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SUMMARY

CURSHL is a high-precision.finite element,
for the -linear static stress analysis of thin elastic
shells of quite general shape. The element is-a fully-
conforming displacement element of curvilinear tri-
angular form. The theoretical basis of the element is
presented in fairly complete detail, and some aspects
of the organization of the computer program are
discussed. The performance of CURSHL is examined
with regard to accuracy of numerical integration,
computation time, and representation of rigid-body
modes.
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1.0 Introduction

CURSHL is the acronym both of a high-precision finite

element for the static analysis of thin shells and of the

associated computer program. The element is a fully conforming

displacement element of curvilinear triangular shape which

utilizes the same inteirpolation functions and generalized

displacements as previous high-precision elements for plate

bending, plane stress, shallow shells and cylindrical shells.

Continuous Kirchoff constraints are used. The computer program

generates the stiffness matrix and consistent load vector for a

single element. Variable thickness and elastic modulus, as well

as therhial loadb, can be accommodated by the program but at

present the program is limited to linear elastic isotropic material.

The program provides the option of generating a stiffness matrix

based on either Koiter-Sanders shell theory, Donnell-Vlasov shell

theory, or shallow shell theaoy. Except for a requirement of

smoothness the shape of the shell is virlually unrestricted.

A general description of CURSHL was first given at CANCAM
'71 [lO]*. An amplified description and an outline of the

considerations which guided the development of CURSHL were given

in Reference [1], which also included several examples of CURSHL's

performance. Because the emphasis in these references was on the

performance and accuracy of the element, many details of the

theoretical and computational aspects were omitted. The purpose

of the present report is to describe in fairly complete detail

the underlying theory and to oatline the organization of the

computer program. In the pages which follow the relevant items

from shell theory are presented, formulas for the interpolation of

displacement within an element are derived, and the method of

calculation of the stiffness matrix is described. In addition,

certain computational details of the program are discussed.

Finally, the element is tested in a small number of example problems

Numbers in square brackets denote references at the end of the

text.
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in order to iilust~'te its accuracy.

2.0 Rdsum6 3f Formulas from Shell Theory

The required formulas from shell theory are assembled

here for ease of reference. General tensor notation is used in

order to avoid unnecessary restrictions on the shape of t,.e shell

or on coordinate systems. Of the multitude of existing first-

order shell theories, the theory of Koiter-Sanders can claim,

with reasonable justification, to be the best [4]. It is

therefore used as the main theoretical basis of the element. It

happens that the equations of the simplified theories of Donnell-

Vlasov and of shallow shells are obtainable from the Koiter-Sanders

equations by a few simple modifications. Since the latter "•neories

are widely used, they are made optionally available in the computer

program.

The treatise of Green aoJ Zerna [2] is the source of the

formulas for the geometric parameters, including the approximate

formulas which may be used when the shell is shallow. The

equatio:,s of Koiter-Sanders shell theory are taken from the papers

of Koiter [3], and of Budiansky and Sanders[k]. Tensor notation

following the conventions of Reference [2] is used throughout this

section.

2.1 Geometric Parameters

(i) General Shell

Let 01, 02 be curvilinear coordinates on the shell's

middle surface. Let the middle surface be defined by the position

vector r = 8,, 2 ) whose Cartesian components are x, :,, z. The

covariant metric tensor is

aX = r,' r,l = x,x ,P + Y)XYP + zXz,I (2.1)

while the contravariant metric tensor is given by

1a 12 = a22 a 2aI =a 2 2 /a, a =a = -a 1 2 /a, a = a11/a (2.2)



where a = a11 a2 2 - a.2a;2, (2-3)

The unit normal vector is
+

(r,= X ,.2)/1r,l X r,•2  (2.4)

and we note

ir., x r.21 = /a (2.5)

The covariant and mixed curvature tensors are

b = nr.r,, = nxxXII + ny yVX + n (A .6)

A p
b =a b

The contravariant base vectors are given by

a = a • (2.7)

and the Christoffel symbols are

P = arP (2.8)

= aXP(x,1 P V + Y'pY YPV + zpzpv)

The formulas for covariant differentiation of first and second

rank covariant tensors are

AXli = AXi - rP A (2.9)
XP' P

XAPl = A -rvA - rA (2.10)

Xp~v XV P1l i' 1VpX

In addi'Pion to the foregoing standard formulas, expressions

for the covariant derivatives of the mixed curvature tensor are

needed. To obtain these we first differentiate (2.6) to get

b XV n.r,XV + nV. (2.11)



---

The derivatives of the normal vector are given by the Gauss-

Weingarten formula

n~v= -bVr (2.12)

so

b XP3V= n - a P.,T rXPbVP

(2.13)

AP )AP VP

Hence, from (2.10) and (2.13),-

b = - rp b - P b - b (2.14)bPIV n'iPV pv Pv P11 V pX

It is interesting to note that +b~iiv is unaltered by any permutation

of the indices. Since the covariant derivatives of the metric

tensor vanish, the required formulas are

b T aXT blplb = Iv
(2.15)

a n r(.~,~j - rp1 b - rP b -F b p b

(ii) Shallow Shell

When the shell is shallow certain approximations are

permissible, as discussed in Section 11.3 of Reference [2]. The

metric tensor of the shell can be approximated by the metric

tensor of the base plane, and hence (2.1) is replaced by

a = xxx,.' + y,)y, '  (2.16)

The contravariant metric tensor is still given by (2.2) but now

there is the alternative formula for a,

a= (x,Iy, 2 - x, 2 y;l) 2 (2.17)
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Hence%, within the shallow shell approximation,

T , = r = (X, 1 Y, 2 - x, 2 y,l) (2.13)

where the correct sign of the expression for /a was

determined from the particular case 01 = x,6 2 = y.

