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SUMMARY

CURSHL is a high-precision.finite element,
for the linear static stress analysis of thin elastic
shells of quite general shape. The element is.a fully-
conforming displacement element of curvilinear tri-
angular form. The theoretical basis of the eiement is
- presented in fairly compiete detail, and some aspects
o of the organization of the computer program are
3 discussed. The performance of CURSHL is examined
with regard to accuracy of numerical integration,
- compuiation time, and representation of rigid-body
; ; modes. ,
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1.0 Introduction

CURSHL is the acronym both of a high-precision finite
element for fhe static analysis of thin shells and cf the
‘associated computer program. The element is a fully conforming
displacement element of curvilinear triangular shape which
utilizes the same interpolation functions and generalized
displacements as previous hizh-precision elements for plate
bending, plane stress, shallow shells and cylindrical shedls.
Continuous Kirchoff constraints are used. The computer program
generates the stiffness matrix and consistent load vector for a
single element. Variable thickness and elastic modulus, as well
as thermal loads, can be accommodated by the program but at
present the progranm is limited fo linear elastic isotropic material.
The program provides the option of generating a stiffness matrix
based on either Koiter-Sanders shell theory, Donnell-Vlasov shell
theory, or shallow shell theovy. Except for a requirement of
smoothness the shape of the shell is viriually unrestricted.

A general description of CURSHL was first given at CANCAM
171 [10]%. An amplified description and an outline of the
considerations which guided the development of CURSHL were given
in Reference [1], which also included several examples of CURSHL's
performance., Because the emphasis in these references was on the
performance and accuracy of the element, many details of the
theoretical and computational aspects were omitted. The purpose
of the present report is to describe in fairly complete detail
the underlying theory and to outline the organization of the
computer program. In the pages which follow the relevant items
from shell theory are presented, formulas for the interpolation of
displacement within an element are derived, and the method of
caleculation of the stiffness matrix is described., In addition,
certain computational detalls of the program are discussed.
Finally, the element is tested in a small number of example problems

Numbers in square brackets denote references at the end of the
text.




-2 ~

in order tc ililustrate its accuracy.

2.0 Résumé of Formulas from Shell Theory

The required formulas from shell theory are assemoled
here for ease of reference. General tensor notation is used in
order to avoid unnecessary restrictions on the shape of ti.e shell
or on coordinate systems. Of the multitude of existing first-
order shell theories, the theory of Koitcsr-Sanders can clainm,
with reasonable justification, to be the best [4]. It is
therefore used as the main theoretical basis of the element. It
happens that the equations of the simplified theories of Donnell-
Vlasov and of shallow shells are cbtainable from the Koiter-Sanders
equations by a few simple modifications. Since the latter w.neories
are widely used, they are made optionally available in the computer
program,

The treatise of Green and Zerna [2] is the source of the
formulas for the geometric parameters, including the approximate
formulas which may be used when the shell is shalliow. The
equatious of Koiter-Sanders shell thecry are taken from the papers
of Koiter [3]1, and of Budiansky and Sanders{4]. Tensor notation
following the conventions of Reference [2] is used throughout this
section,

2.1 Geometric Parameters

(1) General Shell

Let 081, 62 be curvilinear coordinates on the shell's
middle surface. Let the middle surface be defined Ly tlhe position
vector T = ?(61,62) whose Cartesian componerts are x, :*, 2. The
covariant metric tensor is

-»> >
a)\u - rgx‘-‘- :!J - x})\x’u + y’}\Y:u + Z’AZ’U (2-1)

while the contravariant metric tensor is given by

1l 12 - .21 22

a't =ajzy/a, a a‘t = ~ayp/a, a‘* = a;;/a (2.2)
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where a = 2y)8,, ~ 23,85, (2.3}

Thhe unit normal vector is
-+ <>
n-= (I',1
and we note
>
|7,

The covariant and mixed cur

. _ —)-.—r
Dlu =n r’Au
A rp
b =a b
H up

The contravariant base vect

->
a
and the Christoffel symbols
A AL
Puv- a r’uv
Ap
= a X
(,p

The formulas for covariant
rank covariant tensors are

A

Ay

In addision to the
for the covariant derivativ
needed. To obtain these we

bxu,v =

> -+ > .
x r,2)/|r,1 x r,2| (2.4

1 X -I*’,zl = \/_5.— iy (2.5)

vature tensors are

= nxx,kp + nyy,}‘u + nzz,)‘u (:*.6)

ors are given by

RS (2.7)
are

— JAPZL L2 ,
=atlr, tTh (2.8)

x’u\) + y’py’u\) + Z,pz’uv)

differentiation of first and second

- _ P
A~ Tt (2.9)
= A -TP A -~-r1Pag (2.10)

A,V AVTou PV A

foregoing standard formulas, expressions
es of the mixed curvature tensor are
first differentiate (2.6) to get

> >
nsr,

+ g,\)"f’,ku (2.11)
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The derivatives cof the normal vector are given by the Gauss-
Weingarten formula

By = -bZF, = -a™ ¥, (2.12)
so
= -)'-) - Tp+ .+
bxu,v n r,xuv a T, rprvp
(2.13)
_ +.—!' _ p
=n r’xuv_ rkubvp
Hence, from (2.10) and (2.13),-
= Qep - rf - 7P -rP j
bAuIv BTy yuv I‘}\ubp\) kabpu ruvbpl (2.1%)

It is interesting to note that b is unaltered by any permutation

Aufv
of the indices. Since the covariant derivatives of the metric

tensor vanish, the required formulas are

T AT

bUIV = a bAUlv
\ (2.15)
= T _ P _ P _ 1P
a” "(n r’Auv qubpv rkvbpu Fuvbpk)

