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A BSTRA CT

This report describes the results of the program of research
carried out at Harvard University utilizing the PD±'-.1-based graphics
facility, the PDP-10, and the ARPA Network. Projects undertaken
range from development of techniques for graphic input and display
and development of graphics applications, to development of a
programming system intended as a tool for attacking 'difficult"
programming projects and suitable for use concurrently at several
nodes of the ARPA Network on a common computational task, and to
development of programs specific to use of the ARPA Network and
file transfer techniques. This report references various published
papers and technical reports which contain more detailed accounts
of the work undertaken.
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SECTION I

TECHNICAL SUMMARY

This report describes the results of the program of research carried

out at Harvard University utilizing the PDP-l-based graphics facility, the

PDP-10, and the ARPA Network during the contract period.

Work in the graphics area has included (1) development of mathematical

and hardware techniques for graphical input and display, (2) development of

an appropriate man-machine interface which provides the user with a sophis-

ticated input/output facility appropriately tailored to his particular pro-

blem area, (3) development of and experimentation with specific application

programs to permit evaluation of the man-machine interface, and (4) experi-

mental use of the ARPA Network.

The ECL system contains as its language component an extensible program-

ming language with facilities for new data type and operator definitions. The

system has been designed as a tool for tackling "difficult" programming pro-

jects -- that is, projects on which existing languages can be used only with

considerable waste in machine or programmer time. The system is intended to

be usable for common computational tasks carried out concurrently on several

nodes of the ARPA Network.

Work more specifically related to the ARPA Network has included the con-

struction of Network Control Programs on both computers, and work directed

toward facilitating the transfer of files over the Network.



SECTION II

INTRODUCTION

This report describes the results of the program of research carried out

at Harvard University utilizing the PDP-l-based graphics facility, the PDP-V),

and the ARPA Network during the contract period.

The PDP-l-based graphics facility includes input via tablets and a 3-D

input device designed and constructed at Harvard and output via four relative-

ly high speed point-plotting cathode ray tubes. The latter have been supple-

mented by a device permitting color and stereoscopic display. The PDP-I has

also been interfaced to the Interface Message Processor and to the PDP-1O via

a direct (half-duplex) hiph speed link. The PDP-10 has also been interfaced

to the ARPA Network. In addition, an APVDS terminal including two storage

tubes, a keyboard, and a tablet is attached to the PrP-IO.

Work in the area of computer graphics has been performed during the en-

tire contract period. Section III of this report provides an overview of the

entire area as well as more detailed discussions of a number of the individ-

ual projects undertaken. We wish to draw particular attention to the work

described in Section 3.7 in the area of computer assisted design of complex

organic syntheses. This work has been guided b,, Professor E. J. Corey of

the Harvard Chemistry Department and represents, we believe, an outstanding

example of the wedding of computer science to an applications area.

Section IV contains an overview of the ECL programming system, whose

development has been partially supported by the subject contract. Implemen-

tatk'n of ECL was begun in June, 1970 and the initial version became available

for local use in September, 1971. There is one particular aspect of ECL which,

we believe, is unique. That is, the system is intended to be used for common

computational tasks carried out concurrently on several nodes of the ARPA
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Network and, hence, the system would be particularly appropriate for such

tasks as management of large scale distributed data bases, interactive graphics,

and so on. Active work on this aspect of ECL awaits availability of ECL at

another node in the network, which we expect to accomplish in the near future.

Work on computer networks started in the first half of 1970. This has

included participation in the Network Working Group development of the HOST-

HOST and file transfer protocols. Network Control Programs have been designed

and implemented on both the PDP-I and PDP-10 systems; the PDP-I design in-

cluded development of a time-sharing monitor to allow multiple user access to

the system. Prior to completion of the NCP's, a number of prograns had been

written to allow interim use of the Network in a "local' mode -- that is, mak-

ing the PDP-I facilities available to the PDP-10. In addition, we have pre-

pared for performing experimental work in the area of file transfer via the

network. In order to transfer files between machine. hiiicli use different re-

presentations for data items (e.g., 36 bit integers represented as sign and

magnitude vs. 32 bit two's complement integers), data type conversion may be

necessary. The work on ECL has lead to sharpening of the intuitive notion of

data type; in the final subsection of this report, we describe what we believe

tc be implications of this work for file transfer and storage.
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SECTION III

COILUTER GRPHICS

As has been known and observed for many years, the bottleneck of inter-

active systems is the man/machine interface. 'this interface is traditionally

a sequence of characters, into or from the machine. Punched cards, paper tapes,

-magnetic tapes, teletypes, line printer and more -- all are sequential devices

for characters. This kind of communication seems to follow the most common

form of human communication, natural language. Sequential language iS suf-

ficient for most applications -- most but not all. There are many areas in

which words alone are not enough,, because they cannot convey some kinds of

messages. It is very difficult, or impossible, to describe certain shapes

using words only. Architecture without blueprints, electrical engineering

without drawings, geodesics without maps, or general design without sketches

are not acceptable. When engineers discuss problems they need drawings and

blackboards. Nothing can describe a bridge as well as its drawing. Nothing

can describe a house as well as its floor plan.

The proce.s of reading words differs from the process of hearing words

only in a small factor of speed. These human input channels are slow and cum-

bersome compared with visual perception. If something can be described by

images rather than by words, for example, by graphs instead of tables of num-

bers, or by drawing instead of verbal description, then it can be received by

a human input channel which is hundreds of times faster and better equipped

for the task. This difference between reception of sequential characters, and

perception of images is the main justification-of computer graphics. Computer

graphics is a way of using computers, and communicating to and from them, by
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using shapes in addition to words. These shapes can be static or dynamic, on

the CRT or on paper, real world images or symbols. What is comion to all is

that they convey information that otherwise would require an endless amount

of time and paper to be presented.

Computer graphics is also used for its fast capabilities for mass output.

Using computer graphics technology, CRTs and the like, enables mass amounts

of alpha-numeric information to be displayed in nearly no time.

The most interesting graphics applications are those which rely not only

on the speed of alpha-numeric display but on the capability of displaying ar-

bitrary shapes dynamically.

The applications of computer graphics can be divided into several classes.

One class deals mainly with symbolic displays. These applications use a dis-

play to show the btructure and function of elements without showing their real

shape. For example, complex data structures can be displayed by means of net-

works, trees, and the like. Communication networks can be represented by

graphs without any relation to the physical location of each node. Electron-

ic design is represented by a collection of symbols which have nothing to do

wi~h the real shapes of the modules which are represented by them.

Another class of applications deals with real-life objects. Flight simu-

lation, for example, requires the real shape of the world to he displaved.

!!echanical and civil engineering, or architecture, require handling of real-

world shapes, which cannot be represented by symbolic displays. Certain ap-

plications require only static display. Others require dynamic updating of the

display. Dynamic displays are needed to animate motion and evolution. One

5



can display the changes in data structure, like growth of data trees, by dy-

namic presentation of the data structure at any stage. One can animate growth

of a city or growth of economy by dynamically altering the display. The time

scale in which this animation occurs depends only on the convenience of the

viewer. Another class requires motion in real time. Simulating moon landing

or space craft docking requires dynamics in a real-time. The restriction of

real-time display imposes a new dimension of complexity on these applications.

Computer graphics is uniquely suited to many applications. In some areas,

such as engineering planning and design, it is natural to provide a man with

a graphic display as a tool to aid him in the design process. Often this ap-

plication suggests a further use of the computer -- to interpret the graphical

display, to "understand" what has been drawn. Then the computer can investi-

gate the properties of the design extensively and return its findings graph-

ically. They might take the form of simple measurements, or, in the case of

complex display, the computer can simulate the system represented. The pro-

cess of graphical specification of complex systems and graphical simulation of

their behavior is a tremendous aid to understanding and problem solving in

many areas.

In the following we describe seven classes of computer graphics applica-

tions:

1) Simulation of systems
2) Dynamic display of real world shapes in real-time
3) Animation
4) Manipulation of symbols
5) Computer aided design
6) Experiments on visual perception
7) Design of complex organic syntheses

6



3.1 SIMULATION OF SYSTEMS

It is often the case that practical problems deal with system behavior,

rather than behavior of a single particle or a single element. Describing

and dealing with systems is many-fold more complex than working with a single

element. Often one can describe very precisely the exact mathematics which

governs the behavior of a single element. However, it is very seldom that one

can find equations which describe a system completely, and still be consis-

tent with the behavior of each particle of it. Consider, for example, fluid

mechanics. One can describe the differential equations which govern the be-

havior, the speed, and the position of each fluid particle. One can even in-

tegrate these equations and describe the behavior of the entire system, the

entire fluid, but only for some trivial cases. Once the system is not trivial

(because of realistic boundary conditions, for example) one cannot integrate

the particles' behavior into a description of the system. One can describe

the growth of a single cell in an organ; however, integration of the individ-

ual behavior into organ growth equations is most difficult and often impossible.

One can describe behavior of a single person in a crowd. However, integration

of this description into crowd-psychology is not simple and may be misleading.

The inherent problem in the integration is the interaction between single

particles.

