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I. INTRODUCTION

J One of the difficulties in dealing with n-dimensional featura 1
vectors in pattern recognition is the identification of the way in 3
which the data is distributed in the spacs. If this distribution is
kniown, then the recognition problem may generally be solved

by use of discriminant functions which take advantage of this
distribution.” An excellent example of the way in which this may
he done is the OLPARS system.” There have been a number of
algorithms presented in the literature which offer displays in
two or three dimensions of the distribution of n dinensional data.
A few of these techniques are presented by Sammon.> The
majority of such techniques appgar to be nonlinear. Sammon,
Ball, ” and Shepard and Carroll” present several examples of
nonlinear mappings.

—

‘The objective of the display mappings is to preserve sone
specified characteristic of the data distribution. One such
characteristic which is very desirable in pattern recognition is
linear separability. The objective for projection of two classes
of data, then, is to maintain this interclass separability. An
approach which projects the data set onto a plane oriented in such
a way as to maximize this interclass separation has been suggested
by Sammon.’ This technique uses the Fisher Discriminant® to
determine one of the axes of projection. The second axis is
L determined by maximizing the data spread on the projecting plane.
- ' This mapping is a linear one. Fukunaga and Olsen’ present a
similiar approach which is nonlinear in nature.

A fundamentally different approach to this problem was
presented by Zahnl? in 1971. In his paper, Zahn suggests that
graph theoretic methods may be used to detect and describe
data clustering. Basically this approach computes a minimal »
spanning tree for the data clusters. A ''stylized' two dimensional 1
drawing of such a tree then gives some information about data
distribution, primarily inter-point distarces.
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In all of the techniques described above, no cognizance has |
been made of the functional interdependence of data. Many prob-
lems have data which are highly interdependent. Examples of this
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are pattern recognition problems which use multivariate
feature vectors to describe two or three dimensional objects at
a succession of agpects or view angles.u' 12

In cases such as thesa highly structured data would be
expected. In particular, the n dimensional feature vectors
describing a two dimensional object would be expected to iorm a
line trajectory in n space as the two dimensional object is rotzted.
Similarly the trajectory of the description for 3 dimensional
objects should form a surface as the object is rotated.

Although each of the projection techniques described ar ve
are capable of handling such data, no effort has been muade to
exploit these characteristics.

In what follows, it will first be shown that the minimal spanning
trees of Zahn contain a great deal of information about the dis-
tribution of data of this type. Further these trees will be shownto
be indicative of the quantization level necessary for application of
nearest neighbor recognition sche.nes. Finally, a linear projection
scheme similar to that of Reference 7 will be used to display the

data and confirm distzibutione suggested by the minimal spanning
traes.

II. BASIC DEFINITIONS

Before proceeding to the aigorithms, some fundamental
definitions are required. For a more complete discussion of graph
theory see Reference 13. A linear graph is composed of a set, V,
of vertices or nodes and a set, E, of vertex pairs, called edges,
which describe the intersection of vertices. Whenever a number,
called an edge weight, is associated with each edge the resulting
linear graph is called an edge weighted linear graph. A path

in a graph is a sequence of edges joining two nodes. Typically
a path is described by the sequence of vertices which define the

edges of the path. Figure 1 shows an edge weighted linear graph
with a path (ABGFD).
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Fig. 1. Edge weighted linear graphs and some trees.

A circuit is a closed path such as (DBFD) in Fig. 1. If a
graph has a path between every pair of nodes, then it is said to
be connected. A strongly connected graph is a connected grapn
in which any pair of nodes is connected by an edge. A tree is a
connected graph having no circuits and a spanning tree of a graph

G is a tree in G which contains all nodes of the graph G. An
example of such a trec for the graph of Fig. 1(a) is shown in

Fig. 1(b). Another spanning tree i8 shown in Fig. 1 (c). In
general, the total number of trees for a given graph is quite large.
For edge weighted linear graphs a useful subclass of all the
spanning trees is the class of trees called a minimal spanning
trees defined as follows. Let the weight of a tree be defined as the
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sum of the weights of ite constituent edges. Then a minimal .
spanning tree is a spanning trec having the lowest weight.

