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NONTECHNICAL SUMMARY

In this paper, we introduce a new technique for analyzing
simulations of stochastic systems in the steady state. From the
viewpoint of classical statistics, we address the questions of
simulation run duration and of starting and stopping simulations.
We are able to do so by avoiding two difficulties which have
previously made classical statistics inappropriate for simulation
analyses. These are the statistical dependence between successive
observations and the jnability of the simulator to begin the
system in the steady state.

For many stochastic systems being simulated it is possible
to find a random grouping of observations which produces independent
identically distributed blocks from the start of the simulation,
This grouping then enables the simulator to avoid the two problems
mentioned above. He has at his disposal the methods cf classical
statistics such as confidence intervals, hypothesis testing,
regression, and sequential estimation which are appropriate for
independent observations. Furthermore, information that is useful
in estimating the steady-state behavior of the system can be
collected from scratch thus eliminating the problem of the initial
transient.

The approach mentioned above is appropriate for the
simulation of systems which returns infinitely often to a single

state. In the current paper, we restrict our discussion to the

general multi-server queue, with arbitrarily distributed inter-arrival

and service times. We leave the more general systems to future

publications.
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Section ¢ reviews some r:jlevant results from the theory of
statistical inference. Sections 3 and 4 discuss the probabilistic
structure of stable queueiny systems. A queueing system 1s atmble “
1f the customer arrival rate 1is strictly less than the maximum
service rate (with ail servers working). In this case, it ™—ay be
shown under mild conditions that the idle state (::e state in which
all servers are idle) occurs infinitely often. Furthermore, letting
a busy cycle refer fo the time interval detween two successive
idle states, it may be shown that observations made in different
busy cycles are statistiyally independent and identicaily distributed.
These observaticns might b2, for example, the number of customers
sevved in the busy cycle, the length of the busy cycle, the sum of
the wsiting times of customers served in the busy cyela, or the sum
of some function of the waiting tim2. of the customers served in
the busy cycie.

It 1s shuwn that each busy cycle provides {nformation
relating to the system's steady-utcte behavior. In particular, the
expected value of any well-behaved function of the steady-state
waiting time is cqual to the expected value of the sum of that same
function of the individual customer waiting timeg in a single busy
cycle, divided by the expected number of customerarserved in a busy
cycle. This fact may be uoced with the above-mentivned independince

to enable the simulator to perform a thorough stotistical analysis o

of the steady state. One merely directs his analysis toward the
vetimation of properties of the individual busy cycle and then
infers corresponding properties for the steady state. The former
task is simplified because of the independence and identical

probabilistic structure of different busy cycles, which permits

classical statisticsl analysis.
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To illustrate the application of these ideas, conaider the
problem of cbtaining a confidence intetrval for the eipected steady-

state waiting times E{W}. Let ¥ denote th2 sum of the customer

waiting times in the kth busy cycle and let i and si denote

respectively the sample mean and sample variance for Y, in N

k
observations (busy cycles). Let a denote the number of customers
i served in the kth busy cycle, and let a and si Genote
.; , respectively the sample mean and sample variance for & in N

| obgservations. To obtain a confidence lnterval for E{W} with at

least 100(1-v)Z confidence, we obser'e the gystem for N busy

cycles. The interval computed is then

: 7 -_ - /ﬁ

i . max{0, ¥ 21—71/2 BY/'ﬁ} Y + zl"Yllz SY/

X - < E{wW} < = e

- axc! _

. o+ 21-yal2 sa/“E naxi0, a zl—yzlzsa/ }
‘3 , : where zx is the 100x percentile for the non:zl distribution and
:: ' V1 and Yy satisfy Yy + Yo = Y-

I Saction 5, & two--cep procedure is developed'for obtaining
an approximate confidence interval for the =teady-srate mean of a
5,{3 :t nenerai funztion -of the customer waiting time. . The fivast ste:

consists of a short simulatiop run which serves as a planuing guide

. =

for a much longer secci’ vua. Ac the end of the first rum, the

———

gimulator is able io cstimate the m?7imum confidence interval length
; L which can be :B;ained from the seccnd run iven ~ specified level of
confidence and run time. The procedure is thus viewed as a tool

'by which the gimulator may balance computation cost against level

[ L]
H




Ut
R T A e e

L .

of precision and hence laplement a rational design of experiment.

In Section 6, we illustrate the application of the statistical
techniques to an actual queueing simulation. Ffor {!lustration
purpoees, we choose the single-server queuc with exponential inter-
arrival and service time distributions, since its theoretical
properties are well-known and previde a means of comparison with
simulation results. Confidence intervals afe obtained for various
steady~state quantities of interest, including the mean and standard
deviation of the waiting time, the expected number of customers in
the system, the expected value of a penalty functior. on the waiting
time, the tall of the waiting time distribution, the expected number
of customers served in a busy cycle, the expected value of a penalty
function on the number of customers served in a busy cycle, the
tall of the distribution for the aumber of customers served in a
busy cycle, and others., The two-step procedure is then illustrated
for the mean waiting time. In a single realization of a second-
steg run consisting of 18,000 busy cycles, a\982 confidence interval
[.085, .108] is n~btained for a queue with an arrival rate of 5
customer- per time unit and 2 service rate of 10 customers per time
unit (the theoretical mean waiting time is 0.,1). Two systems with
differant service rates are then compared by means of a confidence
interval on the difference of the mean waiting times. Finally, a
method 18 1llustrated by which one may infer sensitivity to an
unknown parameter. In particular, if the arrival rate is unknown
and one observes the system at two different values for the arrival

rate, then under certain linearizing assumptions, one may make

vi
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confidence interval statements for any arrival rate between the two
observed values. Indeed, one may obtain a confidence band about the
expected waiting time (or some function of the waiting time)
expressed ag a function of the unknown parameter. It is felt that
such a capability could be an effective aid in assegsing the
adequacy of the input data accuracy, and in efficiently uncovering
those parameters that warrant more in-depth analysis. Of course
this technique, together with all of the techniques illustrated in
Section 6, 18 only feasible because of the busy period structure
which is exploited.