Simulation of urban traffic, or air traffic, are other examples of the

same difficulty. It is the case that one can describe very precisely the mo-

tion of a single car or of a single airplane. If the car is alone, and its

motion is unrestricted, then its behavior is simple to explain. When more
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than one elevent is introduced into U-e system, the interaction between them

adds a new dimension to the problem. The complexity of the interactions might

grow as the square of the number of objects in the interaction.

In general, one can solve situations where few vehicles are involved.

However, any practical problem involves too many objects for a human being

to solve without a computer.

These system-problems lend themselves very well to computer use. In order

to solve these systems on a computer, one can use simulation techniques, rather

than integrating equations into system-behavior. A computer can perform the

tedious job of simulation particle by particle and make local judgments and

local decisions according to the environment as seen by each of the particles.

This process is applicable to some problems by describing each varticle individuallv

at a giv time (t)End updating all the particles going into the next step in

time (t + At). This solution might depend very highly on the order in which

the particles are simulated, but introducing random sequence for updating the

particles might overcome this problem.

It is often the case, unfortunately, that introducing any realistic bound-

ary condition implies mathematical impossibilities. For example, many theoreti-

cal models of the Atlantic Ocean, proposed to explain its currents, assume

either a rectangular ocean or a triangular one. There is no hope to solve

mathematically the dynamics of the ocean with its real shape. Vortunately,

for computers, introducing more restrictive boundary conditions may help the

problem. The more restrictions exist in the system, the less checking and

computation the computer has to perform. The computer can, in many cases,
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handle very easily any kind of non-uniform boundary condition just as if the

boundary was uniform. The difficulty introduced by the non-uniformity is, in

cases, negligible.

If the behavior of each individual particle is non-deterministic and some

distribution and probabilities are involved in the description of each par-

ticle, then the behavior of the entire system is non-deterministic; in order

to simulate it properly one has to simulate the distributions. These non-

deterministic simulations have to be repeated many times in order to average

the behavior and the distribution, to get meaningful results. Clearly, it is

appropriate to use a computer for such simulations.

Computer graphics lends itself very well to this kind of simulation.

After every updating cycle, one can display the state of the system. For

example, if one simulates the growth of a tree based on some known growing

rules, one would like to know through which steps the tree goes. The visual

display of this information, at a rate meaningful for the viewer, might in-

troduce new understanding of the behavior of the system. In the case of traf-

fic simulation, whether it is urban traffic or air traffic, one can learn a

great deal by viewing the intermediate steps through which the system is go-

ing.

For example, one might observe that due to some latency in traffic lights,

some cars happen to jam an intersection, which in turn might cause a total

breakdown of the traffic flow. If the conditions of cause and effect are not

known in advance, global measures are not enough to explain this kind of be-

havior. The only way to understand the system behavior is by viewing it. By
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watching the behavior of the system, one might observe a pattern which he

never expected to find. These behavior patterns, which are not known before

they are observed, rely very highly on the intelligence of the human and his

ability to recognize patterns he never looked for.

If the behavior patterns are known in advance, one might assign the com-

puter to look for them, measure them, and report them. However, in many cases

the internal patterns are not known and one has no idea what to look for. The

visual graphics simulation allows one to recognize behavior patterns which he

never expected to find and watch them develop. This recognition leads to an

understanding of the system.

It is often the case that systems are 'tuned" by readjusting some para-

meter which defines and controls each element. One has a very rough idea of

what happens to the system as a result of this tuning. A good way to under-

stand the effect of small individual changes on the system is by visually ex-

amining the behavior patterns and noticing the differences due to the effect

of the tuning.

3.1.1 INTERACTIVE URBAN TRAFFIC SIMULATION

Urban traffic is an example of a complex system for which simulation

techniques are appropriate. There are so many individual vehicles and so

many variables determining their behavior that a precise analytic description

of any system is impossible. It also seems that the simulation should be an

interactive one because many traffic problems can be formulated intuitively,

and a man's daily experience and perceptions should be utilized in the problem-

solving process. This interaction is best served by a graphical display of the

10



traffic flowing through the area under consideration. Traffic patterns are

easily recognized when displayed, and factors of cause and effect are evident.

A man can easily apply his perceptions and knowledge of the problem once it

is presented to him in such a natural way.

We have constructed such a graphical simulation of urban traffic. One

begins by specifying the street map to be considered. This is accomplished

graphically, by means of a tablet. The user need only specify where he w*ants

the streets to be and in what direction, and the program draws in the streets

and intersections for him. In addition, it will draw center medians and traf-

fic signals automatically. This process is interactive; the map may be edited

at any time. After the street map is dra-ni, the program enters the simulation

phase (fig. 1). In this stage, one scope shows a street map with cars traveling

through it, and another shows a control panel with bar graphs of various de-

scriptive parameters (fig. 2). As the simulation proceeds, the user may change

the traffic density in different directions, or the speed, or other character-

istics. This he also does with the stylus, merely pointing to the end point

of the bar graph and moving it as he wishes, lie may also turn the traffic

signals red or green by pointing to them with the stylus.

Finally, it is possible for him to specify automatic settings for the

traffic signals. He does this by drawing a bar graph of the times during

a fixed-length cycle when the light is to be green and when it is to be red.

lie also has the facility of assigning the same setting to other signals, or

the same setting with a fixed delay time. lie may also specify that certain

signals are to be given the same settings and then perform the above operations

I1
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on groups of signals rather than single ones. In this way, it is relatively

easy to construct a strategy of traffic signal settings for a complex network

of intersections. (fig. 3)

The program is designed so that it. is natural to use interactively. After

specifying one map, the user can try different signal settings under different

traffic conditions to find appropriate means of control. He sees the effects

of these changes in real time, as traffic flows through the network. He may

return to draw in a new map and alter his strategies further, all in an inter-

active manner. We have found this approach to be a very valuable one in formu-

lating and solving problems in urban traffic.

3.1.2 AIR-TRAFFIC CONTROL SIMULATION

The air-traffic control problem is a unique problem in the sense that it

involves a very complex system of many airplanes sharing the same air space

concurrently. In order to describe the system of the air traffic, one needs

a dynamic tool which enables him to describe in real-time current positions

of many airplanes which move in different directions at the same time. There

is no way but graphically to describe the state of the system at any time.

In real life the way the air traffic system is described is by graphical means,

the radar which is used by the controllers. The control information which is

issued is in the form of instructions to the airplanes telling them position-

ing and timing information, issuing "vectors", instructions for turning, and

so on. Because of the nature of the problem, it is desirable to have facil-

ities that enable one to communicate with the system graphically for input

control information and to receive the state of the system at any point. 7or

14
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example, a controller should be able to define a route for an airplane merely

by drawing the route on the face of a scope rather that. verbally describing it.

Collisioxu hazards should be represented to the controller by showing him two

airplanes whose routes tend to merge, and perhaps flashing some warning lights

to attract his attention to this fact. The interaction between the controllers

and the real airplanes should benefit from the use of the graphics as well. The

controller should be able to point to an airplane rather than calling it ver-

bally. This assumes, of course, that the system behind the graphics is aware

of which airplane is where, and can automatically issue some communication to

this airplane upon graphical request of the operator. In order to demonstrate

these ideas and to provide a training environment, a computer program was

developed in our laboratory.

In the first phase of the program, one can define the map of the area

in which he wants to operate, and assign it any arbitrary shape. One can de-

fine the shape and the position of the airports to be included in this area.

One can define the "Victor" and the "Jet" airwavs intersecting this area, and

can define standard holding patterns. Navigation aids can be introduced into

the map in the shape of triangles and squares. This definition stage is, of

course, interactive. One can change his mind during the definition stage or

later by editing the map, changing it, deleting obsolete objects, and adding

new features to it.

After the definition phase, the operation phase begins. This oteration

phase requires two people to operate it. "ne in simulating the air-traffic

controller and the other one simulates concurrently all the pilots of all the

16



airplanes in the area. The "pilot" can Issue routing instructions to each

airplane in graphical form. The routing instruction may have the form of

"climb and maintain flight level 200", and "follow victor 20, turn to victor

16 at station x", etc. The "controller" can see on his scope the position

of each airplane and can interrogate these airplanes graphically, requiring

information about altitude, speed, identification and so on. Ideally, the

controller should be able to express instructions to the airplanes graphically.

However, in order to simulate closely today's systems, the program does not

automatically carry the graphical instructions of the "controller" to the air-

planes, but the "controller" has to issue them verbally, as if he were talk-

ing on the radio to the pilot. The "pilot" then can apply these instructions

to the airplanes, exactly according to the "controller's" instructions or he

may deviate from them. This way the "pilot" can simulate misunderstandings

between the air traffic control and the pilot in the air. The only way that

the "controller" can find out about these misunderstandings is by noticirg,

on his "radar", that some airplanes do not follo.' the instructions that he

had issued before. All communication with the airplanes either by the "pilot"

or the "controller" is very natural. In order to specify an airplane all they

have to do is to "touch" the airplane on the scope with a stylus. All control

information is requested graphically, and the flight paths of the aircraft on

the radar screen provide the necessary feedback.

