lie
resultant processors for cases (c) and (d) are identical' and are given in Table 1;
for case (c) the processor is optimum under the scaling invariance reqairement,
and for case (d) it is the UMP processor under 2c,aling invariancc. The proc-
essor is similar to that considered by Scharf and Lytle. 2

Thus ilhe ML-principle and the scaling-invalance approaches yield the
same processor for case (d). The twoapproaches yield different processors
for case (c). We have selected the processor indicated in Table 1 for both
cases (c) and (d) because it realizes prescribd PF without knowledge of in
and .2 and is optimum in the sense of realizing'maximum PD. The noise-
alone measurements yjlN enter through the sample power in the measure-
ments.

Case (c) is somewhat unrealistic in that the signal stý ength is assumed
known, while the noise level is not. Case (d) is an often epcountered situation
resulting, for example, from a nonstationary noise background and a channel
withunluiown or time-varyin~g attenuation. Nevertheless, since the processors
for both cases are identical under the scaling invariance requirement, the
analysis and performance to be presented apply equally well to both cases.
The actually attained PD will depend upon the true values of mi and A;
these, in turn, depend on the detailed signals transmitted, the noise power re-
ceived, and the receiver filtering. The present analysis will indicate what
value of m/a is necessary in order to realize, for a wide range of M and N,
prescribed PF and PD-

Since the processors for cases (c) and (d) are required to guarantee a
specified PF without knowledge of G2 , they will not perform as well as those
for cases (a) and (b), which have knowledge of a2. The additional signal-to-
noise ratio (SNR) required will be part of the results of this investigation.

PROBLEM SOLUTION

For case (d), m and a2 in (2) and (3) are unknown; however, in is
known to be nonnegative. According to the procedure for utilizing ML esti-
mates, we choose a2 in (2) to maximize po(R) for a given observation R ,
and we choose in and a.2 in (3) to maximize pi(R). Maximization of
pc(R) by choice of a2 yields

6
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M . +

2 k--1 -j 1 (6)
0 M+N

This quantity is the sample variance of all the available samples under hypoth--
esis Ho. Maximization of pi(R) by simultaneous choice of m and 0,2 yields

mn=max i xi'0 (7A)

M N

(xI-ml)2 + 2 yj

2 i=1 I=B
-1= M+N (7B)

Here nil is the sample mean of the M signal-plus-noise samples (if non-
negative) and o2 is the sample variance of all available samples under hy-
pothesis H1 (after subtraction of m1 from the signal-plus-noise samples).
Substitution of (6) and (7) into the LR pl(R) /po (R) yields

M
(al )M+Nif2 x>0

if 1

GLR(R) = (8)

1 otherwise

Comparison of the GLR with a threshold T thus becomes merely a comparison
of the sample variances under the two hypotheses. The GLR test is therefore to

"choose II1 if 1411)M+N > T(Ž1) and if 2 x i >0; (9)
1 i--1

otherwise, choose Ho. By manipulating (6), (7), and (9), the GLR test may be
put in the form

7
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M M N 1/2
xi rI ( x. + > yi) r 0 (1,0)

ii= 1 j=1

This is the test quoted in Table 1 earlier. The reason for the choice of scale
factor as in (10) is that r need vary only in the range (0, 1). This follows by
application of Schwartz's inequality to the left side of (10):

A 1/2 M

Sxi ( x) for any (11)
Si= 1

The form of the GLR test in (10) is recognized as a compa'rison of the
Samuple mean of the signual-plus -noise samples with a scaled version of the sam-
ple root-mean-square (rmis) value of all the samples. It is a slight gencraliza-
tion ofthc one-sided t-test [Ref. 1, p. 3201. The test (10)could be mdopted even if

signml component memns on the M samples were unequal, beccause better proc-
essing than (10) provides would require more information thma is generally
available. IHowever,. the present muyalysis does not cover this more general
case of unequal" means (see Appendix A).

For case (), where only a2 is umknown, the ML estimates are given

again by 16) anod (71B) except than ni1 is replaced by the known value m. The
GLR test takes the form

MI+N

V-7 + > T, (12)

which can be manipulated into the form

M M NAi x i ý M2 xi EM yj 3F). (3

i=l i=1 j=1

This test requies knowledge of the value of ii, as noted earlier, aid there-
fore is discarded.
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The derivation of the performance of the GLR test -(i0) is lengthy and is

carried dut'in a series of appendixes. In Appendix B the matrix manipulations
that are, needed are reviewed. In Appendix C the method of converting a Her-
mitian form to a sum of squares of uncorrelated random variables (RVs),.i•'
given, along with the stati tics of the Hermitian form for Gaussian RVs. a,
Appendix D the actual detection probability of the GLR test is evaluated and
found to be

o0

P D f w -)2jK1=fdTrK (14)

where*

ITn
dT =qJ 7, K=M +N -2. (15)

The quantity dT can be interpreted as the (voltage) SNR of the RV on the
left side of the GLR test. That is, defining

M,

Z= xi, (16)

i=1

it is easily shown from (2) and (3) that

change in mean of z due to signal presence = r m = (17)

standard deviation of z

Thus, 20 log dT can be interpreted as a system output SNR in dB; it can be con-
verted to an equivalent input SNR when the receiver processing and MItering
operations are known.

