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PROBLEM
To develop and demonstrate an algorithm (scheme) that will

identify, from among the myriad of possible plana, the most cost-
effective plan for the phase-in and phese-out of vehicle systems —

8 methodology for optimel fleet planning over time,

JISCUSSION -
This rebort describes an optimization methodology that accepts

88 input the numbers and costs associated with slternative mixes of
vehicles (machines), such that each mix can perform s series of tasks
with equal effectiveness, and provides as output the numbers and cost
of the "least-cost-mix" that will meet a prescribed level of effective-
ness,

The concept of the new algorithm is easily seen by comperison

with traditional methods of solutions as implied by the following

sketch:

|

System
Quantity

NEW_METHOD




In the traditional methods, a future time (planning) period is

selected, at the beginning of which all of the considered syastems could

be made available if desired, and certain approximetions made regarding

the inherited assets (existing systems) and their status. The optimiza-
tion is then conducted on a one-time (snap-shot) basis for the selected

period of time (typically 10-12 years) as implied by the dashed lines

in the shaded portion of the sketch., No informetion is made availedble,

or is provided, regarding the interim period between the present time

and the start of the planning pericd. In addition, it is typical for

all data (both input and output) to be considered to be averaged over

et ]

the planning period.

—

In the new algorithm, the optimization is conducted "dynamically"
over an extended period of time (say 15-25 years) beginning with the

present status of the existing systems and concluding at the end of

the planning period. This permits full and explicit consideration of

[ = 20 £ =2 o B 8 0 B 20

the inherited assets and their aging characteristics as wc’l as the
| initial operational capability (IOC) dates of the proposed new systems |
and their growth characteristics. The optimirzation is conducted over

the complete (extended) periocd, phasing out old systems (e.g., system A) !

as obsolescence occurs, and phasing in new systems (e.g., systems B & C)

t
as they become available, The response to changing military requirements L_[v

is controlled by structuring the complete period in terms of smaller and ({
smaller subperiods so as to obtain (almost) & continuous adjustment of - ’
the status of all systems, 8s implied by the s0lid lines in the sketch, Lj'

It is noted with emphasis that the user must specify the input date

arrsy which deteils the tesk (mission group) requirements for each sub- QJ

period within the planning horizon. |
8-2 {
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In specific terms, the methodology:

The mathematical statement of the programming problem is of the .

following form: Find a vector x = (xl, couy xn) that will

n
minimize ¢ (x) = I ¢, (Xi) !

subject to x€E G, O £ x £ L ‘

where

L

and the subscript i, i =1, 2, ... n, denotes the vehicle type, There

are two restrictions on the form of the cost function, First, the

‘as the ege of the vehicles increase,

Provides a global (optimal) solution over the entire time
period of interest,

Accounts for, and makes optimal use of, inherited essets,
Determines when and if to phase-in new systems,
Determines 1f and when to phase-out existing systems,

Can account for step~discontinuities in cost, such as develop-
ment expenses,

Can account for decreased procurement costs as the quantity
of systems incresses (leerning curve effect),

. ma A — ke R i T T s

Allows input of increased operating costs, if appropriste,

Aliows input of budgetary constraints, by category if appro-
priete, and :

Accounts for "retained value" of the systems at the end of
the time period,

i=l

the total cost,

a vector representing the number of vehicles of each type,

the constraint set,

the vector of upper bounds,

function must be "separable' which means that each type of vehicle

8-3




can be costed independently. The second restriction is that the cumuls-
tive cost curve for an increasing quantity éf each type of vehicle must
be concave, This means that a straight line connecting any two points

on the curve lies on or below the cu  ve at all intermediate points.

These requirements are generally satisfied in cost minimization problems
— that is, those problems where it is appropriate to minimize cost for

a specified level of effectiveness, In addition, there are three restric-
tions on the constraint set: (1) all of the constraints must be lineer,
(2) none of the conatraints cen be strict inequalities, and (3) the
number of vehicles of each type must be bounded from above and dbelow,

The general procedure of the algorithm is es follows: The set
of all possidble solutions is successivelv broken into smaller and smaller
subsets, TFor each such subset of solutions, & lower bound on the cost
of the best solution in the subset is calculated. At each iteration of
the algorithm the subset with the lowest lower bound is dbroken into two
smaller subsets. Eventually, & subset conaisting of exactly one solu-
tion is found and it has an actual cost that is less than or equal to
the lower bound for all other subsets, This is the least cost solution.
The lower bounds are found by solving the problem with linear cost func-
tions instead of the actual concave cost functions,

Once the leasgt-cost solut’ ' n has been obtained, the sensitivity
of this "optimal plan" to possible errors in the user specification of
the input requirements can be determined., 1In other words, the consequences
of the uncertainty of the input dates can be explored by manipulation
(calculations) within the computer program itself, Many of these sensi-
tivity results can be diasplayed sutomatically, as atandard output —
other results cen be efficiently re-computed from the results of the
optimal plan. g-4
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Volume I of this report provides a systomestic development of the

problem structure, a qualitative description of the solution procedure,
and nathematical and operational descriptions of the algorithm. Volume

II provides appendices contasining a demonstration problem, subroutine
descriptions, program flow charts, program listings, and error message
descriptions. Those readers who are interested in a genersl (non-methema-
tical) understanding of the methodology should confine themselves to

the Introdgction, Chapters 1 and 2, and possibly Appendix A. Those

who are interested in the mathematical substance should concentrate
further on Chapter 3., Chapter 4 and the remaining sppendices sre for

the "users" and "programmers.”

CONCLUSIONS

This algorithm provides Army planners with a comprehensive
non-linesr methodology which can be used for ninimieing costs over long
planning periods, While the emphasis in this report is on "fleet
planning”" exercises, the methodology is generally applicable to problem
involving "machines" of any type (e.g., computers, motor/generator sets,
radio sets, etc.).

A principal strength of the algorithm i1s the ease with which
sensitivity analyses can be conducted and the facility with which input
data may be changed to ‘eriodically update the planning process, The
structure of the methodology is usufficiently general to be used in all
optimization problems appropriate to the sssumptions and conventions,
The algorithm cen accept large enough problems, and runs with sufficient

rapidity to be used as 8 standard research tool,

8-5
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INTRODUCTION

The set of criteria which one uses to select one capital invest-
ment proposal over another may vary, but there is no substitute for
being able to view interactive business operations in their entirety;
that is, it is certainly desirable to see the influence of an act:.on,
taken at a given time and place, on the overall costs (or effectivenesi)
of a major procurement program. This report is the result of such an
effort in that most Qquantifiable factors which affect, or are affected
by, & single capital equiipment investment are aggregsted and viewed in
their interactive state. In this way, the program manager can test and
probe a model of his operation to see the influence of each capital
investment proposal.

The manager today is very often faced with decisions regarding the
purchase of capital equipment within a very complex problem environment.
These questions may be familiar ones—8Should the old vehicles be re-
placed?...When?—But the new models won't be available until late in
'73; should we order immediately?—That looks good now, but what about
costs over the long term? These questions are certainly not new to the
program manager—he has been "solving" them for years using axperienced
Judgment and various rules-of-thumb; but, it is no secret that these
methods are not altogether satisfactory. In fact, such methods are weak
because they only begin to solve the problem...such methods are super-
ficial in the sense that they appear to account for the primary factors,
but fail because they do not consider the important interactions. The

methodology reported on here utilizes an interactive model wherein

I-1
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an account is taken of variations in the problem environment gver
time; i.e., the "dynamics" of the long term plan are inherent in the
model..

In most cost-effectiveness analyses it is usual that one seeks to
fini an optimal solution — i.e,, & mini um cost or a maximum effective-
ness solution, subject to certain problem constraints. The following
describes an optimization methodology which accepts as i‘pput t.he numbers
and costs associated with alternative mixes of vehicles (macrines), such
that each mix can perform a series of tasks with ,ual effectiveness,
and provides as output the numbers,schedule,and cost of the "least-cost-
mix" that will meet the prescribed level of effectiveness. The problem
that we consids. here is dynamic, hence, we call this a "phasing"
problem since its solution specifies the orderly and efficlient phase=-in
and phase-out of a fleet of vehicles or machines. In this context,

Hotrickl

has noted that: "Some managements pay only lip service to the
idea that decisions should be made to the best advantage of the total
enterprise and for the long term. All tno frequently, short term
decisions are made that are crippling in the long term." It may be
convenient to think of this problem as a multi-stage decision process
where the interdependence between stages (sub-periods) is due to the
inheritance of a fleet of machines from a previous sub-period.

' The algorithm that is used to obtain the least-cost solution

is of the "branch-and-bound" type and solves a sequence of sub-problems,
each of which evolves into a linear program.2

In Chapter 1 of Volume I we structure the problem by systemetically

developing the array of alternatives to satisfy prescribed requirements.