3.1.3 LOGIC DESIGN

Computer graphics lends itself perfectly to use in logic design. Com-

puter hardware is usually designed by using two dimensional sketches of

17



combinations of logic elements. 'omputer graphics can be used in order to

help draw the logic elements and draw the connections between them. In

order to use the system for design, one needs the capability of defining differ-

ent logical elements, defining various interconnections and groupings and de-

fining levels and waveforms to be applied as input. The interactive design

requires a consLant feedback from the system. Upon completion of drawing some

subcircuit, one may wish to see the operation of that circuit by applying some

inputs and observing the outputs. The same system can be used not only as a

design aid, but also as a teaching aid. Introducing students to logic design

by an interactive system like this which visually displays each state of the

system is most helpful.

The interactive system for logic design, which was written recently in

our laboratory, enables one to define these logic elements as combinatorial

logic units, i.e., units whose outputs are boolean functions of the current

inputs. One can define any boolean function as a "gate", assign any arbit-

rary shape to represent this "gate", and then use this shape wherever desired.

One can watch the values of any output at any time. It is possible to group

together several elementary gates into a subsystem and watch the operation of

this subsystem as a single unit. (fig. 4)

One observes the values of any output by "attaching" a scope symbol to

any desired point. The scope will show either zero or one according to the

current logic level of this point. The power of the system is due mainly to

the simulation program behind the graphics. This canability of interactive

simulation makes the program a valuable aid to hardware design, in addition

to its use as a drafting tool.
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Figure 4. Logic Design

19



The program allows the user to think that he has a very large drawing

area. If the drawing is larger than that which can convenientlv fit on the

scope, he may slide his 'window" up or down, right or left, or in or out;

i.e., he may "back off", so that he sees a larger area, but the picture is

reduced in size. lie may also examine sections as closely as he wishes.

3.2 REAL SHAPES IN REAL TI•E

Many applications require graphic representation of real-world shapes in

real time. The most outstanding application is visual flight simulation. The

purpose of this application is generating the visual scenario, as should be

seen by the pilot "flying" a simulator, in space according to some flight dv-

namics of the vehicle which is simulated. The traditional flight simulation

techniques either neglect the visual altogether and simulate only the instru-

ments, or use old-fashioned physical models in order to produce the visual

scenario. The new digital computer graphics approach to this problem is bet-

ter in many aspects than the old approach. Pirst, the digital approach re-

quires no physical models and no "moving parts" in the system. Second, most

important, the digital computer introduces flexibility which is limited only

by the capacity of the computer. There is no inherent complicated mathematical

difficulty in producing the visual scenario. However, performing the three

dimensional operations required for as much data as needed in order to get a

realistic picture, might be too much load for a computer. The difficulty is

not the complexity of the computation, but the frequency with which this com-

putation has to be repeated. Due to recent innovations in technology and in

the understanding of the problem, this task is now possible.
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Another visual problem for fligtt simulation is synthetic generation of

radar images in addition to, or instead of, the out-of-the-window view. The

problem of generating radar images is similar to the problem of generating the

out-of-the-window images. Both problems consider simple perspective trans-

formation which has to be repeated many times. The number of these repetitions

depends on the number of data units in the system. In both cases in order to

get realistic images, a large nurber of data points is necessary. In addition

to simulating the radar system, we also simulated a technique to convert radar

images (PPI) into perspective images. The transformation of PPI images into

perspective images is very important and very helpful for pilots on final ap-

proaches to airports. It was recently announced that such a system will be

used in future airplanes.

We have two projects on this subject, one in flight simulation which is

described in 3.2.1 and the other in radar simulation which is described in 3.2.2.

3.2.1 VISUAL FLIGHT SIMULATION

We have several PDP-l programs for visual flight simulation. All of them

allow the operator to "fly" an airplane and watch the flight instruments and

the world through his window. The programs are divided into two rain sections.

The first is the dynamics simulation of the flight; the second is the graphics

for the visual displays. The dynamics simulation scans the controls as oper-

ated by the "pilot" and according to their positions computes the powersetting

of the airplane, its position, its speed, and its altitude at any instance. The

model used by these programs assumes very simple dynamics somewhere between a

"three-dimensional car" and a small airplane. The time scale of the simulation

is modified for the convenience of the pilot.
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The program allows the pilot to take off from an airport, to fly around

it, and to land on any of the runways in any direction he wants. The program

does not allow the pilot to be on the ground anywhere but on the runways. It

also checksthe impact of the airplane with the ground upor landing and com-

plains if it exceeds some maximum value. The program also does not like "Chinese

landings" (one-wing-low) and does not like exceeding the maximum allowed speed.

The part of the program which simulates the dynamics is a module which can

easily be replaced in order to simulate another kind of airplane. Bv varying

this portion of the code, one can simulate anything from helicopters to super-

sonic jets. The second part of the program, the graphics display Dart, is the

more interesting one. This part of the program is responsible for displaying

both the flight instruments and the out-of-the-window display. The flight in-

dicators are supposed to resemble the true indicators which are used in air-

planes, like artificial-horizon, pomersetting, air speed, a radio direction

finder, a compass, and so on.

In the age of heads-up displays, this program is a natural environment

for testing ideas for new types of indicators. Since all the data is gathered

(or generated) by the computer, one can display some new kind of indicators

instead of, or in addition to, the old indicators. The new indicators can

show some new combinations of data which used to be displayed on the old in-

dicators, giving the pilot direct information about the important flight para-

meters. Consider, for example, the air speed. Since the system might know the

indicated air speed, the attitude, outside temperature, and the altitude,

the system would compute the true air speed and display it to the pilot in
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addition to the "indicated" air speed. Together with the true air speed, the

system could compute the stall speed for any attitude and display it next to

the true air speed or even display the ratio between these two. We are aware

that such indicators do not exist in today's airplane; however, in the future

airplanes, where all the information is centralized by some digital system, there

is no reason to display only the information which is directly measured, as it

used to be in the Wright Brothers' era. Future airplanes will have on their

heads-up display new indicators which do not exist today and give more infor-

mation to the pilot, freeing him from computing this information manually from

the old displays. Our program is a natural environment to experiment with this

kind of indicator before trying them on real airplanes.

The second part of the display program generates the out-of-the-window

view. The out-of-the-window view can be generated for any width of viewing

field, up to 180 degrees. It is important to supply to the pilot not only the

front view, but the side views in addition. In the case of fighters, it is

eminently important to supply a top view, and in the case of VSTOL airplanes it

is important to generate also the bottom view. It turns out that generating

displays requires a computation which is less than linear in the number of win-

dows displayed.

In addition to displaying the indicators and the out-of-the-window view,

it is possible also to generate some other interesting displays. For example,

one can display the gravity acting on the airplare, the drag as acting on each

wing, the lift as generated by each wing, the act of the power, the centrifugal

force, and all theother forces acting on the airplane. This display might serve

very well as an instruction aid for student pilots.
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Another possible display is an extrapolation-forward,trying to predict

the path of the airplane in the next few minutes based only on information

which might be available to a ground-based radar system. One can simulate

systems like that which might be used by controllers on the ground to

predict the position and the speed of the airplanes in an effort to recog-

nize and eliminate collision hazards.

3.2.2 RADAR SIMUATION

Computer graphics is the most natural environment for radar simulation.

It is possible to generate on the face of the CRT the real world views. One

can try to be as close to it as possible but it is never just the same as view-

ing the real world. Viewing the CRT for radar operators is exactly the same

whether the CRT is driven by a radar system or by a computer. It is possible

to use computers to simulate radar systems, and use the output of the computer

on exactly the same medium as used by radar systems, namely the CRT. In the

case of a perfect radar simulation system, it should be impossible to tell

whether the images are produced by real radar systems from the real world or

by computer systems from data stored in digital memory.

Generating radar images is very similar to generating halftone displays

with hidden line elimination. It is not surprising to find out that special

purpose hardware can be built for radar simulation which resembles very much

the special purpose hardware which can be built for hidden line elimination.

The hidden line elimination in the case of radar display is much simpler than

the general hidden line problem, because of the nature of the display objects,

namely ground terrains.
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We have several programs devoted to that project. One of them simulates

the system, allowing two operators to "operate" two boats in an ocean around

several islands. Each of them is equipped with its own radar system on which

it can view the islands and the other boats, if visible. The third display

shows the relative positioning of the boats in respect to the islands and the

ocean. This system, if properly modified (which can very easily be done), can

serve for the Coast Guard, for example, in training for docking and maneuver-

ing in harbors or narrow bays and narrow waterways in night and fog conditions,

using only the radars.

The other radar program allows the user to define data on the ground, sel-

ect his position in space, x, y and altitude, and watch on the several possible

displays of this system. All these displays are based on information as gather-

ed by conventional radar systems; however, this information which is input from

the radar antenna canbe displayed in several techniques. It can be displayed

as a PPI, or as an A scope, or a B scope in presentations. In addition it can

also be presented in a perspective !7ay, which we call the C scope. The advan-

tage of the C scope is that it presents the pilot a view that he could see with

his own eyes, if it was not night or fog conditions.

This system can be used both for flight training, especially navigator

training, and for briefing of pilots before going to new airports.

3.3 ANIMKrION

Visual animation is a unique tool for education. One can use computer

animation either to educate other people, or to educate himself to better

understand a process. The impact of animation on education in certain

25



fields can be compared to the impact of the blackboard. Just as words

alone are not enough and not adequate to explain two-dimensional structures,

so is the blackboard not adequate to explain any evolution process or any

dynamic process which changes with time. Computer graphics is so powerful

not only because of its ability to display arbitrary shapes, but mainly for

its ability to display changes dynamically.