*If M = 1, then N >_ 1 is necessary in the GLR test (10) in order to have

a valid comparison. However, if M - 2, then N >- 0 is acceptable. These
cases are summarized by requiring M -- 1 and K - 0 for a meaningful problem.

9
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The scale factor r in the GLR test :(10) is under our control, taking
values in the range (0,1), and is adjusted to realize a prescribed false-alarm
probability. The false-alarmnprobability is obtained by setting the SNR dT = 0
in (14):

= 0w =~ x)- 2 ) r f(0,r,K). (18)
F d 2(K-1)/2 1 K+1)

0

In Appendix E, closed-form expressions ior PF and simple recursive rela-
tions for PD are derived. These are used in the following section to obtain
numerical results.

It will be noticed in the GLR test (10) that the signal-plus-noise samples
Ix} are inbred; that is, they are used on both sides of thc'comparison. It is
of interest to compare this with the test that uses the samples, Jxi}, only ac-
cording to

M N£ 21/2

x! y y2) ; a-:0 .(19)

i=1 j=1

The performance for (19) is easily determined when we compare it with (D-27):
test (19) is already in the desired form of a comparison of independent RVs;
however, there are M + N - I RVs on the right side of the comparison in
(D-27), whereas there are only N RVs in (19). Since the addition of more
zero-mean RVs can only help give better estimates of the rms noise level, the
performance of the GLR test (10) must be better than the performance of test
(19).

As N tends to infinity in (10), the estimate of the rms noise level on the
right side becomes perfect. Test (10) then becomes a comparison with a con-
stant, and the detection and false-alarm probabilities ,are then

PD = 4(d T-A), PF = P(-A) . (20)

These are the vdues approached by (14) and (18), respectively, as K tends to
infinity and r tends to .ero in such a way that a specified PF is realized (by
choice of A).

10
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RESULTS

It will be seen from (18) that the only way that M and N enter PF is
throu!;-'their sum; that is, K = M + N - 2. This is due to the way the GLR test
was set up in (10); it will be noticed that M enters the test separately as a
scaling factor. For PF = 1 0 -n, n = 1(1)8, and K = 0(1)10(5)25, required
values of r in the test.(10) are presented in Table 2.

In Figs. 1-14, ?PD is plotted Versus dT, with PF as a parameter, for
K = 0(1)10(5)25. The curve for K = -, ;as discussed with respect to (20), is
presented in Fig. 15 for comparison puposes. It is immediately obvious from
the curve for K= 0 that performance for M= 2, N= 0 or M=1, N= 1 is
very poor. Inadequate estimation of the noise level requires a high threshold-
level setting for low PF and thereby forces down the attainable values of PD.
In fact, even for dT = 20, PD can no!. reach a value of 0.5 for PF -5 10- 2 "
The situation for moderate PF is quitkly improved by the addition of a few
extra samples, as the curves for K = 1, 2, -and 3 show. However, high-quali-
ty performance is not realized for very small PF until many samples are-
'available; for example, even for dT -- 20, PD can not reach a value of 0.5 for
P= 10-8 until K -- 8.

The addition of another independent sample always improves perform-
ance; however, the improvement is greater if M, rather than N, is increased
by one. This may be seen by notingthat increasing N by one increases K by
one, whereas increasing M by one increases both K and dT. Thus, an addi-
tional potential signal sample is always preferable to a noise-alone sample.

The improvement to be gained by collecting additional samples is more
obvious in Figs. 16 and 17, which are plots of the values of dT versus K re-
quired to realize PD = 0.5 for various values of PF. Figure 17 shows dT in

dB, that is, 20 log dT; straight lines have bedn drawn between points f6r ease
of interpretation. The horizontal tic marks at the right edges of the figures in-
dicate the required value of dT for K = c and are therefore the asymptotes of
the curves.

For PF = 10-1, the curve has almost reached its limiting value at
K= 1or2. For PF =10-2, the required value of dT for K =0 is 21.5, but
the required value of dT for K= 1 is 5.83, a drop of 11.3 dB, which is a
marked improvement for the addition of one more sample. For PF = 10-8,
however, the curve is still dropping at K = 25.