I-2
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Here the requirements are aggregated into independent groups of missions

in building-block fashion and a concise problem statement is developed.
Chapter 2 provides s qualitative description of the soclution procedure
in order to demonstrate its logic and intuitive appesal, A mathematical
description of the algorithm is given in Chapter 3; here the prodblem
statement is transformed into the geuer:l non-linear programming form,
and the solution procedure explained with some rigor, Chapter k s
an operttiqnnl description that translat: s the algorithm into the
language used in the computer code,

Volume II contains & series of appendices (A through E) designed
for the user and programmer, Included are a detailed deascription of »
sample problem, subroutine descriptions, program flowcharts, a program

listing, and an explanation of all program error messages.
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Chapter 1
PROBLEM STRUCTURE

Let us assume that there exist or that one can generate, lists of
alternative comdinations of vehicles, such that each alternative satisfies
the requirements of a particular mission group.* For example, a typical
set of these alternatives might look like that in Fig. 1,

Vehicle Type | Vehicle Vehicle Vehicle Vehicle Vehicle

| Azternative # h fe #3 # #5
1 L6 15 63 104 138

2 0 15 82 104 138

3 46 0 70 104 138

L 0 0 90 104 138

5 L6 15 o} 167 138

6 o} 15 o} 187 138

7T L6 0 0 176 138

8 0 0 0 196 138

9 L6 15 63 o) 265

10 0 15 82 (o] 265

11 ué 0 70 o} 26:

12 0 0 90 0 265

13 L6 15 0 o] 313

b 0 15 0 o} 328

15 L6 0 0 0 315

16 0 o} o) 0 332

Fig. 1-1. A Typical List of Alternative Vehicle Arrays
Which Could Service a Mission Group

Ideally, each of the alternatives (rows) on a given list must satisfy the

requirements of the corresponding mission group with equal effectiveness.

¥ "Mlsslon group” is meant to be synonymous with "series of tasks" or
"collection of jobs"; the important point here is that vehicles (machines)
may be "pooled” to accomplish the objective(s), i.e., each "Job" need not
be performed by physically different vehicles.

l-1




The Jjob of the optimization methodology is to choose opg slternative from

each list (mission group) so that the total mix is least costly., TFor a
single mission group the task here is & simple one, i.e., One need merely

evaluate the cost of each and every alternative, and then select that one

having the least cost. As long as this list is not unreasonably loang (and
a list of one million alternatives is not unreasonably long), then the task
is not prohibitive, When there exists two or more independent® mission

groups, then the number of feasible comdbinations gres up rather quickly.

Consider, for example, a problem involving eigh’ independent aission groups
each of which contains twenty alternatives, as shown in Fig. 1-2, 8ince the
coat relationships are in general non-linear (fixed RAD charges and learning

] curves), the least-cost-mix will not be the simple combination of the least-
cost alternative for each mission group. The optimisation problem here is

| to select one alternative from each of the eight mission groups such that
this combination (!.B.‘.) of alternatives is the least-gost-mix, Again, we

could attempt to explicitly enumerate each and every combination, but a
little thought will reveal that there exist 208 possidle combinations,
If each combination could be evaluated in one-hundredth of a second on a

modern computing machine, the total set of evaluations would require more
than 50,000 hours of computing time., It is this problem (and only this
problem) which precludes explicit enumeration of all possible solutions and
requires the use of a more sophisticated optimigation technique. Furthermore,
we have not yet considered the additional complexity introduced by the

¥

element of time, i,e,, the problem is not yet dynamic. The requirements

zepresented by the eight independent mission groups described above may de

% Misrion groups are independent if the vehicles used to satiafy one
mission group are not (cannot be) used to satiasfy the other.

1-2
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thought of as originating at eight separate geographical locations dut
occurring at essentially the same time — it is in this sense that the
mission groups are independent. Actually we would like to consider the
more general problem of satisfying an array of requirements in a sequence
of time periods commencing now and ending at sometime in the future. We
can accommodate this additional time dimension in the problem by developing
arrays of mission groups like those of Fig. 1-2 for gagh sub-period within
the total time period of concern. To continue with cur example, we could
develop a tableau like that of Pig. 1-3 which displays eight mission
groups for each of 1% yearly sub-periods from 1971 thru 1985, This is not
to imply that there must exist any regularity or uniformity to the number
of mission groups per sub-period, or alternatives per misaior _-oup, etc.
== there need only exist a finite number of equally effectiva alternatives
for each independent mission group within each sub-period. Of course, the
duration of the sub-period(s) is a measure of the "resolution" of the
problem and should be selected vy the model manipulator (user) from the
state of knowledge which exists of the predicted requirements for that
sub=-period,

Finally, we complete the description of the problem structure
by noting that there can axist at the beginning of the first sub-period
an inherited fleet of machines. This inherited fleet is characterized
by number, type, and vintage* and may be used to satisfy part or all of
the requirements of subsequent sub-periods, It may now be obvious
that the interdependency between sub-periods derives from the inheritance

of machines from sub-period to sub-period and if that inheritance

~ #The vintage or age of each inherited machine will, in general,
influence the operating cost and salvage value of that machline.

14
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vere ignored, then the least-cost-solution for the entire time period

would be the sum of the least-cost-solutions for each sub-period.
The problem structure as defined in the preceding paragraphs

provides the foundation for a concise problem statement:

PROBLEM STATEMENT
We seek tO satisfy the fixed and prescribed requirements in sach
and every sub-period with that mix of machines which will minimize the
total overall cost. This least-cost-mix must obtain from the selection
of one alternative for each mission group within sagh sub-period, in

conjunctionwith an optimal retention of inherited assets.

1-6
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Chapter 2

A QUALITATIVE DESCRIPTION OF THE BRANCH-AND-BOUND
SOLUTION PROCEDURE

The number of possible (feasible) solutions to a typical "multi-
stage phasing" problem is enormous; the exsmple problem represented by
the tadbleau in Mg.l-3has more than 2om possidle solutions! Clearly,
some systematic solution procedure which by-passes ocomplete enumeration
of all possidble solutions is needed.

We seek to minimize some cost (objeotive) ;unction which, at the
very least, reflects the expense involved in developing, purchasing, and
operating a fleet of machires over an extended time period. PMurthermore,
this minimization must be carried out sudject to certain requirement,
production, and cost constraints. The spec.fic details of the oost
equation can be deferred for the moment, but the general form of the
function is important here. A typical vehicle cost curve, plotting

total cost versus number of vehicles purchased and operated is shown
in Pig. 2.1 delow.

TOTAL COST, $

NUMBER OF YENICLES PURCHASED
AND OPRRATED, »

Pig. 2.1<=A Concave Cost Punction

2-1




The cost Jjump at x = O represents the RAD expenditure,vhich must occur
prior to the proocurement of sny number of this particular vehicle. For

x greater than O, the deviation from linearity derives from the "learning"
advantage of a volume purchase. The function repressnted by this curve

is called a "concave" function and it is this characteristic which moti-
vates the branch-and-bound solution procedure. A concave function of a

single variable is one whose graph is never "below"” a straight line joining

any two points of that function.* That is, the straighnt line value is
always less than or equal to the function value and we note, importantly,

that this straight line approximation will always yield an "underestimate”

120

Now, let us visualize enclosing all 20 solutions of our sample
problem by the solid line in Pig.2-2a. This box-like enclosure contains
the entire set of solutions and we will ultimately partition this set
into subsets, the partition being indicated by the dotted lines., A
second representation of the partitioning procedure is shown by the
"branching” diagram in Pig. 2-2b; here, a tree of branches is formed in
one-to-one correspondence with the partitioned sudbsets with each node
corresponding to a dotted partition line. Each node on the branching

U
i
|
|
|
i
of the concave cont Function, i
i
U
L
I
|

tree identifies a linear programming problem, Initially, we obtain the

cost of one (any one) mix; this cost is called the reference solution. l]
)
‘We divid. the total set of solutions into two subsets, i.e., wve form

!
tvo branches (see diagram). We then calculate a lower bound** (under- lj

—

estimate) to the solutions in each subset by solving the corresponding \

¥ A more ¢onor=I and more rigorous definition of n concave function
is given in Chapter 3.

#* A lower bound in a given subset is a cost less than or equal to
the cost of any solution in that subset.

t 2.2
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linear programs and compare these lower bounds to the cost of the
reference solution. There are three cases to consider: (1) both lower
bounds are less than the cost of the reference solution, (2) one lower
bound 1s less than the reference solution, (3) neither of the lower
bounds are less than the cost of the reference solution. A description
of the procedure to be followed for case (2) will suffice for all cases.
If a lower bound is greater or equal to the reference solution, its

corresponding subset cannot contain a better solution than the reference

5 o e am &

solution and this is the basis for discarding this entire subset of

solutions, If a lower bound is less than the reference solution, the

~—
—
.

corresponding subset can contaia the least-cost-solution; hence, this

subset is partitioned again and the testing process repeated. For each o

subset having a lower bound less than the current reference solution, a \

new reference solution is calculated from this candidate subset. If this
new solution is less than the old reference solution, we replace the old f

with the new. This entire procesa can be shown to converge to the least-

cost-golution of the entire set of solutions. The specific details as to
how one calculates the lower bounds, partitions the subsets, chooses the
branching rules, etc.,, is left for Chapter 3. Nevertheless, it should row
be clear that the efficiency of this algorithm stems from the freedom to
legitimately discard large groups of possible solutions without ever
explicitly evaluating them = only a small fraction of the total number L

of solutions need be evaluated.

Finally, it should be noted that the branch-and-bound procedure
120

actually considers many more than the 20

(or so) discrete possible }




solutions to our sample problem., 1In fact, a continuum of possible

120

solutions is considered, comprised of the 20 discrete solutions

= = s

plus all convex* combinatiops of the discrete solutions. In so doing,

I —

it is assumed that all such convex combinations represent equally

effective alternative solutions to the problem.

