
.1|

I

A Methodology

.1for Optimal Planning over Time

,I Volume I-Main ReportI
by Charles A. Allen 0 0 1

Beverly D. Causey
James E. Falk

Ronald G. Mapes S4:_I Charles W. Mylander
Ronald New, Proiect Director c
John D. Pearson
Philip 0. Robers

iCopy oP 165

NA

- A

S....I(LAIMEI NO)TICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFCANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

I.I

U;

The findings in this report we iet 9to14 construed as [
on official Doepatm ent sa Ow Army por•tion unlem s so
designated by other outherlod deeuwmnts.

U

LiLj

L

U
MS• - U

.1
....

" IJ

1'

9001UOWN DATA* hi5 AWFwdv 080lmd~ ofi sNib. adI.C~ as@$ mam 01"atw me b e awf a& 60 OVmm 0 no so mme

none
RESEARCH ANALYSIS CORPORATION 2' OFW N/A

VAOTT1tLG

A Methodology for Optimal Planning Over Time, Volume I, Main R~eport

.U FIRWPTIw mO55-t FrlWp 01 apso Mi beh".. MOe
Technical Paper

t~ AUWINOW) (Meta&% MWOs mIdi 1sl4d NOW .
Charles A. Allen Ronald G. ?.hgee Philip D. Robers
Belverly D. Causey Ronald New, Project Director Charles W. Mylander

f.I SOAT 5A9 . OVCAS. me. or PAGES I&we.orRe

January 1972 861
*a8 Ge"NAOYon OMAN? me, $a. ofteMATOw- emo US meam

6,L606 o 0 130 RAC-TPJ4i45..VOl..

I Li t6 DISTRIBUTION STATUNTW

"Approved for public releasiel distribution unlimited.."

it. supOLSUUU?*UY mom I s. 5~Use"40 WSUMYAW ACYMYY

U8 AxWCobt Dveou pie Cceend

IS. A UT0ACT

MLA. report daesribes a methodology which can be used to Identify the

mos cot-efeciveplan for the phase-in and phase-out of vehicle
systems--a. methodology tar optimal fleet planning over time. Vokaw 1
provides a systematic developmient of the problem structure, a qualitative
description of the solution procedure, and mathematical and opesrational
descriptions r'f the algorithm. Ve3.ape 11 provides appendices containingIL a deownstrstion problemt, subrouti kescriptions, props.m flow charts,
prcegre listings, and error mess&C d~~criptions.

DD PO¶mw'a1473 am

sevme" io a us"*e a 1644

fýbranch mad bound

flAe t i'lanning

non-convex progrming

U
V

non-linear progreaming

optiMluation over time

vehicle systems

I

U

, II

II

g SCIENCE AND TECHNOLOGY DEPARTMENT TECHNICAL PAPER RAC.TP441 Pubhlshed January 192

I A Methodology

Uj for Optimal Planning over Time

[I Volume I-Main Report

]by

[1 Charle A. Allen
Beverly D. Causey

Jameo E. Falk
ii Ronald G. Mages

Charles W. Mylander
Ronald New, Project Director

John D. Pearson
Philip D. Robese

UI

DISTRIBUTION STATIEMNT
Appemv f1e e*hIle m1fotewdleirlbwelas w1 leloedo

[1IS Research Analysis Corporation
3 ~ ~MOL662% Vistmls Mot A~iOO

II

DEPARTMENT OF THE ARMY
OPPI0W1 OF THU 06HICI OPP RP8,ARCH AND ODVELOPMUNT 8

WASHINGTON, D.C. W01110

DARD-ARS I
I

1. Volume 1, "A Methodology for Optimal Planning Over Time" and Volume I1, s
"Appendices A, B, C, D and I in Support of a Mothodolosy for Optimal Planning
Over Time - Volume I." were prepared by the Research Analysis Corporation
for the Combat Systems Groups United States Army Combat Developments Command, I
and document RAC study 011.310, "Aircraft Systems Least Cost Phase-In."
Copies of these reports are forwarded for your retention and use.

2. The methodology described in these volumes was developed to meet in
part the need of the US Army to determine an optimal plan for phasing in
new aircraft systems to meet its worldwide commitments yet remain within
budgetary constraints. It provides to planners a tool for use in planning U
situations involving consideration of large numbers of alternative systems
and combinations of tasks. U
I. The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other authorised
documents.

FOR THU CHIRF OF RUSRARCH AND DSVIWKKOI

Colonel* OS
H

Chief, Studies and Analyses Division

Puwb~lised Jenu~ey IM7

RESEARCH ANALYSIS CORPORATION
Mceain VIIM10e 22101

ii

(I

I
CONTENTS

VOLUME I

SU•MARY 8-1

INTRODUCTION I-1

CHAPTER 1 - PROBLEM STRUCTURE 1-1

CHAPTER 2 - A QUALITATIVE DESCRIPTION OF BRANCH AND BOUND 2-1

CHAPTER 3 - MATHEMATICAL DESCRIPTION OF PROBLEM AND ITS SOLUTION 3-1

THE CONSTRAINT SET 3-1

Materiel Balance Constraints - Consistency Constraints-
Vintage Constraints - Master Variable Relation
Constraints - Cost Constraints

THE OBJECTIVE FUNCTION 3-6

Primary Cost Categories - Secondary Cost Categories

THE SOLUTION PROCEDURE 3-10

Linear Envelopes - Bounding the Solution -
Partitioning into Subsets - The Algorithm

CHAPTER 4 - AN OPERATIONAL DESCRIPTION OF THE BRANCH AND BOUND 4-1
SOLUTION PROCEDURE

PROGRAM INTERFACING 4-1

THE MATRIX GENERATOR 4-5

Program Logic - Core Allocation - User's Subroutine
(YRCO6T) - Input Formts - Output Description

THE MAIN PROGRAM 4-21

Program Logic - Core Allocation - User's Subroutine
(GITPIa) - Input Formts - Output Description

THE EORT GNERATOR 4-34
•Program Logic - Core Allocation - User's Subroutine

(YECOST) - Input Formats - Output Descriptiop

REFERENCES R-l

FIGURES: VOLUME I

1-1 A Typical List cf Alternative Vehicle Arrays Which 1-1
Could Service a Mission Group

L 1-2 light Indepenlent Groups Each with Twenty 1-3

Equally4-Effective AlterAtives[1-3 The Mission Group Tableau 1-5

iiWi

I
FIGURES: VOLUME I (continued)

2-1 A Concave Cost Function 2-1 5
2-2 Partitioning the Total Solution Set Into Subsets 2-3

3-1 Cost Function 3-11
3-2 A Linear Envelope of a Concave Function with 3-13

Discontinuity at Origin

3-3 The Algorithm 3-17 3
4-1a Control Cards to Execute All Program as a Single Job 4-3

4-1b Control Cards to Execute Program as Separate Jobs 4-4 3
4-2 System Macro Flowchart 4-6

4-3 Symbolic Naming Convention 4-7

4-4 Positive Integer Code 4-8

4-5 Basic Cards 4-3.3

4-6 Vehicle Table 4-14

4-7 Period Tible 4-15

4-8 Task Table 4-16 5
4-9 Deok Structure for Matrix Generator 4-20

4-10 Input Data Formats 4-27 £
4-1l Dock Structure for Main Progam 4-30

4-12 Deock Structure for Report Generator 4-37 1

[I
U

a

i~I]

I, II

1 CONTENTS
VOLUME 11

APPENDIX A -SAMLE PROBLEM A-1

UAPPENDIXB- SUBROUTINE DESCRIPTIONS B-I

APEDXC- PROC(AJ FLOWCHARTS C-1.

APPENDIX D - PROGRAM LISTING D-1
APPENDIX E - ERROR MESSAGES E-1

GLOSSARY G-1REFERENCES R-1

"FIGURES: VOLUME II
A-1 Alternative Pleat Mixes for 1972 A-1

A-2 Capital Equipment (Truck) Requirements as a Function A-2
of Time

A-3 The Simplified Objective (cost) Function for the A-4
Sample Truck Problem

* A-4 The Sample Problem Data Deck for the GENLCP Program A-8

A-5 GENLCP Output For Sample Problem, Parts (a) - (f) A-1O

A-6 The Sample Problem Data Deck For the BBCAV2 Program A-18

L A-7 A Branching Tree For the Sample Problem A-19

A-8 The Sample Problem Data Deck For the RIPEII Program A-20

SA-9 REPCEN Output For Bample Problem, Parts (a) and (b) A-21

A-1O A Sewple Optimal Plan For the Ace Trucking Compway A-24

L

I
1

I
I SUmmARY

PROBLEM

To develop and demonstrate an algorithm (scheme) that will

identify, from among the myriad of possible plans, the most cost-

effective plan for the phase-in and phase-out of vehicle systems -

a methodology for optimal fleet planning over time.

JISCUSSION'

This report describes an optimization methodology that accepts

I as input the numbers and coats associated with alternative mixes of

vehicles (machines), such that each mix can perform a series of tasks

Swith equal effectiveness, and provides as output the numbers and cost

of the "least-cost-mix" that will meet a prescribed level of effective-

ness.

L The concept of the new algorithm is easily seen by comporison

with traditional methods of solutions as implied by the following

[sketch:

yststmm

Quantity

IIN

TL
Start Bad1 8-1

I

""W

In the traditional methods, a future time (planning) period is I

selected, at the beginning of which all of the considered systems could 3
be made available if desired, and certain approximations made regarding

the inherited assets (existing systems) and their status. The optimiza- 3
tion is then conducted on a one-time (snap-shot) basis for the selected

period of time (typically 10-12 years) as implied by the dashed lines I
in the shaded portion of the sketch. No information is made available, 3
or is provided, regarding the interim period between the present time

and the start of the planning period. In addition, it is typical for

all data (both input and output) to be considered to be averaged over

the planning period. I
In the new algorithm, the optimization is conducted "dynamically"

over an extended period of time (say 15-25 years) beginning with the

present status of the existing systems and concluding at the end of

the planning period. This permits full and explicit consideration of

the inherited assets and their aging characteristics as well as the

initial operational capability (IOC) dates of the proposed new systems L

and their growth characteristics. The optimization is conducted over

the complete (extended) period, phasing out old systems (e.g., system A)

as obsolescence occurs, and phasing in new systems (e.g., systems B & C)

as they become available. The response to changing military requirements

is controlled by structuring the complete period in terms of smaller and

smaller subperiods so as to obtain (almost) a continuous adjustment of

the status of all systems, as implied by the solid lines in the sketch.

It is noted with emphasis that the user must specify the input data

array which details the task (mission group) requirements for each sub-

period within the planning horizon.

8-2

U In specific terms, the methodology:

. Provides a global (optimal) solution over the entire time'U period of interest,

a Accounts for, and makes optimal use of, inherited assets,

0 Determines when and if to phase-in new systems,

1. Determines if and when to phase-out existing systems,

* Can eccount for step-discontinuities in cost, such as develop-
ment expenses,

* Can account for decreased procurement costs as the quantity
of systems increases (learning curve effect),

Allows input of increased operating costs, if appropriate,
as the age of the vehicles increase,

S. Aliows input of budgetary constraints, by category if appro-
priate, and

. Accounts for "retained value" of the systems at the end of
the time period.