It is not just a mere coincidence that in many languages the word "see"

and the word "understand" are synonyms. In many cases to see is to understand.

For these cases computer animation might he most beneficial.

We have several animation programs; one of them is a program described

earlier for logic design. This program, in addition to being a tremendous

aid for computer-aided logic design, can serve quite efficiently as an anima-

tion tool for teaching logic design, or for understanding it. A further step

in the same di-ction is an animation of a micro program compt,ter. This

program is described in 3.3.1. Another program animates the operation of

an assembler. It shows visually how an assembler works step by step. This

program is described in 3.3.2. A further step toward compilers is a visual

animation of a parser, discussed in 3.3.3.

3.3.1 SIM.ULATION OF MICRO-PROGRAmDED COMPUTERS

A program was written to simulate visually the operation and the design

concept of a micro-progranmed computer. The computer chosen to be simulated

is a hypothetical one which has a flexible structure which can he easily

modified. The graphics is used to display the internal registers of the computer
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aad to show the data traffic between them. Each machine instruction of this

computer is composed of several inter-register elementary operations. The

elementary operations are symbolized by arrows between the sources and the

destinations of the data. The student using the system can watch how each

machine instruction, a macro-instruction, is decomposed into the elementary

onerations which compose it, and how the control executes them one by one.

The purpose of this program is to explain visually the operation of a micro-

programmed machine such that the student does not need, in his understanding,

to apply to "black-boxes" which perform magic things Like instruction decoding,

operand fetching, indirection, etc.

The student sitting in front of the system can use the graphics not only

for watching the machine operation but also for peeking into any area of mem-

ory and changing it if so desired.

After working with the system for a while, a student can gain a very

good understanding of machine structure, the different machine registers,

different addressing schemes, and trade-off between several different in-

struction repertoires.

3.3.2 ANIMATION OF AN ASSEMBLER

The next step after teaching a student how computer hardware works and

how the instructions are executed is to teach him how the symbolic instructions

that he writes are translated into binary machine instructions in memory. In

order to accomplish this task, a graphical animation of an assembler allows

users to write an assembly code which anpears instanteously on the scope in

front of him. The assembly language used allows several instructions and
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several pseudo-instructions like reservation of blocks and literal definitions.

When the inpu- phase is completed, the assembler starts each operation dis-

playing each step on the scope. During the first phase the symbol-table is

built. The computer scans the instructions one bv one and assigns locations

to them according to their nature. A student can watch on another scope the

symbol-table being built, including all symbols and literals. In the next

phase the computer assembles the symbolic code into computer binary code. Each

instruction, when encountered in the assembly code, is searched for in the

operations-table until its binary equivalent is found. If it is not found, an

error message is compiled and displayed, If the operation is found in the

instructions table, it is copied into the right place in core, and then a simi-

lar search is executed to find the address part of the instruction. The student

can watch this search done. If this search is successful, then the binary ad-

dress is put together with op-code to make one machine instruction. If this

search fails, another error message is compiled and displayed.

3.3.3 ANIMATION OF A PARSER

The next step after teaching and visually demonstrating to students the

operzei-Lun of an assembler is teaching the operation of a compiler. The most

interesting part of the compiler is the parser used. In the program written

here, only the parser was animated. This parser uses a bottom-up procedure.

The operator can define the grammar of the language, which appears instanta-

neously on the scope when defined, and then can supply a target string. The

parser parses the string according to the grammar. After each parsing step,

the partial trees are displayed, illustrating the operation of the parser.

The parsing procedure is successful if, and only if, all the sub-trees which
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merge from the target string are combined into one tree whose root is the

root symbol. (fig. 5)

By watching the trees being built and being backed up, the student gets

a clear understanding of the advantages, and mainly the disadvantages, of this

scheme. Upon changing the tactics from bottom-up to top-down, for example,

and watching the results, the student is able to compare the two techniques.

Watching the difficulties through which the compiler has to go can indicate to

the student the disadvantages and the weak points of the given grammar.

It is possible to evaluate the grammar by measuring how many steps it

takes to parse a given string. By doing that without animating and display-

ing each step, the user does not get an understanding of what is going wrong

in the scheme.

3.4 WLiIPULATION OF SYMBOLS

A very important class of computer graphics applications are those con-

cerning graphical manipulation of symbolic shapes. These symbolic shapes most

often have some spatial relation between them and are well suited to computer

graphics. Examples of this would be electronic design, decision trees, mus-

ical notes, notation of organic chemistry, and so on, where symbols represent

modules that have nothing to do with their real shapes. All these applications

have in common the need to define symbols of arbitrary shapes, position them

arbitrarily in some space, and define relations between them.

It is very important to have systems which allow the user to input his

ideas and his instructions to the system by using the same symbols he uses

for communications with other people or even for writing notes to himself.
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It is also most important to have the system output its findings by using the

same notation. If the system has these two properties, then people who are not

familiar with the peculiarities of computer languages but are very familiar

with applications can easily use the computer without bothering about learning

new symbolics and new ways to express themselves.

A tremendous help along these lines is a character recognizer. This re-

cognizer is used for free-hand character input to the system. Free-hand input

is especially important if the size, the orientation, and the position of the

characters has some meaning. Mathematical formulations and some programming

techniques require input of characters together with shapes, size, orientation,

and positioning. For these applications, a character recognizer iE most useful.

Mtathematical notations like integral signs, sigma signs, continual fractions,

exponents, subscripts, and superscripts are two dimensional forms of writing

formulas. It is possible to linearize all these two-dimensional notations in-

to one sequential string; however, this is very unnatural and inconvenient for

most people. Free-hand input of characters can be also most useful for writing

programs by writing some program statements into boxes of a block diagram.

However, it is doubtful if free-hand writing is the most efficient way of

writing general code, instead of using teletypes or typewriters. We have sev-

eral programs which demonstrate the ease and convenience of using free-hand

input characters used for mathematical notations, and for writing programs in

a two-dimensional programming language. In the following sections we will

discuss some other uses of symbolE manipulation, such as decision trees (sec. 3.4.4),

musical notes (siec. 3.4.2). organic chemistrv (sec. 4.3.7), or mathematical

data smoothing (sec.3.4.1).
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3.4.1 DATA SMOOTHING AND CURVE FITTING

A man, when hearing a crunching sound in the driveway upon the return

home of his wife, can tell if the car's fenders are "smooth" or not by simply

looking at them. Similarly, a scientist determines whether an experimentally

obtained set of discrete data points is "smooth" by looking at them on a graph.

In both instances, the verdict "not-smooth" results in the use of tools to

provide corrective action to improve the situation, the tools being those of

the mec anic in the former case and those of the mathematician in the latter.

What is common to these two events is the recognition that the property

of smoothness is essentially a geometric concept which is often best deternined

on a visual basis. Mathematical aids are useful in this determination, but

presently data smoothing is more of an art than a science. One generally has

a notion in advance of what "5moothness" means in a given situation (e.g., a

car fender ought not to look like a refugee from a home for old accordians)

and then compares this notion with what he actually sees.

The use cf computer graphics allows an individual to "see" his data points

on a graph and determine if they are "smooth'? or not. He can fit interpolating

or approximating curves to the points and then visually compare such curves on

a CRT to help him analyze the data. Furthermore, he can study different math-

ematical measures of smoothness, such as the sum of the squares of the third

divided differences, by displaying and comparing various measures, as well as

by obtaining reference values for curves which are known to he smooth.

The use of a graphics svsten allows an individual to try many different

smoothinp methods and compare the results in a relatively short period of time.
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An interactive system lets him experiment with several different approaches and

choose the one which is most promising for more detailed analysis.

A. Priver has developed an interactive computer graphics system utiliz-

ing the PDP-l and the four DEC340 scopes to assist humans in efficiently

"smoothing" and "fitting" curves to data points involving statistical or measure-

ment errors. The user is embedded in an "application-domain" and is thus not

concerned with the actual nature of the computer and the accompanying program.

The user is able to input a discrete set of data points, change the values of

these points (by editing), apply mathematical operations defining smoothing

methoc1 to alter (smooth) these noints, and evaluate measures of smoothness

and closeness of fit to compare different methods.

The system uses several buffer storage areas so that different results

can be easily saved for comparison purposes. The values in these areas can

be displayed in numerical tables and/or can be displayed graphically. The

displays for each area are individually controlled so that any desired com-

parisons may be made. Additionallyv, a record of the sequence of operations

used in obtaining the results shown is given on one of the CRT's. Provision

is also made for storing (and retricving) sets of points for future use by

the system. (fig,. 6)

Rapid response is achieved through the use of sophisticated date struc-

tures (for the graphic displays) and numerical techniques (such as the Fast

Fourier Transform, for rapid computation of convolutions). Among the curves

which can be fitted by the system are cubic splines, least-squares polynomials,

and trigonomietric series.
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3.4.2 MANIPULATION OF MUSICAL NOTES

The program was written in order to enable musicians to input music by

using the same notation with which they are familiar. By using the display

system a musician can input a piece of music by writing notes with a stylus in

just the same way he would write them on Paner. These notes are stored in the

computer such that they can be performed by the computer or, if so desired,

be edited and re-performed. (fig. 7)

It is not clear that a system like this can improve the process of writ-

ing music by composers. However, it does demonstrate an important concept.

