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INTRODUCTION

A wide selection of literature is devoted to the problem of diffraction

of radio waves around the surface of the Earth; a review of the most recent

studies can be found in Academician B.A. Vvedenskij's article). Interest

in this question is justified in that, aL short distances of the order of a

few hundred kilometres, refraction of radio waves iU Lhe ionized layers of

the atmosphere can be ignored, while diffraction,-plays the decisive role in

radio-wave propagation.

Despite the fact that a firm solution of the question of diffraction

from the globe has a1ready been known for some decades, a practically

applicable approximate solution has not, up to now, been obtained. Jn the

present work we intend to fill this gap.



1. STATEME'NT OF THE PROBLEM AND ITS SOLUTI:ON IN SERIES -FORM

By r, 0 and p we, mean spherical coordinates with their origin at the

centre of the Earth. If we ignore the irregularities of the Earth's

surface, then its equation will take the form r = a, where a = Earth's

radius. Let us place a Vertical electric dipole (,b > a) at the point

r = b, 0 = 0. Rejecting in the field components the time dependent factox

e , we can express it-by the Hertz function U, which will depend only

r and on 8. Having by ,k denoted the absolute value of the wave vector, u,

shall have, for the field in air, the expression

Er r sin 0 ae ( '

E r Lr - (1,O1)

1i = - i -U

while the remaining components of the field will equal zero. Similar

expressions will apply for the field within the earth. The U function

must, where r > a, satisfy the equation

AU + k2 l) = 0 (1,02)

and the condition of radiation to infinity

lim d - ikrU 3 0 (1,03)

If b ý a, in such a way that the source (dipole) is above the Earth's

surface and not on thte surface itself, then at Point r = b, 0 0 the U

function must have Ohe property:
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ikR
U -R + U*, (1,04).R

where

R = r 2 + b 2 - 2rb cos 0 (1,05)

is the distance from the source, while the U* function remains finite

when kR -) 0. On the Earth's surface the Hertz function U must satisfy

the limiting conditions guaranteeing continuity of the components E and

H. at the interface.

If we denote the Hertz function ist~ideI the Earth as U2 then these

limiting conditions will take the form

k2U(r) = (rU2) where r = a (1,06)2U=k22; r'• (rU -(U2

'ýTte U2 function must, when 0 < r < a (inside the Earth), satisfy an

equation similar to (1,02) and remain finite.

The value k 2 , introduced in (1,06) and later formulae, is determined

from the equation

k 2
2  = ck2 + (1,07)

and the condition lm(k2) > 0. In place of the conductance of the Earth a

it is convenient to bring in length Z, characterizing the Earth's specific

resistance, having assumed

c (1,08)

For sea water the value ot t varies from 0.05 cm (very salt water)

to 0.5 cm (slightly salt wa .-r); for the earth this length is hundreds



and thousands of times greater.. If we bring in the complex dialectric

constant of the Earth

12-+ I (1,09)

then

k2 = k T- . (1,10)

A solution of the problem posed in the form of series is well'blown;

Here we inscribe the necessary formulae without dwelling on their derivation.

We assume

,'n(X) =n+(x); nX) = ! j (1,1)

where J (X) is the Bessel function, while H (X) is a first order Hankelv

function. These functions are connected by the relationship

Wn Xr, n(X) - % (X)&n(X) = .(1,12)

Additionally, we introduce the particular specification for the

logarithmic derivative from 'n(X) (

'2 Xn n')(x)
n(X) 'n(X) 

(1,13)

As is seen fronm (1,01), the field at the Earth's surface is

e:apressed by the values:

U (U)r:; Ua' t r(rI)}r~a' (1,14)
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For these values we obtain the series:

(2n + l)ý (kb)
1 _ k P (cos 0); (1,15)

oa =-(ka-k-- nn=o 4 n 1(ka)- i2Xn (k2a) n (ka)n

(2n+l)z (kb)X (k a)
U' -a 2 __ P (cos 0), (I•,16)

k2bn o 4n' (ka)--k-X (k 2 a) n(ka) n

ordered according to LeGendre's polynomials. Our task consists of an

approximate summation of these series.

2. SUMMATION FORMULA

The sums which we have to calculate have the .orm

S = M ' ) P (cos 0). (2,01)1 3; -

In ,the Equ.(1,14), the function (p(v) with an acciracy approaching the

factor equal to

9(v) •v-•(kb)

k(V) (kb (2,02)
•' (ka) - X, a)_(

vi _7xj(k 2 a)%(ka)

In Equ. (1,15) it differs from (2,02) by the factor XV 1 (k 3a).