11
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Table 2

REQUIRED VALUES OF SCALE FACTOR r 1N GLR TEST (EQ. 10)

PF

K 1-2 10- -4 10 -5 10-6 1-7 -8

0 .9511 .9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .8000 .9800 .9980 .9998 1.0000 1.0000 1.0000 1.0000

2 .6870 .9343 .9859 .9970 .9993 .9999 1.0000 1.0000

3 .6084 .8822 .9633 .9884 .9963 .9988 .9996 .9999

4 .5509 .8329 .9350 .9743 .9898 .9960 .9984 .9994

5 .5067 .7887 .9049 .9564 .9799 .9907 .9957 .9980

6 .4716 .7498 .8751 .9365 .9674 .9832 .9913 .9955

7 .4428 .7155 .8467 .9156 .9531 .9738 .9853 .9918

8 .4187 .6851 .8199 .8947 .9378 .9630 .9779 .9868

9 .9981 .6581 .7950 .8742 .9219 .9512 .9694 .9808

10 .3802 .6339 .7717 .8544 .9060 .9389 .9601 .9739

15 .3170 .5425 .6777 .7676 .8303 .8751 .9076 .9313

20 .2774 .4815 .6099 .7001 .7665 .8167 .8553 .8853

25 .2497 .4372 .5587 .6468 .7138 .7662 .8080 .8417

12
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If numerous signal samples are-already available, such as M >110, Figs.
16 and 17 indicate that it is-not worthwhile to collect any noise-aloiIe samples
uanloss a very small PF is desired. For example, the carve for PF = 10-3 in
Fig. 17 indicates that the required value of dTc would drop less than 2 dB by
increasing K from 8 to '25, which is within one dB of the K = -o case. How-
exer, at PF = i0-8, a 7--lB reduction is possible by increasing K from 8 to
25.

The total received signal energy is proportional to Mm 2 . If this total
energy is kept fixed, dividing it into more components by increasing M will
increase K while dT remains constant. In Figs. 1-14, it is seen that per-
formance improves monotonically; that is, the more the total signal energy is
fractionalized, the better the performance approaches the K = -o limit shown
in Fig. 15. This is due to the fact that coherent addition of the signal compo-
nents is presumed (even' at low SNR per component), while the noise-power
estimate becomes more stable. In practice, the required coherent processing
may be unattainable for low'SNRs.

A word of caution is in order regarding the use of Figs. 1-17. The quan-
tity dT depends on M, as indicated in (17). Thus, if M changes, both K
and dT change; however, if N changes, K alone changes. The plots pre-
sented here can be used, for example, to compute individual SNR m/0 curves
for any values of M and N, but, in order to keep the number of curves down to
a reasonable level, 4this procedure was not adopted. Notice that the case of no
noise-alone samples, N 0, is subsumed under the above results by setting
K= M -2.

Curves of required SNR for other detection probabilities, such as 0.9 or
0.99, can be easily determined from Figs. 1-15. Operating characteristics
for other ranges of K or SNR can be determined fro m the general formulas in
Appendix E.

DISCUSSION

Operating characteristics for detection of coherent signals in Gaussian
noise of unknown level have been presented. The processor considered is the
ML detector in the case of unknown signal level. It is the optimum processor
in the following sense: out of the (infinite) class of processors that yield a
specified PF without knowledge of the noise level, it yields the maximum PD
for known signal level and is UMP for unknown (positive) signal level. The
scaling-invariance optimum with respect to unknown noise level generally yields

13
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processors that are not UMP with respect to the parameters in the PDFs under
the two hypotheses Ho and H1 . Thus one must generally resort to a different
approach, such as the principle of ML, that eliminates unknown parameters.

If the polarity of the mean m in the PDF (3) is not known to be nonnega-
tive, the least favorable situation occurs when positive and negative values oc-
cur equally often. Then the average LR test takes the form of (10), except that
the left side is replaced by its magnitude. (This test is the same as thatyielded
by the optimum processor forced to operate with the samples txi/yN1 and
J yi/yNJ (see Appendix A, (A-17) - (A-20)).) Derivation of the performance of
this processor parallels that given in this report up to (D-27), at which point
v, is replaced by its magnitude. The detection probability is then given by

dOI w exp(-w2/2) ( ( r W) + d r
D J (K1)/2 r(±)\ KEII \' 1 -ri2 r

0N-

=f(dT,r,K) +f(-dT,r,K). (21)

The false-alarm probability is

SP = 2f(0, r, K), (22)

which is double expression (18). The performance of this processor is poorer
than the one analyzed in this report because of less available knowledge. The
exact quantitative behavior may be obtained from (21), (22), and Appendix E,
but has not been pursued.

