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ABSTRACT

Methods are given for the analysis of FORTRAN D,) loops for

parallel execution on asynchronous and synchronous muiti-processors.

Limitations of the analytic approach are discussed. Application of

the methods to the ILLIAC-IV are described. A simulation process

for deriving concurrency is given in two examples for whicb the

analytic methods are inappVicable.
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INTRODUCTION

Any program using a significant amount of computer time spends

raost of that time executing one or more loops. For a large class of programs,

these loops can be represented as FORTRAN DO loops. We will consider

methods of executing these loops on a multiprocessor computer, in which

different processors independently execute different iterations of the loop

at the same time.

This approach was inspired by the ILLIAC-IV, since it is the only

type of parallel computation which that computer can perform [ 1]. However,

even for a computer with independent processors, it is inherentl' more

efficient than the usual approach of having the processors work together on

a single iteration of the loop. This is because it .equires much less com-

munication among the individual processofs.

The methods presented are, of course, independent of the syntax of

FORTRAN. The basic feature of the FORTRAN DO loop which is Ufsed is that

the range of values assumed by the index variable is known upon entry to

the loop. Thus, most but not all ALGOL FOR loops can be handled.

The analysis is performed from the standpoint of a compiler for a

multi-processor computer. Two types of computers are considered: those

having asynchronous processors, and those like the ILLIAC-IV with com-

pletely synchronous processors. A number of restrictions are made on the

loops just to simplify the exposition. In Chapter 3, we will discuss the

actual limitations of the techniques. Chapter 4 describes a practical

example of their use.
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I I

I I

This approach to the parallel' execution of loops appears to be very

effective for a large class of Programs. It has significant implications for

the design of future compaters and their compilers.
I I

Chapter 5 presents, in examples, a process of loop control history

simulation which can be used to display, potential concurrent execution for

loops vwhich do 'not satisfy the requirements for the analytic methods.

V 1 1
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1 CHAPTER ONE

ASYNCHRONOUS PROCESSORS



I. THE G-IEN LOOP

We will consider DO loops of the following form:

(1) DO oL I u

DO c In , u n

l loop body

a CONTINUE

where the i and ui are positive integers,* and the loop body has no I/O

statements, no subroutine or function calls which can modify data, and

no transfer of control to any statement outside the loop. The extension to

more general loops will be discussed later.

Let Z denote the set of all integers, and let Zn denote the set of

n-tuples of integers. For completeness, define 20 = (0 ].

The index set of the loop (1) is defined to be the subset

1 n Jj i( (iI, ... i): z iS u ] of n. Thus, for the loop

DO 7 11= 1, 10

DO 7 12= 1, 20

"* I

The use of superscripts and subscripts is in accord with the usual

notation of tensor a'qebra.
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S• -- I(x, y) 1 ý_ x -_ 10, x g• y •_20

An execution of the loop body for an element (pa, . .. , pn)ofS

is the process of setting = pl, ... , I pn and then executing the loop

body in the usual fashion, stopping when statement t is reached.

Executing the entire loop (1' then involves the execution of the loop body

for each element of S. , in the order specified by the DO statements.

This suggests that we order the elements of 2Zn lexicographically

in the usual manner, with (2, 9, 13) < (3, -1, 10) < (3, 0, 0), Then for

any elements P and Q of 0,the loop body is executed for P before it Is

executed for Q if anc only if P < Q. Thus, the relation < on An gives the

appropriate temporal ordering of S, In the preceding example, the lcop

body is executed for (2, 11) before it is executed for (3, 5), since

S(2, 11) < (3, 5).

Define addition and subtraction of elements of Zn by coordinate-

wise addition and subtraction, as usual. Thus, (3, -1, 0) + (2, 2, 4) =

(5, 1, 4). Let 0 denote the element (0, 0, ... , 0). It is easy to see that

for any P, Q e n, we have P < Q if and only if Q - P > 0.

1-2



* II. THE DO CONC STATEMENT

Our objective is to finc. a new temporal ordering of the executions of

the loop body so that at any given time, the loop body is being executed in

parallel for different elements of the index set by different processors. This

new ordering must yield an algorithm which is equivalent to the one des-

cribed by the original loop; i.e., one which computes the same values for

all variables as the original loop.

Consider the loop

1(2) DO 10 I1 = 1, 3

2
DO 10 1 = 2, 7

A (11+3, 12) = 0

10 CONTINUE

The loop body could be executed in parallel by three processors for the

points (1, 6), (2, 5), and (3, 4) of S. (In fact, it could be executed in

parallel by 18 processors for all points in ,9.)

In order to have a means of expressing parallel computation, we

define the DO CONC (for CONCurrently) statement. Its form is

DO a CONC FOR ALL I€C 1

where S is a finite subset of Z.* It has the following meaning: Let

We remind the reader that a set is just an unordered collection of elements,

so [1,2) = (2,1) f 1,2,1,1,2) We will not bother to define a syntax

for expressing sets. The usual FORTRAN DO syntax, which can only

describe a restricted class of subsets of X, is probably the most con-

venient to ImplemenZo

1-3



2 = fi 1 , . im, where no two li are equal, and assume that we have

m independent, completely asynchronous processors numbered 1 through m.

Then each processor is to execute the statements following the DO CONC

statement, through statement a , with processor number j setting I = i.I

The m processors are to run concurrently, independent of one another.

As art example, consider

DO 10 CONC FOR ALL jc (x: 2_ xg 5

10 A(J)= J** 2

This sets A(2) = 4, A(3) = 9, A(4) = 16 and A(5)= 25.

For a DO CONC to give a well-defined algorithm, certain restrictions

must be made on the statements in Jts range. Suppose the statement

9 B(J) = A(J + 1)

is inserted before statement 10 above. The resulting DO CONC loop does

not give well-defined results. For example, the processor doing the com-

putation for I = 3 sets B(3) to the value of A(4). But the value of A(4) it uses

depends upon whether or not the processor for J = 4 has already executed

statement 10. Since the processors are assumed to be asynchronous, the

resulting value of 8(3) is not well-defined.

We will not bother specifying the necessary restrictions on the

DO CONC loop. The DO CONCs which will be written appear in loops which

are equivalent to the original DO loop (1), and hence must give well-

defined algorithms.

The DO CONC statement is generalized to the form

DO a CONC FOR ALL (I', ... I) k

1-4



where is a subset of Z The meaning should be clear: for each

element (p, ... , pk) C xi, we have a processor performing the calculation
o I 1 Ik pk

1for --
• 4 "p # •••# "

1 -

----- ______________________



III. REWRITING THE LOOP

Consider loop (2), with index set CQ. Changing the order of

execution of the loop body for the different elements of LO obviously

does not change the algorithm. The loop can, therefore, be rewritten as

a single DO CONC, or in many different ways as a nested DO/DO CONC

loop. Choosing one of these ways, we rewrite it as follows:

(3) DO 10 1 = 3, 10

DO 10 CONC FOR ALLj e (y: 2i yg 7 and -3g yg J1

A (j _I- + 3, J2) = 0

10 CONTINUE

The choice is arbitrary and unnatural, but instructive.

To actually construct loop (3), we first defined the one-to-one

mapping J: z.2 9.2 by

1[ (II, 12) ] = (I+ 12, 12) = (j1 ,2)

as illustrated in Figure 1. We next defined the index set to be the

set ;(c) = ( 1(p): pe d). Th-enjI9 = ( Gj 1 J2 ): 3~ g 10, 2j j 2 e.7

and j _ 3 g j2, i - 1], and we filled in the limits of the DO and DO

CONC statements to give this index set. Finally, we rewrote the loop

body in such a way that executing the body of loop (3) for the point

J(P) i f is equivalent to executing the body of loop (2) for the point

P e . In other words, A(j - J2 + 3, j2) references the same array

elementas A(I1+ 3, 12) when(j 1 2)=J[ (i1 1)1]

1-6
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We can consider loop (3) to be the same as loop (2), except with

a different order of execution of the body for the elements of . This order

of execution is illustrated in Figure 2. The loop body is executed con-

currently for all points in lying on a straight line j = constant. The

execution for those points of t• with J1 = 3 precedes the execution for the

points with j1 = 4, which in turn precedes the execution for the pointE

with J1 = 5, etc.

This suggests that we define the mapping TT: M2 -# Z by

r (I1, 12) I = 1 I1 + 12

Then the execution for P e L precedes the execution for Q e ý if and

only If rT(P) < rT(Q). If rr(P) = Tr(Q), then the two executions of the loop

body are concurrent.

The generalization of this rewriting procedure is straightforward.

Loop (1) will be rewritten in the form

1 1(4) DO C. j = Xl, u

DO x k

DO ,y CONC FOR ALL (Jk+l jn) . k
i loop body

CONTINUE

where 1 k is a subset cf n-k which may depend upon the values
ill o**. I1

of J10 see jk. Here, Xi and ui need not be integers, but may be integer

1-8
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valued expressions whose values depend upon j1, ji-1

To perform this rewriting, we will construct a one-to-one mapping

J:2n -, n of the form

n1 n I n n n(5) (Il .... *,In) ]= (E a ,j ... , E a. Ij) = al , . , n

j=1 j j=1

i We i ifor integers a*. then choose the X , u and 'k so that the

index set /of the loop (4) equals J(k), and write the body of loop (4) so

that its execution for the point J (P) ef is equivalent to the execution of

the body of loop (1) for P e j.

Define the mapping TT: Z n ., zk by

SrI 1 (i1l ... , In) = (l ., jk)

so TT(P) consists of the first k coordinates of J (P). It is then clear that

for any points j (P), J (Q) ef ,the execution of the body of loop (4) for

S(P) precedes the execution for J (Q) if and only if TT (P) < Tr (Q). If

we consider loop (4) to be a reordering of the execution of loop (1), this

statement is equivalent to the following:

(E) For any P, Q e A, the execution of the loop

body for P precedes that for Q, in the new

ordering of executions. if and only if

rr(P) < T (Q).

J is one-to-one if and only if (5) can be solved to write the Ij as linear

iexpressions in the with integer coefficients.

1-10



The loop body is executed concurrently for all elements of

lying on a set of the form ( P: T(P) = constant: e Zk ) . Since j is

assumed to be a one-to-one linear mapping, these sets Sre parallel

(n-k)-dimensional planes in •Zn .* We thus have concurrent execution

of the loop body along (n-k)-dimensional planes through the index set.

Naturally, we cannot use any arbitrary mapping J. We must find

one for which loop (4) gives an algorithm equivalent to that of loop (1).

This is the goal of the following analysis.

Observe that rewriting loop (1) so all executions are concurrent;

i.e., with a

DO a CONC FOR ALL (I1 , ... , In) J
statement, involves setting j equal to the identity mapping, k = 0,

~ n4  0 nand T: Z the mapping defined by rr(P) = 0 for all P c M

*We consider 7n to be a subset of ordinary Euclidean n-space, as

we did in drawing Figures 2 and 3.

1-il



IV. THE BASIC RULE

We first introduce some terminology to aid the discussion.

Consider the variable VAR defined by the statement

DIMENSION VAR (10, 20)

The range of VAR is the setifVAR =((x,y): I_5xs 10, l-y- 201,

which is a subset of Z. Thus, R VAR is the set of all (x,y) e

such that VAR (x,y) is defined.*

An occurrence of VAR is any appearance of it in the loop body.

If the occurrence appears as

VAR(-,-)=

then it is called a generation; otherwise it is called a use. I.e.,

generations modify the values of elements of the array VAR, an~d uses'

do not.

Let f denote an occurrence of VAR in loop (1) of the form

VAR (I1 + 3, I 3), and assume n = 3. During execution of the loop body

for the element (3, 4, 5) e J, this occurrence becomes VAR (6, 5).

SWe say that f references the point (6, 5) e 4?VAR. for (3, 4, 5).

This defines an occurrence mapping Tf:64 4 Ve R by

*For a scalar variable x, we set = .
1x-"

•: 1-12



I

letting Tf(P) be the point of VAR referenced by f for P e .

* In this case, Tf is given by

1f[ p 2 p3) 1 3
TfE ,P , ]P (P+3 1, P

f!

We will'assume that all variable occurrences only have the

loop variables , . I n and Integer constants in their subscript

expressions. Then for'any variable occurrence g, the occurrence

mapping 'T •. • -. 2.m Is well-defined, where m Is the dimension
g

S(number of subscript positions) of the variable.

Now consider the loop

(6) 'DO 23 1=2,10

,DO f23 12 =3, 17

S21 A (I', 1) 2 (1)

22 B(I , I2)- A (I] -l, + 1) + B (Il, 12)

23 CONTINUE.

We have introduced the convention of writing the name of an occurrence

in a circle beneath it. For the point (4,. 7) e L, the loop body Is

21 A (4, 7)= C (4)

22 B(4, 7)=A(3, 8)+B(4, 7).

The-value A (3, 8) used in statement 22 is the one computed in statement

21 during exe6ution of the loop body for the poInt (3,8). To ensure that

1-13
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the execution for (4,7) computes the right value when we change the order

of executions of the body, we must only require that it be preceded by the

execution for (3,8). By statement E above, this means that Yr must

satisfy Tr r (3, 8) ] < r[ (4, 7) 1 .

In general, let VAR be any variable. If a generation and a use of

VAR both reference the same element in the range of VAR during execution

of the loop, then the order of the references must be preserved. In other

words, if f is a generation and g is a use of VAR, and Tf(P) = T (Q)

for some points P, Q e U0, then:

(i) If P< Q, we must have TT(P) <TT(Q)

(ii) If Q < P, we must have Tr(Q) < n(P)

In the above example, Ta r (3,8) 1 =Ta a (4,7)] =(3,8) anda1 2

(3,8) < (4,7), so we must have Tr C (3,8) 1 < nT 1 (4,7) 1. Note that if

P Q, then the order of execution of the references will automatically be

preserved, since they happen during a single execution of the loop body.

Thus, the fact that Tb [ (4,7)] Tb [ (4,7) ] does not place any

restriction on our choice of Tr.

The above rule should also apply to any two generations of a

variable. This guarantees that the variable has the correct values after

the loop is run. Together with the above rule, it also ensures that a use

will always obtain the value assigned by the correct generation.

These remarks can be combined into the following basic rule:

1-14



(Cl) For every variable, and every ordered ptir of occurrences

f,g of that variable, at least one of which is a generation: if

Tf(P) = T (Q) for P, Q e LP with P < Q, then -r must satisfy the relation

i i(P) < i(Q).

Notice that the case Q < P is obtained by interchanging f and g.

Rule C1 ensures that the new ordering of executions of the loop

body preserves all relevant orderings of variable references. The

orderings not necessarily preserved are those between references to

different array elements, and between two uses. Changing just these

orderings cannot change the value of anything computed by the loop.

The assumptions we have made about the loop body, especially the

assumption that it contains no exits from the loop, therefore imply that

rule Cl gives a sufficient condition for loop (2) to be equivalent to loop

(i *

For most loops, Cl Is also a necessary condition.

1-15
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V. THE SETS f, g>

The trouble with rule C1 is that it requires that we consider many

pairs of points P, Q in4. For the loop (6), there are 112 pairs of

elements P. Q, e4. with Ta (P) Ta(Q) and P < Q. However,
1 2

Ta(P) = Ta(Q) if and only if Q = P + (1, -1). We would like to be able

to work with the single point (1, -1) c 2 n, rather than all the pairs PQ.

This suggests the following definition. For any occurrences f,

g of a variable in loop (1), define the subset <f, g> of M.n by

<f, g> = ( X : Tf(P) =T (P+X) for some p T( )•n

Thus, for loop (6) we have <al, a2> = f (1, -1) 3, and

<bI, b2> = (0,0)3. Observe that <f, g> is independent of the index
set LP .