For a direct calculation of th.z sum it would be necesssary to take

the number of terms approximately equal to 2ka, i.e. equal to double the

number of waves present on the Earth's sur2ace. Since this number is

enormous, it is evident that an immediate summation is impossible.

To compute the ý;um S it is necessary, having taken advantage of the fact

that 9(v) is an analytical function, to convert this sum to an integral which

can be computed by one or other of the approximation methods. A similar

conversion was first proposed by Watson in 1918 and adopt,.d by many authors.

However, all the authors attempted to apply the converted expression to the

sum of deductions, wtareas our intention is to separate out the main terms

most easily subject to investigation and to estimate the remainder. In this



method OL omputation the main terms are not predetermined.

For the completion of our conversion it was essential to keep in

mind the following general properties of the function p(v). It is an

analytic function from v, meromorphic in the right half-plane; it has

poles only in the first quarter, while in the fourth quarter it is

holomorphic. At inyfinity p(v) declines so rapidly that all-the integra1'.s

being investigated converge.

As seen in Equation (2,01) the LeGendre's funt•ions- can be expressed

by the function

I' v +- F 1 ( i2-03
V -22 + 22 sin 0v r~(, + 1)

where F is the sign for the hypergeometric function. By G* and P*.,

denote the result of a change in G and in P = P V-(cos 0) of the

value 0 in n - •. We shall then have

Pv-•i Ie+ -i,)O+i" (2G4

= l e -1i G* + e 7 G]
n/ 2 sin 0

As can be seen from (2,03), if v lies within a certain sector includ-

ing the negative axis, and if Iv sin 01 is large, the function G (and

also G*) approximately equal
V

G ' (2,05)
V V

Substituting (2,05) in (2,04), we obtain the known asymptotic expres-

Sion for P _-. If B(v) denoted the first term in Equation (2,04)

1 e~iv -i
i(v) (2,6)

' ;2 sin 0



one can substIanti a teŽ the equation

iG'- D)n
P_ e P + 2i cos vnB(v) (2,07)

which we shall make use of later. We note that the function B(v) is

holomorphic in the right half-plane.

We examine in the plane of the complex variable three contours.

Firstly, the loop C1 around the origin of the coordinates alleviating

the positive material axis and essential in the positive direction

(anti-clockwise). Secondly, the broken line C, encompassing the first

quadrant anc running from left to right (in its horizontal part passing

a little higher than the material axis). Thirdly, the straight line C3,.

passing through Jhe origin of the coordinates, lying in the second and

fourth quadrants and inclined at a small angle to the imaginary axis;

this straight line runs from top to bottom.

We can write the sum S in the form

Svyp(v) sec v•iP* dv, (2,09)2 f -

Cl

since the integral on the right comes to deductions at the points
n + Since the function p(v) is holomorphic in the fourth quadrant,

we can substitute Contour CI for Contours C2 and C3 and write

S = - v- J p(v) sec vnP*vidv + f- vr(v) sec vITP*V-1dv. (2,09)

C2 C0

The normal conversion of the sum comes down to this: the integral

at C3 is assumed to equal zero because of the smallness of the uneven

part of .O(v) (its definition will be given below),and the integral at

C., boils down to the sum of deductions. but we shall take a step further

and break up Cý. into main term and correction [term]. Substituting in

this integral the expression (2,07) for P* 1, we shall have

r



S = S1 S 2 + S 3 , (2,10)

s= vp(v)B(v) dv, (2, VI-)

C

S2 , vy(v) sec v~a1c dv, (2 ,12)

S3 = •- Jv(v) sec v~lP*v_ dv. (2,13)

C,

In Integral S1 the subintegral function is alieady without poles on

the material axis (and also in the fourth quarter), therefore Contours

C, and C2 [sic] for it are equivalent. We denote by C any contour equivalent

to C2 and C1,

The presentation of the value S in the form of three integrals (2,10) is

accurate; in the derivation nothing was neglected. But the definition of

integral S2 and S, indicates that these integrals are minute in comparison

with S1 ., In truth, if we are to compute the integral as a sum of deductions

in the poles -p(v) then we are convinced that, in relation to S1 , it will be

of the order of

-e v I (2,14)

Where v1 is closest to the material axis oi the pole 9(v) The imaginary

part of v1 is positive :and at hiih value,' of ka will be

1ti(,1) c c!kk ) / ,(2,1.5)

whe .,. :s a number oC the order of unity (for the absolute conductor

c -- 070). Since ka is a very larguv numbbtr, cf the order of millions



(for A = 40 m, ka : I:00O.O00), it is apparent that the value (2,15) will

he iarge (for instance equal to 70), while the value (2,44) will be very

snai I .(In our problem 0 may not be close to -n, since, then, in consequence=

of the necessity to consider the effects of the ionized layers of the

atmwosphere, our equations would generally cease to be applicvble). As

far ^s the integral S, is concerned, its value is determined by the

uneven part of the function p(v). But the uneven part of 9(v)-will be

of the order of

I e~ika I. (2,16)

And since the i .tiary part k 2 a is positive and extremely large,

then tne value of (2,16) will be an inexpressibly small number.