Coherent processing has been presumed here, When the received signal
is narrowband, phase tracking is often difficult to accomplish; then phase-
incoherent processing is often adopted with an attendant loss of performance.
Under certain conditions, such as multipath fading, the received signal pos-
sesses no deterministic behavior and is a stochastic process. The two cases
of phase-incoherent and stochastic signal statistics will be the subjects of fu-
ture work.
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Appendix A

OPTIMUM PROCESSOR FOR ARBITRARY SCALING

.Suppose n+1 observations x1 , ... ,xa,x1 1+1 are made of a process of
unknown noise power level. Let the PDFs of the observations be p and q un-
der hypotheses H1 and Ho, respectivwly; the observations need not be statis-
tically independent. We want a processor that yields a specified PF without
'knowledge of the noise power level and that realizes maximum PD. Since the
desired processor is to realize a specified PF without knowledge of the noise
level, it must operate equally well on the scaled samples cxl,, ... , cxn,
cxn+l, where c is any positive constant, ,'since these could just as well have
been the sample values under Ho. In particular, we could choose c = Ixn+1- 1

for the scale factor and still expect the desired processor to perform equally
well.

The optimum processor, in the sense of yielding maximum PD, for the
scaled samples

~xk

Z zk = <k 5 n+1, (A-1)

Wi~ one that computes the LR of these samples and compares the LR with a
threshold. Noting that zn+1 = ±1, we have

LR(zl, . .l .(z "Znlzn+ = (A-)LRZ,. - ZnlZn+l = +)-4(Zl,...... n] Zn+1 = ±+i)" A2

Now, under H1 ,

Prob(z < ZI, z. ,Z< Zn Zn =+l)= Prob(xI< ixn 1 Z1... 3,Xn< Ixn+l1Z Zn= +1=±)

B(zn+l) xn+i1Z1  IXn+lIZn

dx m+l dx1 ... ) dx np(x1,.... .X nxn+1) (A-3)
A (z -0)

Preceding page blank
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where

(0--),z.+

" B ° Zn++ + (A-4)
n+1(n'1))0), z n = -1

Then

B(zn+1)

(z 1 ,..., IZ 1 n = +)= n= dxn+1 ,Xn+11  P(IXn+i1z,. IXn+1I znxn+l)

A(zn4-1)

nn
= dx xf P(xz 1,...,xz nj X) . (A-5)

0

A similar relation holds for q in terms of q. Then (A-2) becomes

IdX Xn p(xzl,..., xz ,+x)
n--6LR(Zl,...znlzn+1 = +il) = 00 (A-6)

I dx xn q(xzl, ... ,XZn,+x)

0

This is a general relation for the LR and indicates how the scaled samples
jZk} should be processed.

Let us apply the general relation (A-6) to the following example, which is
actually more general tI'an the one considered in the main body of the text. Let

n+1 22 -1/2 r (xk-mk) 2
"P(X'"X n'x n+I (2ra) exp (2 (A-7)
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The PDF q is given by the same formula with rmkj set equal to zero. The
mj.f I need not be equal, but they are assumed known for the moment; a 2 is

unknown. Define

n n n+1

S= zk, L,= mkzk, U=E ,

k=1 k=1 k=1

L + mn+1+ = .(A-8)

Then the ,numerator of (A-6)j is given by

2- (n+1)/2 n x SI xLmn+1+
(2iradx x exp 2

f 2o,
0

= [2r(S+1)] exp[- U2] Jdt t" exp [- -t2 +PJ (A-9)

0

The denominator of (A-6) follows from (A-9) by setting trekI equal to zero.
Then (A-6) becomes p0

dt t n exp t + P4

LR(z 1 ,I..z nzn~1 =±1) = exp [ 2] fo- -___ (A-10)
2c r Jdt tn exp t2

0

Without having to evaluate the integrals, (A-10) is seen to be monotonically in-
creasing with P+, as depicted in Fig. A-i. Therefore, comparison of the LR
with a thresholdis equivalent to comparison of fP+ with a threshold. From
(A-8), this is
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LR

Fig. A-1. Dependence of the Likelihood Ratio on •_±

L + mn+1

since a, although unknown, is positive. Using (A-8) and (A-]) we express

L+m xm k +4X n+ - n+l

- n+1 'k Ix n+l IXn+lI Ix E mkxk
k=1 nn+l k=i

and

n x2 1/2 n+i 1/2
(S + 1)1/2 = + 1 1) t x) (A-12)

k=l Xn+1 k=l

Therefore the LR test (A-11) becomes

n+1 n+1 1/2
Xk >< x• ( X) .(A - 3)

k=i k=1

This is the optimum invariant test if jmkj areknown; lmkI can be positive,
negative, or of mixed polarities. Threshold q1 is chosen for specified PF"
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The LR test in (A-13) can be expressed as

n+1 .+1 /2
mk 2)l> m(A-14)

k=1 k=1

which does not require knowledge of absolute signal level, but only relative
levels. This is a UMP test under scaling invariance for unknown signal level
provided the relative signal strengths _.imk/Immax]1j 'l which can be mixed
positive and negative, are known.