The mathematical statement of the programming problem is of the

following form: Find a vector x = (x 1 , ... , xn) that will
n

minimize 0 (x) - 0 €i (xi)'j i ml

subject to x E G, 0 x 9 L

L where

0 a the total cost,

x vector representing the number of vehicles of each type,

S[0 = the constraint net,

L a the vector of upper bounds,

I and the subscript i, i a 1, 2, ... n, denotes the vehicle type. There

are two restrictions on the form of the cost function. First, the

function must be "separable" which means that each type of vehicle

I S-3

q

S•- -lli1,l nl m -. a•lmi,

I

can be costed independently, The second restriction is that the cumla- 3
tive cost curve for an increasing quantity of each type of vehicle must

be concave. This means that a straight line connecting any two points I
on the curve lies on or below the cu-ye at all intermediate points. 3
These requirements are generally satisfied in cost minimization problems

- that is, those problems where it is appropriate to minimize cost for 3
a specified level of effectiveness. In addition, there are three restric-

tions on the constraint set: (1) all of the constraints must be linear, I
(2) none of the constraints can be strict inequalities, and (3) the i

number of vehicles of each type must be bounded from above and below.

The general procedure of the algorithm is as follows: The set

of all possiblt solutions is successive1v broken into smaller and smaller

subsets. For each such subset of solutions, a lower bound on the cost i
of the best solution In the subset is calculated. At each iteration of

the algorithm the subset with the lowest lower bound is broken into two

smaller subsets. Eventually, a subset consisting of exactly one solu-

tion is found and it has an actual cost that is less than or equal to

the lower bound for all other subsets. This is the least cost solution.

The lower bounds are found by solving the problem with linear cost func-

tions instead of the actual concave cost functions.

Once the least-cost solut'",n has been obtained, the sensitivity

of this "optimal plan" to possible errors in the user specification of

the input requirements can be determined. In other words, the consequences ?

of the uncertainty of the input data can be explored by manipulation u
(calculations) within the computer program itself. Mhny of these sensi-

tivity results can be displayed automatically, as standard output - H
other results can be efficiently re-computed from the results of the

optimal plan. -54

(hI

I Volume I of this report provides a systematic development of the

5 problem structure, a qualitative description of the solution procedure,

and mathematical and operational descriptions of the algorithm. Volume

3 II provides appendices containing a demonstration problem, subroutine

descriptions, program flow charts, program listings, and error message

IIdescriptions. Those readers who are interested in a general (non-mathema-

II tical) understanding of the methodology should confine themselves to

the Introduction, Chapters 1 and 2, and possibly Appendix A. Those

who are interested in the mathematical substance should concentrate

further on Chapter 3. Chapter 4 and the remaining appendices are for

the "users" and "programmers."

SCONCLUSIONS

This algorithm provides Army planners with a comprehensive

non-linear methodology which can be used for tdnimizing costs over long

/ planning periods. While the emphasis in this report is on "fleet

planning" exercises, the methodology is generally applicable to problem

involving "machines" of any type (e.g., computers, motor/generator sets,

radio sets, etc.).

L A principal strength of the algorithm is the ease with which

r sensitivity analyses can be conducted and the facility with which input

data may be changed to eriodically update the planning process. The

structure of the methodology is sufficiently general to be used in all

optimization problems appropriate to the ausumptions and conventions.

The algorithm can accept large enough problems, and runs with sufficient

rapidity to be used as a standard research tool.

S-5

I
INTRODUCTION

U The set of criteria which one uses to select one capital invest-

U ment proposal over another may vary, but there is no substitute for

being able to view interactive business operations in their entirety;

that is, it ls certainly desirable to see the influence of an act Lon,

taken at a given time and place, on the overall costs (or effectivsa'esi)

of a major procurement program. This report is the result of such an

L effort in that most quantifiable factors which affect, or are affected

by, a single capital eqi.ipment investment are aggrepied and viewed in

their interactive state. In this way, the program manager can test and

probe a model of his operation to see the influence of each capital

investment proposal.

The manager today is very often faced with decisions regarding the

purchase of capital equipment within a very complex problem environment.

These questions my be familiar ones-Ohould the old vehicles be re-

placed?...When?-But the new models won't be available until late in

'73; should we order immediately?--That looks good now, but what about

costs over the long term? These questions are certainly not new to the

program manager--he has been "solving" them for years using experienced

judgment and various rules-of-thumb; but, it is no secret that these

methods are not altogether satisfactory. In fact, such methods are weak

because they only begin to solve the problem...such methods are super-

ficial in the sense that they appear to account for the primary factors,

but fail because they do not consider the important interactions. The

* . methodologr reported on here utilizes an interactive model wherein

i(

an account is taken of variations in the problem environment g I
JW; i.e., the "dynamics" of the long term plan are inherent in the

model.

In moat cost-effectiveness analyses it is usual that one seeks to 5
fins an optimal solution - i.e., a mini um cost or a maximum effective-

neos solution, subject to certain problem constraints. The following I
describes an optimization methodology which accepts as Ip~ut the numbers 3
and costs associated with alternative mixes of vehicles (mav~ines), such

that each mix can perform a series of tasks with jal effectiveness, 3
and provides as o the numbersascheduleoand cost of the "least-cost-

mix" that will meet the prescribed level of effectiveness. The problem

that we considbo; here is dynamic, hence, we call this a "phasing"

problem since its solution specifies the orderly and efficient phase-in

and phase-out of a fleet of vehicles or machines. In this context,

Hetrick' has noted that: "Sow managements pay only lip service to the

idea that decisions should be made to the best advantage of the total 1
enterprise and for the long term. All too frequently, short term

decisions are made that are crippling in the long term." It may be

convenient to think of this problem as a multi-stage decision process

where the interdependence between stages (sub-periods) is due to the

inheritance of a fleet of machines from a previous sub-period.

The algorithm that is used to obtain the least-cost solution

is of the "branch-and-bound" type and solves a sequence of sub-problems,

each of which evolves into a linear program. 2

In Chapter 1 of Volume I we structure the problem by systematically

developing the array of alternatives t,) satisfy prescribed requirements.

1-2

I Here the requirements are aggregated into independent groupe of missions

3in building-block fashion and a concise problem statement is developed.

Chapter 2 provides a qualitative description of the solution procedure

I in order to demonstrate its logic and intuitive appeal. A mathemtical

description of the algorithm is given in Chapter 3; here the problem

i statement is transformed into the general non-linear programing formt,

u and the solution procedure explained with some rigor. Chapter 4 is

an operational description that translat,-s the algorithm into the

language used $n the computer code.

Volume II contains a series of appendices (A through E) designed

B for the user and programmer. Included are a detailed description of a

sample problem, subroutine descriptions, program flowcuarts, a program

listing, and an explanation of all program error messageh.

1
i
I
I
I

I
i

£ 1-3

I

I

Chapter 1

Ii ~PROBLEM STUC¶RUM
Let us uase that there ex•It or that one Oan gnereteO list$ of

"al_ alternative obinations of vehicles, such that each alternative satisfies

11 the reqixirements of a particulau mission group.* For exalple, a typical

met of theme alternatives might look like that in Fig. 1.

Vehicle 6Type Vehicle Vehicle Vehicle Vehicle Vehicle

Alternative #1 #2 #3 4g 146 15 63 104 138
2 0 15 82 104 138

43 6 0 70 104 138
4 0 0 90 104 138

1 46 15 0 167 138
6 0 15 0 187 138
7 146 0 0 176 138
8 0 0 0 196 138
9 46 15 63 0 265

10 0 15 82 0 265
1F 1 46 0 70 0 26.
12 0 0 90 0 26513 46 15 0 0 313

114 0 15 0 0 328
15 46 0 0 0 315
% 6 0 0 0 0 332

Fig. 1-1. A Typical List of Alternative Vehicle Arrays
"Which Could Service a Mission Group

Ideally, each of the alternatives (rows) on a given list m"t satisfy the

requirements of the corresponding mission group with equal effectiveness.

* "Mission group" is meant to be mynommous with "series of tanks" or
"collection of jobs"; the important point here is that vehicles (machines)
"may be "pooled" to accomplish the objective(s), i.e., each "Job" need not
be performed by physically different vehicles.

I 1o3.

! + I -- I - " " "- I IIII~ i i ll l l li ~ l li l ll.

The Job of the optimization methodology 1t to choose m alternative from

each list (mission group) so that the total mix it least costly. For a

single mission group the task here is a simple one, it**# one need erely

evaluate the cost of each and every alternative, and then select that one 5
having the least cost. As long as this list it not unraeaonably long (and

a list of one million alternatives is M1 unreasonably long), then the task i
is not prohibitive. When there exists two or more Independent* misason

groups, then the number of feasible combinations @em up rather quickly.

Consider, for example, a problem involving eigbo Independent mission groups

each of which contains twenty alternatives, as ohm in Pig. 1-2. line. the

cost relationships are in general non-linear (fixed B&D chargei and learning

curves), the least-cost-mix will not be the simple combination of the least-

cost alternative for each mission group. The optimisation problem here in

to select one alternative trom each of the eight mission groups such that

this combination (Zi) 0of alternatives to the least-cost-mixe Aginpll we

cou~ld attempt to explicitly. enumerate each and every combination, but a

little thought will reveal that there exist 208 possible combinations.

If each combination could be evaluated in one-hundredth of a second on a

modern computing machine, the total set of evaluations would require more

than 50,000 hours of computing time, It is this problem (and only this

problem) which precludes explicit enumeration of all possible solutions and

requires the use of a more sophisticated optimisation technique. Furthermore,

we have not yet considered the additional complexity introduced by the

element of time, i.e., the problem is not yet dynami. The requirements

represented by the eight independent mission groups described above may be

* Mini on groups are independent it the vehicles used to satisty one
mission group are not (cannot be) used to satisty the other.

1-2

0i

"II

I
U Mission Group #1 Mission Group #2 Mission Group #8

Alternative#1 #771# #1 1
[2 2 2

3 3 3
4 4 4
5 5~f 51U6 16 1 16

8 8 8
9 1119 91

[113 13 13
14 14 14
15 15 111115L16 16 1116111
17 111117 17 11
18 111 18 18 -T
19 19 19

20 -2W0jH 20ii

Pit. 12-111m l1.-hp W8. MIssIO Gro.w$ ltech whI
Twenty hquully,.Efftive Aleomilves

il
I
I

i . .1-3
(SO

P 7

thought of as originating at eight s@oerate geographic" locations but N
occurring at essentially the same time - it is iM W sense that the 3
mission groups are independent. Actually we would like to consider the

more general problem of satisfying an array of requirements in a sequence

of time periods conuncing now and ending at sometime in the future. We

can accommodate this additional time dimension in the problem by developing

arrays of mission groups like those of Fig. 1-2 for SAOh sub-period within 3
the total time period of concern. To continue with our example, we could

develop a tableau like that of Fig. 1-3 which displays eight mission 3
groups for each of 15 yearly sub-periods from 1971 thru 1985. This is not

to imply that there must exist any regularity or uniformity to the number

of mission groups per sub-period# or alternatives per missior ,-up, etc. 5
- there need only exist a finite number of equally effecti• alternatives

for each independent mission group within each sub-period. Of course, the 3
duration of the sub-period(s) is a measure of the "resolution" of the

problem and should be selected t.y the model manipulator (user) from the In
state of knowledge which exists of the predicted requirements for that

sub-period.