'The follow:rig physical picture gives a graphic presentation of the

smallness of Integrals S; aad S 3 . Integral S2 is the amplitude of a wave

travetling witthout a break (as a result of a -single diffraction) around

the world once or several times. Integral S3 is the amplitude of a wave

penetrating right through the Earth with the attenuation normal to the

Earth. Obviously, both these integrals are minute in-comparison with the

amplitude of a wave travelling from the source through the air by the

shori:est path.

Thus, with all accuracy attainable by the statement of the physical

problem, the sum S, determined by the equation (2,01), may be expressed

in t.he form of an integral S1 , which, after substituting for

the equation (2,06), takes the form

. 71- ___" ( vpvei G*dv
S1 = e v(_(_) iv d. (2,17)

n V2 sin 0 v

3. CALCULATION OF THE HERTZ FUNCTION FOR THE ILLUMINATED REGIOUS

If we understand by p(v) the equation (2,02), then the connection

between sum S and the value Ua will he

il L- -s--_ S. (3, ci1)



Therefore our approximate expression for Ua is written

.3v

-- e j vqo(v)e G* dv (3,02)
a nkab / 2 sin n VC

The position of the main integration section in Equation (3,02) will

depend on which point of the integral is being computed. Generally speaking,

the main section will lie close to v m , where

v = kh = k absin (3,03)
S c a 2 + b2 - 2ab cos 0

The value hc is the length of the perpendicular dropped from the centre of

the Earth to a beam [of light] (i.e. to a straight line joining the source

to the point of observation).

For an approximate computation of Integral U it is essential to finda

for G* and T(v) the asymptotic expressions which will be applicable inV

the main section'. Since the values v0 and v are large in comparison with

unity, we can, in accordance with (2,05), assume

G* = (3,04)
v V

For the Hankel functions •ntering into T(v) one may attempt to use

Debye's expression

•v- (•) ___ _ -(3,05)

where

= /d. (3,06)
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,,". 'i,I i .are.' tise, in 4'no l it i~mn where.

I ." - v > i' .(',>)

A.', li.r .as tilt, fctI ion (k,,,) in concerned, in the proximity of v - v,

nI, ,,:• i ,'; 'Ii us i t l it, with sufficiLent accuracy, is

(k.a) -- i /, -1 - (3,08)

',, ,'ll., in whaIt conditi on the dispari ty (3,07) is uied, we denote

I, f li' t, iniilv hi -ten the vertical at the point of observation and the

,li t'ctio n Itilt, 4otirct' and introuuce the parameter

I

p ( ~3 Cosy (3,09)

It i. ,,:l.V to) "'ce that tot vr ,,, - . - ka, the disparity (3,07' i.-

cq,,ii, l!t,, iq thv ,.,ontdition siech that p in a large positive number. Such

vki, ... p ar,.k, applicaiv ti the illuminated region. Values of p of the

*,rtlt , I tiit ' (pl,-iLiVe and titilative) are applicable to the twilight region-

. r I, iN : it give• IhII,' todg' of the i eo-)ftric mhaddow (the horizon line).

,t iv, lih I.Vr.'.IN vA.i•iv in re.lation to absolute p values are .applicable

In t hi'; iira.raplh wv. examine the condition of large, positive valuces

,Il Itii n.-it ed r,,gion); other conditions will be examined in sth.equenr

¢h,.o p 1, is wie have seen, Debye expressions are applicable to the

!.tnki. Imit in. Stib-tituting, them in (3,02) and using (3,04) ind (3,08)

W'4. ,l't.1ii thi, intel;rml

4.' h 'k(I V i' V
-V, 

,-, "

l. k' 4' - ' " k v-7

k' k



wh' r•

kb"
!,, = , ~ /i - - d p,+ vO (3,L")

I p

ka

It? condit ions where

khi cos y 1, (3,12)

wih', hi b -1 is the height of the source above the Earth, Equation (3,10)

ati, be ecomputed according to the fixed phase method, obtaining the "reflect-

iKR
U = a . W (3,13)a R

wile .E

Rb' - 2ab cos ,5 (3,14)

is the distance I rom the source, while W is the "attenuation function",

Whit'h in our case is equal to

w = . (3,15)