Finally, in Section 7, we compare our approach for estimating
the mean steady-state waiting time with a commonly used alternative,
In our approach, one arrives at an estimate essentially by forming
the sample mean of the customer waiting times in some fixed number

of busy cycles. The actual number of customers observed is thus

random, In an alternative approach, one might simulate a fixed

number of customers, disregard an initial fraction of the customers

as transient observations, then form a sample mean with the remaining
customers. In both cases, the estimate obtained converges to the
theoretical value as the number of observations becomes large. In
our approach, however, one is able to make rigorous statistical
statements by taking advantage of the independence of the busy cycles.

[ In Section 7, we seek to determine whether this advantage is obtained
at the expense of reduced accuracy in the estimator. Experimental

! results are obtained for the single-server queue used in the previous

illustrations. It is found that for this queue,statistics which are

vii
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obtained in comparable length computer runs for these two approaches

are very close in 8ccuracy. Thus, one may apparently make uge of

the methods of this report without fear of reduced accuracy.

Continuing research in this area will extend and 1llustrate

this approach for more general simulations and describe in detail

the steps necegsary for implementation.
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A NEW APPROAC:I TO
SIMULATING STABLE STOCHASTIC SYSTEMS:

1 - GENERAL MULTI-SFKVER QUEUES

by

Michael A. Crane and Yonald L. Iglehart

1. INTRODUCTION

The principal goal of most simulations of stable stochastic
systemr 13 to cstimate propertiesg of tle stationary u¢r steady-state
behavior of the system, Two of the major problems ia such simulations
are the statistical dependence hetween successive observations and
the inability of the simulator to begin the systnm in the steady-state.
The first problem has necessitatud using methods ¢l time series
analysis rather than classical atatisti2s. The second has ingpired
man7 simulators to let the system xrun for a sufficient length cof
time so that the initial transiént wears off and a steady-state
condition obtains. This procedire, ofrcourse. requires a judgement
on how long to let the system run before making obsérvatians.

For many stochastic gsystems being :.imulated 1t 1s possible to
find a random grouping of observations which produces independent
identically distributed (i.1.d.) blocks frum the start of the
simulation. This grouping then enables the simulator to avoild the
two problema mentioned above. He has at uls dispnsal the methods of
classical statistical analysis such as confidence intervals, |

hypothesis testing, regression, and sequential estimation since the




;3; observations are now 1.1.d. Furthermcre, information that is useful
in estimeting the ateady-state behuvior of the system can be collected -
from ccratch thus elimirating the problem of the initial transient.

The key requirem:nt for obtaining these 1.1.d. blocks i8s that

the yystem being simulated return to a single state infinitely

often and that the meda time between such returns is finite. This

raquirement will b met fcr many, but not ali, stable systems that
might be simulated.

In this paper we shall illustraie the main ideas of this
;9 approach in the context of the GI/G/s queue, where 8 > 1. Other

. stochastic systems which can be dealt with in this same manner will

be discussed in future publications. This paper is organized as .
s follows. Section 2 reviews some revelant results from the theory of
statistical inference. Section 3 summarizes the probabilistic

- structure of the GI/G/1 queue with an eye toward using these results

¥
e s T S g I et

in carrying out a simulation. 1In Section 4 a similar treatment is
given to the GI/G/s queue for s > 1. In Section 5 we discuss a i
twi~step procedure for estimating the stationary expected value of é
a general function of the waiting time. Numerical illustrations : H
%-L for the M/M/1 queue are given iu Section 6. Finally, in Section 7 !

we coupare our procedure with a commonly used alternative.

r
L8}

PRELIMINARY RESULTS

Before proceeding further, it is useful to review some relevant

ideas from the theory of statistical inference. As usual, we have a

given probability triple and a sequence of random variables (r.v.'s)
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daffned on 1t. Since the detailed covstruction of this triple is %
not important, we omit it from the discussion. Let © be some
unknown parameter and let 0 ind ©® be two random variables
’
obtained fiom a statistical experiment. If 0 <y <1l and

P{6 <9 <B) >1-vy, wesay chat [6, 8] {s a confidence interval

for 0 with at least 100(1-v)% confidence., Roughly speaking, if

many values are obtained for 9 and 3 in independent replications

of the experiment, the interval [8, 5] will surround © at least

100(1-Y)2 of the time.

Given confidence intervals for one or more parameters, it is
pogsible to obtain confidence intervals for various functions of

these parameters. For example, suppose 91 and 32 are two

unkacwn parameters, and [91’ 51] and [gq. 92] are confidence

intervals for 61 and 62 with at least 100(1-Y1)X and 100(1-Y2)Z

confidence, that is P{8 <6, < 61} 2 1-v;, and

P{0, £ 6, < 52} > 1-v,. Then by a straightforward argument,

P{gl -0, <8 -0, <8 ~_§2} > l-Yl-Yz. )

If 4 > 0, then

P(AB) + B < A8, + B < A8, + B} > 1 =-y,. (2)

1f 8, 2 0 and a > 0, then

PUUgID® < o) < (E DY 2 1oy,

1 (3)
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where [x]% = max (0,x). If 9

+ -
fo,1 6 8
p{—L Y 1}>1—Y Y,. (%)
8, T e (8,1% = 12
2 2 -2

Finally, suppose 6()) 1s an unknown parameter which 1s a linear

function of the parameter \A. Suppose Xl <A, and

P{B <0(%) <8;) > 1-v; and P{g, <80 <B8,] > 1-v,.

