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ABSTRACT

Methods are given for the analysis of FORTRAN D) loops for
parallel execution on asynchronous and synchronous muiti-precessors.,
Limitations of the analvtic approach are discussed. Application of
the methods to the ILLIAC-IV are described. A simulaticn process
for deriving concurrency is given in two examples for which the

analytic methods are inapp:i.cable.
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INTRODUCTION

Any program using a significant amount of compu‘ter time spencis
most of that time executing one or more loops. For a large class| of prog;rams , '
these loops can be represented as FORTRAN DO loops. We will consider .
methods of executing these loops on a multiprocessor computer, in v(zhich 1
different processors independently execute different iterations of the loivp
at the same time, ' ¥

This approach was inspired by the ILLIAC-IV, since it is t}'le only . .
type of parallel computation which that computer can perform {1]. However,

even for a computer with independent processors, it is inherently more :

efficient than the usual approach of having the processors work together on

a single iteration of the loop. This is because it :equires much less com~
munication among the individual processoss.

The methods presented are, of course, independent of lthe syptax of
FORTRAN. The basic feature of the FORTRAN DO loop which is u:sed is that
the range of values assumed by the index variable is known upon eth to ! \
the loop. Thus, most but not all ALGOL FOR loops can be handled.

The analysis is performed from the standpoint of a compiler fora - \

multi-processor computer. Two types of computers are considered: those
having asynchronous processors, and those like the ILLIAC-IV with com- |
pletely synchronous processors. A number of restrictions are made on the '
loops just to simplify the exposition. In Chapter 3, we will discuss the : |

actual limitations of the techniques, Chapter 4 describes a practical

example of their use,
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This approéch to the parallel execution of loops appears to be very

effective for a large class of iwrogram,s. It hias significant implications for

the design of future computers and their compilers.

Chapter & preéeqts. in examples, a process of loop control history

simulation which can be used to display. potential concurrent execution for

loops which do 'not satisfy the requirements for the analytic methods.
!

, : 0-2




- S e e o e P TR RS R R RS R

CHAPTER ONE

ASYNCHRONOQOUS PROCESSNORS
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I. THE GIVEN LOOP

We will consider DO loops of the following form:

(1) DOqil=gl, ut

+
L]

DO M=, "

loop body

a CONTINUE

where the zi and ui are positive integers,* and the loop boly has no I/O
statements, no subroutine or function calls which can modify data, and
no transfer of control to any statement outside the loop. The extension to
more general loops will be discussed later.

Let Z denote the set of all integers, and let Z" denote the set of
n-tuples of integers. For completeness, define ZO = {0}.

The index set ‘0 of the loop (1) is defined to be the subset
{ al, oo, 1M deids } of Z". Thus, for the loop

1

DO 7 I"=1, 10

2

DO 7 I"=1, 20

*
The use of superscripts and subscripts is in accord with the usual

notation cf tensor algebra.




b0={(x,y):1§xglo,xgy§20} .

An execution of the loop body for an element (pl, ooy pn) of (,O
is the process of setting Il = pl, ooy M= pn and then executing the loop
body in the usual fashion, stopping when statement o is reached.
Executing the entire loop {1' chen involves the execution of the loop body
for each element of (,C , in the order specified by the DO statements.

This suggests that we order the elements of o lexicographically
in the usual manner, with (2, 9, 13) < (3, -1, 10) < (3, 0, 0), Then for
any elements P and Q of J} ., the loop body is executed for P before it is
executed for Q if anc only if P< Q. Thus, the relation < on z" gives the
appropriate temporal ordering of J] » In the preceding example, the lcop
body is executed for (2, 11) before it is executed for (3, 5), since
{2, 11)< (3, 5).

Define addition and subtraction of elements of Z" by coordinate-
wise addition and subtraction, as usual. Thus, (3, -1, 0) + (2, 2, 4) =

(5, 1, 4). Let D denote the element (0,0, ..., 0). Itis easy to see that

forany P, Qe Zn, we have P< Qifandonly ifQ - P> -6\.

1-2
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II. THE DO CONC STATEMENT

Qur objective is to fin. a new temporal ordering of the executions of
the loop body so that at any given time, the loop body is being executed in
parallel for different elements of the index set by different processors. This
new ordering must yield an algorithm which is equivalent to the one des-
cribed by the original loop; i.e., one which computes the same values for
all variables as the original loop.

Consider the loop

(22 Do 10 1*=1, 3

DO 10 I“=2,7

Aat+3,19)=0

10 CONTINUE
The loop body could be executed in parallel by three processors for the
points {1, 6), (2, 5), and (3, 4) of \§ (In fact, it could be executed in

parallel by 18 processors for all points in -Q .)

In order to have a means of expressing parallel computation, we

oy

define the DO CONC (for CONCurrently) statement. Its form is
DO ¢ CONC FORALL I ¢ j

where j is a finite subset of Z.* It has the following meaning: Let

*We remind the reader that a set is just an unordered collection of elements,
so {1,2}=1(2,13={1,%2,1,1,2} « We will not bother to define a syntax
for expressing sets, The usual FORTRAN DO syntax, which can only
describe a restricted class of subsets of Z, is probably the most con-
venient to implemensi,

1-3
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j = {11, eees i}, where no two ij are equal, and assume that we have
m independent, completely asynchronous processors numbered 1 through m,
Then each processor is to execute the statements following the DO CONC
statement, through statement ¢ , with processor number j setiing I = ij.
The m processors are to run concurrently, independent of one another.

As an example, consider

DO 10 CONC FORALL Je {x: 2s xs 5}
10 A)=7** 2

This sets A(2) = 4, A(3) = 9, Al4) = 16 and A(5) = 25.
For a DO CONC to give a well-defined algorithm, certain restrictions

must be made on the statements in its range. Suppose the statement

9 B(J) = AJ+ 1)
is inserted before statement 10 above. The resulting DO CONC loop does
not give well-defined results. For example, the processor doing the com-
putation for j = 3 sets B(3) to the value of A(4). But the value of A(4) it uses
depends upon whether or not the processor for J = 4 has already executed
statement 10, Since the processors are assumed to be asynchronous, the
resulting value of B(3) is not well-defined.

We will not bother specifying the necessary restrictions on the
DO CONC loop. The DO CONCs which will be written appear in loops which
are equivalent to the original DO loop (1), and hence must give well-
defined algorithms.

The DO CONC statement is generalized to the form

Fal

DO ¢ CONC FORALL (I}, ..., K e 4,




i

i1

where j is a subset of Zk. The meaning should be clear: for each

element (pl, ooy pk) € zg/ , we have a processor performing the caiculation

for11=p1, ooy Ik=pk.

1-5




III. REWRITING THE LOOP

Consider loop (2), with index set LO. Changing the order of
execution of the loop body for the different elements of IQ obviously
does not change the algorithm. The loop can, therefore, be rewritten as
a single DO CONC, or in many different ways as a nested DO/DO CONC

loop. Choosing one of these ways, we rewrite it as follows:

3) DO 10 jt=3, 10

DO 10 CONC FORALLJZ ¢ {y: 2sys7andJ! -3sys ! -1

Agt-12+3, 1% =0
10 CONTINUE .
The choice is arbitrary and unnatural, but instructive.
To actually construct loop (3), we first defined the one-to-one

mapping J: Z?‘ -+ Zz by

rra, =t =gl 1h
as illustrated in Figure 1. We next defined the index set to be the
setl(ﬂ)= {Ip):pe 103 . Then/= { gl 193 its 10, 2§Iz§ 7
and Il -3s IZ < ]1 - 1}, and we filled in the limits of the DO and DO
CONC statements to give this index set. Finally, we rewrote the loop
body in such a way that executing the body of loop (3) for the point
J(P) ¢ f is equivalent to executing the body of loop (2) for the point
Pe Vo . In other words, A(II - Iz + 3, ]‘2) references the same array

element as A(I1 + 3, IZ) when (Il, ]‘2) =7 (Il, 12) ].

1 Rrn st e e e o
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We can consider loop (3) to be the same as loop (2), except with
a different order of execution of the body for the elements of ‘,0 This order
of execution is illustrated in Figure 2. The loop body is executed con-
currently for all points in (O lying on a straight line Il = constant, The
execution for those points of ‘,0 with Il = 3 precedes the execution for the
points with Il = 4, which in turn precedes the execution for the points
with ]1 =5, etc,

This suggests that we define the mapping ZZ + Z by

afl (11,12)]=11=11+12

Then the execution for P ¢ ‘,0 precedes the execution for Q ¢ 00 if and
only if n(P) < m(Q). If m(P) = m(Q), then the two executions of the loop
body are concurrent.

The genemlization of this rewriting procedure is straightforward,
Loop (1) will be rewritten in the form

@ Do« Jr=2l,ut

*

DO n Ik=)\k,uk

DO « CONC FORALL (X%, ..., ™ e jl

oS
loop body
n CONTINUE i
where j 1 K is a subset of zz“"k which may depend upon the values

I Yl ...’I
of I*, v.. JX. Here, )

i and u1 need not be integers, but may be integer
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valued expressions whose values depend upon Il, coos Ii-l.

To perform this rewriting, we will construct a one~to-one mapping

J: z" + z" of the form

n .
Gy 7, ..., ™1=( al’d, ...,
=1 j

s

=gl ..., ™
1 )]

for integers a;'. * We then choose the )\i, u1 and j 1 so that the

J70 eees ]
index set / of the loop (4) equals y(ﬂ ), and write the body of loop (4) so

k

that its execution for the point J (P) ¢ / is equivalent to the execution of
the body of loop (1) for P € j .

Define the mapping m: Z" - Zk by

nal (Ill veey In)]= (Ill seey Ik) ¢

so 1(P) consists of the first k coordinates of J (P). It is then clear that
for any points T (P), J Q) ¢ / , the execution of the body of lcop (4) for

J (P) precedes the execution for J (Q) if and only if m (P) < W (Q). If

we consider loop (4) to be a reordering of the execution of loop (1), this

statement is equivalent to the following:

(B) Forany P, Q ¢ LO , the execution of the loop

body for P precedes that for Q, in the new

ordering of executions, if and only if

1 (P) < n(Q).

*
] is one=to-one if and only if {5) can be solved to write the Ij as linear

expressions in the Ii with integer coefficients,

1-10
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The loop bedy is executed concurrently for all elements of J

lying on a set of the form {P: n(P) = constant ¢ Zk} . SinceJis
assumed to be a one-to-one linear mapping, these sets are parallel
(n-k)-dimensional planes in 7" .* We thus have concurrent execution
of the loop body along (n-k)-dimensional planes through the index set.

Naturally, we cannot use any arbitrary mspping J. We must find
one for which loop (4} gives an algorithm equivalent to that of loop (1}.
This is the goal of the following analysis.

Observe that rewriting loop (1) so all executions are concurrent;

i.e., with a
DO o« CONC FORALL (I}, ..., 1M e £

statement, involves setting T equal tc the identity mapping, k =0,

0

and m: Z"+ Z° the mapping defined by m(P) =0 for all Pe Z" .

*We consider Z" to be a subset of ordinary Euclidean n~space, as
we did In drawing Figures 2 aand 3.




IV. THE BASIC RULE . ;

We first introduce some terminology to aid the discussion.’

Consider the varlable VAR defined by the statement
DIMENSION VAR (10, 20) .

The range of VAR is the set &’ ={{x,y):1=2x<10, lsy= 20},

VAR

which is a subset of Zz. Thus, @ VAR is the set of all (x,y) € 22 '

such that VAR (x,y) is defined.* _ : L .
An occurrence of VAR is any appearance of it in the loop body.

If the occurrence appears as ) L
VAR (-,-) = .o * ey

then it is called a generation; otherwise it is called a ugse. I.e., ‘ ‘ )

generations modify the values of elements of the array VAR, and uses' ;

do not. . . ;
| 1

Let f denote an occurrence of VAR in loop jl) of the form . '

VAR (I1 + 3, 13), and assume n =3, During execution of the loop body

for the element (3, 4, 5) ¢ J, this occurrence becomes VAR (6, 5).

We say that { references the point (6, 5) ¢ for (3, 4, 5).
—_——— VAR

This defines an occurrence mapping TE:J - ‘QVAR by

*For @ scalar variable x, we set @x =z0, . ; !

1-12




In this case, Tf is gi\;en by

) ' : ’ ' L
letting Tf(P) be the point of f VAR referenced by f forPe {,0 .

' 2 3
. Tf[(pl,p,gs)].=(pl+3,p).

V\}e will'assume th@t all variable occuxs'rences only have the
loop variablc?s Il, ey 1" and integer constants in their subscript
expressions. Then for!apy variable oc:currence‘ g, the occurrence

ima.pplng -Tg: Zd-o z" _is well-defined, where m is the dimension

,(number of subscript positions) of the variable.

; Now consider the loop

1
.+ (60 'DO 23 1

-2, 10

g Do 23 12=3,17
21 aah, h=cahy ‘

e @

1 | ;
22 B, 1%)=n (@, P B, 1)

¢ @ @3 &3

23 CONTINUE.

t |
1
We have introduced the convention of writing the name of an occurrence

in a circle beneath it. For the point (4, 7) ¢ LQ . the locp body is
l ]
21 A(4,7)=C (4)
i .
22 B(4,7)=A(3,8)+B(4,7).
l %

The-value A (3, 8) used in statement 22 is the one computed in statement

i .
' 21 during exacution of the loop body for the point (3,8). To ensure that

t

x
i

1-13




the execution for (4,7) computes the right value when we change the order
of executions of the body, we must only require that it be preceded by the
execution for (3,8). By statement E above, this means that 1 must
satisfy wl (3,8 J<n{ (4, 7).

In general, let VAR be any variable. If a generation and a use of
VAR both reference the same element in the range of VAR during execution
of the loop, then the order of the references must be preserved. In other

words, if f is a generation and g is a use of VAR, and Tf(P) = Tg(Q)

for some points P, Q ¢ \9, then:

(1) If P< Q, we must have n(P) < n(Q) ,
(i) 1f Q < P, we must have n(Q) < n(P) .

In the above example, Ta i (3,8)1 '—'Ta { (4,7) ] =(3,8) and
2

1
(3,8)<(4,7), sowe must have w( (3,8) 1< nl (4,7) 1. Note that if

P = Q, then the order of execution of the references will automatically be
preserved, since they happen during a single execution of the loop body.

Thus, the fact that Tb l(4,7) 1= Ty, [ (4,7) ] does not place any
1 2

restriction on our choice of n.

The above rule should also apply to any two generations of a
variable. This guarantees that the variable has the correct values after
the loop is run. Together with the above rule, it also ensures that a use
will always obtain the value assigned by the correct generation.

These remarks can be combined into the following basic rule:

1-14
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(C1) For every variable, and every ordered pair of occurrences

f,g of that variable, at least one of which is a generation: if

Tf(P) = Tg(Q) for?, Qe LO with P < Q, then m must satisfy the relation
i{P) < 1(Q).

Notice that the case Q < P is obtained by interchanging f and g.

Rule C1 ensures that the new ordering cf executions of the loop
body preserves all relevant orderings of variable references. The
orderings not necessarily preserved are those between references to
different array elements, and between two uses. Changing just these
orderings cannot change the value of anything computed by the loop.
The assumptions we have made about the loop body, especially the
assumption that it contains no exits from the lcop, therefore imply that
rule C1 gives a sufficient condition for loop {2) to be equivalent to loop

(1).*

*
For most loops, C1 is also 2 necessary condition.

’ 1-15
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V. THE SETS <«f, g>

The trouble wltim rule C1 is that it requires that we consider many
pairs of points P, Q mJ. For the loop (6), there are 112 pairs of

elements P, Q, ¢ J7 with T, (P) = T, (Q) and P< Q. However,
- S | 2

Ta (P) = Ta (Q) if and only if Q =P + (1, -1). We would like to be able
1 2
to work with the single point (1, -1) ¢ :Z(.n, rather than all the pairs P,Q.
This suggests the following definition. For any occurrences f,

g of a varioble In loop (1), define the subset <f, g> of z" by

<f, 9> = { X: T((P) = T (P+X) for some P ¢ z"} .
Thus, for loop (6) we have <al, a2> ={ (1, -1) }, and
<bl, b2» ={ (0,0) }. Observe that <f, g> is independent of the index
set J .