We now rewrite rule Cl in terms of the sets < f, g>. First,

note that nT (P + X) = rr(P) + TT(X), since we have assumed TT to be a

"linear mapping. (Recall the definition of TT, and formula (5).) Also,

remember that A < A + B if and only if B > 0. Then just substituting

P + X for Q in rule Cl yields:

(Cl') For ... generation: if Tf, Tg (P + X) for

P, P..+ X e with X > 0, then rr must satisfy

the relation TT(X) > 0.

Removing the clause "for P, P + 42" from Cl gives a stronger

1-16



condition for rr to satisfy. Doing this and using the definition of

< f,g> then gives the following more stringent rule:

(C02) For every variable, and every ordered pair of

occurrences fg of that variable, at least

I one of which is a generation: for every

X e <f,g> withX > O, rr must satisfy rr(X)> 0.

: Any Tr satisfying C2 also satisfies Cl. Hence, rule C2 gives

a sufficient condition for loop (4) to be equivalent to loop (1). Moreover,

C2 Is independent of the index set ,40.
" • •n •0

Note here that C2 is satisfied by the zero mapping rr: Z n Z

U£ and only if it is vacuous; i.e., if and only if there are no elements

X > 0 In any of the sets < f,g> referred to in the rule. In this case,

the loop body can be executed concurrently for all points in

1-17



VI. COMPUTING THE SETS < f,g>

We will obtain results about the existence of mappings -r

satisfying rule C2. In order to do this, some restrictions must be

made on the forms of the occurrences to permit a simple computation

of the sets < f,g>. We assume that each occurrence of a variable

"VAR is of the form

(7) VAR (Iil +lm 1 r +rM r)

where the mk are integer constants, and J' 'Jr are r distinct

integers between 1 and n. Moreover, we assume that the Jk are the

same for any two occurrences of VAR. Thus, if an occurrence

A(2 -1, I + -) appears in the loop, then the occurrence A (I2 +1

I + 6, 14 ) may appear. However, the occurrence A (I -1, I1, 1 )

may not.

Now let f be the occurrence (7) and let g be the occurrence

VAR ( j+n I, ... ,I +nr) . Then

Tf (P 1  p ). I (pJl +m1 ... r +m)

Tg[ (pI, ..[ I pn) ]=(p +nl, ... , p+nr

It is easy to see from the definition that < f,g> is the set of allnth is - nk'
elements of Z whose J- coordinate m- n for k = 1, ,

and whose remaining n - r coordinates are any integers.

1-18



- As an example, suppose n = 5 and f,g are the occurrences

VAR (I3 + 1, 1 + 5, I5), VAR (I3 + 1, 12 , I + 1). Then <f,g>
-- • [~~ (xI 5, Of y, -1) : x, y C Z) .Wewill denote this set by (*, 5, 0,*,-)

so "*" means "any integer".

The index variable Ii is said to be missing from VAR if Ii is

not one of the I in (7). It is clear that Iis missing from VARM if and

only if the set <f,g> has an * in the Jt-h coordinate, for any occurrences

f,g of VAR.

1-19



VII. THE HYPERPLANE THEOREM

ii is called a missing index variable if it is missing from

some generated variable in the loop; i.e., if it is missing from some

variable for which a generation appears in the loop body.

$ The following result is an important special case of a more

general result which will be given later.*

Hyperplane Concurrency Theorem: Assume that none of the index
Svaribles 2 .In
variables , I is a missing variable. Then loop (1) can be

rewritten in the form of loop (4) for k = 1. Moreover, the mapping

j used for the rewriting can be chosen to be independent of the index

set J .

Proof: First, a mapping : Zn -. Z will be constructed which satisfies

rule C2. Let p be the set consisting of all the elementsX > 0 of all

the sets < f,g> referred to in C2. We must construct Tr so that

TT (X)> 0 for all xe P.

Let "1+"1 denote any positive integer, so (+, x2, ... x n) is any
n 2 n, I1

element of Zn of the form (x, X , with x> 0 Since

*A weaker version of this result can be found in C 2].
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is the only index variable which may be missing, we can write

S= (Xl, .,Xn ,where

X r= orr nXr = r i
(+, x n

for some integers xr
S~r

The mapping rt is defined by
1 . in 1 I

(8) (I 1, ... I ) ] =aI + ... +a n

for non-negative integers ai, to be chosen below. Since aI _ 0,

IT[ (1 2c, ... x n) > 0 implies TTC (x, x, ... ' * nx) ] >0 for_ r r2 n

any integer x> 0 . Therefore, each X of the form (+, xr, .. , n)r r' r

can be replaced by Xr = (1, x , ., ) and it is sufficient to

construct nT such that TT (Xr) > 0 foreachrl= , ... , N. Recall

that each X r> 0.
r- 1 i1 o), 0 so10

Define )Pj = Xr: =" Xr 0, r s j

is the set of all Xr whose jth coordinate is the left-most non-zero

one. Then each Xr is an element of some .

Now construct the a1 sequentially for j = n, n - 1, ... , 1

as follows. Let a be the smallest non-negative integer such that

a xJ+ .+a xn>0r n r

for each Xr (0, ... , 0, r' r r x r Since Xr> 0 and
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xj $0 implies xj > 0 this is possible.
r r

Clearly, we have rr (Xr)> 0 fo: all Xr o f-.. But each

Xr is in some Ij, so r (Xr) > 0 for each r = 1, . .. , n. Thus, TT

satisfies rule C2. Observe that the first non-zero a. that was chosen
3

must equal 1, so 1 is the greatest common divisor of the a . (If all
the a. are zero, then Amustbe empty, so we can let rT[(I 1 , ... , ) ]

-= .) A classical number theoretic calculation, described on Page 31

of [3], and reproduced in Appendix A, then gives a one-to-one linear

mapping J: Zn-. _,n such that

l 0 1, . . .,n 1 I . . .n

Since the sets < f,g> are independent of the index set 4?,

the construction of uT and J given above is also independent of 4.
This completes the proof.

Loop (4) for k 1 executes the loop body concurrently for all

points in J lying along parallel (n - l)-dimensional hyperplanes,

hence the name of the theorem.

Observe that the theorem is trivially true without the restriction

that J be independent of 40 , because given any set.,J we can construct

a J for which the sets J 2 1n contain at most one element,
, ... ,

and the order of execution of the loop body is unchanged. For example,

if = ((x,y,z): 11 xl 10, lys_ 5, I:_ z9 7], let J[(x,y,z)] =

(35 x + 7 y + z, x, y). Such a j is clearly of no interest. However,
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because the mapping j provided by the theorem depends only on

* the loop body, it will always give real concurrent execution for a

large enough index set.

Condition C2 gives a set of constraints on the mapping
• •..n

1: -Z . M. The Hyperplane Theorem proves the existence of a rr

satisfying those constraints. We now consider the problem of making

an optimal choice of Tr.

It seems most reasonable to minimize the number of steps in

the outer DO J loop of.loop (4). (Remember that k = 1.) If a

sufficiently large number of processors are available, then this gives

the maximum amount of concurrent computation. This means that we

must minimize p I - X1 in loop (4). But X1 and p 1 are just the

upper and lower bounds (TT (P): P e ]. Setting

i I
M= u -

it is easy to see that u - X equals

(9) MII aj +...+Mna nI

where the ai are defined by (8). Finding an optimal 1T is thus

reduced to the following integer programming problem: find integers

al, ... , a 'satisfying the constraint inequalities given by rule C2,

which minimize the expression (9).

Observe that the greatest common divisor of the resulting a1
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must be 1. This follows because the constxaints are of the form

x 1  + . +xn a >0• • n

so dividing the a1 by their g.c.d. gives new values of ai satisfying

the constraints, with a smaller value for (9). Hence, the method of

[3] can be •..pplied to find the mapping J.

Although the above integer programming problem is algorithmically

solvable, we know of no practical method of finding a solution in the

general case. However, the construction used in proving the Hyperplane

Theorem should provide a good choice of TT . In fact, for most

reasonable loops it actually gives the optimal solution.
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VIII. AN EXAMPLE

Now consider the following loop:

(10) DO 16 I = 1, 25

2
DO 16 I = 2, 19

DO 16 13 = 2, 29

F (12,1 3) =(F (12 +2, 13 +F (12 13 +I)

x + F (I - 1, 13) + F (I 2'3 - 1)) " .25

16 CONTINUE

It is a simplified version of a standard relaxation computation for a

20 by 30 array F, performed 25 times.

To apply the method of analysis, first perform the following

calculations:

1. Compute the sets <fg> referred to by rule C2.

2. Find all elements X > 0 in these sets.

3. Find the constraints on the ai implied by n(X) > 0

This is done in Table 1.

Next, choose a1 , a 2 , a 3 consistent with these coi.=aInts,
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-v-

and miirimizing

24 1 a, + 1 a 2 1+ 27 a3

" It is easy to see that the solution to this problem is a 1 = 2, a2  1,

if I

~a 3 = 1, so Tr is given by

1 2.[1T ,I )J2 12 iatz1 +I I.

Note that this is the TT computed by.the algorithm used in the proof of

the Hyperplane Theorem.

Application of the algorithm described in the appendix gives the

followving mapplpg ( 1

(, , ,2 , 12 , 2 3 (21'+12 +, 1•113

Uf gsing this, and the inverse relation

(I1 12, 13) = (122, 1' 21i2 - 3, 31 3

the above loop is rewitien as follqws:

SDO 16 J1 6, 98
' '~i f 3

DO 16 CONC FOR ALL (j, 2 ) { (x,y):

X 1-S x :s 25, 2 --5 y-:5 29 aM d1 19 : 2x+y :s - 2X •

F(1 2 2.* , j 3 3 (F'(1 _ 2"j2 _ 3 + 1, J3) +

X F(J _ 2 J2 , 13, j 3 + 1) +F (j1 _ 2 " J2 _-j3 _1,j)

*It is bIso eesy to obtain this from the following fact: the mapping

J: Z n 4 ,zn defined by (5) is one-to-one if and only if'the determinant

of thea is : 1

I i 1

if I



X +F G1_ 2"j2- 13 3 1)) .25

16 CONTINUE .

The set expression in the DO CONC statement was obtained by

writing the relations 1- I 1- 25, 2 <--I2 - 19 and2 -- I3 -- 29 in

terms of1 j2 3,

To understand why the rewritten loop gives the same results,

consider the computation of F (4, G) in the execution of the original

loop body for the element (9, 4, 6) £4e . It is set equal to the average

of its four neighboring array elements: F (5, 6), F (4, 7), F (3, 6),

F (4, 5). The values of F (5, 6) and F (4, 7) were calculated during

the execution of the loop body for (8, 5, 6) and (8, 4, 7), respectively;

.. e., during the previous execution of the DO I1 loop, with I1 = 8.

The values of P (3, 6) and F (4, 5) were calculated during the current

executi( f the outer DO loop, with II = 9. This is shown in Figure 3.

Now consider the rewritten loop. At any time during its

execution, F (p,q) is being computed concurrently for up to half the

elements (p,q) in the range set P F of F . These computations are

for different values of I1. F~gure 4 illustrates the execution of the

DO CONC for jI = 27. The points (p,q) e 61- for which F (p,q) is

being computed are marked with "x"s, and the value of I1 for the

computation is indicated. Figure 5 shows the same thing for j1 = 28.

Note how the values being used in the computation of F (4, 6)
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in Figure 5 were computed in Figure 4. A comparison with Figure 3

illustrates why this method of concurrent execution is equivalent to

the original algorithm.

The saving in execution time achieved by the rewriting will

depend upon the amount of overhead in the implementation of the DO

CONC, as well as the actual number of processors available. (The

sets in the DO CONC statement contain up to 252 elements.) However,

the value of this approach is indicated by the fact that the number of

sequential iterations has been reduced by a factor of over 135. (However,

we must point out that a real program would probably include a

convergence test within the outer DO I loop, so the analysis could

only be applied to the inner DO 12 /DO 13 loop.)

1

• ! 1-32

S:•, i • .i • • . . ..



IX. THE GENERAL PLANE THEOREM

We now generalize the Hyperplane Theorem to cover the case

when some of the index variables i 2 * ..2 I are missing. Concurrent

execution is then possible for the points in S-lying along parallel

planes. Each missing variable may lower the dimension of the planes

by one.

Plane Concurrency Theorem: Assume that at most k - 1 of the index

variables 12,..., In are missing. Then loop (1) can be rewritten in

the form of loop (4). Moreover, the mapping j used for the rewriting

can be chosen to be independent of the index set a-.

Proof: The proof is a generalization of the proof of the Hyperplane

Theorem. Let I , . .. , be the possibly missing variables among
I2 In Set
1 , ... , I . Set 1 k+l = n + 1, and assume jl < J2 < .. <Jk <Jk+l"

Let be the set of all elements X > 0 of all the sets <f,g>

referred to by rule C2. We must construct rr so that rr (X) > 0 for all

x e . Let-j = f (0, ... , 0, xi, ... , Xn) . p: xJ> 0] , soP
is the set of all elements of P whose jth coordinate is the left-most

non-zero one. Then every element of do is in one of the OJ

The mapping rt: zn-, Zk will be constructed with

r (P) = ( 1 (P), ... , rr (P)) ,

where each TT n_. will be defined by
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i an inS• .. n) =a•I+ ... a I
TT' a,+ nI

for non-negative integers a. . Moreover, we will have a. 0 if j < j. or

i +> " This implies that is Xe P. and jV> Ji+l" Then (X) 0 . It there-

fore suffices to construct Tr so that for each J with J. <j <ji+ and X € P.:
i

T i(X > 0 - for we then have

r W(=)(0,... ,0, 0r (X) , n N >0.

Recall that for the sets <f,g>, an * can appear only in the

A coordinates. Thus any element of any of the sets P. with

Ji < j <ji 1 can be represented in the form
J( Ji+ 1 - , . .. ) , or(0,...0, xr,...x r'"

( ,ji+ I ji+ I -rr
3il

(0,...,0,+, xr ,..,xr ,...)

for a finite collection of integers x r , ji <- j < J+"1. By the same argument

used in the proof of the Hyperplane Theorem, we can replace "+" by xr =1,

iand choose a > 0, j <ji+. such that3 - -. J±+l

1i i i Ji+l-1a.i xr + ... +a -il~lx > 0

ii
for each r. Choosing a. 0 for j <j i and j > J.i+ completes the construction

i
of the required rr

The construction given in Appendix A is then applied to give

invertable relations of the form

j1 = ai I i +. a I i+l -I
ii ji+ 1-1

Ji+ 1 -1

bE 1r for ji <j "
r=. r i < i-Ulr= 13
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Combining these and reording the J3 gives the required mapping I. I
As in the hyperplane case, to get an optimal solution we want

to minimize the number of iterations of the outer DO loops. This means

minimizing (uXI _ + I) (U - kI). Using the notation of (5), it.s

easy to verify that this number is equal to

(11) (M a + +MnI +)... +(M 1 1 ak I+... + Mnl +),

where M = Ll -

Finding the a is now an integer programming problem. Note

iithat a solution with a a = 0 for some i gives a solution to thethaa oltin ita 1 = .. = n

rewriting problem with k replaced by k-l, since that Tri can be removed

without affecting the constraint inequalities. The Plane Concurrency Theorem

proves the existence of a Tr: ,n _ Ek satisfying 02, for a particular value

of k. It may be possible to find such a I for a smaller k.

For completeness, we will state a sufficient condition for the

loop body to be concurrently executable for all points in-. This is the case

when the zero mapping (rr (P) = 0 for all P c Zn ) satisfies C2. Since <g,f> =

S-X : X C <f,g > , it is clear that this is true if and only if all the sets

<f, g> are equal to (0}. Finally, the rules for computing the sets <f,g>

give the following rather obvious result:

If none of the index variables are missing, and for any generated

variable, all occurrences of that variable are identical, then loop (1) c(an be

rewritten as a

DO a CONC FOR ALL (10...,In)e 0

loop-.
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The hypothesis means that in the expression (7) for any

generated variable VAR, r n and the mi are the same for all occurrences of

VAR.