= T

&=

| ——}

# A "convex" combination is a nnn% conblgption of a special type,
e.8:y & c:nvox combination of two vector , * pU 1 suoch
that o + = ],
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Chapter 3
MATHEMATICAL DESCRIPTION OF THE PROBLEM
AND IT8 SOLUTION
The mathematical problem statement is of the following form:
Find a vector x = (Xy, .., xn) which will
n
minimize # (x) = ¢ 8,(x,)
b R |
im]l

subject to x € G,
0 x<L

We develop now the specific and detailed structure of the model beginning

with the constraint set, G.

CONSTRAINT SET

In this problem there are three basic activities which interact,
and associated with each activity is a problem variable., The value of
the problem variable indicates the level at which the activity is to be
conducted. The first activity is the disposition of the inherited assets.
The problem variable 1"'JLm' which refers to the number of Jthtype
machines which were purchased at the beginning of subperiod £ and will
be disposed of at the end of subperiod m. The second activity is the
purchase and disposition of new machines, and its variable is xatn’
where the subscripts have the same meaning as above. The third activity
is related to the performance of the mission requirements. The problem
variable is Pigss the fraction of alternative k to be used in accomplish-

th

ing the 1™ mission group in subperiod ¢,

3-1
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Materiel Balance Constraints

The most basic constraints relate the interaction between activi-
ties, They insure that the machines which we have available in any

subperiod are sufficient to meet the mission requirements of that sub-

periocd. The machines available in subperiod L are determined by adding
those remaining from the inherited assets to those which exist as a

result of new purchases, that is,

l , 4 Y
;>: E Vit Ve-tyy * ;>: E *m Va4,
n= =] ms

where K J = number of subperiods before the start of the planning period

th

from which the j ~ type of machine is inherited. Note that

(£ = KJ,...,-l,O) in the first series set above but (& = 1,2,...4) in

the second series set. Y = number of subperiods in the planning hori-

C L C = B o B e B

zon (£ = 1,2,...,Y). The factor vZ-LﬂJ accounts for attrition due to [

accidental loss of machines and specifically represents that fraction

of type J machines which remain usable after L-l’lubporiodl of existence., {

th

The number of the j type machines required in subperiod £ is ob-

tained by summing over all units used to satisfy each mission group. This

summation is expressed as

E 27 Us ke Pixs

ieM )

x
»
[

vhere Mz is the set of different mission groups in sudbperiod £, “11
is the number of alternative ways of performing mission group i in ;




subperiod £, tu is the number of times mission group i must be inde-
pendently performed in subperiod £, and uidkl is the number of units
of the Jth equipment used in performing mission group i with the kth
alternative in subperiod L.

The constraint relation insures that the number of Jth type
machines that we have on hand for use in subperiod £ must be greater

than »r equal to the number required. Expressed as an equality, this

relation is:

0 Y L Y
Z E Vit Ve-t,y 7 Z Z st Vo3 "
=K, m= ml =i
J R
D
1L 13kt T 834
LeM, kw1

for J = 1.2,..-,N
and L = 1,2,...,Y

vhere sdl is a slack variable which is lpoqificclly included because it
has a physical meaning in the problem; it represents machines of the Jth
type which can be "mothballed" in subperiod L for later use.
onsistency Constraints

The secoad subset of constraints insures that the requirements of
each mission group are met. This is accomplished by reguiring that the
fractions or proportions used for each of the alternatives within a
given mission group do sum to 1,0, The constraint set then takes the

form: R

Pigg = 1

k=l

for 4 = 1,2,...,Y
and i = 1,2,...,14‘




It should be emphasized that the formulation of the consistency

constraints in tiis manner actually represents the gssumption that all
convex combinations of alternatives are equally effective. This
ssaumption introduces two points of concern: (1) In most cases this
aasumption will result in a fractional number of machines in the optimal
solution, requiring the user to readjust the solution to the nearest
"whole" machine(s)—this interpretation of fractional solutions will
cause no large errors as long as the number of machines of each type is
large, relative to one; and (2) this assumption may result in the choice
of a particular convex combination which differs significantly from that
of an equally effective alternative. The seriousness of this problem can
only be determined by a study of a series of typical problems. Until
such further study is conducted, it can only be noted that, to date, no
serious departures from equal effectiveness have been observed in the
problems which have been solved.,
Vintage Constraints

The next set of constraint relations accomplishes two purposes;
(1) they define the inherited assets in terms of both number and vintage
(age) and, (2) they relate these numbers to the ultimate disposition of
the assets to ensure that all are accounted for. These relations are

given by the equations:

L,-1+4
W - E W : J - 1,2,.-.,N
dt m=0 dm L= KJ’KJ+1’....-1’0

where LJ is the maximum life (in subperiods) of machine type j, and WJ‘

is the number of type ) machines inherited from subperiod £.

3.4
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Master Variable Relation Constxaints

Ve define x, to be the total number of machines of type J purchased

J
during the entire planning period. We can obtain :v:‘1 by summing the
subordinate variables x

subperiods.

34 over all £ and m, the purchase and disposal

Y h 4
xJ- Z z mei 3-1'2,000’ N
l=l mmf

These constraints not only define the master variables but also maintain
"separability" in the cost function as discussed on page 3-10,
Cost _Constraints

Specifically at this point we discuss and describe the implementation
of linear procurement constraints. Similar constraints could be considered
for operating costs but their implementatioca woull require program changes.

than or equal to some fixed ceiling, H‘, for procurement in that subperiod.
The constxeint relation ailcws for any funds left over at the end of sub=
period £ to be transferred for use in subperiod L + 1. This is given as

N Y

-]
B =) 0% ) Xagm * Ty = Py
=l m=f
f.ox‘ ‘ = 1,2,000,!

vhere P, is the slack veriable representing the surplus funds, and aj

is the linear cost coefficient (vhich may represent an approximstion if
the cost funotion is nonlinear). This constreint set is intended to be
incorporated as an optional feature since its use may very well result in
an infeasible problem.

l This constreint restricts the total purchase in subperiod £ to be less




THE OAJROTIVE FUNOTION

Bix distinot oost ocategories are inoluded within the objective
funotion, The three primary categories are research and developuent
(NaD), procurement, and cperating expense. The secondary oategories are
most appropriately named mothballing, salvage, and truncation costs
(these terms will be defined in a subsequent paregreph). For purposes
of this development, only the R&D and procuremsnt cost functions are
oconsidered to be concave; however, from a modeling point of view there
is no reason vhy any of the other categories could not also be defined
by concave functions.
Primapy Cost Outegories

The RAD function can be represented by a step discontinuity at
sero. We will designate this function as U.1 (xJ). Then UJ ("3) =0 if
the master variable x

= 0, and U, (xJ) =D, (some constant) if x> 0.

J J

D‘1 is the estimated R&4D cost for machine type J. The total R&D cost is

obtained by swmuing over all machine types,
N
z v, (x‘,)
J=1

and this is the first type of term in the objective function,

Procurement is defined in terms of a so~-called "learning curve"
b

&3 3

18 the cost of buying one machine of type j, and 0 < by, 1. This function

suggests that although the total cost increases as the buy size increases,

and can in most cases, be represented by the function a J; vhere &

the unit cost is actually decreasing (except for the linear oase when
= 1), The total expenditure for procurement is then,
N

2 s ":J
J=l

b
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8ince we distinguish between the inherited and purchased machines,
it 1s necessary to develop two separate expressions for opereting cost.
We define for use in both expressions the cost coefficient ¢ 3k’ i.e4,

th

the cost of operating one unit of the Jth type in its k™ subperiod of

existence, This allows for an inorease in operating cost based on the

age of the equipment.
Starting with the new equipment, we wish to formulate the operating

= om o G e

costs in terms of variables of the type xJ m Recall that x 3.4m represents

the number of units purchased at the beginning of subperiod 2 and disposed

&

of at the end of subperiod m. Then the lifetime of xJ f machines 1is
m = £ + 1 subperiods, and the total operating cost for these machines is

&=

the sum of the costs for each subperiod, that iss
m=i+l

z °31th
ke)
By summing over all subdperiods and machine types, we derive the total

operating cost for the new machines over the entire planning period.

This swm 1s

o s

i é i ‘zl ‘x *sm

J=l =i

& -

The operating cost of the inherited assets is caloulated similarly.

The cost of a given variabdle, vJ., is
Beftl

2 % Yitm
Kelest

vhere the summation begins at 2 « 4 since 4 here is negative or sero and
the first subperiod of the planning period mist He at least the second

3-7
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subperiod of the machines life. The totel operating cost is again

obtained by sumning over the subperiods and machine types; that 1is,

mef+l

0L LY e

Ju=l A=K j mal ku2ef

Secondary Cost Categories
Each of the primary categories represents a specific cost (outlay

of dollars). In contrast, each of the secondary categories represents a
type of savings or credit to the system. "Mothballing" is herein defined
as the storege of equiyment (owned but not presently ueeded) for use ai
a later time. In the precent formulation, we assoclate a savings with
this storage resulting from a decrease in operating cost (i.e., we
initially charged the full operating cost for all retained machines).
"Salvage" is the refund received from the sale of equipment which is no
longer needed. Finally, "truncation" i1s a credit for the value of the
equipment on hand at the end of the planning period. It is used to
compensate for the fact that we only consider a finite time period and
have no real knowledge concerning the use of the equipment after that
time., In the current formulation of the model we have assumed that each
of these three secondary cost categories can be approximated by linear
cost expressions=~this is not meant to imply a restriction; more complex
cost expressions may be used.