The unit normal can still be calculated from (2.4),

and in view of (2.18-), the result agrees with the usual shallow

shell approximation for the normal. That Is, the z-component

of n is 1 while the other two components are equal to the

negative gradient of z. If, in turn, this result is used in

(2.6) to calcuilate the curvature tensor the expressions

obtained agree with the Usual shallow shell approximation,

= (2.19)

where the double stroke denotes covarlant differentiation in

the base plane.

The Christoffel symbols for the base plane are obtained

by replacing r in (2.8) by R, where ý is the component of +r

lying in the base plane, at the same time using (2.16) to

calculate the metric tensor. Thus

r = a = axP(x,X1 + y, y ) (2.20)_1 J 'p

In summary, for shallow shells formula (2.1) is

replaced by (2.16) and formula (2.8) by (2.20), but the formulas

for a , n, and bX1 remain valid.

2.2 Membrane and Bending Strains

The membrane strain tensor is related to th3

displacements by

XP+ u2) - b,•(uXX1 (2,21)

- U + +u )-r, u - b',(u 11.,, X• X1 P XP



and this relation applies to all three of Koiter-Sanders,

Donnell-Vla5ov, and shallow shell theories.

In Koiter-Sanders theory the rotations of the normal

ýX and the surface rotation X-"p are given by

= - w, - bU (2.22)

(U - uVX P - u11U ) (2.23)

and the bending strain tensor is

K + + 1(b P + b1w)
11 2 11 1 X 2X lip 11iXp

= - w,• +1, W,

(2. 24)

.(bPu + bPu ) + 2(bpu + bP u

"+ - bP + r~Pb.+ rbPb+)u

In Donnell.-Vlasov theory and in shallow shell theory the

rotations of the normal are approximated by

X= - w,X (2.25)

and the bending strain tensor is given by the relatively

simple formulas

K =+4 )+= -w

(2.26)

= - W,l + rP w

These strain-displacement relations may be summarized by the

matrix relation

je) = [B]{d} (2.27)



where (e) is a column vector of strains,

10T. = 1E1E2E2K12C212- (2.28)

and fill is a column vector of displacements ýftd their

derivatives,

{d]T = (u 1 ,u 1 , ,)1,z,'z.UzlUZzNW,1,W,22,I ,wlZW, 2 2 1 (2.29)

The matrix [B] is displayed in Table I,

2.3 Stress-Strain Relations and Strzin Energy

The stress resultants and. bending ronent-s are related

to the membrane and bending strains 1'.,v

n -P = CHXVP E (2.30)

m = DHAXPT .2.31)

where C is the stretching rigidity, D the flexural rigidity,

and

HPT {(l-v)(aa + a PaPT) + 2va "apT} (2.32)

For homogeneous shells of thickness t,

C = Et/(l-vZ), D = Et /12(l-v 2 ) (2.33)

For laminated or sandwich shells other expressions for C and D

may be appropriate and their use is not ruled out. However

(2.30), (2.31), and (2.32) apply only to isotropic shells in

which there is no coupling in the stress-strain relations

between bending and stretching.

The strain energy density is

dU/dA = A(nA'E C + mKAPK)

(2.34)

= '(CH X1 C PT + DHX KAPTKlK PT
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and this may be written in matrix shorthand as

dU/dA = R{e) [E]{e} (2.35)

The matrix CE] is displayed in Table II.

When thermal expansion is considered the s/ ,ess-strain

relations are modified to

n = CH-:PPTCpT (Ea/(I-v))TR aA (2.36)

ml' = DHXIPPTK - (Ea/(X-1))T1aAlJ (2.37)
PT M

where ' is the coefficient of thermal expansion and TR and

[TM are the resultant and the moment of the temperature T across

the thickness. That is

t,/2
T TR f 'V()dý (2-38)

-t/2

S~t/2

TM = t ýT(ý)dý '(2.39)
-t/2

where • is the coordinate in the thickness direction of the shell.

Formulas (2.36) and (2.37) apply to homogeneous shells and would

have to be modified for laminated and sandwich shells. The

thermal strains do not affect the expression for strain energy, but

instead influence the expression for the virtual work of the

external loads.

We suppose that the shell is acted upon by a distributed
Sload per unit area p The contravariant components of arepcn a p are p

in the tangent plane and pn normal to the shell. The virtual

work per unit area of the applied loads, including the contribution

of thermal effects, is

dV/dA = pX u + pnw + (Ea/(l-v))(TRa XPep + rMaxpe ) ( 2 . 4 0 )
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I or, in matrix notation

dV/aA = {IT {d' + {Q}T {e} ( 2 .41)

where

{p}T = {pfl,0,p2 0,0,n 0,0,0,0,0} (2.412)

(PT = p1,1,O22 1O1O12

{Q}T = (Ea/(.Lv)){TRa 1 .2T aR R TRa 2 ,TMa' ,2TMa a TMa221 (2.43)

2.4 Physical Components

The tensor components of stress or displacemnent are not
the same as the physical components of these quancities. It is,

of course, the physical components which ar.ý Ultimately sought,

although tensor components are used in setting up the stiffness

matrix.