1
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CHAPTER TWO

SYNCHRONOUS PROCESSORS



1. The DO SIM Statement

We now consider the case of completely synchronous processors,

the primary example being the ILLIAC-IV. To accomodate it, let us introduce

the DO SIM (for SIMultaneously) statement, having the following form:

DO aSIM FOR ALL (1 ,. 1.,k) j

where jIs a subset of 3k. Its meaning is similar to that of the

DO CONG statement, except that the computation is performed synchronously

by the individual processors. Each point of )dis assigned to a separate

processor, and each statement in the range of the DO SIM is, in turn,

simultaneously executed by all the processors. An assignment statement

is executed by first computing the right-hand side, then simultaneously

performing the assignment.

As an example, consider

DO 15 SIM FOR ALLIc ( x: 2<_x<_10)

14 A(I) = A(t-I) + B(I)

15 B(1) - A(1) *' 2

The right-hand side of statement 14 is executed for all I before the assignment

of A(I) is made, and before statement 15 is executed. Therefore, if initially

A(4) = 5 and B(S) = 2, then executing the loop sets A(5) = 7 and B(S) = 49.

Because of the simultaneity of execution of the body for the

various points of J , we cannot allow any conditional transfer of control in

the lcop body which depends upon the index variables. E. g., the statement

IF (A(1)) 3, 4, 5

may not appear in a "DO SIM FOR ALL I" loop.
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For simplicity, assume that there is no transfer of control within

the body of the loop, so the statements are always executed sequentially

in the order in which they appear.

We will allow conditional assignment statements such as

IF (A(I).EQ. 0) B(I) = 3.

They are easily implemented on the ILLIAC-IV because of its ability to turn

off individual processors.

The only other restriction to be made on the body of a DO SIM loop

is that a generation may not reference the same array element for two different

points in its index setS . I.e., an assignment s'tatement may not have"2'
two different processors simultaneously storing values into a single me.mory

location. We do allow them to simultaneously load a value from a single

memory location, so this restriction is not made for uses of a variable. *

* Simultaneous loads from a single memory location are implemented in the

ILLIAC-IV by the ability of the central control unit to broadcast a value to all

processors.
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II. Rewriting the Loop

Now consider the problem of rewriting the given loop (1) in the
:form

(12) DOaJ.X', Cl

D, jk Xk kDO a = X T

, ,DO a SIM FOR ALL n 1

S lýoop body* I

-a CONTINUE

This is the same as loop (4), except the DO CONC is rpplaced by a DO SIM.

We assume that the body of looqj (1) contains no control transfering statements

-'i.e., no GO TO orinumerical IF statements.

Define the mappings J and T as before. Any DO CONC statement

can be executed as a DO SIM, since it'must give the same result if the

a,synchronous processors happen to be synchronized. Thus, the rewriting

could be done just as before by finding a r, which satisfies C2. However,

the synchrony Of the computation will allow us to weaken the condition C2.

Recall that rule Cl was made so that the rewriting will preserve

the order in which two different references are made to the same array

element. For references made during two different executions of the loop boly,

the asynchrony of the processors requires that the order of those executions

be preserved. However, with synchronous processors, we can allow the
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two loop body executions to be done simultaneously if the references will then

be made in the correct order. The order of these two references is determined

by the positions within the loop body of the occurrences which do the

referencing.

For two occurrences f and g, let f << g denote that the execution

of f precedes the execution of g within the loop body. This means that either

the statement containing f precedes the statement containing g, or else that
f is a use and g a generation in the same statement. The above observation

allows us to change rule CI to tha following weaker condition on n:

For ... generation: if Tf (P) = .W

for P, e e with P < 0, then we must have either

(i) -T (P) < TT(q), or

(ii) nI(P) = (O) and f <<.

In this rule, either (i) or (ii) is sufficient to insure that occurrence f references

Tf (P) for the point P e a before, g references the same element for Q E •

The conditions can be rewritten in the following equivalent form:

(i) rr (P) < TT (Q) and (ii) if rr (P) = -a (2) then f eK g.

In the same way c2 was obtained from cl, the above rule gives

the following:

(Sl) For every variable and every ordered pair of

occurrences f, g of that variable, at least one

of which is a generation: for every

f, < q. >withx > 0, we must have:
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(i) M(X) . and

(ii) if I ('X) 0 , than f <<ci.

If T satisfies rule Si, then it satisfies the preceding rule, so the rewritten

loop (12) is equivalent to the original loop (1).

We have been assuming that in rewriting the loop body, the order

of execution of the occurrences was not changed. I.e., the Ii were replaced

I n
by expressions involving J a.. •, , but nothing else was done to the loop

body. Now let us consider changing the order of execution of the occurrences.

That is, we may change the position of occurrences within the loop

body. For example, we may reorder the statements.

Let f<<g mean that f is executed before g in the rewritten loop

body (12). Then rule Sl guarantees that the correct temporal ordering of

references is maintained when the references were made in the original loop

during different executions of the loop body. Having changed the positions

of occurrences in rewriting the loop body, we now have to make sure that

any two references to the same array element made during a A execution

of the loop body are still made in the correct order. The following analogue

of ruleCl handles this:

For .. generation: if Tf T (P) for some P t,

and f precedes g in the original loop body. Then f <: g.

• Remember that there was no point in doing this before, since it couldn't

help for asynchronous processors.
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Rewriting this in terms of the sets < i ,g> gives the following

rule.

(S2) For every variable, and every ordered pair of

occu-rences f, g of that variable, at least one of

which is a generation: if 0 e. <f, q> and f precedes q in

the original loop body, then f •< g.

Rules SI and 82 guarantee that the rewritten loop (12) is equivalent to the

original loop (1). Notc that rule S2 does not involve TT.
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III. The Coordinate Method

We, could now try to solve the following problem: i-,,d a rewriting

of the loop body (and the resulting << relation between occurrences) and a

mapping n which satisfy rules S1 and S2, and which minimize the expression

(11). This would give a rewriting of the loop which is optimal in the sense

that the outer DO j1/ ... / DO jk loop has the fewest iterations. However,

the optimality of such a rewriting is illusory, for reasons which we will

now discuss.

The ILLIAC-IV has 64 processors. The feasibility of a machine

with so many processors is achieved by having all processors operate

synchronously with a single control unit, and by allowing each processor to

access only its own separate portion of memory. If processor 12 wants to

load a data word contained in processor 5's part of memory, then the follow-

ing sequence of Instructions is executed simultaneously by each processor

number I, ifr i = 0 to 63:

(1) load

(2) transmit data word to processor i + 7 (mod 64).

This means that the method of storing arrays must depend upon

how they are to be accessed. For example, consider the occurrence

F(1 - 2 *J -j , j ) inside the DO CONC FOR ALL (2, i3), which we

generated before with the Hyoerplane Theorem. It necessitates a complicated,

space-wasting format for storing the array F. The array would probably
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4

have to be reformated before and after execution of the outer DO Jl loop. *

It appears that the best results are obtained by choosing a

mapping J which gives a loop with simple subscripting and a reasonable

amount of simultaneous computation. An obvious way of choosing such a J

1 n
is to let J1, J be a permutation of the original index variables Il, f . 0&In,

More precisely, the mapping rr: Xn 4 Zk is taken to be a coordinate projection

- that is, a mapping for which rr[ (a , p. ,an)) is obtained by deleting n-k

coordinates from (a , .. . ,a n).

For example, for n = 5 we may want to rewrite loop (1) as

DO a 1

4 4 '4DO aI4= A4,u

DO aSIM FORALL (I, I,1) I I(x, y, z):

S<x<u 1 < <y<u2 ,and P <z<u 5

4l

Then TT[(I, 12 13 14 15 (I3 14)andJ[(11 ,I5) (I3, 14 1, 12 15

Notice that if Tr is a corrdinate projection, then the sets ,.. k of loop (11)

are easy to compute.

The coordinate method consists of first choosing a coordinate

projection TT, and then trying to find a rewriting of the loop body for which

Sl and S2 are satisfied. Since rewriting the loop body makes no difference

* A precise statement of the rules relating storage allocation and DO SIMs is

contained in [ 4)
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to condition (i) of S1, we must first require that it be satisfied for all

relevant occurrences f, g. Next, we apply S1 and S2 to get certain ordering

relations << between occurrences. We must then decide if it is possible

to rewrite the loop body so that these relations are satisfied.

In order to make this decision, we need a trivial observation:

a use in an assignment statement must precede the generation in that

statement. This observation will be given the status of a rule.

(S3) For any use f and generation q

in a single statement, we must have

Now we add the relations << given by S3 to those obtained from

S1 and S2. Next, we add all relations implied by transitivity. I. e., when-

ever f << g and g << h, we must add the relation f <<h.* If the resulting

ordering relations are consistent - that is, if we do not have f << f for any

occurrence f - then the loop body can be rewritten to satisfy the ordering

relations. We will describe the method of rewriting the loop body by an

example.

* An efficient algorithm for doing this is given by [5].
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IV. An Examp'

Consider the following simple loop:

1DO 24 1 2, 50

2DO 24 1 1,5

21 A(I1, 12) = B(II, 12) + C(lI)

22 C(II) = B(I1 -1, 12 )

0 @
23 B(I, 1 2) =A(I + I, )** 2

0 @

24 CONTINUE

We want to rewrite it as a DO I2/DO SIM FOR ALL I loop, so we apply the

1 2 2coordinate method with the coordinate projection i-defined by -n[ (I ,I )]

We proceed as follows. (The calculations for steps 1-3 are shown in Table 2.)

1. Compute the relevant sets < f, g> for rules

S1 and S2.

2. Check that S1 (W) is not violated.

33. Find the ordering relations given by Sl(ii) and S2.

4. Apply S3 to get the following relations:

statement 21: bl << al

cl << al
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"Is Si (i) Ordering Relations
The Sets <f, g> Violated ?S (ii) S2

'<al, al> (0,0) NO

<al, a2> = (-1,0) NO

<a2, al> (1, 0) NO a2<<al

<b3, b3> (0,0) NO -

<bl, b3> = (0,0) NO - bi<<b3

<b3,bl> = (0,0 ) NO - -

<b2,b3 > = (-1,0) NO -

<b3,b2 > (I,0) NO b3<<b2

<cl,cl> = (0,0) NO - -

<cl, c2> = (0,*) NO c1<<c2

<c2, cl> (0,*) NO

Table 2

21
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A

statement 22: b2 << c2

statement 23: a2 4< b3

5. Find all relations implied by transitivity:

b3 <<c2 [by b3 << b2 and b2 << c2]

a2 << b2 [by a2 << b3 and b3 <<1)2]

bl << b2 [by bl << b3 and b3 << b2)

bl << c2 [by bl --< b2 and b2 <<c2]
a2 <<c2 [by a2 << b3 and b3 <<c2]

6. Check that no relation of the form f << f was found in

3orS.

7. Order the generations in any way which is consistent

with the above relations - i.e., obeying b3 << c2.

We let al << b3 << c2.

We then write
21 A(I1 12 )

23 B(II I)

22 C(I I

8. Insert the uses in positions implied by the ordering

relations (recall that a2 << al):

A(11 +1, 12@2
21 A(II, I 2 ) B(11 , 12) + C(I)
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23 B(I1 12 **2

22 c(1) B(11 -1, 1 )

@ 8
9. Add any extra variables necessitated by uses no

longer appearing in their original statements:

X(I+, 1,2 ) =A(II +1, 1 )

0
21 A(II ) B(I , I ) +C(I')(@ @ 0
23 B(I, 12)I X(I + 1, 12) **2

22 C(I) = B(I1 -I, 12)

This finally gives us the following rewriting of our original loop:

DO 24 1 2 = , 5

DO 24 SIM FOR ALL I1 fx: 2< x <503

x (Il + I, 12 )= A(1 + I, 12 )

21 A(I, 12) = B(I1 , 12) + C(II)

23 B(I1 12) =X(I1 + 1, 12) **2

22 C(I I B(I -l, I

24 CONTINUE
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V. Further Remarks

It is easy to deduce a general algorithm for the coordinate

method from the preceeding example. The method can be extended to

cover the case of an inconsistent ordering of the occurrences. In that

case, the loop can be broken into a sequence of sub-loops. Every genera-

tion g for which the relation g << g does not hold can be executed within a

DO SIM loop. An algorithm for doing this is described in Chapter 4.

Observe that there are only 2n- 1 choices of a coordinate

projection Tr for rewriting loop (1). It is easy to try them all, in decreasing

order of the amount of parallel computation achieved, until one is found

for which the rewriting is possible. Rule S1 should rapidly eliminate many

choices.

It may happen that the rewriting cannot be done with any

coordinate projection. In this case, a more general linear mapping Tr must

be sought, using the approach developed before for DO CONC loops. For

example, no coordinate projection works for the relaxation loop (10).
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CHAPTER THREE

PRACTICAL CONSIDERATIONS
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I I

I Restrictions on the Loop

I1

Now consider theapplication of these nehosto the problem

of compiling a FORTRAN program for execution on a multi~processor computer.

We immediately observe that the restrictions which have been placed on, the

loop (1) would eliminate most real Fortran DO loops from considderation. For

example, the DO limits e, are usually'not all constants known at compile

time. Fortunately, most of the restrictions were made to simplify the exposi-

tion, and are not essential., We will now describe the restrictions which are

es'sential to the analysis.'

First, some terms must be defined. By a "loop constant" , we

mean an' expression whose value dha les not change while the loop is executed -

i.e. , any expression not involving generated variables or loop index variables.

A quantity is "knowrq at compile time" if it has a constant value whichl can

I

be determined by the FORTRAN compiler.

II

The analysis than be applied to the fdllowing loop:

(13) DO ate o l do
D I"

loop b'od

a CONTIN,,UE

assuming that it satisfies the following conditions:
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1. Each di is known at compile time.

2. The loop body contains no transfer of control to any

statements outside it.

3. There is no I/O statement in the loop body.

4. For each subroutine or function call in the loop body, it is

known which variable elements it can modify.

5. Each occurrence of a generated variable must be of the form

VAR (ei, ... ,em), with

ei i ,a i*l a. i * In+ ci
1 n

where c is a loop constant and each ai is known at compileJ

time.

For the coordinate method, the following additional assumptions are required.

6. There is no transfer of control within the loop body.

7. For every generated variable VAR, each occurrence of VAR

within the loop body must be of the form

VAR (a * 11+ cl, am* I m+cm),

where ci is a loop constant, ai 4-1 or 0, and the ai and Ji are

the same for all occurrences of VAR.

By weakening the restrictions, many complicated details are

added to the process of rewriting the loop. However, the analysis remains

largely unchanged. Some of these details are described in Chapter 4.

A significant change is introduced by allowing occurrence mapp-

ings of the form given in 5. It necessitates a complicated restating of the

Hyperplane and Plane Concurrency Theorems, as well as changing the method

3-2
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of choosing the mapping T. This will be discussed in a future paper.

Note that if the loop (13) satisfies these restrictions, then so

does the inner DO I k/... ./ DO In loop, for any k. (The index variables

Ii for j < k are loop constants for the inner loop.)
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II. Meeting the Restrictions

Even if a given loop does not satisfy the above restrictions, it

may be possible to rewrite it so that it does. We will give some useful

techniques for doing this.

It is easy to fulfill the requirement that the DO statements be

tightly nested. The method is illustrated by the following example. The loop

DO 77 1l= 1, 10

4 116 A(I ,1)= 0

DO 77 1 2, 20V •

can be rewritten as the following tightly nested loop:

DO 77 1= 1, 10

DO 77 12- 2, 20

16 I( 2  1 2_16 IF (I2 .EQ. 2) A(II, 12I) = 0

This technique is referred to as quantifying statement 16. It may be possible

to move the statement back outside the DO 12 loop and unquantify it after the

rewriting is performed.