Then

@l

(A=2,)(8, - 8.) _ (a8, -
POy + ——y - 00 < Ft——a—hy
2" M 2" N

for all. A <A <A} 21 -y, -y, )

This fact {s potentially useful for studying the sensitivity of a
nonlinear function €()\) to XA over some small intcrval [Xl, XZ].
Now let {xn:n > 1} be a sequence of i.i.d. r.v.'s with
finite second moments, and define 6 = E{Xl} and ¢ = cz{xl}. Let
$ denote the distribution function for a normal random variable with

zero mean and variance one; {.e.,

x
$ (x) -f $(E)dE -» < x <,

where
2
0O = AT o,

For 0 < x <1, define z, = Q-l(x). Also, define the sample mean

- - i i

PRt
d




and sample standard deviation

n-1l

X(n) = ix 1,2
X(n = = N®Ll,Lly ey
=1
n "
s(n) = F*L- Y (XJ - i(n))zll/‘, n=2,3,....
-1

Now we know by the central limit theorem that the

1im P{v (R(n) - 0)/0 < 2z} = §(2), ~= < z < =,

n-+ce

Furthermore, it may be shown using the strong law of large numbers

that ;he

P{1lim e(n) = g} = 1.

nre

It then follows by a well-known result, cf. CHUNG (1968), Theorem

4.4.8, that the

1im P{/h(X(n) - 8)/8(n)

n-hoo

z} = §(1), <z <o

-
cY

Hence, for 0 < y <1 and large n,

P{-zl_Y/2 < /nX(n) - 98)/s(n) :'zl‘YIZ} & 1-y

or

P{X(n) - zl_Y/Ze(n)//ﬁ <8 < X(n) + zl_lee(n)//ﬁ) 3 1-y,
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giving an approximate 100(1-y)¥ confidence interval for 6. This
method will be used for analyzing sequences of 1.i.d. r.v.'s

introduced in later sections.

3. PROBABILISTIC STRUCT!RE OF THE GI/G/1 QUEUE

Consider now a GI/G/l queueing system in which the Oth customer
arrives at time :0 = 0, finds a free server, and experiences a
service time v,. The nth customer arrives at time o and
experiences a service time Vi Let the interarrival times
tn - tn~1 =u, n > 1. Assume that the two sequences {vn:n hd 0}
and {u :n > 1} each consist of i.1.d. r.v.'s and are themselves

independent. Let E{u } = )71

. E(v“} - u-l, and p = \/u where
0 <A, u<wo Thus u (A) has the interpretation cf the mean
gervice (arrival) rate. The parameter p 18 called the traffic
intenaity and is the natural measure of congestion for this system,
We shall assume that p < 1, a necessary and sufficient condition
for the system to be stable.

The principal system characteristics of interest are Q(t),
the number of customers in the system at time t; wn, the waiting
time (time from arrival to commencement of service) of the nth
customer; W(t), the vork load facing the server at time t; B(t),
the amount of time in the interval [0,t] that the server is busy;
and D(t), the total number of customers who have becn served and

have departed from the system in [O,t].

Here we shall review the basic structure of the GI/G/1 queue

relevant to our simulation study. For a comprehensive treatment of



these and other resultes for the GI/G/l queue see IGLEHART (1971). To
begin the analysis of the process {wn:n > 0} 1let X, =" Vo1~ Y,
and set S0 =0, Sn - x1 +...+ xu. n > 1. The following rucursive

relationship exists for the wn's:

+
Wl ™ [wn + xn+1] , n2>0,

By induction one can show that
wn bad max{sn-sk:k - 0.1,....1’1}. n _>_ 0-

Using the notion of optional r.v.'s, it can be shown that there exists

a sequence of r.v.'s {8 :k > 0} such that By @ C» B <8 and

k k+1’
WB = 0 with probability one. In other words, the customers numbercd

Bkk are those lucky fellows who arrive to find a free server and
experience of no waiting in the queue. The fact that there exists an
infinite number of such customors is a direct consequence of the
assumption that p < 1. The time axis Ri = [0,2) can be divided

into alternating intervals during which the server is busy, idle, busy,
etc. We call these intervals busy perinds (b.p.'s) and idle periods
(1.p.'s). An 1i.p. plus the preceding b.p. is called a busy cycle
(b.c.). 1If we let o =6 -8 ,, k>1, then a represents the
number of customera served in the kth bucgy period (b.p.) and they

are numbered (8

k-1’ Bk-l + 1,...,8k-1}.

it A
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Next define the random ve ‘tors Ek = (v ) and

k-1" "1

K’ Xsk_l+l,...,38k] ,» k > 1. Note that these vectors are

unusual in the gense that they have a random numter of components,

Yk = {u4

namely, oy +1. Observe that the vector VY, = [01, 31"“'801}
includes all the data required to completely construct the

behavior of the system in the first b.p. The principal fact that
permits us to decompose the system into {.1i.d. blocks is

that the Vk's are 1.1.d. Hence we have the intuitively plausible

conclusion that comparable r.v.'s in different b.p.'s are 1.i.d.

Now define the following r.v.'s for k > 1:

K’ and
uk-l
(3) 2
Y - {(s - S Y v + = v }.
k jgo B By® Beqtd 2 Bt

These r.v.'s have the following interpretations: "k is the length
of the kth b.p., Ek the length of the kth b.c., Vi the

length of the kth 1.p., Y(l) the sum of the waiting times in
k

-




x

kth b.p., Yﬁl) the integral under the curve Q(s) in the kth

(3)

b.p., and Yk

the integral under the curve W(s) 1in the kth b.p.
Because the Yk's are 1.1.d. so are the nk's. &k'e, vk'a. Y{l)'s.

Yéz)'s, and Y£3)'s

It is these 1.1.d. sequences that we shall

observe in our simulation with an eye toward using classical

statistical methods of analysis.

