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ABSTRACT 

The formulas used in a computer program to fit earth satellite orbits to data are 

documented.    The areas covered are (1) iterative method of determining maximum 

likelihood parameter estimates; (2) units and coordinate systems; (3) motion of the 

earth about its center of mass; (4) equations for earth satellite motion and partial 

derivatives of this motion with respect to parameters; (5) theoretical values and partial 

derivatives of theoretical values of ground based (radar or radio transponder, look 

angles, long baseline interferometer) and satellite based (radar, look angles^ 

observables; and (6) numerical techniques such as numerical integration,   polynomial 

interpolation and matrix inversion.   Observations of the sun, moon,   planets and stars 

are also discussed. 

Accepted for the Air Force 
Joseph R. Waterman,  Lt. Col., USAF 
Chief,  Lincoln Laboratory Project Office 
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I. INTRODUCTION 

An orbit fitting computer program, called the Planetary Ephemeris Program (PEP), 

has been written at Lincoln Laboratory and the Massachusetts Institute of Technology. 

Since mid-1964 about 30 man (and woman) years of effort have been expended in coding 

the program.   At the present time Gate-1971) the program consists of 58, 000 Fortran 

cards and runs on any large IBM 360 computer with Operating System/360. 

PEP uses double precision computations with 16 decimal place accuracy.    The 

program needs about 110, 000 thirty-two bit words of core storage with only part of 

the program in storage at any given time.    At the start of a program run, every 

parameter is set to a default value and only those parameter values which differ from 

the default values need be input.   For the most part PEP follows a modular design so 

that new features are easy to add to the already existing program. 

PEP was originally designed to process observations of the sun, moon, planets 

and Mariner spacecraft.    Efforts in these directions, originally initiated at Lincoln, 

continue at M. I.T.   The efforts at Lincoln Laboratory have shifted to modifying the 

program to handle earth satellites. 

In this note we document the formulas used in PEP to fit earth satellite orbits to 

ground based and satellite based observations.   Much of what we say applies to 

processing solar system and star observations,   and where feasible we expand our 

discussion to include the more general case. 

A typical PEP computer run to fit earth satellite orbits to observations would be 

as follows.   Given provisional values for earth satellite initial conditions and other 

parameters, PEP numerically integrates the equations of motion and the equations for 

the partial derivatives of motion with respect to initial conditions and other parameters 

for each individual satellite and writes the results on magnetic tape.    For each 

observation PEP calculates the theoretical value of the observation and the partial 

derivatives of this theoretical value with respect to initial conditions and other parameters 

by interpolating from the ephemeris magnetic tapes.    The errors of the observations 

are assumed to be additive and normally distributed with zero means and standard 

deviations the quoted errors.   The observed minus theoretical values, the quoted errors 

and the partial derivatives of the theoretical values for the observations are used to form 



the normal equations whose solutions give adjustments to the provisional values of the 

initial conditions and other parameters.   Using these new values the process is repeated 

until convergence is obtained.   The final values of the initial conditions and other 

parameters are the maximum likelihood estimates for these quantities arising from the 

given observations. 

Our systematic documentation of the formulas used in PEP commences with a 

discussion of the iterative maximum likelihood method of parameter estimation.    We 

then give a careful discussion of the units and coordinate systems used in PEP,  including 

the effect of general relativity on the rate of an atomic clock.   We discuss the presently 

accepted expressions for the motion of the earth about its center of mass, including 

wobble, rotation, nutation and precession. 

In documenting the equations of earth satellite motion and the variational equations 

for the partial derivatives of this motion with respect to parameters, we thoroughly 
2 

examine the Newtonian gravitational effects due to the 1/r   attractions of the earth, 

sun, moon and planets and the effects of the higher harmonics in the gravitational 

potentials of the earth, moon and sun.   We briefly discuss other effects on motion, such 

as those due to radiation pressure, etc. 

The equations for earth-moon barycenter, moon and planet motion are documented 

in Refs.  1,  2 and 3, so we do not discuss them here.    The formulas for the effect of 

central body gravitational potential harmonics as derived in this note for earth satellites 

apply to lunar and planetary orbiters as well if the expressions for the motion of the 

earth about its center of mass are replaced by those for the motion of the moon or 

planet about its center of mass.    Expressions for the motion of the moon about its center 

of mass are contained in Ref. 1, Appendix B, and expressions for the motion of a 

planet about its center of mass are given at the end of this note (Section XI-A). 

We discuss the formulas for the theoretical values and the partial derivatives of 

theoretical values for ground based observations of earth satellites including radar or 

radio transponder observations, azimuth-elevation and photographic observations, and 

long baseline interferometer observations.   We extend our discussion of these observables 

to include solar system and star observations and add for the sake of completeness a 

discussion of meridian circle, transit and occultation observations. 

We document formulas for the theoretical values and the partial derivatives of 



theoretical values of satellite based observables,  including satellite to satellite radar 

or radio transponder observations and satellite reference frame look angles of the 

earth, sun, stars and another satellite.    For these satellite based observables we 

specifically consider the cases of the Lincoln Experimental Satellites numbers 8 and 9 

(LES-8 and LES-9), which are to be launched in 1974.    We also refer to LES-8/9 and 

to LES-6 (launched in 1968) when analyzing forces acting on satellites. 

We discuss numerical analysis techniques used in PEP for numerical integration, 

polynomial interpolation, matrix inversion and recursive evaluation of Legendre 

polynomials and functions.   We also discuss mean orbits for the moon and sun and 

planetary rotation and shape.    Our desire in writing this note was to document the 

formulas used in PEP that were not already presented in Refs.  1, 2 and 3.   New 

features are continually being added to PEP, so this documentation refers to the 1971 

version of the program, but at least it should provide a basis for future expansion. 

Some of the formulas and techniques discussed in this note are due to I. I. 

Shapiro, W. B. Smith and R. Reasenberg.   We acknowledge their contributions at the 

appropriate places in the text.    The programming of PEP from 1964 to 1971 was done 

at Lincoln Laboratory by the author, W. B. Smith, F. Amuchastegui,  Katherine 

Becker, P. Connolly, Antonia Forni and Amanda Rasinski, and at M. T. T. by 

L.  Friedman, R. Preston, R. Reasenberg,  M. Slade, G. Slater, R. Cappallo, 

R. King and S. Synnott. 

Because of the size of this Technical Note,  it has been difficult to catch all the 

small errors, for which we apologize. 



II.     PARAMETER ESTIMATION 

II-A. Method of Maximum Likelihood 

Suppose we have observations  (0 , ..., 0 )  with errors  (e , ..., e  ) 

We assume that the errors are additive, that is 

01 = C^ß1, ..., 3n)  + e1   i = 1, ..., m    (1) 

where C  is the computed value of the observation given the true values 

(3 , ..., 3 )  of the parameters appearing in a mathematical model of the 

physical situation.  We assume that the e  have a multivariate normal proba- 

bility distribution with zero means and joint covariance mXm matrix N. 

Thus the joint probability density of the e  = 0  — C  is 

± - | (O-C)* N X (0-C) 
L =  Z7Ö TTö   e (2) 

(2^)m/2(det N)1/2 

where  (0 - C)   is the transpose of the column matrix  (0 - C) ,  so that 

(0-C)   =  (0 - C , ..., 0m - Cm).  The joint density L is called the 

likelihood function.   See Ref. 4, Chapter 9, for a discussion of the multi- 

variate normal distribution. 

One might imagine that the error of an observation is the sum of errors 

arising from a number of independent random causes.  Then even if the distri- 

bution of these individual errors were not normal, their sum would tend to be 

normal by the central limit theorem.  Even with this justification it is not 

necessarily true that the observational errors are normally distributed.  But 

we proceed under the assumption that they are. 

In general, the error of an observation has a random part and a 

systematic part.  We assume that the systematic part has been modeled as a 

measurement bias with parameters to be estimated, so that we are left with 

only a normally distributed random error with zero mean. 



One cannot determine the true values of the parameters  (3 , ..., 3 ) 

from the observations  (0 , ..., 0 ).  It is even unclear what the word "true" 

means.  However, one can determine estimates  (3 , ..., 3n)  of the parameters 

appearing in the physical model which are functions of the observations.  The 

maximum likelihood estimators are the ones which maximize the likelihood function 

L in  (2),  i.e. which make the occurrence of the observed measurements most 

probable.  Other estimators are possible, but the maximum likelihood estimators 

are often used and they have desirable properties. 

If the value 

function L,  we have 

If the values  (3 , . .. , 3 )  of the parameters maximize the likelihood 

j  (0 - C)1  N -1 (0 - C)  = minimum (3) 

If the observation errors are uncorrelated, the covariance matrix N is diag- 
2 

onal with, say, ith diagonal element 6.   and equation (3) becomes 

(Q1-^)2 

6.2 

i=l      i 

= minimum (4) 

Thus the maximum likelihood estimators become the least squares estimators if 

the observation errors are uncorrelated.  Note that equations (3) and (4) are 

dimensionless, so that we can mix different observable types with different 

units of measurement. 

The way PEP is programmed at present assumes that the measurement 

errors are uncorrelated, so that PEP performs least squares fitting.  More 

sophisticated filtering techniques might be programmed in the future.  In this 

report we just discuss the least squares technique that has been used in cel- 

estial mechanics since the early nineteenth century. 

The parameter estimators are functions of the observed random variables 

and hence are themselves random variables with a joint probability distribution. 

For a large number m of observations  (m > > n)  the maximum likelihood para- 

meter estimates are approximately normally distributed with means the true 



values of the parameters and with covariance matrix the inverse of the matrix 

v - - E ^H)    ^ ■ i. -.«     <» J \pBJ33 / 

Here E denotes expectation, i.e., integration of the given function over the 

probability density of the observables.  See Ref. 4, p. 236 and Ref. 5, pp. 

498-505. 

The left side of (4) is equal to — 2 logL 'plus a constant.  We 

therefore have 

m 
V"*      1       3C1    8C1 .  . . ,.* A

ik = y, ~2 —7 ~r    j,k = lf •••'n    (6) 

since the expectation of  (0  — C )  is 0 .  The covariance matrix of the 

parameter estimates is 

The standard deviations of the parameter estimates are 

0j =V^7   •   3 - x> ••••" (8) 

and the correlations between the parameter estimates are 

£k = ^ J.k - 1, .... n (9) 



II-B. Iterative Solution to the Likelihood Equations 

We wish to determin 

(4).  At the minimum we have 

We wish to determine parameter values  (3 , ..., 3 )  which minimize 

m 

i=l 

(Q1 - c1)   ac1 

6. 
1 

33~ 
- 0   j  = 1, ..., n (10) 

Suppose we have provisional values  (3  , 

to determine the adjustments 

A3k = tk - 3 k o 

,3  )  of the parameters and wish 

k =  1, ..., k 

which yield the maximum likelihood,  or least squares, estimates. We make the 

linear assumptions 

n 

k-1      3ß 

3ci 
3ßk 

i = 1, ... , m 

ß = ß 

= g    3ßk 
i = 1, ..., m,  k = 1, ..., n 

Substituting into (10) we obtain 

5>, •kA» ■ BJ 
j = 1, ..., n (11) 

k=l 

where A.,  is given by (6) and B.  by 

m 
(o1 - c1)   ac1 

/ .      97     J  - 1» •••» n 

i=i      V      ^ 
(12) 



Equations (11) are called the normal equations.  The inverse of the coefficient 

matrix of the normal equations is the covariance matrix of the normally distrib- 

uted parameter estimates if there is a large number m of observations.  The 

solutions A3  o: 

parameter values, 

solutions A3  of the normal equations give adjustments to the provisional 

£k = 3 k + A3k   ,   k = 1, ..., n (13) o 

Because we have linearized the problem, it is necessary to iterate. 

Namely, using the new values of the parameters we reform the normal equations 

and solve them to get further adjustments to the parameters, the iteration 

continuing until we obtain convergence. We consider that we have converged 

if the adjustments to the parameters are a small fraction of the standard 

deviations (8) of the parameter estimates. 

How do we know that we have not converged to a local minimum of (4) 

rather than to the absolute minimum? The only answer is that we do not.  We 

have performed tests where we started from several different points far from 

the final parameter estimates and converged to the same solution.  However, we 

cannot conclude that this will always be so, except that in all our experience 

we have gotten valid operational results using this technique. 

II-C. Saved Partial Derivatives, Saved Normal Equations 

and Linear Prediction of Residuals 

The computed value of an observation C needs to be calculated 

accurately in order to retain enough significant digits in (0 - C ).  However, 

the partial derivatives 3C1/83:1 need not be calculated so accurately.  One way 

to take advantage of this fact is to save the values of 8C /33 on  magnetic 

tape from one iteration to the next rather than recalculating the partial deriva- 

tives each iteration.  There is very extensive logic in PEP to do just this if 

desired with great savings in computer time.  Another feature in PEP is the option 

of using analytic expressions for the partial derivatives with respect to initial 

conditions in the elliptic orbit osculating to the true orbit of a body rather 

than numerically integrating the equations for these partial derivatives in the 



true orbit.  This feature is very useful for planetary orbits, but it is only 

valid for a few revolutions in highly perturbed earth satellite orbits. 

There is an option in PEP of saving the normal equations on magnetic 

tape so that additional solutions can be made with parameter subsets by just 

leaving out the appropriate rows and columns when reading the saved normal 

equations. 

If one is near convergence it is not necessary to reintegrate the 

equations of motion and recompute the  (0 — C ).  Rather, there is an option 

in PEP to predict the  (01 - C1)  from the old  (01 - C1)  ,  the partial 

derivatives  3C1/33*J  and the adjustments  A3   to the parameters with Taylor's 

theorem 

n 

(01 - C1)  =  (01 - C1)  - V* ^-7    A3j (14) 

j-l 
33- 

If these predicted  (0 — C )  were inserted back in the normal equations, 

identically zero solutions would result.  Thus, in order to converge in the 

least squares iteration it is necessary to reintegrate the equations of motion 

and recompute the  (0 — C ). 

II-D. Automatic Scaling 

Suppose we changed units or scale for the parameters  (3 , •••> 3 ) 

to get new parameters  (3* , •.., 3* ) : 

e*J s 

AßJ s.Aß- V j  = 1, .. . , n 

ac1 

33+
j 

1 3C 
s . 
j 33- 

=  1, .. ., n 

(15) 



The normal equations (11) become 

D 

k=l 

A * A3/ = B *     j  = 1, ..., n (16) 

where 

>,t ■ 1   A-w sjsk Jk 

•l* 
= 

j, k =. 1, ..., n (17) 

In the PEP the normal equations are formed with any convenient units 

for the parameters.  As the equations stand they are very difficult to treat 

numerically with many orders of magnitude separating various coefficients in 

the coefficient matrix and right side.  Therefore, PEP automatically scales 

the equations before sending them to the inversion and solution routine dis- 

cussed in Section IX-C.  The scale factors are chosen to be 

sj = V^j7       j = x n (18) 

The new coefficient matrix  (A., )  has ones down the diagonal instead of quan- 

tities differing by many orders of magnitude.  After solving the normal equations 

and inverting the coefficient matrix the adjustments and covariances for the 

parameter estimates in the old units are 

A3j = — Aß.j s.   * 
J (19) 

1  „ * a..  =   a.. 
-jk    s.s.  ik 

J k J 

10 



II-E.  Uncertainty of Prediction 

Let (p , . .., 3 ) be the normally distributed (for large samples) 

maximum likelihood estimates of the orbital initial conditions and other para- 

meters with covariance matrix  (a ). We can numerically integrate the equations 
J A of motion ahead in time and predict the theoretical value a of an observable 

using the values  (3 , ..., 3 )  of the parameters with 

Ö = a<$\ ..., g11) An, 

Since a is a function of random variables, it is a random variable.  Instead 

of solving for  (p , ..., 3 )  in the least squares, maximum likelihood itera- 

tive process, we could have solved for  (&, 3 , ..., P ) .  Thus, a is norm- 

ally distributed for large samples of the data to which we are fitting. 

Let the true values of a, 3 , 3U be a, 31, ..., 3* with 

a = a(e\ ..., 3*) 

If E denotes expectation, we have 

E$j)     =     3j 

E(6) =    a 

»J  _ «3    fök - Rk 
HJ - ßj rr - ß = a

Jk 

We have 

»-♦JijrM* 
2J     , 7rl 7rnN where 8a/83J  is evaluated at the point  (3 , ..., 3 ) =  (3 , ..., 3 ) 

11 



Thus a is approximately normally distributed with approximate covariance 

n^ 
8a  9a *-:)] - .fl- ^, £ ^ a, 

j)k=i 3ßJ 3gk   jk 

where to sufficient accuracy we can evaluate the 3a/88  at the point 

(ß1 sn) = <$\ ...,3n). 
Now suppose that 

Ö1 = a1^1 r)   i - 1 q 

are q random variables with expectations 

E(6*> = H1 = a1^1, .... 1°)   i- 1, .... q 

The same argument as was used in the single random variable case gives that for 

large samples, (a , ..., a ) are jointly normally distributed with covariance 

matrix 

T ,  =  E 
ab 

[7 a  -a\ / b  HÄI 
UOL   — a j f a -a I 

= E(aaab) - E(aa) E(ab) 

8aa 9ab a E 3ßj 86k jk 

wa/^ßJ where the partial derivatives  8a /88  should be evaluated at the point 

(8 , . . . , 8 ) = (8 , ..., 8 ),  except that with sufficient accuracy we can 

evaluate them at the point  (31, ..., 8n) = (i^1, ..., $*). 

Let  (r , )  be the inverse of the covariance matrix  (T , ), 
ab ab 

12 



According to Ref. 4, pp. 244 and 264, the quantity 

a,b=l 

has the chi-square distribution with q degrees of freedom. Let P denote 

probability and let p be a number between 0 and 1, say p = 0.95. Let 

X be such that 

p(G < X) = p 

We determine X from a table of the chi-square distribution with q degrees 

of freedom.  Then with probability p  the true value  (a , ..., or)  of the 

vector  (a , ..., a )  lies within the ellipsoid 

r . (&a - aa) (Sb - ab) < A ab 

with center at  (a , ... , a ). 

As an example,  (a , a , a ) might be the estimate of the position 

of a body at a given time.  The above formulas give the error ellipsoid about 

this estimate.  Confidence intervals about the estimate of a single variable 

a can be determined from tables of the normal distribution as well as from 

tables of the chi-square distribution with 1 degree of freedom. 

13 



III.    UNITS AND COORDINATE SYSTEMS 

III-A.  Units of Mass, Length and Time 

Any physical theory has unknown parameters.  Some of the parameters 

are set to defined values in order to specify units and the remainder are 

determined by fitting to data. 

In processing planetary observations with PEP, we set the mass of the 

sun M     1  to define the unit of mass and set the square root of the gravi- 
s 

tational constant y  to the Gaussian value 

3/2-1 
yj  YM ' = 0.01720209895  L '   T (20) 

which specifies the unit of length (the Astronomical Unit) once the unit of 

time, the Coordinate, or Ephemeris, Day, is defined. If our physical model 

allowed a time variation of the gravitational constant with 

io [l + A(t- tj YMs  =  (YMs)o [1 + X(t - t^)J (21) 

we would set X/(YM )   to the defined value (20) .  Any such variation would be 
so  10 

less than a part in 10   per year.  The fractional variation in the mass of 

the Sun is completely negligible. 

Continuously since 1956, the U.S. Naval Observatory has had one or 

more cesium atomic clocks running which define what is called Al Atomic 

Time.  In recent years there have been 16 or more cesium clocks running whose 

average has been the measure of Al time.  The Al second is defined such 

that the cesium transition at zero magnetic field has the precise frequency 

(see Ref. 6, p. 446) 

9192631770  cyles/second (22) 

The day consists of 86,400 seconds and we define Coordinate Time CT  (the 

independent variable of the equations of motion) in terms of Al Atomic Time 

by (see Ref. 7, p. vii) 

14 



CT = Al + 32715 (23) 

The defined frequency (22) and offset 32.15  in (23) were chosen to have 

Coordinate Time agree as closely as could be observed with previous definitions 

of Ephemeris Time. 

We define 

M 

M 

M 
m 

mass of sun 

mass of earth 

mass of moon 
(24) 

M M  + M e     m 

In processing planetary and Mariner space probe data it has been determined 

that8'9 

Astronomical Unit = 499.004780 ± 1 x 10~  light seconds 

We assume that 

M /M  = 328900.1 ±  .4 
s  c 

M /M  =  82.301 ±  .001 
c m 

(25) 

c = velocity of light  = 2.997925 x 10 km/sec (26) 

These values and definition (20) imply that 

YM  = 398601.177 ± 0.55 km /sec e (27) 

which gives the relation between our system of units and those used in other 

orbit fitting computer programs which set yM  to a defined value instead of 

15 



yM •  In particular the Smithsonian Astrophysical Observatory in Ref. 10 uses 
s 

the defined value 

YM  = 3986Ö1.3 km3/sec2 (28) 

The parameter values obtained from fitting to data with the Smithsonian computer 

program would differ very slightly from that obtained with PEP because of the 

difference in definition of units.  However, the fit to the data would be the 

same.  (See the discussion surrounding (102) in Section V-B.) 

The particular definitions for the units of mass, length and time 

used in PEP arise from the fact that it is a solar system program specialized 

to work for earth satellites. 

III-B.  Effect of General Relativity on Time 

The theory of General Relativity alters equation (23) slightly. 

Namely, in general relativity the space time universe is pictured to be a 

four dimensional differentiable manifold with a second order symmetric hyper- 

bolic tensor defining the gravitational potential.  In a local coordinate 

system  (x , x , x , x )  this tensor, called the metric tensor, has the form 

ds2 = gyvdx
y©dxV (29) 

where we follow the Einstein summation convention that repeated upper and lower 

indices are summed.  The equation of motion of the bodies in the solar system 

are derived with coordinate time  t = x  as independent variable.  Let 

x  = x (t)  be the time-like world line followed by an atomic clock on the 

earth.  Then the proper time elapsed from coordinate time  t  to coordinate 

time  t-L along this world line is defined to be 

Toi "J      \VFF (30) 

t o 

16 



and the atomic time AT elapsed from t  to tn  is o      1 

ATn - AT  - XT . 1      o      ol (31) 

where the constant X depends on the units chosen.  Equation (31) states that 

atomic time is uniform relative to proper time. 

In Ref. 11, pp. 168-171, the Newtonian approximation to the metric 

tensor is stated to be 

2      2 2       12       22       32 
dsZ  =  (c  + 2U) dt  - (dxV - (dxV - (dxV (32) 

where U is the Newtonian gravitational potential with the convention that the 

force is — Grad {j and where c is the velocity of light.  Let v be the 

velocity on the world line, 

• ■ t ffl 
j-i     ' 

v 

We  then have 

AT,     -    AT       =     Xc 
1 o fVTT 2U y_ dt 

«     Xc P 1 + ? 2      2 

fU Uol 
2 

1  /v 

2     c2 

o 
2 

dt 

(34) 
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where U , v  are the average values of the gravitational potential and 

velocity of the atomic clock on the earth as it orbits the sun.  We define 

coordinate time in terms of atomic time by this equation, where the atomic 

unit of time is specified by (22).  In defining the unit of coordinate time 

we are free to set a constant to a defined value, so we specify 

A = (35) 

and obtain 

ATi - AT = CT  - CT 

U   - v 
1 +-£-1-2. 1  + 2  2 2 

c     c 

t 
2vl 

o 
2 dt 

(36) 

The general relativity expression includes the special relativity term involving 

the variation in velocity environment of the atomic clock plus the equally 

important term involving the variation in gravitational potential environment 

of the atomic clock. 

The earth-moon barycenter moves approximately in an ellipse of eccen- 

tricity e =  .01672  relative to the Sun with semi-major axis  a = 1 astro- 

nomical unit.  In this elliptic orbit we have 

. a(l-e2) 
1-e cos \p 

YM  (- 
s r i> (37) 

yll 
v = — 
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where lp  is the mean anomaly related to the time  t  from perihelion by 

4 -JEE 
2   11  - 

e     C ■  tan -r 

■^ = 5 - e sin £ (38) 

d]fc 
^^M? Va(l-e2)' 

dt 2 
r 

where £  is the eccentric anomaly and  T « 365.25 days is the period. 

Consider the integral* 

t h - »a - 
s, 

> '. \ ■At H -2(i -ecos *] 
V^V»<l-e2)'     r„,(tl)      (- f - f   + 2 e cos ») i(l-e')     r 

2 I 2 c / (1 -  e cos i|>) 
Kt0) 

V^v tfa(l-0      /•*(t1)   /    3 2 v 
2     / (" f   -   f-   + 2 e cos WJ    • 

*<*o> 

/ 2 2 3 3    \ 
•   (l    +    2 e cos i>    +    3  e    cos    \|;    +    4  e    cos    i|;l  dip 

* 
Note added in proof:  If we had evaluated this and subsequent integrals in 

terms of the eccentric anomaly £ we would have obtained exact results 
without expanding in powers of  e. 
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m     V^rVa(1-e2>'      /V(tl)   f/_    3    _    e!) 
♦(t0) 

3 e2 2 
—    (e    +    e )   cos <JJ    —   — cos    i|i|  d^ ■] 

where we have ignored powers of e higher than the third.  Let us take 

Uo    x  vo
2 

—r- — — —~— to be the average of this integral, £ ,  i.e., the integral form 
c       c 

0     to    2TT    divided by the  orbital period    T    of  the earth: 

U _  v 2 JyM1 Va(l-e2)       o^ o lo \sf 2TT 

2 2     2 2 T 
c c c 

^ryyi-? 
2 

ac 

since 

3(YM
S> -8 

 —  ~ —    10 (dimensionless) (39) 
2ac 

f -  m/'2^'2 (40) 

Uo      vo
2 

We are using the combined average of — — — —j-    rather than the average of 
c       c 

each individual term, but the end result is the same. 

The term multiplying the integral in (36) differs from 1 in the eighth 

place, so we take it to be 1 .  Thus (36) can be written as 
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(CT.,     -    CT  )     -    (AT-     -    AT  )     = 
1 o 1 o 

3fE 2(1 - e cos ip) 

(1 - e2) 
-    2    dt 

W a1/2   (1 -  e2)3/2    [HtJ , 
'2e      -    2   (e + eJ)   cos ijj 

•>(t ) 3 
t 2 2 3 3 

1    +    2  e cos ip    +    3   e    cos    vp    +    4  e    cos    ip    d\\) 

1/2   „ 2,3/2 ^/^T a1/Z   (1 - e £1 ^v r 2 3 
2e      —    2(e + e  )   cos \p 

2 2 3 3 
—    4e    cos    ty    —    6e    cos    ipl   dip ] 

1/2   ., 2.3/2 
^T ax"  (1 - e LZ   L 3 2 

2(e + e )   sin ip    —    e    sin  2 ip 

3 2 
—    6e    sin ip   (cos    \p + 2) 3 *   =   iKtQ) 

where we have ignored powers of  e higher than the third.  Over one revolution 

the right side is zero as it should be. 
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Inserting numerical values for the constants in the above formula, 

equation (23) becomes in general relativity 

CT = Al + 32?15 - 1?6576 x 10"3 sin \p 

- 1?38 x lCf5 sin 2 ip - 1?4 x 10~6 sin ip  (cos2 \p    + 2) 

(41) 

where by Ref. 12, p. 77, the true anomaly \p    is expressed in terms of the 
_t 
T 

fraction of time — from perihelion by 

4>    =    2TT I    +    2e    -   i e3    +  ...1    sin   (2TT |) 

]   -i» (* § + (g-3    -    ...)   sin(6*4) 5    2 11    4 
+    4  6      "    24  6      +     "•' 

+    ... 

« 2TT ^    +    0.0333988  sin   (2TT ^)  +    0.0003489  sin  (4TT ^) 

+ 0.0000050 sin (6TT ^) (^2) 

Alternately, Keplers equation (38) could be solved iteratively for \p    given 

M = 2TT — .  The earth-moon barycenter perihelion occurs about January 3 each 

year. 

The above formula is not programmed in PEP, but rather an interpolation 

is performed from a tabulation (see Table I) constructed in the following 

manner.  The integral (30) was numerically integrated with the Newtonian 

approximation (32) and with the exact earth-moon barycenter orbit instead of 

an elliptic orbit approximation.  The integration was performed to produce a 

table for about a decade surrounding the present time.  An appropriate value 

of X in (31) was chosen so as to obtain (23) with small additional oscillatory 

values.  The table was much the same from one year to the next, so we essentially 
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TABLE I 

VARIATION IN CT-(A1 + 32.15) VERSUS FRACTION OF SIDEREAL YEAR 

Fraction 
of 

Year 
CT-(A1 + 32.15) 

millisec 

Fraction 
of 

Year 
CT-(A1 + 32.15) 

millisec 

- 0.01 0.1056 
0.00 - 0.0000 
0.01 - 0.1058 
0.02 - 0.2115 
0.03 - 0.3166 
0.04 - 0.4206 
0.05 - 0.5233 
0.06 - 0.6240 
0.07 - 0.7225 
0.08 - 0.8183 
0.09 - 0.9111 
0.10 - 1.0003 
0.11 - 1.0857 
0.12 - 1.1670 
0.13 - 1.2438 
0.14 - 1.3158 
0.15 - 1.3827 
0.16 - 1.4442 
0.17 r- 1.5002 
0.18 - 1.5504 
0.19 - 1.5946 
0.20 - 1.6327 
0.21 - 1.6645 
0.22 - 1.6900 
0.23 - 1.7089 
0.24 - 1.7214 
0.25 - 1.7273 
0.26 - 1.7267 
0.27 - 1.7195 
0.28 - 1.7059 
0.29 - 1.6859 
0.30 - 1.6595 
0.31 - 1.6270 
0.32 - 1.5884 
0.33 - 1.5440 
0.34 - 1.4939 
0.35 - 1.4383 
0.36 - 1.3775 
0.37 - 1.3117 
0.38 - 1.2411 
0.39 - 1.1661 
0.40 - 1.0869 
0.41 - 1.0039 
0.42 - 0.9173 
0.43 - 0.8276 
0.44 - 0.7350 
0.45 - 0.6398 
0.46 - 0.5426 
0.47 - 0.4436 
0.48 - 0.3431 
0.49 - 0.2417 

0.50 - 0.1396 
0.51 - 0.0372 
0.52 0.0650 
0.53 0.1667 
0.54 0.2676 
0.55 0.3671 
0.56 0.4650 
0.57 0.5609 
0.58 0.6544 
0.59 0.7452 
0.60 0.8329 
0.61 0.9172 
0.62 0.9978 
0.63 1.0743 
0.64 1.1464 
0.65 1.2139 
0.66 1.2765 
0.67 1.3339 
0.68 1.3859 
0.69 1.4323 
0.70 1.4729 
0.71 1.5075 
0.72 1.5360 
0.73 1.5582 
0.74 1.5740 
0.75 1.5834 
0.76 1.5863 
0.77 1.5826 
0.78 1.5724 
0.79 1.5557 
0.80 1.5324 
0.81 1.5028 
0.82 1.4669 
0.83 1.4247 
0.84 1.3766 
0.85 1.3225 
0.86 1.2629 
0.87 1.1978 
0.88 1.1275 
0.89 1.0523 
0.90 0.9726 
0.91 0.8885 
0.92 0.8005 
0.93 0.7089 
0.94 0.6141 
0.95 0.5164 
0.96 0.4163 
0.97 0.3142 
0.98 0.2105 
0.99 0.1056 
1.00 - 0.0000 
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obtained formula (41) more exactly with a table look-up instead of evaluating 

trigonometric terms. 

Specifically, the programming in PEP to utilize Table I is as follows. 

Given the Coordinate Julian Date (call it JED) we calculate the fraction of 

coordinate time  t  from the beginning of year by 

tf = (JED - 2439491.5)/365.2563604 (43) 

where JED 2439491.5  is  1.0 January 1967 and 365.2563604  is the length of 

the sidereal year in days.  Using the fraction of year  tf  the value of 

CT — (Al + 32.15)  is determined by interpolation from Table I.  Given an 

atomic time epoch instead of a coordinate time epoch, an iterative process 

determines CT — (Al + 32.15)  from the table.  The zero crossing in Table I 

is slightly offset from the zero crossing at perihelion in (41), but this does 

not operationally matter as long as the same convention is used consistently 

all the time. 

This formulation ignores a number of effects in the variation of the 

rate of atomic time relative to coordinate time.  To see how large these can 

be suppose there is a variation in the gravitation potential and velocity 
2 

environment (divided by  c )  of maximum magnitude  D  and period  T .  We 

have 

°f -$ d« --S"»ffi 

so that the longer the period for a given magnitude phenomenon the larger 

the cumulative effect. 

Because of the motion of the earth about the earth-moon barycenter, 
2  2 2 2 -12 2 

v /c  differs from v  /c  by as much as ± 8.3 x 10    and U/c  differs 
2 ° -13 

from U /c  by as much as + 3.1 x 10    (this last is entirely due to the 

gravitational potential of the sun).  In addition, because of the eccentricity 
2 2 

of the Moon's orbit about the earth,  U/c  differs from U /c  by as much 
-15 ° as ± 7.8 x 10    due to the moon.  Thus general relativity predicts an 

additional term in (41) of period one lunar month and amplitude 2.2 x 10 

seconds. 
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2  2 2  2 
Because of the rotation of the earth v /c  differs from v  /c  by 

-10 ° 
as much as  ± 3.1 x 10   cos <j),  where <f>  is the latitude of the atomic 

2 2 -13 
clock, and U/c  differs from U /c  by as much as ± 4.3 x 10   cos ty    due 

-15   ° 
to the sun and ± 2.4 x 10   cos <j> due to the moon.  Thus general relativity 

predicts an additional term in (41) of period one sidereal day and amplitude 

4.3 x 10  cos (f) seconds. 

The non-informity between atomic time and coordinate time predicted by 

general relativity affects the theoretical value of an observation in  (i)  the 

actual measurement and  (ii)  the specification of epoch. 

If an observation involves a measurement of time delay, effect  (i) 

enters into the conversion of the theoretical value of the measurement from 

coordinate time CT  to atomic time Al .  If the time delay in coordinate 

time were At,  the atomic time delay would differ from it by at most aAt, 

where a  (dimensionless) is the maximum rate of change in the periodic vari- 

ations in CT — Al. 

In the case of the yearly term due to the eccentricity of the earth- 

moon barycenter orbit, we have a = 3.3 x 10 " .  For an interplanetary round 

trip time delay measurement of magnitude At « 1000 seconds, this effect could 

be as large as 0.33 ysec, so it can be important.  For observations of earth 

satellites with At « 1 second, this effect can be ignored, except for as yet 

unobtained subnanosecond round trip time delay accuracies. 

In the case of the monthly term due to the motion of the earth relative 
-13 to the earth-moon barycenter, we have a = 5.9 x 10 ' .  This effect  (i) 

on a delay measurement is unimportant for both interplanetary and earth satel- 

lite observations. 

In the case of the diurnal term due to the rotation of the earth, we 

have a = 3.1 x 10 ' .  Thus effect  (i)  on an earth satellite time delay 

measurement is unimportant, but it can be as large as 0.31 ysec for a 1000 

second interplanetary round trip time delay measurement.  We do not pursue the 

accurate inclusion of this effect into PEP since this report is mainly directed 

toward earth satellites. 

Effect  (ii)  enters into the calculation of the theoretical value of 

an observation in-so-far as the theoretical value of an observation is changed 

by a change in coordinate time epoch of the observation. We again consider 
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time delay observations At,  since they are potentially one of the most 

accurate.  The maximum possible effect is DAt  where D is the magnitude 

of the general relativity periodic term in CT-A1  and At  is the rate of 

change of time delay except for that part due to the rotation of the earth. 

In the case of an interplanetary time delay measurement |At|^ 2 x 10 

sec/sec  so this effect can be important for the yearly term of magnitude 
s     -3 

1.7 x 10   due to the eccentricity of the earth orbit. However, this is not 

so for the case of earth satellite observations, except for super accurate 

observations.  The monthly and diurnal variations in epoch are unimportant 

for both interplanetary and earth satellite observations. 
g 

There is a variation in  (CT-A1 + 32.15)  at the microsecond level with 

period  1.09 years due to the variation in Jupiters gravitational potential 

at the earth.  This  effect and those due to the fact that the earth-moon 

barycenter orbit does not follow exactly the same elliptical path from year 

to year are ignorable with present observable accuracies. 

III-C.  U.S. Naval Observatory Time Service 

The time used in specifying the epoch of an observation is usually UTC 

time signal time, which is disseminated by the U.S. Naval Observatory WWV radio 

station (a "coordinate station"), by other time service ("coordinate") stations, 

and by the Loran-C system.  In addition, portable cesium or rubidium atomic 

clocks are carried from Washington, D. C. to various sites to check the rela- 

tion between the UTC clock at the Naval Observatory and the local site clock. 

It is attempted to keep UTC time in fairly close accord with the UT2 

time defined by the rotation of the earth (see Section III-D).  Before  1.0 

January 1972 this was accomplished by jumps in the clock reading and by 

changing the rate of the clock.  After 1.0 January 1972 the UTC clock rate 

will be kept at the Al clock rate (22) and one second quantum jumps (leap 

seconds) will be made.  Table II gives the history of the frequency offset of 

the UTC clock from the Al clock and Table III gives the history of the quantum 

jumps in the UTC clock as given in the U.S. Naval Observatory Time Service 

Notices and Bulletins.  Table IV gives the relation between Al and UTC times 
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TABLE II 

Fractional Frequency Offset of UTC from Al in Units of 10 ±0 

Jan 1956 to Aug 1957 varied between - 36 and -98 

Aug 1957 to Dec 1958 varied between - 83 and - 127 

1.0 Jan 1960 to 32.0 Dec 1959 varied between - 92 and - 112 

1.0 Jan 1960 to 32.0 Dec 1961 - 150 

1.0 Jan 1962 to 32.0 Dec 1963 - 130 

1.0 Jan 1964 to 32.0 Dec 1965 - 150 

1.0 Jan 1966 to 32.0 Dec 1971 - 300 

1.0 Jan 1972 to   0 

from 1956 to the present as given on punched cards supplied by the U.S. Naval 

Observatory,.  From 1.0 January 1966 to 32.0 December 1971 this relation is 

given by* 

A.l - UTC = 6.2398697 + 0.002592 t 

+ 0.0007  if between 1.0 Jan 1966 and 1.0 Dec 1966 

+ 0.0 if between 1.0 Dec 1966 and 1.0 Feb 1968 

- 0.1 if between 1.0 Feb 1968 and 32.0 Dec 1971   (45) 

where  t  is the time in Al  or UTC days from 1.0 January 1968 (Julian Date 

2439856.5).  After 1.0 January 1972 we will have 

Al — UTC = constant (see end of Table IV) (46) 

*  Private Communication from R. G. Hall, Assistant Director of Time Service 
Division, U.S. Naval Observatory (20 May 1969).  Before 1968 the formula could 
be off by a few tenths of a millisecond.  More recently, the formula is more 
accurate than the number of digits in Table IV. 
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TABLE III 

QUANTUM JUMPS IN Al-UTC 

(The Juli an Day Number is the Julian Date at noon on the given 
Greenwic h calendar day; see Ref. 7, Table I, pp. 493 -495) 

Julian Amount Julian Amount 
Day UTC of Jump Day UTC of Jump 

Number Year Month Day Hr (sec) Number Year Month Day Hr (sec) 

2435477 1956 Jan 04 19 0.061 2436597 1959 Jan 28 19 0.020 
2435540 March 07 19 -0.020 2436625 Feb 25 19 0.020 
2435561 March 28 19 -0.020 2436786 Aug 05 19 0.020 
2435681 July 26 19 0.020 2436807 Aug 26 19 0.020 
2435708 Aug 22 19 0.020 2436842 Sept 30 19 0.020 
2435736 Sept 19 19 0.020 2436877 Nov 04 19 0.020 
2435778 Oct 31 19 0.020 2436891 Nov 18 19 0.020 
2435792 Nov 14 19 0.020 2436919 Dec 16 19 0.020 
2435862 1957 Jan 23 19 0.020 2437301 1961 Jan 01 00 0.005 
2435911 Mar 13 19 0.020 2437513 Aug 01 00 -0.050 
2435960 May 01 19 0.020 2438335 1963 Nov 01 00 0.100 
2435995 June 05 19 0.020 2438487 1964 April 01 00 0.100 
2436009 June 19 19 0.020 2438640 Sept 01 ÜÜ 0.100 
2436023 July 03 19 0.020 2438670 Oct 01 00 0.001 
2436037 July 17 19 0.020 2438762 1965 Jan 01 00 0.100 
2436065 Aug 14 19 0.020 2438821 March 01 00 0.100 
2436128 Oct 16 19 0.020 2438943 July 01 00 0.100 
2436149 Nov 06 19 0.020 2439005 Sept 01 00 0.100 
2436184 Dec 11 19 0.020 2439461 1966 Dec 01 00 -0.0007 
2436219 1958 Jan 15 19 0.020 2439888 1968 Feb 01 00 -0.100 
2436240 Feb 05 19 0.020 2441318 1972 Jan 01 00 0.1076 1 
2436254 Feb 19 19 0.020 
2436303 April 09 19 0.020 After 1 Jan 1972 there will be 1 sec- 
2436366 June 11 19 0.020 ond quantum jumps every 6 mon ths or 
2436387 July 02 19 0.020 a year. 
2436401 July 16 19 0.020 
2436499 Oct 22 19 0.020 
2436534 Nov 26 19 0.020 
2436562 Dec 24 19 0.020 
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where the constant will be incremented by 1 second every 6 months or a 

year to keep UTC within CT?7 of UT2. 

In PEP the value of Al — UTC for processing observations is deter- 

mined by a computer subroutine which before 1.0 January 1966 performs linear 

interpolation from the 10 day tabular interval table given in Table IV taking 

account of quantum jumps and which after that date uses formulas (45) and (46). 

In recent years Al time (being the average of about 16 cesium atomic 
13 

clocks) has had a long term accuracy of 1 part in 10  ,  which means that the 

Al time which has elapsed between two epochs separated by a year is known to 

3 ysec seconds.  See Ref. 13. 
14 

A hydrogen maser atomic clock has an accuracy of  1 part in 10 

However, the rate of the clock is not reproducible as it is for cesium clocks. 

Therefore, cesium clocks are used as the continuous time standard.  Hydrogen 

maser clocks must be used in making super accurate observation measurements 

such as with very long baseline interferometry and round trip time delay, but 

it is then necessary to solve for observation biases when fitting to data. 

This is quite possible, and might even be done anyway.  We might note that a 

hydrogen maser atomic clock costs about $100,000 whereas a cesium atomic 

clock costs about $10,000. 