(ii) Shallow Shell

When the shell is shallow certain approximations are
permissible, as discussed in Section 11.3 of Reference [2]. The
metric tensor of the shell can be approximated by the metric
tensor of the base plane, and hence (2.1) is replaced by

a)xll = x)}\xsu + y”\y’u (2.16)

Tre contravariant metric tensor is still given by (2.2) but now
there is the alternative formula for a,

a = (X,1¥,2 = X,2¥:1)2 (2.17)
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Hence:, within the shallow shell approximation,
[T51 x Fy2] = V@ = (X,1¥,2 - X,2¥,1) (2.13)

where the correct sign of the expression for va was
determined from the particular case 6, = x,0, = y,

The unit normal can still be calculated from (2.4),
and in view of (2.18), the result agrees with the usual shallow
shell approximation for the normal. That is, the z-componant
of n is 1 while the other %wo components are equal to the
negative gradient of z. If, in turn, this result is used in
(2.6) to calculate thé curvature tensor the expressions
obtained agree with the usual shallow shell approximation,

b (2.19)

Al = Zl'l)‘u
where the double stroke denotes covariant differentiation in

the base plane.

The Christoffel symbols for the base plane are obtained
by replacing T in (2.8) by E, where R is the component of T
lying in the base plane, at the same time using (2.16) to
calculate the metric “ensor. Thus

> >
rh, = a%R, -E,

= AP
v = a (X’QX’U\) + y’py’U\)) (2.20)

uv
In summary, for shallow shells formula (2.1) is
replaced by (2.16) and formula (2.8) by (2.20), but the formulas

for axu, 3, and bMJ remain valid.

2.2 Membrane and Bending Strains

The membrane strain tensor is related to the
displacements by

= L -
sAu Z(uk|u + uulk) bAuW

-b

= A + U - 7P u 1
2\uAau Ua}\> l)\u P AUN




and this relation applies to all three of Koiter-3anders,
Donnell-~Vlssov, and shallow shell theories.

In Koiter-Sanders theory the rotgtions of the normal
¢k and the surface rot:at::i.on,mx_;l are given by

- £
by, = = Wy - b)‘up (2.22)

\

m)\u = g(u)\lu uu“, 5 1 u \.) ‘2.23)’

and the bending strain tensor is

= l 4+ _1_ p + P f
T A VIR PRI AU S WY
- _ ap A
=T Yo TN Yoy
(2.2h)
3 (p? o 1(pP P,
- 3(p + b + <=(b + b
d (03, L T o 0 gy o biuy )
i ., _ nP P T Py T
+ Zx“bkiu bull + Ptubx+ Qibu)up
In Donnell-Vlasov theory and in shallow shell theory the
rotations of the normal are approximated by
¢X = - W’A (2-25)
and the bending strain tensor is given by the relatively
simple formulas
= 1 + = -
R Y N BV ,
(2.206)
= + 1P w

BEMED VRIS ST E P

These strain-displacement relations may be summarized by the
matrix relation

{e} = [B}{d} (2.27)

e
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vhere {e} is a colurn wector of strainms,

e
{e}” = {e:1,€12,222,K51,K52,%22.} (2.28)

TR

and {i)} is a2 colurn vector of displacerenss vAiid their
derivatives,

PP

]
b
{a}° = {ux,ul,1,Qr,z,&z,uz,;,uz,z,H,W,l,ﬁ,zﬁﬁ,g1,W,1z,w,zz} (2-29)

1 The matrix [B] is displayed in Table I,

2.3 Stress-Strain felations anad Strzin Epergy

The stress resultants and vending roments are related
to the membrane and bending strains by

T

nlu

TP

= cHMEPT: (2.30)
pt

S m}\ll = Dﬂhuprxp, (2.31)
[3

ey

where C is the stretciing rigidity, D the flexural rigidity,

i and
E qupr = %{(l-v)(akta“p + axpa"T) + 2vaknapT} (2.32)
i‘ . For homogeneous shells of thickness ¢,

C = Et/{1-v?), D = Et3/12(1-v?) (2.33)

T

For laminated or sandwich shells other expressions for C and D
may be appropriate and their use is not ruled out. However
(2.30), (2.31), and (2.32) apply only to isotropic shells in
which there is no coupling in the stress-strain relations
between bending and stretching.

h The strain energy density is
2

+ m'\u

3 du/dA é(nkueku Kku)

(2.34)

= lroghuet o AHPT
= E(CH ekuepr + DH KqupT)




-8 -

and this may be written in matrix shorthand as
au/aa = e} [El(e} (2.35)

The matrix [E] is displayed in Table II,
When thermal expansion is considered the s/ wess-strain
relations are modified to

PR cn““”cpT - (E&/(l-v))TRaxu (2.36)

M = DHAupTKpT - (E&/(l—v))TMaAu (2.37)

where @ is the coefficient of thermal expansion and Tp and

TM are the resultant and the moment of the temperature T across

the thickness. That is

£,72
Tp = f T(z)dz (2.38)
~t/2
t/2
Ty = f tT(z)adg *(2.39)
~t/2

where ¢ 1s the coordinate in the thickness direction of the shell.
Formulas (2.36) and (2.37) apply to homogeneous shells and would
have to be modified for laminated and sandwich shells.: The

thermal strains do not affect the expression for sirain energy, but
instead influelice the expression for the virtual work of the
external loads.

