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ABSTRACT

The formulas used in a computer program to fit earth satellite orbits to data are
documented. The areas covered are (1) iterative method of determining maximum
likelihood parameter estimates; (2) units and coordinate systems; (3) motion of the
earth about its center of mass; (4) equations for earth satellite motion and partial
derivatives of this motion with respect to parameters; (5) theoretical values and partial
derivatives of theoretical values of ground based (radar or radio transponder, look
angles, long baseline interferometer) and satellite based (radar, look angles)
observables; and (6) numerical techniques such as numerical integration, polynomial
interpolation and matrix inversion. Observations of the sun, moon, planets and stars

are also discussed.
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Joseph R. Waterman, Lt. Col., USAF
Chief, Lincoln Laboratory Project Office

iii




IT.

I1I.

Iv.

TABLE OF CONTENTS

INTRODUCTION

PARAMETER ESTIMATION

A. Method of Maximum Likelihood
B. Iterative Solution to the Likelihood Equations

C. Saved Partial Derivatives, Saved Normal Equations
and Linear Prediction of Residuals

D. Automatic Scaling
E. Uncertainty of Prediction

UNITS AND COORDINATE SYSTEMS

A. Units of Mass, Length and Time
Effect of General Relativity on Time
U.S. Naval Observatory Time Service
Coordinate Systems

Past History of CT-UT1

m o 0O w

MOTION OF EARTH ABOUT ITS CENTER OF MASS

A. Wobble

B. Rotation

C. Nutation

D. Precession

E. Partial Derivatives of the Precession

1. Present Expressions
2. Ad Hoc Rigid Rotations

iv

14

14
16
26
43
45

49

50
52
S3
55
57

57
60




Table of Contents (Cont'd.)

V. EQUATIONS FOR EARTH SATELLITE MOTION
A. Effects of Sun, Moon and Planets
B. Effect of Earth Gravitational Potential Harmonics
C. Effect of Moon Gravitational Potential Harmonics
D. Effect of Second Harmonic of Sun's Gravitational
Potential
E. Effect of General Relativity
F. Non-Gravitational Effects
1. Radiation Pressure
2. Atmospheric Drag
3. Thruster Firing
VI. EQUATIONS FOR PARTIAL DERIVATIVES OF EARTH SATELLITE MOTION
A. Initial Conditions
B. Partial Derivatives of Sun, Moon, Planet Terms
C. Partial Derivatives of Earth Gravitational Potential
Harmonics
D. Partial Derivatives of Other Terms
VII. OBSERVATIONS
A. Observing Site Coordinates
B. Time Delay
1. Effect of General Relativity
2. Effect of Interplanetary Media
3. Effect of Earth Atmosphere and Ionosphere
C. Doppler Shift

61
62
63
72

75
77
78

79
88

89

93
102

103
106

109

112
120

131

133
134

134




Table of Contents.(Cont'd.)

VII. D. Angular Measurements 142
1. Azimuth-Elevation 148
Against Star Background 150

3. In Satellite Reference Frame 154

a. Approximately Inertial Frames 155

b. Approximately Earth Oriented Frames 157

4. Meridian Circle 164
Long Baseline Interferometer 169
Transits and Occultations 183

1. Transits of Mercury 183

2. Stellar Occultations 195
VIII. PARTIAL DERIVATIVES OF OBSERVATIONS 199
A. Observing Site Coordinates 202
B. Time Delay 204
C. Doppler Shift 205
D. Angular Measurements 206
1. Azimuth-Elevation 206
Against Star Background 207

3. In Satellite Reference Frame 207

a. Approximately Inertial Frames 207

b. Approximately Earth Oriented Frames 209

4. Meridian Circle 213

E. Long Baseline Interferometer 215
Transits and Occultations 216

1. Transits of Mercury 216

2. Stellar Occultations 220

vi




Table of Contents (Cont'd.)

IX. NUMERICAL TECHNIQUES

A. Numerical Integration
B. Polynomial Interpolation

1. Everett Interpolation
2. Hermite Interpolation

C. Matrix Inversion and Solution

D. Legendre Polynomials and Functions

X. MEAN ORBITS

XI. ROTATION AND SHAPE OF A PLANET

A. Rotation Matrix
B. Longitude and Latitude of Sub-Radar Point
C. Planetary Shape

References

223

223
224

224
231

232
234

236

241

241
246

249

o9
9]
(¥}







I. INTRODUC TION

An orbit fitting computer program, called the Planetary Ephemeris Program (PEP),
has been written at Lincoln Laboratory and the Massachusetts Institute of Technology.
Since mid-1964 about 30 man (and woman) years of effort have been expended in coding
the program. At the present time (late-1971) the program consists of 58, 000 Fortran
cards and runson any large IBM 360 computer with Operating System/360.

PEP uses double precision computations with 16 decimal place accuracy. The
program needs about 110, 000 thirty-two bit words of core storage with only part of
the program in storage at any given time. At the start of a program run, every
parameter is set to a default value and only those parameter values which differ from
the default values need be input. For the most part PEP follows a modular design so
that new features are easy to add to the already existing program.

PEP was originally designed to process observations of the sun, moon, planets
and Mariner spacecraft. Efforts in these directions, originally initiated at Lincoln,
continue at M.I. T. The efforts at Lincoln Laboratory have shifted to modifying the
program to handle earth satellites.

In this note we document the formulas used in PEP to fit earth satellite orbits to
ground based and satellite based observations. Much of what we say applies to
processing solar system and star observations, and where feasible we expand our
discussion to include the more general case.

A typical PEP computer run to fit earth satellite orbits to observations would be
as follows. Given provisional values for earth satellite initial conditions and other
parameters, PEP numerically integrates the equations of motion and the equations for
the partial derivatives of motion with respect to initial conditions and other parameters
for each individual satellite and writes the results on magnetic tape. For each
observation PEP calculates the theoretical value of the observation and the partial
derivatives of this theoretical value with respect to initial conditions and other parameters
by interpolating from the ephemeris magnetic tapes. The errors of the observations
are assumed to be additive and normally distributed with zero means and standard
deviations the quoted errors. The observed minus theoretical values, the quoted errors

and the partial derivatives of the theoretical values for the observations are used to form




the normal equations whose solutions give adjustments to the provisional values of the
initial conditions and other parameters. Using these new values the process is repeated
until convergence is obtained. The final values of the initial conditions and other
parameters are the maximum likelihood estimates for these quantities arising from the
given observations.

Our systematic documentation of the formulas used in PEP commences with a
discussion of the iterative maximum likelihood method of parameter estimation. We
then give a careful discussion of the units and coordinate Systems used in PEP, including
the effect of general relativity on the rate of an atomic clock. We discuss the presently
accepted expressions for the motion of the earth about its center of mass, including
wobble, rotation, nutation and precession.

In documenting the equations of earth satellite motion and the variational equations
for the partial derivatives of this motion with respect to parameters, we thoroughly
examine the Newtonian gravitational effects due to the l/r2 attractions of the earth,
sun, moon and planets and the effects of the higher harmonics in the gravitational
potentials of the earth, moon and sun. We briefly discuss other effects on motion, such
as those due to radiation pressure, etc.

The equations for earth-moon barycenter, moon and planet motion are documented
in Refs. 1, 2 and 3, so we do not discuss them here. The formulas for the effect of
central body gravitational potential harmonics as derived in this note for earth satellites
apply to lunar and planetary orbiters as well if the expressions for the motion of the
earth about its center of mass are replaced by those for the motion of the moon or
planet about its center of mass. Expressions for the motion of the moon about its center
of mass are contained in Ref. 1, Appendix B, and expressions for the motion of a
planet about its center of mass are given at the end of this note (Section XI-A).

We discuss the formulas for the theoretical values and the partial derivatives of
theoretical values for ground based observations of earth satellites including radar or
radio transponder observations, azimuth-elevation and photographic observations, and
long baseline interferometer observations. We extend our discussion of these observables
to include solar system and star observations and add for the sake of completeness a
discussion of meridian circle, transit and occultation observations.

We document formulas for the theoretical values and the partial derivatives of




theoretical values of satellite hased observables, including satellite to satellite radar
or radio transponder observations and satellite reference frame look angles of the
earth, sun, stars and another satellite. For these satellite based observables we
specifically consider the cases of the Lincoln Experimental Satellites numbers 8 and 9
(LES-8 and LES-9), which are to be launched in 1974. We also refer to LES-8/9 and
to LES- 6 (launched in 1968) when analyzing forces acting on satellites.

We discuss numerical analysis techniques used in PEP for numerical integration,
polynomial interpolation, matrix inversion and recursive evaluation of Legendre
polynomials and functions. We also discuss mean orbits for the moon and sun and
planetary rotation and shape. Our desire in writing this note was to document the
formulas used in PEP that were not already presented in Refs. 1, 2 and 3. New
features are continually being added to PEP, so this documentation refers to the 1971
version of the program, but at least it should provide a basis for future expansion.

Some of the formulas and techniques discussed in this note are due to I. 1.
Shapiro, W. B. Smith and R. Reasenberg, We acknowledge their contributions at the
appropriate places in the text. The programming of PEP from 1964 to 1971 was done
at Lincoln Laboratory by the author, W. B. Smith, F. Amuchastegui, Katherine
Becker, P. Connolly, Antonia Forni and Amanda Rasinski, and at M. 1. T. by
L. Friedman, R. Preston, R. Reasenberg, M. Slade, G. Slater, R. Cappallo,

R. King and S. Synnott.
Because of the size of this Technical Note, it has been difficult to catch all the

small errors, for which we apologize.




T8I PARAMETER ESTIMATION

II-A. Method of Maximum [jkelihood

Suppose we have observations (Ol, ce ey Om) with errors (El, Cee Em).
We assume that the errors are additive, that is
of = clet, 8™ + e 1= 1, o (1)

where Ci is the computed value of the observation given the true values
(Bl, Boog Bn) of the parameters appearing in a mathematical model of the
physical situation. We assume that the ei have a multivariate normal proba-
bility distribution with zero means and joint covariance mXm matrix N.

Thus the joint probability density of the et = o' — ¢' is

[ \C) SN

N (-0t N (0-0)
L 2m™2 et W12 ) Y

where (0 - C)t is the transpose of the column matrix (0 - C), so that
(0 - C)t = (0l - Cl, 500H o - Cm). The joint density L is called the
likelihood function. See Ref. 4, Chapter 9, for a discussion of the multi-

variate normal distribution.

One might imagine that the error of an observation is the sum of errors

arising from a number of independent random causes. Then even if the distri-
bution of these individual errors were not normal, their sum would tend to be
normal by the central limit theorem. Even with this justification it is not

necessarily true that the observational errors are normally distributed. But

we proceed under the assumption that they are.

In general, the error of an observation has a random part and a
systematic part. We assume that the systematic part has been modeled as a
measurement bias with parameters to be estimated, so that we are left with

only a normally distributed random error with zero mean.




One cannot determine the true values of the parameters (Bl, 000 Bn)
. 1 n .
from the observations (07, ..., 0). It is even unclear what the word "true"
. . A
means. However, one can determine estimates (Bl, 500g @n) of the parameters

appearing in the physical model which are functions of the observations. The
maximum likelihood estimators are the ones which maximize the likelihood function
L in (2), i.e. which make the occurrence of the observed measurements most
probable. Other estimators are possible, but the maximum likelihood estimators

are often used and they have desirable properties.

AL Am
If the values (B, ..., B ) of the parameters maximize the likelihood
function L, we have
l —
E‘(O = C)t N L (0 — € = minimum (3)

If the observation errors are uncorrelated, the covariance matrix N is diag-

onal with, say, ith diagonal element 612 and equation (3) becomes

ol — (1 2 ) N
2 = minimum (4)

Thus the maximum likelihood estimators become the least squares estimators if
the observation errors are wcorrelated. Note that equations (3) and (&) are
dimensionless, so that we can mix different observable types with different
units of measurement.

The way PEP is programmed at present assumes that the measurement
errors are uncorrelated, so that PEP performs least squares fitting. More
sophisticated filtering techniques might be programmed in the future. 1In this
report we just discuss the least squares technique that has been used in cel-
estial mechanics since the early nineteenth century.

The parameter estimators are functions of the observed random variables
and hence are themselves random variables with a joint probability distribution.
For a large number m of observations (m > > n) the maximum likelihood para-

meter estimates are approximately normally distributed with means the true




values of the parameters and with covariance matrix the inverse of the matrix

2
A, = — & (lesb f,k = 1, ..., m (5)
J ST
Here E denotes expectation, i.e., integration of the given function over the
probability density of the observables. See Ref. 4, p. 236 and Ref. 5, pp.
498-505.

The left side of (4) is equal to — 2 logL ‘plus a constant. We

therefore have

m . .
i i
A, = E L g Juk = 1, .o., m (6)
jk 5 2 3BJ aBk
i=1 i
since the expectation of (01 - Cl) is O . The covariance matrix of the

parameter estimates is

("jk) ) Q‘jk>-l v

The standard deviations of the parameter estimates are

Oj = ‘/ojjl s j = 1, ..., n (8)

e, = —ik jok = 1, ..., n (9)




II-B. Iterative Solution to the Likelihood Equations

. A
We wish to determine parameter values (Bl, o @n) which minimize
(4). At the minimum we have
- id i
E (© -C) 3¢ =0 j =1, ..., n (10)
i=1 6i2 28’ A
B =28
Suppose we have provisional values (Bol, .,Bon) of the parameters and wish
to determine the adjustments
a = B - 8* k=1, ..,k

which yield the maximum likelihood,

linear assumptions

or least squares, estimates.

n .
CA . K 3 1
B = cley + ) sk
k=1 ® le -8
act _ act -
k \ ’
85 s =8 a* |, _
B = 80
Substituting into (10) we obtain
n
k
A, A = B, i = 1, ey N
:E: 3k OB i J
k=1
where Ajk is given by (6) and B. by
- i 4 i
B § : (0" —C)) BC. i o= 1,
J 8 2 363
i=1 i

We make the

(11)

(12)




Equations (11) are called the normal equations. The inverse of the coefficient
matrix of the normal equations is the covariance matrix of the normally distrib-
uted parameter estimates if there is a large number m of observations. The
solutions ABk of the normal equations give adjustments to the provisional

parameter values,
B = B + AB ’ k = 1, ..., n (13)

Because we have linearized the problem, it is necessary to iterate.
Namely, using the new values of the parameters we reform the normal equations
and solve them to get further adjustments to the parameters, the iteration
continuing until we obtain convergence. We consider that we have converged
if the adjustments to the parameters are a small fraction of the standard
deviations (8) of the parameter estimates.

How do we know that we have not converged to a local minimum of (4)
rather than to the absolute minimum? The only answer is that we do not. We
have performed tests where we started from several different points far from
the final parameter estimates and converged to the same solution. However, we
cannot conclude that this will always be so, except that in all our experience

we have gotten valid operational results using this technique.

II-C. Saved Partial Derivatives, Saved Normal Equations

and Linear Prediction of Residuals

The computed value of an observation Ci needs to be calculated
accurately in order to retain enough significant digits in (Oi = Ci). However,
the partial derivatives BCi/BBj need not be calculated so accurately. One way
to take advantage of this fact is to save the values of BCi/BBj on magnetic
tape from one iteration to the next rather than recalculating the partial deriva-
tives each iteration. There is very extensive logic in PEP to do just this if
desired with great savings in computer time. Another feature in PEP is the option
of using analytic expressions for the partial derivatives with respect to initial
conditions in the elliptic orbit osculating to the true orbit of a body rather

than numerically integrating the equations for these partial derivatives in the




true orbit. This feature is very useful for planetary orbits, but it is only
valid for a few revolutions in highly perturbed earth satellite orbits.

There is an option in PEP of saving the normal equations on magnetic
tape so that additional solutions can be made with parameter subsets by just
leaving out the appropriate rows and columns when reading the saved normal
equations.

If one is near comnvergence it is not necessary to reintegrate the
equations of motion and recompute the (0i —-Ci). Rather, there is an option
in PEP to predict the (Oi —-Ci) from the old (0i —-Ci)O , the partial
derivatives BCi/BBj and the adjustments ABj to the parameters with Taylor's

theorem

i i e

g (14)
agY

5=1

. i i . . :
If these predicted (07 — C’) were inserted back in the normal equations,
identically zero solutions would result. Thus, in order to converge in the
least squares iteration it is necessary to reintegrate the equations of motion

and recompute the (0t —ch.