A local time standard is usually running at the rate of the UTC 

clock.  Therefore, delay measurements, as in radar or radio transponder observa- 

tions, is in UTC  time units.  The theoretical value of a delay measurement 

computed from the tables of motion of a satellite are in CT  time units which 

is then converted to Al time units.  Before 1.0 January 1972 the theoretical 

value must in addition be multiplied by 

1 - fractional frequency offset (47) 

in order to compare it with the observed value in UTC  time units. 
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TABLE  IV 

DATA FROM U.S.   NAVAL OBSERVATORY TIME  SERVICE  PUNCHED CARDS 

JULIAN 
DATE 

2435479.5 
2435489.5 
2435499.5 
2435509.5 
2435519.5 
2435529.5 
2435539.5 
2435549.5 
2435559.5 
2435569.5 
2435579.5 
2435589.5 
2435599.5 
2435609.5 
2435619.5 
2435629.5 
2435639.5 
2435649.5 
2435659.5 
2435669.5 
2435679.5 
2435689.5 
2435699.5 
2435709.5 
2435719.5 
2435729.5 
2435739.5 
2435749.5 
2435759.5 
2435769.5 
2435779.5 
2435789.5 
2435799.5 
2435809.5 
2435819.5 
2435829.5 
2435839.5 
2435849.5 
2435859.5 
2435869.5 
2435879.5 
2435889.5 
2435899.5 
2435909.5 
2435919.5 
2435929.5 

1956 
1956 

CALENDAR 
DATE 

7.0 JAN 1956 
17.0 JAN 1956 
27.0 JAN 1956 
6.0 FEB 1956 

16.0 FEB 1956 
26.0 FEB 1956 
7.0 MAR 1956 

17.0 MAR 
27.0 MAR 
6.0 APR 1956 
16.0 APR 1956 
26.0 APR 1956 
6.0 MAY 1956 

16.0 MAY 1956 
26.0 MAI 1956 
5.0 JUN 1956 
15.0 JUN 1956 
25.0 JUN 1956 
5.0 JUL 1956 

15.0 JUL 1956 
25.0 JUL 1956 
4.0 AUG 1956 
14.0 AUG 1956 
24.0 AUG 1956 
3.0 SEP 1956 

13.0 SEP 1956 
23.0 S£P 1956 
3.0 OCT 1956 

13.0 OCT 1956 
23.0 OCT 1956 
2.0 NOV 1956 

12.0 NOV 1956 
22.0 NOV 1956 
2.0 DEC 1956 
12.0 DEC 1956 
22.0 DEC 1956 
1.0 JAN 1957 

11.0 JAN 1957 
21.0 JAN 1957 
31.0 JAN 1957 
10.0 FEB 1957 
20.0 FEB 1957 
2.0 MAR 1957 

12.0 MAR 1957 
22.0 MAR 1957 

1.0   APR 1957 

tfOBBL 
X 

0.035 
0.088 
0.126 
0. 155 
0.177 
0.200 
0.224 
0.240 
0.238 
0.232 
0.223 
0.218 
0.216 
0.214 
0.212 
0.210 
0.207 
0.204 
0.200 
0.195 
0.185- 
0.167 
0.146 
0.123 
0.099 
0.077 
0.062 
0.049 
0.013 

-0.027 
•0.057 
■0.087 
■0.122 
•0.162 
•0.187 
■0.206 
•0.218 
•0.225 
•0.225 
•0.221 
•0.209 
•0.206 
•0.147 
•0.100 
•0.054 
■0.006 

Y 
0.331 
0.325 
0.320 
0.315 
0.310 
0.310 
0.310 
0.310 
0.293 
0.274 
0.250 
0.220 
0.184 
0.144 
0.104 
0.068 
0.043 
0.025 
0.013 
0.001 
0.003 
0.001 
0.006 
0.014 
0.024 
0.025 
0.026 
0.027 
0.035 
0.043 
0.056 
0.073 
0.093 
0.116 
0.141 
0.169 
0.195 
0.224 
0.257 
0.287 
0.315 
0.339 
0.377 
0.404 
0.420 
0.440 

A1-UTC 
SEC 

-0.8188 
-0.8050 
-0.7918 
-0.7796 
-0.7669 
-0.7539 
-0.7425 
-0.7521 
-0.7410 
-0.7514 
-0.7433 
-0.7361 
-0.7291 
-0.7223 
-0.7155 
-0.7087 
-0.7011 
-0.6944 
-0.6896 
-0.6855 
-0.6821 
-0.6582 
-0.6552 
-0.6325 
-0.6309 
-0.6279 
-0.6034 
-0.5984 
-0.5938 
-0.5907 
-0.5672 
-0.5638 
-0.5393 
-0.5337 
-0.5281 
-0.5209 
-0.5132 
-0.5052 
-0.4968 
-0.4687 
-0.4605 
-0.4531 
-0.4468 
-0.4408 
-0.4145 
-0.4080 

A1-UT1 
SEC 

-0.7993 
-0.7920 
•0.7847 
-0.7764 
-0.7664 
-0.7563 
•0.7449 
-0.7328 
-0.7204 
-0.7073 
-0.6947 
-0.6821 
-0.6691 
-0.6576 
-0.6477 
•0.6397 
-0.6329 
•0.6278 
•0.6241 
•0.6213 
•0.6193 
-0.6168 
-0.6142 
-0.6103 
-0.6057 
•0.6002 
-0.5934 
•0.5845 
•0.5740 
•0.5633 
•0.5510 
•0.5375 
•0.5252 
■0.5124 
•0.5000 
•0.4872 
•0.4746 
•0.4632 
•0.4504 
•0.4380 
•0.4245 
•0.4101 
•0.3965 
■0.3819 
•0.3671 
•0.3520 

UT2-UT1 
SEC 

-0.0102 
-0.0089 
-0.0075 
-0.0058 
-0.0034 
-0.0003 

0.0035 
0.0080 
0.0131 
0.0184 
0.0236 
0.0282 
0.0320 
0.0344 
0.0352 
0.0342 
0.0315 
0.0270 
0.0211 
0.0141 
0.0065 

-0.0013 
-0.0086 
-0.0152 
-0.0206 
-0.0246 
-0.0271 
-0.0281 
-0.0277 
-0.0264 
-0.0242 
-0.0217 
-0.0190 
-0.0166 
-0.0143 
-0.0125 
-0.0110 
-0.0097 
-0.0084 
-0.0068 
-0.0049 
-0.0022 
0.0012 
0.0053 
0.0101 
0.0153 
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TABLE IV     (Cont'd) 

JULIAN CALENDAR                HOBBLE    (") A1-UTC             A1-ÖT1      ÜT2-UT1 
DATE DATE                        X              Y SEC                     SEC              SEC 

2435939.5 11.0   APR   1957     0.026   0.453 -0.4022 -0.3360      0.0206 
2435949.5 21.0   APR   1957     0.057   0.460 -0.3959 -0.3199      0.0257 
2435959.5 1.0   MAY   1957     0.105   0.460 -0.3886 -0.3029      0.0300 
2435969.5 11.0   MAY   1957     0.153   0.454 -0.3609 -0.2864     0.0332 
2435979.5 21.0   MAY   1957     0.193   0.440 -0.3545 -0.2710     0.0353 
2435989.5 31.0   MAY   1957     0.232   0.418 -0.3490 -0.2570      0.0350 
2435999.5 10.0   JÜN   1957     0.270   0.393 -0.3238 -0.2439     0.0332 
2436009.5 20.0   JUN   1957     0.326   0.358 -0.2983 -0.2332     0.0297 
2436019.5 30.0  JUN   1957     0.356   0.313 -0.2928 -0.2249     0.0245 
2436029.5 10.0   JÖL   1957     0.378   0.274 -0.2672 -0.2179      0.0180 
2436039.5 20.0   JÜL   1957     0.386   0.241 -0.2419 -0.2111      0.0110 
2436049.5 30.0   JÜL   1957     0.391   0.207 -0.2368 -0.2067     0.0029 
2436059.5 9.0   AÜG   1957     0.394   0.173 -0.2304 -0.2009   -0.0048 
2436069.5 19.0   AUG   1957     0.396   0.138 -0.2031 -0.1944   -0.0118 
2436079.5 29.0   AUG   1957     0.388   0.110 -0.1939 -0.1859   -0.0179 
2436089.5 8.0   SEP   1957     0.368   0.082 -0.1857 -0.1754   -0.0226 
2436099.5 18.0   SEP   1957     0.336   0.054 -0.1764 -0.1636   -0.0259 
2436109.5 28.0   SEP   1957     0.291   0.026 -0.1661 -0.1498   -0.0277 
2436119.5 8.0   OCT   1957     0.243-0.002 -0.1556 -0.1345   -0.0281 
2436129.5 18.0  OCT   1957     0.194-0.027 -0.1255 -0.1175-0.0272 
2436139.5 28.0   OCT   1957     0.146-0.047 -0.1155 -0.0995   -0.0254 
2436149.5 7.0   NOV   1957     0.098-0.059 -0.0875 -0.0819   -0.0230 
2436159.5 17.0   NOV   1957     0.041-0.069 -0.0803 -0.0629   -0.0204 
2436169.5 27.0   NOV   1957  -0.022-0.075 -0.0708 -0.0439   -0.0178 
2436179.5 7.0   DEC   1957  -0.092-0.077 -0.0598 -0.0251   -0.0154 
2436189.5 17.0   DEC   1957   -0.145-0.072 -0.0297 -0.0068   -0.0134 
2436199.5 27.0   DEC   1957  -0.181-0.059 -0.0200            0.0117   -0.0117 
2436209.5 6.0  JAN   1958  -0.210-0.042 -0.0103             0.0303   -0.0103 
2436219.5 16.0  JAN   1958  -0.221-0.008 0.0186            0.0473   -0.0091 
2436229.5 26.0   JAN   1958   -0.227   0.033 0.0276             0.0634   -0.0076 
2436239.5 5.0   FEB   1958  -0.232   0.079 0.0362            0.0801   -0.0059 
2436249.5 15.0   FEB   1958 -0.232   0.133 0.0644             0.0964   -0.0036 
2436259.5 25.0   FEB   1958   -0.223   0.200 0.0926            0.1127   -0.0006 
2436269.5 7.0   MAR   1958-0.211   0.243 0.1010            0.1294     0.0032 
2436279.5 17.0   MAR   1958 -0.191   0.289 0.1098            0.1468     0.0076 
2436289.5 27.0   MAR   1958  -0.165   0.334 0.1182            0.1647     0.0127 
2436299.5 6.0  APR   1958  -0.133  0.376 0.1272            0.1833     0.0180 
2436309.5 16.0   APR   1958 -0.101   0.406 0.1561             0.2011      0.0232 
2436319.5 26.0  APR   1958  -0.068   0.426 0.1649            0.2194     0.0280 
2436329.5 6.0   MAY   1958  -0.032  0.443 0.1736            0.2368     0.0318 
2436339.5 16.0   HAY   1958     0.006   0.458 0.1817            0.2533     0.0343 
2436349.5 26.0   MAY   1958     0.046   0.468 0.1890            0.2679     0.0352 
2436359.5 5.0  JUN   1958     0.086   0.473 0.1979            0.2800     0.0343 
2436369.5 15.0  JUN   1958     0.123  0.470 0.2270            0.2909     0.0316 
2436379.5 25.0  JUN   1958     0.156   0.462 0.2361             0.2999     0.0273 
2436389.5 5.0   JÖL   1958     0.187   0.449 0.2653            0.3070     0.0214 
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TABLE  IV     (Cont'd) 

JULIAN 
DATE 

2436399.5 
2436409.5 
2436419,5 
2436429.5 
2436439.5 
2436449.5 
2436459.5 
2436469.5 
2436479.5 
24 36489.5 
2436499.5 
2436509.5 
2436519.5 
2436529.5 
2436539.5 
2436549.5 
2436559.5 
2436569.5 
2436579.5 
2436589.5 
2436599.5 
24366Ü9.5 
2436619.5 
2436629.5 
2436639.5 
2436649.5 
2436659.5 
2436669.5 
2436679.5 
2436689.5 
2436699.5 
2436709.5 
2436719.5 
2436729.5 
2436739.5 
2436749.5 
2436759.5 
2436769.5 
2436779.5 
2436789.5 
2436799.5 
2436809.5 
2436819.5 
2436829.5 
2436839.5 
2436849.5 

CALENDAR 
DATE 

15.0   JUL 1958 
25.0   JUL 1958 

4.0   AUG 1958 
14.0   AUG 1958 
24.0   AUG 1958 

3.0   SEP 1958 
13.0   SEP 1958 
23.0   SEP 1958 
3.0   OCT 1958 

13.0   OCT 1958 
23.0   OCT 1958 
2.0   NOV 1958 

12.0   NOV 1958 
22.0   NOV 1958 
2.0   DEC 1958 

12.0   DEC 1958 
22.0   DEC 1958 

1.0   JAN 1959 
1 1.0   JAN 1959 
21.0   JAN 1959 
31.0   JAN 1959 
10.0   FEB 1959 
20.0   FEB 1959 
2.0   MAR 1959 

12.0   MAR 1959 
22.0   MAR 1959 

1.0   APR 1959 
1 1.0   APR 1959 
21.0   APR 1959 

1.0   MAY 1959 
11.0   MAY 1959 
21.0   MAY 1959 
31.0   MAY 1959 
10.0   JUN 1959 
20.0   JUN 1959 
30.0   JUN 1959 
10.0   JUL 1959 
20.0   JUL 1959 
30.0   JUL 1959 
9.0   AUG 1959 

19.0   AUG 1959 
29.0   AUG 1959 

8.0   SEP 1959 
18.0   SEP 1959 
28.0   SEP 1959 

8.0   OCT 1959 

WOBBLE    (") 
X Y 

0.218   0.427 
0.248   0.395 
0.276   0.361 
0.303   0.321 
0.330   0.277 
0.355   0.248 
0.376   0.215 
0.392   0.162 
0.403   0.129 
0.387   0.077 
0.357   0.043 
0.319-0.007 
0.277-0.032 
0.229-0.068 
0.181-0.077 
0.128-0.094 
0.075-0.081 
0.022-0.079 

-0.031-0.070 
-0.072-0.059 
-0.105-0.046 
-0.126-0.028 
-0.145-0.005 
-0.158   0.022 
-0.169   0.053 
-0.175   0.087 
-0.174   0.123 
-0.168   0.161 
-0.160   0.197 
-0.150   0.232 
-0.137   0.265 
-0.121   0.296 
-0.102   0.324 
-0.081   0.349 
-0.057   0.369 
-0.030   0.382 

0.001   0.384 
0.037   0.381 
0.078   0.375 
0.122   0.365 
0.174   0.347 
0.226   0.322 
0.270   0.293 
0.302   0.269 
0.319   0.249 
0.323   0.231 

A1-UTC 
SEC 

0.2744 
0.3034 
0.3122 
0.3211 
0.3302 
0.3389 
0.3477 
0.3565 
0.3652 
0.3740 
0.4024 
0.4109 
0.4192 
0.4275 
0.4556 
0.4637 
0.4724 
0.5011 
0.5102 
0.5193 
0.5486 
0.5579 
0.5671 
0.5968 
0.6060 
0.6154 
0.6247 
0.6342 
0.6435 
0.6527 
0.6618 
0.6708 
0.6798 
0.6892 
0.6983 
0.7073 
0.7162 
0.7250 
0.7335 
0.7622 
0.7709 
0.7995 
0.8082 
0.8168 
0.8257 
0.8541 

A1-UT1 
SEC 

0.3137 
0.3195 
0.3255 
0.3316 
0.3385 
0.3467 
0.3564 
0.3674 
0.3808 
0.3957 
0.4114 
0.4278 
0.4448 
0.4612 
0.4782 
0.4944 
0.5109 
0.5262 
0.5417 
0.5585 
0.5742 
0.5879 
0.6013 
0.6149 
0.6280 
0.6419 
0.6562 
0.6709 
0.6853 
0.6995 
0.7128 
0.7255 
0.7375 
0.7481 
0.7582 
0.7668 
0.7745 
0.7812 
0.7875 
0.7944 
0.8015 
0.8104 
0.8213 
0.8331 
0.8464 
0.8622 

UT2-UT1 
SEC 

0.0144 
0.0068 

-0.0010 
-0.0084 
-0.0150 
-0.0204 
-0.0245 
-0.0270 
-0.0281 
-0.0278 
-0.0264 
-0.0243 
-0.0217 
-0.0191 
-0.0166 
-0.0143 
-0.0125 
-0.0110 
-0.0097 
-0.0084 
-0.0068 
-0.0048 
-0.0022 
0.0012 
0.0053 
0.0101 
0.0153 
0.0206 
0.0257 
0.0300 
0.0332 
0.0350 
0.0350 
0.0332 
0.0297 
0.0245 
0.0180 
0.0107 
0.0029 

-0.0048 
-0.0118 
-0.0179 
-0.0226 
-0.0260 
-0.0277 
-0.0281 
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TABLE  IV     (Contfd) 

JULIAN CALENDAR                 WOBBLE    (") 
DATE DATE                         X              Y 

2436859.5 18.0   OCT   1959     0.323   0.213 
2436869.5 28.0   OCT   1959     0.317   0.195 
2436879.5 7.0   NOV   1959     0.308   0.177 
2436889.5 17.0   NOV    1959      0.294   0.157 
2436899.5 27.0   NOV   1959     0.275   0.135 
2436909.5 7.0   DEC   1959     0.252   0.113 
2436919.5 17.0   DEC   1959     0.224   0.093 
2436929.5 27.0   DEC   1959     0.193   0.075 
2436939.5 6.0   JAN   1960      0.160   0.069 
2436949.5 16.0   JAN   1960     0.131   0.055 
2436959.5 26.0   JAN   1960     0.102   0.043 
2436969.5 5.0   FEB   1960     0.073   0.033 
2436979.5 15.0   FEB   1960     0.045   0.028 
2436989.5 25.0   FEB   1960     0.017   0.028 
2436999.5 6.0   MAR   1960  -0.011   0.034 
2437009.5 16.0   MAR   1960   -0.036   0.045 
2437019.5 26.0   MAR   1960   -0.057   0.061 
2437029.5 5.0   APS   1960   -0.074   0.081 
2437039.5 15.0   APR   1960  -0.087   0.100 
2437049.5 25.0   APR   1960   -0.096   0.118 
2437059.5 5.0   MAY   1960   -0.101   0.135 
2437069.5 15.0   MAY   1960   -0.101   0.151 
2437079.5 25.0   MAY   1960   -0.100   0.166 
2437089.5 4.0   JON    1960   -0.099   0.180 
2437099.5 14.0   JUN   1960   -0.096   0.193 
2437109.5 24.0   JON   1960   -0.090   0.205 
2437119.5 4.0   JÜL   1960   -0.080   0.217 
2437129.5 14.0   JUL   1960   -0.066   0.229 
2437139.5 24.0   JÖL   1960   -0.048   0.243 
2437149.5 3.0   AUG   1960   -0.028   0.258 
2437159.5 13.0   AÜG   1960  -0.006   0.272 
2437169.5 23.0   AUG   1960     0.014   0.284 
2437179.5 2.0   SEP   1960     0.034   0.294 
2437189.5 12.0   SEP   1960     0.052   0.302 
2437199.5 22.0   SEP   1960     0.070   0.305 
2437209.5 2.0   OCT   1960     0.088   0.305 
2437219.5 12.0   OCT   1960     0.104   0.303 
2437229.5 22.0   OCT   1960     0.119   0.299 
2437239.5 1.0   NOV   1960     0.133   0.293 
2437249.5 11.0   NOV   1960     0.146   0.283 
2437259.5 21.0   NOV   1960     0.148   0.269 
2437269.5 1.0   DEC   1960     0.148   0.252 
2437279.5 11.0   DEC   1960     0.147   0.235 
2437289.5 21.0   DEC   1960     0.147   0.221 
2437299.5 31.0   DEC   1960     0.147   0.209 
2437309.5 10.0   JAN   1961     0.142   0.210 

A1-UTC 
SEC 

0.8630 
0.8720 
0.9011 
0.9100 
0.9389 
0.9476 
0.9766 
0.9855 
0.9965 
1.0095 
1.0223 
1.0351 
1.0480 
1.0608 
1.0735 
1.0862 
1.0987 
1.1113 

1242 
1370 
1497 
1625 
1751 

1.1878 
1.2004 
1.2130 
1.2258 
1.2385 
1.2514 
1.2641 
1.2767 
1.2892 
1.3018 
1.3144 
1.3271 
1.3397 
1.3523 
1.3650 
1.3777 
1.3904 
1.4031 
1.4161 
1.4290 
1.4419 
1.4549 
1.4728 

A1-UT1 
SEC 

0.8787 
0.8963 
0.9133 
0.9315 
0.9491 
0.9654 
0.9811 
0.9956 
1.0093 
1.0222 
1.0348 
1.0478 
1.0620 
1.0768 
1.0920 
1.1074 
1.1238 
1.1396 
1.1559 
1.1724 
1.1879 
1.2021 
1.2150 
1.2260 
1.2351 
1.2425 
1.2484 
1.2530 
1.2568 
1.2599 
1.2639 
1.2695 
1.2771 
1.2868 
1.2980 
1.3107 
1.3240 
1.3378 
1.3522 
1.3667 
1.3816 
1.3961 
1.4108 
1.4243 
1.4376 
1.4500 

UT2-UT1 
SEC 

-0.0272 
-0.0254 
-0.0230 
-0.0204 
-0.0178 
-0.0154 
-0.0134 
-0.0117 
-0.0103 
-0.0091 
-0.0077 
-0.0060 
-0.0037 
-0.0007 
0.0031 
0.0075 
0.0126 
0.0179 
0.0231 
0.0278 
0.0316 
0.0342 
0.0352 
0.0344 
0.0318 
0.0275 
0.0217 
0.0148 
0.0073 

-0.0005 
-0.0079 
-0.0146 
-0.0201 
-0.0242 
-0.0269 
-0.0280 
-0.0278 
-0.0266 
-0.0245 
-0.0220 
-0.0194 
-0.0168 
-0.0145 
-0.0127 
-0.0111 
-0.0098 
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TABLE  IV     (Contfd) 

JULIAN 
DAT£ 

2437319.5 
2437329.5 
2437339.5 
2437349.5 
2437359.5 
2437369.5 
2437379.5 
2437389.5 
2437399.5 
2437409.5 
2437419.5 
2437429.5 
2437439.5 
2437449.5 
2437459.5 
2437469.5 
2437479.5 
2437489.5 
2437499.5 
24375Ü9.5 
2437519.5 
2437529.5 
2437539.5 
2437549.5 
2437559.5 
2437569.5 
2437579.5 
2437589.5 
24 37599.5 
2437609.5 
2437619.5 
2437629.5 
2437639.5 
2437649.5 
2437659.5 
2437669.5 
2437679.5 
2437689.5 
2437699.5 
2437709.5 
2437719.5 
2437729.5 
2437739.5 
2437749.5 
2437759.5 
2437769.5 

CALENDA 
DATE 

20.0 JAN 
30.0 
9.0 

19.0 
1.0 

11.0 
21.0 
31.0 
10.0 
20.0 
30.0 
10.0 
20.0 
30.0 
9.0 

19.0 
29.0 
9.0 
19.0 
29.0 
8.0 

18.0 
28.0 
7.0 

17.0 
27.0 
7.0 
17.0 
27.0 
6.0 

16.0 
26.0 
6.0 

16.0 
26.0 
5.0 

15.0 
25.0 
4.0 
14.0 
24.0 
6.0 

16.0 
26.0 
5.0 

15.0 

JAN 
FEB 
FEB 
MAR 
MAR 
MAR 
MAR 
APR 
APR 
APR 
MAY 
MAY 
MAY 
JÜN 
JON 
JUN 
JÜL 
JUL 
JÜL 
AÜG 
AUG 
AUG 
SEP 
SEP 
SEP 
OCT 
OCT 
OCT 
NOV 
NOV 
NOV 
DEC 
DEC 
DEC 
JAN 
JAN 
JAN 
FEB 
FEB 
FEB 
MAR 
MAR 
MAR 
APR 
APR 

R 

1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1961 
1962 
1962 
1962 
1962 
1962 
1962 
1962 
1962 
1962 
1962 
1962 

WOBBLE    (") 
X 

0.142 
0.141 
0.140 
0.138 
0.135 
0.131 
0.127 
0.123 
0.118 
0. 111 
0.101 
0.088 
0.075 
0.064 
0.055 
0.046 
0.037 
0.028 
0.019 
0.011 
0.003 

-0.003 
-0.008 
-0.012 
-0.015 
-0.018 
-0.021 
-0.024 
-0.027 
-0.029 
-0.031 
-0.033 
-0.031 
-0.025 
-0.015 
-0.038 
-0.043 
-0.046 
-0.044 
-0.042 
-0.036 
-0.018 
0.008 
0.030 
0.046 
0.056 

Y 
0. 199 
0. 188 
0.177 
0.164 
0.149 
0.134 
0.121 
0.110 
0.101 
0.099 
0.099 
0.100 
0.104 
0.110 
0.118 
0.128 
0.140 
0.154 
0.170 
0.187 
0.203 
0.207 
0.210 
0.213 
0.215 
0.217 
0.219 
0.220 
0.221 
0.222 
0.222 
0.223 
0.225 
0.230 
0.238 
0.237 
0.253 
0.264 
0.268 
0.277 
0.287 
0.296 
0.303 
0.303 
0.298 
0.289 

A1-OTC 
SEC 

1.4858 
1.4987 
1.5116 
1.5245 
1.5373 
1.5502 
1.5631 
1.5760 
1.5889 
1.6017 
1.6146 
1.6275 
1.6404 
1.6532 
1.6661 
1.6789 
1.6917 
1.7045 
1.7173 
1.7302 
1.6931 
1.7060 
1.7190 
1.7321 
1.7451 
1.7580 
1.7709 
1.7838 
1.7967 
1.8097 
1.8226 
1.8356 
1.8486 
1.8616 
1.8746 
1.8869 
1.8981 
1.9093 
1.9205 
1.9317 
1.9429 
1.9541 
1.9654 
1.9767 
1.9879 
1.9992 

A1-UT1 
SEC 

1.4611 
1.4699 
1.4787 
1.4881 
1.5001 
1.5156 
1. 5338 
1.5511 
1.5651 
1.5769 
1.5880 
1.5990 
1.6118 
1.6234 
1.6341 
1.6430 
1.6506 
1.6569 
1.6625 
1.6677 
1.6730 
1.6789 
1.6857 
1.6939 
1.7033 
1.7141 
1.7262 
1.7394 
1.7535 
1.7680 
1.7828 
1.7975 
1.8117 
1.8252 
1.8377 
1.8517 
1.8644 
1.8772 
1.8896 
1.9033 
1.9174 
1.9320 
1.9472 
1.9628 
1.9781 
1.9943 

ÜT2-ÜT1 
SEC 

-0.0085 
-0.0070 
-0.0050 
-0.0025 
0.0008 
0.0049 
0.0097 
0.0148 
0.0201 
0.0252 
0.0296 
0.0329 
0.0349 
0.0350 
0.0334 
0.0301 
0.0251 
0.0187 
0.0114 
0.0037 

-0.0040 
-0.0111 
-0.0173 
-0.0222 
-0.0257 
-0.0276 
-0.0281 
-0.0273 
-0.0256 
-0.0233 
-0.0206 
-0.0181 
-0.0156 
-0.0136 
-0.0119 
-0.0104 
-0.0092 
-0.0078 
-0.0061 
-0.0038 
-0.0009 
0.0028 
0.0071 
0.0118 
0.0161 
0.0203 
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TABLE  IV     (Cont'd) 

JULIAN CALENDAR HOBBLE (") A1-UTC A1-UT1 ÜT2-UT1 
DATE I DATE X Y SEC SEC SEC 

2437779.5 25.0 APR 1962 0.065 0.281 2.0104 2.0108 0.0242 
2437789.5 5.0 MAY 1962 0.072 0.275 2.0216 2.0270 0.0274 
2437799.5 15.0 HAY 1962 0.076 0.269 2.0328 2.0428 0.0296 
2437809.5 25.0 MAY 1962 0.077 0.260 2.0440 2.0570 0.0305 
2437819.5 4.0 JÜN 1962 0.078 0.247 2.0552 2.0687 0.0298 
2437829.5 14.0 JON 1962 0.080 0.233 2.0664 2.0778 0.0275 
2437839.5 24.0 JUN 1962 0.087 0.218 2.0775 2.0849 0.0235 
2437849.5 4.0 JUL 1962 0.093 0.202 2.0887 2.0907 0.0181 
2437859.5 14.0 JUL 1962 0.097 0.185 2.0999 2.0957 0.0116 
2437869.5 24.0 JUL 1962 0.097 0.167 2.1111 2.1009 0.0043 
2437879.5 3.0 AUG 1962 0.089 0.151 2.1223 2.1069 -0.0031 
2437889.5 13.0 AUG 1962 0.077 0.137 2.1335 2.1138 -0.0103 
2437899.5 23.0 AUG 1962 0.063 0.124 2.1447 2.1220 -0.0167 
2437909.5 2.0 SEP 1962 0.049 0.114 2.1559 2.1320 -0.0221 
2437919.5 12.0 SEP 1962 0.034 0.108 2.1671 2.1453 -0.0260 
2437929.5 22.0 SEP 1962 0.016 0.103 2.1783 2.1594 -0.0283 
2437939.5 2.0 OCT 1962 -0.003 0.102 2.1894 2.1727 -0.0290 
2437949.5 12.0 OCT 1962 -0.024 0.105 2.2006 2.1871 -0.0282 
2437959.5 22.0 OCT 1962 -0.048 0.112 2.2119 2.2037 -0.0263 
2437969.5 1.0 NOV 1962 -0.070 0.122 2.2231 2.2215 -0.0234 
2437979.5 11.0 NOV 1962 -0.093 0.134 2.2343 2.2391 -0.0200 
2437989.5 21.0 NOV 1962 -0. 115 0.153 2.2455 2.2570 -0.0164 
2437999.5 1.0 DEC 1962 -0.136 0.179 2.2567 2.2751 -0.0129 
2438009.5 11.0 DEC 1962 -0.156 0.214 2.2679 2.2934 -0.0098 
2438019.5 21.0 DEC 1962 -0.175 0.242 2.2791 2.3106 -0.0072 
2438029.5 31.0 DEC 1962 -0.190 0.267 2.2903 2.3263 -0.0052 
2438039.5 10.0 JAN 1963 -0.194 0.288 2.3015 2.3385 -0.0036 
2438049.5 20.0 JAN 1963 -0.193 0.308 2.3126 2.3489 -0.0024 
2438059.5 30.0 JAN 1963 -0. 184 0.331 2.3238 2.3586 -0.0013 
2438069.5 9.0 FEB 1963 -0.172 0.356 2.3350 2.3683 0.0 
2438079.5 19.0 FEB 1963 -0.157 0.374 2.3462 2.3782 0.0017 
24 38089.5 1.0 MAR 1963 -0.138 0.385 2.3574 2.3888 0.0039 
2438099.5 11.0 MAR 1963 -0.117 0.395 2.3687 2.4016 0.0067 
2438109.5 21.0 MAR 1963 -0.092 0.407 2.3799 2.4191 0.0102 
2438119.5 31.0 MAR 1963 -0.062 0.419 2.3912 2.4386 0.0141 
2438129.5 10.0 APR 1963 -0.032 0.429 2.4024 2.4581 0.0182 
2438139.5 20.0 APR 1963 -0.004 0.432 2.4136 2.4768 0.0223 
2438149.5 30.0 APR 1963 0.026 0.425 2.4248 2.4938 0.0259 
2438159.5 10.0 MAY 1963 0.060 0.413 2.4361 2.5106 0.0287 
2438169.5 20.0 MAY 1963 0.094 0.404 2.4473 2.5279 0.0303 
2438179.5 30.0 MAY 1963 0. 127 0.390 2.4586 2.5438 0.0304 
2438189.5 9.0 JUN 1963 0. 156 0.368 2.4698 2.5577 0.0289 
2438199.5 19.0 JUN 1963 0. 180 0.339 2.4810 2.5697 0.0257 
2438209.5 29.0 JUN 1963 0. 199 0.306 2.4923 2.5802 0.0210 
24 38219.5 9.0 JUL 1963 0.212 0.273 2.5035 2.5888 0.0150 
2438229.5 19.0 JUL 1963 0.220 0.236 2.5147 2.5960 0.0080 
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TABLE  IV     (Cont'd) 

JULIAN 
DATE 

2438239.5 
2438249.5 
2438259.5 
2438269.5 
2438279.5 
2438289.5 
2438299.5 
2438309.5 
2438319.5 
2438329.5 
2438339.5 
2438349.5 
2438359.5 
2438369.5 
2438379.5 
2438389.5 
2438399.5 
2438409.5 
2438419.5 
2438429.5 
2438439.5 
2438449.5 
2438459.5 
2438469.5 
2438479.5 
2438489.5 
2438499.5 
2438509.5 
2438519.5 
2438529.5 
2438539.5 
2438549.5 
2438559.5 
2438569.5 
2438579.5 
2438589.5 
2438599.5 
2438609.5 
2438619.5 
2438629.5 
2438639.5 
2438649.5 
2438659.5 
2438669.5 
2438679.5 
2438689.5 

CALENDAR 
DATE 

29.0   JÜL 
8.0 
18.0 
28.0 
7.0 

17.0 
27.0 
7.0 

17.0 
27.0 
6.0 
16.0 
26.0 
6.0 
16.0 
26.0 
5.0 

15.0 
25.0 
4.0 

14.0 
24.0 
5.0 

15.0 
25.0 
4.0 

14.0 
24.0 
4.0 

14.0 
24.0 
3.0 

13.0 
23.0 
3.0 

13.0 
23.0 
2.0 
12.0 
22.0 
1.0 

11.0 
21.0 
1.0 

11.0 
21.0 

AUG 
AUG 
AUG 
SEP 
SEP 
SEP 
OCT 
OCT 
OCT 
NOV 
NOV 
NOV 
DEC 
DEC 
DEC 
JAN 
JAN 
JAN 
FEB 
FEB 
FEB 
MAR 
MAR 
MAR 
APR 
APR 
APR 
MAY 
HAY 
MAY 
JUN 
JUN 
JÜN 
JUL 
JUL 
JUL 
AUG 
AUG 
AUG 
SEP 
SEP 
SEP 
OCT 
OCT 
OCT 

1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1963 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 
1964 

WOBBL 
X 

0.222 
0.214 
0.195 
0. 177 
0.156 
0.134 
0. 108 
0.075 
0.033 

-0.008 
•0.045 
•0.078 
-0. 108 
■0.138 
-0.168 
0.202 

-0.228 
-0.247 
-0.262 
-0.272 
-0.273 
-0.265 
-0.248 
-0.228 
-0.202 
•0.171 
■0.137 
-0.105 
•0.075 
-0.046 
-0.018 
0.012 
0.049 
0.089 
0. 129 
0.163 
0. 189 
0.209 
0.224 
0.235 
0.240 
0.236 
0.228 
0.217 
0.202 
0.183 

E    (») 
Y 

0.200 
0.164 
0.134 
0.108 
0.087 
0.064 
0.042 
0.025 
0.014 
0.015 
0.022 
0.032 
0.045 
0.059 
0.078 
0.106 
0.134 
0.162 
0.190 
0.220 
0.253 
0.289 
0.325 
0.359 
0.390 
0.417 
0.443 
0.465 
0.479 
0.482 
0.478 
0.472 
0.467 
0.460 
0.446 
0.424 
0.394 
0.360 
0.330 
0.301 
0.270 
0.235 
0.199 
0.165 
0.136 
0.111 

A1-UTC 
SEC 

2.5260 
2.5372 
2.5484 
2.5595 
2.5707 
2.5819 
2.5932 
2.6043 
2.6155 
2.6267 
2.7379 
2.7491 
2.7603 
2.7715 
2.7827 
2.7939 
2.8058 
2.8188 
2.8318 
2.8447 
2.8577 
2.8707 
2.8837 
2.8966 
2.9096 
3.0225 
3.0355 
3.0484 
3.0613 
3.0743 
3.0872 
3.1002 
3.1131 
3.1260 
3.1390 
3.1519 
3.1649 
3.1778 
3.1907 
3.2036 
3.3166 
3.3295 
3.3425 
3.3565 
3.3694 
3.3824 

A1-UT1 
SEC 

2.6028 
2.6120 
2.6240 
2.6369 
2.6511 
2.6662 
2.6833 
2.7015 
2.7214 
2.7423 
2.7639 
2.7860 
2.8077 
2.8292 
2.8500 
2.8704 
2.8906 
2.9117 
2.9324 
2.9527 
2.9724 
2.9930 
3.0134 
3.0351 
3.0562 
3.0774 
3.0988 
3.1210 
3.1444 
3.1678 
3. 1895 
3.2093 
3.2260 
3.2403 
3.2520 
3.2617 
3.2720 
3.2837 
3.2965 
3.3094 
3.3234 
3.3396 
3.3590 
3.3795 
3.4038 
3.4291 

UT2-UT1 
SEC 

0.0006 
-0.0068 
-0.0136 
-0.0196 
-0.0242 
-0.0276 
-0.0288 
-0.0288 
-0.0274 
-0.0249 
-0.0217 
-0.0182 
-0.0146 
-0.0113 
-0.0084 
-0.0061 
-0.0044 
-0.0030 
-0.0018 
-0.0007 
0.0003 
0.0027 
0.0052 
0.0088 
0.0120 
0.0160 
0.0202 
0.0241 
0.0273 
0.0296 
0.0305 
0.0299 
0.0276 
0.0237 
0.0184 
0.0119 
0.0048 

-0.0027 
-0.0098 
-0.0164 
-0.0217 
-0.0257 
-0.0281 
-0.0290 
-0.0283 
-0.0265 
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TABLE IV     (Cont'd) 

JULIAN 
DATE 

2438699.5 
2438709.5 
2438719.5 
2438729.5 
2438739.5 
2438749.5 
2438759.5 
2438769.5 
2438779.5 
2438789.5 
2438799.5 
2438809.5 
2438819.5 
2438829.5 
2438839.5 
2438849.5 
2438859.5 
2438869.5 
2438879.5 
2438889.5 
2438899.5 
2438909.5 
2438919.5 
2438929.5 
2438939.5 
2438949.5 
2438959.5 
2438969.5 
2438979.5 
2438989.5 
2438999.5 
2439009.5 
2439019.5 
2439029.5 
2439039.5 
2439049.5 
2439059.5 
2439069.5 
2439079.5 
2439089.5 
2439099.5 
2439109.5 
2439119.5 
2439129.5 
2439139.5 
2439149.5 

CALENDAR 
DATE 

31.0   OCT 1964 
10.0   NOV 1964 
20.0   NOV 1964 
30.0   NOV 1964 
10.0   DEC 1964 
20.0   DEC 1964 
30.0   DEC 1964 
9.0 JAN 1965 
19.0 JAN 
29.0 JAN 
8.0 FEB 1965 

18.0 FEB 1965 
28.0 FEB 1965 
10.0 MAR 
20.0 HAS 
30.0 MAR 1965 
9.0 APR 1965 
19.0 APR 1965 
29.0 APR 1965 
9.0 MAY 1965 

19.0 MAY 1965 
29.0 MAY 1965 
8.0 JUN 1965 
18.0 JUN 1965 
28.0 JUN 1965 
8.0 JUL 1965 

18.0 JUL 1965 
28.0 JUL 1965 
7.0 AUG 1965 

17.0 AUG 1965 
27.0 AUG 1965 
6.0   SEP 1965 

16.0   SEP 1965 
26.0   SEP 1965 
6.0   OCT 1965 

16.0   OCT 1965 
26.0   OCT 1965 

5.0   NOV 1965 
15.0   NOV 1965 
25.0   NOV 1965 
5.0 DEC 1965 

15.0 DEC 1965 
25.0 DEC 1965 
4.0 JAN 
14.0 JAN 

1965 
1965 

1965 
1965 

1966 
1966 

24.0 JAN 1966 

WOBBLE (") 
X     Y 

0.157 0.092 
0.123 0.074 
0.085 0.058 
0.048 0.049 
0.018 0.052 
-0.010 0.054 
-0.039 0.055 
-0.070 0.057 
-0.105 0.062 
-0.146 0.075 
-0. 176 0.094 
-0.197 0.120 
-0.209 0.150 
-0.217 0.180 
-0.225 0.211 
-0.228 0.245 
-0.227 0.281 
-0.219 0.315 
-0.204 0.349 
-0. 186 0.383 
-0.165 0.410 
-0.142 0.425 
-0. 117 0.441 
-0.088 0.454 
-0.052 0.465 
-0.014 0.468 
0.024 0.460 
0.062 0.448 
0.099 0.425 
0. 132 0.401 
0. 158 0.377 
0.176 0.350 
0. 185 0.323 
0. 192 0.299 
0.197 0.275 
0.200 0.249 
0.199 0.222 
0.195 0.192 
0.186 0.163 
0.167 0.137 
0.147 0.117 
0.126 0.101 
0. 102 0.087 
0.076 0.073 
0.049 0.061 
0.020 0.054 

A1-ÜTC 
SBC 

3.3953 
3.4083 
3.4212 
3.4342 
3.4471 
3.4601 
3.4730 
3.5859 
3.5989 
3.6118 
3.6248 
3.6377 
3.6507 
3.7637 
3.7766 
3.7896 
3.8026 
3.8155 
3.8285 
3.8415 
3.8544 
3.8674 
3.8803 
3.8933 
3.9062 
4.0192 
4.0322 
4.0451 
4.0581 
4.0710 
4.0840 
4.1969 
4.2099 
4.2229 
4.2358 
4.2488 
4.2617 
4.2747 
4.2876 
4.3006 
4.3136 
4.3265 
4.3395 
4.3563 
4.3822 
4.4081 

A1-ÖT1 
SBC 

3.4508 
3.4719 
3.4942 
3.5161 
3.5379 
3.5615 
3.5851 
3.6061 
3.6261 
3.6471 
3.6681 
3.6886 
3.7098 
3.7331 
3.7588 
3.7869 
3.8165 
3.8410 
3.8625 
3.8849 
3.9072 
3.9287 
3.9492 
3.9689 
3.9870 
4.0041 
4.0209 
4.0367 
4.0516 
4.0676 
4.0858 
4.1058 
4.1280 
4.1516 
4.1779 
4.2049 
4.2326 
4.2611 
4.2892 
4.3164 
4.3408 
4.3638 
4.3851 
4.4026 
4.4270 
4.4512 

0T2-0T1 
SBC 

-0.0237 
-0.0203 
-0.0167 
-0.0132 
-0.0101 
-0.0074 
-0.0054 
-0.0038 
-0.0025 
-0.0014 
-0.0001 

0.0015 
0.0037 
0.0064 
0.0098 
0.0137 
0.0178 
0.0219 
0.0256 
0.0284 
0.0301 
0.0304 
0.0289 
0.0261 
0.0215 
0.0156 
0.0087 
0.0014 

-0.0060 
-0.0130 
-0.0190 
-0.0238 
-0.0270 
-0.0287 
-0.0288 
-0.0276 
-0.0252 
-0.0221 
-0.0186 
-0.0150 
-0.0116 
-0.0087 
-0.0063 
-0.0046 
-0.0030 
-0.0018 
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TABLE  IV     (Cont'd) 

JULIAN 
DATE 

2439159.5 
2439169.5 
2439179.5 
2439189.5 
2439199.5 
2439209.5 
2439219.5 
2439229.5 
2439239.5 
2439249.5 
2439259.5 
2439269.5 
2439279.5 
2439289.5 
2439299.5 
2439309.5 
2439319.5 
2439329.5 
2439339.5 
2439349.5 
2439359.5 
2439369.5 
2439379.5 
2439389.5 
2439399.5 
2439409.5 
2439419.5 
2439429.5 
2439439.5 
2439449.5 
2439459.5 
2439469.5 
2439479.5 
2439489.5 
2439499.5 
2439509.5 
2439519.5 
2439529.5 
2439539.5 
2439549.5 
2439559.5 
2439569.5 
2439579.5 
2439589.5 
2439599.5 
2439609.5 

CALENDAR »OBBLE    (»•) A1-UTC A1-ÜT1       UT2-UT1 
DATE X Y SEC SEC SEC 

3.0   FEB 1966   -0.012   0.052 4.4341 4.4759   -0.0007 
13.0   FEB 1966   -0.043   0.054 4.4600 4.5006      0.0007 
23.0   FEB 1966   -0.070   0.063 4.4859 4.5249      0.0027 
5.0   MAR 1966   -0.092   0.074 4.5118 4.5488      0.0050 

15.0   MAR 1966   -0.107   0.087 4.5377 4.5723      0.0080 
25.0   MAR 1966  -0.122   0.104 4.5636 4.5975      0.0117 
4.0   APR 1966   -0.138   0.124 4.5896 4.6234      0.0157 

14.0   APR 1966  -0.154   0.149 4.6155 4.6499     0.0199 
24.0   APR 1966   -0.169   0.177 4.6414 4.6775      0.0238 
4.0   MAY 1966   -0.175   0.202 4.6673 4.7051      0.0270 

14.0   MAY 1966   -0.173   0.223 4.6932 4.7320      0.0294 
24.0   MAY 1966   -0.165   0.243 4.7192 4.7583      0.0305 
3.0   JON 1966   -0.153   0.263 4.7451 4.7829      0.0300 

13.0   JON 1966   -0.141   0.285 4.7710 4.8059      0.0278 
23.0   JUN 1966   -0.126   0.304 4.7969 4.8268     0.0241 

3.0   JUL 1966   -0.108   0.322 4.8229 4.8461      0.0188 
13.0   JÜL 1966   -0.089   0.340 4.8488 4.8645      0.0125 
23.0   JÜL 1966   -0.069   0.356 4.8747 4.8819     0.0054 
2.0   AUG 1966   -0.048   0.361 4.9006 4.8988   -0.0021 

12.0   AUG 1966   -0.027   0.361 4.9266 4.9171   -0.0092 
22.0   AUG 1966  -0.007   0.361 4.9525 4.9365   -0.0159 

1.0   SEP 1966     0.013   0.358 4.9784 4.9579   -0.0213 
11.0   SEP 1966     0.032   0.354 5.0043 4.9810   -0.0254 
21.0   SEP 1966     0.049   0.350 5.0302 5.0057   -0.0279 

1.0   OCT 1966     0.065   0.346 5.0562 5.0322   -0.0290 
11.0  OCT 1966     0.081   0.341 5.0821 5.0605   -0.0284 
21.0   OCT 1966     0.098   0.332 5.1080 5.0894   -0.0267 
31.0   OCT 1966     0.113   0.316 5.1339 5.1189   -0.0240 
10.0   NOV 1966     0.124   0.294 5.1599 5.1486   -0.0206 
20.0   NOV 1966     0.127   0.273 5.1858 5.1777   -0.0170 
30.0   NOV 1966     0.125  0.254 5.2117 5.2055   -0.0135 
10.0   DEC 1966     0.121   0.235 5.2369 5.2318   -0.0104 
20.0   DEC 1966     0.112  0.220 5.2628 5.2566   -0.0076 
30.0   DEC 1966     0.097   0.206 5.2887 5.2788   -0.0055 
9.0   JAN 1967     0.081   0.190 5.3146 5.2993   -0.0038 

19.0   JAN 1967     0.067   0.175 5.3406 5.3217   -0.0025 
29.0   JAN 1967     0.056   0.169 5.3665 5.3456   -0.0014 

8.0   FEB 1967     0.046   0.167 5.3924 5.3705   -0.0001 
18.0   FEB 1967     0.034   0.165 5.4183 5.3961      0.0015 
28.0   FEB 1967     0.022   0.164 5.4442 5.4219     0.0036 
10.0   MAR 1967     0.010   0.164 5.4702 5.4477      0.0064 
20.0   MAR 1967     0.0        0.166 5.4961 5.4736      0.0098 
30.0   MAR 1967  -0.010   0.169 5.5220 5.5011      0.0136 
9.0   APR 1967  -0.020   0.173 5.5478 5.5300     0.0178 

19.0   APR 1967  -0.027   0.177 5.5738 5.5587     0.0219 
29.0   APR 1967  -0.027   0.183 5.5998 5.5867     0.0255 
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TABLE  IV     (Cont'd) 

JULIAN 
DATE 

2439619.5 
2439629.5 
2439639.5 
2439649.5 
2439659.5 
2439669.5 
2439679.5 
2439689.5 
2439699.5 
2439709.5 
2439719.5 
2439729.5 
2439739.5 
2439749.5 
2439759.5 
2439769.5 
2439779.5 
2439789.5 
2439799.5 
2439809.5 
2439819.5 
2439829.5 
2439839.5 
2439849.5 
2439859.5 
2439869.5 
2439879.5 
2439889.5 
2439899.5 
2439909.5 
2439919.5 
2439929.5 
2439939.5 
2439949.5 
2439959.5 
2439969.5 
2439979.5 
2439989.5 
2439999.5 
2440009.5 
2440019.5 
2440029.5 
2440039.5 
2440049.5 
2440059.5 
2440069.5 

CALENDAR 
DATE 

9.0 MAY 1967 
19.0 MAY 1967 
29.0 MAY 1967 
8.0 JUN 1967 

18.0 JUN 1967 
28.0 JUN 1967 
8.0 JUL 1967 

18.0 JUL 1967 
28.0 JUL 1967 
7.0 AUG 1967 

17.0 AOG 1967 
27.0 AUG 1967 
6.0 SEP 1967 
16.0 SEP 1967 
26.0 SEP 1967 
6.0 OCT 1967 
16.0 OCT 1967 
26.0 OCT 1967 
5.0 NOV 1967 

15.0 NOV 1967 
25.0 NOV 1967 
5.0 DEC 1967 

15.0 DEC 1967 
25.0 DEC 1967 
4.0 JAN 1968 
14.0 JAN 1968 
24.0 JAN 1968 
3.0 FEB 1968 

13.0 FEB 1968 
23.0 FEB 1968 
4.0 MAR 1968 
14.0 MAR 1968 
24.0 MAR 1968 
3.0 APR 1968 
13.0 APR 1968 
23.0 APR 1968 
3.0 MAY 1968 

13.0 MAY 1968 
23.0 MAY 1968 
2.0 JUN 1968 

12.0 JUN 1968 
22.0 JUN 1968 
2.0 JUL 1968 

12.0 JUL 1968 
22.0 JUL 1968 

1.0   AUG 1968 

WOBBLE    <") 
X Y 

-0.021   0.193 
-0.022   0.200 
-0.022  0.202 
-0.023   0.204 
-0.023   0.206 
-0.021   0.210 
-0.019   0.216 
-0.017   0.220 
-0.013  0.222 
-0.009   0.216 
-0.0Q1   0.210 
0.008   0.210 
0.004   0.207 

-0.003   0.203 
-0.007   0.204 
-0.009   0.207 
-0.011   0.209 
-0.015   0.212 
-0.021   0.219 
-0.022   0.232 
-0.016   0.246 
-0.015   0.253 
-0.014   0.256 
-0.009   0.265 
-0.004   0.270 
-0.006   0.272 
-0.006   0.274 
-0.006   0.276 
-0.004   0.273 
0.0        0.269 
0.004   0.263 
0.007   0.261 
0.009   0.258 
0.011   0.254 
0.014   0.254 
0.018   0.256 
0.022   0.258 
0.028   0.250 
0.037   0.236 
0.047   0.220 
0.055   0.208 
0.062   0.198 
0.068   0.188 
0.074   0.180 
0.079   0.174 
0.082   0.168 

A1-0TC 
SEC 

5.6258 
5.6517 
5.6776 
5.7035 
5.7295 
5.7554 
5.7813 
5.8072 
5.8331 
5.8591 
5.8850 
5.9109 
5.9368 
5.9627 
5.9885 
6.0144 
6.0403 
6.0662 
6.0921 
6.1180 
6.1440 
6.1699 
6.1958 
6.2217 
6.2476 
6.2736 
6.2995 
6.2254 
6.2513 
6.2772 
6.3032 
6.3291 
6.3550 
6.3809 
6.4068 
6.4328 
6.4587 
6.4846 
6.5105 
6.5364 
6.5624 
6.5883 
6.6142 
6.6401 
6.6660 
6.6920 

A1-UT1 
SEC 

5.6137 
5.6397 
5.6630 
5.6839 
5.7025 
5.71^5 
5.7360 
5.7529 
5.7700 
5.7876 
5.8056 
5.8244 
5.8447 
5.8657 
5.8874 
5.9106 
5.9363 
5.9652 
5.9953 
6.0252 
6.0534 
6.0781 
6.1042 
6.1295 
6.1532 
6.1792 
6.2054 
6.2317 
6.2577 
6.2831 
6.3075 
6.3297 
6.3522 
6.3784 
6.4072 
6.4358 
6.4656 
6.4936 
6.5197 
6.5436 
6.5650 
6.5838 
6.6016 
6.6202 
6.6403 
6.6612 

UT2-UT1 
SEC 

0.0284 
0.0302 
0.0304 
0.0291 
0.0261 
0.0216 
0.0157 
0.0089 
0.0015 

-0.0059 
-0.0129 
-0.0189 
-0.0237 
-0.0270 
-0.0287 
-0.0289 
-0.0277 
-0.0253 
-0.0222 
-0.0186 
-0.0150 
-0.0117 
-0.0088 
-0.0064 
-0.0046 
-0.0031 
-0.0020 
-0.0008 

0.0006 
0.0024 
0.0049 
0.0079 
0.0116 
0.0156 
0.0197 
0.0237 
0.0270 
0.0294 
0.0305 
0.0300 
0.0279 
0.0242 
0.0189 
0.0126 
0.0054 

-0.0021 
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TABLE  IV     (Cont!d) 

JULIAN 
DATE 

2440079.5 
2440089.5 
2440099.5 
2440109.5 
2440119.5 
2440129.5 
24401J9.5 
2440149.5 
2440159.5 
2440169.5 
2440179.5 
2440189.5 
2440199.5 
2440209.5 
2440219.5 
2440229.5 
2440239.5 
2440249.5 
2440259.5 
2440269.5 
2440279.5 
2440289.5 
2440299.5 
2440309.5 
2440319.5 
2440329.5 
2440339.5 
2440349.5 
2440359.5 
2440369.5 
2440379.5 
2440389.5 
2440399.5 
2440409.5 
2440419.5 
2440.429.5 
2440439.5 
2440449.5 
2440459.5 
2440469.5 
2440479.5 
2440489.5 
2440499.5 
2440509.5 
2440519.5 
2440529.5 

CALENDAR 
DATE 

11.0   AOG 
21.0 
31.0 
10.0 
20.0 
30.0 
10.0 
20.0 
30.0 
9.0 

19.0 
29.0 
9.0 

19.0 
29.0 

8.0 
18.0 
28.0 
7.0 

17.0 
27.0 
9.0 

19.0 
29.0 

8.0 
18.0 
28.0 

8.0 
18.0 
28.0 

7.0 
17.0 
27.0 
7.0 

17.0 
27.0 
6.0 

16.0 
26.0 
5.0 

15.0 
25.0 
5.0 

15.0 
25.0 
4.0 

AUG 
AUG 
SEP 
SEP 
SEP 
OCT 
OCT 
OCT 
NOV 
NOV 
NOV 
DEC 
DEC 
DEC 
JAN 
JAN 
JAN 
FEB 
FEB 
FEB 
NAB 
MAR 
MAR 
APR 
APR 
APR 
MAY 
MAY 
MAY 
JON 
JUN 
JUN 
JÜL 
JÖL 
JÜL 
AUG 
AUG 
AUG 
SEP 
SEP 
SEP 
OCT 
OCT 
OCT 
NO? 