Figure 1{b) shows a minimal spanning tree or MST, tor the graph.

of Fig. l{a). It should be noted that, in general, a given graph

may not have a unique minimal spanning tree.

A number of algorithms exist for computing the minimal
spanning tree of a graph. Two of these procedures, given in
1956 and 1957 by Krushal'? and Prim!® respectively, are remark-
ably straight forward. Krushal's algorithm begins be listing
the edges of the graph G in order of ascending weight. For example
this list becomes for Fig. l(a).

EDGE WEIGHT SELECTION
AB 1 X

BC 2 X

BE 2 X

DF 2 X

BG 3 X

FG 4 X

BF 5

CE 6

BD 8

Starting with the topmost edge (least weight) select edyes in order
in such a way that no circuits are formed with edges already
selected. The process stops when n-l edges have been chosen,
where n is the number of nodes in the graph. Following this
selection process, the spanning tree of Fig. 1(b) is shown to be
an MST for the graph of Fig. 1(a).

The algorithm of Prim is equally as simple. Start with any
node and add the edge connacted to this node having the least
weight. This edge taken with its end points forms a fragment
tree, T,. T, is obtained from Ty _) by adding the shortest edge
connecting a node in G but not in Ty_1. The procedure terminates
on tree T, ;. Consider as an example Fig. l(a). Applying this
process to this graph the following table summarizes the steps.




NODES EDGE ADDED WEIGHT
A AB 1
A'B BC )

A B, C BE 2

A B, CE BG 3
AB,CEG GF 4
ABCEGEF DF 2
ABCEGF,D Stop

Zahn shows in his paperlo a number of ways in which the
minimal epanning tree of a graph may be used to describe and
identify data clustering. For data which is functionally inter-
dependent, data clustering, of the type suggested by Zahn, will
occur only whan data samples are spaced far apart. In the next
section this problem will be defined more precisely and it will
be shown that such an observation may be used to identify data
trajectory and help set a quantization level on the data used to
represent an object class for pattern recognition purposes.

lII. DATA DISTRIBUTION INFERENCE FROM MST's

Let 5= o, o3, ***, 0 be aset of k object classes which
are to be recognized. Associated vith each object class is a set
of n-tuples, A"‘l' called features, which are taken to represent
object class o;, at some given set of aspects or view angles. For
the discussion to follov., the aspect angles will be defined as the
normal spherical coordinate angles ¢ and 8 shown in Fig. 2.
Thus, the set of points in Ac,‘

2A

~—LINE OF SIGHT

Fig. 2. Aspect angle convention.
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represent points on an n-dimensional surface which is formed

by the locus of the feature vectors as the aspect angles change.

(This assumes noiseless feature measurements.) The set of

points Ag; may now be taken as the vertices of a strongly

connected graph, i.e., all points in Ay are connected to all ,
other points in Aq\ by edges. Further, the Euclidean distance !
between any two n- tuples or features in Agys ¥ and ¥, may be
taken as the weight for the corresponding, connectmg edge. Thus
A(,.1 represents an edge weighted, strongly connected linear graph.

Next let A¢ be the ordered set formed fxrom Ag by an
ordering induced on the vectors Aon by aspect a.ngles as follows

« () 3 (i) - (i) o () (i) o (1)
(1) Ag = x , 0 O.l' MR xO.Ql' xl.ol % Xl'al. ‘2 Xj'lo e >

—
R f; (¢j, 8¢) and where

Y
>
(4) 8,2 8 _; -
Define an ordered ¢ or 6, subset of A<J denoted by S¢ (a) or

sel (0’ )o :

as

(5) S¢J (O’i) acg Xj.op Xj.l’ soe, ?j.ar>




(9) Ac_i = <S¢O(Gi)' s¢1o (O'i)o *t S¢§(Ui)>

where L is the number of different ¢ aspect angles in the set
Aqi. Note that if an object, o;, has cylindrical symmetry with
the axis of symmetry co-linear with z-axis then