II-D. Automatic Scaling

Suppose we changed units or scale for the parameters (Bl, ceey Bn)
1 n
to get new parameters (B,”, ..., B, S
3 3 \
B,) = s,p’
* j
88, = s.08? L 5= 1,
act 1 act
- = g—' ——3 i = 1, , N
9B, 7 j 9B )
(15)




The normal equations (11) become

n
2: * k * .
Ajk AB, = Bj i = 1, ..., n (16)
k=1
where
* 1
A, = A,
jk sjsk jk
j9k =, 1, :.:i; n (17)
B.* = gi B
J i J

In the PEP the normal equations are formed with any convenient units
for the parameters. As the equations stand they are very difficult to treat
numerically with many orders of magnitude separating various coefficients in
the coefficient matrix and right side. Therefore, PEP automatically scales
the equations before sending them to the inversion and solution routine dis-

cussed in Section IX-C. The scale factors are chosen to be

.= yJA] = 1, ..., 18
®3 33 2 " (18)

q * . q
The new coefficient matrix (Ajk) has ones down the diagonal instead of quan-
tities differing by many orders of magnitude. After solving the normal equations
and inverting the coefficient matrix the adjustments and covariances for the

parameter estimates in the old units are

i _ 1 h|
a8 T s, BBy
J (19)
- I *
%Sk * B s, ik

10




II-E. Uncertainty of Prediction

Let (él, cees @n) be the normally distributed (for large samples)

maximum likelihood estimates of the orbital initial conditions and other para-
meters with covariance matrix (ij). We can numerically integrate the equations
of motion ahead in time and predict the theoretical value 8 of an observable

using the values (@l, 5304 @n) of the parameters with

<>
Il

aBl, ..., BY

Since & 1is a function of random variables, it is a random variable. Instead
of solving for (@l, ST @n) in the least squares, maximum likelihood itera-
tive process, we could have solved for (Q, @2, ceey @n). Thus, & is norm-
ally distributed for large samples of the data to which we are fitting.

Let the true values of a, Bl, ...y B be 7, Bl B" with

9 o s ey

@) - #
ER®) = o
/\J_—j /\k_—k
E[(B B><B B)] = ij
We have
n
b3 g
=1 9B
where Ba/BBj is evaluated at the point (Bl, a0 Bn) = (Ei, 580 En)




Thus Q is approximately normally distributed with approximate covariance
N _ = 2 &2 4 2 d0. _ oda
E[(oc—oc]=E<)—E()z E —.——chjk
j,k=1

where to sufficient accuracy we can evaluate the 30/387 at the point
1 1
(B) OG0 Bn) = (Q’ ""gn)'

Now suppose that
i i (AL An 5
= a1<§ s sees B ) i =1, ..., q

are q random variables with expectations
ey = & - ol(Fh LB 1.1, ...,

The same argument as was used in the single random variable case gives that for

large samples, (Ql, 500g Qq) are jointly normally distributed with covariance

w - e -T)E )

= E@aab) — E@®) E@©D)

matrix

—
]

Il

z : 302 Bab
=t e (0
apd gk Ik

i k=1

Q

where the partial derivatives 30?/3B7 should be evaluated at the point
1 — —-n
B, ..i, 8“) = (81, ..oy B), except that with sufficient accuracy we can

evaluate them at the point (Bl, 80 Bn) = (él, cooy én).

Let (rab) be the inverse of the covariance matrix (Tab),

12




According to Ref. 4, pp. 244 and 264, the quantity

q
& - Z r, (% -5 P =

a,b=1

has the chi-square distribution with q degrees of freedom. Let P denote
probability and let p be a number between O and 1, say p = 0.95. Let
A be such that

P <)) =p

We determine A from a table of the chi-square distribution with q degrees
of freedom. Then with probability p the true value (&1, T Eq) of the

vector (al, very a1) 1lies within the ellipsoid

ry 8% -0 @ - <

a,b=1

with center at (Ql, .y Qq).

As an example, (Ql, Qz, QB) might be the estimate of the position
of a body at a given time. The above formulas give the error ellipsoid about
this estimate. Confidence intervals about the estimate of a single variable

Q can be determined from tables of the normal distribution as well as from

tables of the chi-square distribution with 1 degree of freedom.

13




III. UNITS AND COORDINATE SYSTEMS

III-A. Units of Mass, Length and Time

Any physical theory has unknown parameters. Some of the parameters
are set to defined values in order to specify units and the remainder are
determined by fitting to data.

In processing planetary observations with PEP, we set the mass of the
sun MS = 1 to define the unit of mass and set the square root of the gravi-

tational constant <Yy to the Gaussian value

J M = 0.01720209895 13/2p71 (20)

which specifies the unit of length (the Astronomical Unit) once the unit of
time, the Coordinate, or Ephemeris, Day, is defined. If our physical model

allowed a time variation of the gravitational constant with
M, = M) [1 + e - e (21)

we would set\Jaﬁizi: to the defined value (20). Any such variation would be
less than a part in 10 per year. The fractional variation in the mass of
the Sun is completely negligible.

Continuously since 1956, the U.S. Naval Observatory has had one or
more cesium atomic clocks running which define what is called Al Atomic
Time. 1In recent years there have been 16 or more cesium clocks running whose
average has been the measure of Al time. The Al second is defined such

that the cesium transition at zero magnetic field has the precise frequency
(see Ref. 6, p. 446)

9192631770 cyles/second (22)

The day consists of 86,400 seconds and we define Coordinate Time CT (the
independent variable of the equations of motion) in terms of Al Atomic Time

by (see Ref. 7, p. vii)

14




CT = Al + 32015 (23)

The defined frequency (22) and offset 32515 in (23) were chosen to have
Coordinate Time agree as closely as could be observed with previous definitions
of Ephemeris Time.

We define

Ms = mass of sun
Me = mass of earth
(24)
M = mass of moon
m
M = M + M
c e m
In processing planetary and Mariner space probe data it has been determined
that8’9
Astronomical Unit = 499.004780 + 1 x 10_6 light seconds
MS/M = 328900.1 +* .4
c (25)
M /M = 82.301 + .001
¢’ m
We assume that
¢ = velocity of light = 2.997925 x lO5 km/sec (26)
Thése values and definition (20) imply that
YM_ = 398601.177 * 0.55 km®/sec (27)

which gives the relation between our system of units and those used in other

orbit fitting computer programs which set YMe to a defined value instead of

15




YMS . In particular the Smithsonian Astrophysical Observatory in Ref. 10 uses

the defined value

2
YM_ = 398601.3 I e (28)

The parameter values obtained from fitting to data with the Smithsonian computer
program would differ very slightly from that obtained with PEP because of the
difference in definition of units. However, the fit to the data would be the
same. (See the discussion surrounding (102) in Section V-B.)

The particular definitions for the units of mass, length and time
used in PEP arise from the fact that it is a solar system program specialized

to work for earth satellites.

III-B. Effect of General Relativity on Time

The theory of General Relativity alters equation (23) slightly.
Namely, in general relativity the space time universe is pictured to be a
four dimensional differentiable manifold with a second order symmetric hyper-
bolic tensor defining the gravitational potential. In a local coordinate

o 1 2 3 . .
system (x , x°, X, X ) this tensor, called the metric tensor, has the form

AY)
dee = guvdxu®dx (29)

where we follow the Einstein summation convention that repeated upper and lower
indices are summed. The equation of motion of the bodies in the solar system
are derived with coordinate time t = x° as independent variable. Let

x" = x"(t) be the time-like world line followed by an atomic clock on the
earth. Then the proper time elapsed from coordinate time t0 to coordinate

time t; along this world line is defined to be

t u ]
B 1 dx"  dxVY
To1 _/ Jgu\) t dt (30)

t
o

16




and the atomic time AT elapsed from to to tl is

AT1 = ATo = xTol (31)
where the constant A depends on the units chosen. Equation (31) states that
atomic time is uniform relative to proper time.

In Ref. 11, pp. 168-171, the Newtonian approximation to the metric
tensor is stated to be

2 2 2

ds? = (2 + g dt? — (@xH? — (@xd? - (@x)? (32)

where U 1is the Newtonian gravitational potential with the convention that the

force is — Grad H and where c¢ 1is the velocity of light. Let v be the

3
i\ 2
2 de
vo = E éﬁ?) (33)

Sl

velocity on the world line,

We then have

+
ol
|
|
N | =
|
I
| <
N fo
¢
(=¥
t

(34)

17




where Uo’ v, are the average values of the gravitational potential and
velocity of the atomic clock on the earth as it orbits the sun. We define
coordinate time in terms of atomic time by this equation, where the atomic
unit of time is specified by (22). In defining the unit of coordinate time

we are free to set a constant to a defined value, so we specify

A = = - (35)
Uo 1 Vo
Nl+3 -2 2
(o] c
and obtain
AT1 — ATo = CTl — CT +
2
t
2 2 2 2\ 2 2
Uo 1 vo t C (ol c
l+5-272 °
c c

(36)

The general relativity expression includes the special relativity term involving
the variation in velocity environment of the atomic clock plus the equally
important term involving the variation in gravitational potential environment
of the atomic clock.

The earth-moon barycenter moves approximately in an ellipse of eccen-
tricity e = .01672 relative to the Sun with semi-major axis a = 1 astro-

nomical unit. In this elliptic orbit we have

- agl-ezz

l-e cos ¥

2 _ 2 _ 1L
veo= oYMy (r a) (37)
YMS
v = — —
r

18




where § 1is the mean anomaly related to the time t from perihelion by

'] =‘/L_+_e &
tan 2 1 = tan 2

2%5 = ¢& — e sin & (38)
w Ya-e?)
at 2
r

where £ 1s the eccentric anomaly and T = 365.25 days is the period.

Consider the integral*

/tl [U_ _ ;v_z] it
2 2 2
C C

t
o

M e, [, 2
=~ =___§_f1 [1e —2(1—ecosw)]dt
\ 2.2 2
A a(l-eM)ec *

o

2
\/’YE ’a(l—ez) /w(tl) <. % -% + 2 e cos \l)) -
2
c

(1 - e cos w)z

v(e)

2
\/M'v (1-e)  [¥(ty) d
zYsz : / l(—%—-;—+2ecoslp)>'
c

lb(to)

. <1 + 2ecosy + 3 e2 0052 Yy + 4 e3 cos3 w) dy

Note added in proof: If we had evaluated this and subsequent integrals in
terms of the eccentric anomaly & we would have obtained exact results
without expanding in powers of e.
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2
— (e + e3) cos Y —"g— cos2 %] dy

where we have ignored powers of e higher than the third. Let us take

U v e
0

= %--3—-to be the average of this integral, & , i.e., the integral form
c

mlo

(e

0 to 2m divided by the orbital period T of the earth:

2 2
5 B lv0 _ ‘fyMS ‘)a(l-—e) ar |3 3e2
2 2 2 2 T 2 4
@ @ @
/ 2
_ _-\ﬁyMs) 1l-e 3 ) QEE
2 2 4
ac
3(yM) -8
r - — = — 10 (dimensionless) (39)
2ac
since
2m 1/2 -3/2
I omyt/z Y (40)
Uo 1 Vo2
We are using the combined average of = T 573 rather than the average of
C @

each individual term, but the end result is the same.
The term multiplying the integral in (36) differs from 1 in the eighth

place, so we take it to be 1 . Thus (36) can be written as
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(ct, — CTO) - (ATl - ATO) =

!
&[l[ZQl—ecosw)_z]d
2 0 t
ac (1 -¢€")

t
(o)

1/2 _ 2.3/2 W(t,)
~\/YMSa 2(1 e”) / 1282_2(e+e3)cosw:|,

wie)

(&

. [l + 2 ecosVy + 3e2coszw + 4e3cos3w:|dw

VY a - e o, ,
~ > 2e” — 2(e + e7) cos Y

C
w(to)

— e cos2 v - 6e3 cos3 l,b] dy

!7ﬁ; a1/2 (1 e2)3/2 ; :
= > — 2(e+ e’) sin Yy — e” sin 2 Y
c
Vo= W(t))
= 6e3 sin Y (cos2 Y + 2):' A
b= w(e)

where we have ignored powers of e higher than the third. Over one revolution

the right side is zero as it should be.
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Inserting numerical values for the constants in the above formula,

equation (23) becomes in general relativity

cr = Al + 32515 — 156576 x 107 sin ¥
- 1738 x 10—S sin 2 ¢ — 154 x lO_6 sin y (c052 v o+ 2)
(41)
where by Ref. 12, p. 77, the true anomaly { 1is expressed in terms of the
fraction of time %’ from perihelion by
y = ZTT% + IEZe = %e:i +] sin (217%)
i [% e2 - %% e4 + ..] sin (4ﬂ %) + <%% e3 = ...) sin(ﬁﬂ %)
LP coog
~ 21 = + 0.0333988 sin (21 ) + 0.0003489 sin (47 )
+0.0000050 sin (67 ) (42)

Alternately, Keplers equation (38) could be solved iteratively for Y given
M = 2rm %—. The earth-moon barycenter perihelion occurs about January 3 each
year.

The above formula is not programmed in PEP, but rather an interpolation
is performed from a tabulation (see Table I) constructed in the following
manner. The integral (30) was numerically integrated with the Newtonian
approximation (32) and with the exact earth-moon barycenter orbit instead of
an elliptic orbit approximation. The integration was performed to produce a
table for about a decade surrounding the present time. An appropriate value

of A in (31) was chosen so as to obtain (23) with small additional oscillatory

values. The table was much the same from one year to the next, so we essentially
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TABLE I

VARIATION IN CT-(Al + 32.15) VERSUS FRACTION OF SIDEREAL YEAR

Fraction
of
Year

CT-(Al + 32.15)
millisec

.01
.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
.17
18
19
.20
.21
Y22
.23
.24
.25
.26
o2,
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
41
.42
.43
44
.45
.46
W47
.48
.49

-

[eYoNoNoNoNololeNoNeNoloNoloNololoNolaoNoNoNololololololoNololeoloeNoloeNojlojejlololloNoNo oo o oo No)

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
IR
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

.1056
.0000
.1058
.2115
.3166

.4206
.5233

.6240
.7225

.8183

L9111

.0003
.0857
.1670
.2438
.3158
.3827
L4442
.5002
.5504
.5946
.6327
.6645
.6900

7089

L7214
.7273
.7267
.7195
.7059
.6859
.6595
.6270
.5884
.5440
.4939
.4383
.3775
.3117
<2411
.1661
.0869
.0039
.9173
.8276
.7350
.6398
.5426
4436
.3431

L2417

Fraction
of CT-(Al + 32.15)
Year millisec
0.50 - 0.1396
0.51 - 0.0372
0.52 0.0650
0.53 0.1667
0.54 0.2676
0.55 0.3671
0.56 0.4650
0.57 0.5609
0.58 0.6544
0.59 0.7452
0.60 0.8329
0.61 0.9172
0.62 0.9978
0.63 1.0743
0.64 1.1464
0.65 1.2139
0.66 1.2765
0.67 1.3339
0.68 1.3859
0.69 1.4323
0.70 1.4729
0.71 1.5075
0.72 1.5360
0.73 1.5582
0.74 1.5740
0.75 1.5834
0.76 1.5863
0.77 1.5826
0.78 1.5724
0.79 1.5557
0.80 1.5324
0.81 1.5028
0.82 1.4669
0.83 1.4247
0.84 1.3766
0.85 1.3225
0.86 1.2629
0.87 1.1978
0.88 1.1275
0.89 1.0523
0.90 0.9726
0.91 0.8885
0.92 0.8005
0.93 0.7089
0.94 0.6141
0.95 0.5164
0.96 0.4163
0.97 0.3142
0.98 0.2105
0.99 0.1056
1.00 - 0.0000
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obtained formula (41) more exactly with a table look-up instead of evaluating
trigonometric terms.

Specifically, the programming in PEP to utilize Table I is as follows.
Given the Coordinate Julian Date (call it JED) we calculate the fraction of

coordinate time tf from the beginning of year by

te = (JED — 2439491.5)/365.2563604 (43)

where JED 2439491.5 is 1.0 January 1967 and 365.2563604 is the length of
the sidereal year in days. Using the fraction of year tf the value of
CT — (A1 + 32.15) is determined by interpolation from Table I. Given an
atomic time epoch instead of a coordinate time epoch, an iterative process
determines CT — (Al + 32.15) from the table. The zero crossing in Table I
is slightly offset from the zero crossing at perihelion in (41), but this does
not operationally matter as long as the same convention is used consistently
all the time.

This formulation ignores a number of effects in the variation of the

rate of atomic time relative to coordinate time. To see how large these can

be suppose there is a variation in the gravitation potential and velocity

enviromment (divided by cz) of maximum magnitude D and period T . We
have
t
D/ cos <2Lt) dt & —% sin(th> (44)
T 2m T
o

so that the longer the period for a given magnitude phenomenon the larger
the cumulative effect.
Because of the motion of the earth about the earth-moon barycenter,

vz/c2 differs from voz/c2 by as much as * 8.3 x 10_12 and U/c2 differs

~13

from Uo/c2 by as much as * 3.1 x 10 (this last is entirely due to the

gravitational potential of the sun). In addition, because of the eccentricity
of the Moon's orbit about the earth, U/c2 differs from Uo/c2 by as much

as * 7.8 x 10_15 due to the moon. Thus general relativity predicts an

additional term in (41) of period one lunar month and amplitude 2.2 x 10-7

seconds.
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Because of the rotation of the earth v2/c2 differs from v02/c2 by
as much as * 3.1 x 10-10 cos ¢, where ¢ 1is the latitude of the atomic
clock, and U/c2 differs from Uo/c2 by as much as * 4.3 x 10.-13 cos ¢ due
to the sun and * 2.4 x 10_15 cos ¢ due to the moon. Thus general relativity
predicts an additional term in (41) of period one sidereal day and amplitude
4.3 x 10_6 cos ¢ seconds.

The mn-informity between atomic time and coordinate time predicted by
general relativity affects the theoretical value of an observation in (i) the
actual measurement and (ii) the specification of epoch.