Next we record some known results on expected values of these

r.v.'s. We ghall assume that the E(vg} < » , Then the

Elo,} = expl & n " P[S_> 0]}, Eln} =u" Elal,

Bte) = L Bmd, E) =7t (o) Eloy) o 2¥D) - 20V Bla) < o
k o S k pr Ei%t k *x ’
(2), o 3y o i 2

B{Yk } OE{W} + p) E{g }, and E{Y, } (pE{W} + 3 AE{vyD E{g, ),

where W 18 the r.v. to which wn converges in distribution. In other

words, W 18 the so-called stationary walting time. An expression for

+
the characteristic function of W exists, in terms of the E{eitsn}

’
however, it is difficult to evaluate for specific cases. Also

E{W} = 55 2! E{S:] . If u, has a non-lattice distribution, it

is knownn:;at: Q(t) =»Q ard W(t) =W* ag t + », where == denotes
weak convergence (convergence in distribution). Hence Q 18 the
stationary queue length and W* 1s the stationary virtual waiting
time. Furthermore, E{Q} = AE{W}{-p and E{W*} = pE{(W] + XE{vg}/Z
which are the terms appearing in the expressions for E{Yéz)} and
ee{dy

More generally let f be a measurable function from [0,») i1.uto S

(~~,=). Assuming that the E{f(W))} < » , then
u.k-l
E{ ;g% f(Sgk_1+3 - Sekrl?} = E(£(W)) E{uk) . This identity plus the

fact that the V 's are 1.1.d. allows us to treat E{(f(W)} in the




!

same manner that we do E{W}. In Section 6 a variety of functions f
of practical interest will be digcussed,

While the parameters E{al}. F{W}, E{Q}, E{W*}, and E{f(W)}
can ctheoretically all be calculated from the diatridbutions of Vo and
Uy, these calculations are very difficult and one might choose to
estimaste them through simulation. 1It is problems af this sort that we

address in this paper.

4. PROBABILISTIC STRuJLURE OF THE C1/G/s QUEUE

Now suppose there are s > 1 servers. The appropriate value
of the traffic intensity 1s now p = A/uu , which we asgume again is
strictly less than one. It is known (see KIEFER and WOLFOWITZ (1955,
1956), and LOYNES (1962)) that p < 1 1s a necessary and sufficient
condition for the queueing system to be stable. However, p <1
is aot enough to insure that the queue becomes idle infinitely often,
which is the key to the analysis in the case s =~ 1. A simpie and
reasorable condition, wiich we shall henceforth assume, was recently

provided by WHITT (1971); namely, that the slu > v } > 0.

n-1
Additional results on this problem are contained in KENNEDY (1971).
The analysis of this queue is best approached through a vector-
valued walting time process {gn:n > 0} introduced by KIEFER and
WOLFOWITZ (1955, 1956). We assume the customers are served by the
first available server. If more than one server is free, the
customer 1s served by that server with the smallest index. For a

fixed realization of the queueing syetem, think of assigning the

customers when they arrive to the server who will eventually serve

10
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them, Let En - (wnl""’wnu) be the vector-valued process whose
components wni denote the worklocad of the server with the ith
lightest load just prior to the arrival of the nth customer. Thus
w is the actual waiting time of the nth customer. The wn

nl

sequence can be generated recursively as follows:

! ' +
‘!n+1 - [F(Vn + &n-l = U“)] :

+ + +
where Yn-l - (vn-l' 0,...,0), gn - (“n""’un)’ X} = (xl,...,x')
for X = (xl....,xs) € RP. and F:R® - R® rearranges the components
of its argument in ascending order. It is clear from this

representation of W~ that {§ :n > O} is a Markov process with

state space E = {x ¢ R%:0 2% 2 2 xs}. The condition of Whitt

mentioned above guarantees that the
P(W =0 infinitely often} = 1

and that the expected time between visits to 0O is finite. This
condition allows us to define the sequences of r.v.'s (o :k > 1},
(Bk:k > 0}, and {Yk:k > 1} just as in the case of the single-
sarver queue, In this case customers numbered Bk arrive to find
all servers idle.

Thus we can again proceed to decompose the queueing system
into independent b.c.'s juat as was done in the case s = 1. Now
a b.c. 18 defined as an interval of time during which at least cone

11
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server is busy. 1In fact we can take over the aame notation. However,

in this case we have no closed expression for E{uk} and thues we have
no alternative but to carry out a simulation. Again E{nk} - u-l B(ck},
E(gk} A E{uk}, E{vk} A T (1-p) E{ak}. and E(Yk J= E{W) E(uk}

él) is the sum of

where W 1s again the stationary walting time and Y
the waiting times in the kth b.p. There is no closed expression for

E{W} and again simulation scems Jike the only recourse.

5. A TWO-STEP PROCEDURE FOR ESTIMATING E{f(W)}

Let f be some positive measurable function on the customer
waiting time and let
uk-l

Y, = f(w

).
k =0

-4

Bl

We know from the general theory that {Yk:k > 1} 1is a sequence-uf
1.4.d. r.v.'s and that E{Y;} = E{f(W)} E(ul]. This last relation
is at the heart of the method to be proposed. By observing the
sequences {Y, :k > 1} and {ak:k > 1} and obtaining a 100(1-v,)2
confldence interval for E{Yl} and a 100(1-72)% confidence interval
for E{al}, it 1is possible to obtain a 100(l-yl - YZ)Z confidence
interval for E{f(W)} ueing (4). Two questions naturally arise:
given a desired 100(1-v)? confidence interval for E{f(W)}, how
should Yy and Y, be chosen, and what effect do these choices
have on the required sample size N ? It is these questions which
we address in this section. Given a desired vy, we develop a two-
step procedure in which the gimulator chooses Y1 Yoo and N
after obtaining preliminary estimates for system parameters in an

initial "short" simulation run.