1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1968 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1969 

WOBBL 
X 

0.080 
0.071 
0.059 
0.046 
0.037 
0.031 
0.024 
0.008 

■0.014 
■0.037 
-0.068 
■0.101 
•0.134 
-0.146 
•0.149 
•0.149 
-0. 137 
-0.119 
-0.098 
•0.078 
•0.062 
-0.045 
-0.034 
■0.025 
•0.014 
-0.001 
0.014 
0.029 
0.046 
0.062 
0.080 
0.099 
0.117 
0.134 
0.147 
0.152 
0.151 
0.137 
0.120 
0.098 
0.079 
0.065 
0.050 
0.039 
0.029 
0.021 

(") 
Y 

0.165 
0.162 
0.160 
0.158 
0.151 
0.145 
0.141 
0.133 
0.130 
0.130 
0.139 
0.156 
0.186 
0.215 
0.238 
0.261 
0.282 
0.297 
0.307 
0.316 
0.328 
0.337 
0.350 
0.360 
0.368 
0.372 
0.373 
0.371 
0.365 
0.357 
0.346 
0.332 
0.317 
0.300 
0.273 
0.241 
0.205 
0.173 
0.147 
0.125 
0.115 
0.111 
0.108 
0.106 
0.104 
0.102 

A1-UTC 
SEC 

6.7179 
6.7438 
6.7697 
6.7956 
6.8216 
6.8475 
6.8734 
6.8993 
6.9252 
6.9512 
6.9771 
7.0030 
7.0289 
7.0548 
7.0808 
7.10669 
7.13261 
7.15853 
7.18445 
7.21037 
7.23629 
7.26221 
7.28813 
7.31405 
7.33997 
7.36589 
7.39181 
7.41773 
7.44365 
7.46957 
7.49549 
7.52141 
7.54733 
7.57325 
7.59917 
7.62509 
7.65101 
7.67693 
7.70285 
7.72877 
7.75469 
7.78061 
7.80653 
7.83245 
7.85837 
7.88429 

A1-UT1 
SEC 

6.6834 
6.7071 
6.7318 
6.7570 
6.7818 
6.8067 
6.8322 
6.8586 
6.8859 
6.9130 
6.9400 
6.9668 
6.9943 
7.0214 
7.0480 
7.0739 
7.0992 
7.1250 
7.1508 
7. 1773 
7.2043 
7.2324 
7.2618 
7.2923 
7.3241 
7.3571 
7.3888 
7.4185 
7.4467 
7.4733 
7.4980 
7.5211 
7.5426 
7.5632 
7.5831 
7.6029 
7.6229 
7.6436 
7.6653 
7.6891 
7.7156 
7.7479 
7.7816 
7.8112 
7.8402 
7.8690 

ÜT2-UT1 
SEC 

-0.0093 
-0.0159 
-0.0214 
-0.0255 
-0.0280 
-0.0290 
-0.0285 
-0.0267 
-0.0239 
-0.0205 
-0.0169 
-0.0 134 
-0.0102 
-0.0076 
-0.0055 
-0.0038 
-0.0026 
-0.0014 
-0.0002 

0.0014 
0.0035 
0.0062 
0.0096 
0.0134 
0.0176 
0.0217 
0.0254 
0.0283 
0.0301 
0.0305 
0.0292 
0.0263 
0.0218 
0.0160 
0.0092 
0.0019 

-0.0056 
-0.0125 
-0.0187 
-0.0235 
-0.0269 
-0.0287 
-0.0289 
-0.0277 
-0.0254 
-0.0223 
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TABLE IV (Cont'd) 

JULIAN CALENDAR                 WOBBLE    (") A1-UTC A1-UT1      UT2-UT1 
DATE DATE                        X Y SEC SEC SEC 

2440539.5 14.0   NOV 1969     0.004 0.101 7.91021 7.8973   -0.0188 
2440549.5 24.0   NOV 1969   -0.020 0.106 7.93613 7.9254   -0.0152 
2440559.5 4.0   DEC 1969  -0.044 0.114 7.96205 7.9561   -0.0118 
2440569.5 14.0   DEC 1969   -0.074 0.125 7.98797 7.9858   -0.0089 
2440579.5 24.0   DEC 1969   -0.103 0.135 8.01339 8.0140   -0.0065 
2440589.5 3.0   JAN 1970   -0.129 0.146 8.03981 8.0421   -0.0046 
2440599.5 13.0   JAN 1970   -0.151 0.175 8.06573 8.0703   -0.0032 
2440609.5 23.0   JAN 1970   -0.166 0.210 8.09165 8.0992   -0.0020 
2440619.5 2.0   FEB 1970   -0.174 0.251 8.11757 8.1282   -0.0009 
2440629.5 12.0   FE3 1970   -0.173 0.290 8.14349 8.1572      0.0005 
2440639.5 22.0   FEB 1970   -0.161 0.323 8.16941 8.1864      0.0023 
2440649.5 4.0   MAR 1970   -0.139 0.350 8.19533 8.2159      0.0047 
2440659.5 14.0   MAR 1970   -0.119 0.371 8.22125 8.2458      0.0077 
2440669.5 24.0   MAR 1970  -0.109 0.388 8.24717 8.2764      0.0114 
2440679.5 3.0   APR 1970  -0.106 0.399 8.27309 8.3073      0.0154 
2440689.5 13.0   APR 1970   -0.101 0.410 8.29901 8.3389      0.0195 
2440699.5 23.0   APR 1970   -0.089 0.421 8.32493 8.3712      0.0235 
2440709.5 3.0   MAY 1970  -0.071 0.434 8.35085 8.4028      0.0269 
2440719.5 13.0   MAY 1970   -0.051 0.444 8.37677 8.4331      0.0293 
2440729.5 23.0   MAY 1970   -0.021 0.448 8.40269 8.4619      0.0305 
2440739.5 2.0   JUN 1970      0.017 0.448 8.42861 8.4886      0.0301 
2440749.5 12.0   JON 1970     0.055 0.442 8.45453 8.5132      0.0281 
2440759.5 22.0   JUN 1970     0.088 0.426 8.48045 8.5358      0.0244 
2440769.5 2.0   JUL 1970     0.119 0.402 8.50637 8.5570      0.0192 
2440779.5 12.0   JUL 1970     0.145 0.373 8.53229 8.5767      0.0129 
2440789.5 22.0   JUL 1970     0.168 0.342 8.55821 8.5951      0.0058 
2440799.5 1.0   AUG 1970     0.186 0.309 8.58413 8.6136   -0.0017 
2440809.5 11.0   AUG 1970     0.199 0.276 8.61005 8.6326   -0.0090 
2440819.5 21.0   AUG 1970     0.207 0.244 8.63597 8.6528   -0.0156 
2440829.5 31.0   AUG 1970     0.209 0.213 8.66189 8.6737   -0.0211 
2440839.5 10.0   SEP 1970     0.205 0.183 8.68781 8.6958   -0.0253 
2440849.5 20.0   SEP 1970     0.199 0.155 8.71373 8.7201   -0.0279 
2440859.5 30.0   SEP 1970     0.191 0.128 8.73965 8.7464   -0.02^0 
2440869.5 10.0   OCT 1970     0.183 0.101 8.76557 8.7745   -0.0285 
2440879.5 20.0   OCT 1970     0.160 0.078 8.79149 8.8040   -0.0268 
2440889.5 30.0   OCT 1970     0.120 0.063 8.81741 8.8349   -0.0240 
2440899.5 9.0   NOV 1970     0.078 0.053 8.84333 8.8661   -0.0207 
2440909.5 19.C   NOV 1970     0.048 0.038 8.86925 8.8968   -0.0171 
2440919.5 29.0   NOV 1970     0.024 0.023 8.89517 8.9267   -0.0136 
2440929.5 9.0   DEC 1970     0.0 0.013 8.92109 8.9560   -0.0104 
2440939.5 19.0   DEC 1970   -0.029 0.013 8.94701 8.9834   -0.0077 
2440949.5 29.0   DEC 1970   -C.057 0.02? 8.97293 9.0101   -0.0055 
2440959.5 8.0   JAN 1971   -0.085 0.035 8.99885 9.0374   -0.0039 
2440969.5 18.0   JAN 1971   -0.111 0.057 9.02477 9.0639   -0.0026 
2440979.5 28.0   JAN 1971   -0.133 0.085 9.05069 9.0895   -0.0015 
2440989.5 7.0   FEB 197 1   -0.152 0.117 9.07661 9.1147   -0.0003 
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TABLE  IV     (Cont •d) 

JULIAN CALENDAR WOBBLE    (") A1-UTC A1-UT1 UT2-UT1 
DAXE DATE X Y SEC SEC SEC 

2440999.5 17.0 FEB 1971 -0.174 0.148 9.10253 9. 1405 0.0013 
2441009.5 27.0 FEB 1971 -0.196 0.178 9.12845 9. 1669 0.0034 
2441Ü19.5 9.0 WAR 1971 -0.209 0.211 9.15437 9. 1948 0.0061 
2441029.5 19.0 MAh 1971 -0.216 0.253 9.18029 9.2256 0.0094 
2441039.5 29.0 MAR 1971 -0.212 0.301 9.20621 9.2578 0.0132 
2441U49.5 8.0 APR 1971 -0.200 0.340 9.23213 9.2904 0.0174 
2441059.5 18.0 APR 1971 -0.192 0.370 9.25805 9.3229 0.0215 
2441069.5 28.0 APR 1971 -0.183 0.397 9.28397 9.3551 0.0252 
2441079.5 8.0 MAY 1971 -0.170 0.424 9.30989 9.3867 0.0282 
2441089.5 18.0 MAY 1971 -0.150 0.452 9.33581 9.4170 0.0300 
2441099.5 *8.0 MAY 1971 -0.129 0.480 9.36173 9.4462 0.0305 
Z4411U9.5 7.0 JUN 1971 -0.104 0.505 9.38765 9.4737 0.0293 
2441119.5 17.0 JUN 1971 -0.061 0.519 9.41357 9.4997 0.0265 
2441129.5 27.0 JUN 1971 0.002 0.524 9.43949 9.5243 0.0221 
2441139.5 7.0 JUL 1971 0.060 0.520 9.46541 9.5478 0.0163 
Z441149.5 17.0 JUL 1971 0. 103 0.50C 9.49133 9.5709 0.0096 
2441159.5 27.0 JUL 1971 0.140 0.476 9.51725 9.5939 0.0022 
24411&9.5 6.0 AUG 1971 0.170 0.45C 9.54317 9.6174 -0.0052 
2441179.5 16.0 AUG 1971 0.198 0.421 9.56909 9.6408 -0.0122 
2441189.5 2b.0 AUG 1971 0.224 0.387 9.59501 9.6651 -0.0184 
2441199.5 5.0 SEP 1971 0.245 0.351 9.62093 9.6907 -0.0233 
2441209.5 15.0 SEP 1971 0.258 0.317 9.64685 9.7167 -0.0268 
2441219.5 25.0 SEP 1971 0.263 0.283 9.67277 9.7449 -0.0286 
2441229.5 5.0 OCT 1971 0.264 0.249 9.69869 9.7762 -0.0289 
2441239.5 15.0 OCT 1971 0.252 0.211 9.72461 9.8118 -0.0278 
2441249.5 25.0 OCT 1971 0.229 0.175 9.75053 9.8495 -0.0256 
2441259.5 4.0 NOV 1971 0.203 0.139 9.77645 9.8856 -0.0225 
2441269.5 14.0 NOV 1971 0.179 0.118 9.80237 9.9223 -0.0190 
2441279.5 24.0 NOV 1971 0.157 0.103 9.82829 9.9581 -0.0154 
2441269.5 4.0 DEC 1971 0. 135 0.092 9.85421 9.9917 -0.0120 
2441299.5 14.0 DEC 1971 0.109 0.078 9.88013 10.0229 -0.0090 
2441309.5 24.0 DEC 1971 0.083 0.062 9.90605 10.0518 -0.0066 

The above table is revised and extended as new punched cards are received from 
the U. S. Naval Observatory Time Service.   After 1.0 Jan 1972 we have 

Al-UTC(USNO)   =   10.0343817 sec 
with one second quantum jumps (leap seconds) in Al-UTC every six months or a year 
to keep UTC within 0.7 sec of UT2.   We also have 

UTC(USNO)-UTC(BIH) = 0.00001 sec 
IAT -UTC(BIH) =10. 00000 sec 

where IAT stands for International Atomic Time.   From the above we have 
IAT-Al   =-0.03439 sec 

We hope to keep PEP on the Al atomic time system rather than changing to the new 
International Atomic Time.    If we did change to IAT, we should replace (23) by 

CT-IAT = 32.18439 sec 
to be consistent with previous work. 
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III-D.  Coordinate Systems 

If we went back to first principles and numerically integrated and fit to 

data the motion of the earth (or earth-moon barycenter) relative to the sun and 

the motion of the earth about its center of mass, we would specify our funda- 

mental coordinate directions by setting two of the initial conditions of the 

motions to defined values.  However, we shall utilize the presently accepted 

expressions for the motion of the earth about its center of mass. We shall 
12  3 

integrate the motion of earth satellites in the coordinate system  (x , x , x ) 
3 

referred to the mean equinox and equator of  1950.0.  The x  axis is perpen- 

dicular to the mean equator of  1950.0 and points to the north, the x  axis 

is the intersection of the mean equator and ecliptic of  1950.0 and points 
2 

towards the constellation Aries, and the x  axis completes the right hand 

system.  We leave the word "mean" undefined and just state that the operational 

definition of the coordinate system referred to the mean equinox and equator 

of  1950.0  is contained in Section IV, where we give the presently accepted 

expressions for the transformation of coordinates fixed in the earth to these 

coordinates. 

This transformation of coordinates involves the wobble, rotation, nuta- 

tion and precession of the earth.  The formulas for the nutation and precession 

and the constants appearing in them were derived by Simon Newcomb in the late 

nineteenth century with revisions in the formulas given by Woolard in 1953 

(see Ref. 14). Assuming these expressions to be correct, the wobble and rotation 

of the earth are derived empirically as follows. 

Star observations are made with photographic zenith tubes at a number 

of sites around the earth as a function of (essentially) atomic time Al. 

Using these observations the  (x,y)  coordinates of the pole of rotation rela- 

tive to the pole of figure of the earth are determined, where x  is measured 

along the meridian towards Greenwich and y along the meridian 90°  to the 

west of Greenwich.  The specific results obtained depend on the accuracy of the 

star catalogue employed.  The axis of rotation is said to wander relative to 

a reference system fixed in the earth, whereas the earth is said to wobble 

relative to the axis of rotation. At the surface of the earth the motion of 
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the pole of rotation relative to the pole of figure of the earth lies in a 

circle of radius about  100 feet so that the angular separation of the two 

poles is less than 1 second of arc. 

The International Polar Motion Service (IPMS, formerly the International 

Latitude Service ILS) and the Bureau International de l'Heure (BIH) publish the 

(x,y) coordinates of the pole in seconds of arc resulting from their observations, 

They give approximately the same results.  The BIH results would tend to be 

more accurate because they make use of many more observing sites than does the 

IPMS.  The BIH results go back to 1956, whereas the IPMS results extend back 

to 1900. 

Local sidereal time can be determined at one site as a function of Al 

atomic time from photographic zenith tube star observations given the wobble 

of the earth derived from observations at many sites.  Of course these results 

depend on the star catalogue employed.  Simon Newcomb!s formula relating 

Greenwich sidereal time and UT1 universal time (Newcomb's mean solar time) 

can then be applied to yield Al — UT1 as a function of Al  time.  The BIH 

publishes values of Al — UT1  together with their wobble results derived 

from photographic zenith tube observations made by the national time services 

in many countries.  The U.S. Naval Observatory uses the BIH wobble and photo- 

graphic zenith tube observations made in Washington, D. C. and Richmond, Florida, 

to derive their values of  Al — UT1.  The BIH wobble and U.S. Naval Observa- 

tory Al — UT1 are given in Table IV. 

The epoch of a modern observation is given in UTC time.  To calculate 

the theoretical value of the observation PEP determines Al — UTC,  Al — UT1 

and the  (x,y)  wobble coordinates of the pole from the data in Table IV.  This 

data is continually updated with punched cards sent from the U.S. Naval Observa- 

tory.  Knowing the Al  time of observation, coordinate time CT can be derived 

from (23) or (41) for use in calculating satellite coordinates from the results 

of the numerical integration in the coordinate system referred to the mean 

equinox and equator 1950.0 .  Knowing the UT1 time of observation and the 

(x,y)  wobble coordinates, the transformation of observing site coordinates 

fixed in the earth to the coordinate system referred to the mean equinox and 

equator of  1950.0 can be performed as explained in Section IV.  Having obtained 
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vectors from the center of the earth to the observing sites and observed satel- 

lite in the coordinate system referred to the mean equinox and equator of 

1950.0,  the theoretical value of the observation can be calcualted from the 

formulas in Section VII. 

UT2 time differs from UT1 time by an empirical formula arising from 

the observed seasonal variation in the rate of rotation of the earth. Before 

1.0 January 1962 the formula used is (see Ref. 6, p. 445) 

UT2 - UT1 = 0f022 sin 2TT t - 0?017 cos 2TT t 

- 0?007 sin 4TT t + 0?006 cos 4TT t (48) 

where  t is the fraction of year and equal to 0 on January 1.  After 1.0 

January 1962 the following formula is used 

UT2 - UT1 = 0f022 sin 2TT t - ofoi2 cos 2TT t 

- 0?006 sin 4TT t + 0?007 cos 4TT t        (49) 

according to Ref. 15, p. 164. 

UTO  time is UT1  time without the wobble correction, and therefore 

is site dependent. 

III-E.  Past History of CT - UT1 

For the observables that existed before 1956, the epoch specified for 

an observation was essentially universal time UT1  (or UTO if wobble was not 

removed in the case of a meridian circle observation; see Section VII-D-4). 

How are we to relate UT1 and coordinate time CT? We write 

CT - UT1 =  (CT - UT2)  +  (UT2 - UT1) (50) 

where the seasonal terms in  (UT2 — UT1)  are given by a trigonometric expan- 

sion and where CT — UT2  is a piecewise linear function. 
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We presume that we have coordinate time points  t , t.. , t0, . ..., t r o  1  2        n 
stretching backward in time with the value of  CT — UT2 at time  t.  being 

y. .  Then between tabular points we assume that 

y ~ y 
CT - OT2 = t1 -11"' (CT - h-t + yi-i 

i  l-i 

where i  (1 - i ^ n)  is such that 

ti-l > CT >  Üi ^51^ 

Tabular point  t  is chosen to be in 1956 and y  fixed at the value of r      o Jo g 
Al + 32.15 — ÜT2  at that instant.  The remaining time points  t , t?, ..., t 

are chosen at convenient intervals to provide a meaningful modeling of CT — UT2 

given the observations of the sun, moon, and planets back to 1750 which are to be 

used to determine y., y», ,,,, y  .  We choose an interval of 4 years.  The 

provisional values y.  of  CT — UT2  at these tabular points given in Table V 

are taken from the values of ET — UT2  in Ref. 6, pp. 90-91 and Ref. 7, p. vii. 

We choose a linear relationship before 1784.5  in case it is decided in the 

future to use a less fine spacing of tabular points in the 18th century. 

We assume that 

UT2    -    UT1    =     (a      +    a,T)   sin 2TT  t    +     (b      +    b,T)   cos  2TT  t 
o     1 o     1 

+  (c  + cnT) sin 4TT t +  (d  + dnT) cos 4TT t 
o      1 o      1 

(52) 

where T  is the time in centuries from the 1956 start of the CT — UT2 

table and where  t  is the fraction of year equal to 0 on January 1.  We 

choose provisional values of  a , b , c , d  as in (48) and take the pro- 
o  o  o  o 

visional values of a- , b.. , c. , d.  to be zero.  We would attempt to estimate 

these coefficients if the data allow. 

46 



TABLE V 

PROVISIONAL VALUES OF CT-UT2 (1956 - - 1750) 

Julian Calendar CT-UT2 
Day Date (sec) 

Number 

0. 2435490 1956 Jan 17.0 31.3669 
1. 2434195 1952.5 30.2900 
2. 2432734 1948.5 28.1500 
3. 2431273 1944.5 26.0800 
4. 2429812 1940.5 24.3000 
5. 2428351 1936.5 23.5800 

1 6. 2426890 1932.5 23.5000 
7. 2425429 1928.5 22.9200 

i 8. 2423968 1924.5 22.2900 
9. 2422507 1920.5 20.4800 

10. 2421046 1916.5 17.3700 
11. 2419585 1912.5 12.9500 
12. 2418124 1908.5 7.5100 
13. 2416663 1904.5 1.8000 
14. 2415202 1900.5 -3.7900 
15. 2413741 1896.5 -7.1900 
16. 2412280 1892.5 -8.0400 
17. 2410819 1888.5 -7.5800 
18. 2409358 1884.5 -8.0700 
19. 2407897 1880.5 -8.1400 
20. 2406436 1876.5 -7.6700 
21. 2404975 1872.5 -4.4800 
22. 2403514 1868.5 0.2000 
23. 2402053 1864.5 2.2600 
24. 2400592 1860.5 3.3200 
25. 2399131 1856.5 3.4600 

26. 2397670 1852.5 2.9000 
27. 2396209 1848.5 2.1200 
28. 2394748 1844.5 1.1300 
29. 2393287 1840.5 -0.0600 
30. 2391826 1836.5 -0.0400 
31. 2390365 1832.5 1.4900 
32. 2388904 1828.5 2.3700 
33. 2387443 1824.5 3.4900 
34. 2385982 1820.5 5.3200 
35. 2384521 1816.5 5.0400 
36. 2383060 1812.5 4.7600 
37. 2381599 1808.5 5.0000 
38. 2380138 1804.5 5.4000 
39. 2378677 1800.5 5.8000 
ko. 2377216 1796.5 6.4250 
41. 2375755 1792.5 7.0500 
k2. 2374294 1788.5 7.6750 

r3- 2372833 1784.5 8.3000 
44. 2371272 1780.5 7.3300 
k5. 2369911 1776.5 6.3600 
46. 2368450 1772.5 5.3900 
47. 2366989 1768.5 4.4200 
48. 2365528 1764.5 3.4500 
49. 2364067 1760.5 2.4800 
50. 2362606 1756.5 1.5100 
51. 2360200 1749 Nov 27.0 -0.0874 
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The partial derivative of an observation with respect to one of the 

above parameters a involves 

|j (CT - UT1)  = |^ (CT - UT2)  + |^ (UT2 - UT1) 

(53) 

If a is one of the coefficients in UT2 — UT1,  the expression for the 

partial derivative is obvious.  If a = y. (i = 1, ..., n) we have 

*i 
(CT - UTX) = < 

1 - 

0 CT  >   t._x 

'i  "  Ci-1 
'i-1 "  CT 

CT  -  t. 
i 

t.   >  CT  > 
l 'i+i " ci 

0 t.+1  >   CT 

"i+1 

(54) 

In the estimation of the CT — UT2  table we are tied at one end by our 

definition of units.  A value y.  has a memory on either side of its tabular 

point  t.  that dies out the further one gets from the tabular point  t. . 

These attributes are what one might imagine that the physical situation 

possesses, since the variation in CT — UT1 is due to changes in the 

moments of inertia of the earth and tidal friction. 
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IV.      MOTION OF THE EARTH ABOUT ITS CENTER OF MASS 

We present the presently accepted expressions for the transformation 

of coordinates fixed in the earth to those referred to the mean equinox and 

equator of 1950.0. 

12  3 
Let  (u , u , u ) be a coordinate system with origin at the center 

3 
of mass of the earth, with u  axis pointing to the north along the mean rota- 

1 3 
tion axis of the earth in 1900 - 1905, with u  axis being normal to the u 

axis and lying in the plane through Greenwich and the mean rotation axis of 
3 2 

1968.0 on the same side of u  as Greenwich, and with u  axis completing the 

right hand system.  By "Greenwich" we mean the site of the old Airy transit 
3 

circle at the Royal Greenwich Observatory.  The u  axis is called the axis of 

figure of the earth.  It coincides closely with the maximum moment of inertia 

axis of the earth.  Our choice of u  axis is dictated by our use of the x,y 

wobble coordinates and value of A1-UT1  given on the punched cards disbursed 

by the U.S. Naval Observatory (see Table IV) . 
12  3 

Let  (x , x , x ) be a coordinate system with origin at the center 

of mass of the earth referred to the mean equinox and equator of  1950.0.  The 
3 1 

x  axis is perpendicular to the mean equator of  1950.0,  the x  axis lies 

along the intersection of the mean equator and mean ecliptic of  1950.0 and 
2 

points in the general direction of the constellation Aries, and the x  axis 

completes the right hand system. 

The transformation between these reference systems is given by 

k     JL  A    Ü u  -  V  A, n  x £ ^ 

£=1  XK 

k = 1,2,3 (55) 

* Private communication from G. M. R. Winkler, Director, U.S. Naval Observatory 

Time Service Division (12 March 1971). 
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where the orthogonal matrix A can be written as 

11 

v21 

31 

*12 

K12 

32 

*13 

v23 

33 

= WSNP (56) 

The wobble W,  rotation S, nutation N and precession P matrices are 

discussed below. Matrix multiplication follows the usual row X column rule, 

so that, for instance, 

(NP),, = E 
k=l 

N P 
ik kj (57) 

IV-A.  Wobble 

12  3 
Let  (u , u , u ) be the coordinate system fixed in the earth with 

1  2 origin at the center of mass of the earth as described above.  Let  (v , v , 
3 

v ) be a coordinate system with origin at the center of mass of the earth, 
3 

with v  axis pointing to the north along the axis of rotation of the earth, 
1 3 with  v  axis being normal to the v  axis and lying in the plane through 

3 1 1 the v  axis and the u  axis pointing in the same general direction as u , 
2 

and with v  axis completing the right hand system. 
3 

Following Ref. 16, pp. 184-187, let y    be the angle from the u 
3 1 

axis to the v  axis and let T     be the angle eastward from the u  axis to 
3 12 

the projection of the v  axis on the  (u , u )  plane. We define 

x = + Y cos r 

y = - Y sin T 
(58) 

■*  -*■  -► 12  3 
Let £-, £«, £~ be unit vectors in the u , u , u  coordinate direc- 

tions and let £•]*, eo*> eq* De unit vectors in the v , v , v  coordinate 

50 



directions. We have 

e      = sin Y cos r e      + sin y sin r e  + cos y e~ 

x £i - y e2 + e3 (59) 

if y is a small angle in radians.  Similarly, we have 

£1 - (£1 • e3*)E3* 
£.. - x e« 

e * = e * X e * z    e9 + y e. 

(60) 

12  3        12  3 
Thus the transformation between the  (u , u , u )  and  (v , v , v )  rectangular 

coordinates is given by 

uk =   E  w. 
1=1 U 

k = 1,2,3 (61) 

=  E  vu 
£=i 

where the orthogonal wobble matrix W can be written as (see Ref. 15, pp. 80- 

86) 

W 
11 

W 

w 
21 

W 

w w 

W13 

w 
23 

31    32    33 

1 0 x 

0 1 -y 

y   1 -x 

(62) 

The values of x,y are given in Table IV in units of seconds or arc, which 

must be converted to radians for use in (62) . 
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IV-B.  Rotation 

12  3 
Let  (v , v , v ) be the coordinate system described above with 

3 
origin at the center of mass of the earth and with v  axis along the axis 

12  3 
of rotation of the earth.  Let  (w , w , w ) be the coordinate system with 

origin at the center mass of the earth referred to the true equinox and equator 
3 1 

of date. The w  axis points along the axis of rotation of the earth, the w 

axis points along the intersection of the true equator and true ecliptic of 
2 

date and the w  axis completes the right hand system.  We have 

w 

3 

=  £ 

3 

=  £ 
£=1 

SUW 

S£kv 

k = 1,2,3 (63) 

where the orthogonal matrix S is given in terms of the Greenwich true sidereal 

time 0 by 

11 

21 

31 

312 

22 

'32 

13 

23 

'33 

cos 0   sin 0   0 

-sin 0   cos 0   0 

0       0     1 

(64) 

Given the UTC time of an observation, we determine UT1 universal time 

from the values of Al-UTC and A1-UT1 in Table IV.  By Ref. 6, p. 72, 

0 = 0  + Aip cos e 
o 

(65) 

where 0  is the Greenwich mean sidereal time and Ai/> is the nutation in longi- 

tude and £  the obliquity of the ecliptic (see below).  The second order terms 
-4 

in the nutation ignored in (64) are less than 10   seconds of time, which is 

just below the accuracy in the determination of A1-UT1.  By Ref. 7, p. 525, 

the Greenwich mean sidereal time 0  at 0  UT1 time on the day of interest o J 

is 
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0      =    6h38m45.S836    +    8,640,184.S542    T 
o 

+    0.S0929 T2 (66) 

where T denotes the number of Julian centuries of  36525 days which, at mid- 

night beginning of day, have elapsed since mean noon on 1900 January 0 at the 

Greenwich meridian (Julian Date 2415020.0). The Greenwich mean sidereal time 

0  at the given instant of UT1 universal time on that day is 

d0 

o     o    dt 
x UT1 (67) 

where by Ref. 6, pp. 75-76 

d0 in 

-T2-    -  (1.002737909265 + 0.589 x 10  T) 
at 

sidereal time seconds per universal time second (68) 

The values of x,y and A1-UT1 on the U.S. Naval Observatory Time 

Service punched cards (see Table IV) are derived from observations using the 

above expressions in which these quantities appear as variables and assuming 

the validity of the below expressions for the nutation and precession. 

IV-C.  Nutation 

12  3 
Let  (w , w , w )  be the coordinate system with origin at the center 

of mass of the earth referred to the true equinox and equator of date and let 
12  3 

(y » y > y )  De tne coordinate system with origin at the center of mass of 

the earth referred to the mean equinox and equator of date. We have 

w 

£=1 

3 

-2 
1=1 

Nk£V 

N£kW 

k = 1,2,3 (69) 
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where from Ref. 6, p. 43, the orthogonal nutation matrix N  is given by 

N     N     N Wll    12   W13 

N     N     N W21    22   W23 

N31   N32   N33 

- Alp cos e   - Alp sin e 

Alp cos e 

Alp sin e Ae 

Ae 

1 

(70) 

The nutation in longitude Alp and nutation in obliquity Ae are given 

by trigonometric series in Ref. 6, pp. 44-45, with 69  terms and  40 terms, 

respectively.  In PEP the nutation is determined by fourth difference inter- 

polation from half day tabular interval tables read from magnetic tape (see 

Section IX-B-1).  The true obliquity of the ecliptic e is 

e  + Ae 
o (71) 

where by Ref. 6, p. 98, the mean obliquity of the ecliptic is 

e  = 23°27'08'.,26 - 46V845T - 0V0059T2 + 0V00181T3   (72) o 

with T being the time in Julian Centuries of 36525 ephemeris days from the 

epoch 1900 January 0.5  (J.E.D. 2415020.0). 

Expression (70) for the nutation matrix ignores powers of Alp and Ae 

higher than the first.  According to Ref. 15, p. 74, the second order correction 

to be added to (70) is 

1 A,2 

- 2 A^ 

1/2 2 2\ 12 
- AeAip sin e - — (Ae    + Aip    cos    e) - — Aip    sin e cos e 

+ AeAip cos e - — Aip    sin e cos e - — ^e    + Aip    sin    e) 

(73) 

—8 
The second order terms are less than 10   radians in magnitude, somewhat 

below the limit of accuracy of the nutation constant determined from fitting 

to data. 
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IV-D.  Precession 

12  3 
Let  (y , y , y )  be the coordinate system with origin at the center of 

mass of the earth referred to the mean equinox and equator of date and let 
12  3 

(x , x , x )  be the coordinate system with origin at the center of mass o 

the earth referred to the mean equinox and equator of 1950.0.  We have 

-z Pk*x 
I 

1=1 

3 

■E P£k^ 
£=1 

k = 1,2,3 (74) 

where by Ref. 6, p. 31, the orthogonal precession matrix P is given by 

P., ..  =  cos t,     cos 9 cos z — sin L     sin z 
11 o o 

P10 = — sin C c°s 6 cos z — cos £ sin z 12 o o 

P   = — sin 6 cos z 

P0,  = cos £ cos 0 sin z + sin £ cos z 21        o ^o 

P-_ = — sin £ cos 6 sin z + cos C cos z 
22 o o 

P~~ = — sin 0 sin z 

P01  = cos C sin 31        o 

P00 = — sin C sin 
32 o 

P--  =  cos 

(75) 
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By Ref. 7, p. 531, the angles in the above expressions are given by 

C  = 23047948T + 0V302T2 + 0V0179T3 
o 

z = 2304V948T + 1V093T2 + 0V0192T3 (76) 

6 = 20047255T - 0V426T2 - 0V0416T3 

where T is measured in tropical centuries of 36524.21988 ephemeris days 

from the epoch 1950.0  (J.E.D. 2433282.423)  to the instant of interest. 

Let T denote the time from the epoch 1950.0  (J.E.D. 2433282.423) 

in units of  10,000 ephemeris days.  Then by Taylor's theorem we have 

d P.. 
 lii 

dT n=o 
'jk    2-J    n! Tn   ,   j, k = 1,2,3   (77) 

T=0 

Treating the coefficients in (76) as exact, some straightforward calculations 

show that the terms up to the fifth power in the Taylor expansion (77) are 

Pn = 1.0 - 2.22603398052517 x 10~5T2 - 2.6903385325366 x 10~9x3 

+ 8.191221606878 x lO"11!4 + 1.79948222850 x 10"14T5 

P12 = ~ 6.119064710033514 x 10~3T - 5.06975739290688 x 10"?T2 

+ 4.5321716219079 x 10"8T3 + 8.619581795926 x 10"12T4 

- 1.02943658327 x 10"13x5 

P13 = " 2.660399722772102 x 10_3T + 1.54818397804898 x 10_7x2 

+ 1.9729201591810 x 10"8T3 + 1.960730253191 x 10"12T4 

- 4.39298354075 x 10"14T5 
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P21 = 6.119064710033514 x 10"3x + 5.06975739290688 x 10"7T2 

- 4.5321716219079 x 10_8x3 - 9.636891635856 x 10_12T4 

+ 1.02604298897 x 10_13T5 

P22 = lm0 ~  1*87214764627888 x 10"5x2 - 3.1022173551368 x l(f9T3 

+ 6.882478825535 x lO"11!4 + 1.91215207447 x 10~14T5 

P23 = - 8.13957902909886 x l(f6T2 - 5.8309700675934 x 10"10T3 

+ 2.994360606802 x 10_11T4 + 5.71739459043 x 10~15T5 

P31 = 2.660399722772102 x 10_3T - 1.54818397804898 x 10"7T.
2 

- 1.9729201591810 x 10"8T3 + 3.791379581151 x 10_13T4 

+ 4.50404085077 x 10~14T5 

P32 = - 8.13957902909886 x 10_6T2 + 1.8168268497009 x 10"10T3 

+ 3.024323052660 x 10~UT4 + 2.58550054981 x 10~17T5 

P33 = 1.0 - 3.53886334246294 x 10"6T2 + 4.1187882260017 x 10~10T3 

+ 1.308742781343 x lO"11!4 - 1.12669845971 x 10"15T5 

(78) 

IV-E.  Partial Derivatives of the Precession 

IV-E-1.  Present Expressions 

In lieu of going back to first principles and fitting to data a numerically 

integrated ephemeris of the motion of the earth about its center of mass, we can 

solve for the parameters appearing in the presently accepted expressions for this 

motion.  If we were fitting to optical data extending far back in time, we could 

solve for quantities which affect the precession.  If we were fitting to a short 

arc of very accurate long baseline interferometry data we could solve for quanti- 

ties which affect both the precession and nutation.  However, we would then also 
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have to solve for the values of the wobble and A1-UT1,  since the published 

values of these quantities depend on the presently accepted expressions for 

the precession and nutation.  Thus, for the short arc of very accurate data 

it appears to be better to start over completely from first principles. 

For a long arc of optical data we can solve for quantities that affect 

the precession, these being the precession constant h and with less sensitivity, 

the mean obliquity constant £  .  The nominal value of these constants in 

1950.0 are 

h  = 5026775 

£   = 23°26'44784 
o 

(79) 

Then Ref. 17 gives that (76) should be modified as follows to show the depend 

ence of small changes of  h and  £   from the nominal values  h , £   : 

=  23047948 + -| (h 

=  23047948 + | (l 

■[ 

cos £ — h  COS £ o o °) T + 0V302T2 + 0V0179T3 

- h° cos E°)| T    17093 T2 + 070192T3 

20047255 + (h sin e    - h° sin e ( 

o o 
DH T - 07 426T2 - 070416T3 

(80) 

where T  is measured in tropical centuries of  36524.21988  ephemeris days 

from the epoch 1950.0  (J.E.D. 2433282.423)  to the instant of interest. 

For the partial derivatives we have in dimensionless units of radians 

per radian 

9^n      ft»      T 
—- = ^ = ±  cos £  « 0.4589T 
dh     dh    2     o 

dt 
—o . |£- - _^Isine  » -0.00486T 
de de 2     o 

o      o 

^      = T sin £  « 0.3978T 
dh o 

(81) 

de 
de 

hT cos £  « 0.0223T 
o 
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The partial derivatives of the precession matrix with respect to h are 

9P11 p  lio _ _       36 _ p  3z 
3h P12 3h     P31 COS Z 3h    P21 3h 

8P12 ^o 96       3z 
3h       Pll 3h     P32 COS Z 3h     22 3h 

3P13 ö      36    D  3z 
= —  COS Ü COS Z TT"  —  P^o "^7" 3h ^ w w" - 3h    "23 3h 

3P21 9Co 36       3z 
3h 22 3h     P31 Sin Z 3h Pll 3h 

3P22 p  ^£ p   4   IS    p  l£ 
3h P21 3h P32 Sin Z 3h    P12 3h 

9P23 ö  . 36    „3z = — cos 6 sin z -rr-    + P^ TTT" 
3h        ^° w ox" * 3h T "13 3h 

9P31       r             ö36 „3z 
~, • =  cos C  cos 6 -rr    + P00 TT" 3h         o      3h 32 3h 

3P32        . r             0 36 „  3z — - - .in Co cos 6 ^ - P31 ^ 

8P33        .  0 36 = — sin 6 -T7- 

(82) 

3h 3h 

The partials of P.. with respect to e  have exactly the same form as above 
ij o 

with partials with respect to h in the right sides of (82) being replaced 

by p-artials with respect to e 

The obliquity constant affects the nutation as well as the precession, 

but we shall not bother to write down the partial derivatives of the nutation 

with respect to the obliquity since we shall probably only obtain useful results 

for the precession constant. 
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IV-E-2.  Ad Hoc Rigid Rotations 

We can parametrize errors in the presently accepted expressions for the 

precession without understanding the derivation of the expressions.  Namely, 

instead of employing the matrix P  defined in Section IV-D or IV-E-1, we use 

PD,  where following Ref. 18, pp. 127-128, we write 

D - 

"Dll D12 D13_ 
1 U>3T - ^2T 

D21 D22 D23 
= " i3T 1 ♦XT 

L°31 D32 D33 
^2T - *jT 1 

(83) 

where T is measured in tropical centuries of 36524.21988 ephemeris days from 

the epoch 1950.0  (J.E.D. 2433282.423)  and where \\t  9   \\)  , \\>      are the angular 
12  3 

rates of rotation about the three  (x , x , x )  axes not accounted for in the 

presently accepted expressions for the precession.  The matrix D is ortho- 

gonal if we can ignore the squares of the i^.T  in radians, which is certainly 

true since we expect that any solution for the \p.  arising from a fit to data 

would be on the order of a second of arc per century.  We have 

0 0 0 

3D 
0 0 T 

31»! 
0 - T 0 
™ -* 

0 0 - T 

ap 
0 0 0 

3^P2 
T 0 0 

_ 
0 T Ü 

1P_ - T 0 0 

3^3 
0 0 0 

(84) 
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V. EQUATIONS FOR EARTH SATELLITE MOTION 

12   3 
Let  (x  , x , x )  be the coordinates of the earth in inertial space 

e   e   e r 

12   3 
and let  (x, , x, , x, )  be the coordinates of an earth satellite in inertial 

space.  We take the coordinate directions to be referred to the mean equinox 

and equator of  1950.0.  The components of the position of the satellite rela- 

tive to the earth are 

x  =x,   — x     ,   k = 1,2,3 
b      e 

r = L (*j): 
Lj-i 

1/2 

(85) 

The equation of motion of the earth and satellite in inertial space are 

A
1
    

k 
d x 

e 

at2 
k = 1,2,3 (86) 

A
1

    
k 

dxb 

dt2 

K> 
+  F, 

where y is the gravitational constant,  M  the mass of the earth,  F   the 
e      k e 

components of the acceleration on the earth and  F,   the components of the 
2 

acceleration on the satellite not including the  1/r  attraction of the earth. 

We assume that the mass of the satellite is completely negligible compared to 

the mass of the earth.  Subtracting the first equation of (86) from the second 

we obtain the equations of motion of the satellite relative to the earth: 

dV 
dt2 

(YMj: c- k = 1,2,3 

(87) 
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k      k 
We now derive formulas for the perturbing accelerations IF,   — F 

due to a number of different effects. 

V-A.  Effects of Sun, Moon and Planets 

We define, for k = 1,2,3  , 

M  = mass of sun 
s 

M  = mass of moon m 

M  = mass of earth 
e 

M  = M  + M 
c     e     m 

M  = mass of planet p 
P 

x   = coordinate of moon relative to earth 
me 

x   = coordinate of earth-moon barycenter relative to sun 
cs J 

k      k       / k     Mm k \ 
x  = — x   = — x   — — X 
se     es      l es    M  me/ 

■ coordinate of sun relative to earth 

x   =  coordinate of planet p  relative to sun 

k      k      k 
X     =  X     +  X 
pe     ps     se 

= coordinate of planet relative to earth 

k      k 
x,   = x 
be 

=     coordinate of satellite relative  to earth 

k k k 
X   -       =      x —     X, ab ae be 

= distance between bodies a and £  (a, ß ■ m,s,p or b) 
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where all coordinates are referred to the mean equinox and equator of  1950.0. 

During the numerical integration of satellite motion PEP reads a magnetic tape 

and x   (for p  = Mercury, Venus, 
k   k 

and interpolates to determine x  , x 
me  cs ps 

Mars, Jupiter, Saturn, Uranus, Neptune, Pluto) at each numerical integration 

step time.  Then the perturbing acceleration ¥ 
' Fb - 

due to the 

sun, moon and planets is included in the integration of (87) via the formula 

Yk = Y E 
a=m,s,p 

M 
a 

ab 

L ab 

x 
ae 
3 

c 
ae 

k = 1,2,3 (88) 

There  is an option of  including or excluding any desired bodies.     The  effect 

of   the sun and moon should  always be  included.     Planetary  effects  could be 

important  (especially for Venus  and Juptiter). 

V-B.     Effect of  Earth Gravitational Potential Harmonics  

12       3 Let     (u   ,   u  ,   u )     be  the  coordinate system fixed in  the earth described 

in  Section IV.     The  transformation between these  coordinates  and  those 
12       3 

(x  ,   x  ,  x )     referred  to the mean equinox and equator of    1950.0    is given 

in  (55). 

We introduce polar coordinates  (r, 0, (j))  rotating with the earth by 

u r cos  6  cos  <J> 

u       =    r sin 8  cos  <J> 

u      =    r sin (J 

0    ^ 

0    * 2TT 

IT       <       A       <       T 

-    2    -    ♦    -   I 

(89) 

We have 

■ E <*°>2 

£«1 
= E <»*>2 

£=i 

(90) 

63 



sin (f> -IE A3£ X 

£=1 > 

COS <J)  = VTT n 

cos 6 

- sin (j> 

3 

r cos 4> f   *      1£ 
£-1 

3 

sm 
r cos (f) / ^ 

A2£ x 

£=1 

(91) 

(92) 

2 2 
cos 26 = cos 9 — sin 

sin 26 = 2 sin 6 cos 

cos ho =  cos (h-l)6 cos 6 - sin (h-1) 6 sin 

sin h6 =  sin (h-1)6 cos 6 + cos (h-1)6 sin 

(93) 

Outside the earth the gravitational potential of the earth can be 

expressed in spherical harmonics by (see Ref. 19, pp. 1-7) 
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u 
yM 

- Z Jn(^)n Pn (sin « 
n=2 

00   n  , % 

n=2 h-1 

|C , cos h 0 + Snh sin h 6  • 

Pnh (sin *) (94) 

where P  and P ,  are the Legendre polynomials and generalized Legendre 

functions, respectively, and where a  is the mean equatorial radius of the 

earth.  The J   (units  a )  are called the zonal harmonic coefficients and 
n e 

the C , , S .  (units  a )  are called the tesseral cosine and sine coefficients, 
nh*  nh e 

C   and S   are also known as sectorial harmonic coefficients. The summation 
nn       nn 

in (94) starts with n 2 rather than with n = 1 because the origin of 

the coordinate system is at the center of mass of the earth.  Since to a high 
3 

degree of approximation the u  axis is a principal moment of inertia axis, 

we have 

J21 
0 sn - o 

(95) 

By Ref. 20 pp. 83 and 327, we have 

Po(Z) - 1 

Pn(Z) = 1 
«n   , 2 n! 

f(z2-i)n 

dZ 
n 

(96) 

n = 1,2,, 
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p(z)   =   Pncz) no n n    =    0,   1,  2,   ... 

Pnh(Z> = d  -  z2) h/2 £ 
dZ h    Pn<Z> h   -    1 n 

> (97) 

From these definitions  it follows  that 

Pn(Z)     - (- 1) 
(2n - 21)   ! ,n-2i 

,n 
i=o 

Pnh(Z)    =    (x-z2)^2 

2    (n - 1)   I  (n - 21)   ! i I 

fn-hl 
 (2n -  21)   ! ,n-h-2i 
-.n 

i=o 2     (n - 1)   !   (n - h - 21)   !   1   ! 

(98) 

(99) 

where  [m]  denotes the largest integer less than or equal to m.  In Section IX-D 

we give recursive formulas for evaluating P  and P   and their derivatives on 

a computer. 