We now rewrite rule Cl in terms of the sets < f, g>. First,
note that (P + X) = n(P) + n(X), since we have assumed 11 to be a
linear mapping. (R’epall the definition of v, and formula (5).) Also,
remember that A< A + B if and only if B> 6 Then just substituting

P + X for Q in rule Cl ylelds:

(cl') For ... generation: if Tf (P) = Tg (P + X) for

-—
P, P+X ec:,P with X > 0, then m must satisfy

the relation m(X) > 6

]
Removing the clause "for P, P+: J " from Cl glves a stronger

1-16




condition for 1 to satisfy. Doing this and using the definition of

< f,g> then gives the following more stringent rule:

(C2) For every variable, and every ordered pair of

occurrences f,g of that variable, at least

one of which Is a generation: for every

Xe <f,g> withX > 3,  must satisfy m(X) > 6

Any w satisfying C2 also satisfies Cl. Hence, rule C2 gives
a sufficlent condition for loop (4) to be equivalent to loop (1). Moreover,
C2 is Independent of the index set J .

Note here that C2 is satisfied by the zoro mapping m: Zn-o %0
ii and only if it is vacuous; i.e., if and only if there are no elements

X > '5 in any of the sets < f, g> referred to in the rule. In this case,

the loop body can be executed concurrently for all points in gP

1-17
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VI. COMPUTING THE SETS <f,g>

We will obtain results about the existence of mappings
satisfying rule C2. In order tc do this, some restrictions must be
made on the forms of the occurrences to permit a simple computation
of the sets <f,g>. We assume that each occurrence of a variable

VAR is of the form

j j
77 VAR@l+md, ....I%+mY) ,

where the mk are integer constants, and jl' ooy jr are r distinct
integers between l and n. Moreover, we assume that the jk are the

same for any two occurrences of VAR, Thus, if an occurrence

A (12 ~1, Il, 14 + 1) appears in the loop, then the occurrence A (I2 +1,

I1 +6, 14) may appear. However, the occurrence A (I1 -1, Iz, 14)
mey not .

Now let f be the occurrence (7) and let g be the occurrence

1

J b} )
VAR @ Y+nl, ..., 17 +n") . Then

J J
Tf[ (pll ceey pn)] =(pl+m1, ceoy pr+mr)

j J
1 n _ 1 r
Tg[(p,.-.,p)l-(p tnp. .., p +n)

It is easy to see from the definition that <f,g> is the set of all
elements of Z" whose jéb- coordinate is mk - nk, fork=1, ..., r,

and whose remaining n - r coordinates are any integers.

1-18




As an example, suppose n =5 and f,g are the occurrences

2 2

3
AR (@ +1, 12 +5, 1%, var @3 +1, 1

. I5 +1). Then<f,g>
f(x,5,0,y, -1): x, yeZ} .Wewill denote this set by (*, 5, 0, *, -1),
so "*" means "any integer".

The index variable U is said to be missing from VAR if U is

e

not one of the I ™ in (7). It is clear that T’ is missing from VAR if and

only if the set <f,g> has an * in the j@- coordinate, for any occurrences

f,g of VAR.
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Vil. THE HYPERPLANE THEOREM

Ij is called a missing index variable if it is missing from
some generated variable in the loop; i.e., if it is missing from some
variable for which a generation appears in the loop body.

The following result is an important special case of a more

general result which will be given later.*

Hyperplane Concurrency Theorem: Assume that none of the index

variables IZJ ..., 1"is a missing variable. Then loop (1) can be

rewritten in the form of loop (4) for k = 1. Moreover, the mapping

J used for the rewriting can be chosen to be independent of the index

set J.

Proof: First, a mapping m: %Z" + Z will be constructed which satisfles
rule C2. Let £ be the set consisting of all the elementsX > D of all
the sets <f,g> referred to in C2. We must construct 1 so that

m(X)>0forall xe £ .

2

Let "+" denote any positive integer, so (+,x%, ...,x") is any

element of Z" of the form (x, xz, cve xn) with x> 0. Since I1

*A weaker version of this result can be found in [2].
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is the only index variable which may be missing, we can write

D _
7 = {Xl, ...,xn] , where

i 1 n
1
(xr, ...,xr)
Xr= ﬁ or
(+, %% ..., xD)
} r

The mapping m is defined by

8) [ (Il,...,In)]=a111+...+an1n

for non-negative integers aj, to be chosen below. Since 3, z 0,

wl (1, xf, cees x?)] > 0 implies m[ (x, xz

n
r ...,xr)]> 0 for

any integer x> 0 . Therefore, each xr of the form (+, xf, ciey x?)

can be replaced by Xr =(1, x?‘

WY x:_]) and it is sufficient to

construct ™ such that m (Xr) >0 foreachr=1, ..., N. Recall
that each Xr> 0.

Define ﬂj={xr: x$= =xg'1 =0,xf;;‘0}, 3070j

is the set of all Xr whose j£ll coordinate is the left-most non-zero
one. Then each X . is an element of some /Oj.

Now construct the a, sequentially for j=n, n-1, ..., 1

j

as follows. Let a, be the smallest non-negative integer such that

J

j n
a, x +...+a x >
T n'r 0

J

for each Xr=(0, e, 0, xg, ooy x?)e ﬁ Since Xr>6 and

j

1-21




e e e

xg # 0 implies xf_ > 0, this is possible.

Clearly, we have m (Xr) > 0 fcrall Xre 10) But each
X, is in some 101., so T (Xr) > 0 foreachr=1, ..., n. Thus,
satisfies rule C2. Observe that the first non-zero aj that was chosen

must equal 1, so 1 is the greatest common divisor of the a (1f all

j.
the aj are zero, then 7@ must be empty, sowe can let m [ (Il, cees In) ]
= I1 .) A classical number theoretic calculation, described on Page 31

of [3], and reproduced in Appendix A, then gives a one-to-one linear

mapping J: 2"+ Z" such that

real, ™ = (nial 1™ )

Since the sets <f,g> are independent of the index set j,
the construction of m and J given above is also independent of J
This completes the proof.

Loop (4) for k = 1 executes the loop body concurrently for all
points in J lying aiong parallel (n - 1)-dimensional hyperplanes,
hence the name of the theorem.

Observe that the theorem is trivially true without the restriction
that J be independent of 47 , because given any set.p we can construct
a J for which the sets JIZ I

P oeees

and the order of execution of the loop body is unchanged. For example,

n contain at most one element,

if \,( = {(x,y,2): 1sx=210,1l2ys5,1=22s7}, let J((x,y,2)]=

(35 x+7y+2z, x,y). Sucha J is clearly of no interest. However,
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because the mapping J provided by the theorem depends only on
the loop body, it will always give real concurrent execution for a
large enough index set.

Condition C2 gives a set of constraints on the mapping
e /A Z. The Hyperplane Theorem proves the existence of a
satisfying those constraints. We now consider the problem of making
an optimal choice of .

It seems most reasonable to minimize the number of steps in
the outer DO Il loop of loop (4). (Remember that k =1,) Ifa
sufficiently large number of processors are available, then this gives
the maximum amount of concurrent computation. This means that we
must minimize ul - )\1 in loop (4). But )\1 and ul are just the

upper and lower bounds {mw (P): P e..{)}. Setting
Mi.-: o - Ei ,
it is easy to see that ul - )\1 equals
. 1 n
(9) M o |+...+M la |

where the a; are defined by (8). Finding an optimal 1 is thus
reduced to the following integer programming problem; find integers
Ayr eees @) “satisfying the constraint inequalities given by rule C2,
which minimize the expression (9).

Observe that the greatest common divisor of the resulting a i
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must be 1. This follows because the consiraints are of the form

so dividing the 3, by their g.c.d. gives new values of 3; satisfying
the constraints, with a smaller value for (9). Hence, the method of
[3] can be :.pplied to find the mapping J.

Although the above integer programming problem is algorithmically
solvable, we know of no practical method of finding a soluticn in the
general case. However, the construction used in proving the Hyperplane
Theorem should provide a good choice of m . In fact, for most

reasonable loops it actually gives the optimal solution.

1-24

ha

A w ke WA




ey ARSI AU TITII bt i e e i e e e W e e o

VIII. AN EXAMPLE

Now consider the following loop:

(10) DO 16 1l=1, 25
DO 16 I%=2, 19
3

DO 16 I° =2, 29

Fal, Py =(r a2 +1, 19 +F 2, 15 +))

& @ ®

x sFE -1, 1)+, 1P o) % 25
16  CONTINUE .

It is @ simplified version of a standard relaxation computation for a
20 by 30 array F, performed 25 times.

To apply the method of analysis, first perform the following

calculations:
1. Compute the sets <f,g> referred to by rule C2.
2. Find all elements X > .5 in these sets,
3. Find the constraints on the a, implied by n(X) > '6' .

i
This is done in Table 1.

Next, choose al, az, a3 consistent with these conctraints,
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9¢-1

<€3 ‘11>

<13 ‘€3>

<z '

<17 ‘23>
0< e
0<C%e+le
0< €erTe
0< e
0<C%e+le
n < Ce-To
0< To
SIuTeIIsuon

se aues

se suwes

se auwes

Se aues

19198}

‘0)
L)
‘)
‘0)
‘e

s+v

(00 °+)

0

< Syiouweid

(- ‘0
(t’o
(0 '1-
(01

('}

(c ‘1~

‘x) =<3 'SI>
‘x) =<S3‘TI>
‘¥) =<3 'VI>
“x) = <b3 'TI>

‘x) =<3 €3>
‘x) = <€ ‘T3>
‘x) =<3 ‘23>

‘x) =<23 'TI>

(00 ') =<13 ‘B>
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and minimizing ’

. ‘
24 a; | +17 a8y | +27 1 a5 .
It is easy to see that the solution to this problem is 3, = 2, ay = 1,

3, =1, so 1Er is given by
' 2,3 ;

]
Litt e

a0 B ) 1=21) 41
o .
Note that thig is the m computed by, the algorithm used in the proof of

the Hyperblane Theorem. " _
Application of the algorithm described in the appendix gives the

folloWwing mapping J :
rrat it =¢h A P =ert v

." Using this, and the inverse relation

2 +I;3, Il, 13 ). *

BRSO L B o L LS o o I |

the above loop is rewritten as follows: .

~DO 16 J'=6, 98
DO 16 CONC FORALL (0%, 1) e { (x,y): .

X 1§xszs,zsyszga,ndyl-m52x+ys11-2}
Pt -2+ -, P =@t -2+ -P e, Py s
x ¢ P -2*Pop, Rensrgto2rfar o

*It is also easy to obtain this from the foflowlng fact: the mapping
’I: 2" +'2" defined by (5) ls one-to-one if and only if the determinant

of the a} is %'1.

127
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X PG -2%72 -3, o1y )x .28
16 CONTINUE

The set expression in the DO CONC statement was obtained by

2 35291:1'

writing the relations 1 = Il =25,2=]1"=19 and2 =1}
terms of Il, IZ, 13 .

To understand why the rewritten loop gives the same results,
consider the computation of F (4, §) in the execution of the original
1cop body for the element (9, 4, 6) e \.V . It is set equal to the average
of its four neighboring array elements: F (5, 6), F (4, 7), F (3, 6),

F (4, 5). The values of F (5, 6) and F (4, 7) were calculated during
the execution of the loop body for (8, S, 6) and (8, 4, 7), respectively;
i.e., Auring the previous execution of the DO I1 loop, with I1 = 8.

The values of F (3, 6) and F {4, S) were calculated during the current

L 9. This is shown in Figure 3.

executic  f the outer DO loop, with I
Now consider the rewritten loop. At any time during its
execution, F (p,q) ls being computed concurrently for up to half the
elements (p,q) in the range set AQ F of F . These computations are
for different values of I1 . Filgure 4 i{llustrates the execution of the
DO CONC for ]‘IL =27. The points (p,q) ¢ (QF for which F (p,q) is
being computed are marked with "x"s, and the value of I1 for the
computation is indicated. Figure 5 shows the same thing for 11 =28.

Note how the values being used in the computation of F (4, 6)
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Figure 4

1-30

%l Y ~
\\\ AN N WD
\ é’ AN 6
. \
X ® X ® X
AN . AN
\\ [N
N \
N \
[ ) X, ® X\ L4
N
. N
AN N AN
N AN N
X, O x\ ) X
AN \
\ \\ \\
\ \\ (N
o X\ ® X4 ®
.
\
\\ \\ \\
\
\ N S
N N\,
X ® X N (- X
\ \
AN N .
\ N
\ \ AN
® X [ ] X\
\ N
N \\ s
N N N
\\ \\ A
X (] X ®
\ N
\ \ \
\ N N
\ N\ >
® -] ® (]
A { 1 1 ~N
t T T T >
4 6 P




A

Computed when

il=g

° ™ ') [ ° °
® ° ] 0 ® o
Computed /' ¢ o

when

1 [ ] [ ] [ J

I"=9
° ° ° ° ° 'Y
® ") ° ° ° ®
° ° o ° ° Y
1 I [y 1 1 -
T T L] T T >

2 4
Computation of F(4, 6) for I1 =9

Figure 3

1-29

i

I



to+

o ot Mo et e . - s

L g
RN
——

Execution for Il = 28

Figure §

1-31

(23 aad




o e e e WSS i A e -

in Figure 5 were computed in Figure 4. A comparison with Figure 3
illustrates why this method of concurrent execution is equivalent to
the original algorithm.,

The saving in execution time achieved by the rewriting will
depend upon the amount of overhead in the implementation of the DO
CONC, as well as the actual number of processors available. (The
sets in the DO CONC statement contain up to 252 elements,) However,
the value of this approach is indicated by the fact that the number of
sequential iterations has been reduced by a factor of over 135. (However,
we must point out that a real program would probably include a
convergence test within the outer DO I1 loop, so the analysis could

3

only be applied to the inner DO 12/D0 1 loop.)
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IX. THE GENERAL PLANE THEOREM

We now generalize the Hyperplane Theorem to cover the case
when some of the index variables 12, ceey 1" are missing. Concurrent
execution is then possible for the points in leing along parallel

lanes. Each missing variable may lower the dimension of the planes

by one.

Plane Concurrency Theorem: Assume that at most k - 1 of the index

variables Iz, ooy 1" are missing. Then loop (1) can be rewritten in

the form of loop (4). Moreover, the mapping J used for the rewriting

can be chosen to be independent of the Index set J .

Proof: The proof is a generalization of the proof of the Hyperplane

J j
Theorem. Letl 2, R | k be the possibly missing variables among

IZ, eoo, 10 Set jl =1, jk+1 =n +1, and eassume jl <jy< < jk< jk+l‘
Let p be the set of all elements X > 0 of all the sets <f,g>

referred to by rule C2. We must construct 1 so that m (X) > 0 for all

X e (70 . Let:ff)j ={(0, ..., 0, xj, cees xn) e P x> 0}, so/aj

is the set of all elements of /) whose j-t-b- coordinate is the left-most

non-zero one. Then every element of A is tn one of the t?oj .

k

The mapping m: 7" + Z"will be constructed with

T (B) =(nt (B), ..., TN (P))

where each 1'ri : Zn-’ Z will be defined by
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nl[(Il,...,In)] = ai te eal P
n

for non~negative integers a; . Moreover, we will have a; =0if j < ji or
j2 )y, This implies thatis X ¢ Py and j>J;_ |- Thenn'(X) = 0. It there-
fore suffices to construct n1° so that for each i with ji < <ji+l' and X ¢ Pj:
™ (X) > 0 - for we then have

T\'(X) — (0,..0,0, ﬂl (X),..-,T\'k(X) ) >Ou

Recall that for the sets «<f,g>, an * can appear only in the

jl' oo ,jk coordinates. Thus any element of any of the sets Pj with

ji <j <ji+1 can be represented in the form

i, Ji oy -1
i i+l *,...) ,or
(ol"°10/ xr 1'001xr
j. i -1
i+1 i+l
(0,...,0,+,xr peeer X yees)

for a finite collection of integers xiﬂ . ji <j<i By the same argument
J

used in the proof of the Hyperplane Theorem, we can replace "+" by xr1 =1,

i+l

i . ..
and choose ajz 0, i<y such that

Jiq-1

i i i i
8, K k.ot gy _lx+l >0
i i+l

for each r. Choosing a; =0 forj < ji and j > ji+l completes the construction
of the required .
The construction given in Appendix A is then applied to give

invertable relations of the form

i, i . jo.o, =1
]1=a} Il+...+af -1 I1+l
i Jivd
i Jie1? i
J —rgj bl I for j; <j <jj,y »
S |
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Combining these and reording the IJ gives the required mapping J. |
As in the hyperplane case, to get an optimal solution we want
to minimize the number of iterations of the outer DO loops. This means

l+ 1) ... (1.\k - )\k +1). Using the notation of (5), it .s

minimizing (ul -
easy to verify that this number is equal to

W M ay ]+ e M [an [ +1) oo | af Ju. MR | 4,
where Mi = ui - zi.

Finding the a} is now an integer programming problem. Note

that a solution with ai = see = a; = 0 for some i gives a solution to the
rewriting problem with k replaced by k-1, since that ni can be removed
without affecting the constraint inequalities. The Plane Corcurrency Theorem

k satisfying C2, for a particular value

proves the existence of a m: z" -z
of k. It may be possible to find such a 1 for a smaller k.