12
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The full procedure consists of two independent simulation runs,
the first for a total of m busy cycles and the second for N busy
cycles, whare N 1is to be determined. The initial run is a short
run which serves an a planning guide for the much longer second run,
The first run provides the simulator with estimates of confidence
interval lengths for E{f(W)} which could be obtained in the second
run for various cholces of Yl’ Yoo and N, For each N, the
cotimated length is minimized over all possible values of Y1 and Yo
with Yy + Y, = Y, and the minimal length is expressed as a function
of N. The simulator is thus able to consider tradeoffs between
the length of confidence interval, level of confidence, and cost of
computer resources.

Let (Yl,...,Ym) and (al,...,am) be observations during the

initial run, and define

5 1

¥ o~ = Y, ,
m j=1 h|

- m

o = o R
=1 3

1 & - ol 1/2
sy -[m,l 32-:1 (YJ-Y)]

1/2
1 i -2]
8 o= (a,-a) .
a {m 1 §=1 h]
Given these statistics, the gimulator can estimate the size of

confidence intervals for E{Yl} and E{ul} which could be obtained

in a second run, for various values of N, Ypo and v,. If the

4

second run were to be made with sample size N, Y™ % and Yy Y = X,

13
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then estimates for 100(1-Y1)Z and 100(1-Y2)Z confidence intervals for

E{Yl) and E{ul) are

(¥ -2y p sy/ M ¥z 0 s/

IG5

and

fa - Z1-y/2 + x/2 saliﬁ. o+ z1-y/2 + x/2 sa//ﬁ]‘

Using (4), an estimate for the length of a 100(l-y)% confidence

interval for E{f(W)} 18 therefore

Y+ 2 8. /N [¥ - 2 s/-'ﬁ]+
LN,y %) = —Lox/2Y - - - 1-x/2°%Y .
[a_zl_le."x/zBu/'ﬁ] a+zl_Y/24’x/zsa//l\-l

For a fixed N and vy, 1t is desirable to choose that x which

minimizes (N,v,x). Using the expansion

A1 % oy by
at+b a jgo (-1) (a) ’

we have, for large N, the approxiuwation

28 2 s

L a
2'(Nlle) & F(NlYox) &/ﬁ zl-x/2 + _az"__"ﬁ Zl-le + x/2° (6)

We thus consider the problem of choosing x 8o as to minimize

F(N,v,x), subject to 0 < x < y.

14




Recalling that zy - ¢—l(y) for 0 <y <1, it may be easily
shown that F(N,y,x) 1is a strictly convex continuous function of x
for 0 < x <y and that F(N,y,x) * > a8 x-+0 or x - vy. It
follows that a unique minimum is obtained at x = Xg» the unique
root in (0,y) of the equation 3%-F(N.Y.x) = 0.
Now
fa_

8
9 Y 1 1
Ix P(N \YeX) = =

- -1 t 3 -1
al e (T (1-x/2)) A (T (1-y/24x/2))

/EﬂsY V2ris
- - - exp{%: zi_ /2}+ o a exp,'-z- z_ /2_’“/2}.
a VN x a“ A Y

Setting thia equal to zero, we obtain

2 2 as
zy_ -z, = 2&n — = c. )]
1 Y/2+x0/2 1 x0/2 Ts

Note that the solution X, obtained in (7) is independent of N.
That is, for a fixed vy, there is a unique choice Y] " Xg which
is optimal for every value of N, The estimate of the length of the

confidence interval for E{f(W)} 1is obtained from (6):

LO(N'Y) - z(No'Y’xo) i D(Y)/Vﬁ (8)
where _
2°Y 2Ysu
D(y) = — + —
) a z -x0/2 32 z1-Y/2 + x0/2' (9

b
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Given (8) end (9), the simulator can make a rational choice of N
and y based on a consideration of computer time available, desired
level of confidence, and desired length of confidence interval.

Table 1 shows, for several values of y, the quantity

2 2 ;
zl-Y/Z +%x)7 " Flexj2 ¥ @ function of Yy and h = x/y. For a
given value of ¢, computed after the initial simulation run, and of 4

0 solving (7).

D(Y) can then be computed from (9) using standard tables for the ]

Yy » Table 1 may thus be used te find that vaiue x

normal distribution. These computations are illustrated in Section 6.
It should be noted that (8) and (9) give only an estimate of

the length of the confidence interval which could be obtained in the

R O R PRTEr Y TR

second simulation experiment of N busy cycles, this estimate being

nade at the end of the first experiment. The actual confidence

interval is computed at the end of the second experiment, using
confidence intervals for E{Yl} and E{ul} together with (4).

It 1is interesting to ccntrast the methed outlined above with
classical sequential estimation procedures; cf., ANSCOMBE (1953).
In the classical procedurces, one generally desires to cHmpute a
confidence interval of a fixed length for a single unknown parameter.
The interval length and confidence level are fixed at the start of
the procedure, and the number of observations required is then
Aictated by the experimental observativns and a sequsncial stopping
rule, beyond the control of the experimentor. In contrast, rhe
two-step procedure outlined in this sectior deals with estimation
of the ratio of two unlnown parameters, so that one must consider
the problem of minimizing the interval length for the ratio over all

possible lengths for the individual parameters. Furthermore, zny

16
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15 | -3.2 | -3.1 | =31 | -3 | -3.0 | -2.9 | -2.8
20 | -2.5 | -2.5 | -2.5 | -2.5 | -2.5 | -2.6 | -2.2
.25 |-2.0 | =-2.0 {-2.0 |-1.9 [ -1.9 | -1.8 | -1.8
30 | =15 | -1S5 | -5 | -1.s | -l.s | -1 | -1.3
; 35 |-12 |-1.1 |-11 |-11 | -11 |-10 | -1.0
; 40 | -0.7 |-0.7 | -0.7 | -0.7 | 0.7 | -0.7 | -0.6

1
i ig
6 =
i s
3 3 4
! TABLE 1
E

2 2 - X
_ VALUES OF 2 /» 4 w72 = P1-y/2 AS A FUNCTION OF y AND h = &
r
3
- y | .005 .01 .02 | .025 .05 .1 .2

h

' .05 | -s.4 | -5.4 | -5.3 | -5.3 | -5.2 | -5.1 | -4.9
b 10 | -4.0 | <40 | -3.9 | -3.9 | -3.9 | -3.8 | -3.6
F

e ey
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1aecisionsg involving the desired degree of confidence, the interval
length, and the ultimate number of observations are deferred until
the end of the first-step experiment, when preliminary estimates for
the paraneters are avallable. The first step thus provides a basis
for the economic decigions which mus: be made by the simulator in

using limited computer resources.

