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LINEAR CONVERGENCE OF THE CONJUGATE \
GRADIENT METHOD#*
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i ABSTRACT: I ie shown that the method of conjugate gradients for the

) minimiza ioa of a quadratic function coaverges no better than linearly if

i the standard starting and restartinog procedures are not used.
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1. THE METHOD OF CONJUGATE GRADIENTS .

|
The conjugate gradient method (1] is an efficlent procedure for unconstrained

optimization prob'ems of the type ‘ ;

minimize f(xl,_xz, ceey xn)

where I{x) {s a suitable (differentiable, and preferably convex) function on

E® In nartizular, if f(x) = ¢ +pT x+3 xTQx and Q is an nth order symmetric
and positive semidefinite matrix (thus f(x) {s convex), then the conjugate
gradient methed will terminate at the solution in at most n steps, provided

the standard starting procedure is used. A statement of the conjugate gradient

method for this function ie:

Given X o let d0= -vf(xOL

> . =
For k~» 0, given X, and dk' let xk+1 xk+tkdk.

. ) VT
whe e te is the value of t minimizing f(’ﬁ(" tdk)'

I vf(‘;ﬁd_l) = 0, stop. Otherwise, let

—-

dk+1:- vf(ﬁd’l) + skdk ’

T
where sk is chosen s0 that dk+1Qdk -‘ 0.

Let 8, ° Vf(xk) for all k. Noting that .

vibg )

T

p o+ Q(xka-tkdk)
T + Qx + 4 Qd

Eiei1

+ thdk,

LN
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we can write the recursiovn aws:

)

dg = 18: | (1)
Fork > 0,

By By ¥ HQ9 3
' (2)
) , i

dk+1 T B A9

T T
where k= -gkﬂdk/dedk (3)

2T T : |
and 8 = gk+1Qdk/dedk (4) ;
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The formula (5) for 5. 1s asseantially formula (3:2b) of Hestenes and I ]

Stiefel, rather than the more commonly used formula (3:1e), which in our I

notation is 8y = gkﬂz/gkz. As they subsequently show, the former gives

oo

better protection against the accumulation of roundoff error. More im-
portantly, it ensures that diHQdk =0 for each k, independently of whether
the other steps have been carried out accurately, wiﬂch the latter formula
does not, If all the needed relatipns do hold accurately, it can be shown that i
the successive directions do. d.y+.. are all linearly independent and cone

1

jugate (that is, d';‘Qd,k = 0 for j # k), and that x, minimizes the function f

k

on the affine set passing through x5 and spanned by d0 dl' veey d. o« Cone )

kel

sequently the procedure must terminate with g = 0 for some k X n,

2. THE PROBLEM

It is important to note that both the starting condition (1) and the dete rminations

(3, 4) of the coefficients tk and 'k must be observed precisely in order that

\ ' )
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the abuve termination ensues; it cannot be shown otherwise. Indeed, failure

to choose a "ltknurd start'--one in which d_ i{s parallel to go--mnken

T
J

using formulas of the type of (2). (We have seen this fact overlooked in

0

it impossible to retain the conjugancy relation d, Qd =0 for [=k| #1

some reports in the literature, leading to an overestimate of the conver-
gence rate of the method.) Siuce, however, the procedure is almost in=
variably used under circumstances {n wihich the condition 8~ 0 camxot‘be
precisely met-- with the quadratic problend in an environment of roundoff
error, and, more significantly, in extensions of the method to nonquadratic
prooblems, such as that due to Fletcher and Reeves [Z] -= provision for con-
tinuing after the nth step muut.be made, It has generally been recognized
as good practice to restart the procedure after n (or posaibly n+1 or n+2)
iterations; that is, to begin all over again, using the latest point )ﬁ‘ found
as the new X and thus rebuild a new set of conjugate directions,

The purpose of the study described here was to determine whether
restarting waa:, in fact, necessary, or whether the procedure could be
continued indefinitel without restarting and not suffer, We have concluded.
that restarting is necessary for quick convergence, Indeced, we hla.ve an
example (for n=2) of a quadritic problem which‘ shows that convergence can
be a0 better than linear when a nonstandard start is used (while, of course,
a standard start or restart would cause terminatioq in at moat three {tera=-

tions).
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3. THE EXAMPLE: CONVERGENCE [S AT BEST LINEAR