The physical components of displacement u, v, w, resolved

along, bhe covariant base vectors, are related to the tensor
components by

Ti = (a'1"ui + a22Yý1

1= (a 1 2 u1 + a2 %u,)/ a22 (2,44)

w=w

The contravdriant tensor components of load are related

to the physical components P1, P2, Pn3 by

p 1  14/aV-11 p2 = P2//', P n (2.45)

The physical stress resultants N and the physical

bending moments M are related to their tensor counterparts

by
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Nil = n1 1 /(a 1 l/a 1 l), N12 = n 2 /a, N2 2 = n 2 2 V(a 2 2/a 22 ) (2.46)

All = mll/(aall/all), M1 2 =.-m 1 2 /a, 1 22 = m 2 2 /(a2 2 /. 2 2 ) (2.47)

Tie physical components of the rotation of the normal

),4)2, are related to the tensor components by the f6rmulas'

d=',A4)+ a12 ra) Ii

(2.48)

T2 (a 2 1ci+ a 2 24W2 ) /a2

which are the same as the corresponding formrlas for the

displacements. According to Glockner [12] the physical component

of the surface rotation • Js given by

Q= e W a/2

(2.49)
(Uz2,1 - ul, 2 )/vr(.0

where E: is the alternating tensor.

We note in passing that the rotation vector Q is given by

S =ea rB + Qn (2.50)

The conventions for the positive directions of the

physical components of displacement, rotation, stress resultants,

and bending moments are illustrated in Figures 2 and 3. In the

figures, the surface coordinates have been denoted as a, 6,

rather than el, 02. The positive direction of the normal is such

that the normal vector forms a right-handed triad with the

tangent vectors along the a-curves and the s-curves. Figures

2 and 3 are intended to show non-orthogonal ccordinates. The

directions of the stress resultants are parallel to the

coordinate curves. The vectors which represent che bending

moments are orthogonal to the coordinate curves, and, consistent

with this, the components of bending stress are parallel to the

coordinate curves.
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3.0 latErpolation Functions for Displacements

At this ,point we drop the tensor notation of the preceding

section and introduce a,3 to denote the general curvilinear

coordinates on the. shell surface, and u, v, w to denote the

covariant tens6r components of displacement. The coordinates

a,$ need, not be principal nor orthogonal.

The curvilinear triangular element on the shell surface

can. be imagined mapped on to the a-$ plane. The edges of' the

element are defined by specifying that they are straight lines

in the a-$ plane.

The displacements in CURSHL are interpolated by the same

functions which have been used in previous high-precision

elements [5,6,7,8]. The in-plane displacements u,v are taken

as complete cubic polynomials in a.ý, while w is taken as a

restricted quintic polynomial in a,O. In keeping with this choice

of di'splacement functions the generalized displacements are the

values of u, au/a', au/a3, v, 3-,r/Da, 3v/30, w, 3w/ce, 3wlý,

a2 w/3a2 a2 w/qaa, 3 2 w/@ý 2 at the three vertices of the element,

for a total of 36 degrees of freedom. Centroidal displacements

u.c,vc, are used temporarily as degrees of freedom during the

development of the stiffness matrix but are later eliminated by

static condensation.

The choice of interpolation functions and generalized

displacements assures that the element is fully conforming

provided the shell surface satisfies certain smoothness conditions.

For Koiter-Sanders theory these conditions are that the shell must

be smooth and have continuous curvatures. For Donnell-Vlasov

theory and for shallow shell theory it is sufficient that the shell.

is smooth. These conditions are discussed in more detail in

References [1] and [71.

The order of the discretization error of a conforming

finite element depends on the choice of interpolation functions,

and can be predicted by the Taylor's series test introduced by
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McLay [11. The application of the test to the present, element

is essentially the same as in tests of previous high-precision

elements for flat plates [5] and shallow shells [7]. The result

is that the discretization error-is of order h6 where h is a

typical linear dimension of an element. The Taylor"'s series test

also shows that the interpolation functions for w on the one hand

and for u,v on the other are matched, in the sense that they

provide equal orders of accuracy in the strains.

Further discussion of the choice of interpolation

functions is contained in Reference [1].

3.1 Local Coordinates

Let the vertices of the element be numbered 1,2,3 in

counterclockwise order when viewed from the positive side of the

element. Let the shell coordinates of the vertices be

(ali,1), (a 2 ,0 2 ), (a 3 ,-g 3 ), respectively as shown in Figure 1.

In order to develop formulas relating the displacements

within an element to the generalized displacements it is helpful

to introduce a system of local oblique coordinates •,r. The

ý-axis is taken to coincide with the 1-2 edge of the element and

the n-axis with the 1-3 edge, as shown in Figure 1. Further, the

local coordinates are scaled so that g runs from 0 to 1 along

edge 1-2 while ri runs from 0 to 1 along edge 1-3. The relation

between a,3 and •,n is easily established as

a i+ (a-1~+ (a3-al)fl

(3.1)

= 8 + (82-81)• + (R3-01)fl

Derivatives with respect to local and global coordinates

are related by
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Vn= f12 3/aa + f2za/30

3232= f23/O+ 2f'11£2 j32 /3ca3 + f 2 12a
2 /302  (3.,2)

a/En= filfiaaa/3acz + (f11f22 + f21f1 2 )a2/aa3O +~ f~£2 a2

32/ = 12 22/act2 + 2f12 f2 2 32/act;3 + f2223/302

3/a= dj33 + d2 1 3/ý3n

= dj~z3/3E + d223J/3n

32;2= d 2/a + 2diidajD2/a~an + d2 l2 aO2/an? (3.3)

= dild 1 2a
2/aE2 + (d11d22 + dzidjj)3ý/aý3n +d2d2 2/n

2/2=d 1 2 2
2 /aE2 + 2d,2d22 3 2/ýETh + d2 2a% 2 /an2

where

f'ii - alf12 a3 - a

f~l 02 ý1f22 ý3 - 1

di 03 - ýi)/f d12 =-(at 3 - ca1)/f (3.14)

Vd 2 1  (0 - ý1 - V)/ d22 =(Ac 2 -Ctl/f

f = (a2 - al)(03 - ý1 - (a3 - al)(02 - 1

[ The Jacobian of the transformation is equal to f,
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3.2 Tangential Displacements

The tangential displacement u is taken as a complete

cubic polynomial in the shell coordinates a,O, or equivalently

as a complete cubic polynomial in the lodal coordinates, thus

u = a, + a2E + a3n + a4 2 + asgn + a6nz + a7g
3

(3.6)
+ a8 g2n + ag n 2 + a1on3

The corresponding generalized displacements are the values of

u and its first derivatives with respect to a,O at the three

vertices of the element. In order to match the number of

generalized displacements the number of coefficients in

(3.6) the displacement u c at the centroid is introduced as an

additional generalized displacement. Later uc will be eliminated

by static condensation.