Finally, we complete the description of the problem structure U
by noting that there can txist at the beginning of the first sub-period

an inherited fleet of machines. This inherited fleet is characterized II
by number, type, and vintage and may be used to satisfy part or all of

the requirements of subsequent sub-periods. It may now be obvious

that the interdependency between sub-periods derives from the inheritance I]
of machines from sub-period to sub-period and if that inheritance

*The vintage or age of each inherited machine will, in general,
influence the operating cost and salvage value of that machine.

1-4,

I I.
I I

* I I
I I* I______ ______

U I I
I I
I I

o _______ L -�

I Io I I
I I

_____ U-----------1

I
U __ Io I L-.i 5

I I

I IH 'I___ I I

U I I

I I
I Io L ________

���1I j I I
I I
I II -J -I

-
++FF4-FFI. I IIi I I 0.0

L--------

I 1-5

were ignored, then the least-cost-solution for the entire time period

would be the sum of the least-cost-solutions for each sub-period. I
The problem structure as defined in the preceding paragraphs

provides the foundation for a concise problem statement:

PRODU•M STATI•N

We seek to satisfy the fixed and prescribed requirements in each f
and every sub-period with that mix of machines which will minimize the

total overall cost. This least-cost-mix must obtain from the selection

of one alternative for each mission group within each sub-period, In

conjunctionwith an optimal retention of inherited assets.

1-6

Choaptr 2

A Q=TLATMV tUSXPTIOI OF THE BDANCN-MID-BOWI

3 80XSOWTON PR0MMMO

5 The number of possible (feasible) solutions to a typical "multi-

stage phasing" problem to enormous; the example problem represented by

I the tableau in 71l.l-3has more than 20120 possible solutions! Clearly,

some systematic solution procedure vhich by-passes complete enumeration

I of all possible solution is needed.

3 We seek to minimise some cost (objective) ianotion whicho at the

very least, reflects the expense involved in developing, purchasing, and

5 operating a fleet of machines over an extended time period. F•rthermore,

this minimization must be carried out subject to certain requTrement

production, and cost constraints. The specfic details of the cost

I equation can be deferred for the moment, but the general form of the

function is important here. A typical vehicle cost curve, plotting

3 total cost versus number of vehicles yurchased and operated is shown

in Fig. 2-1 below.

, 1
I

INUSI OP VIMICLIS PU0CHA"8D
AND OPINATID, n

I Pit. 2.l-A CoSIGVo Cost Pow$"

I 2-1

q

n • m. m, I1 . - • I I [II

The cost Ju at x a 0 represents the R&D expenditure,which must occur

prior to the procurement of M number of this particular vehicle. For

x poster than 0, the deviation frn. linearity derives from the "learning" [
advantage of a volume purchase. The function represented by this curve

Is called a "concave" function and it is this characteristic which moti-

vates the branch-and-bound solution procedure. A concave function of a [
single variable is one whose graph is never "below" a straight line joining

anmy two points of that function.* That is, the straight line value is

always less than or equal to the function value and we note, importantly, a
that this straight line approximation will always yield an "underestimate"

of the concave cost function.

Now, let us visualize enclosing all 201M solutions of our sample

problem by the solid line in Fig.2-2a. This box-like enclosure contains

the entire set of solutions and we will ultimately partition this set u
into subsets, the partition being indicated by the dotted lines. A

second representation of the partitioning procedure is shown by the

"branching" diagram in Fig. 2-2b; her*, a tree of branches is formed in

one-to-one correspondenoe with the partitioned subsets with each node

corresponding to a dotted partition line. Each node on the branching

tree identifies a linear programing problem. Initially, we obtain the

cost of one (any one) mix; this cost is called the reference solution. [f

-We divid, the total set of solutions into two subsets, i.e., we torm

two branches (see diagram). We then calculate a lower bound** (under-

estimate) to the solutions in each subset by solving the corresponding

" A more general and more rigorous definition of it concave function

is liven in Chapter 3.
A lower bound in a given subset is a cost loes than or equal to

the cost of any solution In that subset.

2-2

I
I
U
U

U I

LI li ...

!- U

linear programs and compare these lower bounds to the cost of the

reference solution. There are three cases to consider: (1) both lower I
bounds are less than the cost of the reference solution, (2) one lower I
bound is less than the reference solution, (3) neither of the lower

bounds are less than the cost of the reference solution. A description

of the procedure to be followed for case (2) will suffice for all cases.

If a lower bound is greater or equal to the reference solution, its i
corresponding subset cannot contain a better solution than the reference [1
solution and this is the basis for discarding this entire subset of

solutions. If a lower bound is less than the reference solution, the L
corresponding subset can oontai.a the least-cost-solution; hence, this

subset is partitioned again and the testing process repeated. For each >

subset having a lower bound less than the current reference solution, a

new reference solution is calculated from this candidate subset. If this

new solution is less than the old reference solution, we replace the old

with the new. This entire process can be shown to converge to the least-

cost-solution of the entire set of solutions. The specific details aj to

how one calculates the lower bounds, partitions the subsets, chooses the

branching rules, etc., is left for Chapter 3. Nevertheless, it should Mw

be clear that the efficiency of this algorithm stems from the freedom to

lesitimately discard large groups of possible solutions without ever

explicitly evaluating them - only a small fraction of the total number

or solutions need be evaluated.

Finally, it should be noted that the branch-and-bound procedure

actually considers many more than the 20120 (or so) discrete possible

2-4

I
solutions to our sample problem. In fact, a continuum of possible

a solutions is considered, comprised of the 20120 discrete solutions

plus all convex* combinations of the discrete solutions. In so doing,

it is assumed that all such convex combinations represent equally

U effective alternative solutions to the problem.

Al "cne"cmiaini ier.cmito fasna ye

iii

II
I
I

I
1
I

I
e~g, a A"convex" combination is a 34ne.• combi~tiono•a sia3.•_l t~pe,

e.g., a convex combination of two veoto'rs U1 and T2. 'a CQU + ýY2 su~h

that a + S , 1.

2-5

It

liM

i Chapter 3

B MATHEMATICAL DESCRIPTION OF THE PROBLEM
AND ITS SOLUTION

U The mathematical problem statement is of the following form:

Find a vector x a (Xl, ... , xn) which will

n
minimi x) i(xi)

i-I

subject to x E 0,

L•x•

-K We develop now the specific and detailed structure of the model beginning

Swith the constraint set, G.

L CONSTRAINT SET

In this problem there are three basic activities which interact)

and associated with each activity in a problem variable. The value of

the problem variable indicates the level at which the activity is to be

conducted. The first activity is the disposition of the inherited assets.

The problem variable is wlg which refers to the number of j type

machines which were purchased at the beginning of subperiod I and will

be disposed of at the end of subperiod m. The second activity is the

purchase and disposition of new machines, and its variable is xjs

where the subscripts have the same meaning as above. The third activity

is related to the performance of the mission requirements. The problem

variable is p1kll the fraction of alternative k to be used in accomplish-

Sing the ith mission group in uubperiod A.

3-1

I

I

Materiel Balance Constraints

The most basic constraints relate the interaction between activi- I
ties. They insure that the machines which we have available in any

subperiod are sufficient to meet the mission requirements of that sub-

period. The machines available in subperiod £ are determined by adding

those remaining from the inherited assets to those which exist as a

result of new purchases, that is, -

0 Y v II
w +A v t ,e, A -4 1, -

where K = number of subperiods before the start of the planning period3

from which the jth type of machine is inherited. Note that

(I'- K3 ,...,-1,0) in the first series set above but ('- l,2,...t) in

the second series set. Y - number of subperiods in the planning hori-

zon (A U l,2,...,Y). The factor vi.A/j accounts for attrition due to

accidental loss of machines and specifically represents that fraction

of type J machines which remain usable after A-A' subperiods of existence.

The number of the jth type machines required in subperiod A is ob-

tained by summing over all units used to satisfy esah mission group. This

summation is expressed as

tiA Uijkl PikA

ieM• k-i

where MA is the set of different mission groups in subperiod 1, R I

is the number of alternative ways of performing mission group i in

3-2

U

subperiod Ap tit is the number of times mission group i must be indo-

I pendently performed in subperiod 1, and u ijk is the number of units

of the jth equipment used in performing mission group i with the kth

alternative in subperiod A.

The constraint relation insures that the number of jth type

machines that we have on hand for use in subperiod £ must be greater

[than)r equal to the number required. Expressed as an equality, this

relation is:

0 Y A Y

tit uijkA + for,..

and £ o 1,2p...pY1i
where sit is a slack variable which is specifically included because it

Shas a physical meaning in the problem; it represents machines of the ith

type which can be "mothballed" in subperiod A for later use.

Consistency Constraints

I The second subset of constraints insures that the requirements of

each mission group are met. This is accomplished by requiring that the

fractions or proportions used for each of the alternatives within a

given mission group do sum to 1.0. The constraint set then takes the

form:

k- for A - l,2,*.,.,

3 a n d I a 1 ,2 0 . , .g*

wJ3-3

I

It should be emphasized that the formulation of the consistency

constraints in tits manner actually represents the jsjutfl that all 3
convex combinations of alternatives are equally effective. This

assumption introduces two points of concern: (1) In most oases this I
assumption will result in a fractional number of machines in the optimal i

solution, requiring the user to readjust the solut.ion to the nearest

"whole" machine(s)-this interpretation of fractional S.olutions will 1
cause no large errors as long as the number of machines of each type is

large, relative to one; and (2) this assumption may result in the choice I
of a particular convex combination which differs significantly from that

of an equally effective alternative. The seriousness of this problem can

only be determined by a study of a series of typical problems. Until

such further study is conducted, it can only be noted that, to date, no

serious departures from equal effectiveness have been observed in the

problems which have been solved.

Vintaae Constraints

The next set of constraint relations accomplishes two purposes;

(1) they define the inherited assets in terms of both number and vintage

(age) and, (2) they relate these numbers to the ultimate disposition of

the assets to ensure that all are accounted for. These relations are

given by the equationst

L -1+A
•ý ,Iw . ýO wj/= ; j u l,2,...,N

wi o I KjK +1,..,-1,O

where L iis the maximum life (in subperiods) of machine type J, and WJ1

is the number of type j machines inherited from subperiod 1.