If an observation involves a measurement of time delay, effect (i)
enters into the conversion of the theoretical value of the measurement from
coordinate time CT to atomic time Al . If the time delay in coordinate
time were At, the atomic time delay would differ from it by at most aAt,

where 0o (dimensionless) is the maximum rate of change in the periodic vari-

ations in CT — Al.
In the case of the yearly term due to the eccentricity of the earth-
-1
moon barycenter orbit, we have o = 3.3 x 10 0. For an interplanetary round

trip time delay measurement of magnitude At = 1000 seconds, this effect could
be as large as 0.33 psec, so it can be important. For observations of earth
satellites with At =~ 1 second, this effect can be ignored, except for as yet
unobtained subnanosecond round trip time delay accuracies.

In the case of the monthly term due to the motion of the earth relative
to the earth-moon barycenter, we have a = 5.9 x 10-13. This effect (1)
on a delay measurement is unimportant for both interplanetary and earth satel-
lite observations.

In the case of the diurnal term due to the rotation of the earth, we
have o = 3.1 x 10_10. Thus effect (i) on an earth satellite time delay
measurement is unimportant, but it can be as large as 0.31 usec for a 1000
second interplanetary round trip time delay measurement. We do not pursﬁe the
accurate inclusion of this effect into PEP since this report is mainly directed
toward earth satellites.

Effect (ii) enters into the calculation of the theoretical value of

an observation in-so-far as the theoretical value of an observation is changed

by a change in coordinate time epoch of the observation. We again consider
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time delay observations At, since they are potentially one of the most
accurate. The maximum possible effect is DA} where D is the magnitude
of the general relativity periodic term in CT-Al and At is the rate of
change of time delay except for that part due to the rotation of the earth.
In the case of an interplanetary time delay measurement IAEISVZ x ]_()—4
sec/sec so this effect can be important for the yearly term of magnitude

157 x lO—3 due to the eccentricity of the earth orbit. However, this is not
so for the case of earth satellite observations, except for super accurate

observations. The monthly and diurnal variations in epoch are unimportant

for both interplanetary and earth satellite observations.

There is a variation in (CT-Al + 32?15) at the microsecond level with
period 1.09 years due to the variation in Jupiters gravitational potential
at the earth. This effect and those due to the fact that the earth-moon
barycenter orbit does not follow exactly the same elliptical path from year

to year are ignorable with present observable accuracies.

ITI-C. U.S. Naval Observatory Time Service

The time used in specifying the epoch of an observation is usually UTC
time signal time, which is disseminated by the U.S. Naval Observatory WWV radio
station (a "coordinate station'), by other time service ('coordinate') stations,
and by the Loran-C system. In addition, portable cesium or rubidium atomic
clocks are carried from Washington, D. C. to various sites to check the rela-
tion between the UTC clock at the Naval Observatory and the local site clock.

It is attempted to keep UTC time in fairly close accord with the UT2
time defined by the rotation of the earth (see Section III-D). Before 1.0
January 1972 this was accomplished by jumps in the clock reading and by
changing the rate of the clock. After 1.0 January 1972 the UTC clock rate
will be kept at the Al clock rate (22) and one second quantum jumps (leap
seconds) will be made. Table II gives the history of the frequency offset of
the UTC clock from the Al clock and Table III gives the history of the quantum
jumps in the UTC clock as given in the U.S. Naval Observatory Time Service

Notices and Bulletins. Table IV gives the relation between Al and UTIC times

26




TABLE II

Fractional Frequency Offset of UTC from Al in Units of lO-J'0

Jan 1956 to Aug 1957 varied between - 36 and -98
Aug 1957 to Dec 1958 varied between - 83 and - 127
1.0 Jan 1960 to 32.0 Dec 1959 varied between - 92 and - 112
1.0 Jan 1960 to 32.0 Dec 1961 - 150
1.0 Jan 1962 to 32.0 Dec 1963 - 130
1.0 Jan 1964 to 32.0 Dec 1965 - 150
1.0 Jan 1966 to 32.0 Dec 1971 - 300
1.0 Jan 1972 to 000  0O0ZR0000 0

from 1956 to the present as given on punched cards supplied by the U.S. Naval
Observatory. From 1.0 January 1966 to 32.0 December 1971 this relation is

given by*
A.1l — UIC = 6.2398697 + 0.002592 t

+ 0.0007 1if between 1.0 Jan 1966 and 1.0 Dec 1966
+ 0.0 if between 1.0 Dec 1966 and 1.0 Feb 1968

— 0.1 if between 1.0 Feb 1968 and 32.0 Dec 1971 (45)

where t 1is the time in Al or UTC days from 1.0 January 1968 (Julian Date
2439856.5). After 1.0 January 1972 we will have

Al — UTC = constant (see end of Table IV) (46)

* Private Communication from R. G. Hall, Assistant Director of Time Service
Division, U.S. Naval Observatory (20 May 1969). Before 1968 the formula could
be off by a few tenths of a millisecond. More recently, the formula is more
accurate than the number of digits in Table IV.
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TABLE III

(The Julian Day Number is the Julian Date at noon on the given

QUANTUM JUMPS IN Al-UTC

Greenwich calendar day; see Ref. 7, Table I, pp. 493-495)

Julian Amount Julian Amount
Day UTC of Jump Day UTC of Jump
Number Year Month Day Hr (sec) Number Year Month Day Hr (sec)
2435477 1956 Jan 04 19 0.061 2436597 1959 Jan 28 19 0.020
2435540 March 07 19 -0.020 2436625 Feb 25 19 0.020
2435561 March 28 19 -0.020 2436786 Aug 05 19 0.020
2435681 July 26 19 0.020 2436807 Aug 26 19 0.020
2435708 Aug 22 19 0.020 2436842 Sept 30 19 0.020
2435736 Sept 19 19 0.020 2436877 Nov 04 19 0.020
2435778 Oct 31 19 0.020 2436891 Nov 18 19 0.020
2435792 Nov 14 19 0.020 2436919 Dec 16 19 0.020
2435862 1957 Jan 23 19 0.020 2437301 1961 Jan 01 00 0.005
2435911 Mar 13 19 0.020 2437513 Aug 01 00 -0.050
2435960 May 01 19 0.020 2438335 1963 Nov 01 00 0.100
2435995 June 05 19 0.020 2438487 1964 April 01 00 0.100
2436009 June 19 19 0.020 2438640 Sept 01 00 0.100
2436023 July 03 19 0.020 2438670 Oct 01 00 0.001
2436037 July 17 19 0.020 2438762 1965 Jan 01 00 0.100
2436065 Aug 14 19 0.020 2438821 March 01 00 0.100
2436128 Oct 16 19 0.020 2438943 July 01 00 0.100
2436149 Nov 06 19 0.020 2439005 Sept 01 00 0.100
2436184 Dec 11 19 0.020 2439461 1966 Dec 01 00 -0.0007
2436219 1958 Jan 15 19 0.020 2439888 1968 TFeb 01 00 -0.100
2436240 Feb 05 19 0.020 2441318 1972 Jan 01 00 0.1076
2436254 Feb 19 19 0.020
2436303 April 09 19 0.020 After 1 Jan 1972 there will be 1 sec-
2436366 June 11 19 0.020 ond quantum jumps every 6 months or
2436387 July 02 19 0.020 a year.
2436401 July 16 19 0.020
2436499 Oct 22 19 0.020
2436534 Nov 26 19 0.020
2436562 Dec 24 19 0.020

28




where the constant will be incremented by 1 second every 6 months or a
year to keep UTC within 0?7 of UT2.

In PEP the value of Al — UTC for processing observations is deter-
mined by a computer subroutine which before 1.0 January 1966 performs linear
interpolation from the 10 day tabular interval table given in Table IV taking
account of quantum jumps and which after that date uses formulas (45) and (46).

In recent years Al time (being the average of about 16 cesium atomic
clocks) has had 2 long term accuracy of 1 part in 1013, which means that the
Al time which has elapsed between two epochs separated by a year is known to
3 usec seconds. See Ref. 13.

A hydrogen maser atomic clock has an accuracy of 1 part in 1014.
However, the rate of the clock is not reproducible as it is for cesium clocks.
Therefore, cesium clocks are used as the continuous time standard. Hydrogen
maser clocks must be used in making super accurate observation measurements
such as with very long baseline interferometry and round trip time delay, but
it is then necessary to solve for observation biases when fitting to data.

This is quite possible, and might even be done anyway. We might note that a
hydrogen maser atomic clock costs about $100,000 whereas a cesium atomic
clock costs about $10,000.

A local time standard is usually running at the rate of the UTC
clock. Therefore, delay measurements, as in radar or radio transponder observa-
tions, is in UTC time units. The theoretical value of a delay measurement
computed from the tables of motion of a satellite are in CT time units which
is then converted to Al time units. Before 1.0 January 1972 the theoretical

value must in addition be multiplied by

1 - fractional frequency offset (47)

in order to compare it with the observed value in UTC time units.
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JULIAN
DATE
2435479.5
2435489.5
2435499.5
2435509.5
2435519.5
2435529.5
2435539.5
2435549.5
2435559.5
2435569.5
2435579.5
2435589.5
2435599.5
2435609.5
2435619.5
2435629.5
2435639.5
2435649.5
2435659.5
2435669 .5
2435679.5
2435689.5
2435699.5
2435709.5
2435719.5
2435729.5
2435739.5
2435749.5
2435759.5
2435769.5
2435779.5
2435789.5
2435799.5
2435809.5
2435819.5
2435829.5
2435839.5
2435849.5
2435859.5
2435869.5
2435879.5
2435889.5
2435899.5
2435909.5
2435919.5
2435929.5

CALENDAR

DATE
JAN
JAN
JAN
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JUN
JUN
JUN
JUL
JUL
JUL
AUG
AUG
AUG
SEP
SEP
SEP
oCT
oCT
OCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
JAN
FEB
FEB
MAR
MAR
MAR
APR

1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956
1956

TABLE IV

WOBBLE (")
X Y
0.035 0.331
0.088 0.325
0.126 0.320
0.155 0.315
0.177 0.310
0.200 0.310
0.224 0.310
0.240 0.310
0.238 0.293
0.232 0.274
0.223 0.250
0.218 0.220
0.216 0.184
0.214 0.144
0.212 0.104
0.210 0.068
0.207 0.043
0.204 0.025
0.200 0.013
0.195 0.001
0.185-0.003
0.167 0.001
0.146 0.006
0.123 0.014
0.099 0.024
0.077 0.025
0.062 0.026
0.049 0.027
0.013 0.035

1956 -0.027 0.043

1956
1956
1956
1956

-0.057 0.056
-0.087 0.073
-0.122 0.093
-0.162 0.116

1956 -0.187 0.141

1956
1957

-0.206 0.169
-0.218 0.195

1957 -0.225 0.224

1957
1957
1957

-0.209 0.315

1957 -0.206 0.339

1957

-0.147 0.377

1957 -0.100 0.404

1957

-0.054 0.420

1957 -0.006 0.440
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A1-UTC
SEC

-0.8188
-0.8050
-0.7918
-0.7796
-0.7669
-0.7539
-0.7425
-0.7521
-0.7410
-0.7514
-0.7433
-0.7291
-0.7223
-0.7155
-0.7087
-0.7011
-0.6944
-0.6896
-0.6855
-0.6821
-0.6582
-0.6552
-0.6325
-0.6309
-0.6279
-0.6034
-0.5984
-0.5938
-0.5907
-0.5672
-0.5638
-0.5393
-0.5337
-0.5281
-0.5209
-0.5132
-0.5052
-0.4968
-0.4687
-0.4605
-0.4531
-0.4468
-0.4408
-0.4145
-0.4080

A1-0T1
SEC
-0.7998
-0.7920
-0.7847
-0.7764
-0.7664
-0.7563
-0.7449
-0.7328
-0.7204
-0.7073
-0.6947
-0.6821
-0.6691
-0.6576
-0.6477
-0.6397
-0.6329
-0.6278
-0.6241
-0.6213
-0.6193
-0.6168
-0.6142
-0.6103
-0.6057
-0.6002
-0.5934
-0.5845
-0.5740
-0.5633
-0.5510
-0.5375
-0.5252
-0.5124
-0.5000
-0.4872
-0. 4746
-0.4632
-0.4504
-0.4380
-0.4245
-0.4101
-0.3965
-0.3819
-0.3671
-0.3520

DATA FROM U.S. NAVAL OBSERVATORY TIME SERVICE PUNCHED CARDS

UT2-UT1
SEC
-0.0102
-0.0089
-0.0075
-0.0058
-0.0034
-0.0003
0.0035
0.0080
0.0131
0.018u
0.0236
0.0282
0.0320
0.03u44
0.0352
0.0342
0.0315
0.0270
0.0211
0.0141
0.0065
-0.0013
-0.0086
-0.0152
-0.0206
-0.02u6
-0.0271
-0.0281
-0.0277
-0.0264
-0.0242
-0.0217
-0.0190
-0.0166
-0.0143
-0.0125
-0.0097
-0.0084
-0.0068
-0.0049
-0.0022
0.0012
0.0053
0.0101
0.0153




JULIAN
DATE
2435939.5
2435949.5
2435959.5
2435969.5
2435979.5
2435989.5
2435999.5
2436009.5
2436019.5
2436029.5
2436039.5
2436049.5
2436059.5
2436069.5
2436079.5
2436089.5
2436099.5
2436109.5
2436119.5
2436129.5
2436139.5
2436149.5
2436159.5
2436169.5
2436179.5
2436189.5
2436199.5
2436209.5
2436219.5
2436229.5
2436 239.5
2436249.5
2436259.5
2436269.5
2436279.5
2436289.5
2436299.5
2436309.5
2436319.5
2436329.5
2436339.5
2436349.5
2436359.5
2436369.5
2436379.5
2436389.5

CALENDAR

DATE
APR
APR
MAY
MAY
MAY
MAY
JUN
JON
JUN
JUL
JUL
JUL
AUG
AUG
AUG
SEP
SEP
SEP
oCT
OCT
oCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
FEB
MAR
NAR
MAR
APR
APR
APR
MAY
MAY
MAY
JUN
JUN
JUN
JOL

11.0
21.0

1.0
11.0
21.0
31.0
10.0
20.0
30.0
10.0
20.0
30.0

9.0
19.0
29.0

8.0
18.0
28.0

8.0
18.0
28.0

7.0
17.0
27.0

7.0
17.0
27.0

6.0
16.0
26.0

5.0
15.0
25.0

7.0
17.0
27.0

6.0

1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1957
1958
1958
1958
1958
1958
1958
19538
1958
1958
1958
1958
1958
1958
1958
1958
1958
1958
1958
1958

TABLE IV

WOBBLE (")
X Y
0.026 0.453
0.057 0.460
0.105 0.460
0.153 0.454
0.193 0.440
0.232 0.418
0.270 0.393
0.326 0.358
0.356 0.313
0.378 0.274
0.386 0.241
0.391 0.207
0.394 0.173
0.396 0.138
0.388 0.110
0.368 0.082
0.336 0.054
0.291 0.026
0.243-0.002
0.194-0.027
0.146-0.047
0.098-0.059
0.041-0.069
-0.022-0.075
-0.092-0.077
-0.145-0.072
-0.181-0.059
-0.210-0.042
-0.221-0.008
-0.227 0.033
-0.232 0.079
-0.232 0.133
-0.223 0.200
-0.211 0.243
-0.191 0.289
-0.165 0.334
-0.133 0.376
-0.101 0.406
-0.068 0.426
-0.032 0.443
0.006 0.458
0.046 0.468
0.086 0.473
0.123 0.470
0.156 0.462
0.187 0.449
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(Cont'd)

A1-UTC
SEC
-0.4022
-0.3959
-0.3886
-0.3609
-0.3545
-0.3490
-0.3238
-0.2983
-0.2928
-0.2672
-0.2419
-0.2368
-0.2304
-0.2031
-0.1939
-0.1857
-0.1764
-0.1661
-0.1556
-0.1255
-0.1155
-0.0875
-0.0803
-0.0708
-0.0598
-0.0297
-0.0200
-0.0103
0.0186
0.0276
0.0362
0.0644
0.0926
0.1010
0.1098
0.1182
0.1272
0.1561
0.1649
0.1736
0.1817
0.1890
0.1979
0.2270
0.2361
0.2653

A1-0T1
SEC
-0.3360
-0.3199
-0.3029
-0.2864
-0.2710
-0.2570
-0.2439
-0.2332
-0.2249
-0.2179
-0.2111
-0.2067
-0.2009
-0.1944
-0.1859
-0.1754
-0.1636
-0.1498
-0.1345
-0.1175
-0.0995
-0.0819
-0.0629
-0.0439
-0.0251
-0.0068
0.0117
0.0303
0.0473
0.0634
0.0801
0.0964
0.1127
0.1294
0.1468
0.1647
0.1833
0.2011
0.2194
0.2368
0.2533
0.2679
0.2800
0.2909
0.2999
0.3070

UT2-0T1
SEC
0.0206
0.0257
0.0300
0.0332
0.03590
0.0350
0.0332
0.0297
0.0245
0.0180
0.0110
0.0029
-0.00u48
-0.0118
-0.0179
-0.0226
-0.0259
-0.0277
-0.0281
-0.0272
-0.0254
-0.0230
-0.0204
-0.0178
-0.0154
-0.0134
-0.0117
-0.0103
-0.0091
-0.0076
-0.0059
-0.0036
-0.0006
0.0032
0.0076
0.0127
0.0180
0.0232
0.0280
0.0318
0.0343
0.0352
0.0343
0.0316
0.0273
0.0214