Denote the values of u, Du/Dg etc. at vertex number 1 by
ui, uV, etc. Since the lQcal coordinates of vertices 1,2,3, and

of the centroid are (0.0), (1,0), (0,1), (1/3,1/3), respectively,

the following relations are obtained from (3.6)

ul = a,

Ugl = a 2

U = a 3

u= ai + a 2 + a4 + a 7

U ý2 a2 + 2a 4 + 3a7

unT = a3 + a5 + a8

U3= al + a 3 + a6 + alo

U 3 a 2 + as + a9

u = a3 + 2a6 + 3ajo

u = a, + (a 2 +a 3 )/3 + (a4+as+a6)/9 + (a7+aa+a0+ao)/27

VC
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These relations may be explicitly inverted to give

{Au) = [Tu]{Wtl' (3.8)
where {Au}, {Wu1 are the column vector.

{Au}T = {al,,a2,a 3, ... a(o9

S uuu3,,u u} (3.10)

u T1T

and' the matrix [Tu] is displayed in Table III.

Let {Wu} be the column vector Of generalized displacements

{Wu}T = {u,,u1a8u1,u'2,u2,u2 02,u3 ,u:ý,u38,uc} (3.10a)

where ula, etc. denotes the value of 'u/•a at vertex number 1,
etc. The relation between {Wul and {W1} is evident from equations

(3.2) and may be written in matrix form as

{W1} = [Ru]{Wul (3.11)

where [Ru] is given in Table III. Hence the polynomial

coefficients of (3.6) are related to the generalized displacements
by

{Au} = [Tu][Ru](Wu} (3.12)

Given the generalized displacements, the polynomial coefficients

can be ca-Ijulated from (3.12) and, in turn, the values of u and
its derivatives can be found from (3.6). A similar relation

applies to the displacement v.

An advantage of using local coordinates is that [Tu] can

be found explicitly and is simple in form.



3.3 Normal Di-splacement

The normal displacement w is taken as a quintic

polynomial,

w =b, 4- b 2 ý + b 3 n I b 4
2 + ... + bzo~nj + b 2 1 n 5  (3.13)

As in previous high-precision elements, constraints are imposed

on (3.13) to restrict the derivative of w in the direction

perpendicular to any edge to a cubic variation along the edge.

The no tatioh w1 ,w•,, etc. is used to denote the values

of w, 3w/ag., etc. at vertex 1, and so on. The following relations

involving twelve of the polynomial coefficients are obtained

directly from (3.13)

w b2

w ~b2
W b b3nll

W = 2b4

wnn = 2b6 (3.14)

w2 = b, + b 2 + b4 + b7 + bil + b 1 6

w = b2 + 2b4 + 3b 7 + 4b1 1 + 5b1 6

w g2= 2b4 + 6b7 + 12bii + 20b16

w3  bj + b 3 + b6 + blo + b15 + b21

w Ti3: b3 + 2b6 + 3blo + 4bjs + 5b21

w p13 =2b6 + 6b 1 o + 12bis + 20b 2 l
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These relations can be explicitly inverted to give

bi = w,

b2 = W

b3 = W

b 4 W /2

bs = w•1i

b6 = Whn 1
2  '(3.15)

b 7  :-low, - 6w~l - (3/2)w• 1 + lOw2  4w 2 + w•2/2

bl 0 = -low, - 6w - (3/2)w + 1Ow 3 - 4wn3 + w /2

bil = !5wi + 8w + (3/2)w - 15w. + 7wý2 -

b1 s = 15w, + 8w.1 + (3/2)w nnl 15W3 + 7wn3 - 3

b16 = -6w - 3 - w /2 + 6wv - 3w 2 + /2

b2l = - 6w, - 3w., - Wrlr /2 + 6w3 - 3wrI3 + w nr /2

To obtain formulas for the other coefficients, the

constraints on the derivatives of w must be considered. Since

terms of quartic and lower degree give first derivatives which

vary at most cubically, the constraints affect only the six

quintic terms in (3.13).

With reference to Figure 1, the derivative in the

direction perpendicular to the edge 1-2 in the a-$ plane is

given by

Dw/3n = sin 0 3w/Da - cos 0 aw/U (3.16)
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where

sin 0 = (02-01)/V'33, COS 0 =(a2--CI."r-33

(3.17)

S 3 3 = (CQ-al) + (02-01)2

Transforming (3.16) to derivatives with respect to ý,n ,gives,

after some manipulation

aw/an = {S32Dw/3-s3w/3q}/(f/33) (3.18)

where

S32 = (a2-al)(a 3-Ul) + (02-31)(33-01) (3.19)

On edge 1-2, on which q=0, the contribution to the term in

parentheses in (3.18) from the quintic terms in (3.13) is simply

(5s3 b16-s3 3bl 1)g4 (3.20)

and hence the condition for cubic variation of the derivative

perpendicular to the edge 1-2 is

b17 = (5s 3 2 /s 3 3 )b 1 6 (3.21)

The above equation determines b 17 since b1 6 is already known

from (3.15).