This graphics system embodies a new kind of notation such that users can com-

municate in the notations without ever referring to any idlosvncracv of com-

puter language. A musician with no knowledge of any computer system can

learn to use the system within a few minutes.

3.4.4 DECISION• ANALYSIS

The DECision and ANalysis program was a preliminary effort at the design

of an interactive graphic system for aiding in decision analysis. DECAIN is

based on the use of a tree structure as the model of a decision problem. This

form of analysis has been growing in popularity and is used in several courses

at Harvard and M.I.T.

Unfortunately, as decision problems grow larger and more complex, the

need for computational essistance from a computer quickly becomes evident.

Ordinary batch-oriented and time-sharing computer facilities are not adequate.

The decision analyst must be able to experiment freely with changes in the

underlying structure of his model as well as the changes in individual parameters.
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He should be able to do this without the loss of the conceptual clarity pro-

vided by a two-dimensional representation of the tree structure Only an in-

teractive graphics system can provide the analyst with this type of support.

A user of the PDP-l DECAN program constructs his decision tree, labels

its branches, and inserts parameters by means of light pen connected to the

cathode ray tube display unit. If his tree grows too large to fit entirely

within the display window, he can use the joystick to indicate the portion of

the tree he wants to observe. After the model has been constructed, the pro-

gram will compute the optimal decision and display it as a path through the

tree. DECAN is very easy to use and can be learned in about two minutes by

anyone familiar with the analytic techniques upon which it is based.

The current DECAN svstem is useful for only a highly restricted subset

of decision problems. But it does indicate the potential for a more sophis-

ticated system.

3.5 DESIGN APPLICATIONS

Computer-aided design is an area in which graphics is a natural form of

communication. It can serve as the interface between man and machine, provid-

ing the designer with a familiar means of dealing with his work. Behind the

graphical equipment stands a program specific to the application that under-

stands the design and can interpret and measure it.

Computer graphics is useful to the design process both as a natural means

of input and as a quick and flexible means of output. A typical system for

graphical computer-aided design allows the user to enter his design by drawing

it schematically. This representation might satisfy certain conditions according
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to the application (for example, only horizontal and vertical connections

might be allowed in an electrical drawing). The system can help the designer

in planning the physical form of his design and in producing complex diagrams

quickly from simple components. It can relieve the designer of many repetitive

tasks, and tedious calculations.

After the design is entered graphically, the computer program can eval-

uate it on the basis of certain rules and measurements. It can perform routine

checks and calculations and supply the user with the results, perhaps in gra-

phic form. In the case of civil engineering, this stage might involve stress

analysis or weight distribution analy"sis. Any evaluations that the computer

displays to the user should use the same symbolic form in which the design was

represented by the user. In this way, the feedback is made very natural and

easy to understand.

We made mention of two design programs above in the section on simulation

of systems. These are the urban traffic simulation and the program for logic

design. The traffic program allows one to specify the street map to be con-

sidered, the placement of traffic signals, and their time settings. Feedback

from the program comes in the form of graphic simulation of the traffic moving

through the streets. One is then free to modify the map or the signal timings

and to see the resulting effects on traffic flow. The process of designing

the map is made quite simple and efficient, as is the nrocess of specifying

time patterns for the traffic lights. Thus, the design of a network of inter-

sections is made interactive, and the designer can see how good his plan is

immediately, in graphical form.
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The logic design program is similar in approach. One has at his com-

mand flexible but powerful tools for drawing a logical network. Individual

units are specified by the designer, both in representation and in formation.

The program is a considerable aid in drawing complex designs because one

can draw repetitive structures simply, and make all connections neatly and

systematically. Also, one can consider as large or as small an area of the

"drawing board" as he wishes, and can move around it at will. Finally,

one can apply any arbitrary signals to the circuit and observe the results

graphically. Both of these programs constituc - tremendous savings in

time and money over the more usual method of building the design and experi-

menting with its use. (fig. 8 and 9)

3.6 EXPERIMENTS ON VISUAL PERCEPTION

The space pen interfaced with the PDP-I was first operational in September,

1970. It consists of three orthogonal plane microphones and a spark pen.

The pen launches a shock wave from the hole in its tip each time a spark ex-

pands the gas in the pen. At tht- same time, three counters are started; each

is stopped by a signal from the corresponding preamplifier when the shock wave

first arrives at the microphone. Tests indicate that the point specification

accuracy of the spen system is one part in 512.

As reported earlier (ESD-TR-70-202, p. 13), the display system uses the

field sequential filter technique. It consists of using a hand held motor

which rotates a filter disk in front of the eves. As the eyes are lookinp

through red filters on the disk, the computer display presents image elements

to be seen as red, or having a red component of their color, and so on.

Typically this is done 20 times a second, a speed e-asily fused in the visual
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system for simple image tasks, the observer seeing the additive mixture

of colors in the image. The system also offers the possibility of stereo

viewing, since areas of the filter wheel may be opaque, thus selecting the

eve which •:ill see the display, in addition to the color. Using a filtpr

wheel which is half-opaque, one can do black and white stereo and reproduce

all of the binocular rivalry experiments done during the past one hundred

years. It has been interesting to observe that since the real world does

not present us with rivalrcus information except under extraordinary cir-

cumstances, persons viewing the binocular rivalry experiments often have

differing responses, thus indicating that no inate interpretation system

exists for this viewing task.

A moving dot experiment demonstrates two features of time-dependent

viewing: We apparently integrate backwards from a "significant" perceptual

event to process visual information residual in dte neurophysiological sys-

tem, and the cognitive field for recognizing simple forms is restricted to

the small central visual field when slow writing rates are used in displays.

During the course of talks presenting much of the experience in using

the display system for perceptual experiments, two viewing events have been

acknowledged as unique. Using the fast phosphor display (60 microsecond de-

cay, P-4 phosphor), one moves a dot in a line at speeds selected by some in-

put device. The visual experience for velocities of about 10 cm/sec is to

see a short line, from which the dot appears to then move along the rest

of the path. This results from the delay time necessary to establish the in-

voluntary smooth pursuit of the visual system. Moving the dot in a square

provides four points, the corners as starting locations for lines resulting
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from this effect, and these are observed. Also related to the servo sys-

tem,which smooth pursuit requires, is the observation of overshoot at the

corners when vision is not fixated at the corner, but follows the moving dot.

The surprise is that lines are observed coming into the corners; their length

corresponds to times of the order of 50 ms. It seems that the corner

event causes the mind to reconsider the information about the dot seen prev-

iously and to integrate it into the more informative feature, a line. This

effect has been independently observed by a group working with John Ross in

Western Australia.

A further remarkable feature of the dot moving in the square at speeds

such that the square just seems to close (the lines from the corners seem to

meet on all sides) is that one cannot recognize the square trace except when

fixating close to or within the square. If one fixes his attention at a point

some 10 degrees above the figure, the square merely appears as a collection

of corners, the array differing from one subject to another. It would appear

that the primitive "square detector" only operates for certrally fixated

images within the time domain represented in this experiment.

A wide variety of related perceptual experiments have been performed,

with results familiar from psychological studies done with exceedingly more

complicated equipment. The moving picture effect, where a fast sequence of

still pictures with subtle differences indicates motion, is available with the

interesting flexibility provided by continuous adjustment of image displace-

ment and framing rate. Adjustment of display timing can also produce "meta-

contrast" or backward masking events -- e.g., displaying a letter, then

some 100 ms later a box surrounding it, makes the letter unobservable to
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the human visual processing system. One may also simulate the display of

multiple slides and observe the decrease in change rate as the number of slides

increases. The very subtle and variable "sub jective colors" are also available

by: producing flickering reference fields within which a flickering stimulus

with increased extinction time brings a response, indicating that color is be-

ing observed from the time-dependent color vision system of the eve.

3.7 DESIGN OF COMPLEX ORCANIC SYNTHESES

LHASA (Logic and Heuristics Applied to Synthetic Analysis) is the name of

an interactive Organic Chemistry program which has been gradually evolving over

the past four or five years under the Ruidance of Professor E. J. Corer of the

Harvard Chemistry Department. We give a brief introduction to the program environ-

ment, and then deal with some of the more recent developments in greater detail.

When a synthetic organic chemist analyses a synthetic problem he is basi-

cally trying to derive a sequence of chemical reactions which starts with

structurally simple molecules, and gradually builds them up to a fairly com-

plicated structure, called the "target" molecule. There may be any number of

reasons why the chemist would want to synthesize a particular target compound,

but that is of no importance here. ••hat is of interest is determining one or

more chemically valid reaction sequences ("pathways") to the target molecule.

The approach chosen is to analyze the target compound, and generate a collection

of molecules, each of which is one known chemical reaction away from the target.

Then any of these is in turn analyzed as the target, generating another col-

lection of precursors. The analysis continues in this fashion in the "retrosvn-

thetic" direction until one or more simple, readily available compounds result.

So during the analysis, a tree of organic structures has been grown. The branches
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of the tree correspond to, hopefully, valid synthetic pathways from the

simple starting materials up to the complex target structure.