We define 

nh 

no 

. J 2 (2n + 1) (n - h) ! ' 
1 (n + h) !       nh 

■v 2n + r P no 

h - 1, ..., n 

n = 0, 1, 2, ... 

(100) 

According to Ref. 19, p. 7, the integrals of P  x |C°S  fi> over the  (6, <J>) 

sphere are 4TT.  If the P ,  are used in (94) in place of the P ,  and P , 
nn nh       n 

we would use the normalized coefficients 

C   SJ     (n + hU 
nh   f2 (2n + 1) (n - h) !   nh 

(101) 

no 
^2 n + 1' 
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It seems to be customary to normalize to 4TT rather than 1 when dealing with 

the gravitational potential. We shall follow the convention of the Smithsonian 

instead of C Astrophysical Observatory (Ref. 10) and use C . , S ,_, P , 
nn  nn  nh "nh» 

s u» p u nh  nh for h = 1, ..., n, but retain J , P  for h = 0 . 
n  n 

Tables VI and VII contain the values of the earth gravitational harmonic 

coefficients resulting from the latest available fit to earth satellite and 

gravity field data by the Smithsonian Astrophysical Observatory (see Ref. 10). 

The values of fundamental constants used in obtaining these Smithsonian results 

are 

YM = 3.986013 x 105 km3/sec2 

a  = 6378.155 km 
e 

c = 2.997925 x 10  km/sec 

(102) 

TABLE VI 

1969 SMITHSONIAN STANDARD EARTH ZONAL HARMONICS 

(see Ref :. 10) 

n J x 106 
n 

C  x 106 
no 

n J x 106  C  x 106 n        no 

2 1082.628 - 484.16596 12 - 0.042     0.00840 
3 - 2.538 0.95927 13 - 0.123     0.02367 
4 - 1.593 0.53100 14 - 0.073     0.01356 
5 - 0.230 0.06935 15 - 0.174     0.03125 
6 0.502 - 0.13923 16 0.187   - 0.03255 
7 - 0.362 0.09347 17 0.085   - 0.01437 
8 - 0.118 0.02862 18 - 0.231     0.03798 
9 - 0.100 0.02294 19 - 0.216     0.03459 

10 - 0.354 0.07725 20 - 0.005     0.00078 
11 0.202 - 0.04212 21 0.144   - 0.02196 
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TABLE VII 

1969  SMITHSONIAN  STANDARD EARTH  TESSERAL HARMONICS 

(See Ref.   10) 

n h Cnh ?nh Cnh Snh 

2 2 2.4129E-P6 -1.3641E-06 1.5575E-06 -8.8052E-C7 
3 i 1.9698E-^6 2.6015E-07 2.1276E-C6 2.8099E-C7 
3 2 8.9204E-T7 -6.3468E-07 3.0469E-07 -2.1678F-07 
3 3 6.8630E-C7 U4304E-06 9.5700E-08 1.9946E-07 
4 I -5.2989E-^7 -4.8765E-07 -5.0270E-07 -4.6263E-C7 
4 2 3.3024E-C7 7.0633E-07 7.3844E-08 1.5794E-07 
4 3 9<.8943E-^7 -1.546 7E-07 5.9130E-08 -9.2433F-09 
4 4 -7.9692E-P8 3.3928E-07 -1.6838E-09 7.1686E-C9 
5 1 -5„3816E-08 -9-79C4E-08 -4.6085E-08 -8.3840E-C8 
5 2 6,12H6E-07 -3.5087E-07 9.9182E-08 -5.6783E-08 
5 3 -4.3083E-07 -8.6663E-08 -1.4232E-08 -2,8629E-C9 
5 4 -2.6693E-^7 8.3010E-08 -2.0784E-09 6.4634E-10 
5 5 1.2593E-07 -5.9910E-07 3. 1007E-10 -L.4751E-09 
6 1 -9,8984E-08 3.7652E-08 -7.7880E-08 2.9624E-08 
6 2 5.4825E-H8 -3.5175E-07 6.8204E-09 -4.3759E-C8 
6 3 2.7873E-C8 4.4626E-08 5.7792E-10 9.2527E-10 
6 4 -4.0342E-10 -4.0388E-07 -U5271E-12 -1.5289E-C9 
6 5 -2.1143E-07 -5.2264E-07 -1.7C64E-10 -4.2180E-10 
6 6 8.8693E-08 -7.4756E-C8 2.0664E-11 -1.7417E-U 
7 1 2.4l42E-^7 1.1567E-C7 K7670E-07 8.4662E-08 
7 2 2.8306E-07 1.5645E-07 2.8193E-08 1.5583E-08 
7 3 2.0285E-O7 -2.3448E-07 2.8573E-09 -3.3C29E-09 
7 4 -1.9727E-07 -1.1390E-07 -4.1891E-10 -2.41R7E-10 
7 5 -8.7C24E-10 9.8461E-08 -3.0800E-13 3.4847E-11 
7 6 -2.5847E-"7 1.02C9E-07 -1.7940E-U 7.0860E-12 
7 7 1.5916E-07 -6.7710E-08 2.9525E-12 -1.2561E-12 
8 1 3.1254E-C8 2.5696E-08 2.1477E-08 1.7658E-08 
8 2 4.8161E-08 8.4140E-08 3.9557E-09 6.9108E-09 
8 3 -5.7444E-08 1.8086E-08 -5.6076E-10 1.8285E-10 
8 4 -1.5378E-H7 7.5264E-08 -2.0071E-10 9.8234E-U 
8 5 -5„6733E-^8 6.1636E-08 -1.0269E-11 1.1156E-11 
8 6 -5.3903E-H8 2.5930E-07 -1.5054E-12 7.2419E-12 
8 7 3.4390E-08 8.9168E-08 1.7536E-13 4.5467E-13 
8 8 -7.7364E-08 6.7607E-08 -9.8621E-14 8.6183E-14 
9 1 1.3823E-07 -1.61C0E-08 8.9820E-08 -1.0462E-C8 
9 2 6.6741E-^9 -8.1733E-08 4.6230E-10 -5.6614E-09 
9 3 -9.6463E-08 -1.1817E-07 -7.2904E-10 -8.9309E-10 
9 4 5.7125E-08 1.1183E-07 4.8884E-11 9.5697E-11 
9 5 -6.1435E-^9 3.3551E-09 -6.2836E-13 3.4316E-13 
9 6 2.4186E-08 2.2028E-07 3.1936E-13 2.9087E-12 
9 7 -5.045OE-O8 -1.2699E-07 -9.6152E-14 -2.4203E-13 
9 8 2.3359E-P7 5.7239E-08 7.6350E-14 1.8709E-14 
9 9 -8.2490E-08 9.2326E-08 -6.3551E-15 7.1129E-15 

10 1 1.1251E-C7 -1.0167E-07 6.9521E-08 -6.2823E-08 
10 2 -3. 1225E-^8 -1.0450E-07 -1.8566E-09 -6.2134E-09 
10 3 -2,3346E-^8 -1.4137E-07 -1.3612E-10 -8.2425E-10 
10 4 -4.8185E-08 -4.3248E-08 -2.8379E-11 -2.5471E-11 
10 5 -8.00C4E-08 -1.4279E-07 -4.9668E-12 -8.8647E-12 
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TABLE VII   (Cont' d.) 

n h Cnh Snh Cnh 
Snh                j 

10 6 -3.2486E-P8 -2.0153E-07 -2.2548E-13 -1.3988E-12 
10 7 5.4961E-P8 3.20C2E-08 4.6262E-14 2.6937E-14 
10 8 7.3957E-P8 -7.9706E-08 8.4713E-15 -9.1298E-15 
10 9 -6.8563E-P9 6.2498E-09 -1.2740E-16 1.1613E-16 
10 10 1.2377E-P7 -2.5885E-08 5.1425E-16 -1.0755E-16 
11 1 4.3899E-P9 2.9751E-08 2.5915E-09 1.7563E-C8 
11 2 4.8900E-^8 -9.1994E-08 2.5318E-09 -4.7630E-C9 
11 3 -6.3247E-P8 -1.31C9E-07 -2.9173E-10 -6.0465E-10 
11 4 -3.0193E-P8 5.4317E-08 -1.2713E-11 2.2871E-U 
11 5 3.2523E-08 1.3215E-07 1.2940E-12 5.2578E-12 
11 6 3.7517E-H8 6.9C05E-09 1.4780E-13 2.7184E-14 
11 7 4.5726E-P8 -1.3862E-07 1.8988E-14 -5.7563E-14 
11 8 6.4546E-08 -1.6993E-08 3.0745E-15 -8.0943E-16 
11 9 1.1750E-07 -9„9451E-09 7.2255E-16 -6.1156E-17 
11 10 -W1736E-P7 -K8900E-08 -1. 1136E-16 -1.7934E-17 
11 11 1.1785E-P7 -4.0688E-08 2.3841E-17 -8.2312E-18 
12 1 -4.5955E-P8 -3.1000E-08 -2.6017E-08 -1.7550E-C8 
12 2 2.7481E-P8 7..5986E-08 1.2b37E-09 3.466bE-C9 
12 3 5.8385E-P8 5.4784E-08 2.1748E-10 2.0407E-10 
12 4 -4.3649E-08 -2.2262E-08 -1.3549E-11 -6.9103E-12 
12 5 2.3375E-P8 4.2637E-08 6,2218E-13 1.1349E-12 
12 6 -2.3868E-08 -6.6770E-1C -5.6597E-14 -1.5833E-15 
12 7 1.45C7E-P8 9.9784E-08 3.2219E-15 2.2161E-14 
12 8 -5.7854E-09 3.3752E-08 -K2849E-16 7.4960E-16 
12 9 -3.2231E-P8 4.2858E-08 -7.8102E-17 1.0385E-16 
12 10 -1.8590E-P8 4.8382E-09 -5,5449E-18 1.4431E-18 
12 11 -4.4921E-P8 -4.82C5E-08 -1.9755E-18 -2.1200E-18 
12 12 -1.94C7E-08 -5W771E-08 -1.7422E-19 -5.1861E-19 
13 1 -5.6042E-P8 2.6288E-08 -3..C526E-C8 1.4319E-C8 
13 2 -4.7456E-08 1.7367E-08 -1.9267E-09 7.0510E-10 
13 3 2.3833E-08 -2.8930E-08 7.2937E-11 -8.8535E-11 
13 4 -1.9980E-P8 5.7030E-08 -4.6896E-12 1.3386E-11 
13 5 9.6637E-P8 -«•7760E-08 1.7821E-12 -8.8075E-13 
13 6 -8.3417E-08 5.9782E-08 -1.2477E-13 8.9420E-14 
13 7 -5.2217E-P8 -3.2562E-09 -6.6C10E-15 -4.1163E-16 
13 8 -4,1759E-P8 -2.0231E-08 -4.7029E-16 -2.2784E-16 
13 9 -2.5622E-08 1.0767E-07 -2.7513E-17 1.1561E-16 
13 10 8.6589E-08 -U0528E-08 9.6937E-18 -1.1786E-18 
13 11 -3.3749E-P8 5.8541E-08 -4.A527E-19 7.7236E-19 
13 12 -1.3229E-P9 8.2192E-08 -2.4683E-21 1.5336E-19 
13 13 -7.0288E-P8 7.4643E-08 -2.5720E-20 2.7313E-20 
14 1 -2.3090E-P8 4.9664E-08 -K2135E-08 2.6100E-C8 
14 2 3.2120E-P8 -4.5289E-08 1.1704E-09 -1.6503E-C9 
14 3 1.90A2E-P8 1.1919E-09 4.8581E-11 3.0409E-12 
14 4 7.8016E-P9 -3.7527E-08 1.4145E-12 -6.8041E-12 
14 5 -2.5958E-P8 -2.3344E-08 -3.4144E-13 -3.0706E-13 
14 6 1.9140E-P8 -5.8721E-08 1.8765E-14 -5.7571E-14 
14 7 1.1061E-P8 8.4132E-C9 8.3666E-16 6.3638E-16 
14 8 -3.0273E-P8 -6.0838E-08 -1.8452E-16 -3.7083E-16 
14 9 4.9538E-P8 9.2345E-08 2.5704E-17 4.7915E-17 
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TABLE VII (Cont 'd.) 

n h Cnh Snh Cnh 
S u nh 

14 10 5.3732E-P8 -4.3168E-08 2.5451E-18 -2.0447E-18 
14 11 2.7833E-P8 -8.1637E-08 1.3183E-19 -3.8668E-19 
14 12 1.2481E-P8 -5.7314E-08 6.6937E-21 -3.0738E-20 
14 13 5.1554E-08 4.5453E-08 3.7626E-21 3.3173E-21 
14 14 -5.2C82E-n8 -1.2840E-08 -7.1834E-22 -1.7710E-22 
15 1 -3*5971E-^9 4.0142E-08 -1.8283E-09 2.0403E-08 
15 2 -4.4833E-H8 -1.6056E-08 -1.4771E-C9 -5.2898E-10 
15 3 8.3016E-H9 -5.7218E-09 1.7880E-11 -1.2323E-11 
15 4 1.3916E-H8 6.6644E-08 1.9849E-12 9.5058E-12 
15 5 3. 1684E-r8 1.8250E-09 3.0469^-13 1.7550E-14 
15 6 7.0020E-^8 -1.1872E-07 4.6465E-14 -7.8782E-14 
15 7 1.1856E-P7 4.2690E-08 5.5913E-15 2.0133E-15 
15 8 -9.7657E-P8 -3.5710E-08 -3.3952E-16 -1.2415E-16 
15 9 2.2064E-08 2.6632E-08 5.9183E-18 7.1435E-18 
15 10 -2.0648E-O8 5.3724E-10 -4.5221E-19 1.1766E-20 
15 11 -3.2585E-08 9.4052E-08 -6.2591E-20 1.8066E-19 
15 12 1.0524E-08 6.8726E-C9 1.9452E-21 1.2703E-21 
15 13 -3.7348E-C8 4.0249E-09 -7.5320E-22 8.1170E-23 
15 14 1.2192E-08 -2.6786E-08 3.2285E-23 -7.0931E-23 
15 15 1.4514E-09 -1.48C2E-08 7.C170E-25 -7.1563E-24 
16 1 -2.3789E-H8 7.6413E-08 -1.1718E-08 3.7640E-C8 
16 2 2.1327E-08 3.0669E-08 6.3935E-10 9. 1940E-10 
16 3 -4.7358E-P8 3.2610E-08 -8.7048E-U 5.9940E-11 
16 4 -1.1591E-08 4.30C1E-C8 -1.3213E-12 4.9018E-12 
16 5 -4.42G1E-P8 3.2230E-08 -3.1740E-13 2.3144E-13 
16 6 -5.8439E-08 -4.28C9E-08 -2.6976E-14 -1.9761E-14 
16 7 1.0591E-^7 8.1CC8E-09 3.2236E-15 2.4657E-16 
16 8 -8.4738E-T8 -2.4677E-09 -1.7549E-16 -5.U06E-18 
16 9 9.CC01E-09 -1.0628E-07 1.3180E-18 -1.5564E-17 
16 10 -2.9849E-08 -5.2467E-10 -3.2401E-19 -5.6953E-21 
16 11 6.85C2E-C9 -7.0765E-08 5.8422E-21 -6.0352E-2C 
16 12 2.2834E-08 -3.4087E-08 1.6458E-21 -2.4569E-21 
16 13 3.5475E-08 2.C683E-08 2.3741E-22 1.3842E-22 
16 14 -7.3590E-<"9 -2.2626E-C8 -5. 1913E-24 -1.5961E-23 
16 15 -3.5485E-08 8.4126E-1C -3.1791E-24 7.5369E-26 
16 16 -2.9522E-08 8.6217E-09 -4.6755E-25 1.3655E-25 
17 12 8.3097E-08 3.5424E-09 2.5613E-21 1.0919E-22 
17 13 3.2749E-C8 4.2920E-10 8.2418E-23 1.0801E-24 
17 14 -U6058E-C8 2.7286E-08 -3.6292E-24 6.1667E-24 
18 12 1.1662E-08 8.4724E-09 U6528E-22 1.2008E-22 
18 13 4.69C3E-09 -3,5547E-08 4.8741E-24 -3.6940E-23 
18 14 -2.7446E-08 -4.8376E-08 -2.2548E-24 -3.9743E-24 
19 12 6.7115E-08 -8.2623E-09 4.6406E-22 -5.7128E-23 
19 13 3.32C1E-08 -6.3128E-08 1.5338E-23 -2.9164E-23 
19 14 -3.9779E-09 -2.3817E-08 -1.3C60E-25 -7.8196E-25 
20 13 5.8374E-08 3.3320E-08 1.2735E-23 7.2692E-24 
20 14 1.1130E-P8 -1.6183E-08 1.5739E-25 -2.2885E-25 
21 13 3.6928E-09 -1.6288E-08 4.GC21E-25 -1.7652E-24 
21 14 5.2067E-08 3.0801E-10 3.3722E-25 1.9949E-27 
22 14 -8.0549E-C9 2.6440E-08 -2.5158E-26 8.2580E-26 
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Slightly different values of earth harmonics would be obtained with our slightly 

different values for these quantities [see (26), (27) and (194)], but the dif- 

ference is completely insignificant.  The harmonic coefficients could have time 

variations, in particular, seasonal variations.  These would be small, but not 

necessarily smaller than the accuracy of the results in Tables VI and VTI obtained 

assuming constant harmonic coefficients. 

The force on the satellite due to the gravitational attraction of the 

earth is — M, grad U,  where M,  is the mass of the satellite.  By the law 

of action and reaction the negative of this force acts on the earth.  The 

acceleration on the earth is this force divided by M ,  so that the accelera- 

tion acting on the earth contains a factor K      and hence can be considered  0 . 

Thus we have  (F  — F )  ■  F,,  so that the term on the right side of (87) 

due to the higher harmonics in the gravitational field of the earth is (using 

the Smithsonian normalization) 

k 8U ^Mexk 

He    *    "   7T   + 3 
9x r 

- «. E (r)° [7 ^ '„ w » - K to « " ^\ 

-.is $n 7 i C ,   cos h 

n=2    h=l 

+    S  ,    sin h 
nh 

+ ^h^w^H+ h[- **-» 
]   '    ?nh(sin«     '     r^k} +    Snh cos h 6|   •    ?^u   (sin (J>)     •     r -^ > (103) 
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where by (91) 

3 
r 

sin 

3x 

♦ = A3k " 

k 
X 

r 
sin 4> 

and by (92) 

sin 0 
30 

3xk 
■ 

1 
Alk 

— 1 
cos 4 

3 COS cj>     A  ;—^ cos 0 - 
3xk 

k 
x 

- — cos 0 
r 

r COS * 

COS 0 
90 

3x
k 

= 1 
A2k 

— 1 
COS <p 

a -S2S-1 sin e - 
3xk 

k 
- ^ sin 0 

r 
r cos 4> 

(104) 

Multiplying the first equation by — sin 0  and the second by cos 0  and adding 

we obtain 

r ^V - —^r [A01 COS 0 - A-, sin el (105) 
- k    cos cj> I 2k Ik 

If the satellite had an appreciable mass M.  we would just replace 

the factor yM  in (103) and also in (87) by 

/    M.\ 
(106) 

For a large satellite, such as the Moon, we would also have the effect of the 

satellitefs gravitational potential higher harmonics acting back on the earth 

with interactions between the earth's and satellite's harmonic expansions 

(see Ref. 1, Section III-E.). 

V-C.  Effect of Moon Gravitational Potential Harmonics 

12  3 
Le-t  (q , q , q )  be a coordinate system with origin at the center of 

mass of the moon with axes along the principle axes of inertia of the moon. 
3 1 

The q   axis points along the axis of rotation of the moon and the q  axis 

always points in the general direction of the earth, the period of rotation of 

the moon about its center of mass being the same as its orbital period.  The 
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12  3 
transformation between this coordinate system and the one  (x , x , x )  with 

origin at the center of mass of the moon referred to the mean equinox and 

equator (of the earth) of  1950.0 is 

3 

x 

£=1 

3 

-L 
£=1 

Bk£X 

B£kq 

k = 1,2,3 (107) 

where formulas for the orthogonal matrix B are given in Ref. 1, Appendix B, 

using Casings laws and the moon's physical libration. 

We recall some definitions from the start of Section V for k =  1,2,3: 

x 
em 

k 

me 

k 

coordinate of moon relative to earth 

= x ,  =  coordinate of moon relative to satellite 
bm     mb 

The gravitational potential of the moon looks like (94) with a  (the mean 
m 

radius of the moon) replacing a  and B replacing A in (91) and (92). 

Thus the acceleration on the motion of the satellite relative to the earth 
k      k     k 

H  =  (F,  — F )  due to the higher harmonics of the moon's gravitational 
m      be 
potential is 

H 
m 

HT  - H Dm     em 
(108) 

where for a b,e 
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'a.    \n    J 

am '  m TJf-) -t 'i-rf \ am/      r 
n=2 oan 

(n+1)  x 
am 

P     (sin 4> ) r n Ta 
am 

8  sin cf> 
P1   (sin (j) )   r        —— 
n Ya      am    „  k 

a 

3xr 

am 
o°      n 

n=2 h= 
fie) M 
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+    S .   sin h 0 
nh a 

(n+1)  x*" 
am — ,  * * \   P , (sin d> ) 

r nh v Ya 
am 

d  sin <J> 
+    P?,    (sin 4> )   r 

nh Ya'     am      . k 
dX 

a 

am   J 
[- +    h    -    C .   sin h 0 
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+    S ,   cos h 
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36a   ) 
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(109) 

sin (f) 
a 

cos    <f>a = 

am    TT 

B3*XL 
Ä-l > 

+   VI   -    sin2 <(> 
a 

(110) 

cos  0 
a 

=  i  V 
r      cos  (J>      /  ^ 

am Ta 
Ä-1 

3 

sin 
a 

=  i—V 
r       cos  <J>      *   * 

am a 

Bio x* 1£    am 

Bnn      X 
1%    am 

£=1 
^ 

(111) 

d  sin 0 
a 

am k 
dX 

am 
am 

(112) 
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86 
a 

i-T B01 cos 9  - B-. sin 6 (113) 
s <f> [_ 2k     a     Ik     al ' am ~ k     cos 

9x 
am 

Probably the only lunar harmonics worth considering for calculating 

perturbations on earth satellite orbits are the second order ones, if even 

these.  According to Ref. 21 (fit JPL-6) we have 

J2 = 2.0010 x 10~4 (C20 = - 0.8949 x 10~4) 

C22 = 0.3498 x 10"4 (C22 =  0.2258 x 10"4) 

(114) 

12  3 
where C21  = 0, S?      = 0,  S 2 = 0 if the coordinate system  (q , q , q ) 

is really oriented along the principle moment of inertia axes of the moon. 

The parameter values assumed in Ref. 21 in determining these harmonics are 

YM  = 4902.78 km3/sec2 m 

a  = 1738 km 
m 

(115) 

Using the values (20) and (25) for PEP fundamental parameters we obtain 

YM  = 4902.78 ± 0.6 km3/sec (116) 

V-D.  Effect of Second Harmonic of Sun's Gravitational Potential 

12  3 3 
Let  (q , q , q )  be a coordinate system fixed in the sun with q  axis 

along the axis of rotation of the sun.  The definition of the other two axes is 

unimportant for our purposes.  The transformation between these coordinates and 
12  3 

those  (x , x , x )  referred to the mean equinox and equator (of the earth) of 

1950.0 can be written as 
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3 
k     \^  n     * X  = LJ    C*kq 

£=1 

>     k = 1, 2, 3 (117) 

The only coefficients of interest to us are by Ref. 1, Appendix C, 

'31 
sin Q,    sin I 

s     s 

C00 = — cos fl sin I cos e — cos I sin e 
32 s     s s 

CL0 =    —    cos ft    sin I    sin e +    cos  I    cos £ 
33 s     s s (118) 

where 

I  = inclination of solar equator to ecliptic 

= 7°15*  =  7?25 

0,      = longitude of ascending node of solar equator on 
s 

ecliptic measured from mean equinox of  1950.0 

= 75°3.f75 = 75?0625 

£    = mean inclination of ecliptic at 1950.0 

= 23026'44784 = 23?4458 

B^ Ref. 1, pp. 28-30, the acceleration due to the second harmonic J~ 

of the sun's gravitational potential on body a ( = b,e)  in inertial space is 

k  / 

as 

as 15 2    3\   ,  „ 
~T \T ga " 2) " 3ga C3k 
L as 

k = 1,2,3 (119) 
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where J2  is in units of the sun radius squared and where 

a  ■  sun equatorial radius 
s 

= 696,000 km 

3      x£ 

«a - E C3*7^ (120) 

The acceleration on the motion of an earth satellite relative to the earth due 

to the second harmonic of the sun's gravitational potential to be added to (87) is 

Sk =  s£ - S^       k =  1,2,3 (121) 

It is not worth considering the effect of additional solar gravitational 

potential harmonics since it is difficult to even discern the effect of  J? 
-5 2 

on the motion of a planet.  J~  is probably about  10 "  (solar radii)   or 

less.  The mean distance of the earth to the sun is  215  solar radii and the 

effect of the sun s harmonics on an earth satellite is a differential one, so 

even the effect of J~  is probably not worth considering, except that it was 

easy enough to write down the formula. 

V-E.  Effect of General Relativity 

The effects of general relativity on earth satellite motion additional 

to the Newtonian gravitational effects can be classified as follows in the 

order of their importance for a low earth satellite:  (i)  due to Schwarzschild 

metric of the earth,  (ii)  due to the rotation of the earth,  (iii)  due to 

the differential effect of the sun's Schwarzschild metric, and  (iv)  due to 

the moon, planets and rotation of the sun.  These last effects (iv) can pretty 

much be ignored.  For a far out earth satellite, such as the moon, effect (iii) 

is the most important  (1.9 seconds of arc advance of the ascending node on 

the ecliptic per century) and is in fact programmed in PEP for the moon using 

the formula in Ref. 3, pp. 28-29.  The programming of the effect of general 
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relativity for an arbitrary earth satellite (up to  3.3  seconds of arc per 

year advance of the perigee for a low earth satellite) we leave to the future. 

When this coding is added to PEP, the formulas used should be those 

which arise in harmonic coordinates, since the harmonic coordinate system 

defined in Ref. 11, p. 132, is the one used throughout PEP.  It does not matter 

what coordinate system is employed, as long as the same one is used in numer- 

ically integrating the equations of motion as is used in calculating the theo- 

retical value of observables (see Section VII-B-1). 

The effect of general relativity on the motion of a planet due to the 

Schwarzschild metric of the sun is programmed in PEP in harmonic coordinates 

using the formula in Ref. 1, p. 50. 

V-F. Non-Gravitational Effects 

It is difficult to completely model the effects of non-gravitational 

forces.  The parts of these effects which are not modeled can ruin the detection 

of other effects, such as those due to general relativity or earth gravitational 

potential harmonics, unless the non-gravitational forces can  (a)  be measured 

for exact inclusion in the numerical integration of the equations of motion 

or  (b)  be compensated for so they can be ignored in the numerical integration 

of the equations of motion. 

Goal  (a)  can be achieved by flying a sensitive three-axis accelerometer 

aboard the spacecraft.  Goal  (b)  can be achieved by using a pea-in-a-pod 

approach.  Namely, inside a hollow spacecraft a small solid sphere (pea) is 

placed which is not subject to non-gravitational forces.  The surrounding space- 

craft is subject to non-gravitational acceleration, so that the pea will approach 

the walls of the surrounding spacecraft.  If such an approach were detected, 

thrusters could be fired to move the surrounding spacecraft so that the pea is 

centered.  The net effect is to cancel the non-gravitational forces acting on 

the spacecraft. 

Lacking such sophisticated techniques we must model the non-gravitational 

accelerations as best we can, realizing that for certain accurate applications 

we could never completely account for these effects.  In the following we discuss 

models for some of these forces that are programmed in PEP. 
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V-F-l.  Radial ion Pressure 

12  3 
Let  (z , z , z )  be the coordinate system with origin at the center of 

mass of the satellite referred to the mean equinox and equator of 1950.0. Let 
12  3 

(z*i z*» z*)  be a reference system fixed i 

center of mass of the satellite.  We write 

1      2      3 
(z^, z^, z^)  be a reference system fixed in the satellite with origin at the 

(122) 

where the orthogonal natrix D is 

\l      D12  D13 

D21  D22  D23 ' 

^31  D32  D33, 

The vector pointing from the satellite to the sun has the following components 

in the reference frams fixed in the satellite: 

V = E D*k 4     k - 1. 2. 3 (124) 
£=1 

The components of the acceleration on the satellite due to solar radiation 

pressure are then 

F1/; = gk(z^, z*A, z^)  -A      k = 1, 2, 3    (125) 
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where the functions  g  depend on the shape and reflection properties of the 

satellite and on the solar flux and distance from the sun, and where 

1 if satellite not in shadow 

A ■     (0 < A  <  1  if satellite in penumbra     (126) 

0  if satellite in umbra 

The components of this acceleration referred to the mean equinox and equator 

of  1950.0 are then 

3 

£=1 

k 
This is to be added to the right side of (87) with F  ■  0 .  The area to mass 

ratio of the earth is so small that the solar radiation pressure acceleration 

on the earth is completely ignorable. 

Some of the radiation incident on a satellite is absorbed and re-emitted, 

some reflected specularly and some reflected diffusely.  There could be multiple 

reflections for complicated shapes.  For a specific satellite it might be pos- 
it 

sible to derive expressions for the functions  g .  Alternatively, unknown 

parameters in some model for the functions  g  could be determined simultane- 

ously with the satellite orbital initial conditions in fitting to data.  We 

shall now consider possible models for use with this second technique and employ 

vector notation rather than the transformation matrix D. 

Mariner spacecraft (interplanetary probes and Mars orbiter) are sun and 

earth oriented for most efficient use of their solar panels and communications 

antenna.  For such spacecraft we define the unit vectors 
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Lbs 

lbs 

lb8' 

r  x r 
bs   be 

1 bs    be1 

(128) 

- fix« 
bs 

These unit vectors coincide with axes fixed in the spacecraft and the components 

of the solar radiation pressure acceleration along these axes depend only on 

the distance from the sun.  Namely, we can write 

"1 A 
2 rbs 

rbs 

$ 

Lbs rbs J 

A (129) 

where c,, c«, c~  are constants to be determined by fitting to data. 

For an earth satellite let us define the unit vectors 

^be 
J3 1 *bel 

► = V X^be 
Jl 

l*be *\j 

h = V ± 

yaw 

pitch 

roll 

(130) 

Axes fixed in the LES-8/9 satellites to be launched in 1974 coincide closely 

with these ideal pitch, roll and yaw axes, the attitude control system keeping 

the discrepancy within ± 0?1 about pitch and roll and ± 0?6 about yaw. 

In Section VII-D-3b :he attitude control error is considered in deriving 

expressions for satellite on-board look angle measurements, but we shall ignore 

it in deriving expressions for the solar radiation pressure acceleration on the 

satellite. 
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The sun pitch and roll angles are given by (see Section VTI-D-3b) 

sin a - 

cos a ■ 

sb   2 

{< • EJ + (r . • EQ) sb   V sb   3; 

sb   3 

v< ± N2   ,-►    + ,2' 
' Eo)  + (r . • EJ sb   V sb "y 

\    -180° < a < 180* 

(131) 

sin 6 

We can assume that 

sb   1 

'sb1 
- 90° < 6 < 90e 

g±(*,&) 
Lb    il^   2     "i 

i=l  rsb 

(132) 

(133) 

The sun pitch angle a varies by 360° during an orbital revolution.  The sun 

roll angle 6 varies by ±  the inclination of the satellite orbit to the 

ecliptic during a year, but 6  is essentially constant for a few orbital 

revolutions.  Thus for orbit fits spanning a few days we can assume that the 

g,  are functions of a only.  We might write 

n 

8i =  Cio 
+ y^ (c  cos j a + B±    sin j a)   i = 1, 2, 3 

j=sl (134) 

with coefficients  c.., s..  to be determined by fitting to data.  We can avoid 

evaluating trigonometric functions by calculating the  cos j a and  sin j a 

from equations (131) and (93). 

For orbit fits over a period of time during which 6  changes appreciably, 

we might assume that the coefficients in (134) are given by 
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m 

ij ""   H    Cijk(sin 6)k 
k=0 i = 1, 2, 3 

(135) 
m I   j  = 0, 1, ..., n 

s^ »  >   s^^sin 6) 

k=0 

with coefficients c. ., , s,,,  to be determined by fitting to data. We use 

sin 6 rather than 6  in the parametrization (135) to avoid evaluating inverse 

trigonomic functions. 

The LES-6 satellite launched in 1968 is a symmetrical cylinder spinning 

about the pitch axis., so we could assume that g  = c   in (134) with no 

dependence on a .  For non-earth oriented satellites, parametrizations other 

than (133) and (134) would have to be devised. 

Given the radius of the sun p   and of the earth p   and the coordin- 
+       -> s e 

ates x   and x,   of the earth relative to the sun and the satellite relative 
es       be 

to the earth, we shall now determine that fraction A of the sun's disk which 

is not blocked by the earth from illuminating the satellite.  Referring to 

Fig. 1, let ^s = ^e -^es .  If  |^J < \ln\    we have A = 1 . 

Otherwise, we first adjust x,   to account for the movement of the earth since 

the light past it: 

y,   = x,   + x  T (136) 
•'be     be     es 

where (see Fig. 2) 
-*■ 

1 -»     bs /n 0_x T " c *be  ^T (137) 

is the time required for light to travel past the earth to the satellite along 

x   (c = velocity of light in same units as x ).  Let R be the length 
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SUN EARTH 

SATELLITE 

Fig. 1.  Position vectors for shadow calculations. 

EARTH 

Fig. 2.  Correction of satellite-earth 
position vector for light time. 

kbs SATELLITE 
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of the projection of y,   onto x, : 

ybe ' *bs 
(138) 

W 

Let d be the closest approach of the vector x,   to the center of the earth: 

d = Xb< - R 
vbs 

^bs1 

(139) 

The angular radius cf the sun is 

(140) 

Implicit  in what we do in the following is that r  is small  (« 

earth satellites).  If 

.0087  for 

d  >  p  + Rr 
e      s 

(141) 

we have A = 1 .  Otherwise the disks of the sun and earth intersect as seen 

from the satellite.  The tangent of the angular radius of the earth as seen from 

the satellite is then very close to the value 

R 
(142) 

The tangent of the angle between x,   and y,   is 

s ■ 

1+    -*■  i 

l*bs X ybe' 

Xbs " ybe 

lxbs X ybel 

l"b. 

d 
R 

(143) 
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Let 

r. = min(r ,r ) 
1 s  e 

r0 = max(r ,r ) 
I s e 

Referring to Fig. 3 we have 

2 ,  2    2 
-1 r2 + S " rl ' 

0 = cos 
2r2s 

h = r2 sin 0 

<f>'  = sin"1 (*-) 
rl 

4>  = 7T — 4>* 

The areas of the sectors in Fig. 4 are 

\ = *ri2 

The non-intersecting area A of the smaller disk is 

If r1  = r ,  the proportion of illumination is 
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(145) 

A2 = sh (146) 

A3 - 0r2
2 

A = A±    + A2 - A3 (147) 

A = —^ (148) 
TTr 

s 



Fig.   3.     Sun and earth disks as  seen 
from the  satellite. 

18-6-14244 

=  A, 

- A, 

Fig. 4.  Determination of the fraction of the sun's disk 
blocked by the earth. 
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If    r2    -    re, 

2   j     A 2 irr      + A - irr 
A    =    —s 2 ~ (149) 

TTr s 

Condition  (141)  of non-intersection is  equivalent  to 

r1    +    r2<s=^A    =    l (150) 

If one disc lies within the other we modify  (149)   and  (150)   as  follows 

r2    -    rx    >    s =^  < 0 0 (151) 

A = 0 if rl 
= r 

s 

A = 

2             2 
TTr      - TTr 

s             e 
if rl 

= 
2 

TTr 
s 

r 
e 

The above formulas for considering the effects of shadow umbra and 

penumbra are due to R. Reasenberg.  It is important that A change gradually 

between 0  and  1 when entering and leaving shadow for reasons of numerical 

integration stability, besides the fact that things happen this way in nature. 

V-F-2.  Atmospheric Drag 

At present we do not have atmospheric drag programmed in PEP for earth 

satellites, since the only satellites we have had occasion to deal with have 

been well beyond the earth's atmosphere.  There exist many sophisticated models 

that can be used to add this effect to PEP if it becomes necessary (see Ref. 22, 

pp. 18-28). 

We do have a simple atmospheric drag model programmed in PEP for the 

Mariner Mars orbiter.  We assume an exponential model for the density p of 

the Martian atmosphere: 
o 

P = PQe (152) 
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where r is the distance of the satellite to Mars,  r  the radius of Mars 
o 

and h a scale height.  Then the drag force acting on the satellite has mag- 

nitude 

D = ± p v2 A CD (153) 

where v is the velocity of the satellite relative to the atmosphere,  A its 

effective cross-sectional area and C  the drag coefficient based on the shape 

of the satellite and A  (see Ref. 23, p. 207).  These last vary with time as 

the orientation of the satellite varies relative to Mars.  The atmosphere is 

assumed to be rotating with Mars (see Section XI-A).  The force (153) is mostly 

along v .  There could be a small component of lifting force normal to v . 

V-F-3.  Thruster Firing 

Orbit fits for the Mariner spacecraft do not usually include thruster 

firings in their midst, because the effect of the thruster firing cannot be 

modeled accurately enough to yield small data residuals before and after the 

thruster firing.  However, in some applications it is desirable to include 

such effects.  Of interest to us are the stationkeeping thruster firings on 

the Lincoln Experimental Satellites LES-6, LES-8 and LES-9. 

The stationkeeping logic on board the synchronous altitude LES satellites 

interprets the output: of sensors on board the satellites to decide what earth 

longitude the satellite is over.  Comparing this with the longitude that the 

satellite is supposed to be over the stationkeeping logic orders the appropriate 

thruster firing to correct the longitude of the satellite. 

LES-6 has ammonia gas thrusters and electric arc ion thrusters.  The 

former fire for a few minutes or seconds, whereas the latter fire for hours 

for the stationkeeping maneuvers.  LES-8 and LES-9 have only the electric 

thrusters.  The thrusting is along the ± roll vector E2  defined in (130). 

We can assume that 

£  = Tsl (154) 
b I 
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where T is the thrust level of the thrusting system and where S  is  0, 

positive or negative depending on the result of the stationkeeping logic.  If 

not 0,  S has a constant absolute value dependent on the units used for T 

so that the acceleration F,  to be added to the right side of (87) is in units 
2 

of AU/Day .  The thrust level of the thrusters does not vary.  The desired 

effect on the satellite is obtained by controlling the duration of the thrust. 

The thrust actually occurs in little spurts a few seconds apart, but we assume 

the thrust level constant for the duration of the thrusting (minutes or hours). 

PEP could be run in a stationkeeping simulation mode by putting the 

control logic into a subroutine which given the longitude that the satellite 

is over and the time would return the value of  S.  The control subroutine would 

have a memory of the past state of the satellite to be used along with the present 

state in deciding on the value of  S.  To simulate sensor errors, noise from a 

random number generator could be added to the longitude used by the control 

subroutine.  The longitude is naturally available during a satellite numerical 

integration since it is needed for including the effect of earth gravitational 

potential tesseral harmonics [see (92)].  It is the effect of the second tesseral 

harmonic of the earth's gravitational potential which makes a stationkeeping 

system necessary for a synchronous satellite. 

Given the actual sequence of thruster firings of an orbiting satellite, 

PEP could numerically integrate the equations of motion with the thruster accel- 

eration (154) included and experimentally determine the thrust level T by 

fitting to data.  The equations for the partial derivatives of motion with 

respect to  T would have to be numerically integrated along with the equations 

of motion. 

It is usually necessary to have thruster initiation and termination be 

a smooth process rather than a step process for reasons of numerical integration 

stability (see Fig. 5).  Rocket thrusting would actually be this way, but for 

electric thrusting occurring in little spurts which we have assumed to be con- 

tinuous, the smoothing of initiation and termination would be one additional 

ad hoc assumption.  Since the thrust level involved with electric thrusting 

is low, the numerical integration might remain stable with step function 

initiation and termination of thrusting. 
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18-6-14245 

(a) (b) 

Fig. 5.  Thruster initiation and termination as  (a)  step function 
and  (b),  smooth function. 

91 



VI.   EQUATIONS FOR PARTIAL DERIVATIVES OF EARTH SATELLITE MOTION 

The three second order ordinary differential equations of motion (87) 

can be written as six first order equations as follows: 

dx  m      k+3 
dt 

dx 
k+3 

dt 

(YM )x      / 

-I" +  K  " Fe k= 1,2,3 

k      k     k+3      k+3 x  = x   ,  x    = x     when t =  t 
o o o 

(155) 

Let 3 be some time-independent parameter upon which satellite motion depends. 

Differentiating (155) with respect to 3 we obtain the variational equations 

dOxVaß) 
dt 

= 9x 
93 

S.-TJ 
«V 

d(9xk+3/93) 
dt = — 

9(YMe)   xk 

93        r3 

+ 
YM e 

3 
r 

3x 
2 

r 2^j x w ~ 
£-1 

9xk_ 

93 

+ 3-   /Fk 

3ß   \b -..■) 

3xk 

= 
9x 

( 
93 

k              k 5               9x 
»     93 

j_a              a     k+3 
+3           9x =        o when    t    = ■   t 

o 
j 

33 93 

> k = 1, 2, 3 

(156) 

which are to be numerically integrated along with the equations of motion. 
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instead of yM , which has the value YM  if 3 = — . We never have 
e ' ' e M 

3 = Y  (°r Y ) because y     (°r Y )  is set to a defined value to specify 

3(YMe) 
The term —rr— is zero for all parameters except for 3 = M , 

do e 
in which case it is y    and except for 3 = A  [the time variation of the 

M 
P 

gravitational constant in (21)], in which case it is — X(t — t. ) .  If the 
M * 

mass M.  of the satellite is appreciable, we have the partial of yK    (1 + —) 

«b ias  tne value    yn      lr    p    = 

Y     (°r    Y  )     is  set   to a d< 

units [see equation (20)]. 

The initial conditions 3x k/33  (k = 1, .... 6)  of (156) are zero 
o 

unless  3  is an initial condition of (155) or in certain other cases depending 

on the initial conditions chosen for (155) as explained in the next section. 

If equations (156) have zero initial conditions for some parameter 3  (such 

as, for example, a gravitational potential harmonic coefficient) there is some 

term in the right side of (156) which does not have 3x /93 as a factor, so 

that the value of  3x /33 is driven away from zero as the numerical integration 

proceeds away from the initial time t 

VI-A.  Initial Conditions 

The equations (156) for the partial derivatives of motion with respect 

to 3 = x J  have as initial conditions 
o 

*<k     « k    I ° k *    i • W  1    6 
~i   *   &i    "   L.j      J.*-i.-.« (157) 

O \ 

However, specification of the initial position and velocity of (155) by 

(x  , ..., x )  raises numerical problems when solving the normal equations 
00 k   1 

for data spanning many orbits, because all the partial derivatives 3x /3x 

grow with time. 
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Consider the system of equations 

A    k 

dt 
= k+3 

y 

. k+3 
dy 
dt 

■ 

k 
_ 1ÜL- 

3 
P 

k 
y = k    k+3      k+3  . 

x  , y    = x     when t 
o    J                   o 

P = I>>2 
.1=1 

1/2 

= t 

(158) 

O J 

(159) 

y = yM^. 

or u = yM (l + — j if M,  is appreciable 

The motion satisfying these equations follows an elliptic trajectory which 

coincides in position and velocity with the satellite orbit at the initial 

time t  .  This is the elliptic orbit osculating to the true orbit of the 

satellite at the initial time.  There is a one-to-one correspondence between 

(x  , ..., x )  and the elliptic elements of this osculating orbit: 

(3   = a = semi-major axis 

ß   = e = eccentricity 

= I = inclination 
(160) 

3   ■ fl ■ right ascension of ascending node 

3   = a) = argument of perigee 

5   = M  = initial mean anomaly 
o      o 
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3x 
Formulas for 

33 j 83. 
are given in Ref. 1, Chapter II.  Using 

t=t 

these quantities as initial conditions in the numerical integration of equations 
k   i k   1 

(156) will generate the  3x /33   as functions of time.  3x /33   grows with 
k   i       ° ° 

time, but the  3x /33 J  for  j = 2, ..., 6  stay bounded, which makes fitting 

over many orbits more tractable. 
k   1 

Over a few orbits it is possible to use the formulas for  3y /33 
k   i 

given in Ref. 1, Chapter II, as approximations to  3x /33   ,  thus saving 

the computer time required for the numerical integration of the variational 

equations.  This approximation is valid for a longer time for planetary orbits 

than it is for earth satellite orbits, which, in comparison with planetary orbits, 

are highly perturbed. 

If we use  (3  , ..., 3  )  as initial conditions for (155) to be solved 
1°       6° 

for instead of  (x  , ..., x ),  then the initial conditions of (156) for 

3 = M  or  3 = W-  are no longer zero, since the constant u = yM (l + 7T~ 

used in defining the initial osculating elliptic orbital elements 

(3Q , ..., 3Q )  changes if M  oi 
e 

r M,  changes.  Using the elliptic orbit 

formulas of Ref. 1, Chapter II, some simple calculations give 

3x 

dx 

3M 
e 

k+3 

3M 

= 0 

na 
2pM VTT7 cos u — 

\] 
sin u 

1, 2, 3 

(161) 

3x 

dx 

3(Mb/Me) 

k+3 

= 0 

»w 
na 

k2 ̂  e  cos u — b, 1 sin u ) 

k = 1,2,3 

(162) 
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where n = 

time 

1/2 -3/2 
y   a     is the mean motion, u  the eccentric anomaly at 

t  and  (b, .)  a transformation matrix defined in Ref. 1, Chapter II. 
O K.J 

We would probably never integrate the equations for the partial derivatives of 

earth satellite motion with respect to M  or M./M .  We wrote down these equ- 
e     be 

ations to document (i) the case of a Mars orbiter where we need the partial deriva- 

tive of the orbiter motion with respect to the central body mass, and (ii) the case 

of a planet where we need the partial derivative of the planet motion with respect 

to its own mass. 

If instead of defining  (3 4, 3 5, 3 6)  as  (ft, u), M )  we defined 

=   ft 

=   w   =   ft   + ÜÜ 

= M  = ft + u) + M 

(163) 

we would have as initial conditions of (156) 

3x 

93. 

3x 

33. 

3x 

83. 

3x 

3ft 

3oo 

3x 

3M 

3x 

9w 

3x 

3M k    =    1, 6     (164) 

We obtained (164) by expressing  (ft, u), M )  in terms of  (3 o5'   O' o o 
calculating     3ft/33 K     3OJ/33 K     3M /33 ^(j     =    4,   5,   6),     and  applying  the o        o     o  o 
chain rule.  The set of initial conditions  (a, e, I, ft, co, M )  might have 

o 
smaller correlations than the set  (a, e, I, ft, w, M ) when fitting to certain 

types of data. 
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The partial derivative matrix \dx    /93    (j, k = 1, .... 6)  is 
L °   ° J    1       6 

singular for osculating elliptic orbital elements  (B  , . . ., 3 ) when 
2 3 o        o 

3   = e = 0 or 3   =1=0.  It is unlikely that we would exactly 

have e = 0 and I = 0, but to alleviate this problem and still retain 

the desirable property that only the partials with respect to 3   grow wit* 

time we could use the following set of initial conditions at time t 
o 

3   = r  = distance of satellite from center of earth o      o 

2 
3   = a  = geocentric right ascension of satellite measured 

counterclockwise in right hand coordinate system 

when looking down from the north  (0° £ a <    360°) 

3 
3   = 6  = geocentric declination of satellite  (— 90°  < 6  < 90°) 

4 -*■ 
3   = v  = magnitude of velocity vector v  of satellite minus the 

magnitude of the circular orbit velocity at radius r 

in a — y/r gravitational potential 

3 "  = A  = azimuth of the velocity vector v  measured positive 

clockwise from the projection of the vector  e~ pointing 

to the north on the plane normal to the position vector 

r  to the projection of v  on this plane 
o        v    J o 
(0° < A < 360°) 

3   = 3  = flight path angle measured positive downward from o 
r  to v  (0° < 3 < 180°) 
o      o 

We obtained the idea of using these initial conditions from Ref. 24, p. 7-4. 