For completeness, we will state a sufficient condition for the
loop body to be concurrently executable for all points in -4 . This is the case
when the zero mapping (w(P) =0 forall P ¢ z“) satisfies C2., Since «g,f> =
1-X:Xe<f,g> 1}, it is clear that this is true if and only if all the sets

<f, g> are equal to {0} . Finally, the rules for computing the sets <f,g>

give the following rather obvious result:

If none of the index variables are missing, and for any generated

variable, all occurrences of that variable are identical, then loop (1) can be

rewrittea as a

DO ¢ CONC FORALL (..., 1" ¢
loop,
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The hypothesis means that in the expression (7) for any
generated variable VAR, r = n and the m" are the same for all occurrences of

VAR.
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CHAPTER TWO

SYNCHRONOUS PROCESSORS
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1. The DO SIM Statement

We now consider the case of completely synchronous processors,
the primary example being the ILLIAC-IV. To accomodate it, let us introduce
the DO SIM (for SIMultaneously) statement, having the following form:

DO & SIM FOR ALL (I, ...,I*) ¢ of ,

where j is a subset of Zk. Its meaning is similar to that of the
DO CONC statement, except that the computation is performed synchronously
by the individual processors. Each point of )J is assigned to a separate
processor, and each statement in the range of the DO SIM is, in turn,
simultaneously executed by all the processors. An assignment statement
is executed by first computing the right-hand side, then simultaneously
performing the assignment.

As an example, consider

DO 1S SIMFORALLIe¢ { x: 2<x< 10}

i4 A(l) = A(I-1) + B(I)

15 B(I) = A(Y) *+* 2
The right-hand side of statement 14 is executed for all I before the assignment
of A(I) is made, and before statement 15 is executed. Therefore, if initially
A(4) = 5 and B(5) = 2, then executing the loop sets A(5) = 7 and B(5) = 49.

Because of the simultaneity of execution of the body for the
various points of J . We cannot allow any conditional transfer of control in
the lcop body which depends upon the index variables. E. g., the statement

IF (A(D) 3, 4, 5
may not appear in a "DO SIM FOR ALL I" loop.




T e s -

For simplicity, assume that there is no transfer of control within
the body of the loop, so the statements are always executed sequentially
in the order in which they appear. : ‘
We will allow conditional assignment statements such: as
IF (A().EQ. 0) B(D = 3. | o :
They are easily implemented on the ILLIAC-IV because of its ability to turn

off individual processors.,

The only other restriction to be made on the body of a DO 8IM loop , -

is that a generation may not reference the same array element for two different |

points in its index set\g . l.e., an assignment statement may not have
two different processors simultaneously storing values into a single mamory
location. We do allow them to simultaneously load a value from a singlé

memory location, so this restriction is not made for uses of a variable, *

* Simultaneous loads from a single memory location are implemented in the
ILLIAC-IV by the ability of the central control unit to broadcast a val‘ue to all

!
processors.
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il. TRew:itinq the Loop i

Now consider the problem of rewriting the given loop (1) in the

[

: form

- |
12) poagoal,t.

.
. 1
"

Do aJF = 2K, K

I 1 I DO a SIM FOR ALL (Ik+l' s'e o 1In ) >4 (J(‘]-l ]-k
| . i | e ey

loop body

o CONTINUE

This is the came as loop (4), except the DO CONC is mpldced by a DO SIM.
We 3ssumel that the body of loop (1) contains no' control transfering statements
- i.e., no GO TO orinumerical IF statements.,

! | Define the mappings J and 11 as before. Any DO CONC statement
can be executed as a DO SIM, since it must give the same result if the
asynchronous processors happen to be synchronized. Thus, the rewriting
could be done just as I?efore by fmgimg an whichssatisfies C2. However,
the synchrony of the cemputation will a,llow us to weaken the conditionC2.

I ! Recall that ruie Cl w:as made so that Ehe rewriting will preserve
the order in which two different references are ma.de to the same array
eleme!nt. For references made during two different executions of the loop bouy,

. the asynchrony ot: the processors requires that the order of those executions

.
" 1

be preserved. However, with synchrénous processors, we can allow the

b 23
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-
|
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two loop body executions to be done simultaneously if the references will then
be made in the correct order. The order of these two references is determined
by the positions within the loop body of the occurrences which do the
referencing.

For two occurrences f and g, let f << g denote that the execution
of f precedes the execution of g within the loop body. This means that either
the statement containing f precedes the statement containing g, oi else that
f is a use and g a generation in the same statement. The above observation
allows us to change ruleCl to th2 following weaker condition on m

For ... generation; if Tf (P) = Tq__(Q_

for P, D ¢ with P« Q, then we must have either
(i) 1i{P) <@, or
(1)  o(P) =1{Q) and f << g.

In this rule, either (i) or (ii) is sufficient to insure that occurrence f references
Tf (P) for the point P ¢ ./ before g references the same element for Q eJ .
The conditions can be rewritten in the following equivalent form:
(i) m(P) < w(Q) and (1) if w(P) = w(2) then f < g.
In the same way c2 was obtained from cl, the above rule gives

the following:

(S1) For every variable and every ordered pair of

occurrences f, g of that variable, at least one

of which is a generation: for every

Xecf, g> withx>E we must have:

2-4
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(i) p(X=270,and

(i) if g (X) =3, than f << g.

If rr satisfies rule S1, then it satisfies the preceding rule, so the rewritten
loop (12) is equivalent to the original loop (1).

We have been assuming that in rewriting the loop body, the order
of execution of the occurrences was not changed. I.e., the Ij were replaced
by expreséions involving Il, 0er e ,In, but nothing else was done to the loop
body. Now let us consider changing the order of execution of the occurrences?#

That is, we may change the position of occurrences within the loop
body. For example, we may reorder the statements.

Let f<<g mean that f is executed before g in the rewritten loop
body {12). Then rule Sl guarantees that the correct temporal ordering of
references is maintained when the references were made in the original loop

during different executions of the loop body. Having changed the positions

of occurrences in rewriting the loop body, we now have to make sure that
any two references to the same array element made during a single execution
of the loop body are still made in the correct order. The following analogue

of ruleCl handles this:
For ... generation: if Tf(EL-; ’I‘g (P) for some P ¢ Qk" .

and f precedes g in the original locop body. Then f << q.

* Remember that there was no point in doing this before, since it couldn't

help for asynchronous processors.,
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Rewriting this in terms of the sets <i,g> gives the following

rule.

(S2) For every variable, and every ordered vair of

occurrences f, g of that variable, at least one of

which is a generation: if 0 ¢ <f, g> and f precedes g in

the original loop body, then f << g.

Rules Sl and S2 guarantee that the rewritten loop (12) is equivalent to the

original loop (). Note that rule S2 does not involve .




III. The Coordinate Metnod

s We could now try to solve the following problem: i.ind a rewriting
of the loop body (and the resulting << relation between occurrences) and a
mapping nwhich satisfy rules Sl and S2, and which minimize the expression
(1) . This would give a rewriting c¢f the loop which is optimal in the sense
J' k that the outer DO Il /ees/ DO Ik loop has the fewest iterations. However,
= the optimality of such a rewriting is illusory, for reasons which we will
now discuss.,
The ILLIAC-IV has 64 processors. The feasibility of a machine
with so many processors is achieved by having all processors operate
synchronously with a single control unit, and by allowing each processor to
access only its own separate portion of memory. If processor 12 wants to
load a data word contained in processor §'s part of memory, then the follow-
ing sequence of instructions is executed simultaneously by each processor
number i, icri =0 to 63:
(1)  load
(2)  transmit data werd to processor i + 7 (mod 64).

This means that the method of storing arrays must depend upon
how they are to be accessed. For example, consider the occurrence
Pt - 2% 72 - 1%, 13 ) inside the DO CONG FOR ALL (2, J3), which we
generated before with the Hyverplane Theorem. It necessitates a complicated,

space~wasting format for storing the array F. The array would probably
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have to be reformated before and after execution of the outer DO Il loop. *
It appears that the best results are obtained by choosing a
mapping ] which gives a loop with simple subscripting and a reasonable
amount of simultaneous computation. An obvious way of choosing such a J
is to let I1 feee ,In be a permutation of the original index variables Il, vos ,In.

More precisely, the mapping m: z" -.zk is taken to be a coordinate projection

- that is, a mapping for which [ (al, coe ,an)] is obtained by deleting n-k

, n
coordinates from (al, coos@ e

For example, for n = 5 we may want to rewrite loop () as

DO a13=23,u3
4 4 .4

DOal =4 ,u

DO @ SIM FOR ALL (I, 1%, 1°) ¢ [ (x, v, 2):

zlfxsul, Lzsysuz, and zs 525u5}

mennl@, 2, B, 14, %)) = 3, ) ana g (..., 19 =03, 14, 2L ).

-

Notice that if 11 is a corrdinate projection, then the sets i 1 K of loop (11)
T ieesdd

are easy to compute.

The coordinate method consists of first choosing a coordinate

projection 1, and then trying to find a rewriting of the loop body for which

Sl and S2 are satisfied. Since rewriting the loop body makes no difference

* A precise statement of the rules relating storage allocation and DO SIMs is
contained in [4] .
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to condition (i) of S1, we must first require that it be satisfied for all
relevant occurrences f, g. Next, we apply Sl and S2 to get certain ordering
relations << between occurrences. We must then decide if it is possible
to rewrite the loop bedy so that these relations are satisfied.

In order to make this decision, we need a trivial observation:
a use in an assignment statement must precede the generation in that
statement. This observation will be given the status of a rule.

(83) For any use f and generation g

in a single statement, we must have

f<<a.
Now we add the relations << given by 583 to those obtained from
Sl and S2. Next, we add all relations implied by transitivity. I, e., when-
ever f << g and g << h, we must add the relation f <<h.* If the resulting
ordering relations are consistent - that is, if we do not have f << f for any
occurrence f - then the loop body can be rewritten to satisfy the ordering
relations. We will describe the method of rewriting the loop body by an

example.

* An efficient algorithm for doing this is given by [ 5] .
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IV. An Examp’

Consider the following simple loop:

DO 24 ' = 2, 50
DO 241%-1,5
21 alt, %)= s, %) + oy

@ & @

22 c) - B -1, 1%)
@ @
23 B, 12) oAt 41, 12) # 2

24 CONTINUE

We want to rewrite it as a DO IZ/DO SIM FOR ALL I1 loop, so we apply the
coordinate method with the coordinate projection rrdefined by Tl (Il,Iz)] = I2 .
We proceed as follows. (The calculations for steps 1-3 are shown in Table 2 )

1. Compute the relevant sets <£f, g> for rules

Sl and S2,

2, Check that Sl (i) is not violated.

3. Find the ordering relations given by Sl(ii) and S2.

4, Apply S3 to get the following relations:

statement 21: bl << al

cl << al

2~10
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The Sets <f, g>

<al, al>=(0,0)

<al, az> = (~1,0)
<az2, al>=(1, 0)
<b3, b3> = (0,0)
<bl, b3> = (0,0)
<b3,bl> = {0,0)
<b2,b3 > = (-1,0)
<b3,b2> = (1,0)

<cl,cl> = (0,0)

<cl, ¢2> = (0,*)

<C2, cl> = (0,*)

Is SlI (i)

Violated ?

NO
NO
NO
NO
NO
NO
NO
NO

NO
NO

NO

Table 2

2~11
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Ordering Relations

S1 (i)

a2<<al

S2

bl<<b3

cl<<c?2




statement 22: b2 « c2
statement 23: a2 << b3

5. Find all relations implied by transitivity:

b3 << c2 [by b3 << b2 and b2 << ©2]
a2 << b2 [by a2 << b3 and b3 << h2]
bl << b2 [ by bl «<<b3 and b3 << b2)
bl << ¢2 [ by bl <2< b2 and b2 << c2]
a2 <<c2 [ by a2 << b3 and b3 << 2]

6. Check that no relation of the form f «< f was found in
JorS.

7. Order the generations in any way which is consistent
with the above relations - i.e., obeying b3 << c2,
We let al << b3 << c2.

We then write

2 A, %) -
23 B, %) =
22 o) =

@

8. Insert the uses in positions implied by the ordering
relations (recall that a2 << al):
Al + 1,1
)
a1 A, 1?) =@, B +ch

D @

2
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23 Bﬂl,12)= *%Q

22 o =@t -1, 12)

2

9. Add any extra variables necessitated by uses no
longer appearing in their original statements:

xtt +1, 1% za@t 41, 12)

2 a2y - B, ) vodh

D

23 B, 1%) = x(@ +1, 1% **2

22 o = B, B

& ©

i

This finally gives us the following rewriting of our original loop:

DO 241%2-1, 5

DO 24 SIM FOR ALL I! ¢ fx: 2 < x <50)
x@+1, %) aite1, 1)

21 A, %) - 8@, %)+ o)

23 B(, 12) = x(t 4 1, 12) #x2

22 c() =@t -, 12

24  CONTINUE

2-13

K [
u ‘;{"u:\ et ¥ P W AT VIS oS e O T S




V. Further Remarks

It is easy to deduce a general algorithm for the coordinate
method from the preceeding example. The method'can be extended to
cover the case of an inconsistent ordering of the occurrences. In that
case, the loop can be broken into a sequence of sub~loops. Every genera-
tion g for which the relation g « g does not hold can be executed within a
DO SIM loop. An algorithm for doing this is described in Chapter 4.

Observe that there are only 2"-1 choices of a coordinate
projection m for rewriting loop (1), It is easy to try them all, in decreasing
order of the amount of parallel computation achieved, until one is found
for which the rewriting is possible. Rule Sl should rapidly eliminate many
choices.,

It may happen that the rewriting cannot be done with any
coordinate projection. In this case, a more general linear mapping m must
be sought, using the approach developed before for DO CONC loops. For

example, no coordinate projection works for the relaxation loop (10).

2-14
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V. Further Remarks

It is easy to deduce a general algorithm for the coordinate
method from the preceeding example. The method'can be extended to
cover the case of an inconsistent ordering of the occurrences. In that
case, the loop can be broken into a sequence of sub-loops. Every genera-
tion g for which the relation g « g does not hold can be executed within a
DO SIM loop. An algorithm for doing this is described in Chapter 4.

Observe that there are only 2%-1 choicer 1 coordinate
projection 1t for rewriting loop (1), It is easy to try them all, in decreasing
order of the amount of parallel computation achieved, until one is found
for which the rewriting is possible. Rule Sl should rapidly eliminate many
choices.,

It may happen that the rewriting cannot be done with any
coordinate projection. In this case, a more general linear mapping m must
be sought, using the approach developed before for DO CONC loops. For

example, no coordinate projection works for the relaxation loop (10).
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! H H . !
I. Restrictions on the Loop

Now co:nsider the ‘application Qf these_method§ to the problem
of compiling a FORTRAN pro_gram?for execution on a multiprocesser computer,

. We immediately;observe tha;t the restrictions which have been placed on the
loop (1) would eliminate most real Fortran DO loops from consideration. For
example, the iDO limit!s zi'{ uiiare usually:not all constants known at compile

: time. Fo:'tunately, most of the restrictions werel made to simplify the exposi-

“tion, and are not essential., We will now describe the restrictions which are_

I eéssential to th'e analysis Jo
| First, &‘;ome termé must be defined., By a "loop Eonstant" . we

1 mean an expression whose value does not change while the ]oop is exccuted -
i.e., any expressmn not involving generated vanables or loop index variables.
A quantity is "knowq at compile t1me" if it has a constant value which can
be determmed by the FORTRAN comp1le1 .

i The analysis tan be applied to the followmg loop.

! © @3 poal=gl,l,d
i f . H H
. . * 1

1

; ! DOaIn=‘zn,un,dn

loop body

‘  a« CONTINUE .

assuming that it satisfies the following conditions:

* » * «
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1. Each di is known at compile time,

2.. The loop body contains no transfer of control to any
statements outside it.

3. There is no I/O statement in the loop body.

4, For each subroutine or function call in the loop body, it is
known which variable elements it can modify.

5. Each occurrence of a generated variable must be of the form
VAR (el, cee ,em), with
ei= ai * :1+...+ a;* In+ ci .
where ci is a loop constant and each a} is known at compile
time.
For the coordinate method, the following additional assumptions are required.

6. There is no transfer of control within the loop body.

7. For every generated variable VAR, each occurrence of VAR

withir the loop body must be of the form

VAR (al * Ijl+ cl,..., Q™ * Ijm +cy,
where ci is a loop constant, ai =+1or 0, and the ai and ji are
the same for all occurrerces of VAR.

By weakening the restrictions, many complicated details are
added to the process of rewriting the loop. However, the analysis remains
largely unchanged. Some of these details are described in Chapter 4.