We suppose that the shell is acted upon by a distributed
load per unit area 3. The contravariant components of 5 are pA
in the tangent plane and pn normal to the shell. The virtual
work per unit area of the applied loads, including the contribution
of thermal effects, is

dv/dA = p*uA + oy + (E&/(l-v))(TRa'\“eAu N TMaA“eAu) (2.40)
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or, in matrix notation

> i av/ah = {F}T{a} + (@17 {e) (2.41)
\
§ ‘ where
B e}t = (p?,0,0,p%,0,0,5",0,0,0,0,0} (2.42)
@7 = (Ei/(1-v)){Tz2'*,2T 2}, 00022, Tat 2T 2 2, Ta? 2} (2.43)

2.4 Physical Components

b ig

The tensor components of stress or displacement are not
the same as the physical components of these quancities. It is,
£ of course, the physical components which ars ultimately sought,
1 although tensor components are used in setting up the stiffness

3 matrix.

The physical components of displacement u, Vv, w, resolved
along the covariant base vectors, are related to the tensor

S A

g

components by

i€

U= (a'tu; + al?uy)var;,

(al?u; + a%%uy)vaz, (2.44)

<)
n

W =W

The contravariant tensor components of load are related

e R T R e

to the physical components pi, Bz, Py, DY

p! = 51/vai1 , D* = P2/VAzz , D = P, (2.45)
g The physical stress resultants Nku and the physical

bending moments qu are related to thelr tensor counterparts
by

ey

| o
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N1 = ntl/(ay./att), Ni2 = nt%/a, N22 = n2%/(az2/a%%) (2.146)
M1y = m*'/{a;1/at), My2 = m'?/a, Ma2 = m2%2/(az22/22%) (2.47)

Thie physical components of the rotation of the normal
$1,62; are related to the tensor components by the formulas

1 = 4l + al%g.)van

(2.148)
F2 = (a2 ti+ a%2¢,)vE,2
which are the same as the corresponding formilas for the
displacements. According to Glockner [12] the physical component
of the surface rotation Q@ is given by

a = Py s2
(2.49)
= (uz,1 -~ ui1,2)/2va '
where eaB 1s the alternating tensor.
We note in passing that the rotation vector q is given by
F-¢ 3.+ R (2.50)

o 2R

The conventions for the positive directions of the
physical components of displacement, rotation, stress resultants,
and bending moments are illustrated in Figures 2 and 3. In the
figures, the surface coordinates have been denoted as a, 8,
rather than 6,, 0,., The positive direction of the normal is such
that the normal vector forms a right-handed triad with the
tangent vectors along the a-curves and the B-curves, FPFigures
2 and 3 are intended to show non-orthogonal ccordinates. The
directions of the stress resultants are parallel to the
coordinate curves., The vectors which represent vhe bending
moments are orthogonal to the coordinate curves, and, consistent
with this, the comporients of bending stress are parallel to the
coordinate curves.
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‘; 3.0 3Iatérpolation Functions for Displacements

At this point we drop the tensor notation of the preceding
se¢tion and introduce «,B to denote the general curvilinear
coordinates on the shell surface, and u, v, w to denote the
covariant tensor components of displacement. The coordinates
o,B need: not be principal nor orthogonal.

T Laai

Ly

o~

R
e N e e

The curvilinear triangular element on the shell surface
can be imagined mapped on to the a-f plane. The edges of the
, element are defined by specifying that they are straight lines
L« in the o~ plane.

- The displacements in CURSHL are interpolated by the same
functions which have been used in previous high-precision
elements [5,6,7,8]. The in-plane displacements u,v are taken

as complete cubic polynomials in o,B, while w is taken as a
restricted quintic poldynomial in o,B8. In keeping with this choice
of displacement functions the generalized displacements are the
values of u, 3w/ da, du/9B, v, ov/da, dv/3B, w, ow/du, dw/3B,
a%w/9a%, 3%w/309B8, 9%w/38% at the three vertices of the element,
= for a total of 36 degrees of freedom. Centroidal displacements

' U,,V,, are used temporarily as degrees of freedom during the

F development of the stiffness matrix buf are later eliminated by
; static condensation.

i .6.4’:{?}-

The choice of interpolation functions and generalized
displacements assures that the element is fully conforming
provided the shell surface satisfies certain smoothness conditions.
For Koiter-Sanders theory these conditions are that the shell must
be smooth and have contiruous curvatures. For Donnell-Vlasov
theory and for shallow shell theory it is sufficient that the shell
is smoeth. These ccnditions are discussed in more detail in
: References [1] and [7].

The order of the discretization error of a conforring
1 finite element depends on the choice of interpolation functions,
and can be predicted by the Taylor's series test introduced by

LA A




- 12 -

McLay [11]. The application of the test to the presen: element
is essentially the same as in tests of previous high-precision
elements for flat plates {5] and shallow shells [7]. The result
is that the discretization error is of order h® where h is a
typical linear dimension of an element. The Taylor"s series test
also shows that the interpolation functions for w on the .one hand
and for u,v cn the other are matched, in the sense that they
provide equal orders of accuracy in the strains,

Further discussion of the choice of interpolation
functions 1is contained in Reference [1].

3.1 Local Coordinates

Let the vertices of the element be numbered 1,2,3 in
counterclockwise order when viewed from the positive side of the
element. Let the shell coordinates of the vertices be
(1,B81), (az2,B2), (a3,B3); respectively as shown in Figure 1.