The mothballing variable, s L wvas previously defined by the
materiel balance constraints., The total cost (actually a negative cost,
or savings) resulting from mothballing is

N Y
L ¢ “450) 844
=l =l
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vhere 4,, is the unit refund for mothballing a type J machine in subperiod

JL
| B
Savings due to machine salvege must be calculated for both the

inherited and the new equipment, as was done for operating costs. The

machines represented by x‘1 o 3T salveges after m - £ + 1 subperiods of
service, providing that m # Y (if m = Y, they would be truncated instead
of salvaged). We define e

3 (m - L +1) as the salvage value of a type J
machine after m = £ + 1 subperiods of use, The total savings from _
L‘ salvage is then : 1
5 N Y-l Yl
; U ) (5 (m-t+1) By
ﬁ J=l A=l mmf
L 8imilarly the savings resulting from salvage of the inherited aussets 1is
U given by the sum

0 Y=l

N
Z 2 Z("a(m-z+1))"am

Jul t-KJ m=0

—

Credit for truncation is caloulated from the candidate solution

at the end of the planning period; that is, vhen m = ¥, Hence, the

=

machines xJH are Y -« L + 1 lubp.riod.l old. We define fJ(Y -4+ 1)

L]
&

as the oredit added for a type ) machine after Y - L + 1 subperiods. The v
truncation oredit (introduced as a minus quantity in the cost function)

il
B 1s then
're N Y ‘
Z Z (=2y (v = 4 +2)) %y
Jol A=l

;
4
|
€




for the purchased equipuwent, and

N o

\
2. f Ty e p e 1)) Yim
Jel ek,

for the inherited equipment,
This completes the development of the cost expressions; the entire

cost function is shown in Fig. 3-1,

THE SOLUTION PROCEDURE

There are two special restrictions in the cost function that are
essential to the branch-and-bound solution procedure. First, the function
must be "separable” meaning that each variable must be priced separately
(each cost expression must be a function of a single variable) -- this is
the reason for the development of the master variable relation constraint;
otherwise the R&D and procurement costs would be a function of a sum of
variables. The second restriction is that all of the separable functions
which make up the cost function must be concave*, For functions of a
single variable, this means that a straight line druwn between any two
points on the graph of the function always has a value which is less than
or equal to the value of the function. A linear funoction is then a

special case of a concave function.

#In mathematical notation a function f(xl,..., %) 1s oconvave if
for any two points (xi, coey x,'l) and (xl', coey ﬂ"'), and any t, 0< ¢t <,
r[txl + (1-t)xi',..., tx! + (l-t)r":'] 2 tr(q,..., xt) + (1=t) £(x!', o0s)
x5

3-10
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In addition, there are three special characteristics of the
constraint set which should be noted: (1) all of the constraint equations
are linear, (2) the constraint set is closed*, and (3) the problem
variables can be bounded from above and below. It can be shown that the
probliem as described above is but r special case of the general non-convex
progremming problem addressed by Falk and Soland®, We can apply their
solution algorithm to this problem by solving a sequence of linear program-
ming (LP) sub-problems.

We define a vector of upper bounds L = (I‘l’ Lyy o LJ, cens I'N)

on the master variables x 3 such that

ostSLJ}J'l, 2, ...,N

and note that these bounds can be obtained directly frop: the input tableau
(e.g., Fig. 1-3). These lower and upper bounds define a set of N closed
intervals which we will refer to as set C. We need only explicitly define
upper bounds on the master variables x 3 since these are the only bounds
used in the solution procedure-the remaining problem variables have
implicit bounds which can be derived from the master variable bounds for

the x variables, from the consistency corstraints for the Pixs variables,

J4m
and from the vintage constraints for the w im variables.

Linear Envelopes

Having defined the set C, we next construct a "linear envelope”
for the cost function acxoss that set. This means that for each nonlinear
contribution to the cost function, we define a linear function which 1s

*Specifically, a closed set is one in which the boundaries are
included in the set; that is, there are no constraint equations involving
strict inequalities.
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the best linear underestimate of the concave function. This can be
~ done grephically by constructing the streight line from the two end
points of the concave function across the interval defined by C.

s (.J)

e e > - ——

'J LJ

Pig. 3:2=A Linear Envelepe of o Concove Function
with Discontinuity ot Origin

We next construct an estimating sub-problem by replacing each
concave cost function with its linear envelope. Our objective function
is now linear and thus a linear progreamming problem is defined. This

linear progremming problem can, of course, be solved but we will not

P
M

discuss 1ts solution in detail. We only mention that a "revised simplex"
algorithm incorporating "generalized upper bounding" is used. A detailed

description of this method is presented by Beale. 3

Bounding the Solution
Since any solution to the linear problem underestimates the cost

HE SYaN

L ] St
[ ] . [

function of our original problem for that solution vector, the solution

to the linear programming problem providss a lower bound an the solution

i @
[ ]

I by letting f represent the objective function of tha LP, then
£ (x) < ¢ (x)
' 3-13
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of the non-linear programming (NLF) problem. This can be shown algebmically
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for all x € 0. Now 1f we let x' Tepresent the solution vector to the LY,
and x* represent the solution vector to the NLP, then since

£(x') < 2(x)

#(x*) < ¢ (x) :

W

for all x € C, then
2(x') s £(x*) £ ¢ (x*) € ¢ (x)

or, most importantly
2(x') s ¢ (x*)

This also implies that the solution to the LP in & given subset is a
lower bound to the NLP within that subeet.

Similarly, it can be argued that the actual value of the non-
linear cost function at the solution vector of the LP is an upper bound
on the solution to the NLP. That is,

#(x') = ()
Therefore, bounds can be established on the solution to the prodlem
since
£(x') € ¢ (x*) 50 (x*')
The object of the algorithm ie to f£ind a solution vector xk by solving

a sequence of m subsproblems -1d to show that

“xk) ‘¢(xi) H 1 = 1’2, cas k, e M
and
2(x?) 2 p ()

for all J such that the subsets C, form some partition of C. It has been

J
shown that this sequence of sub-problems is finite (Falk and Soland,

Theorem 3) and that xi converges to, and terminates at x* for the restrictions

| <
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previously stated,

Partitioning into Subsets

The sequence of sub=problems are generated by a branch-and«bound
procedure. This procedure successively partitions the original set C
into smaller and smaller subsets, each of which is defined by upper and
lower bounds on the master variables. Further, each subset defines a
LP sub=problem and its linear envelope provides a better underestimate
across the subset than that provided by the linear envelope of the pre-
ceding problem. The specific method of partitioning is the hlk-sohme
"woak refining rule". Given that we have the solution to any sub=problem
2« (o, B, ..., A), then the weak refining rule states that cne should
select the partitioning variabdble to be x? if the difference between the
value of the concave function at x; and the value of the linear under-
estimate at x'in is at least as great as the corresponding difference for

any other x", vhere J # 1, That is, select that x. which satisfies
3 1

o, (&) -t (&) = vax {g, (&) £, (B)r 3=1,2, ..., B}

This gives us the variable on which to branch and partition the set cm
into two subsets C& and cﬁ' . In general the set t;‘m is defined by

LmeSLm

where ‘m is the lower bound vector, I® is the upper bound vector, and

z‘f < L‘: for all 1. We wish to divide the interval [z'f, L‘:] for the

variable X, at the value :ff This means that the variable X, will range
across the sube-interval [z’f, xT] in set c&, and across the sub=interval

m ] "
[x), Li] in set Cl'. Then set C! 1is defined by

3-15

e A oM e e e e e e e A———— e
- — A —_— -




bkl At b i a2k . ocbion (rabia B ¢
RET v TR
: Ll

‘n' - (3:) ‘;: veey Xyy seey l:) £x ‘L'" -1®

and the get C'n by

1} [} m
‘m = ‘m £x ‘Ln - (L:, L:’ XYY }i’ vesy Iln)

We have now partitioned the set (Jm into tvo subsets and in effect created
two new sub=problems to be solved. ‘
The Algoritim

Thus far, each major procedure of the algorithm has been discussed.
We now show their relationship to each other by presenting the basic
oycle of the algorithm (see Fig. 3 .3). We begin by assuming that we are
about to partition a sub-problem defined by the subset Cn, and that ve
have determined (by the veak refining rule) the variable xj on which to
brench. Two new subsets C! and C; are formed. We then construct the
linear envelope across cx:x (block 5 of Fig. 3-3) and solve the corresponding
LP to obtain the solution vector x® and the cost f (:Jn'). We determire
a variable x’f' on which to branch, We next compute the value of ¢ (xm')
and compare this value with the value of ¢ (x°), where ¢ (x°) is the best
solution found thus far (the reference solution). If ¢ (xm') < ¢ (x°),
then we update and replace ¢ (x°) with ¢ (xm'). We then store the
problem description along with the values x';' and (xm') on a branching
list. The process is repeated for the subset C:l and its information is
stored on the branching list. We then select and remove that subsproblem,
C, s from the branching list such that f (x¥) = Min {r (xk) 3 for all k}
and the cycle repeats.