The chemist enters the target structure to the computer (Harvard's PDP-I)

via a Rand tablet and stylus, and draws the molecule exactly the way he would

draw it on paper. There are various stvlus-activated "buttons" on the scopes to

allow manipulation of the structure. The perception module of LHASA is brought

into play at this point. It looks up the raw input data in the atom and bond

table, and gleans from it synthetically significant structural information, such

as functional 6roups, aromaticity, ring systems, etc. One of the chemistry

packages is then swapped in, and it matches various features of the molecule

with the internal reaction tables. When it finds a reaction (or transform,

in the retrosynthetic direction) which it deems contextually reasonable, it

applies it to the target structure and displays the new structure to the

chemist. Typically it will generate about ten new structures from the analy-

sis of the target. The "tree" is displayed on a second scope, with the tar-

get a. the top, and the immediate precursors fanned out below it on one level.

When LHASA can do no more chemistry on the target, it returns control to the

chemist. fie can then select any of the first level precursors and process

it as above, causing the tree to grow down another level, and so on.

The use of computer graphics in this form represents the ideal of

communication for this chemical application; it fs for the chemist by far

the most natural and efficient, and also the easiest means of structural

communication.
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The second phase of this project, now in progress, continues the use

of graphical communication, but involves the use of a far greater chemical

data base, a sophisticated program for automatic selection of chemical trans-

formations and strategies, and very advanced software for internal evaluation

during the problem-solving process. Use is still made of the venerable PDP-l

facility, but simultaneously the program is being rewritten and refined for

Harvard's PDP-1O facility which is linked to the PDP-I and associated

graphics equipment.

The theory of chemical synthesis is being developed in an abstract and

general form for the first time, and it is being put to the test of appli-

cation in the developing computer program. A new and uniquely organized form

of the chemical data base is also being elaborated. The data base now con-

tains about 300 chemical reactions. At present the program (which is in highly

modular form) runs to about 50,000 fines of code (in DECAL, the PDP-l assembly

language) and uses all the available memory of the PDP-l, including a 2.25 x

610 bit magnetic drum used with swapping as a virtual memory. The modular

form of the program allows the continued use of the PDP-1 to develop new sec-

tions of the program, however.

The new version of the program being prepared for the PT)P-l0 is almost

all in FORTRAN IV with a minimum in assembly language to reduce machine de-

pendence and make the program relatively ea3y to use by others. It will

probably not be complete, however, until the remaining major modules of 'the

chemistry program are developed. The most difficult of these are the strategy

and stereochemistry modules, which represent major undertakings.
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In order to codify the huge collection of known synthetic reactions it

was necessary to classify them according to the type of molecular substructure

resulting from the reactions. The following five major classes have been estab-

lished: (1) two-group transforms, (2) single-group transforms, (3) functional

group interchanges, (4) functional group addition transforms, and (5) ring-

oriented transformations. 'The first four classes are operative now in LHASA,

and work is progressing on class (5). Transforms in classes (I) and (2) have

the effect of simplifying the structures on which they are allowed to operate,

and so, are said to be goal-directed. However, those in classes (3) and (4)

simply modify certain no-tions of the molecule, and so either do not simplify

it, or increase the complexity of the molecule. Indiscriminate application of

transforms in those classes would be counterproductive to a "rational" synthesis.

Therefore those transforms are relegated to subgoal status, that is, they are

only allowed to go if they somehow set up the molecule for subsequent appli-

cation of a class (1) or (2) transform which was previously blocked.

The method chosen to represent the transforms in the corputer is

quite interesting, and is the result of a great amount of theoretical work

in the LHASA research group. Since there are thousands of known organic re-

actions, and probably billions of theoretically stable organic compounds, it

would be clearly impossible to have a direct lookup scheme for each organic

molecule. Instead only the substructures involved in the known reactions havP

been included in the tables. ThLs obviously simplifies the storage

problem, howeve; it is not enough. All organic reactions can be affected by

electronic conditions in various parts of the molecule, and a chemist must
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take the rest of the molecule into account in deciding whether or not a

reaction will take place at the desired location in the molecule. To handle

these contextual considerations a table-oriented interpretive language has

been developed which is quite readable to chemists with little or no programming

experience. Once the program finds that the molecule has a certain substruc-

ture for which it has a matching transform, it then processes a set of ques-

tions and actions associated with the transform. These actions, written in

the interpretive language, effect a modification of a basic transform rating.

For example, if a transform is adversely affected by the presence of a certain

functional group in the molecule, that question would be written in a table,

and the transform rating would be decreased if the interpretor program found

a group of that type in the molecule. Those transforms which fall below a

cutoff rating are eliminated from further consideration. Hore recently, a

new interpretive language has been designed to be used with the transforms of

class (5). It is even closer to Chemical English than the first language, and

is slightly Algol-oriented in its sentence and logic structure.

In the last year, much work has been done in teaching LHASA about stereo-

chemistry. In certain molecules, such as those which have asymmetric centers,

stereochemical considerations outweigh all others in designing an effective

synthetic strategy. The first problem was to design a simple and familiar

method of inputtinig stereochemical information via the pen and tablet. This

can be done now, using buttons which display bonds as being dotted (behind the

plane) or wedged (sticking out of the plane). This is quite similar to the

way a chemist would indicate stereochemistry on paper. From this basic
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information, a stereo perception module perceives cis and trans ring appendage

relationships, and cisness and transness at double bonds. It will also per-

ceive absolute configurations at asymmetric carbon atoms.

Development of stereochemical perception and manipulation techriques was a

necessary precursor to the present implementation of ring-oriented chemical

strategies. One of the ring transforms, the Diels-Alder reaction, has been

the subject of recent work in the UISA group. Because of its synthetic importance,

it is being handled differently from transforms in other classes. Instead

of requiring an exact match in the molecule, the program will go to unusual

lengths to set up an exact match, if a part of the molecule even vaguely re-

sembles a matching situation. Using the interpretive language just develop-

ed, the program calls subgoals to modify certain offending regions of the

molecule, until it is finally clear to perform the Diels-Alder disconnection.

Each of the modifications of course must correspond to reasonable chemical

reactions. The effect of this sequence would be seen on the tree as a branch

growing down several steps, instead of growing across on one level. Eventually

this technique will be extended to other major transforms.

Much of the work in the past has centered around adding new reaction

classes to the program. What is being implemented now, as indicated above,

is a collection of synthetic strategies. These strategy modules will

examine the structure and decide which collections of transforms would

be best to apply, and how hard to work to clear the way for the appli-

cation of certain powerful transforms. Look-ahead techniques will lead the

analysis through seemingly counterproductive intermediate steps, if the end
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result is a drastic simplification of the structure. At all times of course,

the chemist can retain full control of the direction of the analysis. The

philosophy so far has been toward the implementation of new strategies which

will guide the search automatically, but still leave the chemist the option

of manually selecting certain chemistry packages, as he has in the past.

With regard to the "intelligence" of the analyses produced by LIHASA, a

number of compounds that have appeared in the Synthetic Organic literature have

been processed and have often come quite close to the published syntheses. In

some cases LHASA has come up with more elegant solutions. While there are

still many glaring holes in LIIASA's chemical knowledge, its performance within

its sphere of expertise has been very reassuring.

In the longer run it is envisaged that sometime durirg the period 1980-85

computer-assisted synthetic analysis will be a standard technique used by

scientists everywhere. The technique will make possible tremendous savings

in time and also permit the chemist to develop more sophisticated and more

efficient chemical syntheses at lower cost.

As the objectives of the vrogram are attained, it is likely that other

related projects will be initiated. Most interesting of these at present is

research on the use of computer graphics in computerized instruction in

chemistry and in chemical information retrieval. Also of substantial potential

importance is the addition of a learning capability to the problem-solving program.

The original publication on the LHASA program (then called OCSS) appeared

1
in SCIENCE in 19691. Three more major papers have been accepted by J. Amer.

1E. J. Corey and W. T. Wipke, SCIENCE 166, 178, (1969).
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2/

Chem. Soc. for publication in early 1972. The first of the three2 deals

with the graFhics section of LHASA and discusses its interactiveness with the

chemist. The second paper 3 discusses the various perception modules and per-

ception algorithms. It also describes the data structures chosen for the dif-

ferent parts of the program. The last and largest of the three4 details the

chemistry packages, and discusses the table-oriented chemical language that

5
was developed. A fourth paper will also appear, describing a new ring per-

ception algorithm of general applicability. Currently work is being done on a

second set of papers dealing with stereochemistry, the theoretical work on

the Diels-Alder reaction, strategic bond perception and application, and new

algorithms developed for the FORTRAN version of LHASA being written on a PDP-10

computer. In addition, smaller articles have appeared in Computer Decisions

(1970) and Scientific American (1970). Various aspects of the LHASA project

have recently been presented by Professor Corey at:

(1) American Chemical Society symposium in Rochester, October, 1970.

(2) Hoffmann-Laroche in Basel, Switzerland, October, 1970.

(3) A seminar at Northwestern University, September, 1970.

(4) American Chemical Society symposium, Los Angeles, March, 1971.

2E. J. Corey, W. T. Wipke, R. D. Cramer, and W. J. Howe, Journal of American

Chemical Society, 94, (1972).