In order to develop formulas relating the displacements
within an element to the generalized displacements it is helpful
to introduce a system of local oblique coordinates &,n. The
g-axis is taken to coincide with the 1-2 edge of the element and
the n-axis with the 1-3 edge, as shown in Figure 1., Further, the
local coordinates are scaled so that £ runs from 0 to 1 along
edge 1-2 while n runs from 0 to 1 along edge 1-3. The relation
between a,B8 and £,n is easily established as

o = a1 + (02-01)& + (03=-01)n
(3.1)

= By + (B2-B1)E + (B3-B1)n

kv~
1

Derivatives with respect to local and global coordinates
are related by
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9/38 = f1:9/90 + £2,9/938
9/9n = f;29/090 + £229/98
A2/3E% = 11129%/3a% + 2£11£2192/303B + ©2,%0%2/0B2 (3.2)
32/3E3n = £11£1208%/80a% + (£11f22 + £21£12)932/3008 + £21£2232/5B2
3%2/3n% = £1,23%/3a% + 2£122,92/3088 + £,,%02/3B2

3/3a = 01;9/98 + d,19/9n
/3B = d;1,9/93& + d;223/9n
32/9a% = 4,1292/382% + 2d,1d210%/3E3n + d212%9%/3n? (3.3)
9%/3038 = d11d1202/3E2 4 (d11d2z + d21d12)3%/9E0n + d21d220% /902
02/0B% = d12%02/08% + 2d12d220%/3E%n + d2223%/9n2

where
f11 = 02 - oy fi12 = 03 - )
f21 = B2 - B2 fa2 = Bs - B
div = (B3 - B1)/f dyz = - (a3 -~ 0y)/f (3.4)
d2y = - (B2 =B1)/f daa = (02 -o0y)/f

f = (a2 - ay)(Bs - B1) - (a3 - a1)(B2 - B1)

The Jacoblian of the transformation is equal to f,

3(a,B)
TETT - £ (3.5)
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3.2 Tangential Displacements

The tangential displacément u is taken as a complete
cubic polynomial in the shell coordinates a,B, or equivalently
as a complete cubic polynomial in the local coordinates, thus

u=a; + axE + asn + ast? + as&n + agn? + aj&?
(3.6)
+ as&n asén® + ajgn

The corresponding generalized displacements are the values of

u and its first derivatives with respect to o, at the three
vertices of the element. 1In order to match the number of
generalized displacements vw*th the number of coefficients in
(3.6) the displacement u, at the centroid is introduced as an
additional generalized displacement. Later u, will be eliminated
by static condensation.

Denote the values of u, 9u/3f, etc. at vertex number 1 by
U1, ugl’ etec, Since the local coordinates of vertices 1,2,3, and
of the centroid are (0,0), (1,0), (0,1), (1/3,1/3), respectively,
the following relations are obtained from (3.6)

uy = a)
u = a
‘ gl 2
‘ u. = a
nl 3
U, = a1 + as + ay + as

uga = g, + 2ay + 3a&y G.7)
u ., =as + as + a '
n2 3 S 8
Uy = Qy + as + ag t+ 210
u = a, + as + a
u = a3 + 2as + 340

u = a; + (az+as)/3 + (aytas+ag)/9 + (as+agtaatag)/27
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These relations may be explicitly inverted to give
{Ay} = [TyJ{W? (3.8)
where {Ay}, {W,} are tbe column vectors

{Au}T = {alk,a2ga3’ s a—lO} (3:9)

gt (3.10)

= {ul,ugl ,unl ,I.Iz,ugz,unz,l.lg‘.,ug3,un3,uo}

and: the matrix [T,] is displayed in Table III.
Let {Wy} be the column vector of :generalized displacements
3T = {uy,u ' : } (3.10a)
AWy 15U, 5U1g, W25 U2 5 U2 5 Us 5 U s Usg, U, i3.10a

where Uiy, etc. denotes the value of 3u/da at vertex number 1,

efc. The relation between {W,} and {W}} is evidént from equations

(3.2) and may be written in matrix form as
Wyt = [RuliWy} (3.11)

where [Ry] is given in Table III. Hence the polynomial
coefficients of (3.6) are related to the generalized displacements

by
(A} = [T I[RyI(Wy} (3.12)

Given the generalized displacements, the polynomial coefficients
can be cal)culated from (3.12) and, in turn, the values of u and
its derivatives can be found from (3.6). A similar relation
applies to the displacement v.

An advantage of using local coordinates is that [Ty] can
be found expllcitly and is simple in form,
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3.3 Normal Dfsplacement

The normal displacement w is taken as a quintic

polynomial,

W=Dy ¥ bE + bsn * byE% + ... + baokn* + bain®

(3.13)

As in previous high-precision elements, constraints are imposed

on (3.13) to restrict the derivative of w in the direction

perpendicular to any edge to a cubic variation along the edge.

The notation w;,wglj ete. is. used to denote the values

of w, dw/3E, &tc, at vertex 1, and so on.
involving twelve of the polynomial coefficients are obtained

directly from (3.13)

Wi
wgl
wnl
EEL
wgnl
“hn1

W2

g2

Yego

n3

wnn3

"
o
-

1]
(o3
N

It
o
w

2by
=b5

by + by + by + by + by + by

ba + 2by + 3b7 + Ubyy + 5bis

= 2by + 6bz + 12b;) + 20b;6

= b, + b3 + bg + by + bis + b2
= by + 2bg + 3bjo + Ubys + Sba,

= 2bg + 6byg + 12015 + 20ba,

The following wrelations

(3.14)
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These relations can be explicitly inverted to give

] bl = Wi

E b2 = Wey
é ! bs =Wn
b by = Wgg /2
bs = Wem
< bs = whnlﬁ2 (3.15)
b7 = =10w; - 6w[_;l - (3/2)w§£l + 10wy = uwgz + ng2/2
E: bro = -10w; - 6wnl - (3/2‘)wnnl + 10w; - ”Wn3 + wnn3/2
E~ b1y = 15w, + 8w£1 + (3/2)w££l - 15w, + 7w€2 - Wepp
' bys = 15w, + 8wnI + (3/2)wnnl - 15w; + 7wn3 = Vins
i big = - 6wy - 3wgl - ngl/z + 6wy - 3w€2 + WE€2/2
4 byy = = 6w, - 3wnI - wnnl/Z + 6wz - 3wn3 + wnn3/2

To obtain formulas ror the other coefficients, the
constraints on the derivatives of w must be considered. Since
terms of quartic and lower degree give first derivatives which
vary at most cubically, the constraints affect only the six
quintic terms in (3.13).