Similarly, the constraint along the edge 1-3 leads to

the result

b 2 o = (5s 3 2 /s2 2 )b2 1  (3.22)

where

S 2 2 = (a3-al) 2 + (03-0 1)2 (3.23)

The constraint along the edge 2-3 leads to the equation

s 2 1 (5b 1 6 -4b17+3b 18 -2b 1 9+b2o) = S3)(b 1 7 -2U 1 a+3blg-4b 2 o+5b 2 1 ) (3.24)



I where

S21 = (c3-ct)(c3-a2) + (3-01)(3-a2)
(3.25)

S31 = (a2-al)(a 3-q2 ) + (2-01)(03-ý2)

[The following four relations are obtained directly from

(3.13)

= b3 + bs + be + b12 + b1 7

w = b5 + 2ba + 3b12- + 4b17 (3.26),

w = b2 + bs + b9 + b14 + bz0

w~q 3 = bs + 2b9 + 3bi,• + 4b 2 O

and these can be solved to give be, b12 , bg, b14 in terms of

quantities already known,

be = - 3wql - 2w,,I + 3wn2 - w q2 + b17

b1 2 = 2w + w 1 - 2w 2 + w g - 2b 1 7  (3.•27)

be = - 3w,1 - 2 w lI + 3w. 3 - w,3 + b2 0

b 1 4 = 2w +w -2w +w -2baC

To determine the remaining coefficients b 1 3 , ble, b9,g

there are the relations obtained from (3.13)

w9 3 - 2(b 4 +be+bl 3 +b1 3) (3.28)

Wnn2 = 2(b 6+bs+bl 3+ble)

and the constraint equation (3.24). Solution of these equations,

making use of (3.21) and (3.22) gives the results
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b13 -- (2s21+3s31)w 3 /2s51 + (3s2i+ 2 s31)w TM2 / 2 s11

+ (2s 2 i±3s 31)(b 4 +b6)/sli + (3s2l+2s 3 1 )(bs+bg)/s 1 1

- (Ai/sl)bl 6 - (A 2 /sl,)bl 7  (3.29)

ble = w 12/2 - b 6 - b 9 - b 1 3

big = w, 3/2 - b4 - be -bi

where

S11 = (a 3 -a2)' + (03-02)-2

S21 = (a 3-al)(a 3 -a2) + (3-01)(03-02)

S31 = (a2-al)(a3-a2) + -(02-0 1)(03-02 ) (3.30)

Al = - 5s21 + 5(4s 2 1+s31)s3 2 /s 3 3

Az = - 5(s2,+4s31)s 3 2 /s2 2 + 5S31

In obtaining the above results, the fact si = s2 1-s3 1 was used.

The connection between the polynomial coefficients bi

and the nodal values of w and its derivatives can be expressed

in matrix form

{Aw} = ]T ]{W'} (3.31)

w w' w

where

{AwIT = {bl,,ba,...,bzi} (3.32)

{W1} T = {wl,wýlW.l,W&l,W.l.,Wl,1W2,. W3,... 1 (3.33)

In the computer program the matrix T w] is set up in the following

way. First, the terms in twelve of the rows of [T w are implied

by the relations (3.15) and these terms are inserted into the

matrix. In view of the relations b17 = (5s 3 2 /s 3 3 )b1 6 and

b20 = (5s 3 2 /s2 2 )b 2 l the rows 17 and 21 of [Tw I are respectively

equal to row 16 multipliEd by (5s32/sý9) and to row 21
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multiplied by (5s 3 2 /Sz2). The coef£-cient b is Wven by the

first of formulas (3.27), that is by

bs= N3M - 2w +n I 3WO - W~q

Hence to *et up row 8 of [TwI, numbers are first inserted into
this row corresponding to the relation

b=- 3w -2W + 3w w
ri gill P12 g

and then row 17 is added to row 8. The re-mining rows 9,12,13,
14,18,19, are set up in a similar way using relations (3.27)

and (3.29).

Let {Ww} be the column vector of generalized displacementz

T{w}T = {t,,wiaiwi 0 ,W1 aa,W1 aalwlnW2,t.. .,w.. (3.34)

where w, Q etc. denotes the value of aw/3a at vertex number 1.
The relation between {Ww} and {W1!;} is evident from equations
(3.2) and may be written in matrix form as

{W,1!} = [R.]{Ww} (3.35)

where [Rw] is displayed in Table !V. Hence the polynomial
coefficients of t i.13) are related to the generalized displacements

by

{Aw.lI = [Tw][R.,]["w} (3.36)

Although [Tw] has not been written down explicitly, its
calculation is simple and requires no matrix inversion.
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4.0 Stiffness Matrix

4.1. Outline of Calculation

The expression for strain energy density in a shell was

presented in section 2.3. The strain energy of the finite

element therefore is

Ue = Is{elT [E]{e}ra dad8 (4.1)

where ra dad$ is the differential of area on the shell surface.

The terms of the stiffness matrix [K]. can be obtained from (4.1)

by noting that the i-jth term of [K] is given by

kj • 2 ue/XiX (4.2)

where -Xi denotes the i-th generalized displacement. With the

notation

le} = De}/3X 1 (4.3)

differentiation of (4.1) gives, in view of the symmetry of [E],

kij = ff{ei}T [E]{e} 1V dad8 (4.4)

Since the strains depend linearly on the displacements u,v,w,

which in turn are linearly proportional to the generalized

displacements Xi, the quantity {ei) may be interpreted as the

strains which occur when the i-th generalized displacement

has unit value and all other generalized displacements are zero.