Occurrence mappings can sometimes be rewritten by substituting

for generated variables so that condition 5 is met. One trick is illustrated

by the following example. Given
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k K=N

DO 6 1 =I, N

5 B(I)= A (K)

6 K=K-I

We can rewrite it as

DO 51 I=1, N

5 B(I) =A (N + 1 - I)

51 CONTINUE

61 K=I

This use of auxiliary variables to effect negative incrementing is fairly

common in FORTRAN programs.

In condition 6, the real restriction is that there can be no

possible loops inside the loop body. If this is the case, then transfer of

control can easily be eliminated by quantifying assignment statements with

logical IFs.
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III. Scalar Variables

Even though the loop satisfies all the restrictions, it is clear

that these methods can give no parallel computation if there are generated

scalar variables. Any such variable must be eliminated.

A common situation is for the variable to be just a temporary

"storage word within a single execution of the loop body. The variable X in

the following loop is an example

DO 31=1, 10

X = SQRT (A(I))

B(I) = X

3 C(I) = EXP (X)

In this loop, each occurrence of X can be replaced by KX(I), where XX is a

new variable.

In general, we want to replace each occurrence of the scalar

1 In
by VAR(I1,..., In), for a new variable VAR.* A simple analysis of the loop

body's flow path determines if this is possible.

Another common situation is when the variable X appears in the

loop body only in the statement

X = X + expression,

where the expression does not involve X. This statement just forms the sum

of the expression for all points In the index setNJ . We can replace it by

*After the rewriting, to save space we can lower the dimension of V. by

eliminating any subscript not containing a DO FOR ALL index variable.
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the statement

VAR(Il, . .°,In) = expression,

and add the following "statement" after the loop:
X = X + S VAR (II, ... In)

(I, . 1. n) c

The sum can be executed in parallel with a special subroutine.

The same approach applies when the variable is used in a

similar way to compute the maximum or minimum value of an expression

for all points in,.

i
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IV. Conclusion

We have presented methods for obtaining parallel execution of

a given DO loop. Many details and refinements were omitted for simplicity,

but all the basic ideas have been included. Some of the methods are being

implemented in the ILLIAC-IV FORTRAN compiler, as described in Chapter 4.

Preliminary study indicates that they will yield parallel execution for a

fairly large class of programs. This is true for other types of multiprocessor

computers as well.
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CHAPTER FOUR

THE ILLIAC IV TRANSLATOR

-- V.



As a practical example of the use of our methods, we describe

algorithms for translating a FORTRAN DO loop into an ILLIAC IV extended

FORTRAN DO / DO FOR ALL loop. We thus adopt the syntax of this ex.tended

FORTRAN, as described in [4]. In particular, note that the "DO FOR ALL"

statement is just our "DO SIM" statement.

I. RESTRICTIONS

We make some restrictions on the given loop (13) in addition to re-

strictions 1-7 of Section 3-I.

8. No two variables appearing in the loop may be EQUIVALENCEd

in any way.

9. There must be no subroutine calls in the loop body.

10. Functions called from inside the loop must not modify the value of

any variable.

11. Foreachj = 1, ... ,n:

(a) d2 and uj must be of the form

e + c 1 I1 + ... cj-1

where e is a loop constant, and the ci are known at compile

time.

(b) For any P in the index set, d(P) and u3(P) must be positive.

(c) If I dJ I > 1, then d must 'e a loop constant.
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SCondition 11(b) means that for any (P P n) in the index set, the

expressions AJ and uJ must be positive when P I PJ-l are substituted

for I, ... ,
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II. NOTATIONS

We now introduce some notations. Assume that we are given the

loop (13). Let D denote the element (d , ... , d n) n. It is called the

.n nincrement vector of the loop. For any point X = (xI, ... , x ) E , we

define X * D e XZ'n by

X*D= (xI dI xn dn

As before, we let S denote the index set of this loop.

We define a way of representing certain subsets of 2n which was

partially introduced before. We let "+" denote "any positive integer", and

let "-" denote "any negative Integer". We then have

(3, +, 6,-) = {(3, x, 6, y) :x>0, y< 0}+0

(-2, +0) 0 {(-2, x, y) :y<_0}

0'

Note that + was previously denoted by "*"

We let q5 denote the empty set.

Now let x and y be objects of any kind, and d 2 Z. Then we define

x if d<> 0

A0(x, y; d) = {y If d<0

y if d <0

A~x~y~d if d < 0

Thus ck,(I1, 12 + N; -3) = 2 + N, etc. Note that A(x,y; d) f(y, x; d)

4-3
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The reason for this notation is shown by the following trivial result.

Theorem: Let a, a', 9' e.., i- 1,..., n, such that a' <a1 <a . Let

T be the linear function defined by

T [ (1 1 0, 1 In)] =1hI 1 +... +h n

Then
-in

E IDLa_, a ; hi) hi< T [(aI, .•., an)] <E A(a, ai h) h
i i

and these are the best possible bounds on T [ (a1 an) ]
I - I,

By "best possiblebounds", we mean that given the a a we can

choose the a isothat T ( (a', ... , an) n equals either of the bounds.

By the quantification of an occurrence, we mean the quantification of

the statement containing the occurrence, as described in Section 111-2. We

say that an occurrence is quantified by Ij if it is quantified by the expres-

sion (I1 .EQ. ZJ) or (IP .EQ. u)).
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III. COMPUTING THE SETS <f, g>

Let f, g be occurrences of a variable, with occurrence mappings

Tf I T. First, we must generalize our rules to cover the case ofg I

increments di different from 1. An examination of the reasoning used

in Section I-V shows that this is accomplished by simply generalizing

our definition of < f, g > to the following:

< f, g > {X 'nn :Tf(P) Tg (P+X*D)for

some P e Z .

We can Improve our results somewhat by considering smaller

sets < f, g >. Namely, it is easy to see that everything we have done

remains correct if we replace the set < f, g > by any set containing

(Xe.n : Tf(P) = Tg(P +X* D) for some P, P +X* D E do

such that f is actually executed for the

point P and g Is executed for the point

P+X* * D}

as a subset.

We use this observation to obtain smaller sets < f, g> in the

following two ways:

(I) By using quantifications of the occurrences to replace

"*" components of < f, g > by more restricted components.

(ii) By using the bounds on the index set to replace < f. g >

by p whenever possible.
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As example of (I), consider the.followVing statements in the body

of loop (131, with'n L 2 andd d=2  1:
IF( I E

... A(I2 + I)

Then we can take < al a2 > to be ( -1) instead of* -1). This isSI 1,
because al is only executed for points ( 1y) e 9andla2 isexecuted

for poihts -(w, z) with w > Z1

I As an example of (ii), consider the following loop:

DO 22, f1= 1, 10

22 B(I) = B(I+ 10)

0 .0

We capn let < bl, b. > = * rather than (-10),, because P and P -10 cannot
both be in the index set for any P.

We now giveian algorithm for computing < f, g >. The steps are

discussed afterward.
1. Permute the subscript positions so that we have

1n) ( 1 1  r r a, k ~ ,. mf

I n al ") k 1  gkl ar fkr + gkr gr+lc * mTg ,...,,a c c
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withk, < ... < kr, and eachai=_+ .*

2. If for some i, fl - i is known at compile time to be
c c

not equal to zero, then < f, g > = p. Otherwise,

3. Forj = 1, ... , n:

(a) If j = ki for some i then:

(i) If fJ - gJ is known at compile time,

then xi = (fJ - gJ) /(dj . a')

(ii) Otherwise, xj = +
S 0

(b) If j / kI for all i, then define xj by the following table:

g Quantified By:

.EQ. J I) .EQ. ui Neither

SI .EQ. AJ +lfui u +

0 if uj may equal 1 0,

f if u j I 9J

Quantified I1 .EQ. if u1 may equal 0

"By: 0 + !

Neither 0 0

A trivial modification to the algorithm handles the situation

in which two of the k are equal.
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4. If for some j, xi is a number which is not an integer, then

<f, g> =. Otherwise,

5. If *for some J, xj is an integer such that I dj . xi I > I uj - A ,

then < f, g > =q. Otherwise,

6. < f, g> = (x ... x , xn

We now discuss the individual steps of the aigorithm.

1. This step is possible because of Restriction 7 of Section III-1.

It is only done to simplify the notation.

2. Iffgi /gc, then clearly Tf(P) /T (Q) for all P, Qe Zn.
c c g th

3. (a) (i) If xi is an integer, it is just the jih component of

< f,g>. If it isn't an integer, then < f, g> q).

(ii) In this case, we know that either < f, g > = , or

its j--h components consists of an unknown integer.

The best we can do is let the j-h component of
+

<f, g > be 0

th +
(b) In this case, the jh component of < f, g > is 0 . We use

the quantification of f and g to refine this choice. In

Subsection 4B, we will discuss how to decide whether or

not uj may equal 2).

4. This step tests fo, a non-integral xj produced in step 3 (a) (i:.

5. We will describe later a method for finding an upper bound

for u -J.
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IV. THE COORDINATE METHOD

We now present algorithms for applying the coordinate method -

described iii Chapter 1I - to our translation problem. We assume that

the loop appearing in the original FORTRAN program has been rewritten

using the techniques described in Chapter 3 to make it satisfy our

restrictions.

The given loop (13) will be rewritten as

"(14) DO x i X d P

DO at IDn-k = Xpn-k, Pn-k, dPn-k
J . i .k k il J l J l ilS (I, .... 1 ) /([i X +d ... CROSS.

ik Jk )k1

X .CROSS. [X , I +d ... ] : condition 1 .AND.

x. .AND. condition m)

DO- FOR ALL (1 1 , ... I ) /S

where p1 < ... < pn-k andj1 < ... <Jk" (For notational convenience,

we have replaced the k of Chapter 3 by n-k.) The co.- 1i ons in the set

expression are boolean expressions. "S" denotes some unique identifier.

The mapping rr M n - M n-k of Chapter II is thus defined by

n1, P1 Pn-k
S ,.,n .. II
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The following data declarations must also appear

a(J, Jl dj) .. Jk k dik
SET S (A(X , u ; , , A(X , ; d )

ALLOCATE S ((1, 2, ... , k))

(Since the di are known at compile time, the As are evaluated by the

translator and do not actually appear in the translator's output.)

A. Rewriting the DO Statements

We first give an algorithm for finding the limits Xi, ui and the
j Ji Ji

conditions defining S in (14). Note that the X , u must be integer

constants. We assume that for the original loop (13), we have

+0 +** + I I

j :j j-1
u u3 +ui 11 +...+u I0 1

as described in Restriction 11 of Section I . The steps in the algorithm

are explained afterwards.

The Algorithm

1. For j 1 ... , n; compute the following loop constant

expressions:

-- i+= 1 d'- ' "

Sj-1Iid
u: uj + j " uj A(!' ui; d i uý)

0 i=1 -- ' "
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, P = (1, -1; dj) [u -

0I 0

( 1; dA r u=
0 0

+(, u - e ) A(2 1 ; d) (u

2. For j = 1, ... ,n;

D minimum { aS: There is an occurrence in the loop,

not quantified by Ij, such that Ij

appears in the A- subscript position

of the occurrence mapping, for a

variable whose dimensions are

1 n(a I a ) }
Di is undefined if this set is empty.

3. If D is undefined for any i = 1, ... , k; then th-) rewriting

is impossible.

4. Forli = 1, k:
- • i ui, dji)

(a) .P (X , .; = 1

1 + (u'-•, If this is known at

compile time

A(. ji, u i; dji)

D i otherwise
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(b) Throughout the original loop, and in (15), replace
ji Ji ii Ji i ii ii J Ji
"I" by I + zJ- x , z0 by Z 0 k + xiand u 0 by

•1 o"• Ji ii )i""
u - z + X . I.e., recompute the t) and u, but not0 0 0

the quantities computed in step 1.

(c) If Z is not known at compile time, add the condition

(2i 4)( .LE. , .GE. ; d ) I ).

(d) If u 1 is not known at compile time, add the condition

S(u ji4( .GE. , .LE. ;•) ) j . Otherwise, set u ji= u j

(Note: This Is the new value of u computed in (b).

5. For i = 1, .... , n- k:

(a) Set Xi equal to 2 , with

Jr Jr d Jr PI

substituted for each Ir , r= 1, k.

S(b) Set uPi equal to uPi, with

(,Jr ur r P.

A ,u ,d r.2.)j' ' •'r Jr

substituted for each I .

(c) Forr= 1, .... , k:
S~P.

W() If Z1/ 0, 01 < P.; then add the condition
r r

I (2 4,(.LE. , .GE. ; di) .P
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(ii) If u i 0,r <P ; then add the condition

(U 4(.GE., .LE .; d ) I

6. Let i be the smallest integer such that the conditions defining

SPi ipi+l Pn-kS do not depend upon the values of I I , ..... n

If i exists, then place the assignment statement for S just

before the DO ex I statement. Otherwise, place it after the
-• Pn -k

DO a I , as it appears in (14).

Explanation of the Algorithm

1. If dj > 0, then by the theorem of Section II, d < Ij(P) <uj for

all P C (9 . If dj < 0, then the inequalities are reversed.

Similarly, (up.4 j and ( )J are chosen so that

(IL- AP < I u(P) - OJ(P)j< (u- )j for all P do.

Although the (u - e)J are not used in this algorithm, this

is an appropriate place to calculate them. They will be

used later.

2. The numberDj provides an upper bound for

I + I uJ(P) - Aj(P) I ; P r d. To see this, suppose the

occurrence A(I2 13 + K) appears in the loop, and A is

dimensioned by

DIMENSION A(10, 33).
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If references occur to both A(i,j) and A(i', j'), then

i -i' I S< 10 - 1 = 9, 1-' I :<_ 32. Hence,

1u 3 (p) + K- (j 3 (p) + K) I=1 u 3 (p) - Z3 (p) I < 33 - 1.

3. D is undefined if I does not appear in any unquantified

variable occurrences. If this is the case, then we have made

a bad choice of DO FOR ALL variables (i.e., of the mapping

TT)

4. (a) Supposed > 0. Thenu - x is an upper bound for

u (P) - t~ (p), P C LO. If d '<0, rev :rse the signs

in the preceding statement. Note that X and u are

actual numbers, known at compile time.

(b) We rewrite the loop so that the values assumed by I

are as small as we can make them and still be sure that

they are positive.

Note that if Z was originally a loop constant,

then after the substitution it equals X , a known number.

This is necessary if I d I > 1, otherwise our set con-

struction would not work right. I.e., the setJi i dI i Ji

X[), X + d ... j] would niot necessarily contain
)i

integers in the correct congruence class mod d . This

is the reason for restriction 11 (c) of Section 1.

(c) ,(d) If X or U is not the actual value of A or u

respectively, then the appropriate tests must be inserted.
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I
I

Pi Jr
5. If the limits on I depend upon one or more I , then the

1 Jr Jr msb
bounds X, u or, must be used to determine the nev limits

on P , and the original limit test must appear in the definition
Pi P.

of S. Note that the expressions e , u ' are the ones

recomputed in Step 4(b).

6. This just removes loop-invariant code from the innermost DO

loops.

B. The Bounds on I uj

The algorithm of Subsection A finds the bounds on ! uj - eJ

needed for the algorithm of Section 3 which constructs the sets < f, g >.

For Step 3 of the algorithm of Section I11, we can say that

uj/ £J If and only if (u - AP is known at compile time, and is not

equal to zero.

For Step 5 of that algorithm, we may replace I uj - iJ I by

(u-- £)J if it is known at compile time, or by Di if it is defined. If

neither replacement is possible, then the test may not be applied for

that value of j.

Note that the values of (u - _)j and (u - 2)j are not changed by the
Ji

substitution for the I performed in Step 4(b) of the algorithm of Sub-

section A.
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C. The Coordinate Algorithm

We now describe a complete algorithm for rewriting the given loop

(13) as a DO / DO FOR ALL loop of the form (14). Actually, we will

"un-tightly nest" the loop if possible by moving quantified statements

outside of inner loops. (See Section 3-11.) A discussion of the individual

steps follows the description of the algorithm.