JULIAN
DATE
2436399.5
2436409.5
2436419.5
2436429.5
2436439.5
2436449.5
2436459.5
2436469.5
2436479.5
24 36489.5
2436499.5
2436509.5
2436519.5
2436529.5
2436539.5
2436549.5
2436559.5
2436569.5
2436579.5
2436589.5
2436599.5
2436609.5
2436619.5
2436629.5
2436639.5
2436649.5
2436659.5
2436669.5
2436679.5
2436689.5
2436699.5
2436709.5
2436719.5
2436729.5
2436739.5
2436749.5
2436759.5
2436769.5
2436779.5
2436789.5
2436799.5
2436809.5
2436819.5
2436829.5
2436839.5
2436849.5

CALENDAR
DATE

15.0 JUL 1958
25.0 JUL 1958
4.0 AUG 1958
14.0 AUG 1958
24.0 AUG 1958
3.0 SEP 1958
13.0 SEP 1958
23.0 SEP 1958
3.0 OCT 1958
13.0 oCT 1958
23.0 OCT 1958
2.0 NOV 1958
12.0 NOV 1958
22.0 NOV 1958
2.0 DEC 1958
12.0 DEC 1958
DEC 1958
JAN 1959
JAN 1959
JAN 1959
JAN 1959
FEB 1959
FEB 1959
MAR 1959
MAR 1959
MAR 1959
APR 1959
APR 1959
APR 1959
MAY 1959
MAY 1959
MAY 1959
31.0 MAY 1959
10.0 JUN 1959
20.0 JON 1959
30.0 JUuN 1959
10.0 JuUL 1959
20.0 JOL 1959
30.0 JUL 1959
9.0 AUG 1959
19.0 AUG 1959
29.0 AUG 1959
8.0 SEP 1959
18.0 SEP 1959
28.0 SEP 1959
8.0 OCT 1959
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TABLE IV (Cont'd)

WOBBLE (")
X Y

0.218 0.427
0.248 0.395
0.276 0.361
0.303 0.321
0.330 0.277
0.355 0.248
0.376 0.215
0.392 0.162
0.403 0.129
0.387 0.077
0.357 0.043
0.319-0.007
0.277-0.032
0.229-0.068
0.181-0.077
0.128-0.094
0.075-0.081
0.022-0.079
-0.031-0.070
-0.072-0.059
-0.105-0.046
-0.126-0.028
-0.145-0.005
-0.158 0.022
-0.169 0.053
-0.175 0.087
-0.174 0.123
-0.168 0.161
-0.160 0.197
-0.150 0.232
-0.137 0.265
-0.121 0.296
-0.102 0.324
-0.081 0.349
-0.057 0.369
-0.030 0.382
0.001 0.384
0.037 0.381
0.078 0.375
0.122 0.365
0.174 0.347
0.226 0.322
0.270 0.293
0.302 0.269
0.319 0.249
0.323 0.231
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A1-0TC
SEC
0.2744
0.3034
0.3122
0.3211
0.3302
0.3389
0.3477
0.3565
0.3652
0.3740
0.4024
0.4109
0.4192
0.4275
0.4556
0.4637
0.4724
0.5011
0.5102
0.5193
0.5486
0.5579
0.5671
0.5968
0.6060
0.6154
0.6247
0.6342
0.6435
0.6527
0.6618
0.6708
0.6798
0.6892
0.6983
0.7073
0.7162
0.7250
0.7335
0.7622
0.7709
0.7995
0.8082
0.8168
0.8257
0.8541

A1-UT1
SEC
0.3137
0.3195
0.3255
0.3316
0.3385
0.3467
0.356uU
0.3674
0.3808
0.3957
0O.4114
0.u4278
0.4448
0.4612
0.4782
0.4944
0.5109
0.5262
0.5417
0.5585
0.5742
0.5879
0.6013
0.6149
0.6280
0.6419
0.6562
0.6709
0.6853
0.6995
0.7128
0. 7255
0.7375
0.7481
0.7582
0.7668
0.7745
0.7812
0.7875
0.7944
0.8015
0.8104
0.8213
0.8331
0.846u
0.8622

UT2-UT1
SEC
0.0144
0.0068
-0.0010
-0.0084
-0.0150
-0.0204
-0.0245
-0.0270
-0.0281
-0.0278
-0.0264
-0.0243
-0.0217
-0.0191
-0.0166
-0.0143
-0.0125
-0.0110
-0.0097
-0.0084
-0.0068
-0.0048
-0.0022
0.0012
0.0053
0.0101
0.0153
0.0206
0.0257
0.0300
0.0332
0.0350
0.0350
0.0332
0.0297
0.0245
0.0180
0.0107
0.0029
-0.0048
-0.0118
-0.0179
-0.0226
-0.0260
-0.0277
-0.0281




TABLE IV (Cont'd)

JULIAN CAL ENDAR WOBBLE (") A1-0TC A1-UT1 UT2-UT1
DATE DATE X Y SEC SEC SEC
2436859.5 18.0 OCT 1959 0.323 0.213 0.8630 0.8787 -0.0272
2436869.5 28.0 OCT 1959 0.317 0.195 0.8720 0.8963 -0.0254
2436879.5 7.0 NOV 1959 0.308 0.177 0.9011 0.9133 -0.0230
2436889.5 17.0 NOV 1959 0.294 0.157 0.9100 0.9315 -0.0204
2436899.5 27.0 NOV 1959 0.275 0.135 0.9389 0.9491 -0.0178
2436909.5 7.0 DEC 1959 0.252 0.113 0.9476 0.9654 -0.0154
2436919.5 17.0 DEC 1959 0.224 0.093 0.9766 0.98611 -0.0134
2436929.5 27.0 DEC 1959 0.193 0.075 0.9855 0.9956 -0.0117
2436939.5 6.0 JAN 1960 0.160 0.069 0.9965 1.0093 -0.0103
2436949.5 16.0 JAN 1960 0.131 0.055 1.0095 1.0222 -0.0091
2436959.5 26.0 JAN 1960 0.102 0.043 1.0223 1.0348 -0.0077
2436969.5 5.0 FEB 1960 0.073 0.033 1.0351 1.0478 -0.0060
2436979.5 15.0 FEB 1960 0.045 0.028 1.0480 1.0620 -0.0037
2436989.5 25.0 FEB 1960 0.017 0.028 1.0608 1.0768 -0.0007
2436999.5 6.0 MAR 1960 -0.011 0.034 1.0735 1.0920 0.0031
2437009.5 16.0 MAR 1960 -0.036 0.045 1.0862 1.1074 0.0075
2437019.5 26.0 MAR 1960 -0.057 0.061 1.0987 1.1238 0.0126
2437029.5 5.0 APR 1960 -0.074 0.081 1.1113 1.1396 0.0179
2437039.5 15.0 APR 1960 -0.087 0.100 1.1242 1.1559 0.0231
2437049.5 25.0 APR 1960 -0.096 0.118 1.1370 1.1724 0.0278
2437059.5 5.0 MAY 1960 -0.101 0.135 1.1497 1.1879 0.0316
2437069.5 15.0 MAY 1960 -0.101 0.151 1.1625 1.2021 0.0342
2437079.5 25.0 MAY 1960 -0.100 0.166 1.1751 1.2150 0.0352
2437089.5 4.0 JUN 1960 -0.099 0.180 1.1878 1.2260 0.0344
2437099.5 14.0 JUN 1960 -0.096 0.193 1.2004 1.2351 0.0318
2437109.5 24.0 JUN 1960 -0.090 0.205 1.2130 1.2425 0.0275
2437119.5 4.0 JuL 1960 -0.080 0.217 1.2258 1.2484 0.0217
2437129.5 14.0 JUL 1960 -0.066 0.229 1.2385 1.2530 0.0148
2437139.5 24.0 JUL 1960 -0.048 0.243 1.2514 1.2568 0.0073
2437149.5 3.0 AUG 1960 -0.028 0.258 1.2641 1.2599 -0.0005
2437159.5 13.0 AUG 1960 -0.006 0.272 1.2767 1.2639 -0.0079
2437169.5 23.0 AUG 1960 0.014 0.284 1.2892 1.2695 -0.0146
2437179.5 2.0 SEP 1960 0.034 0.294 1.3018 1.2771 -0.0201
2437189.5 12.0 SEP 1960 0.052 0.302 1.3144 1.2868 -0.0242
2437199.5 22.0 SEP 1960 0.070 0.305 1.327 1.2980 -0.0269
2437209.5 2.0 OCT 1960 0.088 0.305 1.3397 1.3107 -0.0280
2437219.5 12.0 OCT 1960 0.104 0.303 1.3523 1.3240 -0.0278
2437229.5 22.0 OCT 1960 0.119 0.299 1.3650 1.3378 ~-0.0266
2437239.5 1.0 NOV 1960 0.133 0.293 1.3777 1.3522 -0.0245
2437249.5 11.0 NOV 1960 D0.146 0.283 1.3904 1.3667 -0.0220
2437259.5 21.0 NOV 1960 0.148 0.269 1.4031 1.3816 -0.0194
2437269.5 1.0 DEC 1960 0.148 0.252 1.4161 1.3961 -0.0168
2437279.5 11.0 DEC 1960 0.147 0.235 1.4290 1.4108 -0.0145
2437289.5 21.0 DEC 1960 0.147 0.221 1.4419 1.4243 -0.0127
2437299.5 31.0 DEC 1960 0.147 0.209 1.4549 1.4376 -0.0111
2637309.5 10.0 JAN 1961 0.142 0.210 1.4728 1. 4500 -0.0098
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JULIAN
DATE
2437319.5
2437329.5
2437339.5
2437349.5
2437359.5
2437369 .5
2437379.5
2437389.5
2437399.5
2437409.5
2437419.5
2437429.5
2437439.5
2437449.5
2437459.5
2437469.5
2437479.5
2437489.5
2437499.5
2437509.5
2437519.5
2437529.5
2437539.5
2437549.5
2437559.5
2437569.5
2437579.5
2437589.5
24 37599.5
2437609.5
2437619 .5
2437629.5
2437639.5
2437649.5
2437659.5
2437669.5
2437679.5
2437689.5
2437699.5
2437709.5
2437719.5
2437729.5
2437739.5
2437749.5
2437759.5
2437769.5

CALENDAR

w N
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20.0
30.0
9.0
19.0
29.0
9.0
19.0
29.0
8.0
18.0
28.0
7.0
17.0
27.0
7.0
17.0
27.0
6.0
16.0
26.0
6.0
16.0
26.0
5.0
15.0
25.0
4.0
14.0
24.0
6.0
16.0
26.0
5.0
15.0

DATE
JAN
JAN
FEB
FEB
MAR
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JUN
JUN
JUN
JUL
JUL
JUL
Al0G
AUG
AUG
SEP
SEP
SEP
ocT
OCT
oCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR

1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1961
1962
1962
196 2
1962
1962
1962
1962
1962
1962
1962
1962

TABLE IV

(Cont'd)

WOBBLE (")

X
0.142
J.141
0.140
0.138
0.135
0.131
0.127
0.123
0.118
0.111
0.101
0.088
0.075
0.064
0.055
0.046
0.037
0.028
0.019
0.011
0.003
-0.003
-0.008
-0.012
-0.015
-0.018
-0.021
-0.024
-0.027
-0.029
-0.031
-0.033
-0.031
-0.025
-0.015
-0.038
-0.043
-0.046
-0.044
-0.042
-0.036
-0.018

0.008

0.030

0.046

0.056

Y
0.199
0.188
0.177
0.164
0.149
0.134
0.121
0.110
0.101
0.099
0.099
0.100
0.104
0.110
0.118
0.128
0.140
0.154
0.170
0.187
0.203
0.207
0.210
0.213
0.215
0.217
0.219
0.220
0.221
0.222
0.222
0.223
0.225
0.230
0.238
0.237
0.253
0.264
0.268
0.277
0.287
0.296
0.303
0.303
0.298
0.289
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A1=-UTC
SEC
1.4858
1.4987
1.5116
1.5245
1.5373
1.5502
1.5631
1.5760
1.5889
1.6017
1.6146
1.6275
1.6404
1.6532
1.6661
1.6789
1.6917
1.7045
1.7173
1.7302
1.6931
1.7060
1.7190
1.7321
1.7451
1.7580
1.7709
1.7838
1.7967
1.8097
1.8226
1.8356
1.8486
1.8616
1.8746
1.8869
1.8981
1.9093
1.9205
1.9317
1.9429
1.9541
1.9654
1.9767
1.9879
1.9992

A1-UT1
SEC
1.4611
1. 4699
1.4787
1.4881
1.5001
1.5156
1. 5338
1.5511
1.5651
1.5769
1.5880
1.5990
1.6118
1.6234
1.6341
1.6430
1.6506
1.6569
1.6625
1.6677
1.6730
1.6789
1.6857
1.6939
1.7033
1.7141
1.7262
1.7394
1.7535
1.7680
1.7828
1.7975
1.8117
1.8252
1.8377
1.8517
1.8644
1.8772
1.8896
1.9033
1.9174
1.9320
1.9472
1.9628
1.9781
1.9943

UT2-UT1
SEC
-0.0085
-0.0070
-0.0050
-0.0025
0.0008
0.0049
0.0097
0.0148
0.0201
0.0252
0.0296
0.0329
0.0349
0.0350
0.0334
0.0301
0.0251
0.0187
0.0114
0.0037
-0.0040
-0.0111
-0.0173
-0.0222
-0.0257
-0.0276
-0.0281
-0.0273
-0.0256
-0.0233
-0.0206
-0.0181
-0.0156
-0.0136
-0.0119
-0.0104
-0.0092
-0.0061
-0.0038
-0.0009
0.0028
0.0071
0.0118
0.0161
0.0203




JULIAN
DATE
2437779.5
2437789.5
2437799.5
2437809.5
2437819.5
2437829.5
2437839.5
2437849.5
2437859 .5
2437869.5
2437879.5
2437889 .5
2437899.5
2437909.5
2437919.5
2437929.5
2437939.5
2437949.5
2437959.5
2437969.5
2437979 .5
2437989.5
2437999.5
2438009.5
2438019.5
2438029.5
2438039.5
2438049.5
2438059.5
2438069.5
2438079.5
24 38089.5
2438099.5
2438109.5
2438119.5
2438129.5
2438139.5
2438149.5
2438159.5
2438169.5
2438179.5
2438189.5
2438199.5
2438209.5
24.38219.5
2438229.5

CALENDAR

DATE
APR
MAY
MAY
MAY
JUN
JUN
JUN
JUL
JUL
JUL
AUG
AUG
AUG
SEP
SEP
SEP
OCT
OCT
OCT
NOV
NOV
NOV
DEC
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
MAR
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JUN
JUN
JUN
JUL
JUL

25.0
5.0
15.0
25.0
4.0
14.0
24.0
4.0
14.0
24.0
3.0
13.0
23.0
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10.0
20.0
30.0

9.0
19.0
29.0

9.0
19.0

1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1962
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963

TABLE IV (Cont'd)

WOBBLE (") A1-UTC

X Y SEC
0.065 0.281 2.0104
0.072 0.275 2.0216
0.076 0.269 2.0328
0.077 0.260 2.0440
0.078 0.247 2.0552
0.080 0.233 2.0664
0.087 0.218 2.0775
0.093 0.202 2.0887
0.097 0.185 2.0999
0.097 0.167 2.1111
0.089 0.151 2.1223
0.077 0.137 2.1335
0.063 0.124 2.1447
0.049 0.114 2.1559
0.034 0.108 2.1671
0.016 0.103 2.1783
-0.003 0.1702 2.1894
-0.024 0.105 2.2006
-0.048 0.112 2.2119
-0.070 0.122 2.2231
-0.093 0.134 2.2343
-0.115 0.153 2.2455
-0.136 0.179 2.2567
-0.156 0.214 2.2679
-0.175 0.242 2.2791
-0.190 0.267 2.2903
-0.194 0.288 2.3015
-0.193 0.308 2.3126
-0. 184 0.331 2.3238
-0.172 0.356 2.3350
-0.157 0.374 2.3462
-0.138 0.385 2.3574
-0.117 0.395 2.3687
-0.092 0.407 2.3799
-0.062 0.419 2.3912
-0.032 0.429 2.4024
-0.004 0.432 2.4136
0.026 0.425 2.4248
0.060 0.413 2.4361
0.094 0.404 2.4473
0.127 0.390 2.4586
0.156 0.368 2.4698
0.180 0.339 2.4810
0.199 0.306 2.4923
0.212 0.273 2.5035
0.220 0.236 2.5147
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A1-UT1
SEC
2.0108
2.0270
2.0428
2.0570
2.0687
2.0778
2.0849
2.0907
2.0957
2.1009
2.1069
2.1138
2. 1220
2.1320
2. 1453
2.1594
2.1727
2.1871
2.2037
2.2215
2.2391
2.2570
2.2751
2.2934
2.3106
2.3263
2.3385
2.3489
2.3586
2.3683
2.3782
2.3888
2.4016
2,419
2.4386
2.4581
2.4768
2.4938
2.5106
2.5279
2.5438
2.5577
2.5697
2.5802
2. 5888
2.5960