(10) S¢H {oj) = 8¢, (o) for all u and v.
and

%
(11) A = < S (0) >,

In general the Sy, {(0;) may be considered as sets of points in
n-gpace located on the line formed by the locus of points having
¢ fixed and 9 varying over all possible values. Consider now the
MST formed from S, (0;) as described earlier. For simplicity let
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2) syie) = <X, Ry, e KD >

Now if the features, X. , ars selected with U increments

o
sufficiently close to each other, then the minimal spannjing tree
will be defined by connecting Xl(‘) to X, ) and XZ(‘) to X3(‘)
and so on to Xl< to Xl( ). On the other hand, if the 8 incre-
ments are fairly large, it is easily seen that this minimal
spanning tree will, in general, not occur. As an example consider i
Fig. 3(a). Suppose that ten points, numberad 1 through 10 are C
chosen to represent the curve chown and thus define S, (7o)

The minimal s, anning tree f{or this function is shown in Fig. 3(b)
Note that because of the large increments in 0, the points are
not connected consecutively in the MST. If, on the other hand,
the increments were chosen smaller as in Fig. 3(c) then the

resulting MST will hava the points sequentially spaced as shown
in Fig. 3(d).
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Fig. 3. Quantization effects on the MST of a data set.
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As indicated by this example, the MST may be used
to indicate the degree of quantization in aspect angle required
to properly represent the object class. This is, of course,
purely a qualitative measure of accuracy of representation
and is intended to be nothing more. There is, however, more
information in the MST than simplv quantization levels. The
MST carries a good deal of information about structure as well.
As an example of this the multifrequency backscatter return
amplitudes for the step cylinder described in Appendix A were
obtained. Seven data points in 8-space were taken corresponding
to 8 of 0°, 30°, 60°, +++, 180°., These points are labeled
1,2, ***, 7 respectively. A stylized version of the minimal
spanning tree for this data is shown in Fig. 4(a). Note that the
data points are not consecutively arranged in the MST, thus
indicating a course quantization level. However, this courseness
makes possible the rough identification of data trajectory, since
the data points should lie consecutively on the locus of points
formed by varying 6 through all possible values. Thus it may be

4

(a) (b)

Fig. 4. MST for step cylinder and inferred trajectory.

inferred from the MST that because points 1 and 7 are adjacent
the trajectory must be folded back. This is, of course, what one
expects since the step cylinder has the same cross section from
look angles 6= (° or 0= 180°. In a similar way note that points

3 and 5, corresponding to 0 = 60° and 6 = 120° respectively are
adjacent as would be expected from the symmetry of the target.
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It may then be seen that the MST does indicate in some sense

the data trajectory. More to the point, however, the minimal
spanning tree allows one to identify those aspect angles at which
the target object shows a similar views or cross sections. With
proper quantization, this observation may be carried to multiple
objects. For example, the data for the cylinder and prolate
spheroid described in Appendix A were combined to form one

data set from which the minimal spanning tree was computed.

The data points were labeled 1 to 10 for the cylinder data and

11 to 20 for the prolate spheroid. The corresponding aspect angles
weare 0= 0%, 10°, 209, +«+, 90° in both cases. Figure 5 shows

the corresponding MST and the inferred distribution. These
figures suggest that at an aspect angle of something like 40° to 50°

19 20

(b)

Fig. 5. MST and inferred trajectory for combined prolate
spheroid and cylinder data.

10
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the two ohjects appear more alike than at other aspects. It
does not imply that the targets look the same; only that they
look more alike at this aspect than others. It will be shown
below that the inferred trajcctories are probably correct.