A special case of (A-14) is afforded by

mk=m>0 for 1:5k<M; otherwise, nik=0, (A-15)

where m is unknown. Then there follows

M n+1 1/2

k=1 k=1

There is no need to know m; this is a UMP test under scaling invariance and
is recognized as the test shown in Table 1, with the identification of n + 1 =
M+N.

It is worth noting that if only the n ratios

Iyk= , 1-sk~n, (A-17)
"xn+1

are available for making decisions, the LR is given by
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{dx p(xY x)SIxln

LR(yI. Y =(A-18)

'dx I x nq (:xY l,... ,XY n, X)

From the example in (A-7) there follows

•dt Itln exp [I t2] cosh(@+t)

f22

which is even and monotonically increasing in P+. Comparison of the LR with
a threshold is equivalent to comparison of Ifl+l with a threshold. By use of
(A-8) and (A-12) the comparison becomes

n+1 n+1

Z l~ (1: x2)1/2 (A-20)

k=l k=1

Lack of knowledge about the polarity of the samples requires taking a magnitude
of the linear sum. This test will perform more poorly than (A-13) because it is
operating with less knowledge.

The procedure in this appendix is useful if it results in a UIMP test with
respect to the parameters in the PDFs. Although this happens for the example
considered in this report, it is not generally the case, and realization of a
specified PF is not always attainable. Thus, it is often necessary to resort to
a different approach, such as the principle of ML, that eliminates unknown
parameters.
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Appendix B

MATRIX MANIPULATIONS: CHARACTERISTIC VALUES, CHARACTERISTIC
VECTORS, AND NORMALIZED MODAL MATRIX

Let A be an M x M Hermitian matrix of complex elements. Let*

where e. is an M x 1 column matrix, Xj is the A-th characteristic value of
A, and ep is the .A-th (right) characteristic vector of A. Equation (B-i) can
be written

M
Sa.jej = Xe~, 1-<.2, i<M. (B-2)

Let Q = [ei ... em]; this is the normalized modal matrix of A [Ref. 9, pp.
37-39andp. 47]. Also let

=L ". .M] (B-3)

Then (A-i) can be expressed as the following sequence of equations:

!,[Aez I. AeM] = [X].el . X MieM],

A[e I,. eM] = [ei ... eM X,

AQ =QX,
A = QXQ- 1 . (B-4)

*See, for example, Ref. 9, secs. 1.11 and 1.16.
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Now

[HQ 10= (B-5)

since the characteristic vectors are orthonormal [Ref. 9, p. 44]. Therefore
Q H = Q- and (B-4) can be expressed as

A = QX (7QHXQ). (B-6)

Alternatively, we can express

> = Q HAQ. (B-7)

The j,k-th term of QHQ is

M M

a Hk0 e* e 6.2 jk~ e e'*9 (B-8)

and the j, k-th term of QQH is

M M

~e.2e.k ~ eA~. (B-9)

From (B-4), the following sequence of equations holds:

H HQ XQH

H H - H H

40
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eS A-JeH, I 515M. (B-10)

If we define the (left) characteristic vectors and numbers of A as V and
respectively, then

vA = YmvI, 1-.s- M, (B-II)

where V• is an M x 1 column matrix. Comparison of (B-0) and (B-li) re-
veals that

thus the characteristic numbers are equal, whereas the characteristic vectors

are conjugates.
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Appendix C

REDUCTION OF HERMITIAN FORM

Two problems will be addressed in this appendix: converting a Hermitian
form to a sum of squares of uncorrelated RVs and determining the statistics of
the Hermitian form when the RVs are Gaussian.

Let X be an M x 1 column matrix of complex RVs, and let B be an
M x M Hermitian matrix. We do not assume that X is a collection of Gaussian
RVs, so that we allow complete generality in the first problem. The Hermitian
form of interest is

F(X) = XHBx . (C-1)

Since B is Hermitian, the form F is real. Let

E {x} m (0-2)

be the means of the RVs, and

CoV{XI = E (X-m)(X-m)'I= K=K1  (C-3)

be the covariance matrix of the RVs; m and K are arbitrary, except that K
must be an allowable covariance matrix (that is, nonnegative definite).