The evaluation of {ej} will be discussed later.

When the integration is transformed to local coordinates

formula (4.4) becom6s

kij = ff{ei1T[E]{ej}fra dad$ (4.5)
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where f is the Jacobian of the transformation. The strains which

appear in the integrand of (4.5) depend in a complex way on the

shell's curvature, its metric tensor, and the Christoffel symbols,.

The latter quantities can be complicated functions of the shell

coordinates. Rather.than attempt to approximate them by

polynomials, thus making closed-form evaluation of (I4.5) possible,

it seems more. convenient to evaluate (4.5) by numerical inte~gration.

The use of numerical integration introduces a certain error.

In order not to degrade the accuracy of the high-precision element,

the error in the numerical integration formula should not be

worse than h6, which is the order of the discretization error.

-. In fact, a formula with an error of order h 8 is used, in an

attempt to make the error of numerical integration negligible.

Details of the formula, which is a 13-point quadrature formula of

[ Gaussian type, are given in Table V and Reference [9]. The

formula is fully symmetric with respect to the three vertices.

Application of the formula is facilitated by the fact that the

local coordinates ý,n arc two of the three area coordinates of

points within the triangle while the third area coordinate is

When numerical integration is applied to (4.5) the

formula becomes

ki = cn ({ei}T [E{e}f)4.6)

where the subscript n on the bracketted quantity indicates

that the quantity is to be evaluated at the n-th pivotal point

of the numerical integration. It is this formula which is the

basis of the calculation of the stiffness matrix. The sequence

of calculation is as follows. At the first pivotal point of the

numerical integration the geometric parameters of the shell are

computed and the column vector (ei} is evaluated for each i and

stored. Then the expression 1{e }T[E](ej }f/ is computed for all

i and J, is multiplied by the weighting factor cn of the numerical
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Tn;r-t-gration, and the results are stored in the array which the

completed stiffness matrix will eventually occupy. The procedure

is then repeated at the s. cond pivotal point of the numerical

integration and the results are added term-by-term to the

quantities which already occupy the stiffness matrix array. The

procedure is theni repeated at the third pivotal ,point ;nd continues

until all pivotal points nave been covered. In this way the uncon-

densed stiffness matrix is built up. The final step is to

statically condense the stiffness matrix so as to eliminate the

centroidal displacements.

The foregoing sequence of calculations seems to be as

economical as any, bdth in regard to storage space and number of

operations.

4.2 Evaluation of{e1}

It was shown in section 2.2 that {e} is related to the

vector of displacements and their derivatives [d} by

(e) = [B]{d} (4.7)

where, in the notation of the present section

IdIT = {uu VuS Vvv w'w w (4.8)

the subscripts denoting derivatives with respect to a and 3.

We define the corresponding vector {d' } involving derivatives

with respect to • and n•,

{d'}T ={uuuVnv•,Vwjww ,w9,w~n-wn} (4.9)

From equations (3.3) th: relation between (d} and (d'} is

(d} = [Rd]{dJ} (4.10)

where [Rd] is given in Table VI. Hence
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{eJ = [B]tRd]{d'} (4.11)
and therefore

{ei} = [B][Rd]{di} (4.12)

where (d'} is defined as

{d!} = a{d}/aXi (4.13)

Since the displacements are linearly proportional to the
generalized displacements, {d{1 can be interpreted as the value

of {d'} When the i-th generalized displacement has unit value and

the other generalized displacements are zero.

The procedure for finding {ei} then is the following.

The i-th generalized displacement is given unit value and all
other generalized displacements are set equal to zero. The
corresponding polynomial coefficients are calculated, from (3 12)

and (3.36). The values of displacement and their derivatives.,
other words the value of {dil, are then calculated from 'he

polynomial interpolation functions. Finally {eiI is obtained

from (4.12).

4.3 Input Data for Matrices [B] and [E]

The matrices [B] and [E] depend in a very complex way on

the geometric parameters of the shell. In general these

parameters vary over the shell surface, and hence [B] and [E] must

be evaluated at each pivotal point of the numerical integration.

As assumed in section 2.1, the shape of the shell is

specified by giving the position vector • as a function of the

shell coordinates

r = r (aa)

L
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or, in component form, by specifying

x = X(ao), y = y(aa), z =Z(a,)

where x,y,z, are the Cartesian components of r. By using the

formulas of section 2.1 all terms of [B] can be computed if the

values of x,yz and their derivatives are known. Derivatives up

to third order are required in Koiter-Saziders theory while

second order derivatives s•uffice for Donnell-Vlasov and shallow

shell theory. This data is fed into the computer program from a

user-supplied subroutine which must return the values of x,y,z,

and their derivatives at an arbitrarily given point ac. If, as

is generally the case, the shell surface is of simple form then

the exact equations of the surface can be used in setting up the

subroutine,, On the other hand the representation of the shell by

a fitted polynomial surface is not precluded.

The computer program incorporates switches to evaluate

[B] according to either of the three shell theories.

The matrix [E] depends not only on the geometric

parameters but also on the elastic parameters C, D, and v. Since

numerical integration is used, variable thickness and elastic

moduli can be handled easily. It is only necessary to use the

appropriate values of C,D, and v at each pivotal point of the

numerical integration. This data is fed into the computer program

from a second user-supplied subroutine which must return the

values of C,D, and v at any arbitrarily given point a,$. This

method of hannbig the input data accommodates variable elastic

properties but still is fairly simple in the case of constant

properties.
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14.4 Efficient Calculation of Strain Energy Density

In the computer program the calculation of the expression
TE]{ejlf/)n1cn({eJ [E r in (4.6) occurs wit-hin a triple do-loop,

the loops spanning the rows of the stiffness matrix, the columns

of the stiffness matrix, and the pivotal points of the numerical

integration. Consequently each operation performed in evaluating

the expression is repeated some 9600 times. It is therefore good

-to reduce the number of operations to a minimum.