3-4

-- ow

I Water Variable Relation Constaints

3 We define xj to be the total number of mohines of type 3 purcbased

during the entire planning period. We oan obtain xj by summing the

s subordinate variables x JM over all A and m, the purchase and disposal

subperiods.

y y
I I j j•m .l-,2,..., N

I A-1 M-A

These constraints not only define the mster variable. but also mintain

S"8separability" in the cost function as discussed on page 3-1D.

1 Cost Constraints

Specifically at this point we discuss and desoribe the i~lemntation

3 of linear &OCur"Aent constraints. Similar constraints could be considered

for opersting costs but their implemntatioa woul. require propmm changes.

I This constraint restricts the total purchase in subperiod £ to be lose

than or equal to some fixed ceiling, H,, for procurement in that subpnrod.

The constraint relation &Ai.v* for any funds left over at the end of sub-

3 period £ to be transferred for use in subperiod £ + 1. This is given as
N Y

3 I- a0 j I x i3A+ P "A PA-1

g for A w 1,2,...,Y

v 0
,06e PA£ is the slack variable representing the surplus funds, and a3

is the linear cost coefficient (which my r sent an aspoximation if

I 3 the cost function is nonlinear). This constraint set is inteudd to be

inoorypomrted as an optional feature since its use may very well result in

3Ian Infeasible problm.

1 3-5

TO O5T'WIM M'OTION

Six distinct cost categories are included within the objective

function. The three tiinmu oategories are research and d-ovloymont

(PAD), pi•ou•inint, and opent ing e3Ionse. The secondary categories are

moot appopiately naed mothballinp salvage, and truncation costs

(these team will be defined in a subsequent paragraph). For purposes I
of this develommnt, only the R&D and procurment cost functions ame

consideored to be aoncavej hovever, from a modeling point of vlew there

Is no reason wkW any of the other categories could not also be defined II
by concave functions.

Prirar Cost Caitegories

The PD function can be r snted by a stop discontinuity at

zier. We will dOelpate this function as U J (XZj) Then U (X•) = 0 if

the m•teor variable x a 0- and U j (Zj) - D3 (same constant) if xo.> 0.

Dj is the estlimted PAD cost for mohine type J. The total R&D oost is

obtained by umi.ng over all machine types,

I U j (x j)[

and this is the first type of term In the objective function. fl
Procurement, is defined in terzm of a so-called "learning curve"

and an in most ca•e•, be reprsented by the function a x I wher as

in the cost of buying one machine of type J, and 0 < b3 j 1. This function

suggests thut although the total cost increases as the buy size increases,

the unit cost is actually decreasing (except for the linear case when ii
b3 - 1). The total ex ltur for procurment is then,

3-6

Since we distinigutish btveein the inherited and puro1es.d mohines,

it is necessary to develop tvo separate e a~nsions for operating cost.

We define for use in both w~ressions the cost coefficient o, i.e.,

the cost of operating one unit of the Jth type in its kth subperiod of

existence. This allows for an Increase in operating cost based on the

sae of the equiymont.

Starting with the new equuimnt, vs wish to foznulate the operating

oosts in terms of variables of the typez .J ecaRe thathxat 'A reesents

L the nuber of units purob•sed at the beginning of subperiod £ and disposed

of at the end of subperiod m. Then the lifetime of r'aJmachines is

m - I + 1 subperiods, and the total opemting oost for these mnchines Is

the su of the costs for each subperiod, that is:

Py sting over all subpeiods end machine typeep ve derive the total

Soperating cost for the now machines aver the entire plaaning period.

u This su i3

Ojk JA-
Jul, A-1 met ka

SThe operating co•t of the inherited assets Is ealculated esiilarly.

The cost of a given wariablet is J I

z MAl aJk VJAM

Swhere the swoition begins at 2 - A since A here Is neptive or zero and

the first subperiod of the p3lannin period Et be at least the seond

S3-7

i • • "- -'- -' - • - . . . _ -2 e n w N i m = i• • , ., l, • ,• ,, .• •- l ,i)-

subpeoriod of the mohines life. The total operating oost is again i
obtained by eummwing over the stibperiods and machine types; that is,,

N 0Y M-L+l

Jm 1 -K i m-i k-2-A

Secondary Cost Categories

Each of the primary categories represents a specific cost (outlay

of dollars). In contrast, each of the secondary categories represents a

type of savings or credit to the system. "Mothballing" is herein defined

as the storage of equipment (owned but not presently needed) for use at

a later time. In the prevent formulation, we associate a savings with I•
this storage resulting from a decrease in operating cost (i.e., we jj
initially charged the full operating cost for all retained machines).

"Salvage" is the refund received from the sale of equipment which is no II
longer needed. Finally, "truncation" is a credit for the value of the

equipment on hand at the end of the planning period. It is used to

compensate for the fact that we only consider a finite time period and

have no real knowledge concerning the use of the equipment after that

time. In the current formulation of the model we have assumed that each

of these three secondary cost categories can be approximated by linear

coit expressions--this is not meant to imply a restriction; more colex

cost expessions my be used.

The mothballing variable, sa, was previously defined by the

materiael balance constraints. The total cost (actually a negative cost,

or savings) resulting from mothballing is
N Y

3-8

I

i where dj£ in the unit refund for mothballing a type j machine in subperiod

Savings due to machine salvage must be calculated for both the

U inherited and the new equipment, as was done for operating costs. The

machines r sented by x~jn are salvages after m - £ + 1 subperiods of

servi ce, providing that m. * Y (if m. a Yj, they would be truncated instead

o? salvaged). We define ej (I - A + i) as the salvage value of a type 3

machine after m - I + 1 subperiods of use. The total savings from

L! salvage in then

N Y-l Y-l

LJul A-1 ImiA

L Similarly the savings resulting from salvage of the Inherited assets is

LI given by the su

N 0 Y-l

Ii~~(m -I., + 1~~~)) w6~A
3-1 A-IC MW0

SCredit for truncation is calculated frm the candidate solution

L at the end of the planning periodj that is# when m m Y. Henoe, the

machines xJ are Y - A + lsubperiods old. We define fJ(Y - £ + 1)

Sas the credit added for a type 6 machine after Y - A + 1 subperiods. The

Struncation credit (introduced as a minus quantity in the cost function)

is then

1 3-9
(!

U

for the purchased. equipurat, and

j1 (Y I(+1) I
jal £uK~

for the inherited equipment.

This completes the developent of the cost expresmions; the entire I
cost function is shown in Fig. 3-1. 1
THE SOLUTION PROCERE

There are two special restrictions in the cost function that are

essential to the branch-and-bound solution procedure. First, the function p
must be "separable" meaning that each variable must be priced separately

(each cost expression must be a function of a single variable) -- this is U
the reason for the development of the moter variable relation constraint;

otherwise the R&D and procur-ment costs would be a function of a sum of L
variables. The second restriction is that all of the separable functions

which make up the cost function must be concave*. For functions of a

single variable, this means that a straight line dz•wn between any two U
points on the graph of the function alvays has a value which is less than

or equal to the value of the function. A linear function is then a

special case of a concave function.

*In mathematical notation a function f(xl,..., Xn) is conuave if

for any two points (qj, .. 0, Yý) and (xjtp ... , 3ý%) and aMW t, 0 IC t <C 1,
f tzi + (l-t)j',..., tX + (1-t)x1 l a tf(zj,..., -3) + (l4t) f(3q', "',

3-10

4b�

I
I

I I
I
LI A

N[I N� -%

S -. NLi � I 'I '� jI
I4L�-. 'S 1L%1L 5' U,[1 N U '2

L 1 + V � �4I�%�

Li S + I mL�.4, 4'-4 A� +
V � UqeI

-. *3L �' � LIL I
Li IEL�1 IIi + I'4Li 3 � I1

U, �U.,I 0 r�t'E '� CIU N �
U, -

��1

a
+ + +

I
£1 -�

1 3-U.

� 4� &h1S4 �5jg�4 � � -.

In addition, there are three special characteristics of the I
constraint met which should be notedt (1) all of the constraint equations 3
are linear, (2) the constraint set is closed*, and (3) the problem

variables can be bounded from above and below. It can be shown that the 3
pr•bIem as described above is but r special case of the general non-convex

progrmming problem addressed by Falk and Soland2 . We can apply their I
solution algorithm to this problem by solving a sequence of linear program- I
ming (LP) sub-problems.

We define a vector of upper bounds L - (Ll, L20 '." Lip ... , "" y

on the master variables x such that

0 x9 L ; j a 1, 2, ... , N

and note that these bounds can be obtained directly from the input tableau

(e.g., Fig. 1-3). These lower and upper bounds define a set of N closed

intervals which we will refer to as set C. We need only explicitly define

upper bounds on the master variables x3 since these are the only bounds

used in the solution procedure-the remining problem variables have

implicit bounds which can be derived from the master variable bounds for

the xjgm variables, from the consistency constraints for the p. variables,

and from the vintage constraints for the wjAm variables.

Linear Envelopes U
Having defined the set C, we next construct a "linear envelope"

for the cost function aczoss that set. This means that for each nonlinear II
contribution to the cost function, we define a linear function which is

*Specifically, a closed set is one in which the boundaries are
included in the setj that is, there are no constraint equations involving
strict inequalities.

3-12 "-

i the best linear undereztimate of the oncave function.' This can be

dame p'aphioally by constructing the straight line from the two end

points of the concave function across the Interval defined by C.

Il LI

II Fig. 3-2-A Linear Envelepe of Cneeve Puntlen
with Diseustmn"Vty ot OrIgin

II We next construct an estimating sub-problem by replacing each

concave Lost function with Its linear envelope. Our objective function

Sis now linear and thus a linear programIng problem is defined. This

linear programing problem can, of course., be solved but we will not

[j discuss its solution in detail. We onJy mention that a "revised simplex"

algorithm incorporating "generalized upper bounding" is used. A detailed

Ldescription of this method in presented by Beale.3

Bound1an the Solution

Since a solution to the linear problem underestimetes the cost

J function of our original problem for that solution vector, the solution

to the linear programing problem provides a lover bound an the solution

of the non-linear programing (NU) problem. This can be shovn algebraically

by letting f represent the objective function of th3 LP, then

f(x) W 5 (x)

I 3-13

MAC

and z* zepsoe•nt the solution vectot to the ILP then @Iona

t(x') f(zC)

and

0(xI) '0 (W)

for all x E C, then

f(x,) W f(x*) g 0 (xz*) g (0) W

or, most importantly

'(x, 0• (xl) I
This also implies that the solution to the LP in a given subset is 3
lover bound to the NLP within that subset.