We define transformed RVs V by

V = ZK-1/ 2X , (0-4)

where Z is M x M and is yet to be chosen. From (0-2) and (0-3),

EIVY = ZK-1/2m,

CovlV} =E I ZK-1/2(X-m)(X-m)H K-1/2zH} = zzH. (0-5)

Preceding page blank
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This last matrix is desired to be diagonal, for then the RVs V will be uncor-
related. At the same time, the quantity

V HYV = X HK -1/2ZH yZK-1/2X (C-6)

will be set equal to F(X) by choice of Y, which is also M x M. In order to
accomplish this, we must have

K 1/2ZH YZK1/2= B, (C-7)

or

H _1/2 1/2 _ H
Z YZ =K BK A= A. (C-8)

But A is a known matrix, since K and S arc kmnmo ; solve for A's nor-
malized modal matrix Q and characteristic value matrix X.. Then, from
(B-6),

A = QQH. (C-9)

If we choose

Z =OQi, y= X, (C-10)

(0-8) is certainly satisified. Also, (C-5) becomes, by the use of (B-5),

CovIVl = QHQ =I, (-11)

which is diagonal as desired. At the same time, (C-6) yields

M

F(X). V11YV V4 X XjIvgf. (C-12)

.14=
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Thus F is a sum of (magnitude) squares of uncorrelated RVs V. The only
remaining statistics are the means

Q= K m Sp (C-13)

obtained by using (C-5) and (C-10).

To summarize, A is evaluated from K. and B according to (C-8);
Q and X are computed (see Appendix B); then F is given by (C-12),
where RVs V have the covariance matrix I and means 1. (C-13).

Now we specialize the above results to the case in which RVs X are
Gaussian and real, and B is a real symmetric matrix. Since V is a linear
transformation of X (see (C-4)), RVs V are Gaussian; they are also real
because A is real. From (C-11) and (C-13), the PDF of V is

M

.I=I

The characteristic function (CF) of form F then follows, from (C-12), as

M

l~) Eexp 0iýF M) I E Iexp (i ~ XVA)

M

.. 0=1

fd, xp (i 2 .) (2 7r) -12exp, H A 1_.

M 2

T (1-i2 X.01/2  t i2. / (C -15)

where X are the characteristic numbers of A given by (C-8), p. is given by
(C-13), and Q is the normalized modal matrix of A. This is the desired
result.
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The PDF of RV F can be obtained via a Fast Fourier Transform of the
CF f, and the cumulative distribution of RV F can be found by means of the
techniques describe-d n Refs. 10 and 11.

As a special case of (C-15), consider

XI• X , 1 :5 .1 : M (X>O) . (C-16)

The CF of the PDF

1 pJ2 xx
F- exp 2 2 2 x > 0 (X > 0) (0-17)

is [Ref. 12, jEq. (3.433)]

e(pi -_iiX))vl-. (o-18)

Therefore the PDF of F follows, from (0-15), as

2

exp F_ 2X/ F // 2 I/ 2 -) F > 0, (C-19)

T

where

M

P 2 P 2 (0-20)

6=1

-• 46



TR 4243

Appendix D

DERIVATION OF DETECTION PROBABILITY

Define the RVs

M M N

2 i (D-1)
LxxE S=xFa,=Eyj

i=1 i=1 j=1

The GLR test (10) can, then be expressed as:

choose H1 if L 2 -x r 2 M(S'-S)3 >0 and L > 0; choose Ho otherwise.
(D-2)

Now define

q = L2 - r2M(SxS). (D-3)x xy

Then the probability of detection is

P D= Prob (q> 0, L > 0 1  (D-4)

In order to evaluate PD, the joint PDF of q and Lx is required.
Using (D-1) in (D-3) yields

TN

q= X BX - D5

j=1

where

1-r 2M,k
T

X =[Xl...xM], Bk.9 (D-6)
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To reduce the quadratic form in (D-5) to a sum of squares of uncorrelated RVs,
we relyQ4 thr results and notation of Appendixes Bland C to accomplish this task
without dplication of effort. From (2) and (3),

EJXInHk=mk1, k = 0 or 1, (D-7)

where

0, k 0 T
k{m ,k} 1 =[i...i1. (D-8)

m, k 1

The index k, which equals 0 or 1, indicates the two hypotheses Ho and HI, re-

spectively. The covariance of X under hypothesis Hk is, from (2) and (3),

Kk = Cov X IX Hk} I =2 -=K , k=Oorl. (D-9)

Thus, the covariance matrix is the same for both hypotheses. It then follows
from (D-9) that the matrix of (C-8) is given by

1l/2 /2 2/
1 1/KK = B-A, k=0,or 1. (D-10)
k k

The characteristic numbers of A are [Ref. 13, Eqs. (58) and (60)]

X= a2 (1-r 2)M, X ... = XM = ,2r 2M. (D-11)