The partial derivative matrix is singular when 6 = ± 90  (just two position 

points unlikely to occur at an initial epoch) and when 3=0, 180  (repre- 

senting straight line motion straight out from the center of the earth also 

unlikely to occur). 
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Let us define 

ep = e3 " (e3 
e ) e 
n  n 

(165) 

v  =v  ~(v  •  e ) e 
p     o      o     n  n 

so that e , v  are the projections of e0, v  onto the plane normal to e 
P  p        K J 3*  o K n 

We then have 

U=i 

(xo } 
1/2 

sin a ■ 

cos a ■ 

[(xo ) + (xo ) 
1/2 

6 = sin 

[02 + of 
-if. 

V" 
/        V 
o     ' o' 

E-4 

1/2 

v.  = v 
*     o -VF 
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(v x e ) • e 
sin A = -B E n 

v    e 1 P1  ' P1 

cos A = 
v • e 
_E E__ 
i~M I"** I v   e 1 P1  P 

3 = cos 
. r  *v 

-1 f o   o 

r   v 1 o1 ' o' (166) 

Conversely, we have 

1 ■ r cos a cos 6 
o      o 

x   := r sin a cos 6 
o      o 

x   ••=    r sin 6 
o      o 

v  cos 3 cos a cos 6 — sin 3 (cos A cos a sin 6 

+ sin A sin a) 

v  cos 3 sin a cos 6 — sin 3 (cos A sin a sin 6 

— sin A cos a) 

v  cos 3 sin 6 + sin 3 cos A cos 6 
° L J 

(167) 
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In deriving  the last    3    equations  above we used  the following relationships: 

v      ■    v      +    (v     •  e  )   e 
o p o        n      n 

■    v      +    v    cos  3  e p o n 

v v    sin 3 o 

V v        (cos A 1   P1 +    sin A x     e 

n 

12 3 x                      x x o    -*               o    + o    ■+   e_     +     e_    +     e0 r        1           r         2 r         3 

e      =    e_    —    (e_   •   e )   e 
p 3 3 n7     n 

Differentiating (167) we see that the initial conditions of (156) for this choice 

of initial conditions of (155) are 

3x 

3r 

dx k+3 
y1/2  xo 

k+3 
> k = 1, 2, 3 

8r 

3x 

8a 

9x 

9a 

dx  3 
o 

3a 

o 3/2   v 
2r       o 

o 

0 dx                               _ 
2 o           5 

■x     T  = — x 
o da         o 

, 3x J     4 
1        O    =  X 

x -r      o 
o 3a 

- 0 
3x 
 c 
3a 

= 0 

A 

> 

(168) 

(169) 
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3x 

36 
■ -r 

o 
cos a sin 6 

. 2 
3x 

o 
36 = - r 

o 
sin a sin 6 

9  3 3x 
o 

36 ■ r 
o 

cos 6 

3x 
 c 
36 -,[- cos ß cos a sin S   — sin ß cos A cos a cosi 

(170) 

[- 
3xo 
TT— = v I   cos 3 sin a sin 6    sin 3 cos A sin in a cos 5 

3x 
 c 

36 
■ v cos 3 cos 6-sin 3 cos A sin 6J 

3x 
 c 
3v* 

3x 3x 
- 0 , -rr-   = 0 , -rf-   =0      k = 1, 2, 3       (171) 3A 33 

3x 
 c 
3vA 

k+3     k+3 x 
k = 1, 2, 3 (172) 
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9A 

3x 

3A 

3x 

3A 

v sin 3 (sin A cos a sin 6 — cos A sin a) o 

v sin 3 (sin A sin a sin 6 + cos A cos a)  f       (173) 

— v sin 3 sin A cos 6 
o 

3x 

33 

3x 

[• — v  |sin 3 cos a cos 6 + cos 3 (cos A cos a sin 6 

+ sin A sin a) >] 
33 

3x 

- -, [• sin 3 sin a cos 6 + cos 3 (cos A sin a sin 6 

— sin A cos a) 

> (174) 

<>] 
33 -'.E cos 3 cos A cos 6 — sin 3 sin 6 

VI-B.  Partial Derivatives of Sun, Moon, Planet Terms 

Differentiating (88) with respect to 3 we obtain 

33 =    Y E 
a=m,s,p 

3M a 
33 

k k x , x ab ae 
3 3 

Lrab 

+    Y 
EM 

a=m, s, p      ab 

k 

3x 

aeJ 

k        3 
ab I     3: I 

ab  33 

3x 
-    33 

. ab      1=1 

k    =    1,   2,   3 (175) 
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since we are assuming that the x   are fixed functions of time so that 

3x 

83 

8xr 

a* = o 
y   k - 1, 2, 3 (176) 

ae 
83 

= l_/k  _  k\ _    8xk 

83 \xae    x /      83 v 

VI-C.  Partial Derivatives of Earth Gravitational Potential Harmonics 

Differentiating (103) with respect to  3 we obtain 

8H       ,   . 3(3M ) 
 e_    ^_  k  e_ 
83      YM  e  83 

T e /LJ    83 rn+2 |   r 
n=2 

n      j r. 

^-^ P (sin <ft) - Pf(sin <ft)r ' n n 
sin (ft I 

8xk J 

3Cnh ^Snh r-r— cos h 0 +  ~ß sin \ 

n=2 h=l 
] 

MH 
n k_ 
^^ Pnh(sin (ft)  + P;h(sin (ft) r 8 sin (ft 1 

8xk J 

+ h ^ sin h 6 + -gSh cos h 0| .  Pnh(sin (ft) r ^ 
oX 

3Cnh 3Snh 

[" "it" sin h e   + it" cos h 9J 
°° ( 3        r 
V^ Jn I   n + 2 V^ £ 3x^ (n + 1) 

[e LJ  rn+2     r2   Z-r 
X  83 |     r 

Pn(sin (ft) 

T,i/ •  A\  8 sin (ft    (n + 1) 8x    ,    . p;<S1n « r —j^J + -^-^ gg- Pn(sin *) 
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r £=1 

—    p» , v       9  sin 4)  8  sin <b 

3x 

- p;(sin *)      k 
8  sin eft 

3xl 

X £ 3x_ _,,,   .     js        3     sin 4) 
~Z    /       x    äß~   "    P'(sin (ft)   r —r * r   ^^ 83 n k 

n 

+ YM 
1 

n+2 
n=2    h=l 

1=1 

n+2 
2 

£  3x_ 
1    33 

IE C .   cos  h 8    +    S  ,   sin h 
nh nh 

£=1 

,] . [- A±i ̂  V" ♦> 

+    P'   (sin <|))   r 
nh 

•     P , (sin (ft)   r 
nh 

C ,   sin h 6    +    S  ,   cos h 
nh nh 

C .   sin h 0    +    S  ,   cos  h 
nh nh 

eJ   36 

[' 

^Pk(sin$)    +    p-   (Sl„ ^)   r l-SiS-S 
nh nh ~   K ■] 

+      C       cos h 6    +    S ,   sin h 
nh nh •] 

(n + l)x     X I 3x    —    ,   .     .s 

"I 2^   X    W Pnh(sln *} 

n + 1  3x    r*    /   .     ,s           (n + l)x      —f   ,   .      ,.   3  sin (ft 
 ~ 33~Pnh(sin^    "      r Pnh(8in*)—36 

in * TT»i / .  x\   3 sin <]) 3 sin (ft    — f/ .  .. / 3 s + Pnh(sin *) r —Y^ -5^ + P n<sin *)  r -£ 
3x \ 3x 33 

3 sin (ft 

3xk 
1 \^  £ 3x*\ 

Ä-1 
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(ORT) ^e  9e      x  +  <t> u-fs JÜ i. _ 

T=2L r   , ^ ge   *e 
P£    x      /        ^     _   <j> uis —L_   = 

<f "Ts ze 

^      »
x
(

euTS
^" ^^S

1
^ 

+ 
3 
^S

1
^-» 

4| (6 uxs nv _  e soo w 

(8ZT) x JL_ ^7 + Ji 4 uxs _i _  *
E

v) *T -  ■■,   
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329 _    1  B9_   V^      l d^i r sin <fr 96    9 sir 
a k aß r a  k   ^    *    3& 2,,k      3ß 3x    93 dx      TT cos    $  dx 

1 "1 aft 
 7    A_.   sin 0    +    Anl   cos  0\ — 
os (j)       2k Ik I d3 

77 faT cos e " ~wsin eJ (181) + 
cos 

The terms in (177) which do not involve dJ  /93, dC  ,/93,  3S ,/dB 
n      nn      nn 

can probably be ignored, except perhaps for low orders of n,  especially for 

n = 2 and h = 0 .  The derivative of the rotation matrix of the earth central 

body 3A.,/33 is zero unless 3 is a parameter involved in the motion of the 

earth central body about its center of mass, and even then we would probably 

assume that it is zero in integrating the equations for the partial derivatives 

of motion and only assume it non-zero in processing observations.  This remark 

does not necessarily hold for, say, a Mars orbiter, unless we also had observa- 

tions of a Mars lander which would give a better hold on the motion of Mars 

about its center of mass than would Mars orbiter observations. 

VI-D.  Partial Derivatives of Other Terms 

We can in general ignore the partial derivatives of the other small 

forces in the equations of motion except for the parts of these partial deriva- 

tives which drive the results of integrating (156) away from zero.  For example, 

we can take the derivative of the thrusting acceleration (154) to be 

W    = USh <182> 
and ignore the derivative of E? .  We would have 8T/86 = 0 unless 3 = T, 

in which case it is  1 .  However, there is one caveat we should make about 

this simplifying assumption which we discovered in checking the programming 

of these equations in PEP. 
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We checked the coding of the equations for the partial derivatives of 

motion as follows.  Choosing nominal values for the various parameters, we 

numerically integrated the equations of motion and the equations for the 

partial derivatives of motion with respect to one of the parameters 3.  Then 

we chose a new value for  3 and numerically integrated the equations of motion 

and the equations for the partial derivatives with respect to 3.  If the old 

and new parameter values were 3  and 3,,  respectively, we must have 

xk(t,31) - xk(t,3Q)    i 3xk(t,3) 

36 

9xk(t, 3) 

3=3, 
36 

3=3, 

k = 1, ..., 6 (183) 

Using the average of the partial derivatives in the right side of (183) makes 

the formula valid to second order.  This checking process was of course gone 

through for every parameter 3. 

PEP performs its numerical integrations on a 16 place machine.  Sup- 

pose we make a change in a parameter value that affects the motion in the 6th 

place after a certain time. We do not want to make too large a change in the 

parameter, since we want to retain the validity of the Taylor expansion (183). 

On the other hand, we want to make a large enough change to get a significant 

check.  Presuming that the numerical integration procedure loses 4 places 

in integrating the equations of motion we would expect to have 6 significant 

digits in the difference quotient in the left side of (183).  But if we included 

all the terms in the partial derivatives in the right side of (156), we found 

10 place agreement between the left and right sides of (183), which is as if 

no significance was lost in integrating the equations of motion.  Since we know 

that 4 or so physically significant places were lost in integrating the 

equations of motion, the exact agreement between the results of simultaneously 

integrating the equations for motion and partials is indicative of a mathematical 

coupling between the two systems of equations. 
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On the other hand, if we made simplifying assumptions such as in (182), 

we sometimes found only 4 place agreement between the difference quotient and 

the averaged partial derivatives in (183). Actually, the partial derivatives 

do not have to be known with extreme accuracy in the maximum likelihood, least 

squares iterative determination of parameters, so we have made assumptions of 

the type of (182) in a number of cases.  The reason for doing this is the 

extreme complexity of some of the partial derivative formulas.  For example, 

see (177). 
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VII.  OBSERVATIONS 

The theoretical value of an observation is, in general, a function of 

the vector r-,  from the receiving site at receive time t,  to the observed 

body at reflection time t^  and, for radar type observations, of the vector 

r~  from the sending site at send time t«  to the observed body at reflection 

time t^,  plus other parameters a , ..., a  such as measurement biases, 

planetary radius and shape parameters, interplanetary media and earth atmos- 

phere and ionosphere parameters, etc.  We write this functional dependence as 

h(?x ,  r2 , a1, ..., am) (184) 

To define the vectors  r.  in terms of coordinates we recall the defini- 

tions at the start of Section V-A and add the following definitions for 

k = 1, 2, 3 

x..   = coordinate of receiving observing site relative to center of earth 

x0  = coordinate of sending observing site relative to center of earth 
2e 

x   = coordinate of sun relative to center of mass of solar system 
so 

-&-M-P: , where j denotes 1 Mercury, 

2 Venus, 3 earth-moon barycenter, 4 Mars, 5 Jupiter, 

6 Saturn, 7 Uranus, 8 Neptune and 9 Pluto. 

k      k      k x   = x   + x 
eo     es     so 

■ coordinate of earth relative to center of mass of solar system 

k      k      k x   = x   + x 
po     ps     so 

= coordinate of planet relative to center of mass of solar system. 
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=  X 
ps 

For observations of an earth satellite b or moon m = b we have 

*i = *be(t*} " ^±e(t±) 1 - 1, 2 (185) 

and for observations of a planet p or sun p - s with x   = 0 we have 
ss 

(t*) - [^(V + xc8(t±) - ^ Jme(t.)J   i = 1, 2 (186) 

-► 12  3 
where a vector x denotes  (x , x , x )  if position only is involved in the 

theoretical value of the observable and  (x , x2, x3, x4, x5, x6)  if both 

position and velocity are involved in this theoretical value.  All coordinates 

are referred to the mean equinox and equator of 1950.0. 

The formulas for the theoretical values of observations are most 

easily expressed in a coordinate system with origin at the center of mass of 

the solar system.  The numerical integration of the equations of motion 

generates body coordinates in this inertial frame despite the appearance of 

generating relative coordinates:  the relative equations of motion came from 

the formal subtraction of equations in inertial space rather than from an 

actual transformation to a non-inertial system.  Thus the r  should be 

expressed in the coordinate system with origin at the center of mass of the 

solar system rather than in a system with origin at the center of mass of the 

earth for observations of bodies in cis-lunar space or in a system with origin 

at the center of mass of the sun for planetary observations.  However, for most 

observations the theoretical calculations in PEP for light-time, etc., are 

done in these latter systems using the formulas valid for an inertial frame 

without transforming them to the non-inertial system.  It is only for 

extremely accurate time delay and long baseline interferometer observations 

that the light time iterations, etc., have to be, and are, done in an 

inertial frame. 
In the case of observations of a star p external to the solar system, 

the observable is a function of the vector 

r       =    x ri P° -1 [yv + *cs<v - i v.<v + *so<v] 
(187) 
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where x   is the unit vector pointing to the star from the center of mass 

of the solar system and R its distance from the solar system (both constant 

in time except for relatively small changes). 

k    k    k    k 
In PEP coordinates x, ,  x  ,  x  ,  x   (p = planet)  referred to the 

De   me   cs   ps 
mean equinox and equator of  1950.0 are determined by interpolation as func- 

tions of time from magnetic tapes generated by numerical integration.  If we 

were observing a satellite x^  of planet p,  the vector x  (t^)  in (186) 

would be replaced by 

V(t*> + V^    • (188) 

x, could also be a vector to a spot on the surface of the planet with func- 

tional dependence on time being determined by planetary rotation (see Section 

XI-A).  Similar remarks apply in (185) for observations of a lunar orbiter or 

spot on the moon x, 
k 

Angular observations involve only a receiving site x.. ,  whereas radar 
k 

or radio transponder observations involve both a receiving site x.   and a 
k 

sending site x„ .  Long baseline interferometer observations involve two 
k     k 

receiving sites  xn  ,  x„  .  Formulas for site coordinates on the earth 
le    2e 

referred to the mean equinox and equator of  1950.0 are given in Section VII-A. 

We shall in addition consider satellite based observations for which x,  , 
k 

x„  are determined by interpolation from magnetic tapes. 

In PEP it is assumed that the epoch time of an observation is UTC time 

at reception, where UTC is disseminated by the U.S. Naval Observatory Time 

Service Radio station WWV or some equivalent facility (see Section III-C). 

There is an option in PEP of having other types of epochs UT*, but then Al-UT* 

must be provided for each observation rather than being generated internally in 

PEP as explained in Section III-C.  The relation between Al atomic time and 

Coordinate Time is given in Section III-B. 
k    k 

The site coordinates  x, ,  x0  are in units of light seconds and the 
,     . le   ze 

velocities x, ,  x0   in units of light seconds per second for observing sites 
le   le. 

on the earth. All other positions and velocities as they come from ephemeris 

magnetic tapes are in astronomical units and astronomical units per day.  We 
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assume that they are multiplied by the astronomical unit in light seconds (denoted 

by AU) and by AU/86,400 to convert them to units of light seconds and light 

seconds per second before they are used in the formulas in this Section.  By 

"second" we mean "coordinate time second". 

The formulas for the theoretical values of the various observable types 

are first derived using classical physics or special relativity. We then give 

corrections to these theoretical values due to general relativity, the inter- 

planetary media, and the earth's atmosphere and ionosphere. There are further 

corrections involved in transforming to the observer's reference frame for 

clock rates with time delay measurements and for aberration with angular meas- 

urements.  There are various models programmed for measurement biases. 

VII-A.  Observing Site Coordinates 

12   3 
Let  (u  , u, , u  )  be the rectangular coordinates of observing site 

in the right handed coordinate system fixed in the earth with origin at the 

center of mass of the earth defined at the start of Section IV.  By (55) we 

have ~ 

Xie = Z A*kUi"     k " 1. 2.3 (189) 
£=1 

where formulas for the matrix A = WSNPD  are given in Section IV as functions 

of time  (i ■ 1  receiving time,  i = 2  sending time).  There is an option in 

PEP of evaluating the wobble W,  nutation N,  precession P  and error-in- 

precession D matrices either at both receiving and sending times or at half- 

way between receiving and sending times.  The rotation matrix  S  is always 

evaluated at both receiving and sending times.  The nutation-precession expres- 

sions are a function of coordinate time CT and the rotation of the earth is 

a function of universal time UT1.  These times are determined from the specified 

time of observation as explained in Section III. 

Site coordinates fixed in the earth are not usually specified as rec- 

tangular coordinates, but rather as spherical, cylindrical or spheroidal (or 

geodetic) coordinates. 
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Spherical geocentric site coordinates are 

p ■ radius from center of earth 

0 = longitude west of Greenwich (190) 

4>f  = north latitude 

We must perform the following transformation 

u  Ä p cos 0 cos (J)1 

u2 = - p sin 6 cos <J>' (191) 

u  ■ p sin <f)' 

before applying (189).  It is customary astronomical practice to measure longi- 

tude positive to the west, which would yield a left hand coordinate system if 
2 

we did not have a minus sign in the equation in (191) for u  .  The longitude 

0  in (89) for use in the earth gravitational potential harmonic expansion (94) 

is measured positive to the east.  It is just a historical accident that the 

longitude for site coordinates in PEP is measured positive to the west.  Longi- 

tudes are actually not measured from the meridian of figure through the pole 

of figure (mean rotation pole of 1900-1905) and Greenwich, but as noted at the 

start of Section IV from the meridian of figure through the pole of figure and 

the point on the equator of figure which lies on the great circle through 

Greenwich and the mean pole of rotation of 1968.0.  This is because we employ 

the value of A1-UT1 given by the U.S. Naval Observatory Time Service punched 

cards (see Table IV). 

Cylindrical site coordinates are 
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6 ■ equatorial radius 

6 ■ longitude west of Greenwich (192) 

1  2 
z ■ distance above equatorial  (u , u )  plane 

We must perform the following transformation 

u  =6 cos 6 

u2    - 6 sin 0 (193) 

3 
u  ■ z 

before applying (189).  If site coordinates are solved for in fitting to data 

with PEP they must be either spherical or cyclindrical coordinates.  The third 

type of site coordinates that are input to PEP, the spheroidal or geodetic 

coordinates described below, cannot be adjusted when fitting to data.  On input 

to PEP spheroidal coordinates are converted to the corresponding geocentric 

spherical values, and if site coordinates are to be solved for it is the spherical 

coordinates that are used. 

The geoid or mean sea level surface of the earth is closely approximated 

by a spheroid of revolution with origin at the center of mass of the earth, 

with equatorial radius  a and polar radius b,  and with the same volume as 

the geoid.  The spheroidal surface is generated by rotating the plane ellipse 

with semi-major axis  a and semi-minor axis b about the semi-minor polar 

axis (mean pole of 1900-1905).  We have b = a(l — f),  where  f  is the 

degree of flattening.  According to Ref. 15, p. 11, we have 
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298.25 ±  .02 

a =  6378.1575 ± 0.0108 km (194) 

Spheroidal site coordinates are (see Fig. 6) 

h = height above mean sea level 

0  = longitude west of Greenwich (195) 

<J> - north geodetic latitude 

According to Ref. 6, pp. 57-58 we have for h < < a 

p sin (J)*  -  (aS + h) sln 4> 

p cos (f>f  =  (aC + h) cos <J> 

(196) 

Fig. 6. Geodetic latitude <f> and height 
above sea level h related to geocen- 
tric latitude cj>! and radius p. 
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where 

S =  (1 - f)2 C 

["cos2 cj> + (1 - f)2 sin2 (f)!" 1 2_2 J. 1/2 (197) 

A series expansion gives 

1_2f    +    16f      +32f;-(lf-2f      -64fjcos2* 

+ (l6f2   "   32f3)cos4*    "   |4f3cos  6* 

< ■ I1 + i* + fe'2 + ^3) -(if + if2 **^-.M 

+ (l6 f2 + 32 f3)COS 4 * " 64 f3 cos 6 ^ (198) 

These formulas can be used to derive geocentric coordinates from geodetic 

coordinates. 

The unit normal  u   to the geoid at a given site is approximately the 

normal to the spheroid: 

u  = cos 0 cos 4> 

u  = - sin 0 cos <J> (199) 
n 

u  =  sin <J) 
n 

2 
The minus sign in the equation for u  is necessary if  0  is measured positive 

to the west.  The unit normal is needed in calculating the theoretical value of 

azimuth-elevation observations and in making corrections to observations due to 

the earth's atmosphere and ionosphere. 
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Given geocentric coordinates  p i, (J)'  we determine geodetic coordinates 

h, 4> for calculating the unit normal as follows. We take as a first guess 

h = o, + -+> and calculate S  and C by (197) or (198). Dividing the 

first equation of (196) by the second we have 

tan (J)f  = 
aS + h 
aC + h 

tan <(> (200) 

Using the values of S, C and h = 0 we solve for <J> .  Then using S, C and 

the new value of <j) we solve either equation in (196) for h .  Using the 

new values of <f>  and h we repeat the process described above, continuing 

the iteration until we converge to the true values of h, 4> . 

Differentiating (189) with respect to t we obtain the following 

formula for the velocity of observing site i : 

dxie    V 
dt     Z-f 

dA£t  i 
"7Tui k = 1, 2, 3 (201) 

£=1 

where 

^ = f-  SNPD + W ^ NPD + WS ^7 PD + WSN ^ D + WSNP $    (202) 
dt    dt dt dt dt at 

We would almost always assume that all the above derivatives were zero except 

for dS/dt,  so that 

f - W^NPD 
dt      dt 

However, there is an option in PEP of using dP/dt and dN/dt . 

By (64) we have 

(203) 

dS 
dt 

sin 0     cos 0   0 

cos 0   - sin 0   0 

0 0     0 

d0 
dt 

(204) 
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where by (65) 

d0o    d 
TZ TT-   +   TT(A* COS e) 
d0 
dt dt dt 

(205) 

The quantity d0 /dt  is given by (68) with t in UT1 time units. We must 

multiply by a factor to convert to CT time units. This factor is approximately 

(47), at least before 1.0 January 1972 when UTC was offset from Al time to keep 

it at about the same rate as UT2. At present this factor would be about 
—8 

(1 — 3 x 10 ),  and so can probably be ignored. We would ignore 

d(Ai^ cos e)/dt  in (205) unless we were using the derivatives of the nutation 

and precession in (202) (an infrequently used option in PEP). 

By (70) the derivative of the nutation matrix is 

dN 
dt 

d(M) cos  e) 
dt 

d(Ai/j  sin e) 
dt 

_ d(M> cos e) 
dt 

dAe 
dt 

_ d(Aijj sin e) 
dt 

_ dAe 
" dt 

(206) 

where by   (71) 

d(Ai// cos e) 
dt 

dAijj 
dt 

dCAit» sin e) 
dt 

_ dM 
dt 

/de 
dAe) 

cos  e   -    A* sin e Ijf-   +   *f 

sin e    +    A* cos  e  fe    -,   ^ 

(207) 

Differentiating (72) we have in units of radians per second 

de 

dt 
= - 7.196712326 x 10"1A - 4.96321035 x IQ-18 T 

- 6.29675115 x 10 19 T 2 

o (208) 
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where T  is measured in units of  10,000 ephemeris days from the epoch 1900 

January 0.5 (J.E.D.  2415020.0).  The quantities Alp, Ae are determined in 

PEP by Everett  fourth difference interpolation from half day tabular interval 

tables read from magnetic tape.  The quantities dAip/dt,  dAt/dt are determined 

by Everett fourth difference numerical differentiation (see Section IX-B-1). 

The time derivative of the precession matrix P is given by (82) with 

derivatives with respect to h replaced by derivatives with respect to  t . 

Differentiating (76) we have in units of radians per second 

4f =  3.541125409 x lo"12 +  2.540599250 x 10"16 T 
at 

+ 6.227575681 x IQ-18 T2 

77 = 3.541125409 x lo"12 + 9.194950266 x 10 16 T 
at 

—18  9 
+ 6.679857713 x 10   T 

(209) 

4r = 3.079166344 x 10~12 - 3.583759208 x lo"16 T 
at 

+ 1.447302504 x lo"17 T2 

where T  is measured in units of  10,000  ephemeris days from the epoch 1950.0 

(J.E.D.  2433282.423). 

We always ignore the time derivatives of the wobble W and error-in- 

precession D matrices. 

Differentiating (201) we see that the site acceleration and jerk are 

A
1

  
k 

d x. 
le 

dt2 

A3    k 
d x. 

le 

dt" 

3   2 
dZA 

£=1 dt 

£k  I 

k = 1, 2, 3    (210) 
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where by (203) 

d2A 

dt2 " 
W^-f NPD 

dt: 

d3A 

dt3 " 

H3Q 
W ^ NPD 

dtJ 

(211) 

since for the purposes that we would want the site acceleration and jerk we 

can ignore the derivatives of W, N, P and D .  By (204) we have 

d0 
dt 

-, 
— COS 0 - sin 0 0 

d2S 

dt2 " 
sin 0 — cos 0 0 

0 0 0 

sin 0 - cos 0 o" 
d3s 

dt3 
cos 0 sin 0 0 

0 0 0 

d0 
dt 

(212) 

since by (68) we can ignore the second derivative of the sidereal time 0 . 

VII-B.  Time Delay 

We wish to calculate the theoretical value of the round trip time 

delay, in vacuo, of a signal sent from site x« (t.) at coordinate time t , 

reflected from (or passed through a transponder on) earth satellite x   (t^) 

(or planet x  (t.) ) at coordinate time t., and received at site x., (t ) at 
ps  * * le 1 

coordinate time t as a function of the given receive time t .  If we neglect 

general relativistic effects this round trip coordinate time delay (t^ - t„) 

is just the distance in light seconds from the receiving site at time t  to 

the observed body at the retarded time t^ plus the distance in light seconds 

from the observed body at time t^ to the sending site at still further retarded 

time t«. 
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For this simple relation between the distances and retarded times to 

be valid, the iterative determination of the retarded times should be 

performed in a coordinate system with origin at the center of mass of the 

solar system.  However, for most observations these iterations are performed 

in PEP in a coordinate system with origin at the center of mass of the earth 

for observations of bodies in cis-lunar space or in a coordinate system 

with origin at the center of mass of the sun for planetary observations.  It 

is only for very accurate observations that the light time iterations in PEP 

are performed in an inertial system with origin at the center of mass of the solar 

system.  After completion of the light time iterations corrections are made for 

the effects of (ia) observed body radius and shape for radar bounce observations 

or (ib) transponder delay for radio observations, of (ii) measurement biases, 

of (iii) general relativity, of (iv) the interplanetary plasma, and of (v) 

the earth atmosphere and ionosphere. 

Let us first consider the iterations programmed in PEP for earth satel- 

lite observations in the coordinate system with origin at the center of mass of 

the earth referred to the mean equinox and equator of 1950.0.  Given coordinate 

time of reception t..  as determined from the given UTC time of reception as 

explained in Section III, we calculate x, (t-)  as explained in Section VII-A. 

Using a first guess  t^ to the coordinate time of reflection we calculate 

x, (t^)  by interpolation from an ephemeris magnetic tape.  We then calculate 

by (185) the quantities 

xbe(t*> " xle(tl> 

Lj-l 

i\2 
1/2 

(213) 

t* - h   ~    I'll 

where we assume that the distance unit is the coordinate light second.  If 

|t^ — t^I  is less than some input accuracy constant which is less than the 

measurement accuracy, then we are done.  Otherwise, we take t^ = t^ as a new 

guess at the time of reflection and recalculate the quantities (213), continuing 
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the iteration until  |t^ — t^|  is less than the accuracy constant.  We then 

make a first guess  t?  at the time of sending and calculate x„ (t«)  and by 

(185) the quantities 

r2 = Xbe(t^    " X2e(t2} 

(r2V 
1/2 

(214) 

t2    = ü* "  lr2! 

If  |t« — t«|  is less than the input accuracy constant we are done.  Otherwise 

we take t ■ t« as a new guess at the time of sending and recalculate the 

quantities (214), continuing the iteration until  |t« — t«|  is less than the 

accuracy constant.  Then the round trip coordinate time delay is 

h ~ + (215) 

Let us derive a series expansion for  t, — t~  with all quantities 

evaluated at the fixed time of reception  t-  instead of at retarded times. 

We define the vectors 

Wl    =    Xbe(tl}    "    Xle(V 

W2    =    xbe(tl)    "    X2e(tl> 

(216) 

Then ignoring powers of  t„ — t..  and  t^ — t-  higher than the second we have 

(all vectors on the right hand side evaluated at receive time  t-) 
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»1    +    Ke^*-^    +    2\e(t*~V2    +    •" 

*2    +    Xbe(t* " V " X2e(t2 ~ V 

+   f^be^-V^iV^-V2    +    ••• (217) 

|w,l2    +    2w,   • xuJt*- t,)  + |xvJ
2(t*- t.)2 

'be^* ^be1 

+    wi   * «be^-V       +    •" 

w„ +    2w2   * xbe(t* - 'l* ~ 2W2  *  x2e(t2 ~ V 

I*        I2/ N2 I*        I2/ S2 

-    2 Xbe  ' x2e(t*_tl)(t2- V 

+   "2  ' xbe(t* ~ ül)2 _ "2  ' X2e(t2 ~ ^    +    — 

Making use of  the expansion 

v4    + b    =     a/l+ -=■    = 
•♦fc 8a- 

(218) 

for       b       <     a      we  have 

*!-** 
wj   + 1'       ,r7    {2W1   ^be^-V 2|w1l 

+  l^be'2(t* " V2 + "l  '  Xbe(t* - V2    + ..} 

-J: ^    /t      _  t   )2        . 
2|w1| 

123 



"     lWll   +    ^TrWl   '  XbeL"  |wll   + V  Xbe    +     •'•] 
2|W1' 

ii    I2I-* i2   . ->        *       i+  i2 \ 
1   be1    '   l1 1 be   '   1' ) 

(W1   * xbe} 

2ISJ 
+    ... 

'*- H 21     =     Iw2l   +    Z4TH   '^be^-V 2IW
2I 

-    2w2   •  x2e(t2-tl)  +  I^J2^-^)2 

• • • 

+    |x2J
2(t2 - t±)2 - 2^   •  x2e(t, - tl)(t2 - tx) 

,)2    - w0   •   x„_(t„  -- t,)2     +     ...i v2      Abevu*       ul' w2      *2eVL2       ul' 

"   ^hr{C"2   * Jbe)2(t* - Ül)2 + ("2   ' J2e)2(t2 _ «V 
21 w21 

• • 

-    2(w2   •  xbe)(w2   •  x2e)(t,-tl)(t2-tl)   +  ... J   +  .., 

wj      + 
2 w„ 

2w.   •  x, 
2 be [-IwJ   +wx be ...] 

- 2w2   •  x2e [- |wxl   + wx 
+ l-  ,        |Wll   +        i 
Xbe~ lW2l   

+FTW2   ' Xbe 

-        *     , |Wll 1 
1*21 

I*     l2l*  I2 
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+  lJ2e|2(- 1^1 " ^)2 

+    2xbe ' X2e lwll(~ lWll ~ lW2l} 

+ W2 ' Xbe |wll  "W2 * X2e(~ 'Wi' " ^       +  •" | 

" 7F~^      (W2  Xbe} lWll  + (W2  X2e} (" ^   ~ ^2» 2|w2|   ( 

+ 2^2 ' Xbe)(^2 " ^e*'*!^" 1^11 ~ ^2^  + •••[+ '" 

We then have 

tl-t2 =  |rx| + |r2| 

W, 
I"*"  I      I"*"  I     "*"      ~* 1     ""►      "*" 
1 1'   '2'    1   be    i-»- I   2   be |w2l 

1*11 + l*2l  -    i 
+  FH  W2 ' X2e 

l»2l 
I* I2 
W              • • • 

—   zr r- (W  * X.  )  + -—  (W  • X  ) (w  • X  ) 
2|w2|

3  2   be     |w2|   1   be  2   be 

+ 77^7 <vi * xbe
}  " -^T (W2 * X2e> (wl " Xbe} 

2|w1| |w2| 

I"1" 12 

|w2l 

l"2'
2- '"I'2  -   i ,2 

+  ■ ■- |3    (W2 ' X2e> 2|w2| 
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I"* |2 -, 
1 O i   |wi'  1 

21 

2 
(1^1 + lw2D 

2|w2| 

1^1(1^1 + |w2|) 

1 be1 

l*2el 

|w2l 
(xbe * X2e> 

I* I I* I2 

lwll      *       l»il   +   * , 
+ — (W1 ' xbe) + 7TT— (w2 * xbe> 

2|w,| 

2 w , Z| 21 

(w2 • ?2e) (219) 

21 

What would be the result if we performed the time delay iterations to 

get (t - t )  in a reference frame with origin at the center of mass of the 

solar system rather than with origin at the center of the earth without having 

properly taken into account the correct transformation between the two?  When 

the result is expressed in terms of expansion (219) the vectors w and w~ would 
4   «4. 

be the same as in the earth centered frame, but the vectors x  , x  are 
ae  ae 

replaced by 

U  + x  ]  ,    [x  + x  ]   for a = b, 2 ae   eo        ae   eo ' 

We therefore have 

^l-Vo =  ^1-V  +  (w2-"!>  * Xeo 

(w_ • x  )  +   (w_ • X  ) 
1   eoy   «!->• i   2   eo 

2|wx|   " e°    2|w2 
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+ Id^l + |w2D Ueoi
2 

•        /   w w     \ 
+ (; .5 )(^ + ^_)  . * 

1 eo   I  ,-i-  .        i*  i   | be 
Mwll        lw2l  ' 

1 -*■ -► -► -► -*• 
+    7TT <w2   ' x2e) (W2 ~ V     *    Xeo 

l»2l 

+    (1^1 + 1-21)    (xeo  ■ ^2e) (220) 

where all vectors are evaluated at receive time  t 

-*■     ->- 

In the monostatic case with w  = w?  the first order term is zero. 
i     ^ 

i "*"  i      ~4      i "^ i      -8 
Since  x    ~ 10   and  x    x 10    , the second order term could amount 1 eo■ ' eo■ 

to several tens of nanoseconds for observing the moon with  |w.|  % 1.4  light 

seconds, the worst case in cislunar space.  In the worst bistatic case with 

i ■*■   "* i —2 
Iw — w |  3 4 x 10   light seconds (the diameter of the earth) the first order 

term could be several microseconds.  Extremely accurate bistatic round trip time 

delay measurements are not very likely to be made, as they would require exactly 

synchronized clocks at two observing sites. However, very accurate bistatic 

differential delay measurements exist and they are discussed in Section VII-E 

on long baseline interferometry. 

If the error of a monostatic round trip time delay measurement were 

less than about  100 nanoseconds for an observation of the Moon or a far-out 

earth-satellite, or less than a few tens of nanoseconds for a close earth satel- 

lite, the time delay interations must be performed in a coordinate system with 
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origin at the center of mass of the solar system. There is an option in PEP 

to actually do this.  The vector r.. in (213) is replaced by 

"I = [^be^-^eo^] ~ [*le<V + *eo<V]   (221) 

and the vector r0  in (214) is replaced by 

r2 "     [^be^  + *eo(t*>]     ~ [*2e<V + Ko^l] <222> 

In addition to interpolating from the observed body magnetic tape to determine 

3c ,  PEP interpolates from a magnetic tape containing ephemerides of the 
-r- 

9 planets and the Moon to determine x  .  We contemplated using correction 

(220) with x  , x   being calculated from mean orbit formulas (see Section X), 

but decided that it was better to go back to first principles for accurate 

observations and use formulas (221) and (222) in time delay iterations  (213) 

and (214), especially as the magnetic tape containing the ephemerides of the 

9 planets and the Moon was available to PEP. 

For observations of earth satellite x,  ,  the observing sites x   , 

x«   can be on another earth satellite as well as on the earth.  Another time 

delay observable programmed in PEP is for a signal sent from a ground sending 

site to one satellite's transponder over to another satellite's transponder and 

then to a ground receiving site.  Radar bounce observations can be made with 

radio frequency waves or with laser reflections from a corner cube. 
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The time delay iteration for an observation of a planet is done in PEP 

in a coordinate system with origin at the center of mass of the sun to obtain 

by (213), (214) and (215) 

t,-t2 = |rx| + |r2| 

?i "  Kps^ * "is(ti} i - 1. 2  (223) 

M 
x.   =  x. (t.)  + x (t.) -   TT*     (t.)   i = 1, 2 
is      le l      cs i     M  me  i 

c 

The difference in this time delay value and the one  (t — t~)  obtained in a 

coordinate system with origin at the center of mass of the solar system is given 

by (220) with the subscripts e, b replaced by s, p  respectively. We have 

|w | Ä |r±| » 1000   light sec 

|w2 - w | <  10"2 light sec 

-4 
|x «   |x.        «    10 light sec/sec 

lx ä    3 x 10 light  sec/sec 1   so' 

* * —1 f\ 9 
Ix ä    7 x 10 light sec/sec i   so' 

-12 so that  dropping those  terms in  (220)  of magnitude  less  than    10 seconds we 

obtain 

('l-Vo    =     ^-V    +    (W2-Wl>     *    xso 
/ w" w 

+      (w      •   X     ) \-^- +  -rgrr 1   •   * 
1 so   \|wl|        1*21/        pS 

+    —   (wx   •   Xso)   " HwJ   + —I   (w2   •   Xso) 
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where all vectors are evaluated at receive time t.. .  In the monostatic case 

the first order term is zero, whereas the second order term can be several 

nanoseconds.  In the bistatic case the first order term would always be less 

than a nanosecond. 

If the accuracy of a round trip interplanetary time delay measurement 

were less than 10 nanoseconds, the time delay iterations would have to be 

performed in a coordinate system with origin at the center of mass of the 

solar system with the vectors r.  in (223) being replaced by 

Tt    =  [xps(t*)+xso(tj  - [x^V-x^tp]  1 = 1,2(225) 

There is an option in PEP to do this. 

If we are observing a spherical planet of radius p light seconds, the 

round trip time delay is 

t± - t2 =  |?1|  + |r2| - 2p (226) 

rather than the value (215) .  The same remark applies for radio transponder 

observations with a delay of 2p seconds in passing through the satellitefs 

transponder.  In Section XI-C we discuss the dependence of p on the planetary 

latitude and longitude of the subradar point for observations of a non-spheri- 

cal planet. 
_2 

Since correction (226) is fairly large  (p * 10   light seconds) , it 

is made in PEP in the midst of the time delay iterations so that (213) and (214) 

become 

t* - tX - I»! I  - P 

*2    = t*   ~    1*2' ~ P (227) 
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For radio transponder observations, which could get to the nanosecond accuracy 

level, the transponder delay 2p is less than a microsecond, but the correction 

(226) is still made in the midst of the time delay iterations (227).  The trans- 

ponder delay is dependent on the actual electronics and the temperature.  It 

does not matter what it is as long as it is known or can be solved for in fitting 

to data.  For laser corner reflector observations p = 0. 

The only measurement bias programmed in PEP for time delay observations 

is a constant additive bias for each observing site.  One could not separate 

the effects of all the site biases and the radius or transponder delay  p in 

fitting to data. 

Corrections are made to the round trip coordinate time delay  t„ — t- 

due to propagation effects of general relativity, the interplanetary plasma, 

and the earth ionosphere and atmosphere as explained in Sections VII-B-1, 2, 3 

below.  Then the coordinate time delay is converted to the observer's Al atomic 

time units as explained in Section VII-B-1 below.  Finally, if the raw observ- 

able is in UTC time units, the theoretical value of the observation in Al time 

units is multiplied by (47).  This is only necessary before 1.0 January 1972, 

since after that date UTC is not offset in frequency from A.l. 

VII-B-1.  Effect of General Relativity 

The theory of general relativity predicts a propagation effect on the 

round trip coordinate time delay and an effect in converting the round trip 

coordinate time delay to the observer's atomic time units. 

In PEP we only apply the general relativity propagation correction for 

interplanetary observations.  According to Ref. 3, p. 43, the expression derived 

above in Section VII-B for the round trip coordinate time delay should have 

added to it the following term in harmonic coordinates: 

|x  (t.)| + |x  (Ol + lr. I 1 es  l ' ' ps * ' ' i1 

|x  (t,)| + |x  (0|-|r.| 1 es  l ' ' ps * ' ■ i1 

(228) 
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where the relative position vectors  r-  and  r~  are given by (186) and where 

Y is the gravitational constant, M  the mass of the sun and c the velocity 
s 

of light at a large distance from the sun.  This effect arises from the 

Schwarzschild metric of the sun and could amount to 200 ysec when observing 

Mercury or Venus from the earth at superior conjunction when the radar ray 

passes close to the sun's limb. 

Expression (228) takes on different forms in non-harmonic coordinate 

systems (see Ref. 25), but this does not matter in the following sense.  As 

long as the equations of motion and the formulas for the observables are derived 

in the same general relativity coordinate system, the same fit to the data 

would be obtained no matter what coordinates were employed.  Different values 

would be obtained for coordinate dependent parameters such as initial condi- 

tions of the equations of motion, but the observed minus theoretical residuals 

for the data would be the same after convergence to the maximum liklihood para- 

meter estimates.  This is a mathematical statement not a physical statement. 

In deriving the general relativity relation (41) (or Table I) between 

coordinate and atomic times, we used the Newtonian approximation (32) to the 

metric rather than the Schwarzschild metric in harmonic coordinates.  However, 

the discrepancies between this approximation and the Schwarzschild metric are 
2      2  2    —8 

the next order down in U/c  or v /c « 10  ,  so the difference in epoch 

specification between using the Newtonian approximation and the Schwarzschild 

metric is below 0.1 nanoseconds, which is completely ignorable.  There is 

an even smaller discrepancy in delay measurement. 

Having determined the round trip coordinate time delay t.. — t«  and 

having made all the corrections to it for propagation effects, we must convert 

it to the observer's atomic time units.  Namely, the round trip time delay 

At in the observer's atomic time units is 

At - tx - t2 +  (CT - Al)2 - (CT - Al)1 (229) 

where the difference between coordinate time and atomic time (CT-A1). at time 

t.  is evaluated using (41) or Table I.  This effect is of importance for inter- 

planetary time delay measurements, but not for earth satellite observations. 
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The diurnal variation in (CT-A1) due to the earth's rotation is important to 

include in (229) for accurate interplanetary time delay measurements, but we 

do not discuss it here. 

VII-B-2.  Effect of Interplanetary Media 

In PEP it is assumed that the interplanetary electron density is 

inversely proportional to the square of the distance from the sun.  From this 

assumption it can be derived that the expression to be added to the theoretical 

value of the round trip time delay is 

At 
plasma ,2  d 

arctan - arctan 
d r, 

(230) 

where the relative position vector r..  is given by (186) and where 

d = ^xj 
ps 

f = frequency of radiation 

e = constant 

For the precision of concern to us it does not matter whether we use r,  and 
-* -* -* 

evaluate x   at time t-  or whether we use r« and evaluate x   at time 
es 1 2 es 

t2.  In terms of the constant 

£ = number of electrons per cubic centimeter at 1 

astronomical unit from the sun 

we have 

e = (8.2 x io7)(AU)2 e (231) 

where AU is the value of the astronomical unit in light seconds if d is 

measured in light seconds, At ,     in seconds and f in cycles per second. 
plasma J r 
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We could write 

1    =    1      +   7-   sin 2TT T (232) 
o 1 

with T being the fraction of the eleven year solar cycle. 

VII-B-3.  Effect of Earth Atmosphere and Ionosphere 

The terms 

At    = effect of earth neutral atmosphere on group delay 
atm 

At.   = effect of earth ionosphere on group delay 
ion 

(233) 

are programmed in PEP, but the algorithms for evaluating them are presently 

undergoing substantial changes.  We shall therefore not persue specific 

models in this note. 

VII-C.  Doppler Shift 

The time delay discussed in Section VII-B is the group or signal delay. 

The phase delay is the same as the group delay for a dispersionless media. 

Corrections due to plasma, etc., which are different for phase delay than for 

group delay are given below. 

The Doppler phase observable used for Mariner, Surveyor and other space- 

craft is as follows.  A monochromatic wave at frequency f  (in UTC time units) 

is sent from a sending site to a transponder aboard the spacecraft which sends 

it back to a receiving site. At the receiving site the number of wave crests 

between UTC receive times  t  and t .  are counted with  t = t . — t   being 
ca     cb c   cb   ca 

the counting interval.  The sequence of wave crests received between t  and 

t ,  were sent between times tf  and t\ , where AT. = t . — t?.  are the 
cb ca      cb i   ci   ci 

phase delays  (i = a,b).  The number of wave crests sent is  f(t\ — t* )  and 
cb   ca 

is equal to the number received.  The phase delay Doppler observable Af is 

the number of wave crests received in the counting interval t  divided by 
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the counting interval minus the frequency. We therefore have 

Af - |- (Axa - Axb) (234) 
c 

where AT , AT,  are phase delays as functions of receive times t   and t 
a   b ca ca      cb 

at each end of the counting interval t . 

For the earlier Mariner spacecraft we must take the integer part of 

t Af + f before dividing by t  and subtracting f for comparing with 

observations, since the ground equipment did not involve doppler resolvers 

for counting fractional waves.  However, (234) is the theoretical value of the 

phase delay doppler observable for more recent spacecraft.  For simplicity we 

ignored any alteration in frequency due to the spacecraft transponder or ground 

equipment in deriving (234).  But in fact the Mariner and Surveyor mission 

dependent frequency alterations have been programmed in PEP. 

Now let us consider the instantaneous doppler. Let f
r(

ü
r)  

and 

AT(t ) be the frequency and round trip phase delay, respectively, in UTC 

time units of a signal received at UTC time t^.  Successive crests of the 

signal detected at t  and approximately t^ +  l/fr(tr) were transmitted, 

respectively, at t - AT(t ) and approximately t^  + l/f*r(tr) - AT(tr + l/fr(tr)) 

The difference between these latter is 1/f, where f is the sending 

frequency: 

7 - 7TT7 - AT(£r + 1/fr(V) + A^r> 
r r 

Since the instantaneous frequency is the time derivative of phase, it follows 

exactly that 

i     i   /;_dAT(v\ 

so that the doppler shift Af = f — f 

f     fr(tr> v      dtr 

- f is 

dAT(t ) 
Af = -f-jj-S- (235) 

r 

135 



as a function of UTC receive time t .  As a function of send time t  an 
r s 

exactly similar derivation would yield 

dAT(t )/dt 
Af = - 1 + dAT(t )/dt (236> 

s   s 

All the observables in PEP are assumed to be functions of receive time. 