A significant change is introduced by allowing occurrence mapp-

ings of the form given in 5. It necessitates a complicated restating of the

Hyperplane and Plane Cencurrency Theorems, as well as changing the method

3~2
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of choosing the mapping w This will be discussed in a future paper.
Note that if the loop (13) satisfies these restrictions, then so
does the inner DO Ik/ ../ DO " loop, for any k. (The inde:: variables

¢ for j <k are loop constants for the inner loop.)

-




II. Meeting the Restrictions

Even if a given loop does not satisfy the above restrictions, it
may be possible to rewrite it so that it does. We will give some useful
techniques for doing this.

It is easy to fulfill the requirement 'that the DO statements be
tightly nested. The method is illustrated by the following example. The loop

DO 77 B =1, 10

16 A, D=0

DO 77 1* = 2, 20

can be rewritten as the following tightly nested loop:

1

DO771'=1,10

PO 77 1% = 2, 20

16 1F (12 .EQ. 2) at, 12-1) = 0

This technique is referred to as quantifying statement 16. It may be possible
to move the statement Lack outside the DO I2 loop and unquantify it after the
rewriting is performed.

Occurrence mappings can sometimes be rewritten by substituting
for generated variables so that condition 5 is met. One trick is illustrated

by the following example. Given

3-4
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K=N

DO6I=!, N
5 B(=A(K
6 K=K-1I

We can rewrite it as
DOSlI=1, N
5 B8(D=AMN+1-1)
51 CONTINUE
61 K=1

This use of auxiliary variables to effect negative increiienting is fairly
common in FORTRAN programs.

In condition 6, the real restriction is that there can be no
possible loops inside the loop body. If this is the case, then transfer of
control can easily be eliminated by quantifying assignment statements with

logical IFs.

3-5
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IIl. Scalar Variables

Even though the loop satisfies all the restrictions, it is clgar
that these methods can give no parallel computation if there are generated
scalar variables. Any such variable must be eliminated.

A common situation is for the variable to be just a temporary
storage word within a single execution of the loop body. The variable X in
the following loop is an example ‘

DO31I=1,10
X =SQRT (aA(D)
B(I) = X

3 C() =EXP (X)

In this loop, each occurrence of X can be replaced by XX(I), where XX is a
new variable.,

In general, we want to replace each occurrence of the scalar
by VAR(Il, ooy In) , for a new variable VAR.* A simple analysis of the loop
body's flow path determines if this is possible.

Another common situation is when the variable X appears in the
loop body only in the statement

X =X + expression,

where the expression does not involve X. This statement just forms the sum

of the expression for all points in the index setJ . We can replace it by

*After the rewriting, to save space we can lower the dimension of V. * by

eliminating any subscript not containing a DO FOR ALL index variable.

3-6
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the statement
VAR(II, oo ,In) = expression,
and add the following "statement” after the loop:

X=X+ 5 vaR (1, ..., 10,
(Ill'oclln) ¥ J

The sum can be executed in parallel with a special subroutine.
The same approach applies when the variable is used in a

similar way to compute the maximum or minimum value of an expression

for all points in»@ .

3-7
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IV, Conclusion,

We have presented methods for obtaining parallel execution of
a given DO locp. Many details and refinements were omitted for simplicity,
but all the basic ideas have been included. Some of the methods are being

implemented.in the ILLIAC-IV FORTRAN compiler, as described in Chapter 4.
Preliminary study indicates that they will yield parallel execution for a

fairly large class of programs. This is true for other types of muitiprocessor

computers as well.
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As a practical example of the use of our methods, we describe
algorithms for translating a FORTRAN DO loop into an ILLIAC IV extended
FORTRAN DO / DO FOR ALL loop. We thus adopt the syntax of this extended
FORTRAN, as described in [4]. In particular, note that the "DO FOR ALL"

statement is just our "0O SIM*® statement.

I. RESTRICTIONS

We make some restrictions on the given loop (13) in addition to re~

strictions 1-7 of Section 3-I,

8. No two variables appearing in the loop may be EQUIVALENCEd
in any way.
9. There must be no subroutine calls in the loop body.

10. Functions called from inside the loop must not modify the value of

any variable.

11, Foreachj=1, ..., n:

(a) 2j and u’ must be of the form

1 j=1
e+C1I +...+Cj_11 7
where e is a loop constant, and the c; are known at compile
time.
(b} For any P in the index set, @) and uj(P) must be positive.

(¢ If | g’ | > 1, then ¢} must he a loop constant,

4-1
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Condition 11(b' means that for any (Pl, oy Pn) in the index set, the

expressions zj and uj must be positive when Pl, ooy Pj-'1 are substituted

for 13, ..., P}

4-2
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II. NOTATIONS
We now introduce some notations. Assume that we are ¢iven the
loop (13). Let D denote the element (dl, veo, dM ¢ 2. It is cailed the

increment vector of the loop. For any point X = (xl, oot M e Zn, we

defineX * D ¢ " by

1.1

X*D=(x"d, ..., x"d".
As before, we let 1,0 denote the index set of this loop.

We define a way of representing certain subsets of %Z" which was
partially introduced before. We let "+" denote "any positive integer", and
let "-" denote "any negative integer". We then have

(31 31 61 -)

{3, x,6,y) :x>0, y<0}

-2, ¥, 9)

' gt - {(-ZIXIY):YS_O}-

Note that . was previously denoted by "*".

o +

We let ¢ denote the empty set,

Now let x and y be objects of any kind, and d ¢ Z. Then we define

(
x if d>0
$(x, y;d) = ¢
if d<0
\y
/
y if d>0
Alx, y;d) =
x if d <0

2 2

Thus <I>(Il, I“ + N; =3) = I° + N, etc., Note that A(x,y; A 7 &(y, x; d) .

4-3
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The reason for this notation is shown by the following trivial result.

i i

Theorem: Leta’, a i

A S |

,a €%,i=1, ..., n, suchthatal <a <3 ", Let

T be the linear function defined by

" 1 nq _ 1 n
r[(I IOOQII)] —hll +... +hnI .

Then

g se!, 3k h)h < T [a}, ..., a™ <= a@t, &% h,) by ;
, i i
and these are the best possible bounds cn T [ (al, LU I

By "best possible bounds", we mean that given the g_i, 51, we can

i

" choose the a” so that T [ (a1 . «es, @M ] equals either of the bounds.

8y the quantification of an occurrence, we mean the quantification of
the statement containing the occurrence, as described in Section III-2, We
say that an occurrence is quantified by Ij if it is quantified by the expres-

sion (Ij EQ. Zj) or (Ij .EQ. uj).
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III. COMPUTING THE SETS < f, g >

Let f, g be occurrences of a variable, with occurrence mappings
'1‘f , Tg. First, we must generalize our rules to cover the case' of
increments dj different from 1. An examination of the reasoning used
in Section 1-V shows that this is accomplished by simply generalizing

our definition of < f, g > to the following:
<Lg>={XewHTNn=%w+x*DHm

some P ¢ Z") . ;
We can improve our results somewhat by considering smaller
t
sets < f, g >, Namely, it is easy to see that everything we have done

remains correct if we replace the set < f, g > by any set containing
{XeZn:Tf(P) =Tg(P+X*D) for some P, P+ X * D ¢ LO

such that f is actually executed for the
point P and g is executed for the point
P+X*D} ’ ;
as a subset.
We use this observation to obtain cmaller sets < f, g> in the
following two ways:
(1) By using quantifications of the occurrences to replace
"% components of < f, g > by more restricted cémponents.
(i1} By using the bounds on the index set to replace < f. g >

by ¢ whenever possible.

4-5
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" As example of (i), consider the.following statements in the body

of loop {13}, with n & 2 and d* = 42

U i

=1:

! .
P L EQ. zl)' A = ...

; . ! ’
P e AR+ 1) ..

f i '
, @ o

¥
i

Then we can take < al, ‘a2 > to be ( 3", -1) instead of (*, -1). This is
Cy . ‘ '

because al is only executed for points (el, ¥) € :L,O , and a2 is executed

for points (W, z) with w > zl.

; As an example of (ii), consider the following loop:
: . i

DO 22.1=1, 10
22 ° B() =B(I+10) .

® @

We can let € bl, b3 > = ¢ rather than (-10),, because P and P -10 cannot

. both be in the index set for any P

§

We now givelan algorithm for 'com'puting < f, g>. The steps are
i

discussed afterward
1, Permute the subscript positions so that we have :

3 . N
ki ky, k k
Tf(Ill * 8 0 In)i (al 1+f 1' e 0 0, arIr+frl f£+ll0'01fcrn)

kl k k
c

T (Ill 00y I)= (al I l+g l"'l‘arIr+g I" gr+1l""gén

\EL.:,.




withk, < ... <kr, and eachai=il.*

i, \
o is known at compile time to be

2. If for some i, ff: -q

-

not equal to zero, then < f, g > = ¢. Otherwise,

' ' 3. Forj=11 see, It
| (@) If j =k, for some i then:

i

(i) If fj - gj is known at compile time,
then ® = (fj - gj) /(dj . ab)

(ii) Otherwise, xj = B

(b) Ifj# k, for all i, then define ) by the following table:

g Quantified By:

7. ¢ 0rQ. W teither

|

] j +ifu 7 . |

I] oEQo z 0 u }, 2 + :

3 if o may equal ¢ i

- et e et e e i

j j ; '

- lf Z i %

f | v 7 L :
. l -

Quantified U .EQ. J 04f o) may equal ¢ 0 3

) A AR U

By: 0 + ; I

Neither - 0 ] l

*A trivial modification to the algorithm handles the situaticn
in which two of the ki are equal.,

.

T
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4, I‘f for some j, xj is a number which is not an integer, then
<f, g>= ¢. Otherwise,

5. If for some j, % is an intoger such that |cij RV N IR I ) |,
then< f, g > = ¢, Otherwise,

6. <f,g>=(x1, ...,xn) .

We now discuss the individual steps of the aigorithm.
1, Thlis step is possible because of Restriction 7 of Section III-1,

It is only done to simplify the notation,
2, If ffc 7 gi, then clearly Tf(P) # Tg(Q) for all P, Q ¢ 2",

3. (@) () If xj is an integer, it is just the j:c-}l component of
<f,g>, Ifitisn't an integer, then<f, g> =09,
(i1} In this case, we know that either < f, g>=¢, or
its jt—b' components consists of an unknown integer.
The best we can do is let the jm component of
+
<f,g>be 0,
- +
(b) In this case, the j-t-}l component of < f, g > is 0 . We use

the quantification of f and g to refine this choice. In

Subsection 4R, we will discuss how to decide whether or

J may equal 28

not u
4, This step tests fc:. @ non~integral xj produced in step 3(a) (i}.
5. We will describe later a methed for finding an upper bound

for uj - Zj.

o N
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IV. THE COORDINATE METHOD

We now present algorithms for applying the coordinate method ~
described in Thapter Il - to our translation problem. We assume that
the lcop appearing in the original FORTRAN program has been rewritten
using the techniques described in Chapter 3 to make it satisfy our
restrictions,

The given loop (13) will be revritten as

P, Py P, P
(140 Do~rit=a1 1 gl

D... P,._ P, P..
nk=)\nk’ n-k 4"n=k

DO x I o ’

j j T T j
s=((a', o th/nt A tedl. oY, cross. ...

IV j j
X .CrOSS. VK, v ¥+ gk ... u¥ . condition 1 .AND.

X ..+ +AND, conditicn m]

jl jk
DO~ FORALL(I ", ..., 17 /S,
where p1 <,... < pn__k and j1 LIRS jk' (For notational convenience,
we have replaced the k of Chapter 3 by n-k.) The cor {i ons in the set
expression are boolean expressions. "S" denotes some unique identifier.

Zn-k

The mapping T : z" of Chapter II is thus defined by

—ral, o M™Y=a Y,




The following data declarations must also appear

i 4 5o gy
SET s (A Y, ulhial), ..., a0k uk gk

ALLOCATE S ((1, 2, ..., k) .

))

{Since the a) are known at compile time, the As are evaluated by the

translator and do not actually appear in the translator's output.)

A, Rewriting the DO Statements

We first give an algorithm for finding the limits ki, u1 and the
j i
conditions defining S in (14). Note that the A i, u ! must be integer

constants., We assume that for the original loop (13), we have

RS R I j j-1
(15) 2 ot T +...+1?,j_1 I

S+ 1t b=l

wEugtuy ot T,

j=1
as described in Restriction 11 of Section I, The steps in the algorithm

are explained afterwards.

The Algorithm

1, Forj=1, ..., n; compute the following loop constant

expressions:
. =1
d=g +5 o oeut, W al. 4
0 - i - i

i=1

_ . =1 . Co. .

ui=u6+“ w A(&l,ul;di.ul.)
=1 1 1

4-10




w-)=e, -1; ol [u"o -1

i, e SIS TS IR |
Jr‘iv,(ui ) ®L’, v d (uy - 4)]

—\J - 1. 4 i,
(u=-1¢" =41, l,d)[uo zo

+

Jo_ oy et S RS Y

=]

2, Forj= l; I tH

S

DJ = minimum { a”: There is an occurrence in the locp,

not guantified by IJ, such that I
appears in the s& subscript position
of the occurrence mapping, for a

variable whose dimensions are

1

(a 1 e 0y an) . }

Dj is undefined if this set is empty.
j

3, IfD!

is undefined forany i =1, ..., k; then th> rewriting
is impossible.,
4, Fori=1, ..., k:

TR
@ el ulal=1

/1 + (u - Mj, if this is known at

compile time
i

)= <

i
At ulog

j.
L D * otherwise

4-11




(b)

(c)

Throughout the original loop, and in (15), replace

i J i; ) i j j i i

' by 1t gt ol by £l -+ a T and u g by
3 P j j

ug - L7 +X", I.e., recompute the 20 and Uy but not

the quantities computed in step 1.

je
If ¢! is not known at compile time, add the condition
J: )P P
(¢! @(.LE., .GE.;d Y1} .
j.
If u ! is not known at compile time, add the condition
J i 3y iy
(.GE,, .LE.;d ") I7). Otherwise, setu " =u
J

(Note: This is the new value of u i computed in (b). )

(u

50 Fori=l, oon,n-k:

(@)

(b)

(€)

P P
Set A " equal to £ °, with
j i, p
e\, ual, gt
by

)

)
substituted for each I * , =1, ..., k.

P By

Setu i equal tou °, with

j j i p.
Aar,uﬂdr.z;)
r .
J
substituted for each [r

Forr=1, ..., k:

p.
(i) If Zj Lo, i, < by then add the condition
r
b,

Py
(z B (b(aLEo ’ .GE. H d

p
)1 by,

4-12




p
(i1) If uji #£0, . < p; i then add the condition
r

p p p.
(u l@(.GE., .IE.:a D1 Y,

6. Let i be the smallest integer such that the conditions defining

D joF P
S do not depend upon the values of I i . I 1+1, oo 1 n k.
If i exists, then place the assignment statement for S just

P
before the DO o [ i statement. Otherwise, place it after the

Pn-x
DOal , as it appears in (14).

Explanation of the Algorithm

1, If dj > 0, then by the theorem of Section II, g,_j < Ij(P) _<_'Ej for
allP ¢ (0 Crd < 0., then the inequalities are reversed.
Similarly, (u_-_ll_)j and (4 = 3)) are chosen so that
-0 < W@ -0@) < @8 foranpe J.
Although the (y_—_z)j are not used in this algorithm, this
is an appropriate place to calculate them. They will be
used later,
2. The number Dj provides an upper bound for
1+ | w(p) - ) |:Pe 0. Tosee this, suppose the

occurrence A(I2 . I3

+ K) appears in the loop, and A is
dimensioned by

DIMENSION A(10, 33).




If references occur to both A(i,j) and A(i', j'), then

li-1']<10-1=9,|j~-j |< 32, Hence,

|3@) +k- @@ +x | =] @) -230) | <33-1.
j J;
D i is undefined if I * does not appear in any unquantified

variable occurrences. If this is the case, then we have made
a bad choice of DO FOR ALL variables (i.e., of the mapping

m).

i j J
(@) Suppose d 1> 0. Thenu i A i is an upper bound for

(P)- £ °(P), Pe V. Ifd <0, rev irse the signs

j j
in the preceding statement. Note that A i and u i are

u

actual numbers, known at compile time, '

(b) We rewrite the loop so that the values assumed by IJi
are as small as we can make them and still be sure that
they are positive. .