If the expression is multiplied out it is found that it

can be reduced to

ScCn{ei }TE ]{ej}fe I

-
2 fcnC(si5jv•~ +i(lj) i(222 J ))e2 ~ 1  (1.114)

l i J

+ Ifc 0_Ki Jr + ((l-v)/ra)(2Ki2 K j2 -K i1 K j2  K 2 2 K 1 1 ))

where

i 1 a 1 + 2a12ei + a 2 2 •1E: a e,, 2 22(4.15)

Ki a KK + 2a12Ki 2 + a22K. 2

and where the superscript i denotes the components of {ei}. That

is

T i i i i i i
{e = {e1 ,,S 12 ,S 2 2 ,K1 1 ,K1 2,K 2 21 (4.16)

If we define

i 11

~ii

F'22 = v((1-V)cnCf/2/r)i2z

zi 1 (4.17)

V= /((1-V)cnCf/ra)S(2

= /(cnCf/-/2)ei
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R1= V(l-v)c nDf/2/la)Ki

2 Z = /((l-v)cnDf/2/2)K2( (4.18)
-i i_)c~f••
R2 2 = /((1-V)C Df/ra)K1 2

i = (c nDf/a/2)Ki

then expression (4.14) is reduced to

ic nfe i}•1E]{e jfV• = I+ 7E42 - ii - •
(,4.19)

+ KI I2K~IZR4 - RIIKRkz -
4 2K 4 1

The right-hand side of (4.19) requires only eight multiplications

and is the formula actually used in the program. The

multiplications involved in forming the barred quantities in

(4.17) and (4.18) can be taken outside two of the do-loops and

do not add significantly to the computation time.

Computing time is also saved by exploiting the fact that

the bending strains do not depend on u or v in Donnell-Vlasov

and shallow shell theories. Hence in these cases the bending

strains can be omitted from (4.19) whenever the i-th or j-th

generalized displacement relates to u or v.

5.0 Load Vector

The calculati1n of the load vector is quite similar to

the calculation of the stiffness matrix. The formula for the

virtual work per unit area of the applied loads, including thermal

effects, has been given in section 2.3. The total virtual work of

the loads acting on a finite element then is

Ve = f!({PT {d} + {Q) T{e})irdcado

= ff({pT [Rd]{d'} + {Q}T{e})/rdadO (5.1)

r
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-Hence the i-th term of the load vector (L) is given by

± ~(5.2)

= ff(,?, [Rd]{di} + (QJT~ei-)/-adadO

After transformation to local coordinates and evaluation by

numerical integration, (5.2) becomes

Zi = • cnC((RP}TRd]{dil + {QITIei})fra) (5.3)I

To compute the above expression, values of the applied

loads and temperatures must be .known at each pivotal point of

the numerical integration. This data is fed into the program from

a user-supplied subroutine which must return the values of the

three physical components of load, together with the temperature

resultant and moment, at an arbitrarily given point a,ý. For

convenience, this subroutine and the subroutine which furnishes

the values of the elastic constants are combined into one.

The technique which was used to make the calculation of

the stilrness matrix more efficient is also used to simplify (5.3).

6.0 Performance of CURSHL

In this section some results which illustrate the

performance and accuracy of CURSHL are presented. It goes without

saying that numerous unreported tests were also run with CURSHL to

check that the program functions correctly, and to discover and

eliminate bugs.

6.1 Accuracy of Numerical Integration

In order to obtain some appreciation of the errors due to

numerical integration the problem of a pressurized spherical cap

was solved and compared with a previous solution based on the

high-precision shallow shell element of Reference [7]. Both
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elements use the same interpolation functions but the latter

element uses exact closed-form integration-, so the discrepancies

between the two solutions are due entirely to errors of numerical

integration in CURSHL. These discrepancies are tabulated in

column B of Table VII.. For comparison, the error in the finite

element solution of Reference [7] is tabulated in columns A of

the table. Thus columns A represent the discretization error

of the high-precision' elements and columns B the additional error

in CURSHL due to numerical integration. In general, the latter

error is small compared to the former, as expected.

The geometry of the problem is illustrated in Figure 4.

{ I 6.2 Computation Time

The time required by CURSHL to compute one stiffness

matrix and load vector lies between 1.1 and 1.7 seconds depending

on the nature of the shell and the choice of shell theory. More

details are given in Table VIII. The times quoted were obtained

on an IBM 360/67 machine under TSS (Time Sharing System). The

programs had been compiled by an optimizing compiler using H

level Fortran.

6.3 Rigid Body Modes

Ideally the stiffness matrix should have six zero

eigenvalues, corresponding to the six rigid-body modes of the

element. The smallness of the first six eigenvalues is often

used as a measure of the quality of the stiffness matrix. The

eigenvalues of CURSHL for a number of cases are presented in

Table IX.

The first case is a flat plate, and the effect of changes

in the thickness is examined. It is seen that the first six

eigenvalues are satisfactorily small. Next are considered three

cases where the strain-free modes can be represented by polynomial

interpolation functions and hence should be exactly represented

by 'URSHL. The cases include a flat plate, a shallow spherical
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shell, and a deep cylindrical shell using Donnell-Vlasov theory.
The first :six eigenvalues are again• satisfactorily small in these

cases. Finally cylindrical and spherical elements are considered

using Koiter-Sanders deep shell theory, and the effect of changes

in curvature is examined. In these cases the rigid body modes

can only be approximated by polynomial interpolation functions.