With reference to Figure 1, the derivative in the
direction perpendicular to the edge 1-2 in ths a-B plane is
given by

ow/9n = sin 0 dw/da - cos O Iw/3IB (3.16)
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where
sin 6 = (B2-B1)/VS33, cos 6 = (02-01).VS33
(3.17)
s33 = (a2-01)% + (B2-B1)?
Trans forming (3.18) to derivatives with respect to £,n gives,
after some manipulation
dw/dn = {s3,9w/98~5339w/0n}/(£V/553) (3.18)
where
S32 = (az2-0y)(oz-ay) + (B2-B1)(B3-B1) (3.19)

On edge 1-2, on which n=0, the contribution to the term in
parentheses in (3.18) from the quintic terms in (3.13) is simply

(5532b16-533b17)E" (3.20)

and hence the condition for cubic variation of the derivative
perpendicular to the edge 1-2 is

bi17 = (5532/533)b1s (3.21)

The above equation determines b;; since b,s is already known
from (3.15).

Similarly, the constraint along the edge 1-3 leads to
the result

bao = (5832/522)b2: (3.22)

where
s22 = (03=01)% + (B3—-B1)? (3.23)
The constraint along the edge 2.3 leads to the equation

S21(5b1g=Uby7+3byg=2b1a+bsg) = S3)(b17~2u1s+3b19-lb2o+5b21) (3.24)
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% where
! | s21 = (a3-01)(as~az2) + (B3-B1)(B3-B2)
1 2
’ : . (3.25)
4 s31 = (az-a1)(as=-g2) + (B2-B1)(B3-B2)
E 1
F , The following four relations are obtained directly from

4 : (3.13)

W bz + bs + bg + bi2 + bis

n2

W bs + 2bg + 3b12 + H4bis
z : tn2 (3.26)

b, + bs + bg + byy + bayg

3 : Y3

y : WEnB bs + 2bg + 3biy + 4bay

and these can be solved to give bg, bi2, bs, b1y in terms of

: quantities already known,
[ ,
bg = -~ 3Wnl - 2W€nl + 3Wn2 - wgn2 + big
= - - 2% .
bi2 2wnl + Wen1 2wn2 + Wen2 2byg (2.27)
’ = - - T - +
Ds BWgy = 2Wgyy * Mgy - Wepg * D2o
= + -2 + - 2b,,
i Buuw = 2Wgy *Wppy - Wgg T Wgpg - ehae
,

To determine the remaining coefficients bis, bis, big,
there are the relations obtained from (3.13)

£E3 2(bu+b9+b13+b13) (3.28)

2(bet+bet+by3+byg)

W

L At ¥

¥in2

and the constraint equation (3.24). Solution of these equations,
making use of (3.21) and (3.22) gives the results

tad A3
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biz = - (2821+3531)W£€3/2811 + (3521+2$31)wnn2/2511

+ (2s521+3s31) (butbs)/s11 + (3s2142531)(bstbs) /sy,

- (A1/s11)b1s - (A2/s11)b317 (3.29)
Pis = W o/ = bs ~ bs = by

big = W£E3/2 - by - bsg - b13

where
s11 = (ag=02)% + (B3-B2)?
s21 = (az=01)(as~02) + (83-81)(B3-B2)
s31 = (az2~-a1)(o3-az) + (B2-B1)(B3-B2) {3.30)
Ay = - 5521 + 5(Usz1+s31)832/533
Ay = - 5(s21tlis31)s32/522 + 5831

In obtaining the above results, the fact s;; = Sz1-S31 was used.

The connection between the polynomial coefficients bi
and the nodal values of w and its derivatives can be expressed
in matrix form

(a,} = [T, ') (3.31)

where
{AW}T = {bl,b23b330003b21} (3'32)
{w&}T = {w"wgl’wnl’wggl’wgnl’wnnl’wz""’W3""} (3.33)

In the computer program the matrix [Tw] is set up in the following
way. First, the terms in twelve of the rows of [Tw] are implied
by the relations (3.15) and these terms are inserted into the
matrix. In view of the relations biz = (5s32/833)b1¢ and

bzo = (5832/522)b21 the rows 17 and 21 of [T ] are respectively
equal to row 16 multiplied by (5s32/534) and to row 21
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multiplied by (5s32/S22). The coefficient bg is given by the
first of formulas (3.27), that is Ly

Y T = - ..E.“‘vw —
Ds 3wnl 2wg Y w

n n2 gnp T D17

Hence to set up row 8 of [T,;], numbers are first inserted intg
this row corresponding to the relation

= - F - Y + -
bs By = gy T 3, Yeno

and then row 17 is added o row 8. The remaining rows 3,12,13,
14,18,19, are set up in a similar way using relations (3.27)
and (3.29).