Note that if zJi was original_ly a loop constant,
then after the substitution it equals ?\]i, a known number.
This is necessary if | dJi | > 1, otherwise our set con-
str.uction wogld not.work right, I.e.,, the set
[ )\Ji, )\ji + clJi oo ]i] would not necessarily cqntain
integers in the correct congruence class mod dJi. This
is the reason fer restriction 11 (c) of Section I.

i i i
(c),(d) If X " orU " is notthe actual value of £~ oru

respectively, then the appropriate tests must be inserted.
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5. If the limits on I 1 depend upon cne or more [ r’ then the
jr jr jr .
bounds A 7, v on [ must be used to determine the nev limits

Py

on I 7, and the original limit test must appear in the definition

P, P
of S. Note that the expressions ¢ *, u * are the ones

recomputed in Step 4(b).
6. This just removes loop~invariant code from the innermost DO

loops.

B. 'The Bounds on |u/ - 4 |

The algorithm of Subsection A finds the bounds on | w - ¢ |
needed for the algorithm of Section 3 which constructs the sets < f, g >, .

For Step 3 of the algorithm of Section III, we can say that
W # &) if and only if (g_—__g)j is known at compile time, and is not
equal to zero.

For Step 5 of that algorithm, we may replace | uj - Jlj I by
('1-1'-':"@)j if it is known at compile time, or by DJ if it is defined. If
neither replacement is possible, then the test may not be applied for
that value of j.

Note that the \{alues of (y__;-__g,)j and (E_-‘Tnj are not changed by the
substitution for the IJi performed in Step 4(b) of the algorithm of Sub-~

[}

section A,
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(!. The Coordinate Algorithm

We now describe a complete algorithm for rewriting the given loop

(13) as a DO / DO FOR ALL loop of the form (14), Actually, we will

"un~tightly nest" the loop if possible by moving quantified statements

outside of inner loops. (See Section 3-II,) A discussion of the individual

steps follows the description of the algorithm.

The Algorithm

1,

Find the sets < f, g > required by rules Sl and S2, using

the algorithm of Section 3. . '

Choose the DO FOR ALL variables 1 1, ..., TX.

Apply the algorithm of Subsection A to rewrite the DO state-~
ments, If the rewriting is found to be impossible, stop.
Apply rules S1-S3 of Chapter Z to obtain the ordering

relations <<, If the rewriting is found to be impossible, stop.
Replace the ordering << by its transitive clesure. Il.e., add
the relations f << g which are implied by transitivity from the
original ordering. Thus, if f << h << g, then add the relation
f<< g,

If for some generation g, the relation g << g holds, then go to
the algorithm described in Subsection E.

Complete the ordering of the generations to a total ordering by
the following procedures. Let f and g be generations which are

unordered with respect to one another (neither f << g norg << {
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holds). Then:
* (@) With the notation of (14); if, for some i, f is

P, P.
quantified by (I ! LEQ. ¢ l) ana g is not, then f << g.

p. P,
(b) If, for some i, f is quantified by (I 1 LEQ. u ) and

g is not, then g << f{,

(c) If the statements containing f and g are both of the

form [F (expression), with the same "expression", then

make f and ¢ adjacent in the complete ordering. (I.e., if
we make f << g, then f << h<< g must imply h=1{ or
h=g.)
After applying (@), (b), and (¢! for all pairs of unordered
generations, complete the ordering by using the order in which
the generations appear in the original locp.

Note: No new ordering relations involving uses are added.
Denote the generations by 9o ever Iy with 9, << .., <<gm.
Reorder the statements of the loop body so that the it—h state~-
ment is the one in which g, appears, fori=1, ..., m=1,
(Note that by our restrictions, every loop body statement con-
tains a generation,)

For notational convenience, introduce an imaginary
generation go with 9 << f for every occurrence f in the loop,

and a corresponding Statement 0.
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9. For each variable use f, let
first (f) = maximum { i : g; << f }
last (f) = minimum {1i:f<<g, }
Note that if f appears in Statement j, then

0 < first () < last (f) < j.
10. Forj

1, o0, m

(@) For each use f appearing in Statement j:

(i) If last {f) = j, leave f unchanged.

(ii) If last (f) < j, then let f be a variable
occurrence with the same occurrence mapping
as f, but with a different, previously unused
variable name. Replace f by f in statement j.
Form an assignment statement f= f, with the

P P, By

same quantifications (I i LEQL 4 Loru ) as

statement j., For example, if statement j is
P P

j j
IF (I 2 .EQ. ¢ %) .AND. (I*.EQ. ¢ 1Y) ...,

form the statement

p p
IF(%.EQ.2 &) F=1.

Insert this new statement anywhere between
statements first (f) and last (f!.
(b) If Step (a) (ii) was applied to two distinct but
identical uses fl’ f2 (i.e., uses of the same variable

having the same occurrence mappings), then if possible,
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¥

replace.f1 and f—2 by a single occurrence —f, with a single
generation,
11, (a) If the first q statements of the loop body (including

those added in step (10)) are all quantified by

pj pj
(t’.EQ. 2 ) forj=1i,i+1, ..., n-k, butthe

(g + 1)§£ statement is not then:
(i) Move these q statements in front of the

Py
DO I ® statement, i

(ii) Forj =1, ..., n=k: Celete the
P, Pj .
(1’ .EQ. ¢ ') quantifiers, and replace all

P, P,
instances of I by £ ’ in these statéments.
(iii) Insert a
Jy I
DOBFORALL(I loo.lI )/S'
statement in front of these g statements and a
B CONTINUE
statement after them,
(lv) If the assignment statement for S lies

p.
inside the DO I * loop: then copy the assign-

p
ment statement for S, except with [ J

p
replaced by £  forj =1, i+ 1, ..., n - k.

(v) Repeat (a).
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| ]
(b) If the last q statements of the loop body are all

P; P, ,
quantified'by (I? .EQ. £ ) forj=1,"..., n -k, but

the (q + l)ﬁ-statem”ent is not, then perform the analogue

) of‘steps (@) (i) - (v) to place these statements after the
L ‘ DO I * loop.

| 12. For each variable introduced in Step 10, and each variable
s f ' . ‘ introduced by the procedures of Section 3-III:
\ ' (@) For each occurrence of the variable: Delete all sub-

.
1 . i ' 1,
i

script positions not referencing any 1 L E.g., replace

,, j Py J3 j j
, . Rt e2, 1813 geyvar 1 a2, 1),

(b) Create the appropriate data' type and.dimension state-
i

\ . ments, The actual dimensions are optained by:

(i) For the set S introduced in Step 3, and the
" varlables introduced as descrlbed in Section

.._h.. 1 j- ji
3-11I, the i= dimension is A\ ", u ),

1 RN TR
i where A !, u ! were found in Step 3.

(i) For the variables introduced in Step 10,
. ' . the dimensions are obtained in the obvious way
from the 'dimensions of the variables which
M }
i

they replace.

(c) Create the appropriate ALLOCATE command needed to
make the DO FOR ALL valid,

i
i
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(d) Place the variable in an OVERLAP statement so as to
allow it to occupy the same storage area as other variables

similarly introduced in other loops.

13. For each original loop variable VAR which does not have the

proper storage allocation for the DO FOR ALL, introduce a new
F variable VAR of the same dimensions, but appropriate allocation.,
o Add the statement

2 VAR = VAR

-‘.'1."‘ ) N -I\,'.

in the front of the DO FOR ALL loop. If VAR is a generated
variable, add

VAR = VAR

after the DO FOR ALL loop. Replace all instances of VAR in
the loop by VAR,

Discussion of the Algorithm

2, Some heuristic will be needed for choosing the DO FOR ALT,
variables, probably involving the sets < f, g > computed in
Step 1.

5. See [5] for an algorithm to do this.

6. If g<< g holds for some g, then the generation g cannot
be executed inside the DO FOR ALL loop. However, as we
will see, the DO FOR ALL may be applied to any other
generation h for which the relation h << h does not appear.

7. We need a total ordering of the statements so that we can

rewrite the loop body. I.e., we need to know the order in

~
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10.

which to write down the statements. This is done by totally
ordering the generations, (Since there are no control state-
ments, there is exactly one generation per statement,) If
Step 5 did not provide a total ordering, we must add ordering
relations until we get one.

Steps (a) and (b} try to maximize the chances of being
able to use Step 11. Step (c) tries to make the handling of
mode sets as easy as possible for the compiler,

If these steps do not determine a total ordering, using the
order of appearance in the loop seems as good a method as
any to complete the ordering.

This entire step is not very precisely formulated, but
should indicate how an algorithm for executing it can be
obtaired,

The use f must be executed between generation numbers
first (f) and last (f). If first (f) > last (f), then there wculd
be a generation g with g << g.

(@) (1i) Tn this case the use f must be executed before the

value it produces is needed. I.e., the load must be

executed before statement j is executed. Hence, a

temporary storage location is needed.

(b) The conditions for combining two tempcrary storage

locations are clear, although when to combine IF clauses,

etc,, requires a detailed algorithm, Note that a necessary
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condition for being able to combine the assignment state-
ments is that there exists an r such that

first (fi) <r< last (fl)
fori=1, 2,

Even if this is not possible, the same variable can
sometimes be used, with two generations, thus savinc__;
storage space.

A method of minimizing storage space which we have
not considered is illustrated by the followiné example,
Suppose we have

ah = aith + cth
and (@) (i1) indicates that we need temporary variables for
these uses of B and C. It may be possible to rewrite this:
as

B¢ (ih = B(th) + ch

aehy =88 () .
Developing an algorithm to do this is rather involved, and
has not been done.
11, This is a fairly obvious procedure for moving statements out-
side of inner loops. It actually reverses the procedure for
moving them into inner loops described in Section 3~II. As

the example given in Subsection D shows, what gets moved
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12,

13.

inside a loop cannot always be moved back outside

again,

If (@) and (b) both move statements outside the same

DO Ip'i loop, then there is no need to compute the same set
S twice. However, a new set variable mus* be used in place
of S in steps (iii) and (iv).
(a) This is an obvious space saving technique.
(b) Our algorithm has neglected the possibility of over-
lapping the variables in.aoduced in Steps 10 and 13 with
each other, A trivial analysis shows when two such
variables may be overlapped. Finding the optimal over-
lapping among a collection of such variables requires a
clever algorithm, which has not been developed.
This is an obvious solution to the reallocation problem. In
some cases it would be better to put the reallocation inside cne
or more of the outer DO Ipi loops, and set VAR equal to the
appropriate "coordinate slice" of VAR, However, we have not

devised an algorithm to do this,

D. An Example
We {liustrate the preceding algorithm by applying it to the following

unlikely loop:
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po 171t=2, N

po 1712=1}, 1, -1

13 17 (1 .EQ. 1) Bad) = ae?, 1! - 1) + SIN (3.14 * 11 / 180)

y=cit, 2 +K +.5

e

15 car, B =acd. i+ 1) *Bah

@

16 IF (12 .EQ. 1) B = o, 1)

® @

14 Al

17 CONTINUE.

with the following dimension information:

DIMENSION A(4, 95), B(97), C(99, 8), E(101)

Note that statements 13 and 16 were originally outside the inner
DO I2 loop, but were moved inside it by the method of Section 3=II.
We now apply the algorithm as follows :

1, The algorithm of Section III yields the following:
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<Al, A2> = (-11 0)

<A2,A2> = (0, 0)

<A2,A3 > = (-1, 0)

<Bl,Bl> = (0,0

<Bl,B2> = (0, ) [using st3p 3(b)]
<Cl,Cc2> = (0, ”Q':) [using s.2p 3@) (i1) ]

<C2,C3> = (0,0)
<El,El1 > = (0,0).

2. We choose to rewrite the loop with @ DO FOR ALL Il , Sowe

letjl = 1 and Py = 2, Then

niat, =17,
3. We apply the algorithm of Subsection A as follows:

1 1_

1. =2, Tl=N, w-0l=N-2, @=2)

N-2
) =N,-u_2=1, (u"!&)2=1 ,(11-!6)2=N-1

2. DY = minimum {95, 97, 99, 101 } = 95

D2=m1nimum {4,8} =4

3, D1 is defined, so no problem,
4. @) Al=1
ul =95

1

(b) Substitute I" + 1 for I1 throughout the loop, and

change ﬂi, u' as follows:
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13

14

15

16

17

ot=1,ul=n-1

22141t W2

(c) el known at compile time, no condition

(d) Add the condition ((¥ - 1) .GE. 1} .
5. (a) A% =96 =1+ub)

(b) u?=1

Ly GE.

(c) (i) Add the condition ((1 +1
(i1) No condition
6. The conditions defining S involve I2 , So the assignment
statement for S follows the DO 17 I2 statement,

Putting this all together, we get the loop control statement

DO 17 12

=96, 1, -1

s=[I'/[1,2...95: (N-1) .GE. I') .AND.
(@t +1) .GE. ]

DO 17 FORALL I} /8

and the new loop body:

iF (2 .EQ. Y+ 1) Bt + 1) =A(?, 1M + SIN (3.14 * I / 180)

A, tep=cte1, 2+ .5

@ @ ®

cial+1, %) =a@?, it +2) vt + 1)

&)

T (L EQ. DEC + ) =l + 1, 1B

D

CONTINUE .
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Note that none of the sets < f, g > computed in Step 1 are

changed by the substitution for Il.

We must also include the declarations

SET S(95)

'DIMENSION A(95) ,

and add S, K to an OVERLAP statement,

4. The rules give the following relations:

S1: A2 << Al

A3 << A2

(and the rewriting is not impossible)

S2: Bl
Cl
Cc2
S3: Al
Cl
A3
B2
C3

<< B2
<< C2
<< C3
<< Bl
<< A2
< C2
<< C2

<< El

5. This gives the following additional ordering relations:

A2 << Bl
C2<< El
Bl << El1
A2 << Ll
Bl << C2

[from A2 << Al, Al << Bl]
[C2 << C3 << E1]

[Bl << B2 << C3 << E1]
[A2 << Bl << E1]

[B1 << B2 << C2]
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6.

8.

10.

11.

MR it y= S P S L S

g << g does not hold for any generation g.
The ordering of the generations obtained by 4 and 5 is already
totally ordered. It is: A2 << Bl << C2 << El.
9, =A2,g,=Bl, gy=C2 g, =El
This assigns the numbers 1-4 to the FORTRAN statements
as follows:
14 -~ 1, 13 - 2, 15 « 3, 16 -— 4,
first (Al) = 1, last (Al) =2
first (C1) = 0, last (C1) =1
first (A3) = 0, last (A3) =1
3

first (B2) = 2, last (B2)
first (C3) = 3, last (C3) =4
(@) The only use for which (ii) holds is A3. We must
change statement 15 which contains A3 to (recall that we
are using the loop as rewritten in Step 3):

2 2 .1

15 cut+1, %) =502, tt+2) *Bl+1)

and add the following statement before the first state-

ment of the loop body

1

2, t+2) =a0?, 11+

(b) Does not apply.
(@) We may remove statement 16 from the outer DO I2

loop, with its own DO FOR ALL, as follows:
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s=( /0, 2...95:(N=1) .GE. I

(@ +1) .GE. 1)
DO 116 FORALL I! /8
B+ 1) =cut+1, 1)

CONTINUE

(@) We replace the two occurrences K(Iz, I1 + 2) intro~-

Lio).

duced in Step 10 by A(I
(b) We need the following statements

SET S(95)

DIMENSION A(95)
(c) Since we have only added i~-dimensional variables,
no ALLOCATE statements need be added.
{d) We will have an OVERLAP statement of the form

OVERLAP ... (S, B) ...

13. Assuming default allocations, this step is vacuous.

Putting this altogether now, we finally get the following loop:

14

DO 17 ¥ =96, 1, -1

s={1' /11, 2...95]: ((N - 1) .GE. I}) .AND.

(it + 1) .cE. 19 ]

DO 17 FORALL I} /8

2 il

Fl) =ct+ 1,1

A (! +2) = A

2 .1

A%, 1 2

+K) + .5
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13 P EQ. 1+ 1) BE + 1) + A, 1) ¥ SIN (3,14 * I / 180) -
15 cal+1, By =Bt + 2+l + 1) L ‘
17 CONTINUE | ; P

s=0'/101,2...95 : ((N-1) .GE. ') .AND.
(' +1) .GE. 1)] = )
DO 116 FORALL I* / 8 '
16 et +p=cal+
116 CONTINUE

E. The Algorithm for Inconsistent Orderings

We now give an algorithm to handle the situation in which Step *
4 or 5§ of the coordinate algorithm of Subsection C produce's an incon;
sistent ordering -~ i,e., one containing a relation, of the form g << g. E ‘

The algorithm is discussed afterwards.

The Algorithm : !