Similarly, it can be argued that the actual value of the non- U

linear cost function at the solution vector of the LP is an upper bound

on the solution to the NLP. That is,

(3 (x) [I
Therefore, bounds can be established on the solution to the problem

since

i •'f(x') S 0 (x*) t 0 Wx)

The object of the algoritha is to find a solution vector xk by solving

a sequence of m sub-problems .-d to show that H
axn) f.0(xi) ji .,2, ... k, ... 2 jm

and

f(x3) a 0 k k

for all j such that the subsets C form some partition of C. It has been

I
shown that this sequence of sub-problems Is finite (Falk and Soland,

Theorem 3) and that xi converges to, and terminates at x* for the restrictions

3-14
WAS

IM

I ariti•oniBA i~nto Subsets

noh sequence sf sub-pr~obolem., a on gneaed by a bran h-ondboundl

B ~procedure. Thisl procedure successielvy parztitibons the original set C

into smaller and imtler subsets, each of nhich Is defined ey upper and

U lower bounds on the motor variables. Further., each subset defines a

1LP sub-problem and ts liar envelops provides a better underestimate

across the subset than tht prvided by the linear envelope of the pre-

Ucoding problem. The specific method of partitioning is the F an l2

"wosk refining rule". Given that we have the solution to any sub-problem

11 ~ 4,z, .. z) then the weak refining rule states that one should

select the partitioning variable to be If the difference betwesn the

value of the concave function at :e. and the value of the linear under-
±

estimte at 4 s at least as great as the corresponding difference for

n her x, vhere 3 i. That is, select that which satisfies

u 3' iH

This gives us the variable on which to branch and partition the set CM

into two subsets C% and l'. In general the set Cm is defined by

m m

where P is the lower bound vector, L' is the upper bound vector, and

1 fb ~L m for all i. We wish to divide the interval [I M Lf] for thei i
variable x at the value ?. This means that the variable xw ill range

across the sub-interval [AT, x4] in set %1, and across the sub-interval

[4, PL. in set C;. Then set C1 is defined by

1 3-15
q MAC

and the aet C'I by
ini

We have now partitioned the set CI into two subsets and in effect created

Itwo now sub-problem to be solved.

Thus far, each major procedure of the algorithl has been discussed.

We now uhov their relationship to each other by preuenting the basic

cyle of the algorithm (see Fig. 3 -3). We begin by assuming that we are

about to partition a sub-problem defined by the subset C3m and that we
x

have determined (by the weak refining rule) the variable x, on which to

branch. Two new subsets C' and C" are formed. We then construct the

linear envelope across C' (block 5 of Fig. 3-3) and solve the correspondingm

LP to obtain the solution vector P and the cost f (xe'). We determim
on which to branch. We next compute the value of 0 (xI')

and caI~are this value with the value of 0 (x3), where 0 (x°) is the beit

solution found thus far (the reference solution). If 0 (x"') < 0 (x),I

then we update and replace 0 (xe) with 0 (xm'). We then store the

problem description along with the values xi" and f (xm') on a branching

list. The process is repeated for the subset C" and its information is n

stored on the branching list. We then select and remove that nub-problem,

C ,from the branching list such that f (x.) a Mi {f (xk), for all k}

and the cycle repeats.

Given just this cycle, the algorithm would run forever. We need,

therefore, define some type of termination criteria. First, if when we

solve the LP problem defined by C., we find that f (xm) 0 o (x0) then we

3-16
S*AC

START

se up"1&
1is lf

LII
No 10

IPartition on um Form envle

(aom envelp n ov end eolv IoPN

Dtinm Determine M,[jfor bronshl lot tenhig
compute0(urn' copt 0(m"

Is No1+ No

Update end 1Update end
replaeo 0(XG) roplace 10$*o)
with O(unX) withO(xm"')J

Plaeo m'nodo place M "node

CM,, xl"', f(u'"') Cm ,uVf~(xm 'I) .

Fi.33Te loih

3-1

know that no solution better than 0 (x3) exists in the subset 02. Bi i
we discard the subset from further consideration (block 14 of Pig. 3-3) Ma

select the next problem on the branching list. Finally, when there are

no more problems on the branching list, we know that

0(x°) 0 (x"), andi -x*, sines (x0) 0 (x) forSall x in 0.
2

In Theorem 3 of their paper $ Falk and Boland prove that this

algorithm converges to the solution of the problem with a finite tumber 3
of sub-problems. It should be noted that the teor finite does not concern

itself with the number of sub-problem required for convergenee, and that

in some oases it may be expedient to only ensure that the solution obtained

is within some sma1 tolerance of the optimal solution (for exmple:

within 0.1% of the optimal solution). This is easily accomplished by

adjusting the termination criteria to discard a subset if

f (x") a 0 (3e)/ (1 + toleanoe factor)

It is considered important to review and to ephasise here that

implementations of this optimization model, and the resulting solutione,

are subject to certain assumptions which must be carefully observed and

understood. These assumptions are necessary for either of two reasonst

(i) the alternatives to the particular assumption are eoonomically

prohibitive, or (2) the technical restrictions in the algorithm itself

cannot be wived by any reasonable nshem. A brief review of the model

assumptions, and a reference to their detailed descriptions follows:

(i) The cost-quantity relationship of a particular type vehicle

(machine) must be concave and independent of the state of a vehicle of

another type - see pages 3-5 and 3-10.

3-18
(MAC,

(2) Vehicle, use& to satiety the Meulinats te @1csm UAS

I p'~goup cammot be used (poole) In OWy otbor inieuion VMia MW-s pp

1-2.

(3 AU aconv oambiat~oc of the Msite list of uwsei-rn~3i

equs1U7 effective altermtIves an aso equ&Uq effective ass pp

Li

3-1.9

!
I

I Chapter 4
AI OPDATIO!AL UComMPMTION OF THE

B3ANCH AND BOUND O0LUTION PROCZDU=

[hortly after the computer program develorsent began it became

apparent that because of the complexity of the solution procedure and

the magnitude of the problms to be sived, it would be necessary to

u sub-divide the solution procedure into two separate programs; namely,

the matrix generator (OENILCP for gnerate Least Cost _Phasing) and the

["main program (BBCAV2 for Branch-and-found corAV functions version 2).

However, as work on BBCAV2 progressed, it was seen that the output was

il very much technically oriented and that this orientation was essentialu for debugging, detecting input errors, and tracing the flow through

the development of the "branching tree." Because of the necessity

Sof this output and the desirability for a less technical report, a third

program (REPGEN for REPort GENerator) was developed to display the

L• optimal and relevant off-optimal solutions in a manner which would be

easy to understand. Thus the present operational system consists of

these three programs named with the mnemonics GENLCP, BBCAV2, and REPOEN.

Id. PROGRAM INTERFACING

The zajor problem encountered by using separate programs is that

i4. of passing large data files from one program to another. The matrix

"generator creates the matrix file which must be passed to the main pro-

gram and a reference list file which must be passed to the report genera-

I tor so that it can process the solutions. The main program then creates

a solution file which of course must be passed to the report generator. TheI
4-1

MAC_

k6RIIRT 74 .t* i 'r

emft content aM Atrmature of Vons MO~S VIll be GiSeusMe IS a aev

seotIc. at this 1a~pter. 3
ThU inteataoing ot the programs is eddyk dependent an the tasw-

foroftthose filmp and this Is &COMM4ihod by the wae of either a

p)brsica1 or a logical tape f ile which t9 mpulated by maens of the

operating system control cards.*I

-aM is easily exeuted within the same ccmpter job an UOAV2p

therefore theue are at least two job configurations available to the user.

They axe: 3
(1) G1MLCP can be =exeuted first an one job, vhile proproms DOV2

and M are eec 1uted later as two programs within a second job. Bee1

Figure .14-a for the CDC 61400 control cards.

(2) GUIOP . CV2., &Ad RaPW cam be executed as three different

programs within one job. See Figure 14-lb for the necessary CDO61400

control cards.

Each job boo the following control card typesj a job, a mmN(s), and I
a LOO0 card. The job card merely describes the job to the systemj, the i
RUN(S) card executes the FCRTAN compiler, and the LOO card loads and

exrecutes the compiled program. Each job also has a request card, which [
requests the same tape, waning that the x' a in the parentheses are replaced

by the sam tape number on all request cards. i
Upon execution the matrix generator creates the matrix on file 9

(TAPI9), and the reference list on file T' (TA.PET). After the phyrsical

*T'his report describes the use of CDC 6400 control cards for tape

file manipulation. Implementation of this program(s) on other computing

ma.chines will require appropriate changes to the control card Bet.

4-.2

PAC

LI MATpRnc GZWEKO~x WfIN PROGRM AID REPORT GEMGRAO3

"Job Card"

RUN(S)

RENqUST) TAPEA, HL MI.lG

REWINID (TAP2T, TAP29l TANA, LOO)

Compcu (TAPE99 TIAPIA)

- 0OPYCF (TAPE7, TAPEA)
REWIN (TAPE)

K RUN(S)
sao

- RwinD (TAPz8, TAPAIA LGO)

C0prep (TAFEAL, D?.l, 2)

c0prc7 (TAPE81 TAPIA)
REWID (TAPE)

C0OPYC (TAPE, DMfl)
RUN(S)
LGO.

*If TAPE is only a logical tape file that is not
saved at the end of this job, then this control
card can be omitted.

Fig. 4-la Controls Cards to Execute All Programs
as a Single Job

4-3

r mA.C

"Job Curd #1"

RIQUITj TAPPRA9 EX. (xMoo/Rmo)
RENIND (TAPS79 TAPU9s TAPIA)
COMYC (TAPZ99 TAPPIA)
C0,rc (TAPE?, TAPIA)

MAIN PROGRAM AND REOTGEHATOR3

"Job Card #2"1

RUN(S) 3
REQUEST, TAPEIAt Ia. (,aoo/UNG)

REWIN (TAPS89 TAPZAq LG0)
COP!CF (TAm,~ DM1, 2)1
COPTC? (TAP189 TAPZA)

REWIND (mkPEA)

COPYCF (TAPF1A, DMI)

Fig. 14-1b Control Cards to Execute Programs
as Separate JobsI

4-4

5/ ;tape is requested, the tape and both files are rewound to their load

points by the 3fID card, and then the files are copied, mtrix file

Sfirst, onto file A (TAPMA) in coded, rather than binary, format through

the use of the COPYCF cards.

TAPIA in then tranufered to the -sin program and the first file

is read during execution. The man program creates the solution file on

TAP28. Upon completion of the execution of MAV2, TAPIB and TAPIA are

IL rewound. The matrix and reference list files on TAPIA are then copied

onto dumm files in order to space to the end of the tape file and the

solution file is copied onto the end of TAPIA.

The report generator only uses the last two files on the tape, so

before it executes the first file it is copied onto a di.m file. The

program then reads the last two files as it executes. The total interfacing

of the programs is shown in the maoro flowchart of the system, Fig. 4-2.

TIH MATRIX GENEATOR

Program Logic

This program produces as its min output the matrix of coefficients

for the phasing problem. Essentially the program reads the input deck

and then determines the number of constraints (rows) and the number of

variables (columns) for the problem. In order to facilitate co=umication

between programs and between the progrm and the analyst, this program

assigns symbolic names to the rows and columns. These symbolic names

can then be decoded to determine exactly what that column (row) represents.