Let {W,} be the column vectcr of generalized disclacements

Y i .
{uyl” = {wl’wla’wls’wlaa’ﬂ’as’wlﬁﬁ’Wz”"’w3*°"} (3.38)
where w’a etc. denotes the value of 3w/da at vertex number 1,

The relation between {W;} and {W}} is evident from equations
(3.2) and may te written in matrix form as

(U1} = [R, 104} (3.35)

where [R,] is displayed in Table IV. Hence the polynomial
coefficients of { i.13) are related to the generalized displacements
by

(Ay} = [T, )R, )Wy} (3.36)

Although [T, ] has not been writter down expliecitly, its
calculatior is simple and requires no matrix inversicn.
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4,0 Stiffness Matrix

4,1 Cutline of Calculation

The expression for strain energy density in a shell was
presented in section 2.2. The strain energy of the finite
element therefore is

Ug = 3//{e} [E){e}/a dadB (4.1)

where va dadf is the differential of area on the shell surface.
The terms of the stiffness matrix [K1l can be obtained from (4.1)
by noting that the i-jth term of [K] is given by

= 32 :
kij = 23 Ue/8X13X5 (4.2)
where xi denotes the i-th generalized displacement. With the
notation

{ey} = 3{e}/ax, (4.3)
differentiation of (4.1) gives, in view of the symmetry of [E],

k. = //{e;} [E}(e }VE dad (4.4)

J J

Since the strains depend linearly on the displacements u,v,w,
which in turn are linearly proportional to the generalized
displacements Xi’ the quantity {ei} may be interpreted as the
strains which occur when the i-th generalized displacement

has unit value and all other generalized displacements are zero.
The evaluation of {ej} will be discussed later.

When the integration is transformed to local coordinates
formula (4.4) becomes

ky, = J/{e; ) [E]le,}£/E dadp (4.5)

1J J
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where f 1s the Jacobian of the transformation. The strains which
appear in the integrand of (4.5) depend in a2 complex way on the
shell's curvature, its metric tensor, and the Christoffel symbols.
The latter quantities can be complicated functions of the shell
coordinates. Rather.than attempt to approximate them by
polynomials, thus making closed-form evaluation of (4.5) possible,
it seems more convenient to evaluate {(4.5) by numerical integration.

The use of numerical integration introduces a certain error.
In order not to degrade the accuracy of the high-precision element,
the error in the numerical integration formula should not be
worse than h®, which is the order of the discretization error.
In fact, a formula with an error of order h® is used, in an
attempt to make the error of numerical integration negligible.
Details of the formula, which is a 13-point quadrature formula of
Gaussian type, are given in Table V and Reference [9]. The
formula is fully symmetric with respect to the three vertices.
Appiication of the formula is facilitated by the fact that the
local coordinates £,n are two of the three area coordinates of
points within the triangle while the third area coordinate is
1-&-n.

When numerical integration is applied to (U4.5) the
formula becomes

}f/a)n (4.6)

J

iy = 3 ] e (leg (RN

where the subscript n on the bracketted quantity indicates

that the quantity is to be evaluated at the n-th pivotal point

of the numerical integration. It is this formula which is the
basis of the calcuiation of the stiffness matrix. The sequence
of calculation is as follows. At the flrst pivotal point of the
numerical integration the geometric parameters of the shell are
computed and the column vector {e } is evaluated for each i and
stored, Then the expression -fe } [E]{ej}f/' is computed for all

2
1 and J, is multiplied by the weighcing factor ¢, of the numerical
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Irtapration, and the results are stored in the array which the
completed stiffness matrix wiil eventually occupy. The procedurs
is then repeafed at the s.cond pivotal point of the numerical
integration and the results are added term-by-term to the
quantities which already occupy the stiffness matrix array. The
procedure 1is then rspeated at the third pivotal point : nd continues
] until all pivotal points nave been covered. In this way the uncon-
densed stiffness matrix is built up. The final step is to
statically condense the stiffness matrix so as to eliminate the

centroidal displacements.

The foregoing seauence of calculations seems to be as
economical as any, hoth in regard to storape space and number of

operations.

4.2 Evaluation offe;}

by It was shown in section 2.2 that {e} is related to the
» vector of displacements and their derivatives {d} by

{e} = [8]1{d} (4.7)

eSO

where, in the notation of the present section

£y

5 PR . ,
4 {d}* = {u,ua,us,v,va,ve,w,wa,wB,waa,waB,wBB} (4.8)

the subscripts denoting derivatives with respect to o and B.
l We define the corresponding vector {d'} involving derivatives

with respect to £ and n,

T
t =
{ar} {u,ug,un,v,vg,vn,w,wg,wn,wgg,wgn,wnn} (4.9)

From equations (3.3) th2 relation between {d} and {d'} is

! fa} = [RyMa'} (4.10)

RS

where [Ry] is given in Table VI. Hence
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{e} = [BI[Rgl{a'} (4.11)
and therefore
{e;} = [BI[Ry1{d;} (4.12)
where {d;} is defined as
{d;} = a{a}/ax, (4.13)

Since the displaceﬁénts are linearly proportional to the
generalized displacements, {di}'can be interpreted as the value
of {d'} when the i-th generalized displacement has unit value and
the other generalized displacements are zero.

The procedure for finding {ei} then is the following.
The i-th gereralized displacement is given unit value and all
other generalized displacements are set equal to zero. The
corresponding polynomial coefficients are calculated, from (3 12)
and (3.36). The values of displacement and their derivatives.,
- cther words the value of {di}, are then calculated from the
polynomial interpolation functions. Finally {ei} is obtained
from (4.12).

4.3 Input Data for Matrices [B] and [E]

The matrices [B] and [E] depend in a very complex way on
the geometric parameters of the shell. In general these
parameters vary over the shell surface, and hence [B] and [E] must
be evaluated at each pivotal point of the numerical integration.