The Algorithm

1. Find the sets < f, g > required by rules S1 and S2, using

the algorithm of Section 3.

2. Choose the DO FOR ALL variables 1 , ... , I .

3. Apply the algorithm of Subsection A to rewrite the DO state-

ments. If the rewriting is found to be impossible, stop.

4. Apply rules S1-S3 of Chapter 2 to obtain the ordering

relations <<. If the rewriting is found to be impossible, stop.

5. Replace the ordering << by its transitive closure. I.e., add

the relations f << g which are implied by transitivity from the

original ordering. Thus, if f << h << g, then add the relation

f<< g.

6. If for some generation g, the relation g << g holds, then go to

the algorithm described in Subsection E.

7. Complete the ordering of the generations to a total ordering by

the following procedures. Let f and g be generations which are

unordered with respect to one another (neither f << g nor g << f
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holds). Then:

(a) With the notation of (14): if, for some i, f is

P. p.
quantified by (I ' EQ. 1p ) and g is not, then f << g.

p. P.
(b) If, for some j, f is quantified by (I .EQ. u ~) and

g is not, then g << f.

(c) if the statements containing f and g are both of the

form IF (expression) , with the same "expression", then

make f and g adjacent in the complete ordering. (I.e. , if

we make f <<g, then f <<h <<g must imply h =for

h = g.)

After applying (a), (bli, and (c'l for all pairs of unordered

generations, complete the ordering by using the order in which

the generations appear in the original loop.

Note: No new ordering relations involving u1ses are added.

8. Denote the generations by g , gm , with g, <<.. < m

Reorder the statements of the loop body so that the P~ state-

ment is the one in which g appears, fori = 1, ... , m- -1.

(Note that by our restrictions, every loop body statement con-

tains a generation.)

Foi notational convenience, introduce an imaginary

generation g 0 with go << f for every occurrence f in the loop,

and a corresponding Statement 0.
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9. For each variable use f, let

first (f) = maximum { i g i<< f }

last (f)= minimum {i :f<<g }

Note that if f appears in Statement j, then

0 < first (f) < last (f) < j.

10. Forj = 1, .... , m:

(a) For each use f appearing in Statement j:

(i) If last ff) = j, leave f unchanged.

(ii) If last (f) < j, then let f be a variable

occurrence with the same occurrence mapping

as f, but with a different, previously unused

variable name. Replace f by T in statement j.

Form rn assignment statement f = f, with the

same quantifications (I .EQ. 2 or u ) as

statement j. For example, if statement j is

P P iJ
IF ((I .EQ. 2 .AND. (I .EQ. Z

form the statement
P 2 P2)

IF (I .EQ. A f = f.

Insert this new statement anywhere between

statements first (f) and last (fl.

(b) If Step (a) (ii) was applied to two distinct but

identical uses fl, f2 (I.e. , uses of the same variable

having the same occurrence mappings), then if possible,
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replace f 1 and f 2 by a single occurrence 7, with a single

generation.
11. (a) If the first q statements of the loop body (including

those added in step (10)) are all quantified by

(I J .EQ. Z ) forj = i, i+ 1, ... , n- k, but the

- (q + 1)st statement is not then:

(i) Move these q statements in frdnt of the

DO I statement.

(ii) Forj 1,..., n-k: Delete the,

(Ij .EQ. Zpj) quantifiers, and replace all

instances of I by Z in these statements.

(iii) Insert a

DO S FOR ALL(I ... , I /S.

statement in front of these q statements and a

0 CONTINUE

statement after them.

(iv) If the assignment statement for S lies
p.

inside the DO I loop: then copy the assign-
p

ment statement for S, except with I

p
replaced by t J forj = i, I+ 1 ... , n - k.

(v) Repeat (a).
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(b) If the last 'q statenments of the loop body are all

p. p
quantified'by (I .EQ. Z ) fori =i ... , n -k, but

the (q + 1)-t statem-ent is not, then perform the analogue

of steps (a) (i) - (v) to place these statements after the

p.'
DO I loop.

12. For each variable introduced in Step 10, and each variable

introduced by the procedures of Section 3-I11:

(a) For each occurrence of the variable.: Delete all sub-

script positions not referencing any I E.g., replace
j P2 j 3i J3

VAR (I + 2, I , I , 4) by VAR (I + 2, I

(b) Create the appropriacte data type and~dimension state-

ments. The actual dimensions are ootained by:

(i) For the se.t S intrbduced in Step 3, and the

variables introduced as described in Section
Sth(Ji ji d

3-Ill, the i- dimension is A(X , u ; d )

ji ji
where X , u were found in Step 3.

(ii) For the variables introduced in Step 10,

the dimensions are obtained in the obvious way

from the 'dimensions of the variables which

they replace.

(c) Create' the appropriate ALLOCATE command needed to

make the DO FOR ALL valid.
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(d) Place the variable in an OVERLAP statement so as to

allow it to occupy the same storage area as other variables

similarly introduced in other loops.

13. For each original loop variable VAR which does not have the

proper storage allocation for the DO FOR ALL, introduce a new

variable VAR of the same dimensions, but appropriate allocation.

Add the statement

VAR = VAR

in the front of the DO FOR ALL loop. If VAR is a generated

variable, add

VAR = VAR

after the DO FOR ALL loop. Replace all instances of VAR in

the loop by VAR.

Discussion of the Algorithm

2. Some heuristic will be needed for choosing the DO FOR ALT.

variables, probably involving the sets < f, g > computed in

Step 1.

5. See [51 for an algorithm to do this.

6. If g << g holds for some g, then the generation g cannot

be executed inside the DO FOR ALL loop. However, as we

will see, the DO FOR ALL may be applied to any other

generation h for which the relation h << h does not appear.

7. We need a total ordering of the statements so that we can

rewrite the loop body. I.e., we need to know the order in
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which to write down the statements. This is done by totally

ordering the generations. (Since there are no control state-

ments, there is exactly one generation per statement.) If

Step 5 did not provide a total ordering, we must add ordering

relations until we get one.

Steps (a) and (b) try to maximize the chances of being

able to use Step ii. Step (c) tries to make the handling of

mode sets as easy as possible for the compiler.

If these steps do not determine a total ordering, using the

order of appearance in the loop seems as good a method as

any to complete the ordering.

This entire step is not very precisely formulated, but

should indicate how an algorithm for executing it can be

obtained.

9. The use f must be executed between generation numbers

first (f) and last (f). If first (f) >_ last (f), then there would

be a generation g with g << g.

10. (a) (1i) In this case the use f must be executed before the

value it produces is needed. I.e., the load must be

executed before statement j is executed. Hence, a

temporary storage location is needed.

(b) The conditions for combining two tempcrary storage

locations are clear, although when to combine IF clauses,

etc., requires a detailed algorithm. Note that a necessary
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+I

* condition for being able to combine the assignment state-

ments is that there exists an r such that

first (fi) < r < last (f

for i = 1, 2.

Even if this is not possible, the same variable can

sometimes be used, with two generations, thus saving

storage space.

A method of minimizing storage space which we have

not considered is illustrated by the following example.

Suppose we have

A(II 1 B(I1) + C(1 )

and (a) (1i) indicates that we need temporary variables for

these uses of B and C. It may be possible to rewrite this.

as

BC (i I B(Il) + C(Ia

A(I 1) B (I1

Developing an algorithm to do this is rather involved, and

has not been done.

11. This is a fairly obvious procedure for moving statements out-

side of inner loops. It actually reverses the procedure for

moving them into inner loops described in Section 3-I1. As

the example given in Subsection D shows, what gets moved
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inside a loop cannot always be moved back outside

again.

If (a) and (b) both move statements outside the same

Pi
DO I loop, then there is no need to compute the same set

S twice. However, a new set variable must be used in place

of S in steps (iii) and (iv).

12. (a) This is an obvious space saving technique.

(b) Our algorithm has neglected the possibility of over-

lapping the variables Jncroduced in Steps 10 and 13 with

each other. A trivial analysis shows when two such

variables may be overlapped. Finding the optimal over-

lapping among a zollection of such variables requires a

clever algorithm, which has not been developed.

13. This is an obvious solution to the reallocation problem. In

some cases it would be better to put the reallocation inside one

or more of the outer DO I loops, and set VAR equal to the

appropriate "coordinate slice" of VAR. However, we have not

devised an algorithm to do this.

D. An Example

We illustrate the preceding algorithm by applying it to the following

unlikely loop:
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DO 17 11 = 2, N

DO 17 12 = 11, 1, -1

13 IF (I2 .EQ. 11) B(I) =A(I2 , 1) + SIN (3.14 * I / 180)

2 1 1 214 A(I , I) =C(f1, I +K) + .5

15 C(1 12) = A(12 . I1+ 1) * B(I)

16 IF (I2 EQ. 1) E(I) C(I, 12)

17 CONTINUE.

with the following dimension information:

DIMENSION A(4, 95), B(97), C(99, 8), E(101)

Note that statements 13 and 16 were originally outside the inner

DO 12 loop, but were moved inside it by the method of Section 3-:II.

We now apply the algorithm as follows:

1. The algorithm of Section III yields the following:
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<Al, A2 > = (-l, 0)

<A2, A2 > = (0, 0)

< A2, A3 > (-1, 0)

< BI, BI > =(0, 0)

< Bi, B2 > = (0, +) [using stip 3(b)]

< Cl, C2 > = (0, +) [using sc.ap 3(a) (ii) ]

<C2, C3 > = (0, 0)

< El, El > = (0, 0)

2. We choose to rewrite the loop with a DO FOR ALL I , so we

letJl = landp,=2. Then

TI[(I, I12)] = 2

3. We apply the algorithm of Subsection A as follows:
•I = =- -_)

. _=2, ul=N, (u-_ ) N -2, (u-Z) N- 2

=tN, N =, )2 1 , (u") 2  N - I

12. D = minimum (95, 97, 99, 101 } 95

2
D minimum { 4, 8 } = 4

3. D1 is defined, so no problem.

4. (a) X11

L1 =95

(b) Substitute I1 + 1 for I throughout the loop, and

change k , ui as follows:
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12 1 2l,u N

•2 + 1 + 1, u 2-1

(c) e1 known at compile time, no condition

(d) Add the condition ((N - 1) .GE. I)

5. (a) X2 = 96 (= 1 +u

(b) u 2 1

(c) (W) Add the condition ((1 + II) .GE. 12)

(ii) No condition

26. The conditions defining S involve I , so the assignment

statement for S follows the DO 17 12 statement.

Putting this all together, we get the loop control statement

DO 17 12 = 96, 1, -1

S [1 /[l, 2 ... 95] : ((N- I) .GE. II) .AND.

M(1 + 1) GE. 12)]

DO 17 FOR ALL 11 /S

and the new loop body:

13 IF (12 .EQ. 11 + 1) B(11 + 1) = A(I2 , 1 + SIN (3.14 *I1 /180)

14 A(I 2 , I1 + 1) =C1 + 1 12 +) + .5

1 2 2 , 1 • ) (

15 C(I1 + 1, 12 ) =A(I 2 
1 +2)*B(I1+1)

21 1 2
16 T' (I2 .EQ. 1) E(I + 1) = C(I1 + 1, 1)

17 CONTINUE .
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Note that none of the sets < f, g > computed in Step 1 are

changed by the substitution for I.

We must also include the declarations

SET S (95)

,DIMENSION A(95)

and add S, A to an OVERLAP statement.

4. The rules give the following relations:

S1: A2 << Al

A3 << A2

(and the rewriting is not impossible)

S2: B1 << B2

C1 << C2

02 << C3

S3: Al << BI

C1 << A2

A3 << C2

B2 << C2

C3 << El

5. This gives the following additional ordering relations:

A2 << B1 [from A2 << Al, Al << Bl]

C2 << El [C2 << C3 << El]

B1 << El1 [B1 << B2 << C3 << Ell

A2 << E1 (A2 << BI << Ell

BI << C2 [BI << B2 << C21
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6. g << g does not hold for any generation g.

7. The ordering of the generations obtained by 4 and 5 is already

totally ordered. It is: A2 << B1 << C2 << El.

8. gl = A2, g 2 = BI, g 3 = C2, g 4 = El

This assigns the numbers 1-4 to the FORTRAN statements

as follows:

14 - 1, 13 - 2, 15 - 3, 16 - 4

9. first (Al) = 1, last (Al) = 2

first (Cl) = 0, last (Cl) = 1

first (A3) 0, last (A3) = 1

first (B2) 2, last (B2) = 3

first (03) = 3, last (03) 4

10. (a) The only use for which (ii) holds is A3. We must

change statement 15 which contains A3 to (recall that we

are using the loop as rewritten in Step 3):

15 C(I1 + i, 12 = (2 , I + 2) * B(1 + I)

and add the following statement before the first state-

ment of the loop body

A(I+, +2) A(!2, I +2)
(b) Does not apply.

11. (a) We may remove statement 16 from the outer DO I

loop, with its own DO FOR ALL, as follows:
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S = (II/[1, 2 ... 95] ((N - 1) .GE. I) .AND.

((I + 1) .GE. 1))

DO 116 FOR ALL I1 / S
i1

16 E(I + 1) = C(1 + 1, 1)

116 CONTINUE

12. (a) We replace the two occurrences A(I 2 , I1 + 2) intro-

duced in Step 10 by A(I1 + 2).

(b) We need the following statements

SET S(9 5

DIMENSION A(95)

(c) Since we have only added 1-dimensional variables,

no ALLOCATE statements need be added.

(d) We will have an OVERLAP statement of the form

OVERLAP ... (S, A) ...

13. Assuming default allocations, this step is vacuous.

Putting this altogether now, we finally get the following loop:

DO 17 12 = 96, 1, - I

S= (I1 /11, 2 ... 95] : ((N - 1) .GE. II) .AND.

((Ii + 1) .GE. I) ]

DO 17 FOR ALL II /S

142
(I1 +2) = A(I4 I1 + 2)

14 A(I, I1 +I) =C(I1 + ,11 +K) +.5
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13 IF(12 6Q 11+1) B(F+O1) +A(I 2 1I) SIN A I11

15 C(I1 +1) i2=AI1 +2• *B(I1 +1)

17 CONTINUE
S [= [i/[1, 2.... 9s]J ((N - 1) .GE. ji) .AND.

((II + 1) .GE. 1)]

DO 116 FOF, ALL II/ S

16 E(I1 +i) =C(I1 +1i)

116 CONTINUE

E. The Algorithm for Inconsistent Orderings

We now give an algorithm to handle the situation in which Step

4 or 5 of the coordinate algorithm of Subsection C produces an incon-

sistent ordering - i.e., one containing a relation, of the form g << g.

The algorithm is discussed afterwards.

The Algorithm I

1. Define an equivalence relation t on the set of generations by

f LAg if and only if (i) f=g, or (ii) f<<g << f.

Let [f] denote the equivalence class of f. ,I.e.,

[f] { {g :g ' f} •

Let >6denote the set of equivalence classes.

Define an order relation on . by [f << [g] if and only if

[f] / [g] and f << g. (Note that this is independent of the

choice of f e [f], g c [g].) This ordering is transitively,
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9 11

closed (because the, orderifig of generatioris is) and is con-

sistent. i.e., [gJ tr,. (g] f-r all generations g.

Call the class [f] good !if f z, f, and bad if f < f.

(Again, thilis independent of the choide of f e [fi .)

2. Write r' as f he disjoint union of subsetý , m

where m is as small asIpossible, and the-Ali satisfy:
I

(i) Theielemienti of are either all good or all bad.1

(ii) If [f] e 5e, [g] e and i <;j, then [f] > [g].