The naming convention which the program uses is shown in Fig. 4-3. These

symbolic names are generated through the use of the array NP. This array

contains a positive integer code for the integers 1-288 (288 is the largest

integer used by the program), and this code is shown in Fig. 4-4. This

4 - W -5

9- -a

.> -T

m m ~m mm - m m *NLCP I

Reed metrMae

OrIs

efr .,list file ,

Spec tope

ever metri.,

St~re e stlfile

Seteoere

interprt solotluti((

wireference list fle

outputoretults

ENDIN

46g. tapes. Me. lwoo'
Over matr-6

I

I Symbol

i3 baster Variable Relation

Procurement constraint P

3 Vintage Constnint IVJP

Materiel Bliance Const•int X Pk

consistency Constraint TiPh

SObjective Function COST

00o1V Wyp Symbol

g Mater Variable X

S]Bcoess Procurement Funds P

Inherited Fleet Variable W£ J M

SAlternative Selection (or Proportion) PikA

Purchased Fleet Variable X J,'m

SMothbelling Variable 8JA

Right Hand Side Vector FMSI

SCoding Is accomplished by replacing the subscript with a one character

number code where the subscript represent the following:

j n vehicle ID number

I" a task ID number"

•4 k - alternative nuber

I a period number

I'l a period purchased number

1. m - period sold number

Fig-. 4•3. Symbolio Naming Convention

?4-

U

Integers Codes

01 - 99 01 - 99

100 - 109 AO - A9 5
110 - I19 BO - B9

120 - C29 Co - C9 I
130 - 139 DO - D9 -

14o - 149 EO - E9

150 - 159 FO - F9

160 - 169 GO- G9

170- 179 HO- H9

180 - 189 JO - J9

190 - 199 KO - K9

200 - 209 LO - L9

210 - 219 MO - M9

220 - 229 NO - N9

230 - 239 PO - P9

240 - 249 QO - Q9 d

250 - 259 RO - R9

260 - 269 TO - T9

270 - 279 UO - U9

280 - 288 wo - w8

Fig.4-4 Positive Integer Code

4-8

code replaces the 1,Iteger values indicated by the subscript in thc

naming convention.

The program next determines the value of all of the non-zero

"* elements of the matrix. As it determines these values it creates a

","packed and labeled" matrix file; packed meaning it eontains no zero

valued elements, and labeled meaning it has associated with each element

its row and column names. In order that this packed file be created in

some standard format, it was decided that MPS360 format be used. This

has the advantage that should one wish to use this file on other

mathematical programming systems, it is in a format acceptable to both

IB4 and CDC systems.

After this file is created, the program then fills in the zero-

valued elements and creates an unpacked and unlabeled file which is the

input matrix to BBCAV2. At this point it also creates the reference

list which indicates the symbolic name to be associated with each column

of the unlabeled file.

Core Allocations

The program requires 107,300 octal (36,544 decimal) words of core

on the CDC 6400 system in order to load. Almost two-thirds of this is

used for common storage; most of which is in the form of subscripted

arrays. These arrays are presently dimensioned to handle the following

size problems:

(1) number of machines (vehicles) 9 7

(2) number of task tables ! 8

(3) number of periods g 10

(4) number of alternatives in a task ! 288

(5) number of years from which vehicles are inherited z 16

4-9

4 36AC

(6) maximum vehicle life S 25

(7) maximum length of a period S 6 1
Any of these which are exceeded will necessarily cause changes in the

subscripted arrays and core storage requirements. I
The core storage allocation can be broken up into the following

subgroups:

OCTAL DECIMAL

CDC system routines = 13,210 5,768

COMMON storage = 53,562 21,362 :
GENLCP 20,323 8,403

MATFILL = 1,415 781

YINTERP = 207 135

YRCOST = 137 95

TOTAL 107,300 36,A54 -4
.1

User's Subroutine - YRCOST

This subroutine is used to calculate operating, mothballing,

salvage and truncation costs based on the age of a vehicle. For everything

but mothballing, this is accomplished by filling the array COSTS with the

yearly costs for a vehicle up to an age of 30 years. The main routine

just selects the appropriate cost from this array as it is needed. For "

mothballing, however, the routine is called each time a value is needed,

and only the mothballing cost is calculated. This is done through the

use of the ENTRY MOTH statement.

Operating costs are assumed to be increasing at R x 100 percent

each year (not compounded), with R presently set equal to zero. It is "

noted that the present formulation for operating costs does not account

4'
14-10

I for the attrition of aircraft over the years; such account is handled

3m explicitly through the materiel balance constraints in Chapter 3. If the

user has 10 year operating costs which already include costs for attrition,

I then V .•,J should be set equal to 1.0. Note also that it is assumed that

no period is longer than six years. If a period is, it will be necessary

to change this card in subroutine YRCOST.

s. IB = VLIF (J) + 10

- to

where N is the number of years in the longest period (IB cannot exceed

30 in any case). Salvage values are calculated to be alpha to the ith

power times the initial salvage value, where i is the last year of service,

with alpha currently set to 0.5. Truncation value is assumed to decrease
linearly from the initial salvage value to zero over the expected lifetime

of the aircraft. Mothballing savings are assumed to be R1 x 100 percent

per year of the first year operating cost. This account of mothballing

savings will be in error (low) for aircraft mothballed beyond the first

year of their life; however, this error will not be serious unless the

increase in operating cost per year is large. An alternative and exact

method of accounting for savings due to mothballing was considered but the
4-

added complexity due to its implementation was not considered to be worth-

while. The present value of Rl is 0.90. Under the present system, actual

ccsats are used instead of costs discounted to present value.

"Input Formats

The input consists basically of three types of data sets: (W)

vehicle tables--describe availability, vintage, life, and cost information

I4-11

tmac

for each vehicle type; (2) period tables--describe length, money avail- I
able, and tasks for each period; and (3) task tables--describe vehicles

which can be used for each task and alternative ways of accomplishing

the task with those vehicles. In addition to these tables there is a 1
title card and a group of header cards which inform the program of the

type of tables that follows. The formats for all of the cards are given 1
in Figs. 4-5 through 4-8 and reference to these will be helpful for the

discussion which follows.

The title card sets the major parameters for the problem. The

first field contains the name of the run being made. This name is used

as the identification on the tapes produced by the program. This field

Is btored as alphanumeric characters and should be left-justified on --

the card to avold leading blanks. The remaining fielIs on the card are

all right-justlfJid i.; Integer format and contain, in this order, the first

year of the planning horl:on, the last year of that horizon, the number

of vehicle tables for the problem, the number of task tables, and the

number of period tables.

The header cards have only one alphanumeric field. In this field

is placed one of four words, either the name of the type table which
.6

follows that card (vehicle, period, or task) or the word ENDTABLE which

marks the end of the data deck. It is essential that each table have a £

header card and that there are exactly as many tables of each type as was .

called for in the title card.

The vehicle tables have three basic card types. The first, the

name card, has three fields; an alphanumeric field for the vehicle name,

and two integer fields, one for the first year that the vehicle can (or
3

did) enter the fleet and the other for the maximum life of that vehicle

4-12
SmAC,

I ,I l IIIII

TITLE CARD I 15g 2o0 25 1 30 35:

LNAMELCP 1971 1985 7 6 8 I1

HEADER CARDS

VEHICLE

TASK

• • ENDTABLE

i Fig. 4-5--esic Cards

1 14.1.3

R

i

CARD I I

,, j10 :1 o20 22 i
I I

III I II1 I I
OH-6A 1966115

F I
I

CARD TYPE 2 (only for Inherited vehicles)

2O101 201' 30 1 401 501

50 0o 1 3001o 350 1

CARD TYPE 3I

201 30 ,

101 0 31 401 501

SI ' I I I
I l I I

1 I I .
S I I O I

I I I I

0.176 1.17 -0.0 1 0.97 0.178,

III I

Fig. 4-6-Vehicle Table
4- 14

wNow

1-14 .,

S. . . • i I I I I I Il l l H ' "

I
CARD 2

I i

1 0 1 20
gI I

1971 t!1973 ~ 19211.0I

Ii

L

CARD TP

L C 10 . 20: 1.53 4.0_1_ 4.01

I II

I I
61 0.501

L

1. CARD TYPE 3

4 -15 201 25: 30 1_ 3___;!_
I I II II[I I I

: *331 2 1.5, ,,g ,.01 4" ,.0',

[igl. 4-7--Period Te ,

1,4..)q

CARD I

10 I03

4CARD 2

111 2131

14

CARD TYPE 3

101 20:1 301

31. I1 60 .4 17.03

Fig 4 ITs Tal

4-16I

K type. The second type of card is only for those vehicles which are

presently in the fleet, and they are used to describe the number and age

integer fields, and each field contains the number of vehicles of the

type described on the first card which were purchased in some specific

year. The first field on the first card of the second type contains

the number inherited from the first year that the vehicle entered the

fleet (that year which is listed in field two of card type one). Each

field represents the years sequentially from that year to the last year

prior to the starting year of the planning period, so that if a vehicle

entered the fleet 10 years prior to the planning period, it would require

two cards to describe that vehicle's contribution to the fleet; the first

would have all eight fields filled and the second would have the first

two fields filled. The last card in a vehicle table is the cost card,

which contains five ten-character floating point fields. The first is a

cost (the initial salvage value) to be used with the salvage and truncation

equations; the second is the ten year operating cost; the third is the

research and development cost; the fourth is the retention rate (1- the

attrition rate); and the last field is the unit cost associated with the

linear estimate of the procurement cost. In general, the first and last

fields will contain the same number, although this is not essential. All

of the costs in each vehicle table should be scaled by the same factor,

such as 106, so that the ten year operating costs fall roughly betwdeen

1 and 10 for all of the vehicles. This will give the best rebults in

BBCAV2 by avoiding numerical roundoff errors.

The period tables are also input with three card types, except

"for inherited (past) periods which use only the first card type. The first

4-17

, A6

card contains three fields; the first two are integer fieldh which I
contain the first and last year of the period respectively (if a period

is only one year, these two entries would be the same), and the third

field is a floating point field containing the procurement cost constraint

level for that period. If the procurement constraints are not desired,

then an extremely high number should be placed in the third field of the

first card for the first period, so as to keep the constraints from being

binding. Of course, no constraint need be given for the inherited periods

(the periods preceding the start of the planning period). The second

card contains a ten-character integer field for the number of tasks to

be done in that period and a ten-character floating point field for a

scale factor (in that order). The scale factor is iT. Lied to all of the

tasks and can be thought of as a representation to the growth in mission

requirements from one period to the next. The third card type has 16

five-character fields which are used in pairs. The first field of each

pair is an integer task identification number, and the second field is an

individual scaling factor related solely to that task. This factor might

be used for the number of times the task must be independently performed

in that period or for other similar multiplicative factors. If more than

eight tasks are to be performed in a period then a second card type three

must be used.

The final type of table is the task table. Its first card has

three ten-character integer fields which contain the task identification

number, the number of columns in the table, and the number of rows (alter-

natives) in that table. The second card contains eight ten-character

alphanumeric fields for the vehicle names associated with each column.