AILIo, from (C-13), (D-7), (D-8), and (D-9), under hypothesis H k)

k=- QI(D-12)

Letting AkM be the .Q-th component of Pk,

- k T (D-13)
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In order to evaluate these quantities, we refer to (B-i) an d'(D-11) to obtain

S= 2(l-r 2)Me 1,

Ae= -a 2 r2 MeA, 2 m (D-14)

* The solution for 01 is

0, = M-1/21 (D-15)

from substitution in the top equation of (D-14); and using (D-10) and (D-6):

Ae 1  = -M1/2B1 = M'o1/2(ar2 B1 = m22 (1-r )M = e2 (1--r 2 )M e1  0V

(D-16)

Therefore, from (D-13)and (D-8),

1 _ mk

'kl '3 = 4M-:=4 JM dTk (D-17)

where we have defined

d= Ng-m
T or (D-18)

This quantity can be interpketed as a (voltage) SNR of the RV on the left side of
the GLR test (see discussicx pf (16)).

In order to evaluate pk. for .2 _ 2, we premultiply the second equation
of (D-14) by IT:

T 2 2 T1 Av =- r2M I0.2, 2 -5 1 5M. (D-19)

But

T T 2 2 TI A = (A) =1 (1-r )M I (D-20)
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from (D-16), so (D-19) becomes

2 (1-r2)vI T -2r2MITO, 2 22 Is M,

1 = 0, .2 _ AM. (D-21)

Combining (D-13), (D-17), and (D-21),

kA= k=Oorl. (D-22)
0, 2<.5 1SMI

Therefore (C-13) becomes

EIVl dT 6 kl, Eiv,1=0, 2-5.0-5M. (D-23)

The RV q in (D-5) is now expressible as

M M N
q= 2- 2M 2 (1-r2)MV •- a r 2 M v-2 r 2M

-=2 j=-

r9  N
=o M 7(-r~ -r 2 ( V, +~ /2)] (D-24)

.0=2 j=1

from (0-12), (D-11), and (D-1). But since

V = Kl/2 X Q rxV=ZK-/ = (D-25)

from (C-4), (C-10), and (D-9), it follows from (D-15) that

M
1T 1 -1/2 1TX(2Vl =-Oe X = -M 1TX =.,,•- ••xi•(-6

5O1 01 N. 0D-E6
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Defining zj - yj/a, (D-4) becomes, by using (D-1), (D-24), and (D-26),

v 2r , 2 2\/ 1

P rb + Z. (D-27)
=2 j=l

But all the RVs V and Y are independent and Gaussian. Therefore, using
(C-11), (D-23), and (3) gives

Pl(Vl) = (2r)-1/2 exp(-(vl-dT)2/2)

pi(VA) (27r)-/2 exp(-vg/2), 2 -. :SM,

-1/2 2p z (7) exp (-zj/2), 1:_ j :5 N . (D-28)

It follows that the PDF of

v + z(D-29)

.2=2 j=l

is [Ref. 14, Eq. (26.4)]

K exp(-w2/2)

p(w) = %v w) >0, (D-30)
2(K-1)/2 +1 w

where

K M + N - 2. (D-31)

51



TR 4243

Then (D-27) becomes

r
P =Prob (v>-w Hj)

- D

- dwP(w) dv. 1 p1 (v1)

0 r

00 2-f"wK exp (-w2/2) "'r )
= dw.K % 4. 4P(dT~~v

0

fdT~rK), (D-32)

where
X X

-1/2 2
(X) dt (27r) exp(-t /2) dt 0(t) (D-33)

The false-alarm probability follows by setting dT G (m=0) in (D-32).

The above derivation has tacitly assumed M->2. However, it may readily
be shown by a separate derivation that (D-32) is also correct for M=1, N=1.
Therefore (D-32) holds for K - 0, as mentioned in the footnote to (14) in the
main text.
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Appendix E

REDUCTION OF EQUATION (D-32)

Interest here lies in evaluating (D-32):

P =-(d rK) d. wEK exp(-w 2/2),4( r K>0 (E1
PD=~TrK V w2(K-1)/2•_1 @(d -Kl T • -w ,K>0 E

0

First, for K= 0,

2/2
f(d ,r,0h= jdW( exp(- w 2/2) 4 (dT - rw

0

S2L(0,-S-r2 dT, -r) (E-2)

[Ref. 14, Eq. (26.3.3)1. Since this last function, L, is fundamental [Ref. 14,

Eq. (26.3.20)], (E-2) can not be reduced, and must be numerically evaluated.

This problem is discussed in Appendix F.