Let'G { g :[g]. F } C6ll Gi good if for each

*g E Gi [g] is good, an d cafl it bad if [g] is bad for each1 I

[g] t G. Then (i) states that Gi is either good or bad. The

minlmality of m implies that if G. I good, then Gs and

Gi + 1 are bad.

3. Totally order the 'generations as follows:

(a) if G, is good, use Step 7 of the Coordinate algorithm
I

'of Subsection C, minus parts (a) and (b), to order the

elements of'Git
(b) If G. is bad, order the 6lements of Gi by the order in

1

which they appear in the original loop.

(¢) If, f e Gi, g e G. and 1< j, then f<<g (,Note that

property (ii) of the in Step 2 assures that this gives

a consistent or~ering.)

4• For each Gi, 'let G-i be the set of dll occhrrences f such that

f appears in the same' statem, ent as g for some g E Gi. If
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Giis a bad set and g c Gi, let Gi= {f : fa use and f e Gi

or f <g < f }

5. For each bad set G.: Delete all relations of the form f << g,1

f, g e .i, which were found by rule SI but not by rules $2 or

S3 (applied in Step 6 of the Coordinate Algorithm).

* All the remaining ordering relations f << g, including

those defined in Step 3, form a consistent ordering of the

occurrences.

6. For each bad set Gi, and each use f e Gi introduce a

new k-dimensional variable A and add the statement

A A (I ... ,f

Let f denote this generation of A. Add f to Gi, add the

ordering f << T, and totally order Gi so that the new ordering

(of all occurrences) is consistent. Finally, replace the

original use f byA (i/, ),k

7. Perform Steps 8, 9, 10, and 12 of the Coordinate Algorithm.

Add the generations inserted by Step 10 to the appropriate

sets GI (maintaining 3(c)). Whenever possible, these new

statements should be inserted so that their generations are

included in good sets.

8. Let be the statements containing the generations in Gi,

ordered by the ordering between the generations.
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9. Rewrite the loop as an outer DO I , ... ,DO I loop con-

taining the assignment statement for S (as co istructed in Step 3

of the Coordinate Algorithm of Subsection C), and a sequence

of m inner loops as follows.

For i= 1, ... , m:

(a) If Gi is a good set, then insert a

DO FOR ALL (1 ,..., k/S

loop whose body consists of the statements .

(b) If Gi is a bad set, then insert the loop

ji U i ji~DO ,8I ,u ,d

DO 8I I~ ], u , dk

IF (.NOT. (conditionl .AND ... AND. condition p)) GO TO 0

0 CONTINUE,

where the conditions are those chosen in Step 5(c) of the

algorithm of Subsection A (which was executed in Step 3 of the

Coordinate Algorithm).

10, Perform Step 13 of the Coordinate Algorithm.

Remarks on the Algorithm

The fact that the algor•thm is correct follows from the following

observation:
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The rewritten loop '€ill be computationally equivalent to the

S. original one if for every, relation f << g produced by the rules Sl-S3,

one of the following holds:

(I) f appears in g appears in with i < J.

(ii) f and g appear in the same DO FOR ALL loop, and pre-

cedes g.

(iii) f and g appear in the same DO loop, in the same order

in which they appeared in the original loop.

(iv) f and g appear in the same DO loop, and f precedes g.

The only ones of the above conditions which are not obviously

sufficient are (Wii) and (iv). For (iv), observe that the order of execution

of f and g only matters if 0 e < f, g > and originally f << g or g << f.

However, if 0 c < f, g > and originally g <<f, then rule S2 produces

g << f, so the above conditions cannot hold for all f and g. Hence, if

0 e < f, g >, then f << g and (iv) implies (III).

For (iii), let J be the mapping we defined in Section 1-3, which

for the loop (14) is given by

S(1 P Pn- Ij Jk"" I[ , . n) ] (I 1 nk ~1,**

Then the order of execution of references by f and g to the same variable

element are reversed only if for some A e < f, g >, and A > e and

J(A) <10, orA >"0 and J(A) >0. But this is precisely what rule S1

forbids.
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For Step 6, note that f C Gi and f e G for j /J implies I< j.

To see this, let gi e Gi, so f<< g, << f, and let g1 e G be the generation

for the statement containing f, so f << gi" Then gi << f << g1 implies that

i < J. This means that the use of A which replaced the original use f

must follow the generation of A introduced in Step 6.
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V. THE PLANE METHOD

A. Introduction

We now consider the application of the methods developed in

Chapter 1 to our translation problem. Since the tLLIAC extended

PORTRAN's DO FOR ALL is a DO SIM, by the observations of Section 2-11,

we can replace rule C1 by rAe Si. (In doing so, we let << be the

ordering of occurrences in the given loop.) We then get the mappings

Tr and J to rewrite the given loop as a DO / DO FOR'ALL loop as in

(4). Of course, in applying rule Si to choose TT, we use the sets

< f, g > as calculated in Section III of this chapter.

The only additional comment we have to make is about making

the optimal choice of TT. Since the d and uj may not be known at come-

pile time, we do not know the values of the Mi for the expressions (9)

or (11) which we must try to minimize. For a practical approach, M

can be approximated in one of two ways:

(i) by a FREQUENCY statement if one appears in the

program, or

(ii) using the quantities Xi and ui defined in Subsection

IV A.

Once we have obtained TT and J, we still have the problem of re-

writing the loop as a legal extended FORRRAN DO FOR ALL loop. This

is always possible, but involves many practical details. Indeed, these
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details may introduce enough inefficiency to offset the gain due to

parallel loop execution.

To prevent our being overwhelmed by details, we will restrict

our algorithm to the hyperplane case. Moreover, we make two additional

A. assumptions beyond those needed by the Hyperplane Theorem:

(i) Each dJ in the given loop (13) equals + 1.

(ii) Each generated variable has no missing index

variables.

B. Writing the DO / DO FOR ALL

Assume that we have found the mapping TT : Zn -, 2Z satisfying

S1 and we have constructed the index variables ji by the algorithm of

Appendix A.* Let thr' Ii and ji be related by

n
(16) (a) Ji' h I

J=l

(b) Ii= E n

1=1
I fo i= 1, *.., n.

We will rewrite the given loop in the form

(17) DO ca J X, =

S=.

This aLi'orithm allows sowm choice in constructing the ji. Subsection

E explains how to make the best choice.
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DO rx FOR ALL (J2 n.., jn) /S

loop body

a CONTINUE.

We must therefore construct the assignment statement for S and the

limits X , U The set S wants to be assigned the value { (p ., pn)

1 2 n)(G , p I .... p c i} This is accomplished by first writing the

statement

•'(2jn) 1 (-2 .. 2] [In -.. n]2° ... ,... .CROSS. ... CROSS.

x (91 C(.LE. , .GE. ; dI) II) .AND. (uI -,(.GE., .LE.; dI) II)
-- .AND. (u n -,(.GE., .LE. ; dan) tn

Next, we substitute for each Ii appearing in the statement, using

Equation (16-b). (This includes any appearances of Ii in the 2J and uJ.)

"i vi
Finally, we have to choose the numbers X , u such that for every

element (p., p n) V < p1 < V, for i= 2, ... ,n.

The choice of Xi, X i is made by the following procedure.

1. Use the algorithm of Subsection 4A for the case k = n, to find
numbers XJ, uJ such that for every (pl, pn) €4

p , [ X j +dJ uj] I = 1 n.

Note that this may involve rewriting the loop body. However,

since it does not change any of the sets < f, g >, it does

not affect our choice of 17 and J.
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2. By the theorem of Section 2, and Equation (16-a), we can

let
X Z flXj, uj;djh') hh

jj

V=E A(Xj ,j ;djh') h'
I J 3

We also defineX 1 , u1 by

X I 4 ji , u d' h' h'
4j ' 3

U Z A(tJ , uJ; d' h) h 1

j j
where the V), uj are defined as in Subsection 4A (for the loop as re-

written in Step 1 above). Note thatX 1 and u are loop constants, but

may be unknown at compile time.

Unfortunately, we have neglected to consider the fact that the

X could be negative, thus making invalid the above set expression

defining S. In any event, it will make things easier for the compiler if

all the ji vary from 1 to their upper limit. This is easily accomplished.

We first change (16-a) to

(18-a) ji: 1 i h 'i- + 1.

Defining the ti by

j : i

we derive the following inverse to (18-a)

(18-b) I4 -4 i j0 + i
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Letting u - X + 1, we can now rewrite the DO statements

as:

DO rx = 1, u

S =jn)/[ ... u2] .CROSS ... CROSS. [I ... n:

X (11 4(.LE., .GE. ; dI) II) .AND ...

X .AND. (un 4P(.GE., .LE. ; d') In)

2n
DO q FOR ALL (J2 ... , ) /S

where (18-b) is used to remove all instances of the Ii from the above

set expression.

We should also add an algorithm to remove redundant conditions

in the set expression for S. This is easily done for some types of con-

ditions: e.g., (2 .LE. 53). However, we have not attempted to write

a general algorithm for this.

C. Reformatting the Variables

Having rewritten the DO statements using the new index

variables ** Jn, the obvious next step is to use Equation (18-b)

to substitute for the I' in the loop body. However, this will not

usually produce a legal DO FOR ALL loop. To illustrate this,

suppose n = 3 and I and J are related by

1 = J1 + J2 +2 j 3  j1 i1 1. 12 2 1 3

2 2 2 2

1-3 3 31
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Then the variable occurrence A(I2 I1 1) would be rewritten as

A(J2 J + J+2 +21J , T ), which may not appear inside a DO FOR ALL
(J2 J3 ) loop.

We will solve this problem by introducing a new variable A

related to A by
i (i

(I J2 , I) A(, I1,I'

This is done as follows:

(i) Introduce the loop

DO CONC 0 (I2, 1, 13)/range of A

8 (I' - 12 2 * I3, I2, I3 =A(I2, I1 I3

before the main loop.

(ii) Replace all occurrences of A by the appropriate

occurrence of A.

(iii) If A was a generated variable, introduce

DO CONCy (12, 11, 13 )/range of A
y A(I2, I1, I3) =A'I 2 2 * 13, 12, 13)

after the main loop.

Subsection E will consider the problem of rewriting these DO CONC

loops as legal DO FOR ALL loops.

We note here that the only time a legal DO F'JR ALL will be

formed by simply substituting for the IJ insdde the loop body is when

rr is a coordinate projection - i.e., when J Ik for some k. In
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this case, each Ji may be chosen to be one of the Ii, so the rewriting

of the loop body can be done by the procedures of the Coordinate

Algorithm. For the rest of our discussion, we assume that this is

not the case.

We now generalize the method we applied above for the variable

A to the following algorithm for reformatting* variables.

1. For notational convenience, assume that each occurrence f

of a variable VAR is of the form

VAR 1 + l 1 k +fk fi fmSVAR(I +f it .. so, +f , fi .*... f
c c

where j < ... < j and the fi , fare loop constants.Ihr J ' k' adhefc

(Of course, k and m depend upon the variable, but not

upon the particular occurrence of that variable.)

2. For each non-scalar variable VAR appearing in the loop such

that 0 < k < n:**

(a) Introduce a new (n + m) - dimensional variable

VARX, whose jth dimension is defined to be equal to:

(i) The ith dimension of VAR, if J = he

(ii) The (J - n + k)th dimension of VAR if

j> n.

Do not confuse reformatting with the reallocation done in Step 13 of

the Coordinate Algorithm of Subsection IV C.

Here, and in Step 3, k and m are as defined in Step 1, for the par-

ticular variable under discussion.
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(iii) j - + 1 otherwise, where uj, XJ

are the numbers found in Subsection B (in

Step 1 oi the procedure for choosing the

(b)- Insert the following loop before the main loop:

DO B CONC FOR (I1 ... 1, In~m) / range of VARX

1 n+m k
•,VARX( ,.., f M=VAR (I , ... , I

n+1 n+m

I- [IJ -1 @(XJ, UJ; dJ) + I if j = Jl for some i

w here g =

ý Ij otherwise.

(c) Replace each occurrence f of VAR in the loop by

1 n 1mVARX(eI e , fe f ), where

Ii + fJ if jJi for some i

e°

j IJ otherwise

3. For each non-scalar variable VAR appearing in the loop (as

rewritten in Step 2) such that k = n:

(a) Introduce a new (n + m)-dimensional variable VAR. If
S6n+m

the dimensions of VAR are 6,1 ... , 6 then the

dimensions 6 .. +m are defined as follows.

4-44



C I

Fori 1..., n; let

-- 7, 4)(1 6J; h') h'• ,

Z= A(I, 6i; hi) h., j) J "

F 'i -6. + 1 ifi < n
Ten •

i if n < i<n+m.

(b) Insert the following loop before the main loop:

1 n+m 
I

DO$ CONGFOR , ..( , range of VAR

T. • (Z h. Ii 81 + 1 , Thn Ii 6.+n
j - j 1-

in+l in+m) R * n+m)I I VAR (I n' m)

(c) Replace each occurrence f of VAR in the loop

by

VAR ( 1 + 1 -6 +Z h fJ

S"n _ 6 n hnf fi :. fmI f

(d) If VAR was a generated variable, add the following

loop after the main loop:

DO ý CONC FOR (I1, .,1 n+m) /range of VAR

•VAR (I', . n+m) = .

!j
n+1 m) '

4-, .5 I i

4-45 I

I.j

-Ig

*



II

CI

D. Discfiission of Reformatting

We begin the'discussion with an explanation of theiprecedirig
algorithm.

1. This definition of the fJ: an'd fJ for the occu:rrence f is used: C I

t • in steps 2 and 3, as is the!definition of k and m for theII
variable of that occurrence. It is well to-remember that th'e

loop constants m nay be functions of an inde* variable :of
C

some outer loop containing the given loop .(13).

2:. If any of the I aremissing from the occurrences of VAR, it
4I

is necessary tp put them i'n so that we may apply Step 3.

This iý primarily because the DO FOR.ALL syntax requires

all occurrences to involve the entire -multi-index

2 , 'jn) Alio, it will be impossible .to represent
J * k , As

(I, ... , )in terms ofk of the .

Note ,that the DO CONC loop of (b) is easy to translate

into DO / DO FIOR ALL loops.

The remarks we make for Step 3 about thd last m dimefisions

oi VAR apply to this step as well.

3. Here, we replace VLR by the variable VAR which is related

to it 6y

(11-9) VAR (J + n I.n+, I.n+m) =VAR (1, , .+m)

4-46

* ,
* ,



The correctness of the dimensions follows from the

theorem of Section II. I.e., the subscript values for the

occurrence of VAR in (b) range from 1 through the 6

Note that we have reformatted the entire (n+m).-dimensional array

VAR, even though the loop may only reference one n-dimensional

slice, and can reference at most one slice for each occurrence of VAR

in the loop. To see why this may be necessary, consider the two

occurrences A(I , I , K) and A(I1, I2 L), L and K unknown loop

constants. Since these two occurrences may reference the same

slice, or different slices, we must reformat all of A. However, if all

occurrences of Aare of the form A( ... , ... , K), then we need

only reformat the single 13 = K slice.

The generalization of our algorithm to one which only reformats

the part of the array that may be referenced is straightforward, but

is tedious to write in full detail. Note, however, that it is

influenced by the placement of the reformatting loop, which is dis-

cussed below.

The efficient translation of the DO CONCs produced by (b)

and (d) may be difficult. It will be discussed at length in subsection

D.

Note that 3(b) need not be done if all uses of VAR reference

only values which are generated in the loop.

Since reformatting must be done for essentially all non-

scalar variables in the loop, it represents a large "overhead cost"
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for the Hyperplane Method. However, the loop (131 will often be

contained in a larger loop (either a programmed loop, or another DO

loop). The reformatting can then be moved outside the loop. Any

occurrences of the variable VAR after the reformatting loop of

Step 3(b), and before that of Step 3(d) can be replaced by occurrences

of VAR. The required occurrence mappings are easily derived from

the formula in Step 3(b).