S+ I -k 2 sin? Y S sec y

The v.,l1u0 o(f I ', determnined by the series (1 ,16), dif),'ers, in our

APp roximati on, only by the cotnstant mul tiple front II , namely

SU' ik-, V I Sil. (3,16)

,I ~k, I il l'I+

lih. latst equation is c'orrect, not only Ior the illuminated region,

but i, .ll leases.
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II -a, .o.n (),Ik is not achieved, then tihe denominator and subin-

I, gr.! -I i1;iti~ 11)1(3,1o) will not be a slowly changing function. If we

.i' iu~nt. thilt the (.ondiLions arc fulfilled,

I . (ka) , (3,17)

hLi

I kR (:1,18)

(Ihi' I eI' iII iil whit-'h i', Ilet dispalirity p >- i), thus rhi equatt ion (3,10)

t.111 hie i'dlll1illpiI ,lllld b1 t'i.( lI y i tur(dit'cing a now va-riable

'= /; - ) (3,19)
k ' (2'

For the fiunctioni W in (3,13) the approximate expression

• 31, . kit, ,," "t ' 4 2) _k f - t : ti- , ' L d iT

v e k ' (3,20)
li+ --

i ', *ll~ilia nd , W~ilt l.Q

S 7'(3,21)

k, Hi itic liination ol the ray to the horizon and Contour I' is a straight

lint- i,.in.-i i ,; 1hrough the point ii = i,, from the quarter in the second

"lualr tvi e(ia the plIan it (more precisely 1, - IJ,,). The equation (3,20) can be

allipti ted witlot furthntr negle-ct and gives the known Woeyl-van der Pot

Ilormulll Ia. II we ,.SSqiumt

i



I 'hn 11k. Slh.l I I I11v(.

W 2 "e -(o t) a du. (3. 2,J)

Ili ortder it, obriin, fromi our e'presslons U and U ', the formula for

(1% 1 it, Itl, it is ntitve s.s ry to differ,,,-zt iite these expressions according

I I A. But tai, tlhI ivaiLyive.s accordillg Lo 0 are easy to compute, since, in

(3,1 1), -it is possible to consider all multtiplles, apart from e as

oils( a l s .

4. ASYIII' TI' C I.\!!RI.ESS IONS FOR TIIEI HANKEI.' FIINCTION

Litter, we shalll have to investigate the case where the observation

pohil liet's ill Lilt- Lw ligtt region.

This condition is characLerized by the values of the 1 parameter

(po,;itivV and it',taLive) of the order of unity. Since the disparity (3,07)

Ieast.s to bo uste til for t18ese values of 1) in the main, section of integra-

I ion , Lhe t)e' ,e expressions (3,05) for the Ilankel function become inappl i-

c.b I v and 11.StL he vxliangtigd lor oLhers. New expressions for tihe Ilankel.

lune I ion,;', applroplrriate t.o our task, may be obtained from asymptotic expres-

siolns (luoted in our former work and also from formulae in Watson's well

klnown bo)kk (), but it is simpler to derive them direct.

tLiknown expressions give a description of Ilankel functions via tlhe

Iint tion w(t), dete irmined by tile integral

,z- 1 z-

W(t) II- e dz, (4,01)

whl rt. li(he I olltotlr i rulns Itrm infinity to zero along the straight arc

z - 2 / I Ind Irolu zxero ito infiniLy a long the straight arc z = 0 (along

tilt' IOS itiv, y lete'ri,lI axis). The function w(t) satisfies the differential

equlat i :o

w'(t) = tw(t) (4,02)
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Id Hw, inlit iall condition

w(0) = 2 e 1.0899290710 + i 0.6292708425,

3(4,03)

2FF '6t

wI()) 2 = 0.7945704238 i 0.4587454481.4

It iS thle ent ire transv'endenital funetion whiceh breaks down into a

stvp .s eries ol the lt'form

L(t t'
W(L) -W(O) I+ + 1~ + &+ 1+

2'3 (2"5)(3"6) (2"5"8)(3"6"9) "

(4,04)

W ' ( 0) + -t +7 t: 01-

3'( )4 (3"6)(4"7) ' (3.6"9)(4"7'10) ... .