Let  t1  and t  be the receiving and sending coordinate times corres- 

ponding to receiving and sending UTC times  t  and t ,  respectively.  Let 
r       s 

AT be the round trip phase delay and let At be the round trip group delay, 

both expressed in UTC time units. By the results of Section VII-B, the group 

delay is 

At =  (1 - fractionaloffset of UTC from Al)  (t — t«) 

+ At ,  + At -     + At,,   + At ( rel      plasma      ion      atm 

+  (CT - Al)2 -  (CT - ADJ (237) 

where (t.. — t«) represents the round trip distance (215) in light seconds and 

where the offset of UTC from Al is given in Table II (zero after 1.0 January 

1972) .  The phase delay is then 

h- 

where 

AT =  (1 - fractionaloffset of UTC from Al)  (t - t ) 

+ AT n + AT n     + AT.,   + AT a rel      plasma      ion      atm 

+  (CT - Al)2 -  (CT - Al)^ (238) 

AT n  = At . 
rel      rel 

AT .     = - At 1 plasma        plasma 

AT,   = - At, 
ion        ion 

AT ,  = At t atm      atm 
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For dispersionless effects such as those due to general relativity or the 

earth's neutral atmosphere, the phase and group delays are the same, but where 

dispersion due to charged particles is present they have the opposite sign. 

Formulas (238) and (239) can be applied directly to calculating the 

Mariner phase delay doppler observable (234).  For the instantaneous doppler 

(235) we must take derivatives of (238) and (239).  Let t  be the receiving 

UTC time and t..  the receiving coordinate time related by 

t  =  (1 -fractional offset of UTC from Al)  t., - (CT - Al)  + constant 

(240) 

By the chain rule we have 

d      1 d_ 
dtr    (1 ~ fractional offset of UTC from Al) fl - -j~ (CT - Al)^ dtl 

(241) 

Thus, by (235) and (238) the instantaneous doppler shift is 

dAx 1 

Af =   f r-i ibr-(t, -to  + 
[i-^(CT-Ai)jK(tl"^  T  dti 

dAx ,        dAx,      dAx . 
plasma       ion       atm 
dt dt1       dt1 

+ ^-(CT-A1)2 - ^-(CT-Al)J (242) "] 
or to second order in the rate of change of  (CT — Al) 
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Af = -f[dF^l 
dAT 

-V 
rel 

dt. 

dAx ,        dAx.      dAT t plasma       ion       atm 
dti dti        dti 

+ _L.(CT_A1>2 + _^(CT_A1)i 
21 

(243) 

By (215) we have 

h-** 

el_t2 Irxl + |r2| (244) 

where by (185) 

rl = «be*'*' _ WV 

xbe(t1 - IrJ) - x,_(t,) lev 1- 

■ xbe(t2) " x2e(V 

" ^.(tl-|'ll>- «toC*! " I'll * M    (245) 

for an earth satellite b.  The calculations for planetary observations with 

r1 , Try    being given by (186) are exactly similar to the following calculations 

for an earth satellite.  The accuracy that would probably exist for instantane- 

ous doppler observations is such that corrections (221), (222) and (225) from 

the center of earth for earth satellite observations or from the center of the 

sun for planetary observations to the center of mass of the solar system can 

probably be ignored. 

138 



Differentiating (244) we have 

E 
1=1  ' i1 

(246) 

where by (245) 

dr 

dt. 
1    + 

dr. 

dt~ 

" xbe<t*> 

" *■,.<'•> 

1--1_ ? 
dr, 

1    dt, 
'l1 \ 

*le(tl> 

1--^ r 
dr, 

1    dt, 
rll \ 

(247) 

" *2e(t2> 1 - E 1   + 
r 

dr. 
l 

i=l 'ri' 
-*■   i   i    dt. 

Expanding (247) to third order we obtain 

dT " rl " "be*'** r., 

"be^ '  *be(t*> 
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dr, 

dt~ r2    +    ^e'V V ,-* r2      -    r2 

+   KShAlf 

+    r -   
ri 

x2e(t2) 

•    *beM r. 

x2e 
?l)l^ 

(249) 

where 

i    =    *be(t*> x4   (t.) iev  i' 
i    =     1,   2 (250) 

If    r..,  r      were given by   (186)   instead of   (185)  we would have 

r • M       l 
r\     =    x     (t.)    -      X.   (t.)     +    x     (t.)    -   7T    x     (t.) i ps     * le    l cs    l M        me    I 

i    =     1,   2 

(251) 

and the subscripts b  and  e  in (248) and (249) would be replaced by p 

and s,  respectively. 

For the accuracy that would probably exist for an instantaneous 

doppler observation, the derivatives of (CT-A1) can be ignored. 
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By (239) and (228) the relativity effect on an instantaneous planetary 

doppler observation is 

dAT 
rel 

dAt 
rel 

dt dt, 
1=1 x  (t.) + x  (tÄ) + r. 1 es l      ps  * '    i 

fx  (t.) • x  (t.)    x  (t.) • x  (t.) 
es  l    es l      ps  l    psv i 

KsM IW ps 

1 

^esM + IVtl)|"|rll 

x_(t4) • x_(0    x_(t4) • x_(t4) 
+ es  i    es  i     ^psvt"i/   ^psv"i> 

|xes(ti)| iW 
r. • r. 
l   l (252) 

By (239) and (230) the interplanetary plasma effect on an instantaneous 

planetary doppler observation is 

dAT 
plasma 
dt. 

dAt 
plasma 
dt. 

2       2 
f   dZ 

e_ 1 
,2    d 

r«, 
arctan -Ei — arctan 

rl * xesl 

Vd r. d|rxl 

,1 + 
d|?.l 

d|rj 
ir  • x  + r., • x 1   PS   1   psi 
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r  • x   l\       r  • rn 1   ps Id 1   1 

d|rj   \-"  I?.'2 

r.. • x 
1   es 

d r J 

d r, 
r, • x   + rn • x 
1   es     1   es. 

(253) 

where 

d = ^ 

-> 
r-, 

it 

x x ps 

x x   - ps 

x  X 
ps 

x
Ps  1-TTTT 

±  -  +  If 
r_ • x      r, • x 
1   ps     1   es 

d|rj dr. 

± = - if 

->   ->■ -»--*- 

rn • x r, • x 
1   ps     1   es 

dl?! I       d|rj 

An additive constant bias in doppler shift to be solved for in fitting 

to data is programmed in PEP. 

VII-D.  Angular Measurements 

We wish to determine the theoretical value of an angular measurement 

made from site xn (tn)  at coordinate time  t,  of an earth satellite or the ^        le 1 1 
moon x, (t^)  using light reflected or emitted from the satellite or moon at 
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coordinate time t^.  We first calculate the vector 

*1 " V(t*> - *le(tl> (254) 

just as in Section VII-B using an iteration to determine the retarded coordinate 

time t^ given the receive coordinate time  t.. .  In PEP this iteration is 

performed in a coordinate system with origin at the center of mass of the earth. 

By (216) and (217) we have to first order 

rl " Wl - Kl \e (255) 

where all vectors on the right hand side are evaluated at receive time  t.. . 

What would be the result if we performed the retarded time iterations 

to calculate r,n in a reference frame with origin at the center of mass of 

the solar system as we should according to the precepts of special relativity? 

When the result is expressed in terms of the expansion (255) the vector w 

is the same as in the earth centered frame, but the vector x,   is replaced by 

[x,  + x  ] .  We then have 1 be eoJ 

r10 ■ rl - l"ll Xeo (256> 

The light ray approaches the observed from the direction  r.n  in 

inertial space.  In the observer's reference frame this direction is displaced 

due to aberration caused by the motion of the observer f x..  + x  )  relative 

to the center of mass of the solar systems.  In classical physics this phenom- 

enon of light is treated in analogy with rain drops striking the windshield 

of a moving automobile at a different angle than they do for a stationary 

automobile, so that the vector q  that points in the observer's reference 

frame towards the observed body is 

^ ■ '10 +  l'iol  (*le + *J (257) 
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We note that velocities are in units of light seconds per second and that we 

only care about vector directions, not magnitudes.  We have 

|r1Q| * \rx\   « |wj (258) 

so that 

q = rx + |?x| xle (259) 

The second order terms which would arise if we expanded (255) and (256) to 

second order and used the special relativity formula for aberration instead 

of the classical physics formula (257) would be less than 10   seconds of 

arc in angle. We do not bother with these second order effects because as 

yet we have not encountered angular measurements with accuracies better than 

0.1 seconds of arc.  Our conclusion is that we obtain the same results with 

sufficient accuracy making the light time and aberration corrections in an 

earth centered frame as we would in a frame with origin at the center of mass 

of the solar system. 

For angular observations of the sun s = p or a planet p we have 

by (186) 

?i = "p,^ ~ [>(V + ^cs(ti> - Tc *me<v] <260) 

and the light time iteration to determine reflection time t^ given t. is 

done in a coordinate system with origin at the center of the sun. The aber- 

ration correction (259) is 

1 + I'll [*le(tl> + *cs(tl> - r *me(tl>]      (261) q  =  r 

Angular observations of a star p with unit vector x   pointing 

from the center of mass of the solar system to the star are expressed by (187) 
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in terms of the vector 

r.  - x   - i xn (t.) + x  (t.) - rp- x    (t.) + x (t-)   (262) 
1     po    R [ lev r     csv r M   mev V sov l'J 

where R is the distance to the star.  For most stars we can assume R = °°. 

The aberration correction is 

q = r 1 + I'll [*le(tl> + *cs<V ~ T   *»e<V + V^lÜ        (263) 

The vector r  giving the direction from which light approaches the 

observer needs to be corrected for the bending of light effect of general 

relativity if the light ray passes near to the sun. We can ignore the bending 

due to the gravitational fields of the earth, moon and planets for the accuracy 

of concern to us.  Let x,  be the vector from the sun to the observing site 

at receive time t.. , 

M 
x.  - x- (O + x  (O - 7T x  (O (264) Is     le 1      cs  1     M   me 1 

c 

Let the impact parameter d be the closest approach of the straight line along 

r  to the sun.  Referring to Fig. 7 we see that 

-*•    -*■ 

1 - *is - ^7? ?i  •    d =   1^1 (265) 
|rx| 
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|l8-6-l4247^ 

Fig. 7.  Impact parameter d  for light ray passing near the sun. 
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Then by Ref. 3, p. 38, for observing a star on the opposite side of 

the sun from the earth, the angle of deflection of the light ray is 

a   = 
ig 
d\c2y 

1    + lXls-dl 

^ls 

(266) 

where y    is the gravitational constant,  M  the mass of the sun and  c  the 
s 

velocity of light.  If  |x1e| » d we obtain the classical result (see Ref. 11, 

p. 202) 
^ls1 

a = T 
A A*y 
d \ 2 

c 

(267) 

so that for d being 1 solar radius,  a - 1775.  For a planet p with 

?-. = x_(tÄ) -xn„(tn) we have by Ref. 3, p. 38-39, ps \Lsvwr 

2  W a = ATJ 
Ksty-*! . ^8 

x_   (O-d 

lXls<V 
K7^> ps 

(268) 

where the + sign is to be used if the observer and the planet are on the 

opposite sides of the sun and the — sign is to be used if the observer and 

the planet are on the same side of the sun.  Now let  r'  point in the direc- 

tion from which the light actually arrives at the observer. We have 

ri   "   ri 
- nd, ri x d (269) 

where the quantity n is to be determined.  Since 

:«|2 _ =  Ir^ + n' |d| 

| r, | sin a ■ I?' x rx| = r, |d| |?x| 
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we obtain 

IrJ   sin a | r± 

n    =     x « —3-    « (270) 

idivr^ .   2 sin    a 

for a a small angle in radians.  The vector  r,  should be replaced by  r, 

before applying the aberration correction to get  q. 

We can then apply an earth atmosphere refraction correction to  q 

before calculating the angular observables for ground based observations. 

However, we discuss this correction only for azimuth-elevation observations 

(Section VII-D-1), since for other angular measurements the observer usually 

applies this correction to the observed values.  For some observation types 

the observer even applies some or part of the aberration and light time cor- 

rections before publishing his results.  It is necessary in PEP to only correct 

for the corrections that the observer has not corrected for. 

VII-D-1.  Azimuth-Elevation 

Let N be the unit normal to the geod at the observing site referred 

to the mean equinox and equator of 1950.0.  Its components in the coordinate 

system fixed in the earth are given by (199) and the desired components referred 

to the mean equinox and equator of 1950.0 are then obtained by applying the 

transformation (189).  The components in the 1950.0 reference system of the 

vector P pointing along the axis of figure of the earth are obtained by 

applying transformation (189) to  (0, 0, 1).  The vector M defined by 

M =  P -  (P • N) N (271) 

points along the meridian through the site towards the north. 

Let  q be the vector pointing towards the apparant position of the 

observed satellite as given by (259) and let  q  be its projection on the 

tangent plane to the geoid, 

q   =  q -  (q • N) N (272) 
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Then 

o •*■-*• 
elevation = 90  — angle between N and q 

= sin -1 N • q 

azimuth = angle between M and q 

measured clockwise from true 

north when looking down on the 

earth (east = + 90°) 

tan -i & 
M) • N 

M 

(273) 

(274) 

In order to remove the quadrant ambiguity in azimuth in the above formula we 

use 

(q  x M) • N 
sin(azimuth) =  —5  

|qpl |S| 

-v    ->■ 

q  • M 
cos(azimuth) = —J- 

(275) 

|qpl |S| 

Before using the vector q  from (259) we should correct it for 

refraction.  The refraction correction could actually be determined at the 

observing site by observing (radio) stars with known positions and could thus 

include any effects such as antenna droop which are special to the site as 

well as the effect of atmospheric refraction.  The correction would be a 

function of elevation or zenith angle. 

There are programmed in PEP constant biases in azimuth and elevation. 

For observing synchronous satellites where the azimuth and elevation do not 

vary greatly, such constant biases determined by fitting to data will absorb 
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refraction corrections (if they were not already made) as well as instrumental 

biases.  If the satellite wanders all over the sky, this situation would not 

exist and the refraction correction would have to be coded if the accuracy of 

the data warrants. 

VII-D-2.  Against Star Background 

If photographic observations are made of an object against the star 

background, the right ascension and declination of the object referred to the 

mean equinox and equator of 1950.0 can be determined by measuring the displace- 

ment of the object from given stars on the photographic plate and utilizing the 

coordinates of the stars in a star catalogue.  Given the way the observation 

is reduced one would think there were no need to apply refraction or aberration 

corrections to the vector r  pointing from the observing site to the apparent 

position of the object.  However, in constructing star catalogues what is called 

elliptic aberration was not corrected for.  Photographic observations which are 

called astrometric are reduced directly from the star catalogue and do not 

have elliptic aberration removed, whereas astrographic observations have all 

the aberration removed. 

To first order in the eccentricity e,  the velocity v in the 

elliptic motion of the earth moon barycenter is 

; - ViT? + ViTe * <276> 
where a = 1 A.U.  is the semimajor axis,  y is the gravitational constant 

times the mass of the sun, and 

8 = normal to radius vector in direction of motion 

j  = normal to apsidal line positive in the direction 

of motion at perihelion. 
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The constant velocity in the j  direction is ignored in making the aberration 

corrections for the star observations used in constructing star catalogues, 
->■ 

whereas the velocity 0 and the other velocities due to the rotation of the 

earth and the motions of the earth relative to the earth-moon barycenter and 

the sun relative to center of mass of the solar system are considered in con- 

structing star catalogues.  Therefore for astrometric observations we must 

correct the vector r,  for the so-called elliptic aberration due to this 

constant velocity vector.  That is, in place of (259) or (261) we have 

q = rx + |rj ^f e j (277) 

Now by Ref. 6, p. 98, we have 

V? e = ^^ * 0.01672 AU/day 

=  1.661 x io"  light sec/sec 

a)  =  longitude of perihelion of earth orbit 

referred to mean equinox of 1950.0 

102°04'50M 

£   = mean obliquity of ecliptic in 1950.0 

= 23°26'45M 

and by Ref. 6, p. 27, the components of  j  in the coordinate system referred 

to the mean equinox and equator of 1950.0 are 

.1 
j  = — sin a) 

2 
j  =  cos oo cos £ 

3 
j  = cos oj sin £ J o 
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Let  q denote the vector r-  corrected for elliptic aberration for 

astrometric observations or just  r..  itself for astrographic observations. 
12   3 -*■ 

Let  (q , q , q )  be the components of  q  in the coordinate system referred 

to the mean equinox and equator of 1950.0.  We have (see Fig. 8) 

6 = 

(278) 

a = right ascension 

=  tan (279) 

Fig. 8. Right ascension a 
and declination 6. 
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In order to remove the quadrant ambiguity in right ascension in the above 

formula we use 

2 
sin a =  ^  

cos a =  ^- 

(280) 

1 

V^1)2 ♦ (,2)2 

Photographic observation biases that are programmed in PEP are 

equinox-equator biases and a constant declination bias as described in Section 

VII-D-4 on Meridian Circle Observations.  These biases are nicely suited for 

meridian circle observations given the manner in which such observations are 

made.  However, for photographic observations there is an alternative bias 

formulation, which we now discuss. 

Let m^, q^, q^j be the coordinate system in which the right ascension 

a^ and declination <5^ are actually determined by the observation.  Suppose 
12  3 

these coordinates are related to the coordinates  (q , q , q ) by the rigid 

rotation 

= D  ql    U   -D'h' (281) 

where by Ref. 18, pp. 127-128 the orthogonal matrix D is given approximately 

by 

dft3   - dft2 

dft2   - d^1 
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where 

dQ.     = infinitessimal rotation about q  axis 

2 
dfi« = infinitessimal rotation about q  axis (283) 

3 
d^ = infinitessimal rotation about q  axis 

Then to first order in the infinitessimal rotations we have 

6^    =    6 +  (sin a dft- — cos a dQ  ) 

a^ = a + dQ~ —  tan 6(cos a du    + sin a dQ?) 

(284) 

VII-D-3.  In Satellite Reference Frame 

Spacecraft based angular measurements could be of three types: 

(i) photographic observations against the star background,  (ii)  look angles 

in an inertial frame aboard the spacecraft and  (iii)  look angles in a ref- 

erence frame fixed in the spacecraft.  Photographic observations would be 

treated exactly as in Section VTI-D-2 with the vector r..  pointing from the 

observing body to the observed body.  The interpretation of look angle obser- 

vations depends on the drift of the inertial frame in case (ii) and on the 

motion of the spacecraft about its center of mass in case (iii).  In this 

section we separate cases (ii) and (iii) as follows: 

a. frames which change slowly in inertial space for case (ii) or (iii); 

b. approximately earth oriented (or central body oriented) frames 

which rotate once per orbital revolution for case (iii). 

12  3 
Let  (z^, z^, z^) be a reference frame fixed in the satellite.  In 

12  3 case (a) let  (z , z , z ) be the frame referred to the mean equinox and 
12  3 

equator of 1950.0 and in case (b) let  (z , z , z )  be the "ideal" earth 

oriented frame.  We write 
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■ D  « *   = D   z (285) 

where the orthogonal matrix D is 

Dll D12 D13 

D21 D22 D23 

D31 
D32 D33 

D =   Dni   D00   D00 I (286) 

VH-D~3a.  Approximately Inertial Frames 

The Apollo spacecraft possessed an inertial reference frame specified 

by gyroscopes.  The Mariner spacecraft are sun oriented and so their orienta- 

tions change slowly in inertial space.  In order to represent the transformation 

(285) explicitly for such spacecraft, let us define the Euler angles (see Fig. 9) 

3       3 
I = angle between z  and z^ axes 

12 1 
Q    = angle in  (z , z ) plane measured from the z  axis 

1  2 
to the ascending node of the  (z^, z^) plane on the 

1   2 2 (z , z )  plane (positive towards  z ) 

1  2 
0) = angle in the  (z^, z^)  plane measured from the ascending 

12 1 
node on the  (z , z )  plane to the z^ axis 

These angles could be given functions of time, or we could have them repre- 

sented by a Taylor or Fourier series with coefficients to be determined by 

fitting to data.  The variation in the angles can be assumed to be small. 
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18-6-1424 9 

*- z' 

Fig. 9.  Euler angles I, ß, w relating coordinate systems 

(z1, z2, z3)  and  («£, Z2, z3). 

By standard Euler angle formulas (see, for example, Ref. 1, pp. 5-6) we have 

'11 

'12 

'13 

D 
21 

D 
22 

'23 

D 
31 

'32 

'33 

= cos ft cos 0)   —    sin ft sin o) cos  I 

= — cos ft sin 0) — sin ft cos 03 cos  I 

= sin ft sin I 

= sin ft cos  03    +    cos ft sin 03 cos  I 

= —    sin ft sin 03    +    cos ft cos  o) cos  I 

= —    cos ft sin I 

= sin 0) sin I 

= cos  0) sin  I 

= cos  I (287) 
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Let q be the vector pointing from the observing spacecraft to the 

apparent position of the observed body corrected for such effects as aberration, 
12  3 

Let  (q^, q^, q^) be the components of this vecl 

fixed in the spacecraft.  We define (see Fig. 8) 

12  3 
Let  (q^, q^, q^) be the components of this vector in the coordinate system 

6 = spacecraft based declination   ( — 90 < 6 < 90 ) 

(288) 

a = spacecraft based right ascension  (0 < a < 360°) 

(289) 

In order to remove the quadrant ambiguity in right ascension in the above 

formula we use 

2 
3* 

sin a = v <«*> + <«*> (290) 

cos a = 

v 12    2 2 

VII-D-3b.  Approximately Earth Oriented Frames 

In analogy with aircraft and ships, consider the following yaw, roll 
3 

and pitch coordinate system for an earth satellite.  The yaw z  axis points 
2 

from the satellite to the center of the earth, the roll  z  axis lies in the 
3 

orbital plane normal to the z  axis and makes an acute angle with the satel- 

lite velocity vector, and the pitch z  axis is normal to the orbital plane 

and completes the right hand system.  Let X-  be the vector position of the 

observing satellite relative to the earth at receive time t-  and let 
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TOO 

E , E , E  be the unit vectors in the  z , z , z  directions.  We have 
-L       mm J 

le 
°3 Ixlel 

El 
= 

Xle X Xle 

l*le X Xlel 

E2 
= E3XE1 

yaw 

pitch (291) 

roll 

12  3 
Let  (z^, z^, z^)  be a reference frame fixed in the satellite. 

12  3 
For an earth oriented satellite such as LES-8 or LES-9, the  (z^, z^, z^) 

12  3 
frame deviates only slightly from the "ideal"  (z , z , z )  frame.  On 

LES-8/9 the attitude control system automatically keeps this orientation 

within 0.1  rotation about yaw and roll, and within 0.6  in rotation about 

pitch using sensor look angles to control thruster firings and a momentum 

wheel.  In order to use the satellite based look angles for orbit fitting with 

the inherent accuracy provided by the sensors and antennas which generate 

them we must model the orientation error with parameters to be adjusted during 

the orbit fit. 
12   3 

The transformation between the "ideal" frame  (z , z , z )  and the 
12  3 

one fixed in the satellite  (z^, z^, z^)  is given by (285).  Since we shall 

be dealing with small deviations we shall not use the Euler angles of Fig. 9 

which become degenerate in this case, but we shall rather employ the quantities 

P =  sin ft sin I 

Q =  cos ft sin I (292) 

ur = ft + tu 
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In terms of these quantities (287) becomes 

Dn = cos ft + P(Q sin oo - P cos w) 
VI -- (P2 + Q2) 

2 2 
P + Q 

D12 = - sin u) + P(P sin 03 + Q cos a)) 
~N  1 - yll~-  (P2 + Q2) 

2   2 
P + Q 

D13 = P 

D   = sin a) — Q(Q sin u) — P cos 

22 

23 

cos a! — Q(P sin 

- Q 

OJ) 
1 - -Vi- (P2 + q2) 

1 - 

p2 
+ Q2 

~\ -Vi- (P2 + Q2) 
2   2 

P + Q 

D31 = Q sin OJ P cos OJ 

D   = P sin OJ + Q cos w 

D00 = VT^- (P2 + Q2) 
33 

(293) 

The parametrization of P, Q, 0) as functions of time depends on the charac- 

teristics of the attitude control system and the period of time over which the 

data are being fitted.  As a first guess we might suppose that 

n 

P =S PJ(tl_to)J 
J-o 

E 
j-i 

2TT m(t, - t  ) \ /2TT m(tn - t  )N 

Pjs sin  l ±-JLJ +    Pjc cos  { T1 o 

(294) 
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with similar expressions for Q and TU, where t is the receive time epoch 

of a given observation, where t is an epoch in the midst of the look angle 

data to which we are fitting, where T is the orbital period of the satellite 

or some multiple of it, and where the numbers m, n of coefficients that are 

solved for depends on what the data allow. There could be periodic variations 

because of the eccentricity of the satellite*s orbit and solar heating, among 

other reasons. 

The most sophisticated procedure for solving for the satellite orien- 

tation error along with the other parameters, such as the initial conditions 

of the equations of motion relative to the earth, would be to numerically 

integrate the equations for the motion of the satellite about its center of 

mass along with the equations of its motion relative to the earth, and solve 

for both sets of initial conditions in fitting to data.  However, the equations 

for the motion about the center of mass would be complicated by thruster firing 

and momentum wheel spin-up.  An ad-hoc parametrization is probably a better 

technique to follow in this case, especially if a reasonable model can be 

decided upon, either from a priori considerations or from the actual observed 

behavior of the attitude control system. 
12  3 

Let  (z,,, z„, z,,)  be the reference frame belonging to a specific 

sensor or antenna on the satellite.  The deviation of the  (z„, z„, z,,)  frame 

from the  (z^, z^, z^)  frame will be very small, so by Ref. 18, pp. 127-128, 

we can write 

- Dj 1=  D (295) 

dft3   - dft2 

d^2 - d^1 

dfi. (296) 
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dfi      =     infinitesimal       rotation about pitch    z.     axis 

dft      =    infinitesimal 

dTL    =    infinitesimal 

rotation about roll    z^    axis       (297) 

rotation about yaw    z.     axis 

This  expression for the orthogonal matrix    D»    is valid only insofar as we 

can ignore products of  the errors     (dft  ,  dfi   ,  dft_)     in pitch,  roll and yaw. 

We  could not  use  the same type  formula for    D    because  on LES-8/9  the  sensor 

and  antenna pointing  inaccuracies  could be smaller than the square of the orienta- 

tion error. 
+*    ->*    ->* i 

Let    E   ,  E   ,  E      be  the unit vectors  in  the    z. 
1       z       3 

z^    direction 

+//    ->#    +// 
and let    E  ,   E_,   E      be  the unit vectors  in  the 

By   (285)   and   (286) we have 

12 3 z„   ,   z.,   ,   z,,    directions. 

j-l 
]k*J 

k    =     1,   2,   3 (298) 

and by (295) and (296) we have 

Ex +  (d^3 E2 - dft2 E3) 

«5 E* +  ( - <ffl E* + d^ E*) (299) 

E3 +  (d^2 E1 - dtt±  E2) 

Let q be a vector pointing from the observing satellite to the 

observed object corrected for light time and aberration as in (259).  Referring 
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to Fig. 10 we define 

a. pitch angle  ( - 180° < ou < 180°) 

■ angle between the projection of q on the 

(z„, z„) plane and the z„ axis measured 

positive towards the z„ axis 

- roll angle  ( - 90° < 6 < 90°) 

= 90  — angle between q and the z.,  axis 

z '   PITCH w 
18-6-14250 

z^ ROLL 

Fig. 10.  Pitch and roll angles a,,,   6«  in the coordinate system 
(zji, zf, zf,)     fixed in the observing satellite. -#, "#» fi# 
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with similar definitions for the angles o^, 6^ .  In terms   the unit vectors 

E1, E?, E  in the z„, z„, z»  coordinate directions we have 

6#     in"
1 (  , 1 1 

a# = tan"1 

In order to remove the quadrant ambiguity in ou we use 
// 

q • E2 

sin a« = 

cos a» 

(302) 

Inserting (299) in the above equations for 6«, a,,, making Taylor 

expansions and ignoring powers and products higher than the first in the small 

orientation errors dfl-, d£L, dft« we obtain 

6„ = 6^ +  (sin o^ dß- — cos a^ dft ) 
f J ^ (303) 

a» = a^ + dfi^ — tan 6^ (cos a^ dft~ + sin a^ dQ,  ) 

In fitting to data we shall solve for the orientation error of the whole satel- 

lite represented by the matrix D and for the orientation error in each sensor 

or antenna represented by the angles  (dft. , dQ,   , dft ) .  For a sensor which has 
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a^ vary by a considerable amount during the period of an orbit fit we can 

separate the effects of dQ,  , dft  and dQ,   .  For a sensor which has o^, 6^ 

being fairly constant during the period of an orbit fit we do not have three 

independent biases, so we shall take 

6\, = 6. + A6 
f (304) 

a„ = a^ + Aa 

for such a sensor.  These biases can be functions of time similar to (294) with 

parameters to be estimated. 

The notation conventionally used by engineers for an earth-oriented 

satellite reference system is different than that used for an astronomical 

reference system (compare Figs. 8 and 10).  There is a complete analogy between 

the resulting formulas, such as for biases (compare (284) and (303)), but it 

is best to derive the formulas in the two situations independently of each other. 

VII-D-4. Meridian Circle 

A meridian or transit circle is a telescope that is constrained to 

move in elevation only along the meridian through the observing site.  A raw 

observable consists of the time at which an object crosses the meridian and 

its elevation at that instant.  During an observing evening observations are 

made of the moon, planets and stars.  During the day observations are made of 

the sun and day stars.  Raw observations over several years at a given observa- 

tory are reduced together to yield published values of geocentric right 

ascension and declination of the sun, moon and planets at the observing times 

plus an observational star catalogue. 

The clock used in noting the time of meridian transits only needs to 

retain accuracy during an observing evening and day, since it is the relative 

times of crossings of the sun, moon, planets and stars that matter.  In reducing 

all the observations to absolute right ascensions a choice of equinox point is 

made.  This point can vary from one observing series extending over several 

years to another.  In the 1700fs pendulumn clocks and verbal noting of meridian 
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crossing were used.  Present day techniques are obviously more sophisticated; 

see Ref. 26.  However, the fundamental idea of a telescope fixed to move in 

the meridian has not changed since the 1700*5 and there has been only about 

an order of magnitude improvement in accuracy.  The introduction of the 

telescope gave a 2 order of magnitude improvement in accuracy over the 

meridian crossing observations with the naked eye made by Tycho Brahe, whose 

basic techniques went back to the ancient Greeks and Egyptians. 

The published right ascension and declination referred to the true 

equinox and equator of date at the instant of meridian crossing have usually 

been corrected to the center of earth with diurnal aberration and atmospheric 

refraction removed.  Observations of the limbs of the sun, moon and planets 

have been corrected to the center, except for some old observations. Modern 

observations have the effect of wobble removed. 

To calculate the theoretical value of the geocentric right ascension 

a and declination 6  referred to the true equinox and equator of date at the 

instant of meridian crossing at an observatory, we need to know the west longi- 

tude 8 of the observatory.  Given a first guess at the UT1 time of meridian 

crossing (which must be within 12 hours of the true time of crossing), we 

calculate the true Greenwich sidereal time 0 using the formulas in Section 

IV-B.  The local sidereal time is 0 — 0 .  Using the value of coordinate time 
->■ 

CT corresponding to UT1, we calculate the vector r,  pointing from the center 

of the earth at time CT to the observed body at retarded time as explained 

at the start of Section VII-D. We make the general relativity bending of light 

correction if accuracy warrants.  We make the aberration correction for the 

velocity of the center of the earth relative to the sun for sun and planet 

observations (relative to the center of mass of the solar system for star 

observations).  For geocentric moon observations no aberration correction is 

necessary as explained at the start of Section VII-D.  Having applied these 

corrections to the vector r,  to obtain the vector q in a coordinate system 

referred to the mean equinox and equator of 1950.0, we transform coordinates 

using the nutation-precession NP to obtain a vector w with components in a 

coordinate system referred to the true equinox and equator of date : 
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£=1 

(NP)k£ q
£   ,   k = 1, 2, 3 (305) 

We calculate 

(306) 

(307) 

Quadrant ambiguity in a is removed by 

2 
sin a = 

w 

(308) 

cos a ■ 

\l,  1.2 , , 2.2 V(w ) + (w ) 

1 
 w  

\(w )  + (w ) 

At meridian crossing the right ascension is equal to the local sidereal time. 

We correct the UT1 time of observation by 

At =  (0-0) - a (309) 

and redo the above calculations, continuing the iteration until At is less 

than some input accuracy constant. 

Specifying the time of the observations as the instant of meridian 

crossing is essentially using the rotating earth as a clock.  In fitting to 

data extending back in time we not only have to solve for the orbits of the 

various bodies but also for the variations in the rotation of the earth relative 

to coordinate time using the model in Section III-E. 
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12  3 
Suppose the reference frame  (w^, w^, w^)  that an observatory uses 

aÄ and declination to calculate right ascension 

is related to our coordinate 

and equator of date by the rigid rotation 

from a raw observation 
12  3 

is related to our coordinate system  (w , w , w )  referred to the true equinox 

= D =  D* I' w2 (310) 

where the orthogonal matrix D  is given by (286) and (287) in terms of 

Euler angles  I, ft, un  These bias angles are small and thus nearly degenerate, 

but they seem appropriate to use given the manner in which each observatory 

chooses an equinox point for reducing its raw observations to absolute right 

ascensions and declinations. 

If we can ignore the squares of the small angles  I, ft, co,  equations 

(287) for the transformation matrix D become 

11 

D 12 

D 
13 

D 21 

D 
22 

D 
23 

D 
31 

'32 

D 
33 

= 1 

-  (ft + 03) 

0 

(ft + ü>) 

1 

- I 

0 

I 

1 

(311) 
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We then have that 

6^ = 6 — I sin a 
(312) 

a^ ■ a — (Q + GO) + I tan 6 cos a 

Changing notation, let Aa = — (fi + oo) be the equinox correction, let 

A(J> = — I be the equator correction and let A6 be a constant bias in 

declination.  Then we could write 

6Ä = 6 + A4) sin a + A6 
(313) 

a^ = a + Aa — A$ tan 6 cos a 

These are the biases that are programmed in PEP in lieu of comparing 

the observational star catalogue of each observation series with the FK4 star 

catalogue.  This latter procedure would have the virtue of correcting for 

biases in each portion of the sky instead of having biases which rigidly apply 

over the whole sky.  The constant bias in declination A6  could absorb many 

errors made by an observatory in reducing an elevation observation to a geo- 

centric declination, since the observed object is always over the meridian of 

the observatory.  The constant bias in right ascension Aa would absorb errors 

in the assumed longitude of an observatory and the choice of equinox point. 

For a sun, moon or planet observation the limbs are observed crossing 

the meridian and a correction made to obtain the right ascension and declination 

of the center at meridian crossing.  Let Ap be the vector from the true 

position of the center of the observed body to the point at which the observ- 

atory thinks is the center.  For a planet or moon observation, we can imagine 

that this displacement Ap is a function of the illuminated phase of the 
->- 

observed body as seen from the earth.  Let x   be the vector from the sun 
ps 

to the observed body and let x   be the vector from the sun to the earth. J es 
We then assume that 
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_*      T-^% (x  x x  ) x (x  - X  ) 
7? _ « X A   ps   es     es   ps 
P " P / v an COS n * ~7^ -v  , ■ ■» T~T        (314) 

A—* x  x x x  - x 
n=o ' ps   es' ■ es   ps' 

where  p is the angular diameter of the observed body at unit distance, where 

the phase angle (J) is given by 

A       "I <J> = cos 
x   • (x  — X  ) 
ps    ps   es 

, x    x  — X 
L' ps ' ' ps   es' 

0 < (f) < 7T (315) 

and where the coefficients a  are to be determined by fitting to data. 

-*- -»■  —> 

In PEP the vector w is replaced by w + Ap before calculating 

the right ascension and declination using formula (308).  Of course,  Ap has 

to be rotated to the coordinate system referred to the true equinox and equator 

of date before adding to w. 

The above formulation of equinox-equator and phase corrections for 

meridian circle observations is due to I. I. Shapiro. 

VII-E.  Long Baseline Interferometer 

A radio interferometer observation is the measurement of the differ- 

ence in time of arrival of an electromagnetic wave at two receiving antennas 

modulo the time equivalent of n wave lengths.  The development of wide band 

interferometric techniques have allowed the differential time delays to be 

determined without ambiguity.  This section is concerned with the theoretical 

value of wide band interferometric observables. 

The interferometer antennas could be intercontinental distances 

apart, in which case there is no one clock which could be used by both sites 

simultaneously.  Each site has its own atomic clock keeping UTC time, say, 

and the received radio energy at each site is recorded on magnetic tape versus 

the time given by the site clock.  The two tapes are then compared to detect 

the interferometer fringes.  The theoretical value of the difference in UTC 

time of arrival At  of a wave front at the two antennas must be corrected for 
c 

the difference in the clocks at the two sites to obtain the value At . to be 

compared with the observation: 
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At . = At + a + a-(t - t ) (316) 
c*      c   o   1     o 

where a  is the constant offset between the two clocks at some arbitrary 

epoch t  and where an  is the linear drift between the two clocks.  The o 1 
coefficients a  and a,  are to be determined by fitting to data.  By (47) 

the relation between the UTC differential delay  At   and the Al atomic 

time differential delay  At  is 

At  =  (1 —fractional frequency offset)At     (317) 
c a 

After 1.0 January 1972 we have At = At  . 
c    a 

Suppose that the radio wave arrives from a distant source external 

to the solar system (quasar), and that the unit vector pointing from the 

center of mass of the solar system to the source is x  , 
po» 

x   =  (cos X cos n) £-, + (sin X cos n) e_ + sin T)  £0  (318) 
po 1 15 

where X, n are the right ascension and declination of the point radio source 

referred to the mean equinox and equator of 1950.0.  We might have 

X = X + XAt - t ) 
o   1     o 

n = n0 + Vt - to) (319) 

where X , r)  are the right ascension and declination of the point source at 

some arbitrary epoch t  and where X.. , r)  are the proper motions in right 

ascension and declination. We assume that the distance R of the source from 

the solar system is so great that the electromagnetic wave that arrives at the 

two interferometer antennas is essentially a plane wave. 
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In Fig. 11 a plane wave arrives from a direction x   at two observ- 

ing sites which have coordinates x, , x~  relative to the center of the earth. 

We shall do all our calculations in the coordinate system with origin at the 

center of mass of the solar system referred to the mean equinox and equator of 

1950.0 using the vectors 

x_,  = x.  +x   ,  i = 1,2 
io     ie   eo 

(320) 

where x   is given by 
eo    6     ^ 

M 
-*■     ■*    m +      L ■+ 
x    =  x  — — X   + X eo     es  M  me   so 

c 
(321) 

The difference  At  in coordinate time of arrival of a plane wave from the 

source at the two sites is 

B-6-142 51 

Fig. 11.  Plane wave arriving at interferometer observing sites. 
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At = d cos ty 

= x2Q(t2) - x1Q(tl) 

d =  Idl (322) 

x 
COS ]p     =     — 

d 

where the distance unit is the light second and where t and t~ are the 

coordinate times of arrival of the plane wave at sites x\  and x  , respectively, 

with 

t2 - t±    - At (323) 

Given the time of reception  t   at the first site, we make a first guess 

at the value of At.  Using the resulting value of t„ we calculate a new 

value of At,  then a new value of t«, etc.  We continue the iteration un 

the change in the value of At  is less than some input accuracy constant. 

The atomic time differential delay At  is related to the coord 
a 

time differential delay  At  by 

At  = At + (CT - Al)9 - (CT - Al)- (324) 

where  (CT — Al).  is the difference between coordinate time and Al atomic 

time at site  i at time  t.  (i = 1,2).  Times  t  are so close together 

that  (CT — Al)1  and  (CT — Al)?  can be considered identical except for 

the part due to the velocity or rotation of the earth, which has a different 

direction at the two sites even if t  and t?    were identical. 

Let us define 

v.     x.   =  velocity of site i relative to 
ie     le 

center of mass of earth 
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v   = velocity of earth relative to center of mass 

of solar system 

v.  = v.  + v 
l     le     eo 

Writing    Al    instead of    AT,    we have by  (36) 

(CT - Al) .     =     (CT - Al) 

U ,   v 
! + _° _ 1 _o 
1 2       2    2 

c c 

J3 

2, 

2lc2 dt (325) 

where U., v.  are the gravitational potential and velocity at site i at 

time t.  (i = 1,2), where U , v  are the average values of the gravitational 

potential and velocity at the center of the earth, where c is the velocity 

of light, and where  (CT — Al)   is the value of coordinate time minus atomic 

time at some reference epoch t . We therefore have 
o 

(CT - Al)0 - (CT - Al) 

I ill 
2\c2 2 dt 

o 
2 

dt (326) 
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Since 

V "'I < 10" 
-2 

sec 

U2 u 
o 
2 

c 
« 

1 
2 

2 
V2 

2 c 2 
c 

2 
v 
o <  3 x 10 -10 

we can ignore the second integral from t  to t9 in (326).  Since U /c 
2 2             -8 ° 

and v /c  are about 10   in magnitude, we can ignore them relative to 1, 

so that 

(CT - Al)2 - (CT - Al)x 
v, 

dt  (327) 

The integral (327) will give a diurnal discrepancy between the 

readings of the atomic clocks at the two sites.  In order to see this more 

explicitly, we need only consider the gravitational potentials of the earth 

and sun.  For a = e, s,  let 

Y = gravitational constant 

M  = mass of body a 
a J 

p.   = distance of site  i  from body a  (i = 1,2) 

ia1 

J?    = second harmonic of earth's gravitational 

potential 
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Then by (327) we obtain 

(CT - Al)2 -  (CT - Al)1 = 
yM s   /_1 1_ 

c2   lP2s " Pls; 

2   lp. 3 p. 3    I       2 \   2 
\2e       p2e       "le       ple/ 

2 2\ 

2 dt 

yM 

c    x es' X« X Xr, 
L + 2^e_ es +^2eJ 

1+     |2\ 1/2 

es ' '   es ' 

xn      •  x xn L + 2JLe_es+    ^iej 
i2\ 1/2 

x. es' x es ' 

YM e    /     1 i    +_^L 
|x0   I |x0   I Ix-, 2e'        '   2e' '   le'        '   le1 

L -1,     I2 
.   v0    + v 1   I'   2e es' v,     + v 1   le es 

dt (328) 
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Now by Ref. 20, pp. 83-86, we have 

V 1 - 2qu + u n=o 

Pn(q) u (329) 

where the first few Legendre polynomials P  are 

Po(q)  =  1, P1(q)  =  q, P2(q)  = j q
2 - \ 

P3(q) 
5  3 3 

2 Vq) 35 4  15 2 , 3     ,„n. 
g-q -— q +8     (330) 

Applying  this  formula with    n =  o,l     to   (328)  with 

u    = 
x. 1   ie' 

x 
es 

q   = 

x.      •   X 
ie es 

ie1   '   es 

we obtain 

(CT - Al)2 -  (CT 
i T1 r™s 

- A1>1   ■   h   I        TT—3 
C      ^o     ['"es1 

■ T     (x0    — x,   )   •   X 
->-     13 2e le es 

—     (v0     — V_    )    'V 
2e le es 

dt 

It1 
o    L 

YM YM J0 '   e  2 
v 

2e' 

x 
2e' '   2e' 

YM YM J0 e  2 
i +     |2N 
'le' 

1   le1 
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The second integrand is essentially a constant, and hence can be ignored, since 

any linear drift between the two clocks would be absorbed in the determination 

of the parameter a  in (316).  Besides, this constant drift is almost exactly 

0, because the sea leavel surface of the earth near which observing sites i 

lie is such that 

YM     YM J0   IV. |2 

e      e 2     ie 
—— + — r  = constant independent of 
II J L* 
Xie'   |Xie' latitude and longitude  (332) 

In the coordinate system referred to the true equinox and equator 

of date we have 

x.  = p. cos (0 — 6.) cos <f). 
ie     l l      l 

x2  = p. sin (0 - 9.) cos <J>. (333) 
ie     l l      l 

3 
x.  = p. sin 6. 
ie     l     l 

where  (p., 0., <().)  are the radius, west longitude and north latitude of site 

i and where 0 is the true sidereal time.  The velocity of the site is 

v. = — p. sin (0 — 6.) cos <J>_ — 
ie       l l      i dt 

v, = p. cos (0 — 0.) cos (p.  — 
ie     l l      l dt 

v3 = 0 (334) 
ie 
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12   3 We take the coordinates of the earth relative to the sun  (x  , x  , x  , 
2   3 es'  es*  es* 

v  , v  , v )  to be referred to the true equinox and equator of date, or 
CO        6b        tb 

alternately, we could take them referred to the mean equinox and equator of 

1950.0 since the difference between these reference systems in the 1970s 

is ignorable in this calculation (about 1/3 of a degree).  Then by (331) 

through (334) we have 

-->. ■ ?/' (CT - Al)0 -  (CT 2 ~'l 2 ,        (3 x es 
o 

1 
X es 

[P2  cos(0 — 02)   cos  4>2 — p.   cos(0 — Q  )   cos  <f>  j 

+    x     (p2  sin(0 — 82)   cos  4>2 —    p,   sin(0 — 9,)   cos  <j>-\ 

x~„ (Po eslM2  ox" y2       Hl 

+    Ves (P2  Sin(0 ~ V   COS  ^2 " pl  Sin(0 ~ 61)   COS  *l)   dt 

-    ves (P2  cos^Q ~ ö2^   COS ^2 ~ Pl  sin^0 ~~ Öi)   cos  $i\   dt    /   dt 

YMS r ti  x^s 
~Y~ / ——3   (P2  sin <J>2 - p1 sin (J^)   dt 
c     J |x. 

t 
o 

es' 

i    /^(ti) hM
s   r 1 / 

2   ,„,,.    / (7^3   Ks   (p2  cos(0 " V   COS  *2 
c    d0/dt   / J   x 
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-    p    cos(0 - 91)   cos (J^J  + x^s   /p2 sin(0 - 62)   cos 4>2 

—    p    sin(0 — 61)   cos  4>1 )} 
+    v±       p0 sin(0 - 0O)   cos <J)0 - P-   sin(0 

es       I i L L 
S A   I   d0 

'i} cos *i   dT 

2 r 
-   Ves   Y 

P2 cos(0 - 62) cos 4>2 - px sin(0 
]d0 

dt 
3X) cos ^1 22Jd0  (335) 

Suppose we were processing observations extending over a day and that we could 
->       -»- 

assume that  x   and v   were constant vectors.  Then the linear drift term 
es       es 

given by the first integral in (335) could be absorbed in the solution for a., 

in (316) so that 

yM 
(CT - Al)2 - (CT - Al)x -  2 

c^ dO/dt I   x es' 

)2)   cos  $2 - p1  cos(0 - 6   )   cos  (J> \ 

xX
c   (p2  sin(0 - 92)   cos  <J>2 - Px  sin(0 - 6^   cos  $A 

xes   (p2  COS(0- 

Ves   lf 

v__   |p2  cos(0 — 32)   cos  <j>2 — P1  cos(0 N A    I     d0 

'i} cos *i   dT 1 

P2  sin(0 - )2)   cos  4>2 - Px sin(0 A I    d0 ^  cos «J   — 
1 

0-0(t1) 

0=0(tQ) 

(336) 
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The epoch t  could be taken as any time within the day in question, say at 

0  beginning of day.  The difference between the results obtained with differ- 

ent choices of epoch would be absorbed in the solution for a  in (316) when 
o 

fitting to data.  The amplitude of the diurnal effect given by (336) is about 

a microsecond.  It is thus very important to make correction (324) to the 

theoretical value of the differential delay, which can have sub-nanosecond 

accuracy.  However, the specification of epochs for determining positions of 

bodies can still use the value of CT — Al given by (41) or Table I, which 

ignore the effect of the rotation of the earth on clock rates. 