These names are left-justified and are the same names as appear in a

4-18
MUAO'

vehicle table. Card type three is used for inputing the alternative ways

of performing each task, and each card represents a different alternative,

so that there are exactly as many cards as there are alternatives given

in field three of card one. Card type three has eight ten-character

floating point fields. Each field contains the number of the type vehicle

represented by that column which is used in accomplishing the task under

the alternative given by that card.

There are only two limitations on how the data deck can be

organized. First, a task table must not precede the vehicle table for any

vehicle referenced ir that task table, and second, although the period

tables may be separated by other tables, they must be entered in chronological

order. However, to avoid any problems, the structure shown in Fig. 4-9

Is recommended.

Output Description

The final output of the program includes a tape which contains

two files; the unlabeled matrix file and the reference list file. The

matrix file is composed of four parts; a record containing the number of

rows and columns in the matrix and the upper bounds for the non-linear

variables, a title record, a row descriptor record, and the matrix. The

initial record is formatted (216/(6F12.4)). The title card is formatted

by (A4, IOX, A8), where the first four alphanumeric characters contain

the word "NAME" and the last eight have the problem title. The row

descriptor Is a vector which tells the main program whether the row is the

type equi~l (0), less than or equal (1), greater than or equal (2), free

(3), or generalized upper bound (4). It is formatted as (112). The

elements of the matrix follow this vector and have the format (F12.4), and

are blocked into records by column. The reference list file has no

4-19

I
,I

~II

ALL TASK TABLES (IN NUMERICAL ORDER)

I "I

ALL VEHICLE TABLES (ANY ORDER; PREFERABLY WITH R&D VEHICLES

FIRST, INHERITED VEHICLES LAST) •,

STITLE
CARD

Fig. 4-9-Deck Strvctum #w Mestix Generotr

a)4

I

header cards and is formatted totally by (15, 4X, AV), where the first

field contains the column number and the last field the column name.

The printed output is rather lengthy, being composed of four

major sections. The first section is merely a tracer through the input

deck, so that if an error is found in the formats, the location of that

error is fairly '.ell known. The second section is a partial listing of the

MPS360 file which can be used for spot checking the values in the file.

The third section is the cross reference list for the column numbers and

names. At the head of this list is the row descriptor vector and at the

end is a small section of data (number of rows and columns, and the upper

I'. bounds on the vehicles) which are needed for input to BBCAV2. The final

sectton is a documentation listing of all of the input data for the run.

THE MAIN PROGRAM

Program Logic

The method of solution is of course an implementation of the

algorithm presented in Chapter 3. The first node, which represents the

linear underestimate of the entire problem, is solved as a special case

of the general solution procedure by the routine BOX1. This routine

establishes a branching tree (containing only one node), sets values

for certain key parameters, and defines several arrays necessary for the

algorithm. All subsequent nodes are solved in pairs by examining both

branches from an existing node on the tree.

Although the algorithm guarantees that an optimal solution can be

found after the solution of a finite number of nodes, the program is not

usually allowed to run until this has been proven! There are several

reasons for this--the main one being that the time, and hence money, involved

4-21

in finding this solution may be extremely large. Also of importance when

dealing with large problems having many near-optimu. solutions is the

problem that it may be impossible to determine which solution in indeed

optimal because of roundoff and other small numerical errors. Because of

this the program is written so that it will solve for a solution which is

only guaranteed to be within some tolerance of the optimal solution. This 1

tolerance level is an input parameter (e) which is used to insure that

optimal solution times 1 + e is greater than the current best solution

before the algorithm terminates. It is recommended that c z .00001 be

used to avoid the problems of numerical errors.

When solving any given subproblem, the program performs a simple

transformation on the subproblem before solving it by means of the LP.

This transformation involves shifting the axes of the problem such that

all of the lower bounds for the LP problem are zero. The sum of the costs

of the non-zero lower bounds are stored as the variable EKO. The actual

lower bound to the node is then the cost of the LP problem plus the value

EKO, and the actual values of the x-vector are given by the LP x-vector

plus the lower bound vector. This simple transformation is used to

simplify the LP solution procedure by eliminating the need to check lower

bounds.

The program makes use of' the "ordered list" concept for selecting

a node for branching. However, the list itself is not literally ordered

so that each time a node is sought the list is searched to determine which

.,ode has the least lower bound. This node is then removed from the list

leaving it gap which is marked but not filled. Then when new nodes Fare

created, any gaps are filled before mvaking the list longer. The procedure

terminates when the least lower bound on the list is greater than the best

nolutlon tound divided by 1 + .

14. - 2

Because of its size, the matrix of coefficients is stored on a disk

U file, however certain parts are kept in core at all times. The b-vector

[BO(I00)] is kept in core so that the changes in the right-hand-side based

L on changing the lower bounds of the mster variables can be rapidly made

for each node. The cost vector [C(lO)1 for the non-linear terms is also

L stored in core since these elements are changed at each node. Finally

the column data for each of the non-linear variables [T(1O0,10)] are kept

in core s lice they are used to update the B vector.

The program has been constructed to be repetitive in order to solve

for off-optimal solutions, i.e., interesting solutions near the least-cost-

solution. This means that any number of problems which use the same matrix

of coefficients can be run at one time. For example one c'ruld run the

optimal solution and, after that is found, run the problem for the best

solution for which no resources requiring R&D are allowed. The technique

for doing this is discussed in the section on input formats.

Core Allocation

This program stores the main array of invormation, the matrix of

coefficients, on high-speed auxiliary storage (d.sc). hnwever in addition

to this, the program has almost 45,000 octal words of comnmon core storage.

The dimensions of the arrays in these carnon areas are dependent on only

three parameters:

(1) number of rows in matrix s 100

(2) number of nonlinear variables : 10

(3) number of nodes on branching list ! P5

The total core storage requirement is 114,251 octal wcrds on the CDC

64OO system, which is subdivided as follows:

4-23

OCTAL D30DAL

CDC system routines T,312 .T766
COMMON Storage 0j,514.
BBCAV2 22,063 9,2660
BOX 1 334 220
GEAS 1 96
GET• 202 130
GETPHI 320 208
INITA 375 253
NXBN 303 195
PARAMS 241 161
PRUMT 131 89
PRADDI 65 53
SET 15 13TABOUT 2.-33 155
TIMEC 126 86SLP 430 280

SBOUND 60 48
COLUM 56o 368
DISC 412 266

DOT TO 56
ESCAPE 362 242
EXMS 72 58
FEASCH 522 338 .

INVETTT 319
IO 666 438
KEYCH 232 154
KEYN 124 84
MAPIN 564 372
MAPOUT 1,135 605
PIVOT 223 147
PRf4AL 620 4OO
ROW 467 311
SET3ND 73 59
SETUP 361 241
STATUS 465 309
XCHECK 774 508

114,251 39,081

USEi'S SUBROUTINE

GETPHI

It is through this subroutine that the user inputs his nori-linear

cost functions. The routine uses these functions to determine the coat of

specific numbers of each resource, or to determine the total cost of ?i

4-24

(Aj

I
5 solution for a specific node. These functions are defined in the section

of the routine between statement 150 and statement 140.

The functional value (cost) is denoted by PHI(I) for the Ith resource.

It is described as a function of XPHI(I), where XPHI(I) is the independent

variable represe:.ting the number of Ith type resources purchased. The

examples shown in the listing are of the form:

0, R + a i x i

where R is the R&D cost, ai is the linear cost coefficient, and

describes the "learning" rate on cost as purchase size increases.

This routine should be put together using the following guidelines:

(1) The (I.GT.7) phrase in statement 150 should have the 7 changed

to be the number of non-linear functions (NCF) to be described in the

routine.

(2) This should be followed immediately by a computed go to

statement of the form

GO TO (101, 102, ... , 100 + NCF), I

(3) If the R&D cost for the Ith resource is zero, then the

section describing its cost function should contain two cards of the form

n PHI(I) -
GO TO 200

where n is the statement number such that n - 100 + I.

(4) If the R&D cost is greatir than zero, then an additional

card is neided so the form of the Lection is

n IF(XPHI(I).LT...oool) GO TO 140
PlI(I) -

GO TO 200

where n has the same meaning as above, and the IF statement prevents the

inclusion of R&D cost when the system is not needed.

4-25

MAC

The program vili assume that the resources are numbered 1 thru NCF

according to the order printed in the output from the matrix generator, 5
so one should be careful to associate the appropriate function with the

variable for which it was intended. I
Input Formats

The input deck for this program is much smaller than that for the

matrix generator. There are only four basic types of cards used for this

program. They are shown !n Figure 4-10.
The first card in the deck is the solution name card. It contains

.6

a 40-character alphanumeric phrase which describes the solution which will

be achieved w.tth this deck. This phrase is placed at the beginning of the

solution file and will appear on the top of each page of output from the

report generator.

The second card is the integer parameter card. It is formatted as

12 fields, each containing 6 integer characters. The first two fields are

no longer used by this program. The third field contains the number of

variables (columns in the matrix) for vl,ich cost •inctions have been

developed and programmed in GETPHI. These will be the first columns in

the matrix. The ninth and tenth fields contain the preset dimensions of

the array BLIST, which are- currently set at 25 and 131, respectively. The

fourth and fifth fields are no longer used by the prcgram.

Fields 6, 7, 8 and 11 are all used to control the output from the

program. If these fields are set to zero, the output they control will

be suppressed, and if they are set to one, the output will be printed.

Field 6 prints the suuroutine names as they are culled; It Is iOr,.ly

used for tracing and debugging and hence should norm•tlly b1 crt, ti, zer).

Field 'r prints the primal iterations o1' the linacr progrim, ,tndl Vlel"

MAC

1
II

SOLUTION NAME CARD

1 1 401

iii
I OPTIMAL SOLUTIONI

INTEGER PARAMETER CARD, I I I I I I I I

6 12 18 1 24 1 30 136 421 4 54 60 1661721

520 56,1 7 1 o ~ I 0 125 1311 125

REAL PARAMETER CARD
12 241 361 481

0.001 5 000. Il 55.0 1.0 1

BASIS CANwu
II

i1 e 201

I BASIC 1402

Fig. 4-10-Input Dote Formats

j 4-P7

PAC

prints the entire solution of the LP, however, field 8 is only effective I
if field 7 is set to one also. These two fields would normally be set to 3
zero unless one were interested in closely exwunining the propert'es of

the linear underestimates. Field 31 is the only output control normally 3
used during production running, and it lists the column numbers and values

in the solution at each node. I
The last field is a termination criterica established by the user. 1

Specifically, it is the maximum number of nodes which the program will

evaluate before it outputs a solution. This can be used, for example, 1
when one is evaluating off-optimal solutions and wishes only to get the

solution corresponding to the first linear underestimate of the problem. A

The third card of the input deck is the real parameter card and it T

has 4 fields of 12 character floating point numbers. The first field is

the epsilon parameter which was previously discussed. The second field

is another termination criteria; the maximum number of seconds which each

solution will execute before terminating. This is not the same as the

time limit on the job card since this latter is the limit on the sum of

all solutions combined. The third field is the number of basis cards in

the input deck (if no basis is input, leave this field blanx). The last

field is another output control. If this field is equal to zero, it will

suppress all output except the initiaJ problem description and the final

solution (if detailed oi tput was called for by previous options, put 1.0

In this field).