Here the first six eigenvalues are reasonably small if the

curvature of the element is shallow but become larger as the

curvature increases.

The eigenvalues quoted here differ drastically from the

eigenvalues quoted in Reference [1]. The reason is that

Reference [1] gives the eigenvalues of KX = XX, K being the

stiffness matrix, while Table IX gives the eigenvalues of

KX = XMX, where M is the consistent mass matrix. The computation

of M' follows the same general lines as the computation of K except

that a 36-point numerical integration formula was used in this

instance., The equation KX = XMX is preferred to KX = )X for two

reasons. With the former equation the ratios of successive

eigenvalues are independent of scale, and the eigenvalues have a

physical interpretation in terms of natural frequencies.

For all calculations the stretching rigidity Et/(l-v2 )

and the surface mass density pt were taken as unity, while the

form of the element was a right-angled isosceles triangle with

unit sides.

It may be noted from Table IX that the first eigenvalue,

although always small, is sometimes negative. Therefore the

stiffness matrix does not quite have the expected property of

positive semi-definiteness. The negative eigenvalue is felt to

be due to errors of numerical integration and possibly to

round-off.

A
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Table III

'Transformation Mat-rices for Tangential Displacements

[Tu] . 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 :0 0

0 0 1 0 0, 0 0 0 0 0

-3 -2 0 3 -1 0 0 0 0 0

-13 -3 -3 --7 2 -1. -7 -1 2 27

-3 0 -2 0 0 0 3 ,0 -1 0

2 1 0 -2 1 0 0 0 0 0

13 3 2 7 -2 2 7 1 -2 -27

13 2 3 7 -2 1 7 2 -2 -27

"2 0 1 0 0 0 2 0 1 0

LRu] R, 0 0 0 where [R 1 ]= 1 0 01

0 R 0 0 0 fil if 2 1

0 0 R1  0 0 f12 f 22J

0 0 0 1
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Table IV

Transformation Matrices for' Normal Displacement

[Rw ] R2 0 0

0 R2  0

0 0 R2

[R 2 ]= 1 1 0 0 0 0 0

0 f 11  f 2 1  0 0 0

0 f12 f 2 2  0 0 0

0 0 0 2filif21 f2
11 21

0 0 0 fllf12 1filf22 +f12 fzl f 21f22

0 0 0 f2  2f£ f2
12 12 222
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Table VI

Transformation Matrix for Generalized Displacements

[Rd]= I R 3  0 0 0

O R3 0 0

0 0 R3  0

0 0 0 R4

2[RA] = 1 0 0 [R4] 'dl 1  2.311d21  d2

o d1l d21  dlid12 d11d 2 2+dald12 d 2 1 d 2 2

2 2
0 '2d 2 d12 2d12d22 2
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Table VIII

Computing Times for CURSHL

Shape Theory VMR time, sec.

flat plate shallow 1.1

flat plate K-S 1.2

circular cylinder D-V 1.1

circular cylinder K-S 1.4

sphere D-V 1.3

sphere K-S 1.6

elliptic cylinder K-S 1.4

cone K-S 1.5
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Table IX

Eigenvalues of' KX =XMX, where K is--the CURSHL stiffness matrix

-(a) Flýat plate element; effect of' thickness

EIGENVALUE t = 0.2 t = 0.02 t = 0.002

Xr6  0.70X10-1 0.71X10-14  0.71X10-1 4

A7  0.13x10 IO.13x10 1I 0.13xl10 3

A36  0.15x 04 0.32xl03  0.32x10'
X 6/X 7  0.56x1014  0.56xlo 1 2  0.56xl0-l0

(b) Jases where exact zero eigenvalues are expected, t=0.02; R=1

EIGEN VALUE FLAT PLATE SHALLOW CYLINDER,

I SPHERE D-V THEORY
X1  -0.70X10O 14 -0.11X10-1 3  -O.76x10-1 4

X6 O.71xl 14 0.80x10' 4  0.77X10-1 4

X7A 0.13xl10 1  0.1L4x101  .4xo
O3 .32 X103  o.4 1X103  0.32 X103

X 6/X 7  0.56xi0 12  O.59xl10 1 2  O.55x101 2

... (cont 'd)
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(c) Circuilar cylinder, Koiter-Sanders Theory; t =0.02

EIGENVALUE R= 10 R =3 R 1

_ -0.98xJlf 14  0.22xl0- is -6.6fxio0l5

X,0.42xl0-' 0.31xl0' O.,42x10-

70,.13x10- 0.l3xl0- 0.lA-x101

360.32 X103  0.32 X10 3  0.32 X103

Q6X .33xl10 0.24xlo"' 0.30x10-

(d) Spherical shell, Koiter-Sanders theory; t = 0.02

EIGENVALUE R R=10 R =5 R 2

0.2'5x1EF')6  0.60xlcF13  0.28xl09'

X6  0.71x10- 0.42x10-6  O.811xl0 4

X7Q.13xlff' 0.111x101  0.18xlcF1

XO .32x1 03  0.32 X10 3  0.30110'
O6X .54x10- 0.29x10- 0.II6xilcF2
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FIG. I LOCAL COORDINATES
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FIG. 2 POSITIVE DIRECTION OF PHYSICAL COMPONENTS
OF DISPLACEMENT AND ROTATION
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FIG.3 POSITIVE DIRECTIONS OF PHYSICAL COMPONENTS OF
STRESS RESULTANTS AND BENDING MOMENTS
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FIG. 4 DIAGRAM OF SPHERICAL CAP. UNIFORM APPLIED
PRESSURE. ALL EDGES SIMPLY SUPPORTED

Rt/L 2 '= 0.02