6. SOME NUMERICAL ILLUSTRATIONS FOR THE M/M/1 QUEUE

In this section, we give numerical examples which combine the
statistical techniques of Sectons 2 and 5 with the queueing results
of Sections 3 and 4. The M/M/1 queue is used for illustration
because its theoretical properties are well-known and provide a means
of comparison with the simulation results. In this case, the inter-
arrival and service times are distributed as exponential r.v.'s with
parameters A and yu respectively.

From Section 3, we know that the sequences {a, :k > 1},

(ngk 21}, (k> 1), (v k> 1), (0P 1), P> b,
and {Yéa):k > 1} each consist of 1.i.d. r.v.'s and are thus
amenable to statistical analysis. In order to demonstrate the power

and versatility of our methods, we define five additionel sequences

of 1.1.d. r.v.'s. For k > 1 let

uk-l ak-l
(4) - 2
Y L] f (W ) H (w ) ’
k Jz-:o 47 Bt J}-:o Br-1*d

nk-l ak-l
(5) - +.1/2
v . £ (W ) = [(W 1) ,
k jZO Bt g ™




ak-l uk-l

(6) -
Y - f_(w ) = Z 1 ’
k o 8 Bt T & {wﬁk-ﬁi > .2)
0, a =1,2
Yé7) = £,(0)3] 5, of = 3,4,5
10, othervise,
(8) -] 1 - 1,2
Y = f (a, )E + Oy i
k 8% {O, otherwise,

where the indicator function 5\ takes on the value 1 on the set A
and 0 otherwise. The function f‘ is uset' 1 for estimating the
second moment and variance of tlie stationary va; g time W, since
E{fA(W)} - E{wz}. The function f5 can be interpreted as a
penalty function on the waiting time of the customer. The function
f6 provides a means for estimating the tail of the stationary
waiting time distribution, since E{f (W)} = P{W > .2}. The
function f7 can be interpreted as a penalty or cost function on
the number of customers served during a busy period. This might be
appropriate, for example, if servers are to be relieved at the end
of each busy period and a penalty must be paid when a server is
required to serve an excess number of customers without relief.
Finally, the function f8 provides information on the distribution

of ay, since E{fs(al)} = P{al =1 or a = 2}).

In order to illustrate the computation of confidence intervals

for the various parameters of interest, a single-step simulation

run was implemented with A = S, y = 10, and N = 2000 busy
cycles (demonstration of the two-step procedure of Section 5 follows
later). That 1is, 2000 observations were made from each of the

sequences given above.
19
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Now we have sean earlier that if {xl,....xN} is a sample of
i.1.d. r.v.'s with gample mcan X, sample standard deviation s, and
finite second woments, then [X -~ 2y _v/2 s/'N, X + 2y v/2 s//N] 18 an
approximate 100(1-y)% confidence interval for E{xl} for large N.
In this manner, we cbtain approximate confidence intervals, shown in
Table 2, for Elay}, E{n}, E{g), E{v;}, and E[Y{n)}. n=1,2,...,8,
based on the observed samples of 2000 (The moment condition 1s satisfied
beceruge all of the moments of u, and v, are finite.) Given

1

approximite confidence intervals for E{Yfl)}, E{Yib)}, E{Y§5)}, E{Y{6)}. and

E{a,}, we use (4) to obtain approximate confidence intervals for

E{W}, E{fA(W)}, E{fS(W)}, and Eff6(W)}, gince

i B(r{)
b{w} - -éﬁ;r- »

4).
E{Y
E(f, 00} = —1

E{al}

(5)
Ele }
E{al} i

E{fs(w)} =

and
(6)
E{Y1 }

E{al}

2{56(W)} -

Given an approximate confidence interval for E{W}, we use (2) to
obtain an approximate confidence interval for E{Q} = AE{W} + p.

Pinaily, given approxlmate confidence intervals for E(W} and for

E(fA(W)) = E(Wz}, we use (1) and (3) to obtain an approximate

confidence interval for the standard devliation o{W}w= [E{Hz} - (E{W})2 1/2.




Table 2 gummarizes the results of the simulation run. For each
entry through E[Y{e)), the value given in the table for the "point
estimate" is the value of the sample mean. For eack of the remaining
entries, the point estimate is the appropriate function of the other
point estimates; e.g., the estimate for E{W} is the ratio of the

estimates for E{Yil)}

and Efa,}.

Table 3 shows the point estimates and 90X confidence intervals for
E{W} in ten replications of the experiment. As can be seer, for these
runs, each of the ten intervals surrounds the true mean E{W} = .1,

We next demonstrate the two-step procedure of Section 5 for
obtaining a confidence interval for E{f(W)} . For illustrative
purposes, we let f be the identity function, so that we estimate
E{W}.

In order to illustrate the procedure a first-gtep run of 500

busy cycles was made. Estimates obtained from this run are

<l
]

.178 ,
1.95 ,

el
[ ]

s, = .749 ,

s = 2,20 ,

so that

QBY
. m 2 &n (‘§;— - 2,63,
a

The optimal value Y] ® X5 may now be obtained from Table 1. For
several values of vy, Table 4 shows the optimal Yy Yo =YY
and the associated D(y). For a second-step simulation of N busy

cycles, QO(N,y) = D(y)/N 1s the estimate for the minimum length
21
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TABLE 2

SIMULATION RESULT> FOR THE M/M/1 QUFUE !