As assumed in section 2.1, the shape of the sheil is
specified by giving the position vector ¥ as a function of the
shell coordinates

T =7 (o,B)
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or, in compenent form, by specifying
x = x(a,B), y = y(a,B), z = z(a,B)

where x,y,z, are the Cartesian components of . By using the
formulas of section 2.1 all terms of [B] can be computed if the
values of X,y,Z and their derivatives are known. Derivatives up
tc third order are required in Koiter-Sanders theory while
second order derivatives suffice for Donnell-Viasov and shallow
shell theory. This data is fed into the computer program from a
user-shpplied subroutine which must return the values of x,y,z,
and their derivatives at an arbitrarily given point ¢,8. If, as
is generally the case, the shell surface is of simple form then
the exact equations of the surface can be used in setting up the
subroutine. On the other hand the representation of the shell by
a fitted polynomial surface is not precluded.

The computer program incorporates switches to evaluate
[B] according to either of the three shell theories,

The matrix [E] depends not only on the geometric
parameters but also on the elastic parameters C,D, and v. Since
numerical integration is used, variable thickness and elastic
moduli can be handled easily. It is only necessary to use the
appropriate values of C,D, and v at each pivotal point of the
numerical integration. This data is fed into the computer program
from a second user-supplied subrovfine which must return the
values of C,D, and v at any arbitrarily given point a,B., This
method of handling the input data accommodates variable elastic
properties but still is fairly simple in the case of constant
properties.
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.4 Efficient Caleulation of Strain Energy Density

In the computer program the calculation of the expression
%cn({ei}T[E]{eJ}f/E)n in (4.6) occurs within a triple do-loop,

‘the loops spanning the rows of the stiffness matrix, the columns
of the stiffness matrix, and the plivotal points of the numerical
integration. Consequently each operation performed in evaluating
the expression is repeated some 9600 times. It is therefore good
to reduce the number of operations to a minimum.

If the expression is multiplied out it is found that it
can be reduced to

T ~
se,le;} [E]{ej}f/a
2 1§ = 1 g2 d.t Iy
= 3fe, CleTe’va + ((1-v)//a) (261,81, €118, €22613 (4.14)

+ %fchﬁfKin/E + ((1—V)//§)(2K%2K{2‘K%1ng K%qul))

whers
et = a“e%1 + 2al?el, + a“ejz'2
(4.15)
i_ a1 12,1 22 1
K a''ky, * 2a*fky, + a®“ky,

and where the superscript 1 denotes the components of {ei}. That
is

i i

T i i i i i
} {e%i’612’€22’K11’K12’K22} (4.16)

{ei

If we define

E% /((l—V)Can/2/§)€%1

el - /((1-v)cn0f/2/a)e%2
(4.17)

th= V((-v)e CL/VE)eT,

gt /{chf/E/z)ei
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R11 = /(1-v)e D£/2/a)T
‘iz = /U(2-v)e DE/2/3)k3.
(4.18)
/12 = /((1-v)e Dr//E)kl,
/L = f(e Dr/a/2)et
then expression (4.14) is reduced to
lo te,YEMe deva = TE0 + shaels - ehiel, - el
. (4.19)
+ iR 5 kiR, - 7w, - E%zqu

The right-hand side of (4.19) requires only eight multiplications
and 1s the formula actually used in the program. The
multiplications involved in forming the barred quantities in
(4.17) and (4.18) can be taken outside two of the do-loops and

do not add significantly to the computation time.

Computing time is also saved by exploiting the fact that
the bending strains do not depend on u or v in Donnell-Vlasov
and shallow shell theories. Hence in these cases the bending
strains can be omitted from (4.19) whenever the i-th or j-th
generalized displacement relates to u or v.

5.0 Load Vector

The calculatién of the load vector is quite similar to
the calculation of the stiffness matrix. The formula for the
virtual work per unit area of the applied loads, including thermal
effects, has been given in section 2.3. The %otal virtual work of
the loads acting on a finite element then is

1

Ve = S ({P}T{d} + {Q)T{e})vadudp

(5.1)

n

1 ((PYTIRg 1A} + {Q}¥(e})VAdnas
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‘Hence the i~th term of the load vector {L} is given by

L. = 3Ve/3X,
i e
- (5.2)
= rr¢ey T RgIal} + (Q}T(es}) /adads
After transformation $0 local coordinates and evaluation by
numerical integration, (5.2) becomes
25 =4 7 e ((UPYT[Rg1a}} + (@} {e;))1vE) (5.3)
X 2 g n d 1 i n ¢

To compute the above expression, values of the applied
loads and temperatures must be known at each pivotal point of

_the numerical integration. This data is fed into the program from

a user-supplied subroutine which must return the values of the
three physical components of load, together with the temperature
resultant and momernt, at an arbitrarily given point o,B. For
convenience, this subroutine and the subroutine which furnishes
the values of the elastic constants are combined into one.

The technique which was used to make the calculation of
the stitlness matrix more efficient is also used to simplify (5.3).

6.0 Performance of CURSHL

In this sectlion some results which illustrate the
performance and accuracy of CURSHL are presented. It goes without
saying that numerous unireported tests were also run with CURSHL to
check that the program functions correctly, and to disccver and
eliminate bugs.

6.1 Accuracy of Numerical Integration

In order to obtain some appreciation of the errors due to
numerical integration the problem of a pressurized spherical cap
was solved and compared with a previous solution based on the
high~precisicn shallow shell element of Reference [7]. Both
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elements use the same interpolation functions but the latter
element uses exact closed-form integration, sc the discrepancies
between the two solutions are due entirely to errors of numerical

integration in CURSHL. These discrepancies are tabulated in

column B of Table VIJ; For comparison, the error in the finite
element solution of Reference [7] is tabulated in columns A of

the table. Thus columns A represent the discretization error

of the high~precision elements and columns B the additional error

in CURSHL due to numerical integration. In general, the latter
error is small compared to the former, ‘as expected.

The geometry of the problem is illustrated in Figure 4.