We have run -Ihbout fifty steps of the continued conjugate gradient
method as defincd by equations (2-4) above‘ on each of soine one hundred
quadratic, three~variable problems, examining graphically the ratics
f(xk+ 1) /f(xk) of successive values of the function f(x) = ixTQx. In about
half of the trials, Q was the diagonal matrix whose eigenvalues are

(0.1, 1, 1); the starting vectors &g and do were chosen randomly, In
every case the ratios, while first seemingly randomly scattered between 0
and 1, were found to lie in a rather definitely marked interval [a,b] with
0<a<b<l. Inmany cases it appeared that something very much like a
sine curve having a period between three and five steps couid be fitted to
the set of luccesaiverratioa. After considerable experimentaticn with the
starting data, we found an example in which the ratios were constant, The

other data of the procedure then exhibited a remarkable periodicity, and

the discovery of simple 'relationnhips among these led to the foilowing ex~

ample:

001 O O '
let Q={0 1 0
o 0 1
R SN
gy = (1, =6, 0)" /B

d = (-10 5, 14, ~wW6) T /30

One step of the method given by equations (2=4) is -
T
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In our case tk w -8/5, and s = 9/25 for allrk.

Furthermore, the relations

|
801 " ngk and

dk+l = er’k

hold for all k where r = 3/6 and R is the orthogonal matrix

10 0
Ra | O -1/6 -(2B) /6 R
0 (2V8) /5 -1/6 '

Thus €x w(rR)kgo and dk = (rR)kdo for all k. Each successive applica=-
tion of the matrix rR rotates the gradient and the direction through an
angle arccos (~1/5) around the long axis of the three-dimensional ellipsoid
xTQx = 1, and diminishes both of these vectors in magnitude by the factor

r = 3/5. Thua. the 1atio f(xk.”)/f(xk) is 9/25 for all k,

4. THEOREM: CONVERGENCE IS AT WORST LINEAR
To bound the rate of rconve'rgence of the nonrestarted conjugate gradient
method from both sides, we will show that its convergence is at "vorst
linear. '
Let f.(x) = ixTQx (we can always transforrn the original problem
80 that it has this form)., Since g = Vf(x) = Qx, £(x) = {gTQ-lg. The
minimum of { along any line x + td is given bytr= *:'\r -gTd/dTQd (compare
with fornula (3), suppressing "k''). Setting x, =x+ %d and g, = Vf(x+).

we have

A - -
21(x,) =g Qg, = (g +tQd) Q" (g + fad = ga™lg - (g a)? /4T qu.
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We consider two cases:
(1) dI = -g; that ia, the step is an ordinary steepest descent step,
'I':hen
2€(x ) = gTQ"lg - (ng)z/gTQs~
(11) The point x was obtained by minimiging { along sorcs;
line having the direction ¢, whence ch = 0, and ther
the direction d was obtained as in formulas (2,4), so
that
d = «g + 8c and dTQc =0,
Then gTd =0 - ng and
aTqa = -gTQd = -gT(-Qg + 8Qc) = gTQg - -gTQc
- gTQg - (gTQc)Z/cTQc. |
We see that dTQd < gTQg.
Since in case (i) 2£(x+) = gTQ'lg -(ng)z/dTQd, the resulting
value of f is no higher in case (ii) than in case (1 ); the fact that the di-
rection d wau"ohtained by conjugating =g with respect to the previous direc=-
tion, rather than taking it to be ~g itself, has not hurt. Thus each step
of the continued conjugate gradient method decreases the functio'n at least
as much as would one step of steepest deacent‘ taken at the same point.

The inequality

f(x, , M/Hx) S (Am1/A+ 1)

is known to hold for steepest descent, where A is the condition nurber

of the matrix Q (namely, the ratio of the largest to smallest eigenvalue).




It follows that the inequalilty also holds for the conjuga.te gradient method,

so that {ts conergenco is ut worst linear,

o g o
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