For K 1, integrate by parts, letting

a = (d T -- r w), dv = dw w exp(-w2/2),

to obtain

2 2
f(dT,r, 1) =t, dT) - r exp(-(l-r2) %/2) 4(rdT). (E-4)
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For K a 2, integrate by parts, letting

SK-I d r -2(E5

u=w 4(d -- r-w), dv =dw w exp(-w /2), (E-5)

to obtaiin

f(dTVr,K) =f(dT,r,K- 2 ) - g(dTVr,K-i), K -2, (E-6)

where

00

g(dT,r,K) [2K/2lr( +1 1 J dw w exp(-w 2/2) O(d - r w),, K -0-

0 (E-7)

and 0 is defined in,.(D-33). Using (E-4), (E-6) can be expressed as

K-1

c1(dT)- g(dT, r,n), K= 1,3,5,...
S~n=0

f(dT, r, K) n even (E-8)

K-I
f(dT,r,O)- 2 g(dT,r,n), K=2,4,6,...

n odd

where we have noted that the last term in (E-4) is g(dT,r,0); that is, by direct
integration of (E-7) for K = 0,

2 2g(dT, r, 0) = r exp(-(l-r2)dý/2) -:(rdT) . (E-9)

Now we have the problem of evaluating the g-functions in (E-7). Again,
integrate by parts for K 2t 1, letting
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K-i *r e(w2/2
u= w @(dT --- w), dv = dw w exp(-, /2). (E-10)

Then

H O]= I- exp(-w 2 /2) wK-I •(dT - W)- 0 ) (dT) 'k1' (E-1)

and there follows

g(dT,r,K)- r [ exp(-4/2)k Ki,)]

g~cyrK) = %Aý~ T k 1 + r7 ~-~ T

+K (1-r 2 ) g(dr,,K-2), (E-12)

where the last term is absent if K = 1. Therefore
2 /2 + 2 o)],~

g(dTr, 1 )= rJii-r2 [" exp(-d/2)+ dT g(dr, (E-13)

and

dT r(-•)

g(dTr'K) = rl %r2 ' + i)' g(d TrK-1)

K-I 2

+-K (1-r 2) g(d ,r,K-2), K -:2. (E-14)
K T

Thus, g(dT,r, 0) is evaluated from (E-9), g(dT,r,l) from (E-13), and, for
K - 2, g(dT,r,K) from (E-14). Then PD = f(dT,r,K) is evaluated from (E-2)
and (E-8). For K odd, nothing worse than a c,-function need be evaluated.*

*See, for example, Ref. 14, Eq. (26.2.17).
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Also, the recurrence, (E-14), contains only positive terms and thereby retains
accuracy for large K.

The false alarm probability is obtained by setting dT = 0 in the above
results. From (E-1),

P = f(0,r,K). (E-15)

Now, for K= 0, using (E-2) and Ref. 14, Eq. (26.3.19), gives

1 1
f(0, r, 0) = 2L(0, 0, -r) = arc sin(r). (E-16)

The expressions for g(0,r,K) take on very simple forms, as may be seen

from (E-9), (E-13), and (E-14). Then

1 K 1)/2 (, 1-r 2iAI X• 2.2)!1-r1 r K= 1,3,5,...
a=o (!)2

f(0, r, K) 
_/2

arc sin(r) - r l[4(1-r K=2,4,6,...

.1=0

(E -17)

Equations (E-16) and (E-17) constitute closed-form solutions for the false-
alarm probability (E-15). For each value of K, r can be selected to realize
a prescribed PF. Then PD can be evaluated versus dT from (E-2) and
(E-5).
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Appendix F

EVALUATION OF EQUATION (E-2)

We have, from (E-2),

2 -1/2 1 2f(%r~)- dw(;) exp(-w '/2)rv
f (dT,r,r0) 1/2 ex -2) dv(27r)- exp(-ri-dT) ) .(F-1)

0 rw

Let w = p coso, v = p sino.. Then, expanding exp(dT p sino) in a power series

to eliminate cross-product terms,
S7r/2

1 2 2
f(dT,r,0) exp(- T/2) jdpp dO exp(--P +dTpsin0)

0 arcsin(r)

n-- . / dp p exp(-p2/2 do sin 0

n- _ arcsin(r)

00

OAn(dT) B (r). (F-2)
n 0

n dv=dpexp (-p2 2)

In the p integration, integrate by parts using u p , dv = dpp/2); do

likewise in the 0 integration, using u = sinn-10, dv = do sino. The two follow-

ing resulting recurrence relations enable rapid determination of the series

(F-2):
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n2TA

Ao(dT) = 1exp(-d2/2)) AI~T dT(fr1/ Ao(dT))

d2

and

Bo(r) - arcsin(r), B (r) = (1-r 2

n1 21'/2
r (_-r) + n-1 (r)

Bn(r)= n-2 nn2. (F-4)
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