UT2-UT1
SEC
0.0242
0.0274
0.0296
0.0305
0.0298
0.0275
0.0235
0.0181
0.0116
0.0043
-0.0031
-0.0103
-0.0167
-0.0221
-0.0260
-0.0283
-0.0290
-0.0282
-0.0263
-0.0234
-0.0200
-0.0164
-0.0129
-0.0098
-0.0072
-0.0052
-0.0036
-0.0024
-0.0013
0.0
0.0017
0.0039
0.0067
0.0102
0.0141
0.0182
0.0223
0.0259
0.0287
0.0303
0.0304
0.0289
0.0257
0.0210
0.0150
0.0080




JULIAN
DATE
2438239.5
2438249.5
2438259.5
2438269.5
2438279.5
2438289.5
2438299.5
24 38309.5
2438319.5
2438329.5
2438339.5
2438349.5
2438359.5
2438369.5
2438379.5
2438389.5
2438399.5
24 38409.5
2438419.5
2438429.5
2438439.5
2438449.5
2438459.5
2438469.5
2438479.5
24 38u489.5
2438499.5
2438509.5
2438519.5
2438529.5
24 38539.5
2438549.5
2438559.5
2438569.5
2438579.5
2438589.5
2438599.5
2438609.5
2438619.5
2438629.5
2438639.5
2438649.5
24 38659.5
2438669.5
2438679.5
2438689.5

CALENDAR

TABLE IV (Cont'd)

DATE
JUL
AUG
AUG
AUG
SEP
SEP
SEP
OCT
oCT
OoCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JUN
JUN
JUN
JUL
JUL
JUL
AUG
AUG
AUG
SEP
SEP
SEP
OCT
ocCT
oCT

29.0
8.0
18.0
28.0
7.0
17.0
27.0
7.0
17.0
27.0
600
16.0
26.0
6.0
16.0
26.0

N
e o

N =
[ ]

N =

N =
[]

N = N = N = N =
o 6 6 o 6 o ® 0 & o 8 8 & o o

N =
e =N WWWWWWEESESESEEEsEsULOLOEEEOOULWDM
.
[~NoloNeoNoNoNoloNoeNeNoeloNeololeNeoNoNoNeNoRololoNeoloNoNoNeNoN e

N =

1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1963
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
19 64
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964
1964

WOBBLE (") A1-UTC

X Y SEC
0.222 0.200 2.5260
0.214 0.164  2.5372
0.195 0.134  2.5484
0.177 0.108  2.5595
0.156 0.087 2.5707
0.134 0.064 2.5819
0.108 0.042 2.5932
0.075 0.025 2.6043
0.033 0.014 2.6155
-0.008 0.015 2.6267
-0.045 0.022 2.7379
-0.078 0.032 2.7491
-0.108 0.045 2.7603
-0.138 0.059 2.7715
-0.168 0.078 2.7827
-0.202 0.106 2.7939
-0.228 0.134  2.8058
-0.247 0.162 2.8188
-0.262 0.190 2.8318
-0.272 0.220 2.8447
-0.273 0.253  2.8577
-0.265 0.289 2.8707
-0.248 0.325 2.8837
-0.228 0.359 2.8966
-0.202 0.390 2.9096
-0.171 0.417  3.0225
-0.137 0.443  3.0355
-0.105 0.465 3.0484
-0.075 0.479 3.0613
-0.046 0.482 3.0743
-0.018 0.478 3.0872
0.012 0.472  3.1002
0.049 0.467  3.1131
0.089 0.460 3.1260
0.129 0.446  3.1390
0.163 0.424  3.1519
0.189 0.394  3.1649
0.209 0.360 3.1778
0.224 0.330 3.1907
0.235 0.301  3.2036
0.240 0.270 3.3166
0.236 0.235 3.3295
0.228 0.199  3.3u25
0.217 0.165 3.3565
0.202 0.136 3.3694
0.183 0.111  3.3824

36

A1-UT?
SEC
2.6028
2.6120
2.6240
2.6369
2.6511
2.6662
2.6833
2.7015
2.7214
2.7423
2.7639
2.7860
2.8077
2.8292
2.8500
2.8704
2.8906
2.9117
2.9324
2.9527
2.9724
2.9930
3.0134
3.0351
3.0562
3.0774
3.0988
3.1210
3.1444
3.1678
3. 1895
3.2093
3.2260
3.2403
3.2520
3.2617
3.2720
3.2837
3.2965
3.3094
3.3234
3.3396
3.3590
3.3795
3.4038

UT2-0T1
SEC
0.0006
-0.0068
-0.0136
-0.0196
-0.0242
-0.0276
-0.0288
-0.0288
-0.0274
-0.0249
-0.0217
-0.0182
-0.0146
-0.0113
-0.0084
-0.0061
-0.00u4
-0.0030
-0.0018
-0.0007
0.0003
0.0027
0.0052
0.0088
0.0120
0.0160
0.0202
0.0241
0.0273
0.0296
0.0305
0.0299
0.0276
0.0237
0.0184
0.0119
0.0048
-0.0027
-0.0098
-0.0164
-0.0217
-0.0257
-0.0281
-0.0290
-0.0283

3.4291 -0.0265




JULIAN
DATE
2438699.5
2438709.5
2438719.5
2438729.5
2438739.5
2438749.5
2438759.5
2438769.5
2438779.5
2438789.5
2438799.5
2438809.5
2438819.5
2438829.5
2438839.5
2438849.5
2438859.5
2438869.5
2438879.5
2438889.5
2438899.5
2438909.5
2438919.5
2438929.5
2438939.5
2438949.5
24 38959.5
2438969.5
2438979.5
2438989.5
2438999.5
2439009.5
2439019.5
2439029.5
2439039.5
2439049.5
2439059.5
2439069.5
2439079.5
2439089.5
2439099.5
2439109.5
2439119.5
2439129.5
2439139.5
2439149.5

CALENDAR

31.0
10.0
20.0
30.0
10.0
20.0
30.0

9.0
19.0
29.0

8.0
18.0
28.0
10.0
20.0
30.0

9.0
19.0
29.0

9.0
19.0
29.0

8.0
18.0
28.0

8.0
18.0
28.0

7.0
17.0
27.0

6.0
16.0
26.0

6.0
16.0
26.0

5.0
15.0
25.0

5.0
15.0
25.0

4.0
14.0
24.0

DATE
ocCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JUN
JUN
JUN
JUL
JUL
JUL
AUG
AUG
AUG
SEP
SEP
SEP
oCT
oCT
oCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN

1964
1964
1964
1964
1964
1964
1964
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1965
1966
1966
1966

TABLE IV (Cont'd)

WOBBLE (")

X
0.157
0.123
0.085
0.0u48
0.018

-0.010
-0.039
-0.105
-0.146
-0.176
-0.197
-0.209
-00 217
-0.225
-0.228
-0.227
-0.219
-00 20“
-0.186
-0.165
-0.142
-0.117
-0.088
-0.052
-0.014
0.024
0.062
0.099
0.132
0.158
0.176
0.185
0.192
0.197
0.200
0.199
0.195
0.186
0.167
0.147
0.126
0.102
0.076
0.049
0.020

Y
0.092
0.074
0.058
0.049
0.052
0.054
0.055
0.057
0.062
0.075
0.094
0.120
0.150
0.180
0.211
0.245
0.281
0.315
0.349
0.383
0.410
0.425
0.441
0.u54
0.465
0.468
0.460
0.448
0.425
0.401
0.377
0.350
0.323
0.299
0.275
0.249
0.222
0.192
0.163
0.137
0.117
0.101
0.087
0.073
0.061
0.054

37

A1-0TC
SEC
3.3953
3.4083
3.4212
3.4342
3.4471
3.4601
3.4730
3.5859
3.5989
3.6118
3.62u48
3.6377
3.6507
3.7637
3.7766
3.7896
3.8026
3.8155
3.8285
3.8415
3.8544
3.8674
3.8803
3.8933
3.9062
4.0192
4.0322
4.0451
4.0581
4.0710
4.0840
4.1969
4.2099
4.2229
4.2358
4.2488
4.2617
4.2747
4.2876
4.3006
4.3136
4.3265
4.3395
4.3563
4.3822
4.4081

A1-0T1
SEC
3.4508
3.4719
3.4942
3.5161
3.5379
3.5615
3.5851
3.6061
3.6261
3.6471
3.6681
3.6886
3.7098
3.7331
3.7588
3.7869
3.8165
3.8410
3.8625
3.8849
3.9072
3.9287
3.9492
3.9689
3.9870
4.0041
4.0209
4.0367
4.0516
4.0676
4.0858
4.1058
4.1280
4.1516
4.1779
4.2049
4.2326
4.2611
4.2892
4.3164
4.3408
4.3638
4.3851
4.4026
4.4270
4.4512

0T2-0T1
SEC
-0.0203
-0.0167
-0.0132
-0.0101
-0.0074
-0.0054
-0.0038
-0.0025
-0.0014
~0.0001
0.0015
0.0037
0.0064
0.0098
0.0137
0.0178
0.0219
0.0256
0.0284
0.0301
0.0304
0.0289
0.0261
0.0215
0.0156
0.0087
0.0014
-0.0060
-0.0130
-0.0190
-0.0238
-0.0270
-0.0287
-0.0288
-0.0276
-0. 0252
-0.0221
-0.0186
-0.0150
-0.0116
-0.0087
-0.0063
-0.0046
-0.0030
-0.0018




JULIAN
DATE
2439159.5
2439169.5
2439179.5
2439189.5
2439199.5
2439209.5
2439219.5
2439229.5
2439239.5
2439249.5
2439259.5
2439269.5
2439279.5
2439289.5
2439299.5
2439309.5
2439319.5
2439329.5
2439339.5
2439349.5
2439359.5
2439369.5
2439379.5
2439389.5
2439399.5
2439409.5
2439419.5
2439429.5
2439439.5
2439449.5
2439459.5
2439469.5
2439479.5
2439489.5
2439499.5
2439509.5
2439519.5
2439529.5
2439539.5
2439549.5
2439559.5
2439569.5
2439579.5
2439589.5
2439599.5
2439609.5

CAL ENDAR

DATE
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JON
JON
JUN
JUL
JUL
JUL
AUG
AUG
AUG
SEP
SEP
SEP
OCT
oCT
oCT
oCcT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR
APR

1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1966
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967

TABLE IV

WOBBLE

X
-0.012
-0- 0“3
-0.070
-0.092
-0.107
-0.122
-0.138
-0.154
-0.169
-0.175
-0.173
-0.165
-0.153
-0.141
-0.126
-0.108
-0.089
-0.069
-0.0u8
-0.027
-0.007

0.013
0.032
0.049
0.065
0.081
0.098
0.113
0.124
0.127
0.125
0.121
0.112
0.097
0.081
0.067
0.056
0.046
0.034
0.022
0.010
0.0
-0.010
-0.020
-0.027
-0.027

(Cont'd)

(")
Y
0.052
0.054
0.063
0.074
0.087
0.104
0.124
0.149
0.177
0.202
0.223
0.243
0.263
0.285
0.304
0.322
0.340
0.356
0.361
0.361
0.361
0.358
0.354
0.350
0.346
0.341
0.332
0.316
0.294
0.273
0.254
0.235
0.220
0.206
0.190
0.175
0.169
0.167
0.165
0.164
0.164
0.166
0.169
0.173
0.177
0.183

38

A1-UTC
SEC
4.4341
4.4600
4.4859
4.5118
4.5377
4.5636
4.5896
4.6155
h.6u414y
4.6673
4.6932
4.7192
4.7451
4.7710
4.7969
4.8229
4.8u88
4.8747
4.9006
4.9266
4.9525
4.9784
5.0043
5.0302
5.0562
5.0821
5.1080
5.1339
5.1599
5.1858
5.2117
5.2369
5.2628
5.2887
5.3146
5.3406
5.3665
5.3924
5.4183
5.4442
5.4702
5.4961
5.5220
5.5478
5.5738
5.5998

A1-0T1
SEC
4.4759
4.5006
4.5249
4.5488
4.5723
4.5975
4.6234
4.6499
4.6775
4.7051
4.7320
4.7583
4.7829
4.8059
4.8268
4.8461
4.8645
4.8819
4.8988
4.917M
4.9365
4.9579
4.9810
5.0057
5.0322
5.0605
5.0894
5.1189
5.1486
5.1777
5.2055
5.2318
5.2566
5.2788
5.2993
5.3217
5.3456
5.3705
5.3961
5.4219
5.4477
5.4736
5.5011
5.5300
5.5587
5.5867

UT2-UT1
SEC
-0.0007
0.0007
0.0027
0.0050
0.0080
0.0117
0.0157
0.0199
0.0238
0.0270
0.0294
0.0305
0.0300
0.0278
0.0241
0.0188
0.0125
0.0054
-0.0021
-0.0092
-0.0159
-0.0213
-0.0254
-0.0279
-0.0290
-0.0284
-0.0267
-0.0240
-0. 0206
-0.0170
-0.0135
-0.0104
-0.0076
-0.0055
-0.0038
-0.0025
-0.0014
-0.0001
0.0015
0.0036
0.0064
0.0098
0.0136
0.0178
0.0219
0.0255




JULIAN
DATE
2439619.5
2439629.5
2439639.5
2439649.5
2439659.5
2439669.5
2439679.5
2439689.5
2439699.5
2439709.5
2439719.5
2439729.5
2439739.5
2439749.5
2439759.5
2439769.5
2439779.5
2439789.5
2439799.5
2439809.5
2439819.5
2439829.5
2439839.5
2439849.5
2439859.5
2439869.5
2439879.5
2439889.5
2439899.5
2439909.5
2439919.5
2439929.5
2439939.5
2439949.5
2439959.5
2439969.5
2439979.5
2439989.5
2439999.5
2440009.5
2440019.5
2440029.5
2440039.5
2440049.5
2440059.5
24400609.5

CAL ENDAR

9.0
19.0
29.0

8.0
18.0
28.0

8.0
18.0
28.0

7.0
17.0
27.0

6.0
16.0
26.0

6.0
16.0
26.0

5.0
15.0
25.0

5.0
15.0
25.0

4.0
14.0
24.0

3.0
13.0
23.0

4.0
14.0
24.0

3.0
13.0
23.0

3.0
13.0
23.0

2.0
12.0
22.0

2.0
12.0
22.0

1.0

DATE
MAY
MAY
MAY
JUN
JUN
JOUN
JUL
JUL
JUL
AUG
AUG
AUG
SEP
SEP
SEP
oCT
OCT
OCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JUN
JUN
JUN
JUL
JUL
JUL
AUG

1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968

TABLE IV

WOBBLE

X
-0.021
-0.022
-0.022
-0.023
-0.023
-0.021
-0.019
-0.017
-0.013
-0.009
-0.001
0.008
0.004
-0.003
-0.007
-0.009
-0.011
-0.015
-0.021
-0.022
-0.016
-0.015
-0.014
-0.009
-0.004
-0.006
-0.006
-0.006
-0.004

0.0
0.004
0.007
0.009
0.011
0.014
0.018
0.022
0.028
0.037
0.047
0.055
0.062
0.068
0.074
0.079
0.082

39

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
OO
0.
0.
0.
0.
0.
0.
0.
0.
0.