II we separate in w(t) the material and imaginary parts (for the

fl tor'L ia ) ,Indl asslmllec

w(t) = W(t) + iv(t) (4,05)

th' U) 110 and v(t) wi ll be two independent integrals of the equation (4.02),

von'(ineveLed by the relat ionship

""u'(L)v(tL - u(t)v'(t) 1 (4,06)

A',vlmiiClol it' e'xlpi , lllls, Ior Lhl~te I ilnet I t'm l5 I or large niegat iVte I

vali " . v og• .1nted I y st'lr'aL ing tie matt -rial a and( imaginary parts in tilt,

vtuIla i tillm .

w(t) = e (- t) e (4,07)

-15-



w' t) e (4,08)

For large positiVe L values asymptotic expressions for u(t), v(t) and

their derivatives have the form:

3/2 1 2 3/2

u(t) = t e ; u(t) = t e, (4,09)

-2 ?I 2

I3 1 4 3
v(r) = 2 v'(t) =- 2 e . (4,10)

F rom iithe series (I, 04) it is not di f ficul t-to extract the formula

w Ie = 2e6 v(- t), (4,11)

w t J 3 [u(t) - iv(t)], (4,12)

which give an impression of the behaviour of w(t) in a complex plane.

We note that the function w(t) is expressed via the Hiankel function

of tile order 1/3 by the lormula

w~t -. 2"
wit) = 0 e (- t)2' - t) (4,13)

3 1 3

hvint lero e tda ilopth major properties of w(t), we switch to the deri-
vat ion of thet as8Vml~totitc expression for the lHankel function 11(0)(p),

where v and , are largt and close co each other, so that the relationship

V-
-- (4,14)

v'p2

Ill iiI; i liii t ,d



Ihlo I1.lrukeo I unkciol I (l)(p ) assumes the integral represeoul tion
V

-) sh v + vv dv, (4,15)

C

where the contour C goes along the straight line Im(v) = - ii from - -

to a certain point v v( .v -g/. v- i), then along the straight

line frow v v to v 0 and, finally, along the material axis from zero

to infility. We express, in accordance with (4,14), v through t and intro-

duce the variable intiegration

Z =V. (4,16)

Considering t and z to be finite and p to be large, we may displace the

sul)integral function in (4,15) according to the negative (fractional) power

of ,). Since in the main part the transformed S contour coincides with the I'

contour, we can write

1 0" L) z" + ... ]dz, (4,17)

.:.• r

an11d Cal.I nl.tiing the integrals with the aid of (4,01)

H(1)(, -ij ) t ( w(,/3

11 ( 60 w(t) -2 W(-)(t) +.. (4,18)

By virtue of the differential equation (4,02), the 5th derivative equals

"W kt) It w'(t) + 4Lw(t). (4,19)
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lib:(lit i11g this expression in (4,18) and going over by Formula

I I, to he. lunction r. !(p), we shall haveV--

,,- ( (,,J1= -{w(t) -~ ( [(t w'(c) + 4tw(t)]+

(4,20)

Differentiating this expression according to p when v is constant

and taking into account the dependence of t on 1), we get tihe following

formula for the derivative:

*' (0)=

•'= i (!-) {w'(t) - [-w ()t + 9)w(t) - 4tw'(t)] +

(4,21)

We shall be making use of these expressions later.

9. EXPRESS1ON OF THE HERTZ FUNCTION APPLICABLE IN THE TWILIGHT REGION

We transcribe Expression (3,02) for the Hertz function, replacing in it

the value G* by the approximate value F77 and the value sin 0 in front of

th1 integral by the approximate value 0. We obtain

-311
I-T

f2e J p(v)('V vdv (5,01)

kah /2"nF 0 C

tBy the C contour we shal l understand the C? contour described in Para.2,
ij" sonv equiyvaleat of it.--lThe-main p&rt of rh"4ntegration will, ino

(i.e. for finite values of the p parameter), lie close to the point where

v = ku.

Thv ft£i't ion XV-1 (k,,a) appearing in the expression (2,02) for y(v), we

val! now iIroplavct', Ihl, relore, by the valuie (if the expression (3,08) when v = ka,

allt, r which wt. hl l have

I V-1 (kh)

'q(v) -. (5,02)

01  (ka) + i I - -,_ (ka)
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For the f6unction c and its derivative we must take expressions which

Swi 1] -be correct in the proximi-ty of v = ka. Such expressions were obtained

in thie preceding paragraph. Leaving the main terms in (4,20) and (4,21),

we shall have

1 =(ka) La ) w(t)-. (5,03)

T, .(ka) -- ) (0), (5,04)

wle re L is linked to v by the relationship

v ka +( ka) 1/3 (5,05)

'rhe numerator in (5,02) is obtained from (5,03) by substituting a for b

and t for t', where

b kb+ 1/3

v = k -'. (5,06)