1. Define an equivalence relation v on :‘.he ‘set of generations by .
f wwgifand only if (i) £=g, or (ii) f << g << f, .
Let [f] denote the equivalence class of f. L.e., :
(l={a:9 wi}.
Let »‘ydenote the set of equivalence classes. : " "y

Define an order relation on ,9 by [f] << [g] if and only if

[fl # [g] and f << g, (Note that this is independent of the

choice of f ¢ [f], g ¢ [gl.) This ordering is transitively, ; :

4-31 : ,




!
! ' ! closed (because the ordering of generatioris is) and is con-

sistent. I.e., [4] ;K {g] for all generations g.
; A Call the class [f]' good if f's< f, and bad if f < f.
(Again thisis 1ndependent of the choide of f ¢ [f] .)

V.0
2, Write 429 as the disjoint union of subsets »91, ceey "&m;

. I
o - where m is as small asipossible, and the /ﬁi satisfy:

1
' * l 1

(i) Thelelementd of )2/1 are either all good or all bad.
(i) £ {f] e Sgl (q] eu»f/jand i <ij, then [f] 3 [g].

1l
¥ '

' Let'Gi = {g:lgle yi }. call G, good if for each
oo g ¢ G, [g] is good, and call it bad if [g] is bad for each
] ) !
[g] ¢ G. Then (i) states that Gi is either good or bad. The

b ; minimality of m implies that if Gi is good, then Gi -1 and
[ l " . H

1 Gi +1 are bad.,

3. Totally order the generations as follows:

!
. ! @) I1f G, is good use Step 7 of the Coordinate algorithm

"1 of SLbsection C, minus parts (@) and (b), to order the

13

- ; elenients of'G., P : :
‘ (b) 1f G is bad order the elements of G by the order in
" which they appea' in the original loop.
(¢) Iffe Gi’ g € G and i < j, tlzon f<<g. {Note that
v property (ii) of the y i in Step 2 assures that this gives
' . ' a consistent orc’ieringi.) '
4, For each Gi’ ‘1€t Ei be the set of all occurrences f such that

i \ ! )
1 . fappears in the same! statement as g for some g € Gi‘ - If
1




aad ,;gsa':r:v:@;szm’@
2

JE R 4

G, isabad setand g ¢ G, let §1= {f:fauseandfe Ei
orf<g<f}

S. For each bad set Gi: Delete all relations of the form f << g,
f,ge Ei' which were found by rule S1 but not by rules S2 or

S3 (applied in Step 6 of the Coordinate Algorithm), .

All the remaining ordering relations f << g, including
those defined in Step 3, form a consistent ordering of the
occurrences,

6. For each bad set Gi' and each use f ¢ _éi -~ -C-E'i, introduce a
new k-dimensional variable A and add the statement

Kt .., 19=t
Let f denote this genezation of A, Add f to G,. add the
ordering f << f, and totally order Gi so that the new ordering
(of all occurrences) i.s consistz?nt. Finally, replace the

~ Ji i
original use f by A (I )

loooII .

7. Perform Steps 8, 9, 10, and 12 of the Coordinate Algorithm.,
Add the generations inserted by Step 10 to the appropriate
sets Gi (maintaining 3(c)). Whenever possihle, these new
statements should be inserted so that their generations are
included in good sets,

8. Let ,g i be the statements containing the generations in Gi’

ordered by the ordering between the generations.
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1, e0e, DO I kloop con-

9. Rewrite the loop as an outer DO I
taining the assignment statement for S (as constructed in Step 3
of the Coordinate Algorithm of Subsection C), and a sequence
of m inner loops as follows.

Fori=1, ..., m:
@) If Gi is a good set, then insert a
, ) I
DO FORALL(I °, ..., ") /8

loop whose body consists of the statements i
(b) If Gi is a bad set, then insert the loop

j j j j
Do 81l=201 yt gt

po g r%= ik, Jk Sk
IF (.NOT. (conditionl ,AND. .., .AND. condition p) GO TC B
A
B CONTINUE,
where the conditions are those chosen in Step 5(c) of the
algorithm of Subsection A (which was executed in Step 3 of the

Coordinate Algorithm),

10, Periorm Step 13 of the Coordinate Algorithm,

Remarks on the Algorithm

The fact that the algorithm is correct follows from the following

observation:
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The rewritten loop 'vill be computationally equivalent to the

criginal one if for every rglation f << g produced by the rules S1-83,
orie of the following holds:
(i) f appears in z, g appears in ,!G, with 1 < §.
(1) f and g appear in the same DO FOR ALL loop, and pre-
cedes yg.
(1i1) f and g appear in the same DO loop, in the same order

in which they appeared in the original loop.

-

(iv) f and g appear in the same DO loop, and f precedes g.

The only ones of the above conditions which are not obviously
sufficient are (ti1) and (iv). For (iv), observe that the order of execution
of f and g only matters if 3 e <f, g >and originally f << g or g << £,
However, 1f6 € < f, g > and originally g <<f, then rule S2 produces
g << f, so the above conditions cannot hoid for all f and g. Hence, if
36 < f, g >, then f << g and (iv) implies (iii).

For (ii1), let J be the mapping we defined in Section I-3, which
for the loop (14) is given by

P P_ j j
rrad, ., Mi=al, Lok L LTk

Then the order of execution of references by f and g to the same variable
element are reversed only if for someAe <f, g>, and A > ﬁ‘and
' JAA) < '6, orA> 3 and J(&) > 6 But this is precisely what rule S1

forbids .
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For Step 6, note that f ¢ Ei and f ¢ Gj for j # i implies 1 < j.
To see this, let g, € Gi' so f << g, << f, and let gj e»Gj be the generation
for the statement containing £, so f << 9. Then 9 << f << g, implies that
i <j. This means that the use of A which replaced the original use ‘f

must follow the generation of A introduced in Step 6.

4-36

e e e e




V. THE PLANE METHOD

A. Introduction

We now consider the application of the methods developed in
Chapter 1 to our translation problem., Since the ILLIAC extended
PORTRAN's DO FOR ALL is a DO SIM, by the observations of Section 2~II,
we can replace rule Cl by rule S1. {In doing so, we let << be the
ordering of occurrences in the given loop.) We then get the mappings
T and J to rewrite the given loop as a DC / DO FOR'ALL loop as in
(4). Of course, in applying rule S1 to choose 1, we use the sets
< f, g > as calculated in Section III of this chapter.

The only additional comment we have to make is about making
the optimal choice of . Since the t’,j and uj may not be known at com-
pile time, we do not know the values of the Mi for the expressions (9)
or (11) which we must try to minimize. For a practical approach, Mi
can be approximated in one of two ways:

(1) by a FREQUENCY statement if one appears in the
program, or

(i) using the quantities Al and u1 defined in Subsection
VA,

Once we have obtained 1 and J, we still have the problem of re-
writing the loop as a legal extended FORRRAN DO FOR ALL loop. This

is always possible, but involves many practical details. Indeed, these
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details may introduce enough inefficiency to offset the gain due to
paraliel loop execution.
To prevent our being overwhelmed by details, we will restrict
our algorithm to the hyperplane case. Mareover, we make two additional
assumptions beyond those needed by the Hyperplane Theorem:
(i} Each dj in the given loop (13) equals + 1.
(11) Each generated variable has no missing index

variables,

B. Writing the DO / DO FOR ALL

Assume that we have found the mapping 1 : zZ" -~ % satisfying
S1 and we have constructed the index variables ]i by the algorithm of

Appendix A,* Let the Ii and Ii be related by

n
16) (@ pr=1x u O

i n
b) I"'= T t
fcri= 1, see, N

We will rewrite the given loop in the form

17) Do o« Jr=t, 3t

S=...

*This ai¢orithm allows some choice in constructing the ]1. Subsection

E explains how to make the best choice.
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DO n FORALL (%, ..., 1N /S
loop body
a CONTINUE .
We must therefore construct the assignment statement for S and the
limits 'Xl, 4L, The set S wants to be assigned the value { (pz, cees P :

(Il, pz, ooy pn) I (9 }. This is accomplished by first writing the

statement

S=[(G%, ... /%% ... %% .CROSS. ... .CROSS. [¥"...7%"]:

X e} #(.LE. , .GE.; dY) 1M .AND. (! ®(.GE., .LE.:dM 1Y) ...
X AND. " (.GE., .LE.:d" T t’j‘ M1,
)

Next, we substitute for each Ii appearing in the statement, using

Equation (16-b). (This includes any appearances of I1 in the zj and uj .)

Finally, we have to choose the numbers h)‘\i, ?ii such that for every
element (pl, ceos pn) € 19 ,7\15 p1_<_ 711, fori=2, ..., n.

The choice of 3:1, il

is made by the following procedure.
1, Use the algorithm of Subsection 4A for the case k = n, to find

numbers )\j, uj such that for every (pl, veos pn) € (.0 ,
pj > [kj, Mo+ gl uj] =1, e, 0,
Note that this may involve rewriting the loop body. However,

since it does not change any of the sets < f, g >, it does

not affect our choice of Tand J,
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2. By the theorem of Section 2, and Equation (16-a), we can

let

Moz e, o d h;) ht
j j
o o ,ui;djh}) h;.
j
We also define 11, i} by

M=z q>(_z_5,35;d1hj1) h}
j

=g A(&j,ﬁj;dlhjl) h::. ,
j

where the &j , -Jj are defined as in Subsection 4A (for the loop as re-

. \ Y] ~l]
written in Step 1 above), Note thatA” andu

are loop constants, but
may be unknown at compile time,

Unfortunately, we have neglected to consider the fact that the
"):i could be negative, thus making invalid the above set expression
defining S. In any event, it will make things easier for the compiler if

all the ]i vary from 1 to their upper limit, This is easily accomplished.

We first change (16-a) to

(18-a) ity h§ g -3,
j

Defining the Li by

i =% t.1 (A?\Ij -1,
we derive the following inverse to {(18-a)

(18-b) it=x t§ gt
i
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Letting u1 ='Iii —’Xi + 1, we can now rewrite the DO statements
as:

DO 4 tt=1, vl

S={(% ..., ™ /0 ... v¥ .CROSS. ... .CROSS. [1 ... v"] :
X (¢! #(.1E., .GE. ; db) 1Y) .aND. ...
X .AND. (" #(.GE., .LE.;dM) 1]

DO 4 FORALL (1%, ..., M /S

where (18~b) is used to remove all instances of the ! from the above
set expression,

We should also add an algorithm to remove redundant conditions
in the set expression for S. This is easily done for some types of con-
ditions: e.g., (2. .LE. ]'3) . However, we have not attempted to write

a general algorithm for this.

C. Reformatting the Variables

Having rewritten the DO statements using the new index
variables Il, ooy In, the obvious next step is to use Equation (18-b)
to substitute for the Ii in the loop body. However, this will not
usually produce a legal DO FOR ALL loop. To illustrate this,
suppose n = 3 and [ and J are related by
1_

S S
2

-I"=21
2

R S I
2=
3

=1
3

<

St N Sy

B=y =1
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1, 13) would be rewritten as

! Then the variable occurrence A(I2 I
A(]Z, ]1 + ]2 + 2 )‘3 ) 13) , which may not appear inside a DO FOR ALL
(72, 1) Loop.
We will solve this problem by introducing a new variable A
related to A by
Eal 2 B =add B,
This is done as follows:

(1) Introduce the loop

1

DO CONG 8 (1%, 11, 1%) / range of A

g Eat-r-2+13, 1%, =20 i}, 1

before the main loop.

(1i) Replace all occurrences of A by the appropriate
occurrence of A,

(iii) If A was a generated variable, introduce

1

DO GONG v (12, 11, 13) / range of A

vAald, By =at -2 -2+, 2, )

after the main loop.

Subsection E will consider the problem of rewriting these DO CONC

loops as legal DO FOR ALL loops.
We note here that the only time a legal DO FOR ALL will be
formed by simply substituting for the Ij insdide the loop body is when

k

1 is a coordinate projection -~ i.e., when Il = I" for some k. In
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this case, each Il may be chosen to be one of the 1 , so the rewriting

of the loop body can be done by the procedures of the Coordinate
Algorithm. For the rest of our discussion, we assume that this is .
not the case,

We now generalize the method we applied above for the variable
A to the following algorithm for reformatting* variables,

1. For notational convenience, assume that each occurrence f

of a variable VAR is of the form

i, i
ARt £, L Rk e L
g

where j1 <4ee < jk’ and the f °, fc are loop constants,
(Of course, k and m depend upon the variable. but not
upon the particular occurrence of that variable.)
2. For each non-scalar variable VAR appearing in the loop such
that 0 <k < n:**
(@) Introduce a new (n + m) - dimensional variable
VARX, whose jm dimension is defined to be equal to:
) The & aimension of VAR, if j = §,.
(i) The (j - n + k)2 dimension of VAR if
j>n,

*Do not confuse reformatting with the reallocation done in Step 13 of

the Coordinate Algorithm of Subsection IV C.

**Here, and in Step 3, k and m ars as deifined in Step 1, for the par-

ticular variable under discussion.
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(1) |u - A | + 1 otherwise, where u}, M

are the numbers found in Subsection B (in
Step 1 of the prucedure for choosing the
i A~

AT, U ).

(b)- Insert the foilowing loop before the main loop:

DO 8 CONC FOR (I}, ..., I"™) /range of VARX
j i
B VARX (€%, ..., "™ =var (r %, ..., IF,

i n+l

o+

Ij - <I’()\j, uj; dj\ +11fj = j1 for some i

where §j = 9

Ij otherwise,

\

(c) Replace each occurrence f of VAR in the locp by

VARX(el, cees en, flc ' esey fﬁ), where

Ij +fj if j =ji for some i

Ij otherwise,

L
3. For each non-scalar variable VAR appearing in the loop (as

rewritten in Step 2) such that k = n:

(@) Introduce a new {n + m)-dimensional variable VAR, If

n+m
b

the dimensions of VAR are 6 1 : s then the

1 n{;n+m

dimensions '3 ' e are defined as follows.
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Fori=1l, ..., n; let

st=% eq, ¢l;nly ;
j ) J : ! .

=1 A, o; h}) h? .

A
.

Floglel ifi<n

% Tnen 'gi = { | i

i ifn<ig<n+m,

Sotieridack s

S

b

(b) Insert the following loop before the main loop:

1 ! ’

DO 8 CONC FOR (I, ..., I"™) / range of VAR

— 1 ;
8 VAR(Zh:;I]-é_ +1, o0, TR D -8R 41
j N

1
L gard, L, BT

(c) Replace each occurrence f of VAR in the loop

by
1
VAR L+t -5t 4 h? g, ...,
j .
Yn _ .n ng 1 ' m
X g+§3hjf,fc,...,fc).

(d) If VAR was a generated variable, add the following

1

loop after the main loop: ' ¢ '

DO B CONC FOR (1}, ..., ™) /range of VAR
5 vaR (1Y, ..., ™M) = ‘
VAR (= hjlrj-gln,...,s:h?["-'_s_“n, =
j j
In+1, e o Im) . ' ' ' '
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D. Discussion of Reformatting ) ;

" We l?egin the=discuss;ionl with an explanation of theiprecediﬁg

algorithm, ; ! :

I . . 1
1. This definition of the f: and f’c for tllae occlirrence f is used

. in steps 2 and 3, as is,the:definition of k and m for the
' !

variable of that'occurrence. It is well to-remember that the K

loop constants fi: may be fﬁnction_s of an index variable :of

- gome’ outer loop containing thé given loop '(1'3) . | !
i 2. If any of the Ij are,missing frolm the éccurrelzn.ces of VAR, it f
is r}ecess?ry tp put them in so thatI we ma}; apialy Step 3. ’ :

© ) This i$ primar!ily becauselthe PO FOR-ALL syntax rejjuires

i _all occurrences to involve the entire multi-index v
; X

R B wv A

i .

| _ .
(I2 ) eees In) . Also, it will be impossible:to represent

N 1 I H
I°, ..., Ik) intermsofk oftheIi.

.
1

o Yememedh o

Note ;that the DO CONC loop of (b) is easy to translate

" Y T

inlto DO / DO FOR ALL loops. !

y . The remarks we make for Step 3 about thé last m dimefisions
of VAR apply tol this step as well,
. 3. Here, we replace VAR by the variable VAR which is rélated
to it by ' C \ S '

2 B A ] In+m) =|VAR (Ill LA Y In+m)0

11-9) R gL .., P, R .

' i ! i

y : 4-46 \
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The correctness of the dimensions t5 follows from the
theorem of Secticn II. [.e., the subscript values for the
occurrence of VAR in (b) range from 1 through the 'gi.
Note that we have reformatted the entire (n+m)-dimensional array
VAR, even though the loop may only reference one n-dimensional
slice, and can reference at most one slice for each occurrence of VAR
in the loop. To see why this may be necessary, consider the two

2 1, Iz, L), L and K unknown loop

cccurrences A(Il, I”, K) and A(I
constants, Since these two occurrences may reference the same
slice, or different slices, we must reformat all of A, However, if all
occurrences of A are of the form A(..., ..., K), then we need
only reformat the single 13 = K slice,

The generalizaticn of our algorithm to one which only reformats
the part of the array that may be referenced is straightforward, but
is tedious to write in full detail. Note, however, that it is
influenced by the placement of the reformatting loop, which is dis-~
cussed below,

The eificient translation of the DO CONCs produced by (b)
and (d) may be difficult. It will be discussed at length in subsection
D.