Given Jjust this cycle, the algorithm would run forever. We need,
therefore, define some type of termination criteria. First, if when we
solve the LP problem defined by C , we find that f (x™ = ¢ (x°) then we
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Fig. 3-3—=The Algorithm
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know that no solution better than ¢ (x°) exists in the subset O . 8o

ve digscard the subset from further consideration (bloock 4 of Fig. 3-3) and
select the next problem on the branching list. Finally, when thexe are
no more problems on the branching list, we know that

? () = ¢ (x*), and x° = x*, since ¢ (x°) £ ¢ (x) for all x in O.
In Theorem 3 of their paper-, Falk and Scland prove that this

algoritim converges to the solution of the problem with a finite rumber
of sub=problems. It should be noted that the term finite does not concern
itself vith the number of subeproblems required for convergence, and that
in some cases it may be expedient to only ensure that the solution obtained
g 1s within some small tolerance of the optimal solution (for exsmple:
within 0.1% of the optimal solution). This is easily acoomplished by
adjusting the termination criteria to discaxd a subset if

£ (x™ 2 ¢ (2)/ (1 + tolermnce factor)

It is considered important to review and to emphasize here that
implementations of this optimigzation model, and the resulting solutions,

are subject to certain assumptions which must be carefully observed and

! understood. These assumptions are necessary for either of two reasons:
(1) the alternatives to the particular assumption are economically
prohibitive, or (2) the technical restrictions in the algorithm itself
cannot be waived by any reasonable scheme. A brief review of the model
assunptions, and a reference to their detailed descriptions follows:
(1) The cost-quantity relationship of a particular type vehicle
(machine) must be concave and independent of the state of a vehicle of

another type — gee pages 3-5 and 3-10,
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(2) Venicles used to satisfy the requirements of one mission
group cannot be used (pooled) in any other mission group === 500 page
=2,

(3) All convex combinations of the finite list of user-supplied
squally effective alternatives are also oqually effective ==~ 508 DAES

3.k,
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Chapter L

AN OPERATIONAL DESCRIPTION OF THE
BRANCH AND BOUND S80IUTION PROCEDURE

Bhortly after the computer program development began it became
apparent that dDecause of the complexity of the solution procedure and
the magnitude of the problems to be scuived, it would be necessary to
sub-divide the solution procedure into two separate programs; namely,
the matrix generator (GENLCP for GEljerate Least Cost Phasing) and the
natn program (BBCAV2 for Branch-and-Bound conCAV functions version 2).
However, as work on BBCAVZ2 progressed, it was seen that the output was
very much technically oriented and that this orientation was essential
for debugging, detecting input errors, and tracing the flow through
the development of the "branching tree." Because of the necessity
of this output and the desirability for a less technical report, a third
program (REPGEN for REPort GENerator) was developed to display the
optimal and relevant off-optimal solutions in a manner which would be
easy to understand, Thus the present operatiocnal system consists of

these three programs named with the mnemonics GENLCP, BBCAVZ2, and REPGEN.

PROGRAM INTERFACING

The major problem encountered by using separate programs is that
of passing large data files from one program to another. The matrix
generator creates the matrix file which must be passed to the main pro-
gram and a reference list file which must be passed to the report genera-
tor s0 that it can process the solutions. The main program then creates

a solution file which of course must be passed to the report generator. The
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®mot oontent and structure of these £1les will be discussed in & later
section of this ohapter.

The interfacing of the programs is sclily depsndent on the transe-
for of these files, and thiu is acoonplished by the use of either a
physical or a logical tape file which is manipulated by means of the
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operating system control oards.®

REPGEN is easily executed within the same computer job as HBCAVZ,
therefore there are at least two job configurations available to the user.
They are:

(1) GRMLCP can be exscuted first as one job, vhile progrems BBCAV2
and REPGEN are executed later as two programs within a second job. Bee
Figure L-la for the CDC 6400 control caxds.

(2) GENICP, EBCAV2, and REPGEN can be executed as three different
programs within one job. Bee Figure L-1lb for the necessary CDO6LOO
control oaxds.

o = =3 0 o O G & G &

Each job has the following control card types; & Job, & RUN(S), and
a 100 card. The job card merely describes the job to the system, the
RUN(S) card executes the FORTRAN compiler, and the LGO cerd loads and
executes the compiled program. Each job also has a request card, which
requests the same tape, meaning that the x's in the parentheses are replaced
by the same tape number on all request cards.

Upon execution the matrix generator creates the matrix on file 9
(TAPE9), and the reference list on file 7 (TAPET). After the physical

#This report describes the use of CDC 6400 control cards for tape
file manipulation. Implementation of this program(s) on other computing
machines will require appropriate changes to the control card set.

<
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MATRIX GENERATOR, MAIN PROGRAM AND REFORT GENEMATOR

"Job Card"

RUN(S)

LGp.

REQUEST, TAPEA, HI. (x00X/RING)"
REWIND (TAPE7, TAPE9, TAPEA, LOf)
CPPYCF (TAPE9, TAPEA)

£OPYCF (TAPE7, TAPEA)

REWIND (TAFRA)

RUN(8)

160,

REWIND (TAPES, TAFEA, 1LG§)
CPPYCF (TAPEA, DML, 2)

CPPYCF (TAPES, TAPEA)

REWIND (TAPEA)

CPPYCF (TAPEA, DM1)

RUN(8)

16f.

% If TAPEA 18 only & logical tape file that is not
saved at the end of this job, then this control
card can be omitted,

Fig. 4-la Controls Cards to Execute All Programs
as a Single Job
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MATRIX GENERATOR

"Job cm #1"

RUN(8)

1af.

REQUEST, TAFRA, HI. (J000(/RING)
REWIND (TAPE7, TAPE9, TAPEA)
c¢m (TAPE9, TAFEA)

CPPYCF (TAPE7, TAPEA)

MAIN PROGRAM AND REPORT GENERATOR

"Job Card #2"

RUN(8)

REQUEST, TAPEA, HI. (X00K/RING)
LGP,

REWIND (TAPES, TAPEA, 1Gf)
CEPYCF (TAPEA, DML, 2)
CPPYCF (TAPES, TAPEA)
REWIND (TAPEA)

CHPYCF (TAPEA, DML)

! RUN(8)

i LG¢.

k Fig. 4-1b Control Cards to Execute Programs
\ as Separate Jobs
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tape is requested, the tape and both files are rewound to their load
points by the REWIND card, and then the files are copied, matrix file
rirst, onto file A (TAPEA) in coded, rather than binary, format through
the use of the COPYCF cards,

TAPEA is then transfered to the mmin program and the first file
is read during execution. The main progrem orsates the solution file on
TAFES., Upon completion of the execution of EBCAV2, TAFES and TAFEA are
rewvound. The matrix and reference list files on TAPEA are then copied
onto dummy files in oxder to space to the end of the tape file and the
solution f£ile is copied onto the end of TAPEA, '

‘ The report generator only uses the last two files on the tape, so
before it executes the first file it is copied onto & dummy file. The
program then reads the last two files as it executes. The total interfacing
of the programs is shown in the macro flowchart of the system, Fig. U2,

THE MATRIX GENERATOR
Program ic

This program produces as its main output the matrix of coefficients
for the phasing problem. Essentially the program reads the input deck

and then determines the number of constraints (rows) and the number of

variables (columns) for the problem. In order to facilitate communication
between programs and between the program and the analyst, this program
assigns symbolic names to the rows and columns. These symbolic names

can then be decoded to determine exactly what that column (row) represents.
The naming convention which the program uses is shown in Fig. L-3. These
symbolic names are generated through the use of the array NP, This array
contains a positive integer code for the integers 1-288 (288 is the largest

integer used by the program), and this code is shown in Fig. 4-4, This
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Rov Type . SBymbol
Master Variable Relation ma
Procurement Constraint PC 4
Vintage Constreint IHJP‘
Materiel Balance Constreint XJP‘
Consistency Constreint '1'1?‘
ObJective Function coer

Column Type Symbol
Master Variable ' xJ
Excess Procurement Funds P,
Inherited Fleet Variable L) '
Alternative Belection (or Proportion) Piys
Purchased Fleet Variable S
Mothballing Veriable 8 m
Right Hand B8ide Vector RHSI

Coding is acoomplished by replacing the subscript with a one character
number code where the subsoript represent the following:

J = vehicle ID number

1 - task ID number

k - alternative number

4 - period number

A period purchased number
m - period sold number

¥ig. k-3 Bymbolic Naming Convention

be7
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Integers Codes

01 - 99 o1 - 99
100 - 109 AO - A9
110 - 119 BO - B9
120 - 129 co - C9
130 - 139 DO - D9
10 - 1h9 EO - E9
150 - 159 FO - F9
160 - 169 GO - G9
170 - 179 HOC - H9
180 - 189 Jo - J9
190 - 199 KO - K9
200 - 209 10 - L9
210 - 219 MO - M9
220 - 229 NO - N9
230 - 239 PO - P9
24o - 2kg Q0 - Q9
250 = 259 RO - R9
260 - 269 TO - T9
270 - 279 uo - U9
280 - 288 WO - w8

Fig.4-4 Positive Integer Code
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' code replaces the iuteger values indicated by the subscript in tkc
naming convention.

l The program next determines the value of all of the non-zero

i‘ elements of the matrix. As it determines these values it creates a

’

“packed and labeled" matrix file; packed meaning it contains no zero

- e

valued elements, and labeled meaning it has associated with each element

—
.

its row and column names. In order that this packed file be created in
some standard format, it was decided that MPS360 format be used. This

has the advantage that should one wish to use this file on other

mathematical programming systems, it is in a format acceptable to both
IBM and CDC systems.
After this file is created, the program then fills in the zero-

.. valued elements and creates an unpacked and unlabeled file which is the

input matrix to BBCAV2., At this point it also creates the reference

1list which indicates the symbolic name to be associated with each column

o ———

of the unlabeled file,

Core Allocations

The program requires 107,300 octal (36,544 decimal) words of core ﬁ
on the CDC 6400 system in order to load. Almost two-thirds of this is i
used for cormon storage; most of which is in the form of subscripted i
i ' arrays. These arrays are presently dimensioned to handle the following ‘
N size problems: ' ,
(1) number of machines (vehicles) s T |
(2) number of task tables < 8
(3) number of periods = 10

(4) number of alternatives in a task < 288

(5) number of years from which vehicles are inherited < 16

amm U -

b9
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(6) maximum vehicle life < 25

(7) maximum length of & period < 6
Any of these which are exceeded will necessarily cause changes in the
subscripted arrays and core storage requirements.