Comlaring (5,05) and (5,06) we get a link between t and t'. But the

rel i ionship h/a , where h = b - a, is a small value (we will consider it

to bI, of tih same order as (ka) ). Ignoring this value in comparison
S.. ..... ... W~i{!L llRi V,.y•.,. Y,.e _.al re_ .,'i1 •- _CQ Wrk,,,it e .

t t - y, (5,07)

whe re

kh
Y (5,08)

( )ka) 1/9
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is a valiue proportional to the height of the source above the Earth. The

value y may be called the accepted altitude of the source. Thus, with

accuracy to terms of the order of h/a or (ka)-2/3, will be

'*v •(k ) - (ka I'/".,

S (kb)) w(ty), (5,09)
V1 2

where t, is deter ;ned from (5,05) (in the multiple before w(t - y) we

similarly substitute b for a).

Substitutions (5,03), (5,04) and (5,09) in (5,02) g.ive the approximate

expression for (p(v).

If we assume for brevity

kk kk(ji 1.) /3 (5,10)

kwe shal I I have

,p(v) - ka 1/' w(t - y)(5,11)
P( 2' w'(t) I qw(r)'

Recalling the formulae (1,09) and (1,10) we can write the value q

in the form

1/3 - I + j27( 2
2n/

2u1t

or, with I tih- same 'tcuracy 
- -.-.---------

q i ( x!,•(5.13)

"Tie last expression is rather more convenient for calculation.
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It remains for us now to substitute the value p(v) from (5,11) in the

SLormula (5,01) and transfer it todievariable integration t. Making this

substitution, we can exchange the value I under the integral with the

constant value r-a, and also write a in place of b in the multiple before

the integral. As a result we obtain a fo-.mula which may be written in the

"form

.11

ikae 4 / ixt w(t - y) dt (5,14)

Ua = V 1 f w'(t) - qw(t) (
C

where letter X signifies, for brevity, the amplitude

0, (5,15)

which can be called the applied horizontal distance from the source,

such that y and q have the value (5,08) and (5,13). Countour C must embrace

all the poles of the subintegral function, as we shall see, all of them are

located in the first quarter of plane t.

Ln order graphically to present the relationship of the horizontal

and vertical scales in the variables X and y, we shall compose an expression

for the parameter p, determined by the formula (3,09). From eramiration of

a triangle with its angles at the centre of the Earth, the source and the

poi;, of observation, it is not difficult to extract the approximate

I orlut i I

• 5 C),os Y X (5,16

--------------------- ---

TI,'ii, the equt tion for the horivn line i3 x r y . Later we shall

require a link bet wtven the distance R from tht source, cons id red along a

straight liNt,, and the horizo, tal distance ac, x h, i.e. (ka) A * » y,

this link has the lorm:

kR = ka + ( , (5,17)
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6. STUIY OF THE EXPRESSION FOR THE HERTZ FUNCTrON

The exprv.ssion (5,i4) found for the Hertz function, may conveniently

be written in the form

ikaO
jU, £..-T V(x, y, q), (6,01)

wwhe re

L' - , f eixt w(t __Y) 1
V(G,, v, q) ve V .• w(t) - qw(t) dt. (6,02)

C

The mItiu V, by an.ilogy with the value W introduced earlier in (3,14),
"cmn be ,ai led Lth, iatetnuet'lion factor. We shall establish the connection

between V and W. Since, in the denominators of Formulae (3,13) and (6,01)
w, can consider the values of I and A, as being equal one to another, we sha'1

obtain, in consequence of (5,17):

W Ve (6,03)

We now hI ve to, exam i ne t-he exp re s sion (6,02) for V. We shall begin this

+-+ ---.. .. c• ,lid-mt i~ , l 'I t l e ca , whe re Lhe value p is•.positive and large (i Ilumina-
teol retgion). We have already examined this case from a different approach
-(l.ra. I). Hlowever, since formula 6b,02) wa. brought out by us for finite p,

it is an interesting conc• lsion that it is true also for large values of p.

When P -I, tho main p (ir o( the inLe.ration will lie with the larger

neg.ative t (natil lv c!os, t , -to -t p). Using Expressions (4,07) and (4,08)
for w and w' ind using the iixed phase met hod, we obtain



i,., 2

p (6.04)

[ Ind. aIs a result of (t,03),

p (6,05)

I'lh I.Ist , xlpres:;ion piractically moincides with (3,15). We note that if

is oI the orde r 1l unIity or i-" Iarge, then for the applicability of the

fixed pIhld mt'hoId the condition p >' -I suffices; if X is small then it 'is

nevve.•sary that y, '" 2x. If tle latter condition is not fulfilled, but

tihe Conld I ti On

y << (6,06)

is, t hen the inItegrail (0,02) may be cal iculated by a different method.