Another interferometer observable besides differential delay At^^ c 

:* 
and t coordinate time.  By (316), (317), (322) and (324) we have 

is differential delay rate At . .  Let  t  denote UTC time,  t  atomic time 
c* c a 

dAt 

c*     dt 
c 

ai 

dAt 

=   dt
a + 

a 
ai 

■ [^+k<CT-">2-fe<CT-">i]z!; + »i (337) 

Since a differential delay rate measurement has less accuracy than a differen- 

tial delay measurement we can assume that 

A- ~    dAt 
Atc*   Ä  "dF  +   ai 

[Vv-Vv] + ai (338) 
=    — X po 

since x   is essentially a constant vector, 
po 
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Now suppose that the radio noise source is on some object in the 

solar system with coordinates x,   relative to the center of mass of the 

solar system.  The object could be an earth satellite, an artificial space 

probe orbiting the sun, the moon or a planet, or a spacecraft landed on the 

moon or a planet.  Given the coordinate time  t-  of reception of a radio 

wave at site x.  we make a first guess At  of the coordinate time the wave 

took to travel from the radio source b.  The coordinate time the wave was sent 

is then 

= tx - Atx (339) 

We next calculate the vector 

rl = ^o^ - "lo'V 
(340) 

with the distance unit being light-seconds, and revise the value of At-  by 

At, (341) 

Using the new value of At.  we recalculate t. 
1 * 

and r ,  continuing the 

iteration until the change in At-  is less than some input accuracy constant. 

Given the coordinate time t^ of sending the radio wave from the 

radio source b,  we make a first guess At«  of the coordinate time the wave 

takes to travel to site x 
2e" 

The coordinate time the wave is received is then 

=  ** + At, (342) 

We next calculate the vector 

r2 = "be^ ~ 
x2e(t2) (343) 

181 



with the distance unit being light-seconds, and revise the value of At« by 

At2 =  |r2| (344) 

Using the new value of At« we recalculate  t«  and r«,  continuing the 

iteration until the change in At«  is less than some input accuracy constant. 

The theoretical value of the interferometer differential delay 

measurement is then 

At = t±    -    t« = Atx - At2 (345) 

with, of course, corrections (324), (317) and (316) being made before comparing 

with the observations.  By (337) to (345) the differential delay rate observable 

is 

^-r-x = Vr1- Vr" + 'i (346) 
|rxl       |r2| 

Interferometer observations are so accurate that the theoretical 

calculations should be performed in the coordinate system with origin at the 

center of mass of the solar system, as we also decided was necessary for very 

accurate round trip time delay measurements in Section VII-B. 

The long baseline interferometer subroutines have been developed 

at M.I.T.  The particular formulas used in these subroutines are not precisely 

the same as those we have derived.  This is especially true for the effect of 

the earth rotation on clock rate discussed in (325) to (336).  Our purpose in 

this Section was to get the flavor of the interferometer observables, even 

though we are not directly involved with their implementation in PEP. 
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VII-F.   Transits and Occultations 

VII- F-l.    Trans its of Mercury 

A transit of Mercury or Venus is the crossing  of the planet in front of the sun 

as seen from the earth.    When such an event occurs a black dot can be seen traversing 

the face of the sun for several hours.    The observations used in orbit fitting are the 

times that the limbs of the planet cross the limbs of the sun, so there could be up to 

four measurements for each transit from many observers scattered around the earth. 

Transits of Mercury occur about 13 times a century, whereas those of Venus 

are much rarer.    The atmosphere of Venus makes the Venus transit observations less 

accurate than the Mercury transit observations.    The anomalous advance of Mercury's 

perihelion over and above that predicted by Newtonian gravitational theory was first 

discovered by Leverrier about 1850 from an analysis of the Mercury transit observa- 

tions going back to 1670. 

Let us consider a transit of Mercury.   We first derive expressions for the 

conditions of "internal contact", that is for the times at which, as viewed by an earth 

observer, Mercury is seen to be wholely "inside" the sun with its limb tangent to that 

of the sun.    For each transit there are two internal contacts:  the first occurs as 

Mercury passes in front of the sun and the second just prior to Mercury's apparent 

passage ahead of the solar disc (see Fig. 12).   If a contact is observed on the earth at 

coordinate time t«, then the observed light ray passed tangent to Mercury's disc at 

coordinate time t« and tangent to the sun's disc at coordinate time t. (t« > t9 > t.), as 

shown in Fig. 13. The measurement made by an earth observer before the existence 

of atomic clocks was the UT1 time t«*at the instant t«, where 

t3   = t3# + At     . (347) 

Let r   and r   be the position and velocity of the earth observer relative to the sun.    In 

the notation of this Section VII, for an observer at site i = 1 we have 

—♦ —♦ —+ 

r    = x      + x. e es le 
(348) 

u        * u 
r    = x      + x. e es le 
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18-6-14252 SECOND INTERNAL 

CONTACT  AT   f(2) 

(>t(,)) 

TRACK   OF  MERCURY'S 
APPARENT   MOTION  WITH 
RESPECT  TO THE SUN'S 

FIRST   INTERNAL   CONTACT 

ATt(,) 

Fig. 12.  Mercuryfs passage in front of the sun as viewed from the earth. 

DIRECTION OF 
ORBITAL MOTION 

6-6-14253 

LIGHT-RAY ASSUMED TO FOLLOW 
CURVED (GENERAL RELATIVISTIC) 
TRAJECTORY 

EARTH  TELESCOPE 

Fig. 13.  Path of light ray between the sun and an earth observer 
at the time of an apparent internal contact (top view). 

INTERNAL 
CONTACT 

SOLAR DISC 

Fig. 14.  Geometry of internal contact (front view) 
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A A A 

Defining a set of unit vectors   i,   j,   k by 

i  = 
re*3> 
re*?" 

A A 

j   =  kxi (349) 

i x r (tQ) 
k  =  S_£_ 

|lx?e(t3)| 

we can describe the propagation of a light ray from the point of apparent contact on 

the sun at t., reaching the earth observer at t~. by the vector 

VV "  Ps(tl} 
p    ft)  =  pft,)+-^ ^-i-cft-t.)     ;t>t.     , (350) 

S l'e*3>-P.*l>l 

where 

p (t,)   =   p   [cos 6j + sin 9 k]   , (351) si s 

and where p   is the sun's radius and 8 the angle between the j  direction and the 
s -> 

apparent position of internal contact (see Fig. 14).   Thus, p    (tQ) is a vector extending se   o 
from the position on the solar limb at which internal contact appears to take place, to 

the earth observer at the time of observation t«.   The first term on the right side of 

(350) is a vector extending from the center of the sun to the position of apparent contact 

on the solar limb, whereas the second term represents the heliocentric position at 

time t of the wavefront flight pulse) propagating from the limb at t, to the position of 

the earth observer at t«. 

Let r     and r    be the position and velocity, respecitvely, of Mercury relative 

to the sun.   The propagation of a light ray from the point of apparent contact on the 

Mercury limb at time U reaching the earth observer at time t« is described by the 

vector 
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PmJt)  =  r   (t ) + p   ft )+-|J 2_2 Sl_2  Cft-t);   t>t 
1 e  o        m   z        m   z 

where (352) 
A A 

?   (tj   =  pw [cos 6 j+sin 0k] 

■ -r1 p« *i> - (353) 
Ps      s     1 

—* 
i.e. where p   (t~) is a vector extending from the center of Mercury at t« to the position 

of apparent contact on the limb of Mercury.   From Fig. 14, it is clear that the same 

value of ödescribes both the orientation of the position of internal contact on the solar 

limb and on Mercury's limb. 

Equations (350) and (352), with c representing a constant speed of propagation of 

light taken to be 1  in the previous formulas in Section VII, assume that the propagation 

of the rays is rectinlinear whereas, according to general relativity, the paths will be 

curved (see Fig. 13)in three-space.   A simple calculation shows that the bending is so 

slight (less than 0"001) that we may neglect the curvature.   In fact, the only operationally 

significant aspect of the bending, for the reduction of transit data alone,  is essentially 

that part of the difference in the values of the t2's between the May and November 

transits that is attributable to the bending.    (During the present era, Mercury transits 

can occur only in May and November -- the times of year when the earth is near the 

intersection of the orbital planes of the earth and Mercury.) 

Returning to Equations (350) and (352), we see that the condition for an internal 
—♦ -♦ 

contact is that p    (tQ) be parallel to p      (tQ) since the latter will then coincide with the part 
t se   o me   o 

of p    (tQ) that extends from the position of the limb of Mercury at t0 to the position of se   o z 
the earth observer at t«.   What we seek, of course, are the values of 6 and t« for which 

p    (tQ) andp      (tQ) are "overlaid".   The other unknowns -- t, and t0 -- are, to high se   o me   o i z 
accuracy, determined by t«:   The usual method of iteration can be used to determine 

the light times t« " t2 and t« " t, for propagation from the centers of Mercury and the 

sun, respectively, to the earth observer.    The differences between the times of 

propagation from the limbs and from the centers are completely negligible, i.e. less 
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than 1 jLtsec.   The mathematical expression of the overlay condition is given by 

PseVX Vety  = °      • <354) 

But, at t«, we have 

which leads to 

W^^^mH^s^^W-^V]^   • <356) 

since rxr=pxp     =0.   Rearranging, we obtain 
C C S III 

p 

VV^v^ + ps^^^-^VV-V^] = o •     <357) 

Equation (357) represents two independent scalar equations for the two unknowns t« and 

61   We may resolve (357) using the definitions given in (349) and (351): 

rxr        =r{r      k-r      j}      , (358) em e  L   my mz J J 

ps x re      =  re ps {- cos 6k + sin 0j }       , (359) 

{A A ^ 

cos 0 k - sin 0 j \ J J 

+ r      p my rs {sin 0i} 

+ r      Pi- cos 0 i r 
m-7    s    l J mz   s 

p   \ (r      sin 0- r      cos 0) i - r      sin 0 j Ko  I x mv mz mx J s  i.    my mz mx 

COS  0k   \ /o*n\ mx '       , (360) 
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where the i, j, and k components of r   (t0) have been denoted by r     , r     , and r J ^ nv 2 y   mx     my mz* 
respectively.   Hence, 

r 
i  :  -r21 =cot 6      , (361) 

mz 

j:    -rr      + r   p   (l - — ) sin 6 - r      p   sin 6  =  0 e   mz      e Ks v p     s mx Ks rs 

rre(pm-Zp   )-r      P      = sin 9  ' <362> e rs      m       mx   s 

k   :   re rmy " re (PS " %> cos 6+ rmx ?s cos 6 =   ° 

r   (p   -Y?- r      p    "  cos 9 <363> e   rs      rm        mx rs 

from which we can see explicitly that only two of the three equations are independent: 

dividing (363) by (362) yields (361).   Eliminating 9from (362) and (363), we obtain: 

r2fr     2 + r     2>) =   [ r     (p-p)-r       p , (364) e   v   my        mz  /      L   e   VKs     Km       mx KsJ       * w    ' 

i.e., 

L e v m        mx s e   rs     rm        mx   s 
r   2      2Vn 

since p   » p    and r   »r      .   Equation (365) must be solved for t„ whence Eq. (361), 
O III L III A J 

for example, will yield Q 

Let us assume that we are favored with an initial estimate t«      which is 

sufficiently close to t« that in expansions about t~   ' we may safely neglect powers of 

öt ( st« " tg     ) above the first.   Thus, for example, we may write 

re =   re i       , (366) 

where 
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r.V     =      [VV?e(t3)]1/2 

«     [{?e(t3
(0))+?e(t3(0))6t}- {re(t3

(0)) + ?e(te
(0))6t}]1/2 

m     r (t (0)) + iA(t (0V?(t,(0))6t (367) 
6    6 6 «j 

and        -        W0))+W0))6t 

[?e(t3(0)) + ?e(t3
(0))6t] 

[re
e(t3(0)) + r(t3

(0))-?(te
(0)) 6t] 

since 

M 

fa 

', <.3**> L ,        .   3     ^ 

»    1 ;(t3'°'> + {W0,>-F«3<0,>-'«<'a,0,>]'<'e<0>'}^ '«*P 
(368) 

t. u3 "  "3 

Recombining yields, of course, 

= t<o)+öt   . (369) 

?e(t3>     "    ?e(te(0)) + ?e(t3(0))6t      • (370) 
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Let us suppose that 

t2   = t2
(0)+6t' (371) 

where our first guess t2'    for t« might be t«^    or t«      corrected by a first guess for 

light time.   We have exactly 

|rA>-?   (t2)l 
t2  = t3 

e  ö  c   
m  l— (372) 

Since 

we obtain 

I ?e(t3> " V M   "   I ?e h^ + 6 l> " ?m ^ + 6t'> I 

=  {fe^-e^6-^2(0)>-V2
(0))^l 

• CW0)> + re^0)> 6t -'m^ -mft2
(0)) ^]}1/2 

t2  - t3^> -H 6t - ^ | ?e(t3<°>) - rm(t2<°>)| (373) 

with an error of the order of (v/c) 6t, when v is the difference in planetary velocities 
projected along the direction of the difference in the planetary positions, and is 
therefore negligible. 

In the following we shall assume that 6t' « öt, which will be true at later stages 

in the iterative process described below.    We therefore have the following expansions: 
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*J       "    *>2(0)+">'V<t2
(0)+<*> 

- [VV0)> + WO)>6t]- tr>2
(0)) + ?m(t2

(0))*] 

m     rm
2(t2

(0)) + 2?m(t2(°)) . ?m(t2(0)) 6t      , (374) 

- Ht3^).?m(t2^)+{rm(t2
(0))-^3(0)) 

-Cr(t3<0>).?e(t3<0>)][U3«»).?m(t2<0>)] 

+ W0))-rm(4°>)}-V    . 075) 
relt3     ' 

Vx2      -     n^t3<0>)-v(t2<V + 2{Ht3^).?m(tf)} 

{W0)>-W0^W0Vrm<t2
(0)> 

relt3     ' 

(376) 

where we have used (368) and (374).    Substituting into (365) yields 

[re + (f • re) fit] {rm
2- (f. ?m)2 + 2[?m -rm-Ci. ?j£m- K 

+ r;-?m-[i.re][i.rm])f ]6t) 

and 
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r   + i . r   6t)(p   -p   )-p   [ i • r    + ir   • r   + r * r e e     / rs     rm      rs m      rm     e       e     m 

* (o) "* where the common argument of r    and r     is t0      and the common argument of i, r 
(o) 6 m m       2 e 

and r   is t0
v   .    Since e       3 

f2A->2        r-*       ■* *   -•       "♦       A      •*      *• ir      - (i • r   )   + 2 [r    • r    - (i • r   ) (r     • r   + r   • r m mm m      m 

-   [i- r.][l- ?  ])-L]6t} e m      r J 

m m "mm mmeem 

1/2 

r      2       *    -   .2-, 1/2 
[r      - (l • r   )  J m m 

r     • r    - (i T   ) (r   T   + r   T   - Li" r  J[i# r    J) =- 
,    m      m m   y m    e       em e m     re ^ 

2        *    -   .2 -,1/2 
Lr      - (i • r   )  ] m       v m 

(378) 

we find 
o      -    _♦    öl/o    *   u        r~ rm-r   -(i'rj(rm'rfl + r • ?  -[i'r* ][i-r*  ] 

f[r   2- (i- ?   )2]1/2 (i. r )+   e   m    m mmeem e m 
I    m m e >      2    ,r    -   v2n 1/2 [r      -(l • r   )  J m m 

r     • r   + r   • r    - (i • r ) (i • r   ) 
/ v /1        \ . m      e      e      m e m    k 

-(ps-
pm)(1're) + ps ; r* e 

=   (p   . p   ) r   - PQ 0 • i   ) - r   [r   2- ( f • ?   )2 ]1/2       , (379) 
s      m     es mem m 

and finally 

192 



Öt    «     r    Irxr    M(p   -p   )r   -p   (r   • r   )-  Ir   xr       \ e '   e      m1   lVKs     Km'   e     Ks v e      m e      m1 J 

{2   ~*     ^* 2~*,i* -*     ~*       ~»     i»     —»A 
r      (r   • r ) + r    (r   • r   ) - (r • r   )(r   • r   + r • r   ) m   v e      e        e v m    m e     m      m    e      e     m 

- [(p   - p   ) (r   ' r ) + p (r -r ) (r *r   ) - p (r   «r   + r -r   )] LVKs     'm     e      e      Ksv e    e   v e    m      Ksx m   e       e    m' 

[l^eX?ml]}      ' e      m     J (380) 

since 

tm   - (i* r   r][i« r ] +r   r   -r    - (i ■   r   ) (r   . r   + r -r   -Q-r ] Ci-r    3) m m eemm mmeeme m 

= r   2(i-r ) + r (r   .r   )- (i-r   )(r   -r   +r -r   )  , (381) m v     e        ev m    m      v     m   v m    e      em y 

Cr   2- (i'T   )2j/2  =   | r   x?    |  , (382) m       v     m '   e      m ' v 

and 

i   = r    = r /r (383) e e    e 

The solution for 6t ( = 6t    ) given in (380) can be considered as providing the 

next approximation to t« through the relation 

tV  - t3
(0)   +  *« (384) 

The next approximation is obtained from (380) by evaluating the right side with t« 

replaced by t«'    and t2      by 

t2(1>=t3^+&<1>-I|?e(t3«»)-rm(t2<°))| (385) 

(2) 
(see (372) and (374)), thereby obtaining or ' with 

t3<2)  -^>+ft«  =t3(°) + 6t(1) + 6t(2> (386) 

The iteration can be continued until convergence is achieved.   In practice, one 

continues the process until 6t     has been evaluated with | 6t      | < TJ but | 6t | > 77, 
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where 77 is an input accuracy constant (say   77« 0.05 sec). 

The above solution holds for either of the internal contacts provided that the 

initial guess t«      properly distinguishes between them.    To evaluate 0 in either case, 

we use (362) and (363) in the relation 

0 1 - cos 0 
tan^    * sinÖ 

r(p-p)-r      p-rr e   rs    m       mx rs      e my 
r    r e   mz 

rr(p-p   )-(r   • r ) p   - (k x r )• r     -1    . I    eVKs  Km      v m    e   Ks     v        e'    m 1   p 1 
L r   • (r   x r ) J     e 

me      e 
A . A       . 

[re(PS-Pm) -(V>re) PS
] $J " [ (re X V * ?e] ' ?m 

A • • A • A 

[r (p -p   ) - (r   T )p ] |r| + r [(r T   ) - (r T ) (r -r   )] eVKs Km7     v m   e Ks    '   '      e v e    m      v e    e   v e    nv 

r   • (r   x r ) 
m     e      e (387) 

The condition for internal contact differs from that for external contact only in 

that (353) must be replaced by 

?m*2> "   -Pf- Ps(V     ' (388) K
s 

since, for external contact p    and p   are antiparallel rather than parallel.   Hence 

the solution for internal contacts, described by (380) and the following paragraph, 

applies to external contacts as well if p     is replaced by -p    throughout.   This analysis 

of Mercury (or Venus) transits  is due to I.   I. Shapiro. 
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VII-F-2.   Stellar Occupations 

The observable used in orbit fitting for the occultation of a star by the moon or 

planet is the time of occurrence of this event.   Before the advent of atomic clocks, 

this time was the UT1 time t^with the coordinate time t« being given by (347). 

Let r* be a unit vector pointing from the earth observer at coordinate time tQ 

towards the star and let r,  be a vector pointing from the earth observer at coordinate 

time t« to the moon or planet at retarded coordinate time t? with 

t2   = t3 - rb/c (389) 

Let us define the unit vectors 

A A A 

j   =  k x i (390) 

*       i x r, 
k    =      T      b 

|ixrb| 

Let p,  be a vector from the center of the moon or planet to the point on the limb where 

the star is occulted.   The condition of occultation is that r* and (r, + p, ) be parallel: 

?#x £  +pK)   =  0 (391) 

If we write 

p,    =   p,   [ cos 6 j + s in 8 k ] 

rb = rb' 

r*  =   r% i + r^ j  + r^ k (392) 

the components of the vector equation (391) yield 
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-^  =  cot 9 (393) 
r*z 

r   r 
b   *z   =  sin 0 (394) 

cos 9 (395) 
rbr*y 

2 
rb 

2 
Pb 

2 
*z 

2 
*X 

+ 

2 
rb 

2 
?b 

2 

*y 
2 

r*x 
which implies 

pbr*x 

Only two of the above 3 equations are independent:  dividing (395) by (394) yields (393). 

Squaring (394) and (395) and adding we obtain 

(396) 

rb(l-r*x)1/2  =  pbr*x (397) 

since 

r„x
2 + r*y

2 + r*   *   =   1 (398) 

Let us assume that we are favored with an initial estimate tQ     which is 

sufficiently close to t« so that in expansions about t,      we may safely neglect powers 

of öt (= t« - t* ') above the first.    We have 

r  .  ?b*3>    vt3(0))+r>3(0))6t 
« 

« 

(399) 

rb «3W> 

so that 
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r.x  - V l* = r.x<^+      *       {ijb^h- [Ut^Vr^)] 
rbV> 

Equations (397) and (400) imply 

(400) 

PbKx+^ [?*-\-«-?b)r^]} (401) 

where all vectors are evaluated at time t«'° .   Solving for 6t we have 

U"r*x ' 

• Lr*g rb"(i*rb)r*xJ 

r\ 

(402) 

The solution for 6t (= 6t    ) given in (402) can be considered as providing the 

next approximation to t« through the relation 

c3 r3 t«  =t,(0)
+6t<1) (403) 

The next approximation is obtained from (402) be evaluating the right side with t«'° 

replaced by t«/    and V°'by t . 

(1)     rb(t3    > 
t2(1>=t3(°)+/

)--¥— (404) 

(see (389)), thereby obtaining or    with 

t^-l^+fc»-^*»«**« (405) 
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The iteration is continued until 6t      is less in absolute value than an input accuracy 

constant. 

The above solution holds for either the first or second occultation of a star by 

the moon or a planet provided that the initial guess t«      properly distinguishes 

between them.    To evaluate 0 in either case, we use (394) and (395) in the relation 

tan4 = i^sJL   __  Pbr«x-rbr<V (406) 
2        sin 8 r,  r„ v 

b   *z 

The determination of 6 is very important if p,  is not a constant, which is the case for 

the Moon where Watt's limb corrections or their equivalent have to be applied.    The 

adjustment to p,  can be done simultaneously with the adjustment to t« in the iterative 

process described above. 
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VIII.     PARTIAL DERIVATIVES OF OBSERVATIONS 

By (184) the partial derivative of the theoretical value h of an 

observation with respect to a parameter 3 is 

1 or 2  6 a j     m 
8h   V^ V^ 8h_ ^± X^   8h_ 8oi 

Z^ Z^ aJ 36 Z-,  3aJ    33 
1-1 j-1 i j-1 

(407) 

where  (r., ..., r )  are the components of the position and velocity of the 

observed object relative to observing site i(i = 1, 2 if two sites are 

involved in the observation and  i = 1  if only one site is involved).  For 

most observations 

8h 
= 0,  j = 4, 5, 6 (408) 

except for such things as doppler shift measurements. 

For observations of an earth satellite b or moon m ■ b we have 

by (185) 

frj    3*Je(t») _ 9xjle(t,) 

83 
(409) 

83        83 

For observations of a planet p or sun p = s with x  ■ 0 we have by (186) 
ss 

fi 9xps
(t*> 

33 - " 83 

8x;j (t.)  8xj (t.) ie i' ,   es i 
83 83 

M 8xj (t.) 
m  me i 
M   83 

_xd (t)iL_/V Xme^i; 83 \H / 

(410) 

For a star p external to the solar system we have by (187) 

8r^   8xj   . 
po __ 1_ 1 

83 83   R 

8x^ (O  8x^(tn) le 1     cs  1 
83 83 
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M    9xj   (t.) m      me    1 
M 98 

9    /M\     9x^(1^) 

" Xme(tl)   98 IMJ+ ' ~98~~ 

- - k (t 
R2 98 [

xle^l 

M 

-cs^-^V^^so^ >] (411) 

The partial derivatives of the coordinates for the various bodies 

in the solar system are determined by numerical integration as explained in 

Section VI, except for 8 being the astronomical unit in light seconds (AU). 

The coordinates as interpolated from the ephemeris magnetic tapes are in astro- 

nomical units and are multiplied by AU to get the coordinates xJ  used in 

the formulas of Section VII.  Thus we have 
uv 

9(AU) 

xj 

AU 
(412) 

For the unit vector x   pointing at a star p we have by (318) po 

9x 
po 2 _9A _ 
98 po 98 

cos A sin f| 775- 

9x' 
-E£ 
96 

1 9A 
x
Po 98 " 

Sin X  cos n 33 (413) 

9x- 
-E° = 
98 

cos n|£ 
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where by (319) 

o 1 

o 1 

with all other partial derivatives of the right ascension and declination 

X,n of the star being zero. 

In (410) and (411) we have 

1  if  3 = M /M 
m c 

(415) 

so that the ratio of the mass of the moon to the total mass of the earth-moon 

system is determined by observations of objects external to the earth-moon 

system through the motion of the earth about the earth-moon barycenter. 

If 

have in (407) 

If  3  is a constant bias for the measurement, say 3 = ot ,  we 

ür =  i («iß) 

The philosophy in PEP is to add the bias to the theoretical value of an observa- 

tion before comparing with the observation. 

The expressions for the  9h/3r^  depend on the specific observable 

type.  In the following we derive these expressions for the various observables 

discussed in Section VII.  We also derive the partial derivatives with respect 

to parameters a  besides constant biases which affect observations but not 

motion. 

All the observable partial derivatives that are programmed in PEP are 

checked by the difference method using the same technique explained in (183) 

for the motion partial derivatives. 
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VIII-A.  Observing Site Coordinates 

The only non-zero partial derivatives for site coordinates  x^ 

in inertial space are with respect to precession parameters and site coord- 

inates fixed in the earth  (p , 0 , $')  for geocentric spherical coordinates 
12   3 

and  (6 , 0 , z )  for geocentric cylindrical coordinates.  Let  (u. »   u. , u. ) 

be the rectangular coordinates of the site in a coordinate system fixed in 

the earth.  By (191) we have 

(417) 

and by (193) we have 

4 
j ■ 

3u± 

3e± 

2 
= Ui '  36i ' 

1 
"ui 

3U3 

wt ■ ° (*18) 

3ul 

gjf - - Pl cos 6i sin r± 

2 
i 

w m p± sin ei sin ♦! (419) 
i 

3U3 

a$7  =   pi cos *i 

a 1 
3ui 

36i 
= cos 6i  • 

a2 
3ui 

- sin 0 » 

3ul 

36i 

= 2 
ui 

auj 
'  36i 

1 
a 3 

1  30i 
- 0 

3zi 
= 0 , 

8zi 
= o , i 

(420) 

(421) 

(422) 
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Finally by (189) and (201) we have 

tor ie 
33 t 

1=1 

dAfll 3u£ 9 dxie   ^P dAU 9ul 
33 dt     / v  dt 36 

j  = 1, 2, 3 (423) 

for site coordinates  3.  If  3  is some parameter upon which the motion of the 

earth about its center of mass depends we have 

3xj. 
ie 

aß t 
£=1 

3   ie 
33 dt 

8A 

33 
u. 

dt I 33 

L   j  =  1, 2, 3  (424) 

The partial derivatives with respect to parameters in the representation 

A ■ WSNPD are given in Sections IV-E-1 and IV-E-2.  With extended series of 

accurate long baseline interferometer observations it will be necessary to 

generate the matrix A by numerically integrating the equations for the motion 

of the earth about its center of mass.  The partial derivatives of A with 

respect to the initial conditions of this motion and other parameters would 

also be generated by numerical integration. 
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VIII-B.  Time Delay 

For h being the round trip time delay At we have by (215) 

rj 
3At    ri 

3r J 
(425) 

For a = p being the radius of a planet in light-seconds we have by (226) 

3At 
- 2 (426) 

For a being the spacecraft transponder delay for a radio transponder time 

delay measurement we have 

3At 
3a (427) 

The transponder delay is not really a constant, but depends on temperature, 

signal strength, etc.  The transponder delay must either be calibrated in 

advance and/or some model more complicated than just a constant delay must be 

employed with parameters to be determined in fitting to data.  The expressions 

for the partial derivatives with respect to these parameters are straight- 

forward; the difficult task is to construct a valid model. 

For a - A being an ad hoc parameter multiplying the general rela- 

tivity effect (228) we have 

3At 
3A 

= At 
rel (428) 

X=l 

For a = £ being the number of electrons per cubic centimeter at one astronom- 

ical unit from the sun in expressions (230) and (231) for the effect of the 

interplanetary media we have 

3At 

3e 
= At 

plasma (429) 

e-1 
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Actually, all the above expressions should be multiplied by (1 - fractional 

frequency offset of UTC from Al) as in (237).  However, this frequency offset 

is zero after 1.0 January 1972 and it is small before 1972, so that it can be 

ignored in the partial derivatives since they only have to be known to perhaps 

4 decimal places. 

VIII-C.  Doppler Shift 

The partial derivatives of the phase delay AT are the same as for 

the group delay At except for the sign changes in (239) .  The partial deriva- 

tives of the phase delay doppler observable is by (234) 

3Af 

33 
f_ 
t 

'9 AT, 3ATt 
(430) 

Since the partial derivatives are not needed to more than about 4 

place accuracy, we need only consider the first order terms in expressions (243) 

to (251) for the instantaneous doppler.  To first order we have 

Af 

2  -*-   '+ 

i^l   lril 

(431) 

so that 

3Af 

33 
= - f £ 

i=l 
33 

+ r, !!3 
33 ^rl 33 

(432) 
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VIII-D.  Angular Measurements 

In the notation of Section VII-D, the vector  q differs from the 

vector r1 by the aberration affect (259), (261) or (263) and by other small 

corrections.  Thus to the accuracy to which we have to calculate the partial 

derivatives we can assume that 

*+ 3r-, la » —i 
33       33 (433) 

VIII-D-l.  Azimuth-Elevation 

By (272) we have 

3i 
38 -(!•')' (434) 

and by (273) and (274) we have 

3 (elevation) 
33 1/2 

fr 

. l£_N_ 
33   i 33 I 

(435) 

3 (azimuth) 
33 (qp • M)Z + |(q  x M) • NJ' 

[ 
tä 

(S ' M)lä3  XM) ' N 

7 (% x s) * N] (436) 
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VIII-D-2.  Against Star Background 

For photographic observations we have by (278) and (279) 

36 
33 

|q| 1 - 

1/2 

3    3     -*■ 
is 9L_ + .  jk 
36 33 

_3a 
33 2      2 

(q )  + (q )  L 

1 3q2    2 3g1 

■33 ~q 33 

(437) 

(438) 

The partial derivatives with respect to the infinitesimal   rotations  (d^1, 

dft~, dU )     are very easily derived from their effect (284) on right ascension 

and declination. 

VTII-D-3.  In Satellite Reference Frame 

VIII-D-3a.  Approximately Inertial Frames 

For satellite based observations let the components of the vector q 
12   3 

in the satellite fixed frame be  (qÄ , q^ , q^ ).  The components referred to 
12   3 

the mean equinox and equator of 1950.0 are of course  (q , q , q ).  By (285) 

and   (286)  we have 

k 
q* E 

£=1 

t 
Duq 

1 
D„,    q 

k    =    1,   2,   3       (439) 

so  that 

3q^ 

36 ■±%*>-± 1    l 

33    q      Z^    ik W 
A-l 1=1 

1,2,3 (440) 
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For the spacecraft based right ascension and declination in a slowly varying 

spacecraft fixed reference system we have by (288) and (289) 

d6_ 
33 

i"*" i 1 - 

, 3 
.2-1 1/2 

\  3 3 
3* 

33 
I  8q* 

q* 33~ (441) 

3a 
33 r  M j / ^2 

(q*) + (q*) 

a 2 
1 

q* 33 

8cl* 2 
q* 33 

(442) 

By (287) we have 

3D 3D 3D 3D 

33 3     31 33   3ft 33   3o) 33   J'      '  ' ^ J; 

where 

3D 
11 

3D 

31 

3D 
21 

31 

3D 

sin ft D 

— cos ft D 

12 3D 

31 

3D 

sin ft D 
13 

32  »  31 
= sin ft cos I 

22 3D 

31 

31 

3D, 

■ — cos ft D 
23 

32 ■  31 

3D, 

■ — cos ft COS I 

31 
32 33 

sin 03 cos I  ,  ,>-  = cos to COS I  ,  ^  ■  - sin ] 
31 31 

(444) 

3D 
11 

3D 

3ft 

3D 

- D 
12 3D 

21 
3ft 

3D 

= D 

3ft 

3D22 

- D 13 
22  ' D23 

3D 

11 ■  3ft 

3D 

- D 23 
3ft     D13 

3D, 
31 32 33 

3ft 
= 0    , 3ft 0    , 
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=  D12' 

5D12 
e) 0 

&D21 
Ö 0) =   D22' 

äD22 

5D31 
d (j) =  D32' 

5D32 
00) 

ÖD 
=  - D 13 

11 '     du 

ÖD 

=  0 

■D2r -dr=0 

ÖD 
=  - D 

33 
31'   TU" =  0 (446) 

ö I/o j8,  2fi/öj8,  b ü/hß will have obvious expressions if ß  is a parameter in a Taylor 

or Fourier series representation of I, ß or o  analogous to (294). 

VIII-D-3b.   Approximately Earth Oriented Frames 

For an approximately earth oriented satellite reference frame such as for 

LES-8 or LES-9, the partial derivatives of the pitch and roll angles are by (300) and 

(301) 

ÖÖ # 1 
bß 

- ^# 
q- Ei - _a£i 

#   . - L-B--V+5 
3Ei 

(447) 

a» # 
TT 

(5.E2V + (5-E3V 
[r?.E3

#)r#-B2
#
+?-#) 

ÖE # 

" Cq- E2  ^TT* E3   + q'TT^J (448) 

Ws have by (299) 
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TT~ ~ ~ST~ + { E2 "5jS E3   "TjS- 

r       E2 s E3 + Cdn3inr -
A
S-TW- 

Al \* 

5E2        SE2 r _,* adßg ^*  ädßj . 

TT" = ~§~3~ + ^"El   TS~ + E3   TTT- J 

öE, 5E, 
+ C-dß3Tf-   +dßlTJ->) 

ÖE3# SE3*        r?*Ödß2      j?**d°l> 

+ Cdß2-ST-   d0lTfir) (449) 
and by (298) we have 

3Ef f, ÖE. i   ÖD. OE/k V i V ik    - 
^-=   1     Djk -d~ + L  Tjj^  Ej k-1.2.3 

j=l j=l 

(450) 

For partial derivatives with respect to the quantities P, Q, u defined in terms of the 

Euter angles I, fi, a by (292), we have by (293) 
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P^ + CT 

Sa     L        2P      r, L 
TF     „2 . „2     m2 , „2,2   L ,  ?l + QZ     (PZ + Q¥   L       ,/1.(P2 + Q2) 

5a   _  L J2. 
3Q p2 + Q2 (P' + Q'r ,2 . „2,2 [--F= ^1 -(P2 + Q2) 

1 
(451) 

dD 
^±i- =   (Q gin Z - 2P cos u ) a + P (Q sin u  - P cos u) -§■£ 

SD 12  _ ^-^- =  (2 P sin ü + Q cos u) a + P (P sin w + Q cos w) ^p- 

ÖD 13 
SP 1 

9D21 
5P = Q cos u  a - Q< 

5D22 
5P 

= - Q sin ü a - Q< 

ÖD23 
£>P = 0 

5D31 
ÖP 

= - cos u 

5D3? />rf 

ap sin u 

ÖD33 
= 

-2P 
9P 

^ - (P2 + Q2) 

Q (Q sin a) - P cos u ) -g-p- 

5a 

(452) 
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ÖD 
3"Q-  =  Psin ü  a + P (Q sinoT- P cos w)-|-£ 

ÖD 12 ~ ~ r\ 
y^~  =  PCOSüCT  + P (Psin ü + Q cos ü)-2— 

ÖD 13 
öQ 

=  0 

ÖD21 = - ( 2 Q sin w - P cos w) a - Q (Qsinu- Pcos w)-y^ 

ÖD 22 
Tg" - (Psin ü  +  2Qcos w) <r -   Q (P sin u + Q cos u )   öfT 

^7 

ÖD 23 =  -1 

ÖD 31 
öQ 

=  sin ü 

ÖD 32 
TQ- =   COS  ü 

ö D 

TQ 
33   = - 2Q 

V 1 - (P2 + Q2) (453) 

ÖD 11 ÖD 

ö ü 
=   D12> 

12 ÖD 

Ö£J 
-  - Dn, 

13 

ö ü 
=   0 

ÖD 
21 

ÖD 

ö u 
=   D 

22 
22, 

ÖD 

ö ü 

31    _ 

ö ü) 

ÖD 

ÖD13 -D21,  —12 =  o 
Öü 

=   D 
32 ÖD 

'32' 
Ö(J 

=  -°31* 
33 

=   0 
Öü 

(454) 
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Finally, by (291) we have 

I   -, a     x   x, _   h xt    x I 
—♦ i-» 

X,     X X, 
TT " TZ T~   L^ir * xleTXlexT? 

i. i      X Xi le      le 
—9 —^  ■ 

(x.   xx,) s 5x le      le r      le       -        - Ale   >"1 
*   (-5T-x  xle + xl* x T7r  ; 

I xle X XTe' 

TS~X xle TXlex T7T  7J (455) 

SE2        9E3 _ ÖEj 

"5T     TB~ x   El  + E3 x TT (456) 

9E3 1 rSxle       *Je 5xlel 
"^ '  "    |xle|      

LT*~ ' "ÜJ5"  '  ^~J <457) 

VIII-'I>4.   Meridian Circle 

For our discussion of the partial derivatives of meridian circle observations 

we need the following consequence of (305): 

TT" -1 ^i ^r +1-rr1" q k = 1'2-3   (458) 
je=i JM 

We shall also need      « 

wk   = Y      W?\t  ** k   =   1,  2,  3 

q w rj (459) 

Equation (309) for correcting the time of meridian crossing implies that at the instant 

of meridian crossing 
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a. = 0- e (460) 

where a is the right ascension referred to the true equinox and equator of date, 

© the true sidereal time and 6 the west longitude of the observatory.    Thus by Eqs. 

(65), (66) and (67) relating the true sidereal time and UT1 time, we have 

so that 

SCT        BUT I ,   BAT 
"Tj3" =   TT~+ ~*T 

o 

Taking the partial derivative of (306) and (307) we obtain 

do   _ i  r aw3, .1.3 BCT 

i;i K-£?T w 

3       £        .   ^.  £ w 

| w |2    i-1 

V      JG ^Bw     ,  .1   BCTM 

a« _ i r l f*w2    . 2  acT > 
(w  )   +(w  ) 

-    w 2/"aw1 . A acT^i 

214 

(461) Bö    deo    auTi 
T$      dt       T]3 

since we can ignore the partial derivatives of "5" and A 0 cos €. 

Let us write 

CT   ■ UT1 + AT (462) 

1 ba   ,   a AT 
d0 /dt      "53"+ TS" (463) 

(464) 

öT^ J (465) 



where by (463) and (465) 

{[(.'iW)2] 
de o 

(466) 

withd0/dt being given by (68). 

Formulas (464) and (465) for the partial derivatives of meridian circle 

observations involve the velocity w  because the time of the observation is specified 

as the instant of meridian crossing.   We had originally programed formulas 

analogous to (437) and (438) for meridian circle partial derivatives, but in checking 

them by the difference method, we found we had to use the more rigorous 

formulas (464) and (465).   This was especially true for lunar observations. 

The meridian circle partial derivatives with respect to the CT-UT1 parameters 

in Section I1I-E are non-zero by virtue of the term d AT/d Bin (466).    The partial 

derivatives with respect to the precession parameters in Sections IV-E-1 and IV-E-2 

are non-zero by virtue of the term d (NP), 7ö ß in (458). 

The expressions for the partial derivatives of right ascension and declination 

with respect to the equinox, equator and declination biases Aos A0 , A 6 follow 

trivially from (313).    Those with respect to the phase correction coefficients ß = a 
n 

in (314) are given by (464) and (465) with 

d w        d A 
d a ö a 

n n 
(467) 

where d A p/d a   can be calculated from (314) in not so trivially a manner. 

VIII-E.   Long Baseline Interferometer 

By (316), (317), and (324) the partial derivative of an interferometer differential 

delay measurement is to sufficient accuracy 

dAt  w.       * A A d a d a, 
 c*   _ 3A t     ,        o       1  f.        v ,.,„, 
TT    Tp~ + w + TJT (t" V (468) 
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For a quasar observation we have by (322) 

oAt **po     -y    -        r S ;r20(t2) ^(/V   > 
TJ5" "  " Tß~'    ' V' v      §~B ~~513       ' (469) 

and for an observation of a noise source within the solar system we have by (339) 

through (345) 

oAt   _    ?1 9?1 ?2       .   **2 ,,_„. 

■^""W ""■ W ^ (470) 

By (337), (338) and (346) the partial derivatives of the differential delay rate measure- 

ment in the two cases are 

b*\* o At 5al 
■sr - ¥JT + iff (471) 

oA't a?po r*T   .  .    *        -I    -      r S?20(t2)   ^ic/Vi 
-§i5- = • -yr- • Lx2oft2)_xiofti)J" V L—sis sr- J 

(472) 

ÖAt 1 htl       -     . -       9rl _1_    r-    &rl>^-   !? i r    i   * .-      i      i   r^    i^^ ^i 
ri 

^2      *•      -       ör2 1 
TT'r2 + r2-TT'TT 

2i lr2 

1       r        2 . *   .-      °r2 1      ^     °r2V-    -M 
■§Xr2 + r2'^T   7TT2lr2*-5irHr2-r2^J 

(473) 

VIII-F.   Transits and Occultations 

VIII-F-l.   Transits of Mercury 

Let us consider a transit of Mercury as discussed in Section VII-F-l.   Equations 

(347) and (365) give the implicit dependence of the observed universal time  t«* = t« - A t 

of transit on the unknown parameters 8 =  (£r, ..., Rn) which affect the motion of the 
1 rn 

earth and Mercury and the unknown parameters a =   ( ot , ..., a. ) which affect the 
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difference between coordinate and universal times (see Section III- E).   Let us write 

this implicit dependence as 

F[?e0*> *3(t3*' *0'   ?m^' h <V V ^3* • «>)   ' Ps' Pml =  ° 

(474) 

where by (365) 

T.   -      /     2 2,1/2 , . 
F=r(r      - r      )-r(p-p) + r      p /AI^\ ev m mx ' e   's     Km mx rs (475) 

1 m 1 n 
Let   X be one of the parameters p ,  p    ■    (ry,...,ry    )   or   (p,  ..., ß ).    Holding 

s        III 
all the.other parameters fixed we may view the functional dependence (474) as 

F(t3* , X )   =  0 (476) 

Differentiating (476) with respect to X we see that 

0 V ö F/ÖX 

'     oX ^T^V (477) 

By (475) the following relations hold: 

1*    =  fr   2-r     2)1/2-(p   -p   ) or v   m mx y rs     rm 

OF                  re rm 
Or          r    2            2N1/2 m      (r       - r       f ^ m        mx / 

OF                             re rmx 4-    n 
or                  r      2            2M/2 mx            (r      -r        ) v   m         mx y 

+ ps 

ö F -^—    =  - r   + r op                e       mx 

op             e (478) 
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By (347) we have 

a F 

3* 

OF 
ö t0 

Or a? 
"5t 

=   r m 

3* 

OF 

aor 

a F    BAt 

öt3 aaj b(y 
=  r 

öt3* 

a At 
e aaj 

m 

Or m 

örvJ 

•-     ÖAt 

ö er 

where a   is one of the (a , ..., a   ) upon which A t depends.   We further have 

(479) 

(480) 

Or e = r   • r e      e (481) 

Or 
JH«r    • ? >t«        m      m 

-*-♦-♦-♦ —» —» 

or r   • r    + r   • r    - (r • r   ) (r * r ) mx w     e      m      e      m        e    m      e    e 
"5t7" r 3 e 

Or e 
ax - V 

e 
ax 

or m _ 
oX 

r m 

or m 
ax 

ör mx 
aX 
 1_ 

r L   m 

-,     or e ör 
r    - (r • r   ) r     i •   ^ v     + r   • memeJ      o X e 

m 

ax 

Thus we see that 
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|^ = rCr   2-r     *)1/2-(p   -P  Wr   •?) 

+  " TFT    (*™ ' O 
m        mx / 

• • A A • 
—►—»—♦-=» —» —♦ 

[r   r             -,  r r -r   +r »r   -(r «r   )(r »r )-, e   mx        I        e    m    e    m     e    m v e    e 
P." / i     2\i/2J L : J 

v m      mx / e 

(482) 

The formula for ö t,ydXwithX = p   or X = p     follows from (477),  (478) and (482).    If o s m 
X   = a3 (j = 1, .... m), we see by (477), (479), and (480) that 

öt3* 5At 

3tt
J a«' (483) 

If X =  ßj   (j = 1, ..., n), the value of öt3*/&X is given by (477), (482) and the 

following: 

—» 
r ^      ör 

+ 
V m       mx   / 

r re rmx 1 Jr     iTm ,    1   f-      *   -   ,*l5lel 

^ m      mx 

(484) 

If X =  ß   is an initial condition of the earth-moon barycenter orbit, then ör   /dX =  (T, 

and if X =   B    is an initial condition of the Mercury orbit then   ör /dX= 0.     ör /dX 
-♦ . e e 

and d r   /dXare both non-zero only if X = Ö   is a parameter, such as a planetary mass, 
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which affects both orbits. 

The above derivation of partial derivatives applies for internal contacts.   For 

external contacts, p    must be replaced everywhere by -p    and (dF/dp   ) by 

-<*/*„>• 
VIII-F-2.   Stellar Occultations 

We now consider the stellar occultation observations discussed in Section VII-F-2. 

By (347) and (397) the implicit functional relationship between the universal time t«* of 

occultation, the radius of the body p, , the parameters ß= (j8 ,..., o ) upon which orbital 
1 m 

motion depends, the parameters a = (a ,..., a.   ) upon which At = U-t«» depends and 

the parameters y = (v., ...  , v  ) upon which star coordinates depend is 

F(rb(0, t3(t3* , a) )   ,   r* (y), p^ =  0 (485) 

where 

F   S V1 " r*x2>1/2 - Pb r*x (486) 

By (485) we have 

OF        ,,     „    2.1/2 

^~b   "   (   '    ** } 

IF    _ „__     2,1/2 

*x 
=  - rb r#x(l-r#x )       - Pj 

II   =  - r*x <487> pb 

By (347) we have 

OF SF örb        ■* r* 
■^T-  = TT-    •    ITT-   " *u   •   vT"  =  0 (488) 
"3*      9t3          3t3*         b       3t3* 

OF       OF    8 At           *rb         '-    BAt Ör*        *                          /AOnX —r = r   .      « r,   p   ,    , =  0 (489) 
dor1      öt3     öaJ           da                öryJ ö»J 

We further have 
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arb 
ät3 

A               • 
—♦ 

rb    rb 

3r. 

5t3 
=   0 

Sr*x ?
b • **'(r 

öt3 rb 

lb   V 

If X is one of the unknown parameters, we have 

5 rb     *      a?. =  r,   .        b 
**        b    "ST 

ör*     -      ör* 
=  r 

# 

(490) 

ax      *    ax 

TX— T" Lr* ~ (rb*r^ rb '* ~bir+ rb' "äir (49D 
D 

Next,  we have 

i^j -   (1 - r,x
2)  (rb-?b) -    [rbr»xd-r#x)1/2

+ pb] 

. A A . 

r^ (492) 

The formula for d ^^^  follows from (477),  (487) and (492).    By (477),  (488), and 

(489) we obtain 

l^t =  - i£t (493) 
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where   or (j = 1,  ..., m) is one of the parameters upon which the difference At = t„ - t«^ 

between coordinate and universal times depends.   For X one of (ß   , ..., 8n) or 

(v ,  ..., vq), we have 

W-('-^\-^-[v.J'-^/2 

or, *       dr. 