Before discussing the lin¢ar transformation of the data, a
few comments on application of the minimal spanning tree are
in order. One of the very useful pattern recognition techniques
is application of a nearesat neighbor rule for identification. One
such rule identifies an unknown vector, X. as belonging to clasa
o if X 18 nearer some vector in Ag., a, than any vector in any-
other Ag . Two pieces of information are thus obtained. The
first is ob_;ect identification. The second is object orientation
with respect to the viewer. If the aspect angle quantizaticn is
small enough then the target orientation is easily and accurately
obtained by assigning it as the orientation associated with vector
a. Dudanil? effectively does this in his recognition schemes
using moment invariante. If on the other hand, this quantization
is fairly course then the accuracy of the orientation estunate
is questionable. For example assume the point tu be identified
is the one marked X in Fig. 4(b). This point is closer to
point 2 than 5 and this would be assigned an orientation corres-
ponding to point 2. In fact, X is closer to a pcint on the line
conaecting point 5 and 6 than it is to either point 2 or 5. If the
quantization had been smaller the error in orientation could thus
have been avoided. To set this quantization one needs only to
repeatedly decrease the U increment until the minimal spanning
tree has contiguous points in contiguous locations in the tree.
It should be noted that this quantization may be set locally rather
than the globally, i.e., the minimum 0increments required may
be different for differeat regions in the data trajectory.

Such a quantization level is toc fine, however, f{or investiga-
tion of data trajectory. The reason for this is that the minimal
spanning tree is simply a listing of interconnected nodes and is
not an actual visual display. Thus a fine quantization sunply says
that point 1 i8 connected to point 2 and 2 is connected to 3 and 8o
on which was known to begin with. By making a fairly course
quantization, the points in the MST may no longer be located
consecutively and thus give information concerning the data
trajectory by inferunce form these noncontiguous points.

11
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IV. ATWO DIMENSIONAL LINEAR PROJECTION

The use of the minimal spanning trse to identify data
trajectory is qualitative by nature and allows for a good deal
of subjective analysis. What is needed then is some approach
which may be used to supply some form of quantitative infor-
mation about data distribution. This approach should not
introduce appreciable distortion in the display and thezrefore
probabiy should be linear. For the case of two_data classes
a very nice ag-proach was proposed by Sammmon’ using the Fisher
discriminant®. This approach is not readily adaptable to a one

class problem. In order to handle such a problem a new approach
is needed.

Basically the main requirement on the projection plane is
that the projected data be spread out on the plane as much as
possible, i.e., the standard deviation should be as large as
possible. One procedure by which this ideal situation may
partially be accomplished i8 described below. The choice of
the algorithm has been devised to meet two requirements. First,
it should give a fairly large projected data spread. This spread
need not be maximal in any sense. Secondly, and most impor-
tantly, the projection plane axis should be easily determined.
Thus the following algorithm is heuristicly derived.

One way in which a projection hyperplane may be chosen so
as to produce a large spread in the data is, at least intuitively,
to project the n dunensional data points into some two dimensional
subspace of an n-1 dimensional hyperplane oriented along the
direction of data spread. The hyperplane through the data spread
may be thought of in the same way as one thinks of the plane of
the Milky Way. More specifically, this plane is defined by the
vector @ (1) guch that z) is minimized where

) i - (i) . 2
(13) zl = ‘E;‘ [ (ﬂh) -7 (.\(1)]

12




and where*
(14) s= | A

5) F= 4 zald)

/s
for all@' ¢ A,

The minimization problem (13) will be trivally solved by the
zero vector so some constraint needs to be added to insure a
nonzero solution. In the vast majority of cases, the spread
hyperplane will not co?i?m the first moment vector 'ﬁ, 1(]3
most of the time p w %0, Thus a constraintof p * @ =]

may be added to (13) using a Langrange multiplier to produce the
following optimization problem.

1 (1)
(16) Min 2z, E [(:(1)-'{)‘) -m‘()]z+kl(l-&' : )

B( setting the partial derivatives of 4] with respert to \;, and
, 1 =1, &_. 1 *, nto zero and solving the resulting system of
equations, w may be obtained.