6.2 Computation Time

The time required by CURSHL to compute one stiffness
matrix and load vector lies between 1.1 and 1.7 seconds depending

on the nature of the shell and the choice of shell theory. More
The times quoted were obtained

details are given in Table VIII.
The

on an IBM 360/67 machine under TSS (Time Sharing System).
programs had been compiled by an optimizing compiler using H

level Fortran.

6.3 Rigid Body Modes

Ideally the stiffness matrix should have six zero
eigenvalues, corresponding to the six rigid-body modes of the

The smallness of the first six eigenvalues is often

element.
The

used as a measure of the quality of the stiffness matrix.
eigenvalues of CURSHL for a number of cases are presented in

Table IX.
The first case is a flat plate, and the effect of changes
It is seen that the first six

in the thickness is examined.
Next are considered three

eigenvalues are satisfactorily small,
cases where the strain-free modes can be represented by polynomial

interpolation functions and hence should be exactly represented
by NURSHL. The cases include a flat plate, a shallow spherical
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shell, and a deep cylindrical shell using Donnell-Vlasov theory.

The first :six eigenvalues are again\satisfactorily‘émall in these
cases. Finally cylindrical and spherical elements are considered
using Koiter-Sanders deep shell theory, and the effect of changes
in curvature is examined. In these cases the rigid hody modes
can only be approximated by polynomial interpolation functions.
Here the first six eigenvalues are reasonably small if the
curvature of the element is shallow but become larger as the

curvature increases.

The eigenvalues quofed here differ drasticaily from the
eilgenvalues quoted in Reference [1]. The reason is that
Reference [1] gives the eigenvalues of KX = iX, K being the
stiffness matrix, while Table IX gives the @igenvalues of
KX = AMX, where M is the consistent mass matrix. The computation
of M follows the same general lines as the computation of K except
that a 36-point numerical integration formula was used in this
instance. The equation KX = AMX is preferred to KX = AX for two
reasons. With the former equation the ratios of successive
eigenvalues are independent of scale, and the eigenvalues have a
physical interpretation in terms of natural frequencies.

For all calculations the stretching rigidity Et/(1-v?)
and the surface mass density pt were faken as unity, while the
form of the element was a right-angied isosceles triangle with

unit sides.

It may be noted from Table IX that the first eigenvalue,
although always small, is sometimes negative. Therefore the
stiffness matrix does not quite have the expected property of
posiftive semi-definiteness. The negative eigenvalue is felt to
be Jdue to errors of numerical integration and possibly to

round-off,
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‘Transformation Matrices for Tangential Displacements
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Table III
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Table IV
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'rans formation Matrices for Normal Displacement
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Table VI
Transformation Matrix for Generalized Displacements
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Table VIII

Computing Times for CURSHL

VMR timeg sec.

Shape Theory
flat plate shallow 1.1
flat plate K-S 1.2
circular cylinder D-V 1.1
circular cylinder K-S 1.4
sphere D-V 1.3
sphere K--S 1.6
elliptic cylinder K-8 1.4
cone K-S 1.5
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Table IX
Eigenvalues of KX = AMX, where K is :the CURSHL stiffness matrix

(a) Flat plate element; effect of thickness

EIGENVALUE £t = 0.2 t = 0.02 t = 0,002

A -0.71x10" " -0.70x10""" ~0.70x10" "

A6 0.79x10" " 0.71x10” " 0.71x10" "

Az 0.13x10* 0.13x10™% 0.13x10™3
Ase G.15%10" 0.32x10° 0.32x10°

Ae/A7 0.56x10" 1" 0.56x10™ 12 0.56x10™*°

(b) Sases where exact zero eigenvalues are expected, t=0.02; R=1
' SHALLOW CYLINDER

EIGENVALUE FLAT PLATE SPHERE DoV THEORY
A1 -0.70x10" " -0.11x107}3 -0.76x10" 1"
A 0.71x10" 1" 0.80x10”1" 0.77x10" "
Ay 0.13x10™"} 0.14x107? 0.14x107?
Ass 0.32x10°% 0.41x103 0.32x10°%
Xe/A7 0.56x107 2 0.59x10™ 12 0.55x107 "2

...(cont'd)
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(e¢) Circular cylinder, Koiter-Sanders Theory; t = 0.02

R = 3

EIGENVALUE R = 10 R =1
A -0.98x16™*" 0.22x10”'% | -0.60x107!"
Ae 0.42x107? 0.31x10"° 0.42x10™"
Ag 0.13x10"! 0.13x10"! 0.14x107}
Ass 0.32x10° 0.32x103 0.32x10°3
As/A7 0.33%x10~7 0.24x10™" 0.30x10"2
] (d) Spherical shell, Koiter-Sanders theory; t = 0.02
EIGENVALUE R = 10 R=5 R =2
A1 0.25x10""® 0.60x10"'3 0.28x107°
As 0.71x10”° 0.42x107° 0.84x10”"
Ay 0.13x210"" 0.14x10"} 0.18x107}
A3g 0.32x103 0.32x103 0.34x103
Ao/ A7 0.54%10"°8 0.29x10"" 0,46x10~2
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FIG. | LOCAL COORDINATES
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FIG. 2 POSITIVE DIRECTION OF PHYSICAL COMPONENTS
OF DISPLACEMENT AND ROTATION
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FIG.3
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POSITIVE DIRECTIONS OF PHYSICAL COMPONENTS OF
STRESS RESULTANTS AND BENDING MOMENTS




-87-

[ee)
(@)

Po

FIG. 4 DIAGRAM OF SPHERICAL CAP. UNIFORM APPLIED
PRESSURE. ALL EDGES SIMPLY SUPPORTED

Rt/L%= 0,02