The problem of findi.ng the optimal location for the reformatting

loops is very similar to the problems encountered in compiler

optimization.

E. Translating the DO CONCs

We now consider the problem of translating the DO CONCs

produced in Steps 3(b) and (d) above. Since a loop involving a

DO FOR ALL will be much more efficient than an ordinary sequential

DQ loop, we will almost always want to use a DO FOR ALL. However,

consider the following loop which might be produced in Step 3(b);

1 12(19) DO 0 CONC (I1, ) /range of A

A(2 * I + 3 * I - 2, Il + 12) =A([1 I2'

Because of the complicated subscripting of A, this cannot be

1 2 1 2translated into a legal DO FOR ALL on I or I or (I , I2).

In such a case, the reformatting is done in stages as follows:
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Let , .'., J be the sequence of variables constructed in0o 1

Appendix A, where I0 The DO CON

loop generated in Step 3(b) of subsection B is replaced by a sequence

of the following loops, for a - 0, ... , T - 1:

(20) DO 0 CONC FOR (, ... , j') /range of VAR 0

B VAR (+ it +1 _+l +j+l G+1 -- o+1 a, -+1 -

V VAR(1 1 .n

where the 6_G+1 are computed as in Step 3(a), and the Io+1 are

replaced by their values given in Equation (A-2) of Appendix A.*

The VAR are new variables which we have introduced.
a

"From Equation (A-2), we see that the DO CONC loop (20) can

always be rewritten with a DO FOR ALL JP . Thus, if there is more

than one choice for the index p, we should choose the one for which

Pj is the best DO FOR ALL variable. We can add this to the

algorithm of Appendix A for choosing I.

Suppose that for some particular a and some r, the algorithm of

Appendix A yields q 0. This then implies that qrP = 0 for all
rr

p > o, and Jr I= if (neglecting the permutation mentioned in the
T

footnote). Hence, we can replace + by JT (and VAR(+, by VAR) in

(20) and get a DO CONC which can be translated into a DO FOR ALL

*i it

*Recall that for a + 1 = T, so l = J, an additionaA permutation of

the superscripts may be required.
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J loop. This eliminates the last a - (a + 1) stages of the reformatting,

For convenience of notation, set T = a + 1 in this case.

We thus have a sequence.of DO CONC loops (20) for the

variable VAR. The constructioh of this sequence is essentially

Independent of the variable. I.e., the process is really the con-
istruction of the Ja " Hence, it :is only done once for all the variables.

The dimensions of the array VAR0 are the same as those of VAR.
0

The dimensions of VAR 1, ... ,jV.AR are determined sequentially by

the same method used in Step 3(a) of Subsection C. The dimensions

of VART wfll then equal those' of VAR.T

The storage allocations' for the VAR, are made so as to permit

the DO FOR ALL in the translation of (20). If the storage allocation

for VAR agrees or can be made to agree with the allocation of VAR 0 ,

then VAR is substituted for VAR 0 in (20).. Otherwise, the assign-

ment statement

VAR 0 = VAR

must precede the reformatting. Similarly, the allocation of VAR

must allow the DO FOR ALL on (j2, ... , In). If this is consistent
with the storage allocation required by VAR T, then replace VAR T

with VAR. Otherwise, the statement

~VART=VA

must follow the loops (20).
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The translation of the DO CONC loops generated by Step 3(d) of

Subsection B is obtained by the obvious reversal of the loops con-

structed above.

The above procedure sounds very long and costly when des-

cribed abstractly. Observe, though, that T = 1 corresponds to the

case in which the DO CONC loops of 3 (b) and (d) may be written

immediately with a DO FOR ALL (except, perhaps, for storage

reallocation). In general, as mentioned in Appendix A, we have

S<, minimum hi h i j :h/ C }. In practice, T will usually be

Lmall, and will often equal 1.

To illustrate this procedure, consider the DO CONC of (19)

which was obtained from the T defined by 7T [(I 1 2 = 211+3 12

Application of the algorithm of Appendix A gives

I 0i= i, , , where
1 1 2 12 1

1 =1 1= 1 + 2 J
1 1

J2 = 12 j2= 1 1
1 = 1

If the dimensions of A are 20, 30, then we get from 3 (a)

1 1 so 49

2 1 2 -3 2

61 1061 3
6. =1: 3 T' = 128 i = 126

82 i. = 49 _ 49
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.I:

Thus, 49, 30 are the dimensions of A1 , and 126, 49 are the dimensions

of A2 = A. (We assume the default allocation for A and A, so no

-reallocation is necessary.) We can then translate (19) into:

-• 12
DO 1 = 1, 30

DO 81 FOR ALLI 1 /[1 ... 201

0- 1 A1 (I1 -÷ 12 - 1, 12) 1 A(I1 , 1)

DO 82 I- 1, 30

DO 02 FOR ALLJ /[1 ... 49]

a 2 A(+ 2 j I, 4)I 'A 1(, 1 )

Observe that these loops require a total of 60 ILLIAC

iterations, compated to 600 iterations if (19) were executed

sequentially. A 49 by 30 temporary array A1 had to be introduced.

However, note that AI can be overlapped with any other similarly

introduced temporary array - i.e., with VAR 1 for any variable VAR.

F. Avoiding Reformatting

There is one case in which reformatting can be avoided al-

together, namely the case in which the following hold:

(i) TT satisfies rule Cl, so the loop (13) can be rewritten

with a DO CONC.

(ii) a1 = 0 for some i, where ai is as in (8) of Section 1-7.

4-52



An examination of the algorithm of Appendix A shows that (Hi)
implies that ji Ii, and in (6--b) and (8-b) we have t 0 if j

Therefore, using (8-b) to substitute for the Ij in the loop body pro-
duces a valid DO FOR ALL j" loop body. Thus, we need only trans-
late the DO CONC ( A /S statements into a sequence of
DOs followed by a DO FOR ALL . This translation procedure is
similar to the ones we have already performed, so a detailed

algorithm is omitted.

If ai = ... = ai = 0, the above procedure can be generalized

.I i k
to yielda DO FOR ALL (ji , 1 ) loop.

G. The Number of ILLIAC Iterations

The mapping rr should really be chosen to minimize the total
number of ILLIAC iterations. We can now write a formula for that

number.

Let 'a' denote the smallest integer greater than or equal
to a. From Subsection B, it is easy to see that the number of
ILLIAC iterations needed to execute the loop is

(u1 + 1) N',

where N 2 + 1)... (U n + 1) / 64 (assuming a 64 P.E. ILLIAC).

We are again neglecting the first superscript permutation in the
algorithm of Appendix A. The necessary modifications to the dis-

i1cussion are obvious. Note that ji will never be j
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The expression (9) of Section 1-VII which we decided to

1 2 n
minimize is actually equal to u . Since computation of u , ... , U

Involved the variables J1, if is clear that the u cannot be written

as a simple function of TT when i > 1.

H. An Example

It is of interest to see just what sort of loop If produced by

these procedures. We consider the following simple relaxation

loop:

DO 77 1 =2, N

2
DO 77 1 = 3, M

1,2 1 2 1 rA(I1, I) = .25 * (A(I + 1, 1) +A(I 1 - 1, 12)

+A(II, I + 1) +A(I 1, 2-1) )

77 CONTINUE

with A defined by

DIMENSION A(35, 50)

Application of the method used in the proof of the Hyperplane

Theorem gives the optimal mapping rr : Z Z defined by
1 2 1 +2

IT +

The algorithm of Appendix A, with ile addition made in

Subsection E, gives

21 1 2 1 2

J2 1 2 1 J2
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We now apply the algorithm of Subsection B to write the

DO and DO FOR ALL statements. This requires first applying the

algorithm of Subsection IV A for the case k = n = 2, to find the

Xt, u . Applying that algorithm gives the following results1 1

x I =I u =35

x 2 = i u2 = 50

and rewrites the loop as

DO 77 I 1, N - 1

DO 77 12= 1, M- 2

1( 2 1,2SA(I1 + 1, 12 + 2) = .25 *(A(I1+ 2, 12 +2)

+A(I1, I +2)+A(I + 1, 1 + 3)
1 2+A(I+ I, 12 + 1))

77 CONTINUE

Continuing the algorithm of Subsection B, we get
:-- I 2 i N+ 3 1.1

x 2 N+M - = 0 U N+M- 4

2 -2 2 2
,=1 12= 35 U 35

and (18-a, b) become

1= 1 +2 - 1= 2
jl.i+i Ii~

2 =1 1 1 2

We then get the following loop control statements:
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DO 77 1 1, N+M-4

S J /[1 ... 351: (1 .LE. j2) .AND,,

((N- i) .GE. j2) .AND. (1 .LE. (Ji - 2 + 1))

.AND. ((M - 2) .GE. (j1 - j2 + 1))]

DO 77 FOR ALL j2 /S

We now apply the algorithm of Subsection C to the variable

A. We then get

S 2 6- -85 6 = 84

62= 1 2 35 61= 35

We have the following DO CONC loops inserted before

and after the main loop, respectively:

DO 177 CONC FOR (1 12)/ [l...35] CROSS. (I ... 50

177 1 (1 +I2- 1, I) = A(I1, 12)

DO 277 CONC FOR (I 12)! [l...351 .CROSS. [i ... 50]

1( + 1 2 _ 1, i
277 A(I, 12) =I I +- 1

The body of the loop is rewritten as follows:

A(i1 + 3, J2 + 1) = .25 * (A(j1 + 4, J2 + 2) +A(j1 + 2, J2

+ A.(jI + 4, i2 + 1) + T(Jl + 2, 12 + 1)).

The DO CONC loops may be immediately translated into

DO I / DO FOR ALL 12 loops. Combining all of this, we get the
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following rewriting of the loop:

DO 177 11 = 1, 35

DO 177 FOR ALL 12 / [1 o50]

177 A(I +1 - 1, 11) =A(II, I)

DO 77 1 -= 1, N+M-4

S = [J2/ I ... 351 : (I .LE. j2) .AND. ((N - 1) .GE. j2)

.AND. (1 LE. (j1- 2 + 1)) .AND. ((M - 2) .GE.

S1 2 +

DO 77 FOR ALL j2 / S

Au(JI+ 3, j2 + 1)- .25 * (A(j1 +4, 12 + 2) + (]'I+ 2, 12)
+•j+ 2 -1 2

J +I)+(J + 2, + 1)

77 CONTINUE

DO 277 11 = 1, 35

DO 277 FOR ALL 12 / [1 ... 50]

277 A(I1, 12) =A(I 1 +I2 - 1, 11)

Except for the redundant condition (1 .LE. j2), this is about as

efficient a rewriting of the loop as we can expect. As mentioned in

Subsection C, an algorithm to remove such conditions can be con-

structed.
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Despite its complexity, th above loop will probably run about

6 times faster on the ILLIAC than the original loop. Furthermore, most

such relaxation loops occur inside another loop which includes a con-

vergence test. The reformatting'loops could be placed outside this

outer loop. We would then get a loop which runs about 9 times faster

"4 than the original.

1. Simultaneous Application of the Method

The Hyperplane Method requires reformatting all the variables

in the loop, which introduces a large overhead cost. One way to

reduce this overhead is to use the same refcrmatted variables in more

than one loop.

Suppose that there are several loops in the program which

satisfy the hypothesis of the Hyperplane Theorem, and are all of the

same dimension. (I.e., they have a common value of n.) If the same

index variables jI1 0.. 1 n are used for all the loops then it may be

possible to do the reformatting only once.'

In fact, such a single n-tuple of index variables can be chosen

which allows all the loops to be written with a DO FOR ALL(J ...( , n).

All we do is apply our method of choosing rT to the sets e f, g > of all

the loops taken together. Any TT satisfying rule S1 will then worK fcA

all the loops. To find the optimal choice, assign to each loop a

weighting factor proportional to both the execution time of the loop
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I

-'• body and the frequency of execution of the entire loop. Then •g is

chosen to minimize the expression formed as fol owks: For each loop,'
I I

take the expression (a) of Section -VII and multiply it by the above

wieghting factor. Then,sum over all the loops.
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I. INTRODUCTION

We have derived methods for determining sets of points, in the

control index space of a nest of FORTRAN DO loops, for which concurrent

and ILLIAC-simultaneous execution of the statements of the loop body can

be performed. These analysis methods rely on the subscript expressions

of array references being loop-constant affine transformations of the

loop index variables of a restricted form (see Chapter 3 - Section 1). In

cases where these restrictions are not met, sets of loop index points

for concurrent loop body execution can be derived by a simulation of the

control history of the loop. The simulation method works best for nests of

DO loops in which the control limit parameters (at least at the outermost

level) are known constants. The method also depends on the array

reference subscript transformations being dependent only on quantities

deterrs'ned within the loop or else determinable statically from the rest of

the program.
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II. FIRST EXAMPLE

The following discussion shows an example of a very simple loop

form which does not satisfy the requirements for the analytic methods of

parallelism detection. The simulation technique is applied to the example

and to a generalization of it, showing results in determining an improvement

in execution speeds derived from potential simultaneous executions of

previously separate executions of the loop body.

The general problem of this example can be stated as: "What kind

of simultaneity or concurrent execution can be found in loops of the form:

DO I I

DO .-- -. ----"- -

S(J) =

Depending on the forms of the subscripts, the generating state-

ment may access one cell of the array more than once (particularly if there

are two generators, one in I and one in J and the set of I and J values has

a non-empty intersection). Moreover, the generation-use or overwrite

relations betvýeen the generation and use statements shift as the loop

indices change values. (This is in marked contrast to the simple singly-

subscript linear forms in which the relations are constant over the whole

history of the loop.)
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Consider the following example, particularly with view to

changing the inner or outer loop, to a DO FOR ALL loop. It is presented

in terms of its running values when written in each form.

Proposed Transformed Loop
Original Loop (simultaneous execution of

(sequential) previously "outer" loop)

DO 1 i1, 3 DO 2 1= 1, 3

DO 2 1 = 1, 3 DO 1 FOR ALL J/[,1 2, 3]

A(J) B(J) +I A(J) B(J) I

C(J) = A(1) C(J) A(1)

2 CONTINUE 1 CONTINUE

1 CONTINUE 2 CONTINUE

History of loop computation in both forms.

Statement Statement
IT Value Executed I, T Value Executed

1,1 A(1) B (1) + 1 1,1 A(1) B(1) + 1

C(1) = A(1) - B(1) + 1 1,2 A(2) = B(2) + 1

2,1 A(1) = B(1) + 2 1,3 A(3) = B(3) + 1

C(1) Initial value of 1,1 C(1) = A(1) B(1) + 1
A(2)

3,1 A(1) =B(1) + 3 1,2 C(2) = A(1) B(1) + 1

C(1) = Initial value of 1,3 C(3) = A(1) B(1) + 1

A(3)

1,2 A(2) = B(2) + 1 2,1 A(1) = B(1) + 2

C(2) = A(1) - B(1) + 3 2,2 A(2) = B(2) + 2

2,2 A(2) = B(2) + 2 2,3 A(3) = B(3) + 2
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Statement Statement
1,T Value Executed I, j Value Executed

C(2) =A(2) = B(2) + 2 2)-i C(1) = A(2) B(2) + 2

3,2 A(2) =B(2) + 3 2,2 C(2) = A(2) B(2) + 2

C(2) = Initial value of 2,3 C(3) = A(2) B(2) + 2
A(3)

1,3 A(3) = B(3) + 1 etc.
•., ", (3) A A(1) -- B (1) + 3"

2,3 A(3) = B(3) + 1.

"0 (3) = A(2) - B(2) + 3

3,3 A(3) B(3) + 3

C (3) = A(3) - B(3) + 3

In the simultaneous J form, the horizontal dotted lines separate

triples of statements which are executed simultaneously. That is, all

three "A(J) = --- " statements are executed simultaneously for J = 1,

j = 2, and j = 3. The syntax of the "DO FOR ALL" loop indicates that I

is the "simultaneous" index and takes all the integral values 1, 2, and

3 during the execution of each statement. Each value is assigned to a

different process or.