The core storage allocation can be broken up into the following

subgroups:

OCTAL DECIMAL
CDC system routines = 13,210 5,768
COMMON storage = 51,562 21,362
GENLCP = 20,323 8,403
MATFILL = 1,415 781
YINTERP = 207 135
YRCOST = 137 95
TOTAL 107,300 -;E:;ZZ-

User's Subroutine = YRCOST

This subroutine i1s used to calculate operating, mothballing,
salvage and truncation costs based on the age of a vehicle, For everything
but mothballing, this is accomplished by filling the array COSTS with the
yearly costs for a vehicle up to an age of 30 years. The main routine
Just selects the appropriate cost from this array as it is needed. For
mothballing, however, the routine is called each time a value is needed,
and only the mothballing cost is calculated. This is done through the
use of the ENTRY MOTH statement.

Operating costs are assumed to be increasing at R x 100 percent
each year (not compounded), with R presently set equal to zero. It is

noted that the present formulation for operating costs does not account

4-10
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for the attrition of aircraft over the years; such account is handled
explicitly through the materiel balance constraints in Chapter 3. If the
user has 10 year operating costs which already include coste for attrition,

then V should be set equal to 1.0. Note also that it is assumed that

-2
no period is longer than six years, If a period is, it will be necessary

to change this card in subroutine YRC@ST.

IB = VLIFE (J) + 10

to
I. = VLIFE (J) + (N - 1)

where N is the number of years in the longest period (IB cannot exceed

30 in any case). Salvage values are calculated to be alpha to the ith
power times the initial salvage value, where i is the last year of service,
with alpha currently set to 0.5. Truncation value is assumed to decrease
linearly from the initial salvage value to zero over the expected lifetime
of the aircraft. Mothballing savings are assumed to be Rl x 100 percent
per year of the first year operating cost. This account of mothballing
savings will be in error (low) for aircraft mothballed beyond the first
year of their life; however, this error will not be serious unless the
increase in operating cost per year is large. An alternative and exact
method of accounting for savings due to mothballing was considered but the
added complexity due to its implementation was not considered to be worthe
while, The present value of Rl is 0.90. Under the present system, actual
ccets are used instead of costs discounted to present value,

Input Formats

The input consists basically of three types of data sets: (1)

vehicle tables--describe availability, vintage, life, and cost information

4-11
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for each vehicle type; (2) period tables--describe length, money avail-
able, and tasks for each period; and (3) task tables--describe vehicles
which can be used for each task and alternative ways of accomplishing
the task with those vehicles. 1In addition to these tables there is a
title card and a group of header cards which inform the program of the
type of tables that follows, The formats for all of the cards are given
in Figs. 4-5 through 4«8 and reference to these will be helpful for the
discussion which follows.

The title card sets the major parameters for the problem. The
first field contuins the name of the run being made., This name is used
ag the identification on the tapes produced by the program. This field
18 stored us alphanumeric characters and should be left-justified on

the card to nvold leading blanks, The remaining fielis on the card are

a0ll right-justifiud i integer format and contain, in this order, the first

year of the planning horiron, the last year of that horizon, tlhe number
of vehicle tables for the problem, the number of task tables, and the
number of period tables,

The header cards have only one alphanumeric field. In this field
is plnced one of four words, either the name of the type table which
follows that card (vehicle, period, or task) or the word ENDTABLE which
marke the end of the data deck., It is essential that each table have a
header card and that there are exactly as many tables of each type as was
called for in the title card,

The vehicle tables have three basic card types. The first, the
name card, has three fields; an alphanumeric field for the vehicle name,
and two integer fields, one for the first year that the vehicle can (or

414) enter the fleet and the other for the maximum life of that vehicle

4-12
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TITLE CARD

- — [ ——

NAMELCP

-\

HEADER CARDS

197

1988

VEHICLE

N

PERIOD

—\

TASK

—\

ENDTABLE

A

Fig. 4-5—Beasic Cords
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type. The second type of card is only for those vehicles which are

presently in the fleet, and they are used to describe the number and age
of the vehicles inherited by the problem. Each card has eight ten-digit
integer fields, and each field contains the number of vehicles of the
type described on the first card which were purchased in some specific
year. The first field on the first card of the second type contains
the number inherited from the first year that the vehicle entered the
fleet (that year which is listed in field two of card type one). Each
field represents the years segquentially from that year to the last year
prior to the starting year of the planning period, so that if a vehicle
entered the fleet 10 years prior to the planning period, it would require
two cards to describe that vehicle's contribution to the fleet; the first
would have all eight fields filled and the second would have the first
two fields filled. The last card in a vehicle table is the cost card,
which contains five ten-character floating point fields. The first is a
cost (the initial salvage value) to be used with the salvage and truncation
equations; the second is the ten year operating cost; the third 1s the
research and development cost; the fourth is the retention rate (1- the
attrition rate); and the last field is the unit cost associated with the
linear estimate of the procurement cost. In general, the first and last
fields will contain the same number, although this is not essential. All
of the costs in each vehicle table should be scaled by the same factor,
such as 106, 80 that the ten year operating costs fall roughly betwden
1l and 10 for all of the vehicles. This will give the best results in
BBCAVZ2 by avoiding numerical roundoff errors.

The period tables are also input with three card types, except
for inherited (past) periods which use only the first card type. The first

4-17




card contains three fields; the first two are integer fields which
contain the first and last year of the period respectively (if a period

1s only one year, these two entries would be the same), and the third
field is & floating point field containing the procurement cost constraint
level for that period. If the procurement constresints are not deslired,
then an extremely high number should be placed in the third field of the
first card for the first period, so as to keep the constreints from being

binding. Of course, no constraint need be given for the inherited periods

(the periods preceding the start of the planning period). The second

card contains a ten-character integer field for the number of tasks to
be done in that period and a ten-character floating polnt field for a
scale factor (in that order). The scale factor is iy Lied to all of the
tasks and can be thought of as a representation to the growth in mission
requirements from one period to the next. The third card type has 16
five-character fields which are used in pairs. The first field of each

palr is an integer task identification number, and the second field is an

individual scaling factor related solely to that task., This factor might
be used for the number of times the task must be independently performed
in that period or for other similar multiplicative factors. If more than
eight tasks are to be performed in a period then a second card type three
must be used.

The final type of table i1s the task table. Its first card has

three ten-character integer fields which contain the task identification
nunber, the number of columns in the table, and the number of rows (alter- ‘

natives) in that table. The second card contains eight ten-character

alphanumeric fields for the vehicle names associated with each column.

These names are left-justified and are the same names as appear in a
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vehicle table, Card type three is used for inputing the alternative ways

of performing each task, and each card represents a different alternative,

e — 8
——
o>

g0 that there are exactly as many cards as there are alternatives given

in field three of card one, Card type three has eight ten-character
floating point fields., Each field contains the number of the type vehicle
represented by that column which is used in accomplishing the task under
the alternative given by that card.

There are only two limitations on how the data deck can be
organized., First, a task table must not precede the vehicle table for any
vehicle referenced ir that task table, and second, although the period
tables may be separated by other tables, they must be entered in chronological
order. However, to avoid any problems, the structure shown in Fig. 4.9
ls recommended.

Output Description

The final output of the program includes a tape which contains
two files; the unlabeled matrix file and the reference list file. The
matrix file is composed of four parts; a record containing the number of
rows and columns in the matrix and the upper bounds for the non-linear
variables, a title record, a row descriptor record, and the matrix. The
initial record is formtted (2I6/(6F12.4)). The title card is formatted
by (AL, 10X, AB), where the first four alphanumeric characters contain
the word "NAME" and the last eight have the problem title. The row ?
descriptor is a vector which tells the main program whether the row is the
type equ.l (0), less than or equul (1), greater than or equal (2), free

(3), or generalized upper bound (4). It is formatted as (I12). The

elements of the matrix follow this vector and have the format (F12.4), and

are blocked into records by column. The reference list file has no
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“ENDTABLE" CARD

ALL TASK TABLES (IN NUMERICAL ORDER)

ALL PERIOD TABLES (IN CHRONOLOGICAL ORDER)

ALL VEHICLE TABLES (ANY ORDER; PREFERABLY WITH R&GD VEHICLES
FIRST, INHERITED VEHICLES LAST)

/TITLE CARD

Flg. 4.9Deck Structure for Matrix Generator

hapO

E. =2 o B G &=

[
[

v 4




B

bt O Oowm O S

Fz

ae

1
l

header cards and is formatted totally by (IS5, 4X, AT), where the first
field contains the column number and the last field the column name.