II the .,1sy 1nottic tXli3 ,ssion for w(t - y) a further simplification may be

made, iltvr which hit. Init''grali (6 ,t)2) takes• the form

i 7/- C i + -t
V _dt. (6,07)

t iq

Having taken as a variable integration the value VrF , we arrived at

I an integral in the lorm (3,20) in which -" ""- "---a' ] and once again

get tle Weyi - van der Pol formula with values of o and i^, -etj afTto-

I p

Ind lot it I l. y ohi I[i.t ., W 1 22
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Wt. now plroc(,d to a more interesting condition, when the value of p lo. a

1:0 I V, or IVatVr iVe VCulumber of the order of unity. As we know, this is the

twi I ight region, where thie diffraction phenomena plays a major role.

If the vIlue of X iind y are of the order of unity, then the most

eOlivCiuienLt method of computing the integral (6,02) is to present it in the

form ol the sum of deductions relating to the poles of the subintegral

funct ion.

II ts = is(q) signnifies the roots of the equation

w'(t)- qw(t) 0 (6,09)

then W(- shall have

1 st wts (,0

V(X, y, q) = e 2 .' t. e - q? W(ts) ' (6,10)
s=l s

Tht. roots is (q) are the essence of the function from the complex

parameter 1). Whvn q 0 they revert to the root t. = ts(O) of the derivative

w'(t), but when q .. they revert to Root ts0 = ts(•). The values tI and to
s S

have Ptaise n/ 1, so that

S~~.fl T

t' Le t =j to e (6,11)

WV. show here a module of the first few roots

__tslI:

1 1.01879 2.33811

2 3.24820 4.08795

I 4.82010 5.52056

4 6.16331 6.78671
1) 7.37218 7.94417

-24-



Ai large s values will be

-, (s - /3 ; 0 1 (s -i 1) (6,12)

At finite values of q--, one may compute the roots using the differen-

tial equation

, (6,13)
ddq ts - q2 '(,3

which is easily extracted from ,4,03). Root t can be determined either as

the solution to (6,13), which, when q = 0, reverts to t', Or as the solu-
S

tion which, when q ( , reverts to t:; both solutions coincide. From the

first. definitLio it is easy to construct for ts a series according to

rising degrees of q; it will converge when IqI < /rs-1. From the second

definition it is possible to construct a series according to falling

(negative) rdegrees of q; it will converge where Ijq > I v- 1. We are
not reproducing those series here. We note that the vaue ',, which at large

values Ur jqj is close o q"', is not a root of Equation (6,09).

In conditions where y' << 2 I /-s we have the approximate equation

w(ts.- y)
W(t cel (y ¢t:) - -q-- sh (y V- ), (6,14)

s

which peritrils evillnlation Il the remote terms of series (6,10). At large

W nlu,, ?,uchI thait 1(1 t:I I lpproxiuiately t will equal t (0)

whi Icl will equal I'. Fromi here and fronm (6,14) it follows that the series

(6,10) .always converges. However, if x is small or y large, then to compute

tile sulm l h lth series may require a large number of terms.

In the shaded region, when the value of p is large and negative, the
seties (6,10) converges very quickly and its sum approximately boils down

to t ihe i rst term.

Our -,cries (6,10) corresponds to the Watson series, but has the advan-

tage that the terms ti our series have simple expressions.
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Our basic formula (6,02) permits investigation not only of extreme

CoUiULLions (large positive p - the illuminated region, large negative p -

the shaded region) but also the intermediate conditions, in particular the

twilight region- While for the extreme conditions our formula does no more

than :&iarify earlier "known formulae (reflecting formula and Weyl - van der

Pol formula for the illuminated region and the Watson series for tile shaded

region), for tile twilight region it gives t sentially new results.

particular interest is presented by the case where X and y are large,

while p is finite (short waves, twilight). This condition has not been

investigated by anyone to date, and previously known formulae are inapplicable

to it. We shall derive here the approximate foritulae which facilitate its

study.

We introduce the value

Z = X - /y, (6,15)

which is the reduced distance, calculated not from the source but from the

geometric shadow boundary. In the region of geometric shadow z > 0, in the
"visible" region z < 0. We have

Z+z 2
.= Z + 2 (6,16)p= 2X 2

In our as-sumptions x is large, wiLle z is finite; therefore we sball

have approximately p = - z.