The next problem is to determine an appropriate two
dimensional subspace of the hyperplane defined by w'*’. Ona way
of doing this (and the way chosen here arbltarlly) is to define
an n-l orthonormul basis (o ple) evrw in @(1) guch that the
vectors o), @ *++, '™ are mutually perpendicular. This
may be done 1terat1vely as follows.

%* The order of a set X is denoted by [Xl .

13
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(17) Min ZK = ‘E: [ (;(‘) _-3) .a’(&))lz +>‘1(1'3(K) .-5)

k-1
+ Z kl :(l) ';(K), kK =2,3, ", n

The system of equations arising by setting to zero tha appro-
priate partial derivative of z, become

(18)
- ~ (1) (x _1)-4 T (x )-
0) €1 °°° €ln - PL W1 "t W
1 -
0 . C ey, “’z( ) ...uz(x 1) wz(n)
1 . ]
T e S Py
_l = .pl nlc-pn xl
of | LW A,
n
L] * . x
L] L] L] K
-1 - - J
K ‘S'l( )""",:x 1)
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A golution to (18) thus gives the x th vector w(" )
The fw)o du-nennonal projection plane is finally taken as defined

by @ and @(n-1), The projection ia then made as
(19) xi x ‘;(1) . :,'(n)
(20) v, =al) . gin-l)

fori=l,2, ***, 5, i.e., for all a ( A,

Figures 6, 7, and 8 show the data for the step cylinders
prolate spheroid and the cylinder respectively as projected onto
planes derived as just described. Note that the data trajectory
is clearly shown and further that the trajectory of the stap
cylinder data is, indeed, similar to the inferred trajectory as
shown in Fig. 4(b).

If two classes exist then the above procedure may be used
fur display after suitable modification. Iu this case, normally,
the important criteria is maintenance oi linear separation in
the projected image. Maximizing the data spread thus becomes
secondary. To accomplish these goals ! may be taken as a
separating hyperplane for the two classes or some 'near'
separating hyperplane if the classes are not linearly separable.
Applying the procedure described above, the projection axes
then are taken as @ (1) and @(n) iy equations (19) and (20)
respectively. The hyperplzane ) may be found in a number of
ways such as the Fisher discriminant mentioned earlier, linear
programming“’, or an adoptive approach such as described in
Reference 1ll. Using the latter, the above projection technique
was applied to the combined prolate spheroid/cylinder data.
The resulting projection i3 showrn. in Fig. 9. Note, first, that
the separation of the two classes is clearly shown and, secondly,
the similarity to the inferred trajectories of Fig. 5(b). As a

further reference, compare Fig. 3 with the individual trajectories

for the cylinder and prolate spheroid shown respectively in
Fig. 7 and 8.
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Fig. 6.

Step cylinder data projec-ion,

l¢

ke







Fig. 8,

Lpeolate spheroid daia prosedtion.




Cyliderdprolate spherotd data projection.




V. CONCLUDING REMARKS

This report has dealt with two methods of multivariate data
analysis which have been effectively used to represent functionally
related data structures. Taken together they offer the user a
method of visualizing data structure and thereby providing some
insight into the problem incountered in attempting to classify or
recognize an unltnown target object.

In particular there are two areas related to pattern recogni-
tion where a thorough knowledge of data trajectory becomes of
great value. The firet has to do with the actual identification of the
target object from a knowledge of the target data trajectory. By
comparing this unknown trajectory with a set of known ones an
identification may be possible on the basis of gimilar trajectory
shapes. This becomes especially important in cases where
there is a significant overlap in data between two or more object
classes. Much work is yet to be done in this area.

The second application area has to do with the identification of
target aspect from a knowledge cf target identification and target
data trajectory. By matching up the measured trajectory with
some portion of the known data trajectory to obtain a best fit the
temporal orientation of the target may be inferred, i.e., one can
identify the trajectory of the target object relative to the observer.

From these applications, it is clear that a knowledge of data
trajectory allows one to obtain greater confidence in a given
identification as well as help in choosing a particular recognition
algorithm to be used with a particular data set. The data analysis
algorithm described here is intended to help in such determinations.

20
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