The printed output is rather lengthy, being composed of four
major sections, The first section is merely a tracer through the input
deck, so that if an error is found in the formats, the location of that
error is fairly w=ll known. The second sectlon 1s a partisl listing of the
MPS360 file which can be used for spot checking the values in the file,
The third section is the cross reference list tor the column numbers and
names, At the head of this list is the row descriptor vector and at the
end 158 a small section of data (number of rows and columns, and the upper
bounds on the vehicles) which are needed for input to BBCAV2. The final

section is a documentation listing of all of the input data for the run.

THE MAIN PROGRAM
Program Logic

The method of solution is of course an implementation of the
algorithm presented in Chapter 3. The first node, which represents the
linear underestimate of the entire problem, 1s solved as a special case
of the general sclution procedure by the routine BOX1. This routine
establishes a branching tree (containing only one node), sets values
f'or certain key parameters, and defines several arrays necessary for the
algorithm. All subseguent nodes are solved in pairs by examining both
branches from an existing node on the tree.

Although the algorithm guarantees that an optimal solution can be
found after the solution of a finite number of nodes, the program is not
usually allowed to run until this has been proven! There are several

reasons for this--the main one being that the time, and hence money, involved
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in finding this solution may be extremely large. Also of importance when
dealing with large problems having many near-optimu. solutions is the
problem that it may be impossible to determine which solution is indeed
optimal because of roundoff and other small numerical errors. DBecause of
this the program is written so that it will solve for a solution which is
only guaranteed to be within some tolerance of the optimal solution. This
tolerance level is an input parameter (e) which is used to insure that
optimal solution times 1 + ¢ is greater than the current best solution
before the algorithm terminates, It is recommended that ¢ 2 .00001 be
used to avold the problems of numerical errors.

When solving any given subproblem, the program performs a simple
transformation on the subproblem before solving it by means of the LP,
This transformation involves shifting the axes of the problem such that
all of the lower bounds for the LP problem are zero. The sum of the costs
of the non-zero lower bounds are stored as the variable EKO. The actual
lower bound to the node is then the cost of the LP problem plus the value
EKO, and the actual values of the x-vector are given by the LP x-vector
plus the lower bound vector. This simple transformation is used to
simplify the LP solution procedure by eliminating the need to check lower
bounds,

The program makes use of the "ordered list" concept for selecting
a node for branching. However, the list itself is not literally ordered
sa that ench time u node ip sought the list is searched to determine which
wode has the lengt lower bound. This node is then removed from the list
leaving n gap which is marked but not filled. Then when new nodes are
created, any gnps nre filled before making the list longer. The procedure

terminates when the lenst lower hound on the list 1s greater than the bect

solution found divided by 1 + ¢,
hoo2
(RAE)
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Because of its size, the matrix of coefficients is stored on a disk
file, however certain parts are kept in core at all times. The b.vector
[B0(200)) is kept in core so that the changes in the right-hand-side based
on changing the lower bounds of the master variables can be rapidly made
for each node, The cost vector [C(10)] for the non-linear termms is aleo
stored in core since these elements are ochunged at each node. Finally
the column data for each of the non-linear variables [T{100,10)) are kept
in core siice they are used to update the B veator,

The program has been constructed to be repetitive in order to solve
for off-optimal solutions, i.e., interesting solutions near the leust-cost-
solution. This means that any number of problems which use the same matrix
of coefficients can be run at one time. For example one cruld run the
optimal solution and, after that is found, run the problem for the best
solution for which no resourcer requiring R&D are allowed. The technique
for doing this is discussed in the section on input formats.

Core Allocation

This program stores the main array of inrormation, the matrix of
coefficients, on high-speed auxiliary storage (d.sc). However in addition
to this, the program has almost 45,000 octal words of common core storage.
The dimensions of the arrays in these cammon areas are dependent on only
three parameters:

(1) rpumber of rows in matrix s 100

(2) number of nonlinear variables < 10

(3) numbar of nodes on branching list < 75
The total core storage requirement is 114,251 octal werds on the CDC

6400 system, which 1s subdivided as follows:
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CDC system routines
COMMON Storage
BBCAV2
BOX 1
GETASQ
GETC
GETFHI
INITA
NXBRN
PARAMS
PRESET
READIN
SET
TABOUT
TIMEC
LP
BOUND
COLUMN
DISC
DOT
ESCAPE
EXITS
FEASCH
INVERT
I0
KEYCH
KEYFND
MAPIN

 onci el ——o B~ —— B — B —

-

PIVOT
PRIMAL

SETUP

USEWL!'S

GETPHI

It 1s through this subroutine that the user inputs his non-linear
cost functions. The routine uses these functions to determine the cout of

gpecific numbers of each resource, or to determine the totnl cost of n
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solution for a specific node. These functions are defined in the section

of the routine between statement 150 and statement 1LO.

&=

The funotional value (cost) is dencted by PHI(I) for the Ith resource.
It is described as a function of XPHI(I), where XFHI(I) is the independent

S
o -

variable represeinting the number of Ith type resources purchased. The

examples shown in the listing are of the form:

By
¢ « Ry +ay x;

where Ri is the R&D cost, @, is the linear cost coefficient, and By
describes the "learning” rate on cost as purchase size increases.

This routine should be put together using the following guidelines:

(1) The (I.GT.7) phrase in statement 150 should have the 7 changed
to be the number of non-linear functions (NCF) to be described in the
routine.

(2) This should be followed immediately by a computed go to

statement of the fomm
6o TO (101, 102, ..., 100 + NCF), I

(3) If the R&D cost for the Ith resource is zero, then the
pection describing its cost function should contain two cards of the form

n PHI(I) ® e
G0 TO 200

where n 18 the statement number such that n = 100 + I.
(4) If the R&D cost is greatur than zero, then an additional
card is nexed so tre form of the vection is
n IF(XPHI(I).LT...0001) GO TO 1kO
PHI(I) = ...
GO TO 200

where n has the same meaning as above, and the IF statement prevants the

inclusion of R&D cost when the system is not needed.
L-25
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The program will assume that the resources are numbered 1 thru NCF
according to the oxder printed in the output from the matrix generator,
80 one should be careful to associate the appropriate function with the
variable for which it was intended.

Input Formats

The input deck for this progrem is much smaller than that for the
matrix generantor. There are only four basic types of cards used for this
program. They are shown in Figure 4-10.

The first card in the deck is the solution name card. It contains
a 40-character alphanumeric phrase which describes the solution which will
be achieved with this deck, This phrase is placed at the beginning of the
solution file and will appear on the top of each page of output from the
report generator.

The second card is the integer parameter card. It is formatted as
12 fields, each containing 6 integer characters. The first two fields are
no longer used by this program. The third field contains the number of
variables (columns in the matrix) for viLich cost iunctions have been
developed and programmed in GETPHI. These will be the first columns in
the matrix. The ninth and tenth fields contain the preset dimensions of
the array BLIST, which are currently set at 25 and 131, respectively. The
fourth ind fifth flelds are no longer used by the program.

Fields 6, 7, 8 and 11 are all used to control the output from the
program, If these fields are set to zero, the output they control will
be suppressed, nnd if they are set to one, the output will be printed.
Field 6 prints the suuroutine names as they are called; it o rnormlly
uged tor tracing and debugging and hence should normnlly be cet to zero,

Field 7 prints the primal iterations of the linear proprmm, and {leld
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prints the entire solution of the LP, however, field 8 is only effective
if field 7 is set to one almso. These two fields would normally be set to
zero unless one were interested in closely examining the propert’es of
the linear underestimates. Field 1l is the only output control normally
used during production running, and it lists the column numbers and values
in the solution at each node.

The last field is a termination criterian established by the user.
Specifically, it is the maximum number of nodes which the program will
evaluate before it outpute a solution. This can be used, for example,

when one is evaluating off-optimal solutions and wishes only to get the

i
1
]
]
1
]
I
I

solution corresponding to the first linear underestimate of the problcm. ,

The third card of the input deck is the real parameter card and it T
has 4 fields of 12 character floating point numbers. The first field is
the epsilon parameter which was previously discussed. The second field
is another termination criteria; the maximum number of seconds which each

solution will execute before terminating. This {s not the same as the -

time limit on the Job card since this latter is the limit on the sum of
all solutions combined. The third field is the number of basis cards in
the input deck (if no basis is input, leave this field blank). The last
fleld i1s another output cortrol. If this field is equal to zero, it will
suppress all output except the initia) problem description and the final .-
solution (if detailed o “put was called for by previous options, put 1.0
in this field).
The finel group of cards are the bagis cards; thesc cards are
optional and need not be included at «1l1l. However, they cnn be used to

accomplish ‘wo important functlons. IFirst, they can be used to define an o

Initinl basie colution (which may or may not be rensible), and 1€ this

hop¥ ¢
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basic solution is carefully chosen, it can greatly reduce the number of

primal iterations required to f£ind an optional solution. This is

accamplished by creating one basis card for ench column that one desires

to have in this basic solution. The basis card is composed of an 8
character alphanumeric field and a 12 character integer field. For the
basic solution, one places the word "BASIC", left-justified, in the first
field and the column number in the second field, Hawever, if the bdasic
variable is basic in a generaliged upper bound row, then the word "KEY"
should be entered in the first field instead of "BASIC", If there 1is
more than one basic variable in a UB row, only one should be "hEY" and
the rest "BASIC", since there should be exactly the same number of "KEY"
variables as there are GUB rows in the matrix. The second function
performed by the basis cards is the elimination of columne from the
matrix. This is done by placing the word "NULL" in the first field and
the column number in the second. This is useful in running off-optimal
solutions, since for example, one can eliminate a resource from the mix
by "nulling" the master variable, or delay the development of a resource
by one period by nulling the appropriate set of purchased fleet variables.