Note that 3(b) need not be done if all uses of VAR reference
only values which are generated in the loop.

Since reformatting must be done for essentially all non-

scalar variables in the loop, it represents a large "overhead cost"
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for the Hyperplane Method. However, the loop (13) will often be
contained in a larger loop (eitner a programmed loop, or another DO
loop). The reformatting can then be moved outside the loop. Any
occurrences of the variable VAK after the reformatting loop of
Step 3(b), and before that of Step 3(d) can be réplaced by occurrences
of VAR, The required occurrence mappings are easily derived from
the formula in Step 3(b).

The problem of finding the optimal location for the reformatting
loops is very similar to the problems encountered in compiler

optimization.

E. Translating the DO CONCs

We now consider the problem of translating the DO CONCs
produced in Steps 3(b) and (d) above. Since a loop involving a
DO FOR ALL will be much more efficient than an ordinary sequential
DO loop, we will almost always want to use a DO FOR ALL. However,

consider the following loop which might be produced in Step 3(b);

(19) DO B8 CONC (Il, Iz) / range of A

1 2

B E@*1h+3 %1 1

1 .2

-2, ey =alt, B .

Because of the complicated subscripting of A, this cannot be
2 2)

translated into a legal DO FOR ALL on I1 or I” or (Il, I
In such a case, the reformatting is done in stages as follows:
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Let }:) . I1 ) vess ]11_ be the sequence of variables constructed in

i

Appendix A, where Ié =" and Ii = )‘1 The DO CONC

loop generated in Step 3(b) of subsection B is replaced by a sequence '

of the following loops, foroc >0, +s., 7 = 1:
1
(20) DO B CONC FOR (. «... rg) / range of VAR

1 1
B VARO'{‘I (IO'+1-'§O+1+1I XN Ig‘*'l-é'

cx+1+ 1) =

1 n
VAR°+1 (IG t e e 9y Jc)
where the §_1° 41 are computed as in Step 3(a), and the I:) 4+ are

replaced by their values given in Equation (A-2) of Appendix A, *
The VAR(7 are new variables which we have introduced.

From Equation (A-2), we see that the DO CONC loop (20) can
alwavs be rewritten with a DO FOR ALL jg . Thus, if there is more
than one choice for the index p, we should choose the one for which
Ig is the best DO FOR ALL variable, We can add this to the
algorithm of Appendix A for choosing J.

Suppose that for some particular 0 and some r, the algorithm of
Appendix A ylelds qg = 0, This then implies that ql: = (0 for all
p > ¢, and Ir = 3: = Il(; (ﬁeglectmg the permutation mentioned in the

footnote) . Hence, we can replace | by I, (and VAR

o+l o+l
(20) and get a DO CONC which can be translated into a DO FOR ALL

*Recall that foro+ 1=+, so I1 = ]i, an additiona! permutation of

o+l
the superscripts may be required.
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T; loop. This eliminates the las‘t.: T - ( o + 1) stages of the reformatting.,
For convenience of notation, set7™ = ¢ + 1 in this case,
We thus have a sequence:o'f DO CONC loops {20) for the
variable VAR, The constructigr'n‘_‘qf this sequence is essentially
independent of the variable, LI..e. , the process is reaily the con-
struction of the ]:’ . Hence, ft 15 only done once for all the variables.
The dimensions of the array VAR, are the same as those of VAR.
The dimensions of VAR1 reee ,.‘:\{’;ART are determined sequentially by
the same method used in Step %}(a) of Subsection C, The dimensions
of VAR,r will then equal those'o_f V_A-ﬁ'
The storage allocations"_'f‘or the VAR0 are made so as to permit
the DO FOR ALL in the transl%:{;ifm of (éo). _<If the storage allocation
for VAR agrees or can be made to agree with.the allocation of VAR0 .
then VAR is substituted for »VARO in (20)., Otherwise, the assign-
ment statement

VAR, = VAR

0
must precede the reformatting, Similarly, the allocation of VAR
must allow the DO FOR ALL on' k]z, oo, M. If this is consistent

.\;vith the storage allocation required by VAR,r , then replace VART
with VAR. Otherwise, the statem;ant

VAR = VAR_

must follow the loops (20).
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The translation of the DO CONC loops generated by Step 3(d) of
Subsection B is obtained by the obvious reversal of the loops con-
structed above.

The above procedure sounds very long and costly when des-
cribed abstractly. Observe, though, that v = 1 corresponds to the
case in which the DO CONC loops of 3(b) and (d) may be written
immediately with a DO FOR ALL (except, perhaps, for storage
reallocation). In general, as mentioned in Appendix A, we have
T < minimum { lh |: hy #C }. Inpractice, v will usually be
amall, and will often equal 1.

To illustrate this procedure, consider the DO CONC of (19)

which was obt.ained from the 1 defined by n [(Il, !Z)] =2 I1 +3 Iz.‘

Application of the algorithm of Appendix A gives
4 4 d_d
I'=Jy. Jy0 Ty =T, where

1_.1 2 1_ .2 1
p=r o+l I =] +25)
2 _.2 2 _.1
Il"I I"Il

If the dimensions of A are 20, 30, then we get from 3(a)

1 _, =1 1.
& =2 51 =50 3] =49
2 _ 2 . ~2 _
82 =1 52 =30 52 =30
8, =8'=3 51 =128 3! =126
82 =1 52 =49 32 =49
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Thus, 49, 30 are the dimensions of Al' and 126, 49 are the dimensions
of AZ = A, (We assume the defauit allocation for A and A_, SO no

reallocation is necessary.) We can then translate (19) into:

: DO 8, 2=1, 30

DO 8, FORALL /... 20]

g e 2N
AR R S

s, At+r-1, B =adt, B 3
DO B, 15 =1, 30
g DO 8, FORALLJ; /(1 ... 49]
B, AU +2 %1, 1) =A 07 TD |
Observe that these loops require a total of 60 ILLIAC )
iterations, compatrad to 600 iterations if (19) ware executed
sequentially. A 49 by 30 temporary array Al had to be introduced.

However, note that Al can be overlapped with any other similarly

introduced temporary array - i.e,, with VAR1 for any variable VAR,

F. Avoiding Reformatting

There is one case in which reformatting can be avoided al-

together, namely the case in which the following hold: g

(1) m satisfies rule Cl, so the loop (13) can be rewritten '
with a DO CONC.

(i1) a, = 0 for some i, where a is as in (8) of Section I-7.
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An examination of the algorithm of Appendix A shows that (ii)
tmplies that J' = 1!, and in (6+b) and (8~b) we have tji =0 ifj#1.*
Therefore, using (8-b) to substitute for the Ij in the loop body pro- f
duces a valid DO FOR ALL I1 loop body. Thus, we need only trans-
late the DO CONC (Iz, cver 1Y) /S statements into a sequence of
DOs followed by a DO FOR ALL Ii. This translation procedure is
similar to the ones we have already performed, so a detailed

algorithm is omitted,

¢ = 0, the above procedure can be generalized
1 k

i i
toyleld a DO FORALL ¢t 1, ..., 1% loop.

G. The Number of ILLIAC Iterations

The mapping © shoyld really be chosen to minimize the total
number of ILLIAC iterations. We can now write a formula for that
number,

Let "a' denote the smallest integer greater than or equal
toa, From Subsection B, it is easy to see that the number of

ILLIAC iterations needed to execute the loop is

(u1+1) ~N"

’

where N = (v2 +1) oo, ( o? + 1) /64 (assuming a 64 P.E, ILLIAC).

*
We are again neglecting the first superscript permutation in the
algorithm of Appendix A, The necessary modifications to the dis-

cussion are obvious, Note that Ii will never be Il.
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The expression (9) of Section 1-VII which we decided to
minimize is actually equal to vl. Since computation of uz, oy !
involved the variables ]i, if is clear that the ui cannot be written

as a simple function of mwhen i > 1.

H. An Example
It is of interest to see just what scrt of loop if produced by

these procedures. We consider the following simple relaxation

_ loop:
DO77 I =2, N
| 2 _
o DO 77 1% =3, M
o AL, 12 =25 x (At 1, Y +At -1, 1)

2

+A(11, 12 + 1) +A(Il, [ 1))

77 CONTINUE

with A defined by
DIMENSION A(35, 50) .
Application of the method used in the proof of the Hyperplane
Theorem gives the optimal mapping 1 2'!62 - % defined by
npat, Byttt
The algorithm of Appendix A, with the addition made in
Subsection E, gives

Rafde fdop
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We now apply the algorithm of Subsection B to write the
DO and DC FOR ALL statements. This requires first applying the

algorithm of Subsection IV A for the case k = n = 2, to find the

Xi, ui. Applying that algorithm gives the following results :

and rewrites the loop as

1

DO771"=1, N=-1

DO7714=1, M =2

2

At +1, 2= .25« (A +2, 12 +2)

i +anl+, 243

+AM, 1
sA 1, 24 1))
77  CONTINUE .

Continuing the algorithm of Subsection B, we get
Wez2 flamm-3 e ol - nem-a
=35 =1 w2 a3s
11=11+12-1 Il=IZ
I2 = o1 2_.1_ I2 +1

We then get the following loop control statements:
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DO 771 =1, N+M-4

S=[72/01... 350 : (1 .LE. %) .AND,
(N - 1) .GE. %) .AND. (1 .IE. (! - * + 1))
(AND. (M = 2) .GE. (' = 17 + 1)) ]

DO 77 FORALL ]2 /S .
We now apply the algorithm of Subsection C to the variable
A. We then get
sl=2 5l=gs 3= 84

84=1 52=35 3l=3s

We have the following DO CONC loops inserted before

and after the main loop, respectively:
DO 177 GONG FOR (1%, 12) / [1...35] .CROSS. [1...50]
177 Rt 12 -1, th=add, 1B

DO 277 CONC FOR (I*, 1%) / [1...35] .CROSS. [1...50]

277 A, B =R +1%-1,1h .

The body of the loop is rewritten as follows:

Bl +3, 12+ =25 % (Aql v da, P+ +E0t+2, 1)

+Kgtva, Prn+Et e, 2 D).
The DO CONC loops may be immediately translated into

pO 1! / DO FOR ALL 1% loops. Combining all of this, we get the
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following rewriting of the loop:

po 177 1} = 1, 35

DO 177 FORALL 12 /1 ... 50]

177 A +1? -1, i =aal, 19

DO 777 =1, N+M -4

2 2 2
s=[(1r/0...35:(.LE, J°) .AND, ((N ~-1) .GE, ")
g AND, (1 .LE. (7'~ J* + 1)) .AND. (M - 2) .GE,

P -2 )]

DO 77 FOR ALL ] / §

Bt e, P+n =25 x(Agl+a, P2 +Egl+2, P
+Egl+a, Py +Egt+2, P D))
77 CONTINUE

1

DO 2771 =1, 35

DO 277 FORALL 1% / [1 ... 50]

277 A, By =A@ +1% -1, 1

)
Except for the redundant condition (1 .LE. ]‘2) , this is about as

efficient a rewriting of the loop as we can expect. As mentioned in

Subsection C, an algorithm to remove such conditions can be con-

structed.




-

Despite its complexity, thé above loop will probably run about
6 times faster on the ILLIAC thaﬂ the original lcop, Furthermore, most
such relaxation loops occur inside another loop which includes a con-
vergence test, The reformatting loops could be placed outside this
outer loop. We would then get a loop which runs about 9 times faster

than the original.

I. Simultaneous Application of the Method

The Hyperplane Method requires reformatting all the variables
in the loop, which introduces a large 6verhead cost. One way to
reduce this overhead is to use the same refcrmatted variables in more
than one loop.

Suppose that there are several loops in the program which
satisfy the hypothesis of the Hyperplane Theorem, and are all of the
same dimension. (I.e., they have a coimmon value of n.) If the same
index variables Il, cre, In are used for all the loops then it may be
possible to do the reformatting only once.

In fact, such a single n-tuple of index variables can be chosen
which allows all the loops to be written with a DO FOR ALL (I1, ..., ™.
All we do is apply our method of choosipg 11 to the sets < f, g > of all
the loops taken together. Any 7 satisfying rule S1 will then work {u:
all the loops. To find the optimal choice, assign to each loop a

weighting factor proportional to both the execution time of the loop
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body and the frequency of execution of the entire loop. Then 1 is
chosen to minimize the expression formed as follows: For each loop,
1

take the expression (a) of Section =Vil and multiply it by the abox}e
wieghting factor.

v

Then,sum over all the loops. '
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I. INTRODUCTION

We have derived methods for determining sets of points, in the
control index space of a nest of FORTRAN DO loops, for which concutrent
and ILLIAC-simultaneous execution of the statements of the loop body can
be' performed. These analysis methods rely on the subscript expressions
of array references being loop~constant affine transformations of the
loop index variables of a restricted form (see Chapter 3 - Secticn I). In
cases where these restrictions are not met, sets of loop index points
for concurrent loop body execution can be derived by a simulation of the
control history of the loop. The simulation method works best for nests of
DO loops in which the control limit parameters (at least at the outermost
level) are known constants. The method also depends on the array

reference subscript transformaticns being dependent only on quantities

deterrm‘ned within the loop or else determinable statically from the rest of

the program,
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II. FIRST EXAMPLE

The following discussion shows an example of a very simple loop
form which does not satisfy the:'requirements for the analytic methods of
parallelism detection. The simulation technique is applied to the example
and to a generalization of it, showing results in determining an improvement
in execution speeds derived from potential simultaneous executions of
previously separate executions of the loop body.

The general problem of this example can be stated as: "What kind

of simuitaneity or concurrent execution can be found in loops of the form:

DO ."\/\/I [ S Mg
(]') = P P W

AN o A(I) 1] ? ‘

e

Depending on the ferms of the subscripts, the generating siate-
ment may access one cell of the array more than cnce (particularly if there

are two generators, one in [ and one in ¥ and the set of I and J values has

o p

a non-empty intersection). Moreover, the generation-use or overwrite

relations between the generation and use statements shift as the loop

AT Y e AT~ T

indices change values. (This is in marked contrast to the simple singly-
subscript linear forms in which the relations are constant over the whole

history of the loop.)
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Consider the following example, particularly with view to

changing the inner or outer loop, to a DO FOR ALL loop. It is presented

in terms of its running values when written in each form,

Original Loop

(sequential)

DO 1 j)=1,3

DO 2 I=1,3

A(D =B() +1I
c( = A1)

2 CONTINUE
1 CONTINUE

Proposed Transformed Loop
(simultaneous execution of
previously "outer” loop)

DO 2 I=1,3

DO 1FORALLJ/I1, 2, 3]
A(D = B() +1

C(7) = A(D)

CONTINUE

CONTINUE

History of loop computation in both forms.

Statement
I,] Value Bxecuted
1,1 A(l) = B(1) + 1
C(l) = A(1) = B(D) + 1
2,1 A(l) = B{(1) + 2
C(1) = Initial value of
A(2)
3,1 A(l) = B(1) + 3
C(1) = Initial value of
A(3)
1,2 A(2) = B(2) +1
C(2) = A(1) = B(1) +3
2,2 A(2) = BI2) + 2

Statement
I,] Value Executed
1,1 A(l) =B(1) +1
1,2 A(2) = B(2) +1
1,3 A(3) = B(3) +1
I C(1) = A1) = B(1) + 1
1,2 C(2) =A(1)= B(1) +1
1,3 C(3) =A(1) = B(1) +1
2,1 A(1) = B(1) + 2
2,2 A{2) =B(2) + 2
2,3 A(3) = B(3) + 2

5=3

e e et e — e e o Ao et o e =~ =




Statement T, Statement

1] Value Executed - I,] Value ~ Executed
C{2) = A(2) = B(2) + 2 2,1 C(1) = A(2) = B(2) + 2
3,2 A(2) = B(2) +3 2,2 C(2) =A(2) = B(2) + 2
C(2) = Initial value of ., 2,3 C(3) =A(2) =B(2) +2
, A(3) § e e e e e e e e e
1,3 A(3) = B(3) + 1 N etc.

C(3) = A(1) = B(1) + 3
2,3 A(3) = B(3) + 1
C(3) =A(2) = B(2) +3
3,3 A(3) =B(3) +3
| C(3) =A(3) = B(3)+3 .

In the simultaneous ] form, the horizontal dotted lines separate
triples of statements which are executed simultaneously. That is, all
three "A(]) = ---" statements are executed simultaneously for J = 1,
J=2, and J=3. The syntax of the “DC FOR ALL" loop indicates that J
is the "simultaneous" index and takes all the integral values 1, 2, and
3 during the execution of each statement, Each value is assigned to a
different processor.