: (arrival rate X =5 gervice rate u = 10; N =« 2000 o
! obnserved busy cycles)

Parameter heoretical] Point rﬁ Confidence Level of
: Value Eatimate Interval Confidence
: Efa ) 2.000 2.110 [1.994, 2.226) | 95X
E E(n ) 0.200 0.215 (.199, .231] 95%
E(g) 0.400 0.416 [.396, .435) 95% .
| Elv ) 4 0.200 0.201 {.192, .210] 95%
: civy « g( S W) 0.200 0.232 [.187, .277) 95%
: 1 3
! j=0
(2 !
: E{Y) Yy a ([ qa)ds} 0,400 0,447 [.387, .507] 95%
(3) 1
: E(Y,”) = E{[ W(s)ds) 0.040 0.045 (.038, .053] 95%
a1
s - ey wph 0.080 | 0.096 | [.066, .127] | 95%
=0
ul-l .
= E(Ygs)) - E() -’(wj-.lS Ho 0.240 0.280 [.226, .333] 952 i
i »
(6) P
v{0)) u g¢ 0,368 0.438 .357, .519 95%
E{Y, E jgo I(WJ:-“ ( ]
. elv{)) = £l (o)) 1.225 | 1.375 | [1.248, 1.502} | 95%
i E{Y{B)} = P{a =1 or a =2} 0.815 0.792 (.774, .810] 95%
3 E{W} 0.100 0.110 {.084, .139] 90%
L B{E, (W)= E(W?) 0.040 | 0.046 [.030, .064] 90%
:
;. s{fs(w))- E{/(W-.1)+} 0.120 0.133 [.102, .167] 902
B(EG(W)}- p{w>.2) 0.184 0.208 {.160, .260) 90%
3' E(Q) 1.000 1.050 [.920, 1.195) | 90%
: o{W) 0.173 | o.182 (.101, .238) 80%

22




TABLE 3

B

IS,

ESTIMATES FOR E{W) IN TEN SIMULATION REPLICATIONS
(A =5, uw=10; N = 2000 obgserved busy cycles; level of confidence > 90%)

B

Replication Point Estimate Confidence Interval
’
1 0.110 [.084, ,139]
2 0.091 (.071, .114)
3 0.095 [.075, .117)
. 4 0.111 {.075, .151]}
5 0.096 [.073, .122]
6 0.100 (.077, .126]
: 7 0.092 [.071, .116] 3
{ |
8 0.099 [(.074, .128] H
) 9 0.096 (.073, .122] 1
10 0.090 [.068, .115] B




TABLE 4

- VALUES FOR ), Y,, AND D(y)

g (Based on a asimulation run with » = 5,

u =10, m = 500 observed busy cycles.)

AS A FUNCTION OF vy

\ Yy Y, D(y)
2 .167 .033 1.50
1 .082 .018 1.83
.05 .041 .009 2.11
.02 .0164 .0036 2.44
.01 .0081 .0019 2.67
, - t
TABLE 5

SIMULATION RESULTS FOR THE TWO-STEP PROCEDURE

(X=5, y=10, N = 18,000 observed busy cycles)

Parameter Theoretical Point Confidence Level of
Value Estimate Interval Confidence
E{al} 2.000 1.983 (1.932, 2.035] 99,642
g (1)
E{Yl } 0.200 0.192 [0.175, 0.209] 98.36%
E{W) 0.100 0.097 [0.086, 0.108] 98.00%
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confidence interval for E(W), and Figure 1 shows 10(N,Y) as a
function of N and Y. For example 1f N is chosen to be 4000
(aboui a 5 second run on the IBM 360/67) and vy = .05, then the
estimated confidence interval length is .033, for a deviation of

+18% about the point estlmate for E{W}.

Using Figure 1 as a guide, it was decided that the second
experiment be run with N = 18,000 and y =~ .02 (98Y confidence).

Table 5 shows the actual results of this run. The confidence interval

T T S

obtained for E(W) 1s of length 0.022, compared to a length of

0.018 eastimated at the end of the first step.

Suppogse now that one desires to make comparative inferences
about two different queueing systems. For example, one might be
interested in comparing the mean stationary waiting times E{W(l)}
and E{W(z)} for systems with u = 10 and uy = 16, each having
an arrival rate A = 5. One method of comparison is to obtain a
confidence interval on the difference in the mean waiting times.

% : This can be done by computing confidence intervals on the means
! E{w(l)} and E{w(z)} separately, then using (1) for the difference.
- To illustrate, a run of 18,000 busy cycles was made with

i b = 16, resulting in a 98% confidence interval for E{w(z)} of

[.025, .030] (Y1 and Y, were chosen the same as earlier for

v = 10). Combining this with the previously computed interval for

?ﬁ ; E(w(l)}, we obtain the interval [.056, .063] for E{w(l)} - E{W(Z)}.