The input deck may be constructed to produce as many solutions as
desired. For each solution one creates a ueck consisting of the four cand
types Jjust described. These separate decks are then put together in any
order to form a single input deck. The overull structure of this deck is
shown in Figure L4-11.

Output Description

The output from the program can be divided into three basic groups.
The first 1s the information related to the branch and bound algorithm,
and the second group is the information related to the linear program. Both
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of thesy groups are repeated for sach node of the branching tree. The
las? group 1s for debugging purposes and consiste of error messages
(found in the appendix) and an error dump routine.

At the very beginning of the output there is a section which lists
the values found on the parameter cards and the value of the bounds on
the variables with concave functions. Following this is the general
information about the branching tree which is output by the routine
TABOUT. When called it outputs UO, the value of the best solution so
far; USP, the value which all lower boundis must exceed before UO is
considered optimal; and SIGMA, an array con:isting of the right-hand-side
values of the master variable constraints, and the lower bounds, upper
bounds and cost function slopes of the master variables. The routine is
called both before and after the LP is run. When called before the LP, it
also prints the nodes on the branching tree which must still be considered.
The information regarding these nodes includes the cost which represents
a lower bound on that node, the number of the variable from which the
next branch will be made, the value of that variable on which the branching
will be performed, and the total fixed costs (E, ) associuted with that
node. In addition it checks to see if a new "best solution" has been
found, and i1f it has, then it outputs that XZERO solution by column
number and value.

The program is written such that there is a transformation from
the actual problem to the linear problem which sets all of the lower
bounds to zero. Thus, after the LP has derived a solution, this solution
must be transformed back to a form applicable to the non-linear problem.
When this is accomplished, this solution is output by the main routine,
and 1t includes the actual cost of the solution PHI(XAD:), nnd the column
numbers and their values for those columns in the banis.
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The last form of output from the branching routines is a list of
the master variables showing the differences between the linear estimmtes
and the non-linear cost functions, and how these were calculated. It is
the largest of these dlfferences upon which the brenching will be done.

Upon entry into the LP, a group of self-explanatory problem
dimension items are output. These include; the number of standard rows

in the matrix, the number of generaligzed upper bound rows, the number of

i
1
l
1
i
]

logicals (slack variables) added to the problem, the number of columns in

the matrix, the mnximum number of columns allowed in core at any one time, "‘

'
the invert frequency or number of primel iterations before inverting the L
B-matrix, the maximum time the LP will be allowed to run, and the maximum i

nunber of primal iterations which may be executed by the LP. These last ‘
two parameters are set internally and arn only used for debugging purposes.

During execution of the LP, the subroutine STATUC prints the status

of the solution at each prirmal iteration., This first part of the output

consists of the phase (1 - infeasible, 2 - feasible), the number of the

iteration, a field called "try” which contains the number of iterations
, made with the current core columns plus 1000 times the maximum number
before replenishment from the disc, the current value of the objective

function, the number of potentially good columns in core (NDJ3), and the

nurber of artificiul vectors still in the solution (NARTS). The second
part of the output may contain a standard group of items of informatiomn,
or it may contain a message glving n specinl coniltion which exists at

that point., The standard output contains the IJ vnlue of the column !
brought Into the solution (a measure of the sensitivity of the objective

function to thnt column), the internal column number of the column sclected,

where the i(nternal number equals the actual number plus the numbir of

Loz
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logicals, the status code* for that column, the internal colwrn number

of the column leaving the basis, its status code, and finally NSCAN, the
number of columns in core plus 10000 times the number of disc reads
performed. The special messages which may be given in place of this output
are self-explanatory and have the general form; ....PRIMAL ... END OF
PHASE 2 ,. OPTIMAL, where FRIMAL is the routine sending the message.

There are a few other special messages which may appear in the
output of the LP, After each inversion of the matrix, a check on the
feasibility of the solution is made, If some column is not feasitle, it
is removed from the basis and a message is output of the form; INFEAOL ..,
ROW xx COL xx VALUE xx BOUND xx. The last type of messuge has to do
with degenerate columns. If it is determined that a column selected for
entry to the basis will not hange the solution, then it is rejected
and another column is selected and the following message is output; REJECTED
COL XX ROW xx PIVOT xx RHS xx.

Upon exit from the LP, MAPOUT will priut thea solution. It first
gives the elements of the basis and their values, and then outputs the key
variables in the GUB rowe and their values., Finally it mixes and arders
the bagsic columns and key columns and outputs the column numbers and values
for the non-zero valued columns of the matrix.

Included in the output routines of the program is an error dump
routine called ESCAPE. This routine outputs the arrays NAME - the status
code, BASIS - columns in the basis, KEY - key columns in the GUB rows,

JA - list of columns in core, JAREJ - the reject state of the columns in
core (1 - rejected, O - otherwise), ALPHA - work space, BETA - solution
vector of basic and key columns, GAMMA and DELTA - work spaces, and IJ -

the objective function sentitivities to the columns in core.
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THE REPORT GENERATOR
Progran Loglc

The logic: structure of this program is not very complex. The first
part works almost in reverse of the matrix generator. It searches the
reference list to determine the symbolic names of the columns in the basis,
and then decodes these symbolic names to properly account for the value of
the variable. Most of the remaining portion of the program merely formats
and prints the output.

Core Allocations

This progrem, like the matrix generator, stores all of its data
in core. As a result almost three-fourths of core allocation is for
common storage. Several of tre dimensioning restrictions for the previous
two programs are effective here also; namely, number of vehicles, number
of period, and number of columns in the matrix. The only new limitation
18 that the number of years in the planning horizon be less than or equal
to 20 (this does not include years from which vehicles have been inherited).

The total core storage allocation is shown below:

Octal Decimal
CDC system routines = 5,T60 3,056
COMMON stornge = 51,55k 21,356
REPGEN . 6,176 3,198
SETUP = 221 15
INSOLN = op 150
YRCOST « 137 95
CINFO = 307 199
PINFO = 1,603 915
VALUES = 13 )
TOTAL = 70,765 79,173
L3l
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User's Subroutine - YRCOST

This routine is, and must be, the same identical routine as is
used by the matrix generator. One need only duplicate the routine end
insext it in this program.

Input Formats

The input deck for this program can be constructed directly from
the input deck to the matrix generator. It only uses a portion of the
data but the formats are set up to use the same cards as were used pre-
viously; this is intended to help avoid errors in the preparation of
input.

The first card is the title card, which is identical to that for
the matrix generator. This is followed by the vehicle tables, which
are placed in the order (numerical) in which they are listed on the output
of the matrix generator. The vehicle tables each have the appropriate
header card followed by card 1 and card type three (Fig. 4-6). Note that
all cards of type 2 should be removed from the vehicle tables. Next come

the period tables., These have header card and a card number 1 (Fig. L-T).

Only the cards number 1 are used in the period table. Finally the ENDITABLE
! card goes at the end of the deck, so that none of the task tables are used.
With this deck that has been extracted from the matrix generator,
only one addition needs to be made before running. On the cards number 1
of the period tables, one must add in columns 11 and 12 the alphanumeric
designator for the period. These designators are determined as follows;
"00" for the perlod which contains the present year, "Ol1" for the period
which follows and starts with the first year of the planning horizon,
"02" e.~, for the perinds sequentially that follows, "M1" for the period

that precedes the present one, and "M2" etc. for the preceding period in
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reverse chronological order. Since this field 1s read alphanumerically,
it 1s essential that both columns be punched and the preceding zeros be
included. The final deck has the general configuration shown in Fig. L-12,

Output Description

For each solution that has been developed by the main program,
the report generator will print four tables. The first contalns the
cost information and is fairly self-explanatory. It should be noted that
the truncation savings 1s printed below the table, so the total cost in
the table is the real cost ard does not contain this credit. Also,
although the total procurement cost is exact, the value during each
period is a linear estimate to the nonlinear cost functions.

The other three tables give the resources purchased, stored, and
used during each period. The only information that is not immediately
available is the number of resources in the system, but this is merely

the sum of the resources used plus the resources stored.
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“ENDTABLE® CARD

PERIOD TABLES (CHRONOLOGICAL ORDER)

VEHICLE TABLES (NUMERICAL ORDER)

TITLE CARD

Fig. 4-12—Deck Structure for Report Generator
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