The propose.d rewriting does not compute the same values as the

original. In particular, the final C(1) and C(2) values should be the same

as the initial A(3) value, but will be B(3) + 3.

In terms of the sequential loop

- the generation of A(1) at (3, 1) (I = 3, j 1) provides the

value for the use of A(1) at (1, 2) across index set points.
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- the generation of A(2) at (2, 2) provides the value for the use

of A(2) still within the same loop index point.

- the use of A(3) at (3, 2) is the initial value of A(3) and so the

generations of A(3) at (1, 3), (2, 3) and (3, 3) must not pre-

cede this use.

These three situations are not all satisfied by the proposed rewriting.

Even though this simple rewriting was impossible, that does not

mean that there is no inherent concurrency in the example.

Consider the sequential loop example expanded to I = 1, 5 and

J = 1, 5 but with no other changes.

The notation of the following matrix represents a history of

simulation of the loop body in the order in which the loop indices are

incremented:

I

means that the I loop is iterated before the I loop (the I loop is interior

to the I loop).

The ordered pairs of values in the matrix stand for [, j pairs at

a point in time.

The arrows demonstrate generation - use relations in the simulation.

They are derived by inspecting subscript forms on the generation and use

statements keeping in mind that a generator precedes in time a use of
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that value. Thus the arrows point from generations to uses. This inspection

procedure could easily be mechanized.

trhe left hand margin nodes !A(1)", "A(2) ' etc. are theinitial values

of A ori entry to the loop. The lower margin nodes "A(1)", "A(2)" etc. are

final values of A on exit from the loop.

Generations and uses of the variable A for 5 x 5 case derived from

the example:
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A(1) 1, 1,2 1,3 1,4 1,5

A(2), . 2,1 223 2,3 2,4 2,5

A(3) 4 3, 1 3,2 3 3 3,4 3.,5

A(4) 4,1 4,2 4,3 4 4,5

A5(5) 51,. 5 2 5,3--..- 5,4----- 5,5

II II

A(1) A(2) A(3) A(4) A(5)
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Since the array B is used only as an input to the loop (only in

"uses") and the array C is used only as output of the loop (only in

"generations") the essential ordering information lies only within the uses

and generations of A.

To the use-generation arcs can be added a set of arcs for "over-

write avoidance precedence". In this example there is in general more

than one generating instance of a value. (The gen-use arcs link "latest"

generation with "proper" use.) For instance, 1, T points (1, 1), (2, 1),

(3, 1), (4, 1) and (5, 1) all generate a value for A(l). Note that

(1, 1) ... (4, 1) all precede (5, 1) in time and that (5, 1) generates a

value which will be used by (1, 2), (1, 3), (1, 4) and (1, 5) and will be

the output value for A(l).

To prevent overwrite of the A(l) value properly generated by (5, 1)

arcs must be drawn from (1, 1) t6 (5, 1), (2, 1) to (5, 1), (3, 1) to

(5, 1) and (4, 1) to (5, 1). This process, too, can be mechanized.

This set of arcs and nodes can be used to study the sets of nodes

(or values of 1, I) for which the body of the loop can be executed con-

currently. An incidence matrix is formed and used according to the method

of Ramamoorthy [ 6, particularly pages 5-7].

In the partition list notation:

In is an input value node

On is an output value node

nn is a point in the history of the loop where

nln2 stands for I n1 , J =n 2
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In the list of arcs notation:

the arcs are labelled according to the pair of

nodes with head of arc preceding tail.

* I
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The set of arcs used to form the incidence matrix is:

11, 51 41, 51 12, 21

12, 52 42, 52 13, 31

13, 53 43, 53 13, 32

14, 54 44, 54 M4, 41

15, 55 45, 55 14, 42

21, 51 51, 12 14, 43

"22, 52 51, 13 Is, 51

- 23, 53 51, 14 I5, 52

24, 54 51, 15 I5, 53

25, 55 52, 23 I5, 54

31, 51 52, 24 51, 01

32, 52 52, 25 52, 02

33, 53 53, 34 53, 03

34, 54 53, 35 54, 04

35, 55 54, 45 55, 05

Note that Il never appears because the initial value of A(1) is never used.
It is reasonable to add an assumption to the results of the method: that

all the inputs precede any output. This is not strictly necessary in this

case. Also note that "self-loops" like (1i, 11i, although indicating that

A(1) is generated and then used within the point (1, 1), are not included in

the incidence matrix. The aim is to derive sets of distinct points for

which the loop body can be executed in parallel. For this 5 x 5 case the

technique described by Ramamoorthy gives concurrency partitions ("earliest

execution initiation") as:
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time Set

t 1  (11, 12, 13, 14, 15), 11, 22, 33, 44

t2 21, 31, 32, 41, 42 43
- t3 51

S54 (0 1), 12, 13, 14, 15

t5 52

• t6 (02), 23, 24, 25

St7 53

t 8 (03), 34, 35

,- 9 54

jt (04), 45St10

tll 55

(t1 2  (05)

The I and 0 events are "outside" the actual loop. One can assume all I's

are done at entry and can assume there won't be any use of an 0 until

the exit. Note that:

1) the t1 and t 2 (non-I stuff) partitions can be merged, and

2) t 1 2 really is an external time slice.

Thus the whole loop history is performable in 10 chunks instead of 25.

The original loop for Max ([I, J1 1 = [5, 5] can now be rewritten

to reflect the new time slices:
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DO I FOR ALL J/[1, 2, 3, 4]

A(J) = B(J) + J t1

C(J) A(J)

" DO 2 FOR ALL I/[2, 3, 4]"

** " DO 2 FOR ALL J/ [1, 2, ... , I-i]" t 2

A(J) =B(J) + 1

2 C(J) = A(I)

DO4 = 1, 4

SA(I) = B(I) + 5

C (I) = A(5) /

DO 3 FOR ALL!/ [I+ , 1+2 /.., 5] t- t

A(J) = B(J) + I

3 C(J) = A(1)

4 CONTINUE

A(5) = B(5) + 5

C(5) A (S)3

This "DO FOR ALL I" is not valid because I is not a proper "simultaneous"

variable inside the body: it does not appear on the left hand side as a

subscript.

This "DO FOR ALL j/ I- 11]" is probably not syntactically

valid.

5-12
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Note: The problems with syntax or semantics at t2 result from the values

of A(M) - A(3) and C(1) - C(3) being over-written below. There is a

generalization of this case (for N ) 2) which shows just how much

improvement in exeoution time may be possible. Ordinary Fortran:

DO 1 J= 1, N

DO 2 I= 1, N

use of both J and I In-- A(J) = B(J) + I gen. of A(J),

C(J) = A(I) Use of A(1)

2 CONTINUE

1 CONTINUE

requires N2 executions of body.

-4'

n ,

5-1
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Rewritten:

N-1 parallel executions DO 1 FOR ALL j / [1, 2, ... , N-1] NoteS~ change of
equiv. to 1 bxecution if' A(J) = B(j). + J variables

- 1 processors I' C(J).= A(J)

available
' '

.(N-2) ('N - 3) parallel .DO 2 I 2, N - I
a . 2 executions

DO 2 FOR ALL J/1[1, 2 ... , I-i]
equiv. to N-2 execu-

A(J) = f(J) + I
tqons' if :E N -, ProZac- I

2 C(J) =AA(I)
essors aVail able L

SI I IIr---

N - 1 executionq DO 4 I f 1, N - 1, 'Note change of-A(I) =BI+N' duto fa osatN
variables and intro-• ;A(1) =B(1) + NI ductio'n of a constant N.

4C C(I) A A(N)
- a

JN-1) (N-2) parallel DO 3 FOR ALL / [I + 1, 1+ 2..., N]

executions equiv. to I A(J) = B(J).+ I

S* N-11 executions if> 3 C() = A(l)

N-2 processors

available
C1 CONTINUEa •

* i execution A (N) = B(N) + N. .This could have been in

'I"DO 41" loop if "DO 3
C 0(N) = A(N) ' FOR ALL J" not executed

, at least once.
STotal equivalent executions of "loop body" 3N - 2. '
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III. SECOND EXAMPLE

Another example of the use of a simulation technique demonstrates

that there is often a considerable difference between the amount of con-.

current execution that can be expressed with a "linearized" syntactic

form such as a DO FOR ALL and the amount of concurrency inherent to a

loop body. The example shows a form of "transpose, mapping". The

maximal concurrant set of (1, J) points is a triangular helf of the N x N

square. In the example, all the generations shown can be performed

concurrently (there is no overwrite problem among generators) and then

all the uses can be performed concurrently. A subset of these two sets is

given by a sequential stepping of a "line" of concurrency parallel to the

T axis in the diagram.

DO 1 1 =1, N

DO 1 j=1,N

A (1, J)=

1 • = -•,-.-'A(I, I) --- '

The DO I loop can be transformed to a DO FOR ALL:

For I = J, intra-loop gen-use precedence,

For I < J, inter-loop generation-use precedence:

Execution at IK < jK is generator

for use at L > JL

(specifically IL= 'K' IK)L '=JK L 'K

(Relating K and L:
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LetK= (I - 1) *N + J

Then L = (J - 1) * (N - 1) + K
_( =( - 1) *N + I .

For I > J, inter-loop non-overwrite precedence:

Use at IK > JK is of an initial value of the variable.

Generation at IL < JL (where IL 1 K, LIK

as before) is for an output or final variable which

will not be reused by the loop.

Thus for a given IK'tK

* -_M, 'K-M+l K-l' K' JK+I' K+P

as an active set for parallel execution gives:

for J < Ia~ K'

1) generate an output value which won't be

used in the loop

2) use a value generated when IL = (earlier

in the I loop)

forJl =1 K'

1) generate an output value

2) use the value just generated (intra-loop)

forJa > 'K

1) generate an output value which will be used

in the loop at the point that I=

2) use an initial value
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Diagrammatically, for N = 4, this is:

1,1 1,2 1,3 1,4

OD 0 )00
112,1 3,1 4,1

2,1 2,2 2,3 2,4

0D 0(0 0
1,2 2,2 3,2 4,2

3,1 3,2 o-' 3,3

1/0 _ _ _ _

0 0
1,3 2,3 3,3 4,3

4,1 4,2 4,3 4,4

1,4 2,4 3,4 4,4

Path of execution. Where:

1g Jg g, Jg are index pair for A(I, J)

I are index pair for = •-•'A(J, I)
Key: QU statement

K=4(I- 1)+j
Tu- lu
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notes: 1) In the chart u Iu, j j
g ug u

Sbecause what is being modelled is the I, J values

resulting for the particular DO statements with

their given ordering. (I.e., time is modelled.)

2) All arrows in the diagram point from generation to use.

3) The ordering of the values in the ordered pairs reflects

the data point being referenced at a point in time.

It can be seen that all the generations in the "upper right

triangular half" of the index set can be executed concurrently, then all

the :uses. Next the generations and then the uses of the "lower left

triangular half" can be executed concurrently. This gives the maximum

concurrency and the whole loop can be executed in 2 steps rather than

the original UC, By comparison, as has been shown, a DO FOR ALL I

rewriting is legal but provides a concurrency improvement factor of

only 4 instead of 8. The derivation of generation-use dependency and

the sets of index set points for concurrent execution is mechanizable

as described in the previous example.
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Now we define j+ b•y
ac+ I

Iif iý p

(A-2) i = ..

rlp r ifia p

Using (A-2), it is easy to express the J" in terms of the J Thus, the
a a +1Vn n n

mapping "j ) is an automorphism of .Zn

the mapping (I" *,If) t a 0."1 ) is also an automorphism of Z

because it is the composition of two automorphisms.

Substitution of (A-2) in (A-i) yields
.- _•=:;. ~~ ~ 1 r[ .. ,n)] =Z I+I

where

[ti
t ilfi= p.

It is easy to verify the following two facts:

(i) For each i € p, if t A 0 then 0 t1<I ti <I

(ii) The g.c.d. at the t equals the g.c.d. of the ti.

It follows from (i) and (ii) that we will reach a ca_ minimum

r I hi : hi ' O) such that in Equation (A-I) we have

0 if tjp

•I if i then

for some p. Setting I1 jp, and 12,..., n equal to the remaining the
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Now we define ji bVy

+ r i

(A-2) ic + I =
[iP + Z .q r ifi-p

a r/p r J

Using (A-2), it is easy to express the J" in terms of the J Thus, thea o+l

n 1n nl
S~~mapping ( ' """ *, 1'" " is an automorphismn of zn. Teeoe

the mapping I, ,n) .t (J)l4  ,J+) is also an automorphisn, of Zn

because it is the composition of two automorphisms.

Substitution of (A-2) in (A-1) yields

. [n)+l

where

~Jtit q1Jif i ~Pi tf
tp if i= p.

It is easy to verify the following two facts:
I Wi For each i ý p, if tiA 0 then 0 g t <I tI

(ii) The g.c.d. at the t1 equals the g.c.d. of the ti.

It follows from (i) and (ii) that we will reach a a;5 minimum

f hi : hi / 0) such that in Equation (A-i) we have

0 if t•' p
ti

li1if i = p
1 ip the n

for some p. Setting 1= jp and ,... ,In equal to the remaining then
0 0

A- 2
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APPENDIX B

LINEAR SUBSCRIPT EXPRESSIONS

The algebraic loop analysis methods depend on the subscript

expressions within array references, being linearly dependent on the loop

index variables. Given:

DO -' I

"A(~N-)

determining if the subscript of A is a linear function of I, involves "back-

substituting" for all variables in the subscript. The algorithm is obvious,

though painstaking and involves algebra on a canonical form

m= (Zaiji) + a0

where the J are the variables of the DO statements of a nest and (ai)

a are arbitrary expressions not involving these variables. If any chain

of back substitution cannot be put into the canonical form, the subscript

is not linear.

A complexity arises from the following example:

N=0

DO 10 1 = 1, 100

N=N+5

A(1) = B(N) + C(I)

10 CONTINUE

S~B-Ij
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which is equivalent, in effect, to:

SDO 10 I= 1, 100

A.(1) = B(5 * 1) + C(I.)

10 CONTINUE

Note that this is the essential truth behind the sequential machine

optimization method known as "reduction in operation strength". What

**.w.e want to do here however is the opposite transformation possibly des-

cribed as "solution of recursion relations". For recursions of the form

n = n + a, the solution will be linear in th'e loop index variable.

Two more general examples are:

N N

-DO •I =M ,M'F, MA

=• !N :N + K

D• I M MF, MA

M. K I - M
N A I + (K+ No M ( MA 1)K+N

Note that the end product of the transformation cannot be expressed in

integer FORTRAN variables and operations, in general, because the results

of the divisions are not likely to yield integers although the final form

will yield integer results.

(viz. M =, N =0,K=3, M =2)

02
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(2) N = N0

DO I = M 0 MI I

D•O J = Mi Mi M
• o' IF' A

=N+K
F A

DO,--- I M I MI MI

DON J o MF M(

0AK--',a' -=JJ J
N + mxmax(, F o

M MK ' M Mi
No + K NO MJ. .- (max (0,o

AA M

+0) K]

where Lx] greatest integer less than or equal to x

(note [2] for a, b e N is the FORTRAN integer

division operation.)

The messy (max (0, H ) + 1) coefficient on I counts the number of

iterations of the I-loop performed between I-loop iterations. When

M Mi = M = lthe above all simplifies to:0 o= M

N= (K) 1+ (MF K) I+ (N -Mi K)F 0 F

The position of the subscript variable "recursive" generation

relative to its use as a subscript can have an effect on the form of the

linear expression substituted into the subscripts:

B-'3
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a b

N N N= NO0] 0

DO--, I DO - I

N N +K A A(N)
~~ L. (N) N =N + K

FL

-.- -A(K* N) IN A(K*+ -N K)I ~00

B-4
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