(Cont'd)

(") A1-0TC
Y SEC

193 5.6258
200 5.6517
202 5.6776
204 5.7035
206 5.7295
210 5.7554
216 5.7813
220 5.8072
222 5.8331
216 5.8591
210 5.8850
210 5.9109
207 5.9368
203 5.9627
204 5.9885
207 6.0144
209 6.0403
212 6.0662
219 6.0921
232 6.1180
246 6.1440
253 6.1699
256 6.1958
265 6.2217
270 6.2476
272 6.2736
274 6.2995
276 6.2254
273 6.2513
269 6.2772
263 6.3032
261 6.3291
258 6.3550
254 6.3809
254 6.4068
256 6.4328
258 6.4587
250 6.4846
236 6.5105
220 6.5364
208 6.5624
198 6.5883
188 6.6142
180 6.6401
174 6.6660
168 6.6920

A1-UT1
SEC
5.6137
5.6397
5.6630
5.6839
5.7025
5.7195
5.7360
5.7529
5.7700
5.7876
5.8056
S5.82u44
5.8447
5.8657
5.8874
5.9106
5.9363
5.9652
5.9953
6.0252
6.0534
6.0781
6.1042
6.1295
6.1532
6.1792
6.2054
6.2317
6.2577
6.2831
6.3075
6.3297
6.3522
6.3784
6.4072
6.4358
6.4656
6.4936
6.5197
6.5436
6.5650
6.5838
6.6016
6.6202
6.6403
6.6612

UT2-UT1
SEC
0.0284
0.0302
0.0304
0.0291
0.0261
0.0216
0.0157
0.0089
0.0015
-0.0059
-0.0129
-0.0189
-0.0237
-0.0270
-0.0287
-0.0289
-0.0277
-0.0253
-0.0222
-0.0186
-0.0150
-0.0117
-0.0088
-0.0064
-0.0046
-0.0031
-0.0020
-0.0008
0.0006
0.0024
0.0049
0.0079
0.0116
0.0156
0.0197
0.0237
0.0270
0.0294
0.0305
0.0300
0.0279
0.0242
0.0189
0.0126
0.0054
-0.0021




JULIAN
DATE
2440079.5
2440089.5
2440099.5
2440109.5
2440119.5
2440129.5
2440139.5
2440149.5
2440159.5
2440169.5
2440179.5
2440189.5
2440199.5
2440209.5
2440219.5
2440229.5
2440239.5
2440249.5
2440259.5
2440269.5
2440279.5
2440289.5
2440299.5
2440309.5
2440319.5
2440329.5
2440339.5
2440349.5
2440359.5
2440369.5
2440379.5
2440389.5
2440399.5
2440409.5
2440419.5
2440429.5
2440439.5
2440449.5
2440459.5
2440469.5
2440479.5
2440489.5
2440499.5
2440509.5
2440519.5
2440529.5

CAL ENDAR

11.0
21.0
31.0
10.0
20.0
30.0
10.0
20.0
30.0

9.0
19.0
29.0

9.0
19.0
29.0

8.0
18.0
28.0

7.0
17.0
27.0

9.0
19.0
29.0

8.0
18.0
28.0

8.0
18.0
28.0

7.0
17.0
27.0

7.0
17.0
27.0

6.0
16.0
26.0

5.0
15.0
25.0

5.0
15.0
25.0

4.0

DATE
AUG
AUG
AUG
SEP
SEP
SEP
OCT
OCT
oCT
NOV
NOV
NOV
DEC
DEC
DEC
JAN
JAN
JAN
FEB
FEB
FEB
MAR
MAR
MAR
APR
APR
APR
MAY
MAY
MAY
JON
JUN
JUN
JUL
JUL
JOUL
AUG
AUG
AUG
SEP
SEP
SEP
ocT
ocCT
ocCT
NOV

1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1968
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969

TABLE IV

(Cont'd)

WOBBLE (")

X
0.080
0.071
0.059
0.046
0.037
0.031
0.024
0.008

-0.014
-0.037
-Oo 068
-0.101
-0.134
-0.146
-0.149
-0.149
-0.137
-0.119
-0.098
-0.078
-0.062
-0.045
-0.034
-0.025
-0.014
-0.001
0.014
0.029
0.046
0.062
0.080
0.099
0.117
0.134
0.147
0.152
0.151
0.137
0.120
0.098
0.079
0.065
0.050
0.039
0.029
0.021

Y
0.165
0.162
0.160
0.158
0.151
0.145
0.141
0.133
0.130
0.130
0.139
0.156
0.186
0.215
0.238
0.261
0.282
0.297
0.307
0.316
0.328
0.337
0.350
0.360
0.368
0.372
0.373
0.37
0.365
0.357
0.346
0.332
0.317
0.300
0.273
0.241
0.205
0.173
0.147
0.125
0.115
0.111
0.108
0.106
0.104
0.102

40

A1-UTC
SEC
6.7179
6.7u438
6.7697
6.7956
6.8216
6.8475
6.8734
6.8993
6.9252
6.9512
6.9771
7.0030
7.0289
7.0548
7.0808
7.10669
7.13261
7.15853
7.18445
7.21037
7.23629
7.26221
7.28813
7.31405
7.33997
7.36589
7.39181
7.41773
7.44365
7.46957
7.49549
7.52141
7.54733
7.57325
7.59917
7.62509
7.65101
7.67693
7.70285
7.72877
7.75469
7.78061
7.80653
7.83245
7.85837
7.88429

A1-UT1
SEC
6.6834
6.7071
6.7318
6.7570
6.7818
6.8067
6.8322
6.8586
6.8859
6.9130
6.9400
6.9668
6.9943
7.0214
7.0480
7.0739
7.0992
7.1250
7.1508
7.1773
7.2043
7.2324
7.2618
7.2923
7.3241
7.3571
7.3888
7.4185
T.4467
7.4733
7.4980
7.5211
7.5426
7.5632
7.5831
7.6029
7.6229
7.6436
7.6653
7.6891
7.7156
7.7479
7.7816
7.8112
7.8402
7.8690

UT2-UT1
SEC
-0.0093
-0.0159
-0.0255
-0.0289
-0.0290
-0.0285
-0.0267
-0.0239
~-0.0205
-0.0169
-0.0134
-0.0102
-0.0076
~0.0055
-0.0038
-0.0026
-0.0014
-0.0002
0.0014
0.0035
0.0062
0.0096
0.0134
0.0176
0.0217
0.0254
0.0283
0.0301
0.0305
0.0292
0.0263
0.0218
0.0160
0.0092
0.0019
-0.0056
-0.0125
-0.0187
-0.0235
-0.0269
-0.0287
-0.0289
-0.0254
-0.0223




JULIAN
DATE
2440539.5
2440549.5
2440559.5
2440569.5
2440579.5
2440589.5
2440599.5
2440609.5
2440619.5
2440629.5
2440639.5
2440649.5
2440659.5
2440669.5
2440679.5
2440689.5
2440699.5
2440709.5
2440719.5
2440729.5
2440739.5
2440749.5
2440759.5
2440769.5
2440779.5
2440789.5
2440799.5
2440809.5
2440819.5
2440829.5
2440839.5
2440849.5
2440859.5
2440869.5
2440879.5
2440889.5
2440899.5
2440909.5
2440919.5
2440929.5
2440939.5
2440949.5
2440959.5
2440969.5
2440979.5
2440989.5

CALENDAR
DATE
14.0 NOV 1969
24.0 NOV 1969
4.0 DEC 1969
14.0 DEC 1969
24.0 DEC 1969
3.0 JAN 1970
13.0 JAN 1970
23.0 JAN 1970
2.0 FEB 1970
12.0 FeB 1970
22.0 FEB 1970
4.0 MAR 1970
14.0 MAR 1970
24.0 MAR 1970
3.0 APR 1970
13.0 APR 1970
23.0 APR 1970
3.0 MAY 1970
13.0 MAY 1970
23.0 MAY 1970
2.0 JuUN 1970
12.0 JUN 1970
22.0 JoN 1970
2.0 JuL 1970
12.0 JuL 1970
22.0 JuL 1970
1.0 AUG 1970
11.0 AUG 1970
21.0 AUG 1970
31.0 AUG 1970
10.0 SEP 1970
20.0 SEP 1970
30.0 SEP 1970
10.0 OCT 1970
20.0 oCcT 1970
30.0 OCT 1970
9.0 NOV 1370
19.0 NOV 1370
29.0 NOV 1970
9.0 DEC 1970
19.0 DEC 1970
29.0 DEC 1970
8.0 JAN 1971
18,0 JAN 1971
28.0 JAN 1971
7.0 FEB 1971

TABLE IV (Cont'd)

WOBBLE (") A1-UTC

X Y SEC
0.004 0.101 7.91021
-0.020 0.106 7.93613
-0.044 0.114 7.96205
-0.074 0.125 7.987917
-0.103 0.135 8.01339
-0.129 0.146 8.03981
-0.151 0.175 8.06573
-0.166 0.210 8.09165
-0.174 0.251 8.11757
-0.173 0.290 8.143u9
-0.1061 0.323 8.16941
-0.139 0.350 8.19533
-0.119 0.371 8.22125
-0.109 0.388 8.24717
-0.106 0.399 8.27309
-0.101 0.410 8.29901
-0.089 0.421 8.32493
-0.071 0.434 8.35085
-0.0517 O.444 8.376717
-0.021 0.448 8.40269
0.017 0.448 8.42861
0.055 0.442 8.45453
0.088 0.u426 8.48045
0.119 0.402 8.50637
0.145 0.373 8.53229
0.168 0.342 8.5582
0.186 0.309 8.58413
0.199 0.276 8.61005
0.207 0.244 8.63597
0.209 0.213 8.66189
0.205 0.183 8.68781
0.199 0.155 8.71373
0.191 0.128 8.73965
0.183 0.101 8.76557
0.160 0.078 8.79149
0.120 0.063 8.81741
0.078 0.053 8.84333
0.048 0.038 8.86925
0.024 0.023 8.89517
0.0 0.013 8.92109
-0.029 0.013 8.947C1
-0.057 0.022 8.97293
-0.085 0.035% 8.99885
-0.111 0.057 9.02477
-0.133 0.085 9.05069
-0.152 0.117 9.07€61
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A1-UT1
SEC
7.8973
7.9254
7.9561
7.9858
8.0140
8.0421
8.0703
8.0992
8.1282
8.1572
8.1864U
8.2159
8.2u458
8.2764
8.3073
8.3389
8.3712
8.4028
8.4331
8.4619
8.u886
8.5132
8.5358
8.5570
8.57617
8.5951
8.6136
8.6326
8.6528
8.6737
8.6958
8.7201
8.7u46U
8.,7745
8.80uU0
8.8349
8.8661
8.8958
8.9267
8.9560
8.9834
9.0101
9.0374
9.0639
9.0895
9.1147

UT2-UT1
SEC
-0.0188
-0.0152
-0.0118
-0.0089
-0.0065
-0.00us
-0.0032
-0.0020
-0.000C9
0.0005
0.0023
0.00u47
0.0077
0.0114
0.0154
0.0195
0.0235
0.0269
0.0293
0.0305
0.0301
0.0281
0.02u4
0.0192
0.0129
0.0058
-0.0017
-0.0090
-0.0156
-0.0211
-0.0253
-0.0279
-0.0290
-0.0285
-0.02¢8
-0.0240
-0.0207
-0.0171
-0.0136
-0.0104
-0.0077
-0.00%5
-0.0039
-0.0026
-0.0015
-0.0003




TABLE IV (Cont'd)

JULIAN CALENDAK WOBBLE (") A1-UTC A1-UT1 UTZ2-UT1
CATE DATE X Y SEC SEC SEC
2440999.5 17.0 FEB 1971 -0.174 0.148 9.10253 9.1405 0.0013
2441009.5 27.0 FEB 1971 -0.196 0.178 9.12845 9.1669 0.0034
2441019.5 9.0 MAR 1971 -0.209 0.211 9.15437 9.1948 0.0061
2441029.5 19.0 MAK 1971 -0.216 0.253 9.18029 9.2256 0.0094
2441039.5 29.0 MAK 1971 -0.212 0.301 9.20621 9.2578 0.0132
2441049.5 8.0 APR 1971 -0.200 0.340 9.23213 9.2904 0.0174
2441059.5 18.0 APR 1971 -0.192 0.370 9.25805 9.3229 0.0215
2441069.5 28.0 APR 1971 -0.183 0.397 9.28397 9.3551 0.0252
2441079.5 8.0 MAY 1971 -0.170 0.424 9.30989 9.3867 0.0282
2441089.5 18.0 MAY 1971 -0.150 0.452 9.33581 9.4170 0.030C0
2441099.5 28.0 MAY 1971 -0.129 0.480 9.36173 9.4462 0.0305
Z441109.5 7.0 JUN 1971 -0.104 0.505 9.38765 9.4737 0.0293
2441119.5 17.0 JuN 1971 -0.061 0.519 9.41357 9.4997 0.0265
2441129.5 27.0 JUN 1971 0.002 0.524 9.43949 9.5243 0.0221
2441139.5 7.0 JUL 1971 0.060 0.520 9.46541 9.5478 0.0163
4441149.5 17.0 JuL 1971 0.103 0.50C 9.49133 9.5709 0.0096
2641159.5 27.0 JUL 1971 0.140 0.476 9.51725 9.5939 0.0022
2441109.5 6.0 AUG 1971 0.170 0.45¢(C 9.54317 9.6174 -0.0052
2441179.5 16.0 AUG 1971 0.198 0.421 9.56909 9.6408 -0.0122
2441189.5 26.0 AUG 1971 0.224 0.387 9.59501 9.6651 -0.0184
2441199.5 5.0 SEP 1971 0.245 0.351 9.62093 9.6907 -0.0233
2441209.5 15.0 SEP 1971 0.258 0.317 9.64685 9.7167 -0.0268
2441219.5 25.0 SEP 1971 0.263 0.283 9.67277 9.7449 -0.0286
2441229.5 5.0 OCT 1971 0.264 0.249 9.69869 9.7762 -0.0289
2441239.5 15.0 OCT 1971 0.252 0.211 9.72461 9.8118 -0.0278
2441249.5 25.0 oCT 1971 0.229 0.175 9.75053 9.8495 -0.0256
2441259.5 4.0 NOV 1971 0.203 0.139 9.77645 9.8856 —-0.0225
2441269.5 14.0 NOV 1971 0.179 0.118 9.80237 9.9223 -0.0190
2441279.5 24.0 NOY 1971 0.157 0.103 9.82829 9.9581 -0.0154
2441289.5 4,0 LEC 1971 0.135 0.092 9.85421 9.9917 -0.0120
2441299.5 14.0 DEC 1971 0.109 0.078 9.88013 10.0229 -0.0090

2441309.5 24.0 DEC 1971 0.083 0.062 9.90605 10.0518 -0.0066

The above table is revised and extended as new punched cards are received from
the U. S. Naval Observatory Time Service. After 1.0 Jan 1972 we have
Al1-UTC(USNO) = 10.0343817 sec
with one second quantum jumps (leap seconds) in A1-UTC every six months or a year
to keep UTC within 0.7 sec of UT2. We also have
UTC(USNO)-UTC(BIH) = 0. 00001 sec
IAT -UTC(BIH) =10. 00000 sec
where IAT stands for International Atomic Time. From the above we have
IAT-Al =-0.03439 sec
We hope to keep PEP on the Al atomic time system rather than changing to the new
International Atomic Time. If we did change to IAT, we should replace (23) by
CT-IAT = 32.18439 sec
to be consistent with previous work.
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III-D. Coordinate Systems

If we went back to first principles and numerically integrated and fit to
data the motion of the earth (or earth-moon barycenter) relative to the sun and
the motion of the earth about its center of mass, we would specify our funda-
mental coordinate directions by setting two of the initial conditions of the
motions to defined values. However, we shall utilize the presently accepted
expressions for the motion of the earth about its center of mass. We shall
integrate the motion of earth satellites in the coordinate system (xl, x2, x3)
referred to the mean equinox and equator of 1950.0. The x3 axis is perpen-
dicular to the mean equator of 1950.0 and points to the north, the xl axis
is the intersection of the mean equator and ecliptic of 1950.0 and points
towards the constellation Aries, and the x2 axis completes the right hand
system. We leave the word ''mean'" undefined and just state that the operational
definition of the coordinate system referred to the mean equinox and equator
of 1950.0 1is contained in Section IV, where we give the presently accepted
expressions for the transformation of coordinates fixed in the earth to these
coordinates.

This transformation of coordinates involves the wobble, rotation, nuta-
tion and precession of the earth. The formulas for the nutation and precession
and the constants appearing in them were derived by Simon Newcomb in the late
nineteenth century with revisions in the formulas given by Woolard in 1953
(see Ref. 14). Assuming these expressions to be correct, the wobble and rotation
of the earth are derived empirically as follows.

Star observations are made with photographic zenith tubes at a number
of sites around the earth as a function of (essentially) atomic time Al.

Using these observations the (x,y) coordinates of the pole of rotation rela-
tive to the pole of figure of the earth are determined, where x is measured
along the meridian towards Greenwich and y along the meridian 90° to the
west of Greenwich. The specific results obtained depend on the accuracy of the
star catalogue employed. The axis of rotation is said to wander relative to

a reference system fixed in the earth, whereas the earth is said to wobble

relative to the axis of rotation. At the surface of the earth the motion of
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the pole of rotation relative to the pole of figure of the earth lies in a
circle of radius about 100 feet so that the angular separation of the two
poles is less than 1 second of arc.

The International Polar Motion Service (IPMS, formerly the International
Latitude Service ILS) and the Bureau International de 1'Heure (BIH) publish the
(x,y) coordinates of the pole in seconds of arc resulting from their observations.
They give approximately the same results. The BIH results would tend to be
more accurate because they make use of many more observing sites than does the
IPMS. The BIH results go back to 1956, whereas the IPMS results extend back
to 1900.

Local sidereal time can be determined at one site as a function of Al
atomic time from photographic zenith tube star observations given the wobble

of the earth derived from observations at many sites. Of course these results

depend on the star catalogue employed. Simon Newcomb's formula relating

Creenwich sidereal time and UT1l universal time (Newcomb's mean solar time)

can then be applied to yield Al — UT1l as a function of Al time. The BIH
publishes values of Al — UTl together with their wobble results derived
from photographic zenith tube observations made by the national time services

in many countries. The U.S. Naval Observatory uses the BIH wobble and photo-
graphic zenith tube observations made in Washington, D. C. and Richmond, Florida,
to derive their values of Al — UTl. The BIH wobble and U.S. Naval Observa-
tory Al — UTl1 are given in Table IV.

The epoch of a modern observation is given in UTC time. To calculate
the theoretical value of the observation PEP determines Al =— UTC, Al -— UT1
and the (x,y) wobble coordinates of the pole from the data in Table IV. This
data is continually updated with punched cards sent from the U.S. Naval Observa-
tory. Knowing the Al time of observation, coordinate time CT can be derived
from (23) or (41) for use in calculating satellite coordinates from the results
of the numerical integration in the coordinate system referred to the mean
equinox and equator 1950.0 . Knowing the UT1l time of observation and the
(x,y) wobble coordinates, the transformation of observing site coordinates
fixed in the earth to the coordinate system referred to the mean equinox and

equator of 1950.0 can be performed as explained in Section IV. Having obtained




vectors from the center of the earth to the observing sites and observed satel-
lite in the coordinate system referred to the mean equinox and equator of
1950.0, the theoretical value of the observation can be calcualted from the

formulas in Section VII.