In the case under examination the main part of the integration in

Integral (6,02) will correspond to values of t of the order of unity. But with

y large and t finite, the asymptotic expression (4,07) will apply to the func-

tion w(t - y), which will give

., 1 2. . .•1
w (t - y) = e (y - t) e (6,17)

or approximately
.u 1 .2 1

w(t - y) = e y 4 e . (6,18)
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SuhstiLuting (6,18) in (6,02) and exchanging the value x Y' for unity

in the multipie in front of the integral, we shall have

• 2 3/2

V(Xiy,q) = e V,(X - q). (6,19)

whe re

V (V., ) -7- " .dt. (6,20)
SJw'(t) - qw?(t)

The terms discarded in (6,19) will", with fin"ite z values, be c¢o the

order of I/€v- (or i/X).

Thus, in our case, the function V(X,y,q) from two arguments and from

Parameter q will come down to the function V(z,q) from one argument and from

the very sname parameter. This is a considerable simplification.

We shal'i dcfine the formula linking the attenuation function W to the

valtue V. We have the identity

2 / W + I iz3I (6,21)"3Y 0 o+ 3 -4-X

where wL), has the value (5,18). Discarding in (6,21) the last term, we

get from (6,03) and (6,19)

W = e3  Vl(z,q) (6,22)

In this way, in our approximation, the attenuation funct-io, W depends

on X and y Only owing to z = z - /y.

The . 1u'leion Vl(z, q) is the uihole transcendental function from the

Varil'nhi e .:. For positive z values the integral (6,20) can be computed as

thv s 0111 o1 dedue Lions , which gives
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izts

e(s q ts) (where z > 0, (6,23)
s=l -

where t. - are the previously investigated roots of the equation (6,09).

Series (6,23) converges more quickly the larger z is. At large positive values

of z its suni boils down to the first term. For finite negative z (e.g. for

- 2. z < 0) Litegral (6,20) must be ,computed by squaring. For large negative

WlOues 1, z one may compute the integral by the fixed phase method, at which

One o)b ta ins

i 3

2e
Vl(z, q) = 2 q (6,24)

i + a
z

and, a;s a result of (6,22)

W= 2 (6.25)

z

Keeping in mind that the approximation z - p, we get a coincidence with

Formula (6,03).

In conclusion we note that our basic formula (6,02.) may also be obtained

by a methoI of parabolic relation by M.A. Leontovich and applied by him(5) to

the derivation of the Weyl - van der Pol formula. Use of Leontovich's method

(with certain refinements), applied to this problem, will be examined by us in

a special article.

*' SilMMARY

rThe problem of the propagation of radio waves around the homogeneous

surface of the earth is investigated. The diffraction effects are considered

bIur the influence of the ionosphere is neglected. The aim of the paper is
to deriw, y ormulae for the wave amplitude as a function of the elevation of

the sourtv,, it,; di-siLanct* I otm the point of observation (situated oil the surface

Of tle earth), of the wave length and oL the electrical properties of the soil.
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"The m•ain result is the derivation of an expression for the attenuation

factor of an integral. This expression is valid for all the values of

paramieters, which are of practical interest. In the limiting cases the well

known l'ormulae are obtained: The Weyl - van der Pol formula for the

i lluminat~ed region and the formula which corresponds to the first term in

Watson's series for the shaded region (the latter in a slightly corrected

foriii). Essentially new is the investigation of the region of the continuous

transi.tion froni the illuminated region to the shaded one. Methods for

numerical calculations of sums and integrals involved in the problem are

elaborated.

REFERENCES

(1) V.A. Fock: Diffraktsiya radiovoln vokrug zemnogo shara
(Diffraction of radio waves around the Earth).
DAN, 46, 8 (1954) 343-346.

(2) B.A. Vvedenskij: Sovremennoe sostoyanie voprosa o diffraktsionnom
rasprostranenii radiovoln vokrug zemli (The
present state of the problem of diffraction
propagation of radio waves around the Earth).
lzv. AN SSSR, ser. Fiz., 4, 3 (1940) 514-433.

(3) V.A. Fock: Novoe asimptoticheskoe vyrazhenie dlya besselevykh
funktsij (A new asymptotic expression for Bessel
functions) DAN, 1, 3 (1934) 97-99.

(4) (;.N. Watson: Treatise on the theory of Bessel Functions.
Cambridge (1922).

(5) M.A. Leontovich: Ob odnom metode resheniya zadach o rasprostranenii
ehlektromagnitnykh voln vdol' povekhnosti zemli
(On one method of solving the problem of the
propagation of electromagnetic waves alor" the
surface of the Earth). Izv. AN E ,, Ser. Fiz.
8, 1 (1944) 16-22.

-29-