3E. J. Corey, W. T. Wipke, R. D. Cramer, and W. J. Howe, Journal of American
Chenical Soclatv, 94, (1972).

4 E. J. Corey, R. D. Cramer, And W. J. Howe, Journal of American Chemical Society,
94, (1972).

5 E. J. Corey, G. A. Petersson, Journal of American Chemical Society, 14, (1972).
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)

(5) The Centenary Lecture at the Chemical Society meeting in London,

April, 1971.

(6) A seminar at the University of Michigan, May 1971.

(7) The 23rd International Congress of Pure and Applied Chemistry

in Boston, July, 1971.
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SECTION IV

THE ECL PROGP"IING SYSTEM

The ECL programming system has been designed as a tool for tackling

"difficult" programming projects, that is,projects on which existing languages

could be used only with considerable waste in machine or programmer time.

Such projects include much of the frontier of computer technology;

whenever several application areas are conjoined and whenever solution of a

problem requires linguistic development -- in algorithmic notation or inform-

ation structures. Examples range from the management of large scale distribut-

ed data bases to applied artificial intelligence.

Specifically, projects of this nature are systems characterized by two

requirements:

(1) Conside-able experimentation is required to develop the system;
that is, the design and development of the system must go hand
in hand. Typically, this occurs when problems are so complex
that significant computer assistance and emxerimentation are
needed in system design.

(2) When a complete system is ultimately designed and programmed, it
must be possible to take the working programs and produce a high-
lv efficient product - both in machine time and space - with no
change to the basic algorithms or their representation.

The ECL system has been designed as a vehicle for such undertakings.

At the present time an experimental version of the system is operational --

a version which only partially meets the above requirements. Additional

svstem development is underway and will continue for some time. This dis-

cussion outlines the goals of this work and the ECL system as planned.

The ECL programming system consists of a programming language, called

ELl, and a system built around that language to provide a complete environment

for the human-oriented use of the language. The system allows on-line
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conversational construction, testing, and running of programs. It includes

an interpreter, a fully compatible compiler, and an editor -- all callable

at un-time, on programs constructible at run-time either by the programmer

or as the result o' computation.

ELI is an extensible language. Thus, it provides a number of facilities

for defining extensions so that the programmer can readily shape the language

to the problem at hand, and progressively reshape the language as his under-

standing of the problem and its solution improves. Like the familiar notions

of subroutine and macro definition, these extension facilities allow one to

abstract significant aspects of a complex algorithm. Such functional abstrac-

tion serves both as a representational aid and as a handle or 'he production

of an efficient product.

Specifically, the language provides facilities for extension of four

axes: syntax, data types, operations, and control.

(1) Syntactic extension allows the specification of new linguistic

forms and their meaning in terms of existing forms.

(2) Data type extension allows the programmer to define new data types

and ne-j information structures whenever needed to model the pro-

blem at hand. Ell is significant in this regard in that consider-

able attention has been given to the efficient representation of

programmer-defined data types. There is a special compiler for data-

type definitions which computes space-efficient packing of structures

into machine words, and generates machine code for rapid handling

of objects and their components.
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(3) Operator extension allows the programmer to define new operations

on new data types and to extend existing operations to cover new

types. There are two key points here:

(a) Operators and procedures are not restricted to act on built-

in types in the language but can, and in general will, take

arguments whose mode is programmer defined.

(b) Declarations can be made to allow the compiler to perform

type-checking and type-conversion code generation. Hence, it

is possible :o write programs operating on extended data types

whose execution at run-time is comparable to that for using

built-in modes.

(4) Control extension allows the creation, deletion, and coordination

of independent asynchronous processes, called paths in ECL. The

extension mechanisms are sufficiently flexible that co-routines,

the P and V operations of Dijkstra, multiple parallel returns, and

path scheduling are ail definable in the system as proper extensions.

Hence, it is straightforward to program almost all known control

structures as well as an unknown variety of others.

In addition to these definition mechanisms provided by the language, the

ECL programming system provides a number of other handles which the programmer

can use to extend and tailor the environment in which he operates. Many of

the system's facilities are written in the language and hence open to argument,

modification, and replacement by the programmer. These include the compiler,

the editor, and most of the input/output and file system.
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vxtensibility alone is, however, not sufficient; its counterpart --

contractibility -- is also required. That is, having produced running pro-

totype programs, it must be possible to subject these Programs to a sequence

of contractions -- commitments with respect to subsequent nonvariation so as

to obtain a final system optimal for the project requirements.

The ECL programming system and the ELl programming language have been

designed to allow this. Programs can be run either by an interpreter or a

fully compatible compiler. Compiled and interpreted functions can call each

other in either direction. Compilation can itself be progressively refined.

Thp programmer is free to supply as much declarative information as he wishes

(or knows) at a given time and the compiler will do the best it can with the

information given. Successive recompilation with additional information will

produce progressively better code. Such contractions include: evaluation of

arbitrary expressions at compile-time, fixing the values of procedures and

operators, fixing the lengths of arrays, and fixing the data types of both

local and free variables. For example, one can specify that the data type of

a variable fall into any of the following categories: 1) It is completely

dynamic at run-time, 2) it is restricted to a specific set of fixed modes,

3) it is a fixed mode but its length is not fixed, 4) its mode and size are

both fixed. The programner can choose, for each variable, in which category

it is to fall, and he can choose agiain -- with minimal programming effort --

as the project progresses.

At the beginning of this section, we described ECL as a tool for tackling

"difficult" progranmming projects. As evidence that this goal has been ac-

complished, we can cite an extension of ECL which was designed and constructed
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4n two weeks by one of us; the extension provides the equivalent of the SNOBOL

language designed and implemented on the IBM 7094 by Farber, Griswold, and

Polonski at a cost of, we would estimate, at least two orders of magnitude more

effort than was required using ECL.

In summary, the intended application of the ECL programming system is the

programming project which would otherwise be prohibitively uneconomical. To

this end, the ECL system has been designed to allow flexible programmer-oriented

program construction and testing coupled with facilities for sulsequent optim-

izing contractions which produce an efficient final product.
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SECTION V

COMPUTER NETWORKING

5.1 NETWORK DEVELOPMENT

During the spring of 1970, the problem taken up by our seminar in op-

erating system design was the interconnection of the PDP-I and PDP-10, the

objective being to give the graphics user accers to the greater computational

power of the larger machine and, conversely, to make the PDP-l peripheral equip-

ment (notably, the line printer, tablets, and displays) available to PDP-1O

users. An additional motivation was that the LHASA project (see section 3.7,

above) would soon expand beyond the resources of the PDP-I. Although a high-

speed, half-duplex link between the two machines was under development, analysis

showed that attachment of both computers to the ARPA network would yield signifi-

cantly larger benefits. Accordingly, our main effort was directed toward im-

plementing that method of interconnection. During June, 1970, four of our

students participated in the (primarily) UCLA and University of Utah final

development of the HOST-IHOST protocol.

Design and implementation of the IMP service routines and NCP for the

?DP-10 was accomplished by R. L. Sundbere. starting in July, 1970. At this

time of writing, this work is finished, save for repairing any additional

bugs encountered during usage. Design and implementation of a PDP-l time-

snaring monitor (the monitor previously in use was a single-user monitor) and

..,P was accomplished by W. R. Conrad, starting in September, 1970. This work

is also finished. User manuals for both systems will be available shortly.

Since completion of the hardware interfaces to the IMP at the beginning

of 1971, a number of programs have been written using the graphics facilities
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of the PDP-l and the computational power of other processors. The first of

these was an effort to run an aircraft carrier landing simulation program us-

ing the combined resources of the Harvard machines and the Project IMAC PDP-1O

and LDS-1. The program was edited, assembled, and loaded on the Harvard PDP-lO.

A core image was then sent through the network to MAC, where it was executed.

The LDS-l was activated and caused to store a computed image. This was then

sent to the Harvard PDP-I for display. The system was made sufficiently oper-

ational to demonstrate the bandwidth restrictions imposed by the 50 kilobaud net-

work transmission rate; update rate approximated one frame per second. Bugs

in the LDS-1 and the 14AC network interface prevented completion of the experiment.

Use of the PDP-I line printer from the PDP-10 has been a daily occurrence;

using the PDP-I as a high-speed character display terminal is also common. 71ese

programs suffer a bandwidth restriction from the gyrations necessary using the

(interim) pseudo-celetype mode of communicating xith the PDP-10. The band-

width constraint is around 10 kilobaud; this constraint will be relieved when

the programs are rewritten to use the NCP's.

A package has been written to make PDP-l display file generating subroutines

directly callable from FORTRAN on the PDP-I. This has been used to write a

number of small applications graphics programs. We hope soon to have (using the

new monitor) a multi-user graphics facility, using the displays, tablets, and

teletypes on the PDP-I a3 terminals to any machine on the ARPA network.