The fint.1 group of cards are the basis cards; these cards are

optional and need riot be included at %1l. However, they cri be used to

accomplish two Important functions. First, they culii be used to define :ill

Irlitial basic _,olutilon (which may or may not be i'erittble), 'Old 1! till

MAC

-kh, ,, , nn u n I -I I..

basic solution in carefully chosen, it can greatly reduce the number of

priml iterations required to find an optional solution. This is

accomplished by creating one basis card for each column that one desires

to have in this basic solution. The basis card is ccomosed of an 8

character alphanumeric field and a 12 character integer field. For the

basic solution, one places the word "BASIC", left-Justified, in the first

field and the column number in the second field. However, if the basic

variable is basic in a generalized upper bound row, then the word "KVL"

should be entered in the first field instead of "BASIC". If there is

more than one basic variable in a MMB row, only one should be "IEY" and

the rest "BASIC", since there should be exactly the same number of "KEY"

variables as there are GUB rows in the matrix. The second function

performed by the basis cards is the elimination of columns from the

matrix. This is done by placing the word "NULL" in the first field and

the column number in the second. This is useful in running off-optimal

solutions, since for exmple, one can eliminate a resource from the max

by "nulling" the master variable, or delay the development of a resource

by one period by nulling the appropriate set of purchased fleet variables.

The input deck may be constructed to produce as many solutions as

desired. For each solution one creates a aeck consisting of the four card

types Just described. These separate decks are then put together in any

order to form a single input deck. The overall structure of this deck is

shown in Figure 4-1i.

Output Description

The output from the program can be divided into three basic groups.

The first is the information related to the branch and bound algorithm,

and the second group is the information related to the linear program. Both

4-29

MAC

SII
I
I

I
I
I

IPT WITHOUT RESOURCE 3

1
SBASIS CAPDSI

4 REAL PARAMETER CARD

T

" I

Fig. 4.11 --)%ck Siuctwe for Main Program

mAC

I'
of theoy groups are repeatod for each node of the branching tree. The

last group is for debugging purposes and consists of error messages

(found in the appendix) and an error dump routine.

At the very beginning of the output there is a section which lists

the values found on the parameter cards and the value of the bounds on

the variables with concave functions. Following this is the general

Infornation about the branching tree which is output by the routine

TABOUT. When called it outputs UO, the value of the best solution so

far; USP, the value which all lower bounfts must exceed before UO is

considered optimal; and SIMAM, an array contisting of the right-hand-side

values of the master variable constraints ,uid the lower bounds, upper

bounds and cost function slopes of the master variables. The routine is

called both before and after the LP is run. When called before the LP, it

also prints the nodes on the branching tree which must still be considered.

The information regarding these nodes includes the cost which represents

a lower bound on that node, the number of the variable from which the

next branch will be made, the value of that variable on which the branching

will be performed, and the total fixed costs (Ek) associated with that

node. In addition it checks to see if a new "best solution" has been

found, and if it has, then it outputs that (ZEHO solution by column

number and value.

The program is written such that there is a transformation from

the actual problem to the linear problem which sets all of the lower

bounds to zero. Thus, after the LP has derived a solution, this solution

must be transformed back to a form applicable to the non-linear problem.

When this is accomplished, this solution is output by the main routine,

and it includes the actual cost of the solution PIII(XADJ), ,and the column

numbers and their values for those columns in the btnls.

J4 31

mAC

1I

The last form of output from the branohing routines is a list of I
the m=ster variables showing the differences between the linear estimates

and the non-linear cost functions, and how these were calculated. It is

the largest of these differences upon which the branching will be done.

Upon entry into the LP, a group of self-explanatory problem

dimension items arc output. These includej the number of standard rows

in the matrix, the number of generalized upper bound rows, the number of

logicals (slack variables) added to the problem, the number of columns in

the matrix, the maximum number of columns allowed in core at any one time,

the invert frequency or number of primal iterations before inverting the

B-matrix, the maximum time the LP will be allowed to run, and the maximum

number of primal iterations which may be executed by the LP. These last

two parameters are set internally and arr only used for debugging purposes.

During execution of the LP, the subroutine STATUS prints the status

of the solution at each primal iteration. This first part of the output

consists of the phase (i - infeasible, 2 - feasible), the number of the

iteration, a field called "try" which contains the number of iterations

made with the current core columns plus 1000 times the maximum number

before replenishment from the disc, the current value of the objective

function, the number of potentially good columns In core (NDJS), and the

number of artificiul vectors still in the solution (NKATS). The second

part of the output may contain a standard group of Items of information,,

or it may contain a mer;sage giving it special condIltion which exists at

that point. The standard output contains the WlJ value of the column

brought Into the solution (a measure of the sensitivity of the objective

function to that column), the internal column number of the column selected,

where the Internal number equals the actual number plus the numbq r of

PAC

logicals, the status code* for that column, the internal colurn number

of the column leaving the basis, its status code, and finally NSCAN, the

number of columns in core plus 10000 times the number of disc reads

performed. The special messages which -my be given in place of this output

are self-explanatory and have the general form; PRIMAL ... END OF

i A.PHASE 2 .. OPTIMAL, where PRIMAL is the routine sending the message.

There are a few other special messages which may appear in the

output of the LP. After each inversion of the matrix, a check on the

feasibility of the solution is made. If some column is not feasible, it

is removed from the basis and a message is output of the form; INFEA ..

ROW xx COL xx VALUE xx BOUND xx. The last type of message has to do

vith degenerate columns. If it is determined that a column selected for

entry to the basis will not :hange the solution, then it is rejected

and another column is selected and the following message is output; REJECTED

COL XX ROW xx PIVOT xx RHS xx.

Upon exit from the LP, MAPOUT will print the solution. It first

gives the elements of the basis and their values, and then outputs the key

variables in the GUB rows and their values. Finally It mixes and orders

the basic columns and key columns and outputs the column numbers and values

for the non-zero valued columns of the matrix.

Included in the output routines of the program is an error dump

routine called ESCAPE. This routine outputs the arrays NAME - the status

code, BASIS - columns in the basis, KEY - key columns in the GUB rows,

JA - list of columns in core, JAREJ - the reject state of the columns irn

core (i - rejected, 0 - otherwise), ALPHA - work space, BETA - solution

vector of baslc and key columns, GAMMA and DELTA - work spaces, and DJ -

the objective function sentitivities to the columns in core.

4-33
"MAC

1,. 1

The logic: structure of this program is not very complex. The first

part works almost in reverse of the matrix generator. It searches the 3
reference list to determine the wymbolic names of the columns in the basis,

and then decodes these symbolic names to properly account for the value of

the variable. Most of the rimaining portion of the program merely formats 1
and prints the output.

Core Allocations J
This program, like the matrix generator, stores all of its data

in core. As a result almost three-fourths of core allocation is for

common storage. Several of tte dimensioning restrictions for the previous

two programs are effective here also; namely, number of vehicles, number

of period, and number of columns in the matrix. The only new limitation

is that the number of years in the planning horizon be less than or equal

to 20 (this does not include years from which vehicles have been inherited).

The total core storage allocation is shown below:

Octal Decimal

CDC system routines - 5,760 3,056

COMMON storage - 51,554 21,356

REPGEN 6,176 3,198

SETUP 221 145
INSOLN 2 226 150

YRCOST - 137 95

CINFO - 307 199

PINFO 1,6-3 915

VALUES 73 59

TOTAL - 70,765 29,173

4-34

PRAC

3 User's Subroutine - YRCOST

This routine is, and must be, the same identical routine as is

4mused by the matrix generator. One need only duplicate the routine and

insert it in this program.

Input Formats

The input deck for this program can be constructed directly from

the input deck to the matrix generator. It only uses a portion of the

data but the formats are set up to use the same cards as were used pre-

viously; this is intended to help avoid errors in the preparation of

input.

The first card is the title card, which is identical to that for

the matrix generator. This is followed by the vehicle tables, which

are placed in the order (numerical) in which they are listed or the output

of the matrix generator. The vehicle tables each have the appropriate

header card followed by card 1 and card type three (Fig. 4-6). Note that

all cards of type 2 should be removed from the vehicle tables. Next come

the period tables. These have header card and a card number 1 (Fig. 4-7).

Only the cards number 1 are used in the period table. Finally the ENDTABLE

card goes at the end of the deck, so that none of the task tables are used.

With this deck that has been extracted from the matrix generator,

only one addition needs to be made before running. On the cards number 1

of the period tables, one must add in columns 11 and 12 the alphanumeric

designator for the period. These designators are determined as follows;

"00" for the pertod which contains the present year, "01" for the period

which follows and starts with the first year of the planning horizon,

"02" • for the periods sequentially that follows, "Ml" for the period

that precedes the present one, and "M2" etc. for the preceding period in

14-35

mAC

reverse chronological order. Since this field is read alphanumerically, i
it is essential that both columns be punched and the preceding zeros be 3
included. The final deck has the general configuration shown in Fig. 4-1l2.

Output Description 1
For each solution that has been developed by the main program,

the report generator will print four tables. The first contains the

cost information and is fairly self-explanatory. It should be noted that I

the truncation savings is printed below the table, so the total cost in

the table is the real cost and does not contain this credit. Also, J
although the total procurement cost is exact, the value during each

period is a linear estimate to the nonlinear cost functions.

The other three tables give the resources purchased, stored, arid

used during each period. The only information that is not immediately

available is the number of resources in the system, but this is merely

the sum of the resources used plus the resources stored.

PAC

I
I

*ENDTABLE*CARD

STITLE CARD

Fig. 4-12-Deck Structure for Report Generato,

j hM37

RAC

I

REFERENCES FOR VOLUME I

1. J. C. Hetrick, 'M,%themntical Models in Capitnl Bulgeting,," Chapt-r 7.
New Decision Making Tools for Managers; edltefd by F. C. Rursk onI
J. F. Chapman, (Cambridge, Hnrvard University Press, Y'Y3) p.

2. J. E. Fnlk and R. M. Soland, "An Algorithm for oeparablo Non- cnv,,x
Progrnmminr Problems," Mnnagment Science, Vol. I'), No. *, Mny]r)(.

F. E. M. L., Ro'le, "Advanced Algorithmic Features for ien-ral Mathe-
mationl Prorramming Systems," Integer and Nonlinear Programming,
edited by J. Abnde, North-Holand Publishing Company, l•70.

REFERENCES FOR VOLUME IT

b. R. Now, "Optimnt l Plnnning Over Time - OPT," Journnl of Systomn
anp"mfm,,nt, Mrrch Y)72.

R. M. 2o27nd, "An Algorithm For Separable Non-Crnvox Prgrammiziag
Prnbl.-ms TI: Non-Convex Constraints," Manngement Ser.,noe, Volume
17, No. 11, July 1"71.

R