—

That is, with confidence not less than 962, the mean stationary

waiting time for u = 10 exceeds that for p = 16 by at least
.056 but not more than .083. Statements of this type would be useful
for assegsing the relative value of different proposed system

modifications.
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Suppose one wishes to study the sensitivity of the queueing
system over a range of parameter values, say for 3 < X < 5 with
u = 10. We illustrate again for the mean waiting time E{W(A)}.
If one assumes that E{W(A)} 1is approximately a linear function of
A for 3 <A <5, then (5) may be used to obtain an approximate
confidence band about the function E{W(A)} over that interval.
To 1llugtrate, a run of 18,000 busy cycles was made for the case
A =3 and u = 10, and a 98X confidence interval obtained for
the mean waiting time is [.037, .045). An interval [.086, .108])
was previously obtained for A = 5, and v = 10. Then under the
linear assumption for E{W(A)} between A =3 and X =35, a

96% confidence band for E{W())} 1is shown in Figure 2 together with the

true function E{W()\)}. That is, with at least 96% confidence,
037 + (.049)(2-3)/2 < E{W(X)} < .045 + (.063)(2-3)/2 for all
3 < 2 <5,

The same method could be combined with the previous wethod for
comparing alternative systems. For example, if E{W(A,u)} 4s the
mean walting time for a system with parameters X and u, and

if and ¥, are two alternative values for 1y, one might wish

1
a confidence band for g(}) = [E{N(X,ul)} - E{W(A,uz)}] over a
range X, < A < A,. Tha 13, inferences would be made on the
sensitivity of the system differences over the given range for \ , ¢
baged ou the assumption of linearity over this range. This 1s done

by making runs at only four different parameter settings: (Al, ul).

(\l»hz). (xz,ul), and  (X,,u,). Figure 3 illustrates our results.
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This graph illustrates one partloular experimental realization, based on
observations at the two endpoints ) = 3 and X = 5. In at least 98% of such
realizations, the confidence limits at either endpoint will surround the true
value. In at least 96% of the realizations, the confidence limits at all
points 3 < X < 5 will surround the true values. Thus, for example, a

98% confidence interval at A = 4 1g [.062, .076] in this realization.
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Figure 2., A 967 CONFIDENCE BAND FOR THE MEAN WAITING TIME, AS A FUNCTION OF THE
ARRIVAL RATE X\ OVER 3 < ) < 5. (Service rate v = 10; N = 18,000
observed busv cycles.)
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Difference in Mean Waiting Times, E{W(l,ul)} - E{N(2, “2)}

This graph illustrates one particular experimental realization, based on
observations at the two endpoilnts A= 3 and X = 5. In at least 96X of
such realizations, the confidence limits at either endpoint will surround
the true value. In at least S$2% of the realizations, the confidence limits
at all pointa 3 < A <5 will surround the true values. Thus, for
example, a 92% confidence interval at Y= 4 is [.039, .057) in this
realization.
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Figure 3., A 92% CONFIDENCE BAND FOR THE DIFFERENCE IN MEAN WAITING TIMES
BETWEEN TWO SYSTESMS WITH DIFFERENT SERVICE RATES, AS A FUNCTION

OF THE ARRIVAL RATE X OVER 3 < X < 5. (Service rates
by ® 10, Hy = 16; N = 18,000 observed busy cycles.)

29

i

e lm

™

e

(PSP




7he key assumption is of ccurse ths linear relationghip over
the range of interest. This auvsumption is fairly accurate in the
¢itmples given, as seen ip Figures 2 and 3. In future work, we intend
to explore the possibility nf obtaining confidence bunds which are

non-linear. It is talieved that the theory of nonlinear regression

may be brought to bear on this problem.

7. COMPARISON WITH AN ALTERNATIVE METHOD

In previous sections, we have shown how to obtain a corfidencr

interval for E(W) roughly centered about

N
1 (1)
AR Byl
U = __._._____K.l - ._1.. w
wN ] 1 il a eN =0 3
N L K

kel

where N 1s the number of busy cycles observed. We know by the gtrong

law of large numbers that as N + «

N
L% v o sy - ) BW ae.
k=1l
and
Loy
= + B{a,} a.e.
NoL % 1
so that

W+ E{W} a.e.
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Hence, the estimator ﬁN is consistent. Given any € > 0, the

Lm P{[H, - E(W} <e} =1,
N4w

Au alternative ratimator for E{W} is

.
W' = W,.
M M =0 3
For many queueing systems, =.g. the M/G/1l and GI/M/1l queues, _é is
that estimator amung the class of estimators
_ 1 M-1
w' = W
M,m M-m jgm 3 me0,1,2,...,M~1

which minimizes the "mean square error'

=, 2
E((WM'm - E{WH“}

for all large values of M, <cee BLOMQVIST (1970).

Now let No be a fixed positive integer, and let
My = E{a;) N, i

The two estimators W and W' require, on the average, the
NO [NO]

same length of simulation, and it is of interest to compare their

respective differences from E{W}. For a fixed €y > U, define

s
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p(|Wy =~ EW < ¢

0 0

= P{|W!, , - E(W}] < €.}.
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By replicating a number of simulation experiments, it is possible to
obtain point estimaters and confidence intervals for the par.meters

P and P'. To illustrate, 400 independent simulation replications
were made for the M/M/1 example of Section 6, with X = 5 and

u = 10. In this case E{ul} = 2 and we set N, =~ 100 and M

0 0
Point estimates and confidence intervals for P and P’ are shown
in Table 6 for three different values of € We see from Table 6
that there are no significant differences between p and p' ,
implying that one can generally expect comparable "accuracy'" from

the estimators W and W Similar results are obtained for

NO [MO]

other values of N, and My - E{ul} N,. These findings lend
respectability to the methods outlined in the previcus sections, Ior
those methods would be of questionable value 1f they were based on
estimators less "accurate" thun commonly used alternatives. Of
course the main advantage of our methods over alternatives is the

ability to use statistical analvsis appropriate for sequences of

i.i.d. r.v.'s.
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TABLE 6
P{|at, | -E(W}| < ¢,

[My]

(400 rep'ications with 1 = 5, u = 10, No = 100, and MO = 200; E{(W} = 0.1)

ESTIMATES FOR p = P{|WH -E{W}| <€, AND p'
0

Point Estimates 90% Confidence Intervals
€0 P p' p p' ’
;
) 0.01 .220 .225 (.186, .254] [.191, .259] ;
) 0.02 .455 423 [.414, .496]) [.382, .464] !
0.03 .625 .623 {.585, .665] [.583, .663] |
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