5.2 FILE TRANSFER AND CONVERSION

The lMP-IMP and HOST-HOST protocols for the ARPA Network provide a standard-

ized means, independent of the types of hardware and/or operating systems
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comprising the HOST systems, for routing and transferring data between HOSTs

This means that use of a local network control program to get a connection

established and to send data to a distant HOST is done in the same way, indep-

endent of the characteristics of the distant HOST. Contrariwise, the fHOSis

are oblivious of the logical structure of the data transferred -- data is treat-

ed as a stream of bits (or bytes of a specified size). Thus, responsibility

for resolving problems arising from differences of data organization and re-

presentation at the two HOSTs devolves on the data management and/or user pro-

grams running on the two HOSTs. Current 'Network Working Croup efforts are

in part directed toward defining file and data transfer protocols which will

further reduce the sensitivity of user programs to differences between HlOST systems.

We note at this point that the overall problem is virtually identical to

that faced by moLt computer installations in the mid-sixties during conversion

to new systems; the total cost amounted to hundreds of millions of dollars.

The net effect of this experience was to lock a sizable percentage of all in-

stallations into 7ontinued use of essentially their current type of hardware,

languages, and mass storage systems -- to mount another large scale conversion

effort is, for a great number of i.:Lallations, literally unthinkable. By the

same token, ;he manufacturer iL. locked into perpetuation of his current instruc-

tion set, except possibly for extensions.

The implications of the above are clear; to the extent we can find ways

of transfer and conversion of data which are automatic, rather than requirinp

changes in user programs to match the distant hlOST, we will have contributed

,
For the purposes of titis discussion, program transfer and storage is considered

to be a special case of data transfer and storage.

60



toward avoidance of the systet conversion trauma and expense -- the potential

payoff is almost incalculable. This is to say that our stakes are far larger

than might be inferred from consideration of our desire to promote use of the

ARPA Network by automating the file transfer and conversion process to the

extent practicable.

While we cannot pretend to have a "solution' to this set of problems

in hand, we have developed a set of insights, to a great extent embodied in

the ECL system, which seem to us to be essential ingredients of any partial

or complete solutions. These are descirbed in the remainder of this subsection.

5.2.1 PHIENOIENA, DATA, AND DATA REPRLESENTATIONS

A collection of data is, we contend, a theory concerning some set of

rhenomena. That is, one posits some set of entities or objects (people, in-

ventory items, or the like) and makes some set of assertions about them ("the

name of that person is John Doe, his age is 43, his sex is male, his wife's

name is Jane Doe, his license number is 031165810", and so on). Thus, the

data can be viewed as a conjunction of predicates cf the form "the value of

attribute zilch of entity zot is zatch." This theory corresponds, in the case

of a punched card representation of the data, to a set of cards for entity

zot, the field named zilch having the value zatch punched into it. If the cards

are transcribed to tape or are printed, we have another representation of the

same data. Thus, we may say that a data representation is any way of recording

the data (the theory) for purposes of communication, storage, or processing.

5.2.2 DATA TYPES

Just as we have a dual notion of data (that is, the theoretical object

as opposed to a representation of that object), our intuitive notion of data
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type e:nhibits a similar duality. At the theoretical level, the data type

(for instance, integer, real, list, and so on) corresponds to the behavior

of data of that type -- that is, to the allowable processing operations.

For example, we can concatenate two lists, but we cannot divide one by another;

division is an undefined, or unallowable, operation for data of type list.

On the other hand, a data object (that is, a representation of a data

item or collection) also has a data type. This data type has properties in

addition to those of the generic data tvoe (the type of the data being re-

presented) which relate to the specific manner of representation -- e.g.,

representation of an integer as a 32 bit twos complement binary number -- and

to the storage organization of the data object, which specifies how it is

mapped into storage. In order to maintain this distinction, we shall use the

term mode to denote the data type of the data object, and the term data type

to denote the generic data type. Evidently, a theoretical data time or col-

lection has one data type, but may have a different mode in each representa-

tion as a data object.

5.2.3 DATA DESCRIPTION IN PROGPIMING LANGUAr.ES

The distinction between data type and mode is confounded in most program-

ming languages, including FORTRAN, COBOL, ALGOL 60 and PL/I. It is clearly

the intent of most language designers to emphasize the notion of data type,

rather than that of mode; the object of standardizing a language is, to a

large extent, to permit transferability -- that is, to so arrange things that

a program may work correctly in an evironment different from that in which

it was first written and checked out, using different representations for the
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data. Ideally, an ALGOL 60 program using the data types int, real, and bool

should work correctly in any envirr.ament.

On the other hand, we find the notion of mode cropping up in some language

designs. This is due to a desire for efficiency of program execution and/or

data storage in hardware environments which permit, for instance, several

hardware representations of integers (for example, on the IBM Svstem/360).

Thus, both PL/I and COBOL allow the programmer to select a representation

(e.g., COMPUTATIONAL-2 in COBOL or INTEGER BINARY LENGTH(32) on PL/I).

Finally, we note that, even using languages which allow no choice of mode

for a given data type, it is not uncommon to find features of programs which

depend on knowledge of the representation which will be used by the programming

system (for instance, precision). We can be confident that such programs will

not operate correctly in all environments, due to differences in representa-

tion of the data types.

What, then, is needed to permit "automatic" conversion of files? To say

that we need a complete description of each file is hardly illuminating, for

there are cases of what seems to be complete descriptions that are incomplete

from our present point of view. An example would be a COBOL description --

it is not enough to know that a data item is COMPUTATIONAL-2, for we need to

know the representation used, not merely the name for it used in the Data

Division. In addition we know that padding is frequently used in COBOL im-

plementations to ensure that data items fall on appropriate storage boundaries --

complete description must communicate this fact.

Indeed, we cannot specify precisely what we mean by a "complete description"

at present. This question is currently under investigation in the context
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of ECL. In the remainder of this subsection, we sketch what appears to be

needed for an ECL input/output facility which uses internal representations

in order to illustrate problems additional to those touched upon above.

5.2.4 AN ECL INPUT/OUTPUT FACILITY

ECL has a number of primitive (that is, defined by the system implemen-

tation) modes, among which is the mode DDB (Data Definition Block) containing

all necessary defining information for data objects of that mode. Among the

primitive modes are the basic modes -- defining such modes as BOOL, INT, REAL,

CHAR, ATOM, and REF.(ATOM is the mode of an entry in the symbol table, while

REF is the mode of a pointer to a data object of any mode). Other modes are

definable by the user in terms of the basic modes and three mode constructor

functons ROW, STRUCT, and PTR. ROW constructs a data object which is an order-

ed sequence of data objects of the same mode -- a one diminsional array.

STRUCT constructs a data object which is an ordered sequence of data objects

of inhomogeneous mode, each of which may be named (as in COBOL or PL/I). PTR

constructs a data object which can point to data objecte of any one of a number

of specified modes (this allows a more efficient representatinn and processing

than use of the node REF).

Let us consider output of a data object, accomplished by calling a func-

tion WRITE(A,P) where A is the name of the data object and P the name of an

output port. WPITE has both the location and mode of A available to it. In

order to ensure that A is fully described in the output file, we must do some-

thing equivalent to writing out the DDB for the mode of A. Each DDB contains

a field wAich contains the external form of a character string which defines
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the mode (that is, from which a DDB can be constructed by the system), for

instance

"STRUCT(A:PTR(I'NT,REAL),B:POW(2,INT))"

This defines data objects of class STRUCT; their first component is a pointer

to an INT or to a REAL and is named A, and their second component is a TROW of

2 INT's, named B. One could either output the above canonical name for the

mode in front of the daia object or output each new canonical name as it is

encountered and reference it by its serial number in front of each data object

of that mode. Of course, any component modes whose definitions had not occurred

in the output streams would have to be written out first.

The question of what to do about imbedded pointers is more involved (as

in the above example). The question is, how do we tell whether the data ob-

ject pointed to should be output as well as that containing the pointer? This

can be done bv using a syntactic device in the canonical name -- for instance,

writing PTR("INT","rfEAL") in the case that the object pointed to should not be

output. In the former case, we still have the problem of how to represent the

pointers, but this is taken care of by observing that in such cases a sequence

of data objects will be output, and a pointer to any one of them may be repre-

sented by the serial number in that sequence of the data object pointed to. An

inverse conversion must be performed on input, of course.

5.2.5 GENERALIZATION TO DIFFERING ENVIRONMENTS

The above sketch indicates a feasible approach toward input/output, pro-

vided that we are dealing only with a single implementation of ECL, such as the

current PDP-10 implementation. 4e now examine the issues raised by a change

of environment -- for instance, a file written by a PDP-10 implementation of
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ECL and read by a System/360 implementation of ECL. In this case, we first

note that use of the mode INT in the canonical names in the file will not work

because it is not specific as to representation of integers. However, if all

usages were to have been replaced by a more specific mode name on output --

for instance PDP10-INT -- the conversion apparatus in ECL would perform the

proper conversion on input, given primitive conversion functions. Similarly

for other basic modes.

This is not enough, however. The ECL system reading the file must also

have an indication of the environment in which the file was written at the

head of the file. This is necessary, for instance, because compound objects

may be preceded by a dope vector whose form is not indicated by a DDB but is

implementation-specific.

If we generalize further to files read or written by systems other than

ECL, issues escalate again. However, these are questions of standardization

rather than the type of issue raised above. We believe that our conceptual

arsenal is now adequate for the problem. What remains are the experimental

implementations required to sharpen our technique and uncover any remaining

conceptual problems.

See "The Treatment of Data Types in ECL."
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