The propos<d rewriting does not compute the same values as the
original, In particular, the final C(1) and C{(2) values should be the same
as the initial A(3) value, but will be B(3! + 2,

In terms of the sequential loop

~  the generation of A(1l) at (3, 1) (I =3, J = 1) provides the

value for the use of {\(1) at (1, 2) across index set points.

5-4
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- the generation of A(2) at (2, 2) provides the value for the use
of A(2) still within the same loop index point.

- the use of A(3) at (3, 2) is the initial value of A(3) ‘and so the
generations of A(3) at (1, 3), (2, 3) and (3, 3) must not pre~
cede this use,

These three situations are not all satisfied by the proposed rewriting.

Even though this simple rewriting was impossible, that does not

mean that there is no inherent concurrency in the example,

Consider the sequential loop example expandedtoI =1, 5 and

J= 1, 5 but with no other changes.

The notation of thex following matrix represents a history of

simulation of the loop body in the order in which the loop indices are

incremented:

!

] —>
means that the I loop is iterated before the J loop (the I loop is interior

to the J loop).

The ordered pairs of values in the matrix stand for [, J pairs at
a point in time,

The arrows demonstrate generation - use relations in the simulation.
They are derived by inspecting subscript forms on the generation and use

statements keeping in mind that a generator precedes in time a use of




o

xd

that value. Thus the arrows point from generations to uses. This inspection

procedure could easily be méchanizéd.

. The left hand margin nodes "31__\(1)" , "A(2)" etc, are the.initial values
of A on entry to the loop. The lower rfxax"gin nodes "A(1)", "A(2)" etc. are

final values of A on exit from the loop.

Generations and uses of tﬁe variable A for 5 x 5 case derived from

the example;
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A(1) l@

A2) e —D 2,1

A(3) 3,1

&

A(4)_44,1

A®S) -Ae/s,l_J

A(1)

A(2)

A(3)

6_

A(4)

S,ED

A(5)
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Since the array B is used only as an input to the loop fonly in

"uses") and the array C is used only as output of the loop (only in

"generations") the essential ordering information lies only within the uses

and generations of A,
To the use~generation arcs can be added a set of arcs for "over~

¥ ‘ write avoidance precedence". In this example there is in general more

than one generating instance of a value. (The gen-use arcs link "latest"

generation with "proper" use.) For instance, I, ] points (1, 1, 2, 1,
Note that

3, 1), (4, 1) and (5, 1) all generate a value for A(l).

(1, 1) ... (4, 1) all precede (5, 1) in time and that (5, 1) generates a

value which will be used by (1, 2), (1, 3), (1, 4) and (1, 5) and will be

the output value for A(l).
Yy

To prevent overwrite of the A(l) value properly generated by (5, 1)

arcs must be drawn from (1, 1) t6 (5, 1), (2, 1) to (5, 1), (3, 1) to

B (5, 1) and (4, 1) to {5, 1). This process, too, can be mechanized,

This set of arcs and nodes can be used to study the sets of nodes

(or values of I, J) for which the body of the loop can be executed con-

currently, An incidence matrix is formed and used according to the method

of Ramamoorthy [ 6, particularly pages 5-7 1.

In the partition list notation:
In is an input value node

On is an output value node

nn is a point in the history of the loop where

nn, stands for [ = ., ]= n, .
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In the list of arcs notation:
the arcs are labelled according to the pair of

nodes with head of arc preceding tail.
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The set of arcs used to form the incidence matrix is:
11, 51 41, 51 12, 21
12, 52 42, 52 I3, 31
13, 53 43, 53 I3, 32
14, 54 44, 54 14, 41
15, S5 45, 55 14, 42
21, 51 51, 12 14, 43
22, 52 51, 13 I5, 51
23, 53 51, 14 I5, 52
24, 54 51, 15 IS, 53
25, 55 52, 23 IS, 54
31, 51 52, 24 51, O1
32, 52 52, 25 52, 02
33, 53 53, 34 53, 03
34, 54 53, 35 54, O4
35, 55 54, 45 55, 05

Note that I1 never appears because the initial value of A(1) is never used.
it is reasonable to add an assumption to the results of the method: that

all the inputs precede any output. This is not strictly necessary in this
case. Also note that "self-loops" like {11, 11}, although indicating that
A(l) is generated and then used within the point (1,1), are not included in
the incidence matrix. The aim is to derive sets of distinct points for
which the loop body can be executed in paralle!, For this 5 x 5 case the
technique described by Ramamoorthy gives concurrency partitions ("earliest

execution initiation") as;

I
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time Set

(1, 12, 13, 14, 15), 11, 22, 33, 44

1
ty 21, 31, 32, 41, 42 43
ty 51
ty (01), 12, 13, 14, 15
te 52
ts (02), 23, 24, 25
t 53
tg (03), 34, 35
ty 54
o (04), 45
tyy 55
(t)5 (08) )

The I and O events are "outside" the actual loop. One can assume all I's
are done at entry and can assume there won't be any use of an O until
the exit. Note that:

1) the ty and ty (non-I stuff) partitions can be merged, and

2) ty, really is an external time slice.
Thus the whole loop history is performable in 10 chunks instead of 25.
The original loop for Max { [I, J1 } = [5, 5] can now be rewritten

to reflect the new time slices:

5-11
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‘DO 1 FORALL]/IL, 2, 3, 4] |
AQ) = B() +7 t f
f 1 G =AQ) | 3
3 = "DO 2 FORALLI/[2, 3, 4]
* “"DO 2 FORALLJ/I[1, 2, ..., I-1]" t, ':
3 A(D) = B() + 1 :
| 2 o) =AW 1 %
DO4I=1,4 *
A() = B(D +5 ;
C(D = A(5) / i
‘ DO 3 FORALLJ/ [1+1, 1+z,//’:., 5] T ty =ty :
A()) = B()) + I
3 c) = A(M)
4 CONTINUE )
A(5) = B(S) *+5
f11

C(5) = A(5)

*
This "DO FOR ALL I" is not valid because I is not a proper "simultaneous"

variable inside the body: it does not appear on the left hand side as a

S T R RN B SR G Ho S L R s S % F on iy EY £ A0 R R BRI S, & Fortinn, £ 2 A 2o £ ot

subscript,

ey

**This "DO FOR ALL J / [aw, I = 1] is probably not syntactically

valid,

SRR M o35
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Note: The problems with syntax or semantics at t2 result from the values

of A(1) - A(3) and C(1) - C(3) being over-written below, There is a

generalization of this case (for N ) 2) which shows just how much ' '

improvement in exedution time may be possitle. Ordinary Fortran:

DO 1 J=1,N
DO 2 I=1, N
A(D = B() + 1
C() =A(D

2 CONTINUE

1 CONTINUE

requires N2 executions of body.

i . H

use of both J and I:in
gen. of A(J),

Use of A(I) \

. |
i ,
i

4 ]

] ! !
l ¥
} ]
i
1]
. X
¥ ! :
, 1,
4 ¥ ‘
) ! :
g
[ ! i
3
. ¢
1 ' ) ] y i
;
i
1
|
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! - R |
1
1
! \ : i
I
o ! ’ Rewritten:
"_ : ] i ' ’
'l N-1 parallel executions
‘ ' . . [
) r ; © equiv. to 1 éxecution if
' L
z N - 1 processors .
e available
o T AN=2) (N - 3) parallel
; 2, executions
equiv, fo N-2 execu-
cj’ | t,ioné ifz N -,2 proc~
2
- essors available '

!
ol
N ]

! IN -1 executions,

] 1
(N-1) (N-2) paraflel
2

executions equiv, to
l E

A(J) = B)-+]
1' )= A

—

[ pO2122, N-1

A() = B() + 1
2 C() =A()

!
r

DO4IF1, N=-1,
" A(D = B(I) + N
C() = A(N)

DO 3 FOR ALL
. AQ)

-

B(N.+1I

‘ N=-1 executions if 2

*N=2 processors

availéble \

. 1 execution !
' Yoy

: ' Co

3 C) =AW

4 CONTINUE
A(N) = B(N) # N.

C(N) = A(N) :

5-14
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DO 1 FORALLT/ [1,2, ..., N-1] Note

change of
variables

DO 2 FORALLT/'1, 2, ..., I-1]

‘Note change of
variahles and intro-
duction of a constant N,

J/l+1,1+2, ..., N]

This could have been in
"DO 4 I" loop if "DO 3
FOR ALL J" not executed
at least once,

% I : « .
! Total equivalent executions of "loop body" = 3N - 2,




III. SECOND EXAMPLE

Another example of the use of a simulation technique demonstrates
that there is often a considerable difference between the amount of con-
current execution that can be expressed with a "linearized" syntactic
form such as a DO FOR ALL and the amount of concurrency inherent to a
loop body. The example shows a form of "transposermappinyg". The
maximal concurrznt set of (I, J) points is a triangular helf of the Nx N
square, In the example, all the generations shown can be performed
concurrently (there is no overwrite problem among generators) and then
all the uses can be performed concurrently. A subset of these two sets is
given by a sequential stepping of a "line" of concurrency paralle! to the

] axis in the diagram,

DO 11=1,N
DO 1 7J=1,N
A(l, J) = "

1 A = ~adA(], ) ~—
The DO J loop can be transformed to a DO FOR ALL:

For I = J, intra~loop gen-~use precedence,
For I < J, inter-loop generation-use precedence:

Execution at [,, < IK is generator

K
for use at IL > IL

(specifically I I

T

(Relating X and L:

5-15
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LetK=(I-1) *N+]J

ThenL=(J-1)*(N~-1)+K

=(I-1)*N+1 o)

For I > J, inter-~loop non~overwrite precedence:

Use at IK > IK is of an initial value of the variable,

Generation at IL < IL (where 1

L=k L=k

as before) is for an output or final variable which

will not be reused by the loop.

Thus for a given L,

K

* —
] = {IK_MI IK"'M'*']. === IK“].I IKI IK+11 === IK+P}

as an active set for parallel execution gives:

for Ia < IK’

1)

2)

generate an output value which won't be

used in the loop
use a value generated when IL = Irx (earlier
in the [ loop)

generate an output value

use the value just generated (intra-loop)
generate an output value which will be used
in the loop at the point that IL= Ia

use an initial value
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Diagrammatically, for N = 4, this is:

1,1 1,2 1,3 j4
1 k 1,'1) / 3,1 4,1
2,1 /2,2 2,3 2,4
® [\ ©® ® /
= ’ l2 12
N, 1, 2 2/ 3 4
3,1 Y 3,3 3,4
® @ D)
1,3 3,3/ 4,3
4,1 4,2 Z 4,3 4,4
1,4 2.4 3.4 4,4
Path of execution J >
Where:
1,7 I_, J. are index pair for A([,]) = ~~
g'’g 9" 9 statement
Iu’ [ are index pair for = ~~A(J, ) A~~~
Key: @ statement
K=4(I~1)+7J
Ty Iy
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- gs ‘ T =1 = "

notes: 1) In the chart ' L Ig Ty
‘because what is being modelled is the I, J values
resulting for the particular DO statements with

their given ordering. (I.e., time is modelled.)
2) All arrows fn the diagram point from generation to use,

3) The ordering of the values in the ordered pairs reflects

the data point being referenced at a point in time.

It can be seen that all the generations in the "upper right
triangular half" of the index set can be executed concurrently, then all
the uses. Next the generations and then the uses of the "lowear left
triangular half" can be executed concurrently. This gives the maximum
cohcurrency and the whole loop can be executed in 2 steps rather than
the original 1v. By comparison, as has been shown, a DO FOR ALL J
rewriting is legal but provides a concurrency improvement factor of
only 4 instead of 8. The derivation of generation-use dependency and
the sets of index set points for concurrent execution is mechanizable

as described in the previous example.
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Now we define Ii by

ot 1l
L 14 p
i
(A"Z) IO’+1= .
P e 5qf Iy ii=p
r£p’

Using (A-2), it is easy to express the Ii" in terms of the Ii 1 Thus, the
n 1 n n
mapping (]‘:J, ceo 'Io) - (Io+l, ceo ’Io +1 ) is an automorphism of Z'. Therefore,
n 1 n . n
the mapping (1'1, eve, ) 4 Uo+l‘ cee 'Io+l) is also an automorphism of Z™,
because it is the composition of two automorphisms.
Substitution of (A-2) in (A-1) vields
1 n - .1
11[(1 1--011 )] =3 ti IO'+1'

where

_ O ¢
t tp qj ifif p

(ad

t

ifi=p,
tp P

It is easy to verify the following two facts:
()  Foreachi#p,ift AO0thenOst <]t |.
(ii) The g.c.d. at the t-i equals the g.c.d. of the t,.

It follows from (i) and (ii) that we will reach a g= minimum

{1 h,!:h, #90} such that in Equation (A~l) we have
il

0 iftp
t1=

for some p. Setting Il = I}; , and IZ reee ,In equal to the remaining Ii then




by

i
Now we define ]0 +1
i .
T, ifi#p
i
(A"'Z) IO’“’I— .
P+ 5qf I Mi=p
r£pl. o]

Using (A-2), it is easy to express the Ii in terms of the Ii i1 Thus, the
n 1 n n
mapping (]“L, ces ,Ic) - Uc+l' cee ’Io+1 ) is an automorphism of Z . Therefore,
n 1 n . n
the mapping (Il, eee,l) 4 (I°+l, v 'Io+l) is also an automorphisn: of Z,
because it is the composition of two automorphisms.
Substitution of (A-2) in (A-1) yields
1 n i |
'ﬂ[(I yeeesl )] =% ti Io+1'
where

_ O ¢
t tp qj ifif p

o+
U

t ifi=p.
p P

It is easy to verify the following two facts:

() Foreachi#p,ift A0thenOst <|t|.
(ii) The g.c.d. at the Ei equals the g.c.d. of the t,.

It follows from (i) and (ii) that we will reach a gs minimum

i h, K hy # 0} such that in Equation (A~1) we have

0 iftXp
t1=

for some p. Setting Il = Ig , and IZ 1eee ,In equal to the remaining I:; then
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APPENDIX B

LINEAR SUBSCRIPT EXPRESSIONS

The algebraic loop analysis methods depend on the subscript
expressions within array references, being linearly dependent on the loop

index variables. Given:

DO ~rV I —e—e—m
N = MIM

determining if the subscript of A {s a linear function of [, involves "back-
substituting” for all variables in the subscript. The algorithm is obvious,
though painstaking and involves algebra on a canonical form
m = (i:aiji)+ao
where the j j are the variables of the DO statements of a nest and {a i} '
a, are arbitrary expressions not involving these variables. I[f any chain
of back substitution cannot be put into the canonical form, the subscript
is not linear.
A complexity arises from the following example:
N=0
DO 101=1, 100
N=N+5§
A(D = B(N) + C(D)
10 CONTINUE
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which is equivalent, in effect, to:
DO 101I=1, 100
A(D = B(S * 1) + C(1)
10 CONTINUE
Note that this is the essential truth behind the sequential machine

optimization method known as "reduction in operation strength". What

.we want. to do here however is the opposite transformation possibly _des-

cribed as "solution of recursion relations". For recursions of the form
n =n +a, the solution will be linear in the loop index variable.

Two more general examples are:

. (1)N=NO

. gMI:NMO, MF' MA
N =N +K

W

DOMI:MOIM M

F' ™A

MOK I-'Mo
I+(K+N0- ) = +1)K+No

A A A

N =

I

Note that the end product of the transformation cannot be expressed in
integer FORTRAN variables and operations, in general, because the results
of the divisions are not likely to yield integers although the final form

will yield integer results.

(viz. Mo=1,N =0,K=3, M, =2)

B=2

LI G e A N e

RO
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(2) N=N

5 N=N+K
b S S
DON'I-MO,MP,MA
. = ) J J
: DO~ J=M_ , My, M,
J J
[ M, - M
| N=(K—])y+(max(o, [ FIOJ)+1\\/E-L>I
i M M M
A A A
| Ml ¢ m! VR
f +[N +K - OI -( ?)(max(o,‘. FI <
; o My, M, My

where l_xJ = greatest integer less than or equal to x

a
(note '_bJ fora, b ¢ N is the FORTRAN integer

division operation.)

The messy (max (0, H ) + 1) coefficient on I counts the number of

iterations of the J-loop performed between I-loop iterations. When

| R R S .
Mo Mo M/.\ MA 1, tf‘le above all simplifies to:

= J - Ml
N=()7J+ (MF K) I+ (No Mg K)
The position of the subscript variable “"recursive" generation

relative to its use as a subscript can have an effect on the form of the

linear expression substituted into the subscripts:
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