UT2 time differs from UT1l time by an empirical formula arising from
the observed seasonal variation in the rate of rotation of the earth. Before

1.0 January 1962 the formula used is (see Ref. 6, p. 445)
UT2 — UT1 = 05022 sin 21 t — 05017 cos 27 t
— 05007 sin 47 t + 07006 cos 4T t (48)

where t 1is the fraction of year and equal to O on January 1. After 1.0

January 1962 the following formula is used
UT2 — UTL = 07022 sin 27 t — 05012 cos 2T t

— 0%006 sin 47 t + 05007 cos 4T t (49)

according to Ref. 15, p. 164.

UTO time is UT1l time without the wobble correction, and therefore

is site dependent.

III-E. Past History of CT — UT1l

For the observables that existed before 1956, the epoch specified for
an observation was essentially universal time UT1 (or UTO if wobble was not
removed in the case of a meridian circle observation; see Section VII-D-4).

How are we to relate UT1l and coordinate time CT? We write

CT — UT1I = (cT — UT2) + (Ur2 — UT1) (50)
where the seasonal terms in (UT2 — UT1l) are given by a trigonometric expan-
sion and where CT — UT2 is a piecewise linear function.
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We presume that we have coordinate time points to’ tl’ tz, 5000 tn
stretching backward in time with the value of CT — UT2 at time ti being
y; - Then between tabular points we assume that

y. - Y.
i i-1
“ urz = o, (@ tis) * Vi
i i-1

where i (1 £ i < n) is such that

>
ti_l CT > ti (51)

Tabular point t0 is chosen to be in 1956 and Yo fixed at the value of

Al + 32515 — UT2 at that instant. The remaining time points t., t,, ..., t
1 2 n

are chosen at convenient intervals to provide a meaningful modeling of CT — UT2

given the observations of the sun, moon, and planets back to 1750 which are to be

used to determine Yis Yoo coes ¥ - We choose an interval of 4 years. The
provisional values v; of CT — UT2 at these tabular points given in Table V
are taken from the values of ET — UT2 in Ref. 6, pp. 90-91 and Ref. 7, p. vii.

We choose a linear relationship before 1784.5 in case it is decided in the
future to use a less fine spacing of tabular points in the 18th century.

We assume that

UT2 — UTl = (ao + alT) sin 2m t + (b0 + blT) cos 2T t

+ (c0 + clT) sin 4m t + (d0 + le) cos 4T t

(52)

where T 1is the time in centuries from the 1956 start of the CT — UT2

table and where t is the fraction of year equal to O on January 1. We

choose provisional values of a s b

b

o Co’ dO as in (48) and take the pro-

visional values of dl to be zero. We would attempt to estimate

al’ 1’ Cl,
these coefficients if the data allow.
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TABLE V

PROVISIONAL VALUES OF CT-UT2 (1956 - 1750)

Julian Calendar CT-UT2
Day Date (sec)

Number
0. 2435490 1956 Jan 17.0 31.3669
1. 2434195 1952.5 30.2900
2. 2432734 1948.5 28.1500
3. 2431273 1944.5 26.0800
4, 2429812 1940.5 24,3000
Ho 2428351 1936.5 23.5800
6. 2426890 1932.5 23.5000
7. 2425429 1928.5 22,9200
8. 2423968 1924.5 22,2900
9. 2422507 1920.5 20.4800
10. 2421046 1916.5 17.3700
11. 2419585 1912.5 12.9500
12. 2418124 1908.5 7.5100
13. 2416663 1904.5 1.8000
14. 2415202 1900.5 -3.7900
15. 2413741 1896.5 -7.1900
16. 2412280 1892.5 -8.0400
17. 2410819 1888.5 -7.5800
18. 2409358 1884.5 -8.0700
19. 2407897 1880.5 -8.1400
20. 2406436 1876.5 -7.6700
21. 2404975 1872.5 -4.4800
22. 2403514 1868.5 0.2000
23. 2402053 1864.5 2.2600
24, 2400592 1860.5 3.3200
25. 2399131 1856.5 3.4600
26. 2397670 1852.5 2.9000
27. 2396209 1848.5 2.1200
28. 2394748 1844.5 1.1300
29. 2393287 1840.5 -0.0600
30. 2391826 1836.5 -0.0400
31. 2390365 1832.5 1.4900
32 2388904 1828.5 2.3700
38, 2387443 1824.5 3.4900
34. 2385982 1820.5 5.3200
358 2384521 1816.5 5.0400
36. 2383060 1812.5 4.7600
37. 2381599 1808.5 5.0000
38. 2380138 1804.5 5.4000
39. 2378677 1800.5 5.8000
140 . 2377216 1796.5 6.4250
41 . 2375755 1792.5 7.0500
42, 2374294 1788.5 7.6750
43 . 2372833 1784.5 8.3000
44 . 2371272 1780.5 7.3300
45 . 2369911 1776.5 6.3600
46. 2368450 1772.5 5.3900
47. 2366989 1768.5 4.4200
48, 2365528 1764.5 3.4500
49. 2364067 1760.5 2.4800
50. 2362606 1756.5 1.5100
Silo 2360200 1749 Nov 27.0 -0.0874
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The partial derivative of an observation with respect to one of the

above parameters d involves

) d 3
— = = — = + — 2 = 1
%0 (cT UT1) e (cT UT2) o (ut UT1)
(53)
If o is one of the coefficients in UT2 — UTl, the expression for the
partial derivative is obvious. If o = Y4 (i=1, ..., n) we have
4
0 CT > ti 1
CT - t,_;
— b,y > CT >t
3 i i-1
S;T (ct - UTl) = <
* CT - ¢,
1 - t, > CT > ¢,
- +1
ti+1 t1 *
>
. 0 tiv1 ”
(54)
In the estimation of the CT — UT2 table we are tied at one end by our

definition of units. A value yg has a memory on either side of its tabular
point ti that dies out the further one gets from the tabular point ti 0
These attributes are what one might imagine that the physical situation
possesses, since the variation in CT — UT1l is due to changes in the

moments of inertia of the earth and tidal friction.
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Iv. MOTION OF THE EARTH ABOUT ITS CENTER OF MASS

We present the presently accepted expressions for the transformation
of coordinates fixed in the earth to those referred to the mean equinox and

equator of 1950.0.

Let (ul, uz, u3) be a coordinate system with origin at the center
of mass of the earth, with u3 axis pointing to the north along the mean rota-
tion axis of the earth in 1900 - 1905, with u1 axis being normal to the u3
axis and lying in the plane through Greenwich and the mean rotation axis of
1968.0 on the same side of u3 as Greenwich, and with u2 axis completing the
right hand system. By "Greenwich'" we mean the site of the old Airy transit
circle at the Royal Greenwich Observatory. The u3 axis is called the axis of
figure of the earth. It coincides closely with the maximum moment of inertia
axis of the earth. Our choice of u1 axis is dictated by our use of the x,y
wobble coordinates and value of Al-UT1 given on the punched cards disbursed
by the U.S. Naval Observatory (see Table IV)*.

Let (xl, xz, x3)

be a coordinate system with origin at the center
of mass of the earth referred to the mean equinox and equator of 1950.0. The
x3 axis is perpendicular to the mean equator of 1950.0, the x1 axis lies
along the intersection of the mean equator and mean ecliptic of 1950.0 and
points in the general direction of the constellation Aries, and the x2 axis
completes the right hand system.

The transformation between these reference systems is given by

™
<

k = 1,2,3 (55)

* Private communication from G. M. R. Winkler, Director, U.S. Naval Observatory

Time Service Division (12 March 1971).
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where the orthogonal matrix A can be written as

A A A

11 12 13
Ary Ay Ay = WSNP (56)
Ayp  Agy Ay

The wobble W, rotation S, nutation N and precession P matrices are
discussed below. Matrix multiplication follows the usual row X column rule,

so that, for instance,

3
W)y = gl N3Py 5 (57)
IV-A. Wobble
1 2 3 . .
Let (u, u”, u”) be the coordinate system fixed in the earth with
1 2

origin at the center of mass of the earth as described above. Let (v, v°,
v3) be a coordinate system with origin at the center of mass of the earth,
with v3 axis pointing to the north along the axis of rotation of the earth,
with v1 axis being normal to the v3 axis and lying in the plane through
the v3 axis and the u1 axis pointing in the same general direction as ul,
and with v2 axis completing the right hand system.

Following Ref. 16, pp. 184-187, let Y be the angle from the u3

1
axis to the V3 axis and let ' be the angle eastward from the u axis to

the projection of the v3 axis on the (ul, u2) plane. We define

X + Y cos T

(58)

y - Y sinT

> > > . . 1 2 3 . .
Let €1 €5 83 be unit vectors in the u, u, u coordinate direc-

> > > . 1 2 3 .
tions and let El*, 82*, 83* be unit vectors in the v, v, v coordinate
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directions. We have

> ->
€, sin Yy cos T €

. . +
+ sinysinT €

i >
2 cos Y €4

¥ x¢€ €.+ ¢
~ X € = £
1 L= (59)
if Y 41is a small angle in radians. Similarly, we have
- > TG
> - (8) * eqM)Eg* > L%
R > > > 1 3
- *)e *
|el (51° €4%)e, |
(60)
+*_—>*X+*:—> o -
€27 T %3 €1 ) Y €3
. 1 2 3 1 2 3
Thus the transformation between the (u™, u”, u”) and (v, v, v') rectangular
coordinates is given by
3
k '3
u = 2: W v
s k2
k = 1,2,3 (61)
3
k L
v = z W u
i1 2k

where the orthogonal wobble matrix W

86)

i1 Wi V3 1 0
Wop  Wpp  Wpgl =0 1
Way W3y Wiy Xy

The values of

must be converted to radians for use in (62).
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can be written as (see Ref. 15, pp. 80-

(62)

X,y are given in Table IV in units of seconds or arc, which




IV-B. Rotation

Let (vl, v2, v3) be the coordinate system described above with

origin at the center of mass of the earth and with v3
1 2 3)

W, w,w

axis along the axis

of rotation of the earth. Let be the coordinate system with

origin at the center mass of the earth referred to the true equinox and equator
of date. The w3 axis points along the axis of rotation of the earth, the w1
axis points along the intersection of the true equator and true ecliptic of

date and the w2

axis completes the right hand system. We have
3
k 2
v = 2: S, . w
=1 k2
k = 1,2,3 (63)
3
k {0
\% = z: S v
=1 2k

where the orthogonal matrix S

@ by

is given in terms of the Greenwich true sidereal

time

Sll 512 513 cos O sin O 0
821 822 523 = |-sin O cos O 0 (64)
531 532 S33 L Y .

Given the UTC time of an observation, we determine UT1l universal time

from the values of Al-UTC and Al-UT1l in Table IV. By Ref. 6, p. 72,

©

C]
o

+ Ay cos €

where

C]
o

tude and €

is the Greenwich mean sidereal time and Ay

the obliquity of the ecliptic (see below).

(65)

is the nutation in longi-

The second order terms

in the nutation ignored in (64) are less than 10-4 seconds of time, which is
just below the accuracy in the determination of Al-UT1l. By Ref. 7, p. 525,
the Greenwich mean sidereal time 6; at 0h UT1l time on the day of interest

is
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o - 6'38™45.5836 + 8,640,184.5542 T
+ 0.50929 T2 (66)

where T denotes the number of Julian centuries of 36525 days which, at mid-
night beginning of day, have elapsed since mean noon on 1900 January 0 at the
Greenwich meridian (Julian Date 2415020.0). The Greenwich mean sidereal time
@o at the given instant of UT1 universal time on that day is

do

o, = 8 + 529- x UT1 (67)

where by Ref. 6, pp. 75-76

lOT

—2> = (1.002737909265 + 0.589 x 10 'T)

sidereal time seconds per universal time second (68)

The values of x,y and Al-UT1 on the U.S. Naval Observatory Time
Service punched cards (see Table IV) are derived from observations using the

above expressions in which these quantities appear as variables and assuming

the validity of the below expressions for the nutation and precession.

IV-C. Nutation

1 2 3 . .
Let (w, w , w ) be the coordinate system with origin at the center

of mass of the earth referred to the true equinox and equator of date and let
2
(yl, Y y3) be the coordinate system with origin at the center of mass of

the earth referred to the mean equinox and equator of date. We have

3 N
wk = Nkl vl
=1
L k = 1,2,3 (69)
3
k _ '3
v = :E:: le w
2=1
)
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where from Ref. 6, p. 43, the orthogonal nutation matrix N is given by

Nll N12 N13 1 - Ay cos € - Ay sin €

N21 N22 N23 = AY cos € 1 - Age (70)
N3l N32 N33 AY sin € Ae 1

- = — -

The nutation in longitude Ay and nutation in obliquity Ae are given
by trigonometric series in Ref. 6, pp. 44-45, with 69 terms and 40 terms,
respectively. In PEP the nutation is determined by fourth difference inter-
polation from half day tabular interval tables read from magnetic tape (see

Section IX-B-1). The true obliquity of the ecliptic € is

€ = € + Ae (7D)

where by Ref. 6, p. 98, the mean obliquity of the ecliptic is

3 a2

e, = 23°27'08"26 — 46V845T — O'.'0059T2 + 0700181T
with T being the time in Julian Centuries of 36525 ephemeris days from the
epoch 1900 January 0.5 (J.E.D. 2415020.0).

Expression (70) for the nutation matrix ignores powers of Ay and Ae
higher than the first. According to Ref. 15, p. 74, the second order correction

to be added to (70) is

S =
-3 Ay 0 0

- AeAY sin € - %(AEZ + sz C082 E) - % Axpz sin € cos € (73)
+ AeAy cos € - % sz sin € cos € - %(;82 + sz sin2 a

-8 ; .
The second order terms are less than 10 radians in magnitude, somewhat
below the limit of accuracy of the nutation constant determined from fitting

to data.
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IV-D. Precession

2

Let (yl, vy, y3) be the coordinate system with origin at the center of

mass of the earth referred to the mean equinox and equator of date and let

1 2 .3
)

(x7, x7, x be the coordinate system with origin at the center of mass of

the earth referred to the mean equinox and equator of 1950.0. We have

w
_/

\ ko= 1,2,3 (74)

where by Ref. 6, p. 31, the orthogonal precession matrix P is given by

Pll = cos Co cos 6 cos z — sin Co sin z
P12 = — sin Co cos O cos z — cos Co sin 2z
P13 = — sin 6 cos z
P21 = cos Co cos 6 sin z + sin Co cos z
(75)
P22 = — sin Co cos 6 sin z + cos Co cos z
P23 = — sin 6 sin z
P31 = cos Co sin ©
P32 = — sin Co sin 6
P33 = cos 6
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By Ref. 7, p. 531, the angles in the above expressions are given by

2304"948T + 0"302T% + O"0179T°

Y
]

23047948T + 1"093T° + 070192T° (76)

N
]

2 _ ovos416T

D
n

2004V255T — 0V426T

where T is measured in tropical centuries of 36524.21988 ephemeris days
from the epoch 1950.0 (J.E.D. 2433282.423) to the instant of interest.
Let T denote the time from the epoch 1950.0 (J.E.D. 2433282.423)

in units of 10,000 ephemeris days. Then by Taylor's theorem we have

L 4P .
Py = E - ———ﬁ— T , i, k = 1,2,3 (77)
J ’ dt
n=o

T=0

Treating the coefficients in (76) as exact, some straightforward calculations

show that the terms up to the fifth power in the Taylor expansion (77) are

P, = 1.0 — 2.22603398052517 x 10772 — 2.6903385325366 x 10 212
+ 8.191221606878 x 10~ 1t% + 1.79948222850 x 10~ 4¢°
Py, = — 6.119064710033514 x 10737 — 5.06975739290688 x 10~ T2
+ 4.5321716219079 x 10 01> + 8.619581795926 x 10 t2°
— 1.02943658327 x 10 1372
Piy = — 2.660399722772102 x 10731 + 1.54818397804898 x 10”72
+ 1.9729201591810 x 10 °7° + 1.960730253191 x 10'1214

— 4.39298354075 x 10 1477
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Py, = 6.119064710033514 x 10731 + 5.06975739290688 x 1012
— 4.5321716219079 x 10 915 — 9.636891635856 x 10 L2%
+ 1.02604298897 x 10 1°7°
Py, = 1.0 — 1.87214764627888 x 10712 — 3.1022173551368 x 10 01
+ 6.882478825535 x 10™"1t* 4 1.91215207447 x 10”1477
P,y = — 8.13957902909886 x 107872 = 5.8309700675934 x 107103
+ 2.994360606802 x 10 Yt* + 5.71739459043 x 10 1010
Py, = 2.660399722772102 x 10 T — 1.54818397804898 x 10 17
— 1.9729201591810 x 10 1> + 3.791379581151 x 10~ 13¢%
+ 4.50404085077 x 10 1477
Py, = = 8.13957902909886 x 10 °t° + 1.8168268497009 x 107 07
+ 3.024323052660 x 10 “1t* + 2.58550054981 x 10”11
P,y = 1.0 — 3.53886334246294 x 10 °t% + 4.1187882260017 x 1071073

-11T4 5

+ 1.308742781343 x 10 — 1.12669845971 x lO_lST

(78)

IV-E. Partial Derivatives of the Precession

IV-E-1. Present Expressions

In lieu of going back to first principles and fitting to data a numerically
integrated ephemeris of the motion of the earth about its center of mass, we can
solve for the parameters appearing in the presently accepted expressions for this
motion. If we were fitting to optical data extending far back in time, we could
solve for quantities which affect the precession. If we were fitting to a short
arc of very accurate long baseline interferometry data we could solve for quanti-

ties which affect both the precession and nutation. However, we would then also

57




have to solve for the values of the wobble and Al-UT1l, since the published
values of these quantities depend on the presently accepted expressions for
the precession and nutation. Thus, for the short arc of very accurate data
it appears to be better to start over completely from first principles.