D 

and the formula for öt^/öX  follows from (477),  (492) and (494). 
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IX.        NUMERICAL TECHNIQUES 

IX-A.   Numerical Integration 

At the present time we have programmed three techniques for numerically 

integrating ordinary differential equations in PEP:   (1) Nordsieck variable step size, 

(2) Adams-Moulton constant step size and (3) Second Sum constant step size.    The 

Nords ieck technique is self starting and chooses its integration step to retain 

stability and accuracy.    The other methods call the Nords ieck routines for starting. 

The output of these methods  (1), (2) and (3) is at constant tabular intervals, with the 

option in method (1) of having output each integration step at variable tabular intervals. 

The documentation of the formulas used in these integration methods is contained in 

Refs. 27 and 28.   Here, we content ourselves with some general comments. 

The ordinary differential equations that are numerically integrated in PEP 

are the equations of motion and the variational equations for the partial derivatives 

of motion with respect to the various parameters.   In the following any statement we 

make regarding motion applies equally well to the partial derivatives of motion. 

The numerical integration step size is smaller than the output tabular interval 

in the constant tabular interval case, since stepping ahead is more sensitive than 

performing a central difference interpolation after the fact.    The integration and 

output step sizes are chosen to give the necessary accuracy with Everett eighth 

difference position and velocity interpolation when processing observations in PEP. 

The Nordsieck integration technique programmed in PEP predicts ahead using 

a fifth degree approximating polynomial whose coefficients are approximations to 

derivatives of the function being integrated.    In the variable output tabular interval 

option the position, velocity, acceleration and jerk are written out at the end of each 

step, whereas in the constant output tabular interval option only the position and velocity 

are written out.    The first three quantities are exact, but the jerk, being a coefficient 

in the integrating polynomial approximating the time derivative of acceleration tends 

to lag behind the true value.    Two point, second derivative Hermite interpolation is 

used in processing observations with a variable tabular interval output.    That is, 

when interpolating for position, the position, velocity and acceleration at the two 

surrounding tabular points are used and when interpolating for velocity the velocity, 
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acceleration and jerk at two surrounding tabular points are used.    The accuracy of the 

jerk in the velocity interpolation is adequate.    Actually, the interval for interpolation 

could have been larger than the interval of integration  since a central interpolation 

is less sensitive than stepping ahead. 

Note that the variable tabular interval interpolation and integration techniques 

both use a fifth degree polynomial.    The constant tabular interval Everett interpolation 

uses a ninth degree polynomial coinciding with the values pf the quantity being 

interpolated at 10 tabular points surrounding the instant of interest. 

The Nordsieck variable output tabular interval integration method is very 

useful for highly eccentric satellites or planetary flybys where the integration step 

size can vary drastically.    The Nords ieck method is also useful if there are sudden 

thrusts acting on a satellite.    If a constant output tabular interval method is allowable, 

the constant step size Adams-Moultan and Second Sum methods are faster than the 

Nords ieck variable step size method.    The Second Sum method, which takes advantage 

of the fact that the equations of motion are of second order, is the fastest of all. 

Numerical integration can go both forward and backward from the initial epoch. 

If there is an error stop during an integration with output on magnetic tape, the 

integration can be check-point restarted at the point where it stopped using the 

position and velocity on the magnetic tape as initial conditions. 

DC-B.   Polynomial Interpolation 

IX- B-1.    Everett Interpolation 

Let f(t) be a function, and suppose we have a table of its values f. = f(t.) at 

equally spaced tabular points t..   We define the even order differences for this 

tabulation by the inductive relations 

A.°   =  f. 
1 1 

A.2n   = A1+1
2n-2-2A1

2n-2 + AI.1
2n-2 (495) 

Let h = t., , - t. be the tabular interval and let q = 1 - p.    Then the Everett 

interpolation polynomial 
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g(to+ph)   =  pA} +    (P+1>P(P- 1)    A2 

31 

+ (p + 2)(p+l)p(p- l)(p- 2) 
5T 

.   (p + n) (p + n- 1) ... (p- n) 
(2n + l)   I 

M    o 3 . 

v* 
2n 

(q + 2)(q + l)q(q- 1 ) (q - 2)   ,4 
5 1 o 

(q+n)(q+n- 1  ) ... ( q - n) A 
+  • * * (2n + l)   I c 

2n (496) 

satisfies g(t.)   = f(t.) for i = - n, ..., n + 1.    The equality g(t) = f(t) holds for all t 

if f is a polynomial of degree 2 n + 1.    For t   ^ t ^t,, the Everett interpolation value 

g(t) can be made to represent the actual value f(t) as accurately as desired by 

appropriate choice of tabular interval h and highest order of difference used 2n if f 

posseses derivatives up to order 2 n + 2.    See Ref. 29, p. 103. 

In the Planetary Ephemer is Program (PEP), the tabular interval for each 

function to be interpolated is chosen so that the necessary accuracy can be obtained 

with Everett interpolation using eighth differences.    The actual interpolation formula 

used in PEP is gotten by putting (496) in a form which is more efficient for use on an 

electronic computer.    (The idea for the ensuing manipulations is due to W. C. Mason.) 

Namely, setting n = 4 in (496) we can write 

u      u  \ 1^23^35^47^59 g(tQ=hp)  =   yx p+yx p   +yx p   +y{ p   +yx p 

„1 23±     35x     47±     59 
+ Y0   Q + Yoq   +Y0 q   +Y0 q   +yQ q (497) 

where 
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Ao     1A2,1A4       1A6,      1     A £ 
A.    " TA.    +-T7; A.    - —rr A.   +   -TÖ77 A. 1       61       30    1       140    1 630     i 

2        1 A 2      lA4a7A6       41       A 8 
ri     =   6Ai   "24Ai   + 720Ai   "15144*1 

3 1    A 4       1A6 13    A 8 
yi     =T20Ai   "360Ai    +T7280Ai 

1    A 6        1       A 8 
5040     1      I2Ü96"    1 

5 1  8 
yi     " 352880        1 

>    i = 0,  1 

(498) 

From (495) it follows that 

A.°   =  f. 
1 1 

A.     =  f.,, - 2f.   + f.  . 
1 l+l        1 l-l 

A.     =  f.,0 - 4f.^ + 6f. - 4f .     + f. 
1 1+2        i+1 1        l-l       1-2 

A.     =  f.^Q - 6f.,0  + 15f.., - 20f. + 15f.  , - 6f.  0 +f.  Q 1 1+3        1+2 l+l 1 l-l        1-2      1-3 

A.     -  f4J. -  8f., Q + 28f., 0 - 56f.,. + 70f. - 56f.  . + 28f.  0 - 8f.  Q + f.   , 1 1+4 1+3 1+2 l+l 1 l-l i-2        1-3      i-4 

(499) 

so that 
1        563 f  m   215 (f      + f     v       38   ,f       , f     v 

yi 315   1      252 < i+l      i-l; + 315   (ri+2+Ii-2; 

"its WW^SöWW 
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1213 f + -Z5L  , )--%2-(f      +f     ) 
1296   i     1296   iri+l      i-r     3240   lIi+2      i-2' 

+ 1261 
45360 

41 
WW-T5I44 WW 

1367 -  _ 253    , f     ,       199 ,f f     , 
"8640^   2T60" ^i+l+W  + 432Ö(fi+2 + fi-2} 

-  -i^- ft      + f     ) + —— tf      + f     ) 
2160 VIi+3      i-3;      17280 ui+4    W 

y*   = 
59   f   +    23 

6048    i       3024 

13 
ff.^+f.-o)  " 

1 
(f.,.+f. .) 15120   v i+3      i-3'       12096 v i+4      i-4 

5184 fi " 6480   (fi+l + fi- 1* + T2960 (fi+2 + fi- 2) 

45360   (fi+3 + fi-3)+ 362880   (fi+4 + fi-4) 

(500) 

The electronic computer on which PEP is run carries along 16 decimal places in 

floating point computations.   We therefore write the above formulas in the following 

form with decimal coefficients rather than rational coefficients: 

y.1   =   1.7873015873015873 f. - 0.4960317460317460 (f.,, +f.  ,) Ji i v l+l      i-1 

-1 
+ 0.1206349206349206 (f.+2 + f._2)- 0.1984126984126984 x 10 (^+3+^.3) 

-2 
+ 0.1587301587301587 x 10 * (fmj_A + f. .) v 1+4  1-4 
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y.2 = - 0.9359567901234568f. + 0.6057098765432098(f.+1+f._1) 

- 0.1632716049382716(f.+2 + f._2) + 0. 2779982363315696 x 10" 1ffi+3
+f

i. 3 

- 0. 2259700176366843 x 10~2(f.^+f. ,) v l-K      i-4 

y.3   =  0.1582175925925926f. - 0.1171296296296296(1.^+1.^) 

+  0.4606481481481481 x 10"1(fi+2
+fi-2) " °* 8796296296296296 x 10~2 

(fi+3 + W 

+ 0. 7523148148148148 x 10~3(f.^+f. A. v 1+4 1-4) 

y.4 = -0. 9755291005291005 x 10~2f. + 0. 7605820105820106 x lO"2^^^) 

- 0. 3505291005291005 x 10~2(f.+2+f._2) + 0. 8597883597883598 x 10"3 

WW 
- 0.8267195767195767 x 10"4 (f., . + f. A) 

1+4  1-4 

y.5 =0.1929012345679012 x 10"3 f. - 0.1543209876543210 x 10~3(r .+f. .) Ji i v i+l i-1 

+ 0.7716049382716048 x 10"4(f.+2+f._2) - 0.2204585537918871 x 10"
4 

<fi+3 + W 

+ 0. 275573192398589 x 10_5(f.^+f. A) v i+4      1-4 
(501) 

To find the value of f(t) for t   £ t ^t, by interpolation, PEP determines the y J 

and y,J from the above formulas and then uses formula (497) in the factored form 
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g(t)   =  g(tQ+ph)   =  pCy^+p^y^+p^y^+p^y^Vy!5)))) 

/    1 _L.   
2/    2_^2/    3_L2/    

4 _L   
2    5XU. 

+ q(y0 + q (y0 -*i (y0 -^ (y0 + q y0 )))) 
(502) 

It is easily seen that this procedure requires less computer storage and time than the 

procedure of computing a difference table and using equation (496). 

If the value of df(t)/dt is needed in PEP and there is no tabulation for this 

function as there is for f(t), it is assumed that df(t)/dt = dg(t)/dt (numerical 

differentiation), where 

.  deft) 1  ,    2/0    2 ,    2 /e    3 ,    2 ,_    4 , n 2    5vXX 
h   dt     =  yl   +P (3yl   +P    (5yl   +P    (7yl   +9p yl  )}) 

- Y0
l -q2(3y0

2 + q2(5y0
3 + q2(7yQ

4 + 9q2 yQ
5))) 

2 
If the value of the second derivative is needed in PEP, it is assumed that d f(t)/dt = 

2 
d g(t)/dt, where 

2 
h2d_g£)_ u  p(6yi2 + p2(20yi3 + p2(42yi4 + 72p2yi5))) 

(503) 

+ q(6yQ
2 + q2(20yo

3 + q2(42yo
4 + 72q2yo

5))) 
(504) 

There are exceptions to the use of eighth difference interpolation in PEP:" the 

nutation is interpolated from a table at half day intervals using fourth difference 

interpolation and the wobble and A1-UT1 are determined by second difference 

interpolation from 10 day interval tables.   To document these cases and for the sake 

of completeness we present the formulas corresponding to those above in the case of 

second, fourth and sixth difference interpolation.   The derivations are exactly 

similar to the one given above in the case of eight difference interpolation. 

The second difference interpolation formulas are 

g(t) = g(t0 + ph) = P(y1
1+p2y1

2) + q(y0
1+q2y0

2) 
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(505) 

(506) 

The fourth difference interpolation formulas are 

g(t) = g(t0 + ph) = P(y1
1+P2(y1

2 + P2y1
3)) 

,    L   2,    2±   2     3U 
+ q (y0 +q  (yQ + q y0 )) 

y"   =TfVl|(fi+l+fi-l)+3Ü(fi+2+fi-2> 

y? - -iTfi+^ ffi+l+fi-l>-  TT<fi+2 + fi-2> 

^i3 = is fi ■ ■& (fi+i+ fi-1> +m (f
i+2+ fi-2

) 

The sixth difference interpolation formulas are 

g(t) = g(t0 + ph) = P(y1
1 + p2(y1

2 + p2(y1
3 + p2y1

4))) 

+ q(y0
1 + q2(y0

2 + q2(y0
3 + q2y0

4>» 

y?   =  -|fi+S<fi+l+fi-l)^<fi+2 + fi-2) + 7lö(fi+3 + fi-3) 

y? = m fi" A (fw + W +i (fi+2 
+ fi-2> - 33Ö (fi+3

+ W 

V   =  ■ 2I2  fi + 336 (fi+l + fi- 1> - 8iÖ (fi+2 + fi-2) + 5Ö1Ö (,|+3 + fi-3) 

(507) 
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IX-B-2.   Herrnite Interpolation 

Let f (t) be a function.    Suppose that the point for which interpolation is 

desired lies between t, and t~, and that we have f,, f,', f, ", and f«, f ', fJ\   With 

these 6 items of data we can construct an interpolation polynomial of 5    degree: 

f(t)  = Ao + Ajft-tj) + A2(t-tl)
2 + ... + A5(t-t,)5 (508) 

By differentiating twice and equating the three equations with f,, f,', f " at t. and 

with f2, f ', f2" at t2 the 6 A's can be found.    Let 

Cl   = f2~ (fi+hfj'+h2^"^) 

C2   = f2'- (f^+hfp 

M £        M r = f " - f 
^3       T2      rl (509) 

where h = t2 - t, is the integration step size.    Then the solutions are 

A5 =   (h2C3/2 - 3hC2 + öC^/h5 

A4 =   (h2C3/2 - hC2 - 5h5A5)/2h4 

A3 =   (C1 " h4A4 " hSks)/h3 

A2 =flV2 

Al "  V 

A     = f. 
o        1 

(510) 
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The idea of using Hermite interpolation in PEP with the variable step size 

Nordsieck integration is due to W.B. Smith. 

DC-C.   Matrix Inversion and Solution 

The normal equations arising from the maximum likelihood determination of 

the parameters (Section II) have the form 

AX=B (511) 

where A is an nxn symmetric matrix and where X and B are nxl column matrices. 

Only the lower diagonal half of A is kept in storage, so that only n(n- l)/2 rather 
2 

than n   double precision words of memory are required. 

There exist many techniques which simultaneously solve (511) for X and 

find the inverse of A.    The Gauss-Jordan direct method was the best of the several 

with which we experimented.    The crucial point was that it used the fewest number 

of computations and so had the least accumulation of round-off errors.    This least 
3 

number of arithmetic operations for an inversion is proportional to n . 

The documentation of the Gauss-Jordan direct inversion and solution technique 

is contained in Ref. 30.   To save storage the inversion and solution are done in 

place, that is, A and B are sent to the computer subroutine and A     and X are 

returned in the same locations.   In finding the inverse and solution, Ref. 30 utilizes 

the following elementary  operations: 

(1) multiply a row by a constant 

(2) interchange two rows 

(3) add multiples of one row to others to zero out a given column except 
for the pivot element. 

Because we have only a lower diagonal half of the symmetric matrix in storage, we do 

not interchange rows in the PEP routine, and we always choose the pivot elements to 

be on the diagonal.    At each stage of the inversion and solution process the pivot 

element is chosen to be the largest still available diagonal element. 

Use of the automatic scaling described in Section II-D allows very large matrices 

to be inverted accurately.   Cleanup techniques are not needed.    The largest matrix we have 
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18-6-14255 

Fig. 15.  Non-zero blocks in coefficient matrix of normal equations 
and right side of normal equations. 
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handled so far is about 400 x 400.   The only limitation is computer time and core 

storage size.   It is desirable to keep the matrix entirely in storage because we not 

only have to worry about inverting the matrix but forming it in the first place by 

incrementing with the results of each of the many throusands of observations. 

The coefficient matrix of the normal equations looks like that in Fig.  15, so 

only the lower diagonal halves of the non-zero blocks need be in storage when the 

normal equations are formed, and the inverse and solution can be calculated by the 

block method.    This refinement has not been programmed in PEP, but we are still 

able to handle large matrices because modern computers have large amounts of core 

memory. 

IX- D.    Legendre Polynomials and Functions 

The Legendre polynomials P (Z) and generalized Legendre functions P , (Z) 

are defined in formulas (96)-(99).    We now present recursive formulas for 

evaluating P   and P ,  and their derivatives on a computer. 

By Ref. 31, pp. 1004-10027, and Ref. 32, p. 223, we have for   n =*3  and 

h = 1, ..., n 

PO(Z) = i, P1(Z)= z, P2(Z) = |Z2
-TJ 

P3(Z) = fz3-|z 

Pn(Z)  =i[(2n-1)ZPn-l(Z)-^1)Pn-2(Z>] (512) 

Po(Z) = 0,P1'(Z) = l, P2(Z) = 3Z,    P3 (Z)=i|z2-| 

Pn<Z)  = Pnl2(Z) + (2n-l)Pn.1(Z) (513) 

P^ (Z)   =   0, PJ' (Z)   =  0,    P2 (Z) = 3,    P3  (Z) = 15Z 

P" (Z)   =  P" 9(Z)+(2n-l)P'    (Z) (514) n n~z n-1 
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PU(Z) =  (1-Z2)1/2,   P21(Z)  =  3Z(1-Z2)1/2 

P22(Z)  =   3(1-Z2) 

Pnh<Z)   "  ZP„-l,h(Z) + (n*-1)(1-z2)1/2pn-1,h-l(Z) (515) 

pii <z) " —TUT 11 (l-z )' 

P2i<Z>=^2^--   P22<Z>   ="6Z 

P .   (Z)   = -Ü%. P,(Z)  -    ("^ <f1
h/2

1)   Pn ..(Z) 
nh (1-Z2)    •* (1-Z2)1/2        n,h  l (516) 

Pi'l  <Z>   =   (1 . '^3/2 

P21  <Z>   "   (1 , 
3

z2)3/2      •   P22 <Z>   -  -6 

2 
p" (z) = h<1+z >  p.(z)+-!^5- p'  (z) 
•* (l-z2)2     ■*      (l-z2)    •* 

fa-Hi)fa-h+l)Z   p m 

(1_z2)3/2        n,h-r' 

(n-rti) (n-h+1)      p, ,„> 

"      (i-z2)1/2     n-h-l() 

In the above P      =   P     and P    ,       =  0. no n n-l,n 

(517) 
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X. Mean Orbits 

Certain parts of PEP make use of mean orbit formulas to generate the 

coordinates of various bodies if these coordinates are not needed to very high accuracy. 

Examples are: 

i.        Approximate sun coordinates are needed in making limb and phase 
corrections for lunar optical observations. 

ii.        Approximate sun coordinates are needed in processing satellite based 
look angle observations of the sun, except that if the satellite based 
observations are more accurate than 0.005, exact interpolation from 
tables on magnetic tape is needed instead of mean sun formulas. 

iii.        Approximate asteroid or satellite coordinates are needed as functions 
of time if these bodies of small mass perturb a spacecraft. 

12     3 
We desire coordinates (x , x , x ) referred to the mean equinox and 

equator of 1950. 0.   Mean orbital elements are often referred to the mean equinox 
12     3 and ecliptic of date, so that the coordinates (y ,  y , y ) generated by applying the 

mean orbit formulas are also referred to the mean equinox and ecliptic of date.    The 

relation between these coordinates is 

k    3 

x     =   2 
4=1 

Fk4 x 

^ 

> 
k   =   1, 2, 3 

(518) 

where the orthogonal matrix F is defined as follows.    We have F   =  EP, where P is 

the precession matrix given in (75) and (76) transforming between coordinates 

referred to the mean equinox and equator of date and coordinates referred to the 

mean equinox and equator of 1950. 0, and where E is the transformation matrix between 

coordinates referred to the mean equinox and ecliptic of date and coordinates referred 

to the mean equinox and equator of date.    By Ref. 6, p. 27, we have 

0 0 

E   = 

Ell E12 E13 
1 

E21 
E E22 E23 

= 0 

E31 E32 E33 0 

COS   € 

-sin c 

sin € 

cos c (519) 
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where the mean obliquity c   of the ecliptic is given by (72).   We therefore have 

Flk     "  Plk ! 

F2k    = P2kcos€
0 

+ P3ksln eo > 
k= 1, 2, 3 

F3k     ■  P3k   cos €
0  "   P2ksinco (520) 

Taylor expansions for the F,k (k   = 1, 2, 3) are given by the first three equations in 

(78) in terms of the time T measured in 10, 000 ephemer is days from the epoch 

1950. Q Q. E. D. 2433282.423).    Treating the coefficients in (72) as exact we in 

addition have 

sin c = o 

cos c0 = 

0.3978811865927521 - 5. 70513893192403 x 10"4T 

- 1. 8312087506169 x 10 V + 1.652267540061 x 10 V 

+ 4.45783951328 x 10"15T4 - 2.36469209 x 10"19T5 

0. 9174369522509674 + 2. 47424898500217 x 10" 5T 

- 1.3133571740992 x 10"V - 7.173527734648 x 10"HT3 

+ 1. 02732897621 x lO" 14T4 + 3. 29806267 x 10" 19T5 

(521) 

By (78), (520) and (521) we have 

21 6.672379076707188 x 10_3T +  4.03140345445988 x 10" V 

-4. 9421227156709 x 10"8T3 - 8.685948302421 x 10_12T4 

+ 1.11902061670 x 10"13 T
5 

22 

23 

0.9174369522509674 + 2.47424898500217 x 10"5T 

- 2.04156730272966 x 10~5T2 - 2.8443776398581 x 10"V 

+ 7. 513826113715 x 10" HT4 + 1.75327407517 x 10~14T5 

0.3978811865927521 - 5. 70513893192403 x 10"5T 

- 8. 87742893170170 x 10'6T2 - 2. 0534553328574 x 10_1V 

+ 3.266231487901 x 10~nT4+ 4. 79023554313 x 10'15T5 
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F31   = 6.08828576338671 x 10"^+7.11738284222153 x 10"8T2 

- 3. 4836043645777 x 10_11T3 - 9. 238939614350 x 10
_14

T
4 

- 1.72691125954 x 10
_16

T
5 

F00   = - 0.3978811865927521+5.70513893192403 x 10"5T 32 
L1T3" - 1. 67960985290526 x 10 UT - 3. 3710116720406 x 10 

+ 1.616276978960x 10_13T4 + 7.61970380671 x 10 

F00 =    0.9174369522509674 + 2.47424898500217 x 10"5T 
33 

- 9.41199405263501 x 10_9T2 - 1. 3793679110716 x lO^r3 

+ 6. 983259897028 x 10""14T4 + 3. 21079987643 x 10"16T5 

(522) 

Expansions (78) and (522) have 13 place accuracy 30 years away from the epoch 

1950.0 and 9 decimal place accuracy 300 years away from the epoch 1950.0.   They 

were generated by Amanda Rasinski and L. Mondshein using the IBM FOR MAC 

computer language. 

The mean elliptic orbital elements which could be given for a body are 

a   =      semi-major axis 

e   =      eccentricity 

I   =       inclination 

ft   =      longitude   (if ecliptic elements) or right ascension 
(if equatorial elements) of ascending node 

ü)   =      argument of pericenter 

M =      mean anomaly . 

These 6 quantities are supposedly given as polynomials in time t.    If we had constant 

elliptic orbital elements (a, e, I, ft,   w, M ) we would use the relation 

M   =Mo + n1/2a"3/2(t-to) (523) 

where M   is the mean anomaly at an initial time t   and where u is the gravitational 

constant times the mass of the central body augmented by the mass of the given body. 

Given M, the eccentric anomaly £ is determined by solving Kepler's equation 

238 



M   =   £- e sinS (524) 

12     3 by iteration.    The position coordinates (z , z , z ) of the body in a reference frame 
1 2 with z   axis pointed from the central body towards periapsis,     with z   axis in the 

1 3 orbital plane normal to the z   axis along the velocity vector at periapsis and with z 

axis completing the right system are 

z    = a(cos£- e) 

2 1        2 z     = v 1 - e     s in £ 

z3   =0 (525^ 

12     3 The transformation to the reference frame (y , y , y ) relative to which the Euler 

angles (I, ft, u) are defined is 

y     =   2 Ju k = 1, 2, 3 (526) 

where the orthogonal matrix D is defined by (287).    See Ref.  12, pp.  1-25. 

Formulas for the velocity can be derived from (524), (525) and (526) 
12     3 remembering that the orbital elements are functions of time.   Tf (y , y , y ) are not 

referred to the mean equinox and equator of 1950.0 and it is necessary to apply the 

transformation (518), the time derivatives of F could be ignored. 

The mean orbital elements of the sun relative to the earth-moon barycenter 

referred to the mean equinox and ecliptic of date are by Ref. 6, p. 98, 

a   = 1.00000023 astronomical units 

e   = 0.01675104- 1.1444 x 10_9t- 9.4 x 10_17t2 

I   = 0?0 

ft  = 0?0 

u  = 281?220833 + 0?0000470684t + 3.39 x lO" 13t2 + 7?0 x 10" 2°t3 

M = 358?475845 + 0?9856002670t - 1?12 x 10_13t2 - 7?0 x 10_2°t3 

where t is measured in days from the epoch 1900 January 0. 5 (J.E. D. 2415020. 0). 
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The mean elements of the moon relative to the earth for the same reference system and 

epoch are by Ref. 6, p. 107, 

a   = 60. 2665 earth radii 

e   = 0.054900489 

I   = 5?14539122 (sin^ = 0.044886967) 

n   = 259?183275 - 0? 0529539222t + 1?557 x 10_12t2 + 5?0x 10"2°t3 

u   = 75?146281 + 0?1643580025t - 9?296 x 10_12t2 - 3?1 x 10_19t3 

M = -63?895392 + 13?0649924465t + 6?889 x 10"12t2 + 2?99 x 10"19t3 

The mean moon position differs from the true moon position in the second decimal 

place (see Ref. 2, Appendix   C). 

Communications satellite positions could be predicted real time by a computer 

attached   to a communications ground terminal by numerical integration with the moon 

and sun perturbations determined from the position coordinates generated internally 

by the mean moon and sun formulas.    However, for accurate calculation of moon 

perturbations it would be necessary to evaluate a fair number of trigonometric terms 

from Brown's lunar theory, but nowhere near the  ~ 1600 terms that exist.    The usual 

way satellite positions are generated for communications antenna pointing are from 

mean satellite orbital elements or by interpolation from a table of satellite motion. 

However, there could be advantages to numerically integrating satellite motion if the 

necessary core memory would be available on the mini-computer attached to the 

communications terminal. 
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XI.        ROTATION AND SHAPE OF A PLANET 

XI-A.   Rotation Matrix 

12     3 
Let (u , u , u ) be a coordinate system fixed in a planet with origin at the 

12     3 
center of mass of the planet and let (x , x , x ) be a coordinate system referred to 

the mean equinox and equator (of the earth) of 1950.0 with origin at the center of mass 

of the planet.   The transformation between these reference systems is given by 

3 
k V A & u     =  2       Ax 

J2=l       K* 

3 
=   2 

k   =   1,  2, 3 

4=1 
AlkU 

(527) 

This transformation is used in PEP in calculating the effect of planet gravitational 

potential harmonics on a spacecraft and in calculating the coordinates of a spot on a 

planet (such as a Viking lander on Mars) relative to the center of mass of the planet. 

We derive a first approximation to the matrix A by assuming that (1) the axis 

of planetary rotation is fixed in the planet,  (2) the axis of rotation is fixed in inertial 

space, and (3) the planet rotates at a constant angular rate u about the axis of rotation. 

Let a be the angle between the ascending node of the equator of the planet on the (x , 
2 1 12 x ) plane and the x   axis measured along the (x , x ) plane; let öbe the angle between 

1      2 the equatorial plane and the (x , x ) plane; and let ^ be the angle measured from the 

ascending node along the equator to a reference point on the equator, 

<h = w(t - to) + * (528) 

Then in terms of these Euler angles we have [see (287) and note that A = D ] 

A,,   = cos a. cos ♦- sin a sin ^ cos 6 

A. 9  =  sin a cos ^ + cos a sin ^ cos 6 

A,«   =  sin ^ sin Ö 
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A  - =  - cos a sin ^ -   sin a cos ^ cos Ö 

A22 =  - sin a sin ^ + cos a cos >£cos Ö 

A~o =  cos ^ sin 6 

A«, = sin a sin Ö 

A ~ =  - cos a sin Ö 

A33 =  cos 6 (529) 

If a    and Ö    are the rieht ascension and declination referred to the mean oo ° 
equinox and equator of 1950. 0 of the point on the celestial sphere towards which the 

axis of rotation of the planet is directed, we have 

a =  90° + aQ 

6 =   90°  "   6o (530) 

By Ref. 33 the pole of Mercury is perpendicular to the orbital plane of 1950.0, 

0^  =   280.°866 

ö    =  61?393 
(531) 

The rotation period is 

2n/u   =  58. 6462 days (532) 

The zero meridian on Mercury is defined to contain the intersection of the planet 

surface with the Sun-Mercury line at the first perihelion in 1950   (JED 2433392.63). 

The Sun-Mercury vector on that date in astronomical units referred to the mean 

equinox and equator of 1950. 0 is 

Rn     =   (0.0718102555, 0.2665961856, 0.1353805375) (533) ps 
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where the ephemer is used was our Run 273, which was based on a fit to inner planet 

radar data 1964-1968 and U.S. Naval Observatory meridian circle data 1950-1968. 

Let P be the unit vector along the pole of rotation, 

A 

P =  (cos a   cos ö , sin a   cos 6 , sin 6 ) (534) 

—♦ 

Let R   be a vector with origin at the center of the planet which passes through the 

zero meridian of the planet at time t , R    =  -R     in the case of Mercury.   The unit r o     o ps 
vector pointing along the ascending node of the planet's equator on the earth's equator 

of 1950.0 is 

A 

M   =   (- sin a. , cos <y , 0) (535) 

The projection of R   on the equator of the planet is 

So  =  Ro-  (Ro-P)P (536) 

and the angle ^ between M and S   is given by 

A 

|MXS   I 

(537) 

0 
1    ————— 

M |s0| 

cos ^      = 
0 

A 

M • S 
0 

|M| |S-0I 

3 "• where the + sign is used if the x   component of S     is positive and where the - sign is 
3 -. ° 

used if the x   component of S   is negative.    By equations (532) through (537) we have 

for Mercury at the epoch t    =  JED 2433392.63 

tf    =   246?8727 (538) o 

By Ref. 33 the pole of Venus is defined by 
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a    =  273?0 o 

6     =   66?0 (539) 

and the retrograde rotation period is 

2ir/u  =  -243.0 days (540) 

The meridian through the earth-Venus vector of 20. 0 June 1964 QED 2438566. 5) is 

defined to be at east longitude 320 .   The components of this vector in astronomical 

units referred to the mean equinox and equator of 1950.0 are 

R       =   (0.00805653705,   0.26903193997,   0.10659387010) (541) pe 

This is the geometric vector (not corrected for light time) and was calculated using 

Brown lunar theory for the Moon' s orbit and the Venus and earth-moon barycenter 

orbits arising from our Run 311, which was based on a fit to inner planet radar data 

1964-1969 and U.S. Naval Observatory meridian circle data 1950-1968.   Using 

Eqs. (534) to (537) and (539) to (541) it can be calculated that the angle tf'had the value 

*o   = "94?3869 + 320?0   =   225?6131 (542) 

on JED 2438566.5. 

Formulas (529) are still valid in the case that the axis of rotation is precessing 

with a and Ö as referred to the mean equinox and equator of 1950. 0 being expressed 

as functions of time.    Now, in Ref. 7, pp. 554-555, the right ascensions and 

declinations of the poles of Mars and Jupiter are referred to the mean equinox and 

equator (of the earth) of date.    Thus, the time variations of these angles (call them a., 

6.) contain the effect of the precessional motions of the equator of the earth, of the 

equinox and of the planet's pole.    In the case of Mars we have 

ax   =   316?55+ 0?006750 (t-1905.0) 

=    316?85375 + 0?006750 (t-1950. 0) 

244 



öx = 52?85 + 0?003479 (t-1905.0) 

= 53?006555 = 0?003479 (t-1950.0) (543) 

and in the case of Jupiter we have 

al   = 17h 52m Of 84  +  0?247 (t-1910.0) 

= 268?04467 + 0?001029167 (t-1950.0) 

6X   = 64°33,34:,6- 0:'60 (t-1910.0) 

= 64?55294- 0?000166667 (t-1950.0) 

(544) 

where t is measured in years. 

To remove the effects of the precesslonal motions of the equator of the earth 

and the equinox we use the formulas (see Ref. 6, p. 327) 

ao  =  ffi " (m + n sin ai tan öj) (t - tQ) 

6Q  =   6l - (ncos ttj) (t - tQ) (545) 

where  m  and n  are the annual rates of the general precessions in right ascension 

and declination, respectively, 

m   =  3?07234 + 0?00186T 

n    =   20" 0468 - 01'0085T (546) 

with   T measured in tropical centuries from 1900.0 and evaluated midway between t 

andt     =   1950.0.    We choose T  =  0.63.    (See Ref. 7, p. 531.) 

Applying this correction in the case of Mars, we find 

O.     =  316?8538 - 0?001003 (t - 1950.0) 

6o  =  53?0066- 0?000589(t- 1950.0) (547) 

where  t   is measured in years.    The sidereal period of rotation of Mars is 
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2TT/U   =   24h37m22?6689  =   1.025956815972 days (548) 

and on 1909 January 15. 5 (Julian Date 2418322. 0) the longitude of the zero meridian 

was 

tf     =   344?41 (549) o 

See Ref. 7, p. 554. 

Applying the correction (545) in the case of Jupiter we find 

a     =   268?0447 - 0?000085 (t - 1950.0) 

ö      = 64?5529   -   0?000022(t- 1950.0) (550) 

where  t   is measured in years.   On Jupiter, as on the sun, the visible equatorial 

region rotates more rapidly than the visible polar regions.   We therefore do not discuss 

the rotation of the planet insofar as it effects the tesseral harmonics in the gravitational 

potential.    For handling zonal harmonics we can ignore ^ in (529) because only A«., 

A„2, A „ are needed for zonal harmonics in (91), (103) and (104). 

If there existed accurate observations of a Viking Mars lander, it would be 

necessary to generate the matrix A by numerically integrating the equations for the 

motion of Mars about its center of mass instead of using (529).    The initial conditions 

and parameters involved in the orbital motion and rotation of Mars plus those for the 

earth orbital motion would have to be solved for in fitting to the data. 

XI-B.    Longitude and Latitude of Sub-Radar Point 

A radar observation of a planet yields the round trip time delay and doppler 

shift of a radar wave reflected from the region immediately around the subradar 

point on the planet, that is, the point on the planet closest to the observing radar on 

the earth.    In order to consider the effect of planet topography on the round trip time 

delay, we must calculate the planetary longitude and latitude of the subradar point. 

Let r be a vector pointing from the receiving radar site at receiving coordinate 

time t, to the center of mass of the planet at reflecting coordinate time t* .   If p is 

the radius of the planet at the subradar point, we have 
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v1* -2 
c (551) 

With the unit vector P   along the axis of rotation of the planet being given by (534), 

the latitude of the subradar point is 

i -1 C-   P-r > 
* ■  sln    V   -=:—) 

FI 
(552) 

Let R   be a vector pointing from the center of mass of the planet through the 

zero meridian at the initial epoch t    for planetary rotation.   For Mercury and Venus 

it is given by the negatives of the vectors (533) and (541), respectively, except that 

the reference meridian is not the zero one for Venus.   We shall give a value for R 

for Mars below.    Let R be a vector pointing from the center of mass of the planet to 

the zero meridian at time t* .   The angle that the planet has rotated from time t   to 

time t* is 

**=  u (t*- t ) (553) 

The projections of R   and R on the planet's equatorial plane are 

S     =  R   - (R   • P) P o o     v  o 

S     =  R - (R • P) P (554) 

The angle between S   and S is ty# , so that 

S   = 
s| 

(cos #-S    + sin *#Px S ) ^ * o * o (555) 

The projection of r on the planet's equatorial plane is 

s   =  r - (r • P) P (556) 

and the longitude 6 of the subradar point is defined by 
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sin 6  = + 

cos 8 = ■——— 

[Sxs 

flFI 
■s 

|S I  |s | (557) 

where the + sign is used if P • s > 0 and where the - sign is used if P • s < 0. 

We now derive the vector R   for Mars.    We desire an epoch t   in the present 

time rather than at 1909 January 15. 5 as in (549).    In 197T Mars opposition occurred 

on 10 August.    According to the "American Ephemeris and Nautical Almanac" for 1971 

(Ref.   7), p.   325, the universal time of transit of the Martian zero meridian as seen 

from the center of the earth on 10 August 1971 (Tulian Day Number 2441174) is 

21 29. 9.   The unit vector from the earth to Mars at that instant corrected for light 

time is 

R       =   (0.72059342663, -0.57928406200, -0.38101848908) (558) pe 
A 

and R     =  -R    .    The ephemerides used were generated in our Run 311 (see discussion 

following (541) ).   By (547) the direction of the pole of Mars on 10 August 1971 referred 

to the mean equinox and equator of 1950.0 is given by 

a     =  316?832 o 

ö     =   52?994 (559) 

By (534) to (537),  (558) and (559) we then have that the angle $' at the subradar point 

of the vector R     is pe 

*o   =   94?1753 (560) 

The epoch t   for use in (528) and (553) is JED 2441174.3940772, which is 10 August 1971, 

21h 29™9 UT corrected for ET-UT= 41?78 (ET =CT) and for the earth-to-Mars light 
g 

time of 187.51 sec. 

The longitude 0resulting from the above formulas is measured positive to the 

east.    The IAU convention for Mercury and Mars is to measure longitude positive to 

the west, so we must replace 9 for these planets by 360   - 6.   However, the IAU 
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system on Venus is measured positive to the east if the retrograde rotation axis is 

taken to be pointing to the north of the ecliptic as we assume.   In the IAU system the 

planetary longitude of the subradar point as seen from the earth increases with time 

for Mercury, Venus and Mars. 

XI-C.   Planetary Shape 

There are a number of models for planetary shape programmed in PEP to give 

the radius p of a planet as a function of the longitude and latitude (G , 0) of the subradar 

point.   Each model has unknown parameters which must be determined along with the 

orbital and other parameters when fitting to radar data. 

The first model programmed in PEP was that of an ellipsoidal planet with 3 

unequal axes and with center of shape offset from the center of mass.   However, the 

surface topography resolution of the radar data has become such that this model is 

inadequate. 

The next model programmed in PEP was that of a spherical harmonic expansion 

for the radius: 

N M   n 
S    2 

n=l h=l 
p  =   p   + 2 

0   n=l 
LCnh coshe+ snh sinhö] P-u(sin0) no   n nhv 

(561) 

where the double bars over the coefficients C ,, S , and the Legendre polynomials 

P   and functions P , denote normalization to 1.   See (94) to (101) and note that the 

normalization coefficients in (101) are for normalization to 477.    The upper limit N in 

PEP is 20, and the upper limit M is 10. 

The spherical harmonic expansion gives values for the shape of a planet even 

for parts of the planet where no data exists.   In particular, planetary radar data is 

concentrated around the equator, between, say, latitudes 0.  < 0  and 02 
>0.   For 

Mercury and Venus the data will always be between the latitude limits + 15 , whereas 

on Mars these limits are no more than ±30 .   Therefore, we programmed another 

planetary shape model in PEP utilizing a double Fourier series in the latitude strip 

0. to 0~.   Specifically, we define 

0"   = 2TT 
r 0" *i> 

and in the latitude strip 01<0<02 around the planet we write 

(562) 
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N 
p   =   p    +2      TA    COS nO + B' sin n0 1 

0      n=l    L   n 

N M     r                               _ 
+  2 S          A       cos nöcos m0 , t    L   nm n=l m=l 

+ B      cos n6 sin m 0 nm 

+ C      sin nöcos m 0 nm 

+  D      sin no sin m 0 nm J 

+ A" cos 0 + BM sin 0" (563) 

The upper limit N is 20 in PEP, and the upper limit M is 1. 

The degree of flattening of an ellipsoidal planet is 

f   -   i       polar radius 
equatorial radius (564) 

Let p     be the equatorial radius of the planet.   By Ref. 6, p. 57, the radius p   at 

latitude 0 is given by 

2 4       2 cos  0*+ (1-f)   sin 0* 
0 00 / 2 2 T~~ 

V    cosz<k + (l-f)z sin 0* (565) 

where 
2 

tan 0  =   (1-f)   tan 0* (566) 

In addition to the limited number of Fourier coefficients in (563) (i.e., N, M < » ) , 

we can solve for p     and f instead of p . roo ro 
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The individual Fourier or spherical harmonic coefficients in the models 

presented above have global sensitivities to topography.   We next present a model of 

planetary shape for which the individual coefficients to be solved for are determined 

by the local topography. 

Suppose we are given points cr.  (i = 1, ... , n) which lie on the surface of the 

planet .   Let the radius, longitude and latitude of the point cr. be (p.,  9., 0.).   We 

presume that 9. and 0. are given and that p. is to be determined by fitting to data. 

Of course, the p. have specific values at each stage in the least squares iteration. 

We choose the points a to be spread out in longitude and latitude or to be close together 

in longitude and latitude according to the accuracy, density and span of the data to 

which we are fitting and also according to any previous knowledge of the roughness of 

the planet. 
—*       -♦     —» 

We presume that we have defined triangles A .  .  .    with vertices (cr. , a.  , o\   ) 

so that the polyhedron with the faces A.  .  .     is inscribed in that part of surface 

of the planet which contains all the subradar points of the time delay data to which we 
—» 

are fitting.   By Ref. 34, p. 96, a point a is in a triangle A.  .  .     only if 

a  = a1aii+a2a.2 + a3a3 (567) 

with 

2   a.   =   1, 0 * a.  £ 1 
k k = 1, 2, 3 (568) 

The numbers (a,, a2, a«) are called the barycentric coordinates of a point in the 

triangle. 

Suppose we are given a triangle A™ (the indices 1, 2, 3 could be any 

allowable indices L, L, u)with vertices ö*. (i = 1, 2, 3) having radius, longitude and 

latitude (p.,  9. , 0.).   Let us examine more closely the condition that a point 3 with 

radius, longitude and latitude (p, 9, 0) lies in A12«.   The cartesian coordinates of 

the point a in a reference frame fixed in the planet are 

1 
u = p COS  9   COS 0 

2 
u = p sin 9 cos 0 

u = p sin 0 (569) 
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where we employ a right handed coordinate system with 9 measured positive to the 
12      3 ~* east.   Let (u. , u. , u. ) be the cartesian coordinates of a .   By (567) we must have 

3 . 
uJ   =  2     a. u.J j = 1, 2, 3 (570) 

i=l      l   l 

where the a. satisfy (568).   Let us regard (570) as an equation in the unknown parameters 

(a,, a2, a~).    The determinant of the coefficient matrix (u?) is 

123^123^132 det=   ux   u2   u3   +u2   u3   Uj   +u3   u2   u2 

12     3 2     3      1 3     2     1 ,e_ix 

"U3   U2   Ul    'U3   U2   Ul    "U3   Ul   U2 (571) 

and by Cramer's rule the solution for (a,, a2, a«) is 

1 r 1, 2  3   3  2v  2, 3  1   13, 
al = del LU (U2 U3 ' U2 U3 )+ U (U2 U3 " U2 u3 > 

J.   3 A 1  2   2  LI + u (u2 u3 -u2 u3 ) J 

1  r 1 s   3  2   2  3X^ 2, 1  3   1  3X a2 = "deT LU (U1 u3 * Ul U3 ) + u (ul u3 " u3 Ul > 

J.   3 / 1  2   2  LI + u (u2 u3 -Ul u3 )J 

lTl/2     3        3     2,       2.31 13v 
a3   =  diF Lu    (ul   u2   ■ ul   u2 ) + u   (ul   u2   " Ul   U2 } 

3       12 2      1   "1 + u   (Uj   u2   - Uj   u2 ) J (572) 

The point a lies in A.23 only if the (a,, a2, a„) as given by (572) satisfy (568). 

Suppose we have radar time delay measurement with the longitude and latitude 

of the subradar point being (6, 0 ).   How do we determine the radius p to the point in the 

inscribed polyhedron with triangular faces corresponding to this longitude and latitude? 

We first search through all the triangles to find the one which contains a point with this 

longitude and latitude.    To see if a given triangle A.23 contains (P, 0), we calculate 
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12     3 
(u , u , u ) by (569) with p = 1.    We then calculate the (a., a«, a«) by (572).   However, 

since p = 1 is not the true value of p, let us denote the values resulting from (572) by 

(a,, a«, a«).   The longitude and latitude (8,0) correspond to a point in A.«« only if 

a.   £  0 
l 

1 = 1, 2, 3 (573) 

at least one a.   >0 

If these conditions are satisfied, the radius p to the point (0, 0) in the triangle A«2« is 

3 
p   =   1/(2   a.) (574) 

i=l   l 

Rather than randomly searching through all the triangles for the one which 

satisfies (573), we can first find the vertex o   which has longitude and latitude (8, , 

0,) lying closest to (6, # and then examine condition (573) for each triangle which 
K   -» 

has a,    as a vertex.    If none of these triangles contains a point corresponding to 

(8,  0), we then pick the vertex er c in the remaining triangles which has longitude and 

latitude lying closest to (8, 0) and examine conditions (573) for each triangle which 

has or „ as a vertex, etc. 
-♦ 

The fact that the vertices cr.  have to be judiciously chosen to match the data 

and the roughness of the planet make the inscribed polyhedron model more difficult 

to set up than the spherical harmonic or Fourier series models.    However, it has 

the virtue of being a local rather than a global topography model.   The inscribed 

polyhedron must be convex for the algorithms presented above to be valid. 

If we decide to increase the number of triangles, we could use the method of 

barycentric subdivision in which each triangle A™ is subdivided into 6 triangles. 

In Fig. 16 we have created 4 new vertices, where 

T(i,j) 
1   -   ,   1 - 

=   2   ai + 2 aj i<],       i,j   =   1, 2, 3 

I"       I"*      I - r(l, 2, 3) 3al      3 CX1+  3 °3 
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See Ref. 34, p. 138.    The 6 sub-triangles of the given triangle are easily read off 

from Fig. 16.   As we continually subdivide the inscribed polyhedron with the new 

vertices being put on the surface of the planet rather than in the triangle from which 

they came (which original triangle had its vertices on the planet's surface), then 

the inscribed polyhedron will approach closer and closer to the planet's surface in 

the sense that the radius to a point on the inscribed polyhedron with given longitude 

and latitude will approach the radius to the planet's surface with that longitude and 

latitude.   However, the area of the inscribed polyhedron will not necessarily approach 

the area of the planet's surface; see Ref. 35, p. 25. 

The inscribed polyhedron model of planetary shape is not coded in PEP.   If it 

were coded, it could perhaps be improved by altering formula (574) for the radius 

to take account,  in some way, of the fact that the radar energy is reflected from a 

region around the subradar point and not just from the subradar point itself. 

The effect of planet radius p on round trip radar time delay is given by (226^. 

The partial derivatives of time delay with respect to the parameters in the various 

models for p given in this section are easily derived.   If the number of spherical 

harmonic or Fourier coefficients are increased, the partial derivatives of time delay 

with respect to the lower order coefficients remain unchanged.   However, if the 

number of coefficients p. in the inscribed polyhedron model are increased by sub- 

division of the triangular faces, then the partial derivatives with respect to the old 

coefficients do change.   This is a property characteristic of a local rather than a 

global model.   Of course, the partial derivatives of time delay with respect to radii 

p. of vertices which are not on the triangle containing the subradar point are zero. 

18-6-l<?56 

Fie. 16.  Barycentric subdivision 
(2,3) _ö - J 

of a triangle. 

(1,2) 
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