For a long arc of optical data we can solve for quantities that affect

the precession, these being the precession constant h and with less sensitivity,

the mean obliquity constant €, - The nominal value of these constants in
1950.0 are
h° = 502675
(79)
e ® = 23°26'4484

Then Ref. 17 gives that (76) should be modified as follows to show the depend

ence of small changes of h and €, from the nominal values ho, Eoo

c, = [2304v948 +-% (h cos € — h° cos eo°)] T + 07302T% + 0"0179T°
[ 1 o 0 2 3

z = 2304948 +'§ Qh cos eo — h cos 80 > T + 1V093 T + 0Y0192T
[ . o . o w2 o 3

6 = [2004"255 + (h sin ¢_ — h° sin eo) T — 07426T° — 070416T

(80)
where T 1is measured in tropical centuries of 36524.21988 ephemeris days
from the epoch 1950.0 (J.E.D. 2433282.423) to the instant of interest.

For the partial derivatives we have in dimensionless units of radians

per radian

oz

o oz _ T -
Sh - on - 2 Cos g, ® 0.4589T
14
=2 - 2z —¥sine ~ — 0.00486T

€ €, o

(81)

-g% = T sin €, = 0.3978T
%g—- = hT cos EO ~ 0.0223T
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The partial derivatives of the precession matrix with respect to h are

Pu oo, e 2 _ 2z

oh 12 9h 31 °°% 2 4n 21 3h
Eflz 5 = ] EEQ-‘— P,, cos z el P 2z

oh 11 dh 32 oh 22 dh
Pl e 20 _ , 2z

oh cos U cos z 7y 23 dh
Za | P P _ P eln 222 & Pg i

3h  ©22 On 31 S %2 5y 11 5h

(82)

i P %o P, sinz + p 2&

oh 21 oh 32 S0 2 3y 12 oh
3P

23 _ 38 3z

“h = cos 6 sin z h + P13 oh

3P

31 _ 36 oz

e cos Co cos B o + P32 h

3P

32 _ _ 38 _ dz

T sin L cos 6 o B31 oh

3P
_33 _ _ 36

h = sin 6 h

The partials of Pi' with respect to Eo have exactly the same form as above
with partials with respect to h in the right sides of (82) being replaced
by partials with respect to Eo

The obliquity constant affects the nutation as well as the precession,
but we shall not bother to write down the partial derivatives of the nutation
with respect to the obliquity since we shall probably only obtain useful results

for the precession constant.
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IV-E-2. Ad Hoc Rigid Rotationms

We can parametrize errors in the presently accepted expressions for the
precession without understanding the derivation of the expressions. Namely,
instead of employing the matrix P defined in Section IV-D or IV-E-1l, we use
PD, where following Ref. 18, pp. 127-128, we write

D1 P2 Dp3 L VT =9,
D = b, Dy, D,| = = U,T 1 VT (83)
D33 D3y Dy [ VT T T 1l

where T 1is measured in tropical centuries of 36524.21988 ephemeris days from
the epoch 1950.0 (J.E.D. 2433282.423) and where @l, ¢2’ ¢3 are the angular
rates of rotation about the three (xl, x2, x~) axes not accounted for in the
presently accepted expressions for the precession. The matrix D is ortho-
gonal if we can ignore the squares of the iiT in radians, which is certainly
true since we expect that any solution for the wi arising from a fit to data

would be on the order of a second of arc per century. We have

o o0 o0
A o o0 T
oy
. 0o —-T o0
0o 0 -T
0 0o 0 0 (84)
oy
2 T 0 0
o T o0
L1 -T 0 o0
oy
< o 0 o0
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V. EQUATIONS FOR EARTH SATELLITE MOTION

2
Let (xel, X, xe3) be the coordinates of the earth in inertial space

2
and let (xbl, Xy xb3) be the coordinates of an earth satellite in inertial
space. We take the coordinate directions to be referred to the mean equinox
and equator of 1950.0. The components of the position of the satellite rela-

tive to the earth are

X = X - x s k=1,2,3

> @
=1

The equation of motion of the earth and satellite in inertial space are

(85)

H
i

dzx «

e k

= F
dt2 e
k = 1,2,3 (86)

2 k k
d Xy - (YMe)x Kk

2 = 3 S
dt r

where Yy 1is the gravitational constant, Me the mass of the earth, Fek the

components of the acceleration on the earth and Fbk the components of the
acceleration on the satellite not including the l/r2 attraction of the earth.
We assume that the mass of the satellite is completely negligible compared to
the mass of the earth. Subtracting the first equation of (86) from the second

we obtain the equations of motion of the satellite relative to the earth:

k
a4k (YMe)x k
e Rl el <Fb

Fk) , k= 1,2,3
dt -

(87)
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due to a number of different effects.

We now derive formulas for the perturbing accelerations Gsk = FEE)

V-A.

We define, for k =

0B

Effects of Sun, Moon and Planets

mass of sun
mass of moon
mass of earth
M + M

2 m

mass of planet
coordinate of
coordinate of
ke~ e
cs M

coordinate of

coordinate of
k k
X + x

ps se

coordinate of

k
X

coordinate of

Xk _ .k
oe xbe

coordinate of body o (= m, s or p)

j=1

distance between bodies «

1,2,3

P

moon relative to earth

earth-moon barycenter relative to sun

k
X

‘)

sun relative to earth

planet p

relative to sun

planet relative to earth

satellite relative to earth

relative to satellite

and B (o, B m,s,p or b)
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where all coordinates are referred to the mean equinox and equator of 1950.0.

During the numerical integration of satellite motion PEP reads a magnetic tape

and interpolates to determine xie, xis and xES (for p = Mercury, Venus,
Mars, Jupiter, Saturn, Uranus, Neptune, Pluto) at each numerical integration
step time. Then the perturbing acceleration Wk = FE - FZ due to the

sun, moon and planets is included in the integration of (87) via the formula

xk xk
ko _ Z: 9 _ _ce -
LY =Y Ma 3 3 k = 1,2,3 (88)
r r
0=m,S,p ab oe

There is an option of including or excluding any desired bodies. The effect

of the sun and moon should always be included. Planetary effects could be

important (especially for Venus and Juptiter).

V-B. Effect of Earth Gravitational Potential Harmonics
1

Let (u, u", u3) be the coordinate system fixed in the earth described
in Section IV. The transformation between these coordinates and those

(xl, x2, x3) referred to the mean equinox and equator of 1950.0 is given

in (55).

We introduce polar coordinates (r, 6, ¢) rotating with the earth by

ul = r cos 6 cos ) 0 S r < =

u2 = r sin 6 cos ¢ 0 S 8 < 27 (89)
3 . - I < < I

u- = r sin ¢ > ¢ 2

We have

3 3
2= Y wh? - > wh? (90)
=1 2=1

63




sin ¢

cos ¢

cos O

sin ©

cos

sin

cos

sin

26

26

h6

ho

|

1

o}

co

i
r co

coSs

3
3
s o Z Apg %

=1

v1— ﬂn2¢
3
%
s o Z Ry X
9=1

\

2

6 — sin” 0

2 sin 6 cos 6

cos

sin

(h-1)6 cos 6

(h-1)6 cos 6 +

J

sin (h-1)6 sin 6

cos (h-1)6 sin 6

(91)

> (92)

(93)

S

Outside the earth the gravitational potential of the earth can be

expressed in spherical harmonics by (see Ref. 19, pp. 1-7)
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00 n

Fnh cos h 6 + th

. Pnh (sin ¢)

where P and P
n nh

sin h ﬂ .

are the Legendre polynomials and generalized Legendre

(94)

functions, respectively, and where a,

is the mean equatorial radius of the

earth.

the C

The Jn (units

nh’ "nh

n
a
)

are called the zonal harmonic coefficients and

S (units aen) are called the tesseral cosine and sine coefficients.

Cnn and Snn are also known as sectorial harmonic coefficients. The summation

in (94) starts with n

the coordinate system is at the center of mass of the earth.

= 2

rather than with n

= 1 because the origin of

Since to a high

degree of approximation the u3

axis is a principal moment of inertia axis,

we have

Cjg =0 » 8y =0 (95)
By Ref. 20 pp. 83 and 327, we have
PO(Z) = 1 (96)
n(, 2 n
P_(2) L & (z ;1L 1,2,...
2 n! dz
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P__(2) P (2) n o= 0, 1, 2, ... ]

y ' (97)
@ - A e g h

azP

]
[
=}

Pnh(z)

From these definitions it follows that

n
2
P (z) = - . (2n - 2i) ! ,n-21 (98)
" - 2" (n-4) ! (n-2i) ! il
[g—_h
_ 2\h/2 (2n - 2i) ! n-h-21i
P = ( z2) - z (99)
2" (n-1i) ! (n - h -24i) ! 1 !

i=o

where [m] denotes the largest integer less than or equal to m. In Section IX-D

we give recursive formulas for evaluating Pn and P and their derivatives on

nh
a computer.

We define

- _J2@n+1 (n-h !! »
nh (n+ h) ! nh

Pno ‘IZn + 1 Pno n = 0,1, 2,

(100)

According to Ref. 19, p. 7, the integrals of E;h X {:;E 2 g} over the (6, ¢)

sphere are 4mw. If the Pnh are used in (94) in place of the Pnh and Pn’

we would use the normalized coefficients

T - (n+ h) ! ! C
nh 2 (2n+ 1) (n-h) ! nh
3 (101)
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It seems to be customary to normalize to 47 rather than 1 when dealing with

the gravitational potential. We shall follow the convention of the Smithsonian

Astrophysical Observatory (Ref. 10) and use Cnh’ th, Pnh
th, Pnh for h = 1, ..., n, but retain Jn, Pn for h = 0.

instead of Cnh’
Tables VI and VII contain the values of the earth gravitational harmonic

coefficients resulting from the latest available fit to earth satellite and

gravity field data by the Smithsonian Astrophysical Observatory (see Ref. 10).

The values of fundamental constants used in obtaining these Smithsonian results

are

2
3.986013 x 105 km3/sec

M

[
]

6378.155 km e (102)

2.997925 x lO5 km/sec

(g}
[}

TABLE VI
1969 SMITHSONIAN STANDARD EARTH ZONAL HARMONICS
(see Ref. 10)
n 7 x 108 T x10° n 7 x10° T x10°
n no n no
2 1082.628 - 484.16596 12 - 0.042 0.00840
3 - 2.538 0.95927 13 - 0.123 0.02367
4 - 1.593 0.53100 14 - 0.073 0.01356
5 - 0.230 0.06935 15 - 0.174 0.03125
6 0.502 - 0.13923 16 0.187 - 0.03255
7 - 0.362 0.09347 17 0.085 - 0.01437
8 - 0.118 0.02862 18 - 0.231 0.03798
9 - 0.100 0.02294 19 - 0.216 0.03459
10 - 0.354 0.07725 20 - 0.005 0.00078
11 0.202 - 0.04212 21 0.144 - 0.02196
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TABLE VII

1969 SMITHSONIAN STANDARD EARTH TESSERAL HARMONICS

(See Ref. 10)

" b Cnh th Cnh th
2 2 2.4129E-06 -1.3641E-06 1.5575E-06 -8.8052E-07
3 1 1.9698E~-06 2.6015E-07 2.1276E-C6 2.8099E-C7
3 2 8.9204E-0T7 =-6.3468E-07 3.0469€E-07 -2.1678FE-07
3 3 6.8630E-CT7 1.4304E-C6 9.5700€E-08 1.9946E-07
4 | ~5.2989€E-"7 -4.8765E-07 ~5.0270E-07 -4.6263E-C7
4 2 3.3024E-CT7 7.0633E-07 73844E-08 1.5794E-07
4 3 9.8943E-07 -1.5467E-07 5¢9130E-08 -9.2433E-09
4 4 ~T.9692E-08 3.3928E-07 -1.6838E-09 7.1686E-C9
5 1 -5.3816E~-08 -9.79C4E-C8 -4,6085E-08 -8.3840E-C8
5 2 6.1286E-07 =3.5087E-07 9.9182E-08 -5.6783E-08
5 3 -4.,3083E-07 -8.6663E-08 ~1.,4232E-08 -2.8629E-C9
5 4 -2.6693E-"7 B8.3010E-08 -2.0784E-09 6.4634E-10
5 5 1.2593€E~-0T7 -5.9910E~-07 3.1007E-10 -1.4751E-09
6 1 -9.8984E-08 3.7652E-08 ~7.788B0E-08 2.9624E-08
6 2 5.4825E-08 -3.5175E-07 6.8204E-09 -4.3759E-C8
6 3 2.T813E-C8 4.4626E-08 S« T7T792E-10 9.2527E-10
6 4 -4.,0342E-10 -4.0388E-C7 -1.5271€E-12 -1.5289E-C9
6 5 =2.1143E-07 -5.2264E-07 -1.7C64E-10 -4.2180E-10
6 6 8.8693E-08 —-T.4756E-C8 2.0664E-11 -1.7417€E-11
7 1 2.4142E-"7 1.1567€E-C7 1.7670E-07 8.4662E-08
7 2 2.8306E-07 1.5645E-07 2.8193E-08 1.5583E-08
7 3 2.0285E-NT7 -2.3448E-07 2.8573E-09 -3.3029E-09
1 4 -1.9727E-07 -1.13G0E-07 -4.,1891E-10 -2.4187E-10
7 5 -8.7024E-10 9.8461E-08 -3.0800E-13 3.4847E-11
7 6 -2.5847€E-N7 1.02C9E-07 -1.7940E-11 7.0860E-12
7 7 1.5916E-07 -6.7T7T10E-08 2.9525E-12 -1.2561€E-12
8 1 3.1254E-08 2.5696E-08 2.1477E-08 1.7658E-08
8 2 4,8161E-N8 8.4140E-08 3.9557€-09 6.9108E-09
8 3 -5.T444E-08 1.8086E-08 ~-5.8076E-10 1.8285E-10
8 4 —1<5378BE-07 7.5264E-08 -2.0071E-10 9.8234E-11
8 5 -5.6T33E-08 6.1636E-08 -1.0269E-11 1.1156E-11
8 6 -5.3903E-n8 2.5930E-07 -1.5054E~-12 7.2419E-12
8 7 3.4390E-08 B8.9168E-08 1.7536E-13 4.546T7E-13
8 8 -7.7364E-08 6.7607E-08 -9.8621E-14 8.6183E-14
9 1 1.3823E-07 -1.61C0E-08 8.9820E-08 ~-1.0462E-C8
9 2 6.6T41E-09 -8.1733E-08 4.6230E-10 -5.6614E~-C9
9 3 -9.6463E-7"8 -1.1817€E-07 -7.2904E-10 -8.9309E-10
9 4 5.7125€6-08 1.1183E-07 4,8884E-11 9.5697E-11
9 5 -6.1435€E-09 3.3551E-09 -6.2836€E-13 3.4316E-13
9 6 2.4186E-08 2.2028€E-07 3.1936E-13 2.9087E-12
9 7 -5.0450E-08 -1.2699E-07 -9.,6152E-14 -2.4203€E-13
9 8 2¢3359E-07 S5.7239E-08 T.6350E-14 1.8709€E-14
9 9 -£8.2490E-08 9.2326E-08 -6.3551E-15 7.1129E-15
10 1 1.1251E-C7 -1.0167E-07 6.9521E-08 -6.2823E-08
10 2 -3.1225€E-78 -1.0450E-C7 -1.8566E-09 -6.2134E-09
10 3 —2.3346E-N"8 -1.4137E-07 -1.3612E-10 -8.2425E-10
10 4 -4,8185E-08 —-4.3248E-08 —2.8379E-11 -2.5471E-11
10 S -8.00C4E-08 -1.4279E-0Q7 -4 .,9668E-12 -8.8647E-12
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TABLE VII (Cont'd.)

" L Cnh th Cnh th

10 6 -3.2486E-08 -2.0153E-07 -2.2548E-13 -1.3988E-12
10 7 5.4961E-08 3.20C2E-08 4.6262E-14 2.6937E-14
10 8 73957E-08 —7.9706E-08 8.47T13E-15 -9.1298E~-15
10 9 -6.8563E-09 6.2498E-09 ~-1.2740E-16 1.1613E-16
10 10 1.2377E-07 -2.5885E-08 5.1425E-16 -1.0755E-16
11 1 4.3899€E-09 2.9751E-08 2.5915E-09 1.7563E-08
11 2 4.8B900E-"8 -9.1994E-08 2.5318E-09 -4.7630E-C9
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