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NONTECHNICAL SUMMARY

In this paper, we introduce a new technique for analyzing

simulations of stochastic systems in the steady state. From the

viewpoint of classical statistics, we address the questions of

simulation run duration and of starting and stopping simulations.

We are able to do so by avoiding two difficulties which have 1

previously made classical statistics inappropriate for simulation = -

analyses. These are the statistical dependence between successive

observations and the Inability of the simulator to begin the

system in the steady state.

For many stochastic systems being simulated it is possible

to find a random grouping of observations which produces independent

identically distributed blocks from the start of the simulation.

This grouping then enables the simulator to avoid the two problems

mentioned above. He has at his disposal the methods of classical

statistics such as confidence intervals, hypothesis testing,

regression, and sequential estimation which are appropriate for

independent observations. Furthermore, information that is useful

in estimating the steady-state behavior of the system can be

collected from scratch thus eliminating the problem of the initial

S~transient.

The approach mentioned above is appropriate for the

simulation of systems which returns infinitely often to a single

state. In the current paper, we restrict our discussion to the

general multi-server queue, with arbitrarily distributed inter-arrival

and service times. We leave the more general systems to future

publications.

iOWNS"



Section 2 reviews some r.•ilevant results from the theory of

statistical inference. Sections 3 and 4 discuss the probabilistic

structure of stable queueing systems. A queueing system is etr.ble

if the customer arrival rate is strictly less than the maximum

service rate (with atl servers working). In this case, if -ay be

shown under mild conditions that the idle state (,e state in which

all servers are idle) occurs infinitely often. Furthermore, letting

a busy cycle refer to the time interval between two successive

idle states, it may be 4hown that observ4tionsi made in different

busy cycles are statisLi:,ally independent a,)d identically distributed.

These observaticns might b?, for example, the number of ctustomers

seL-ved in the busy cycle, the length of the busy cycle, the sum of

the waiting times of customers served in the busy cyc.ýa, or the sum

of some function of the waiting timeL of thy customers served in

the busy cyc[ie.

It is shown that each busy cycle provides information

relating to the system's steady-•ttte behavior. In particular, the

expected value of any well-behaved function of the steady-state

waiting time is equal to the expected value of the sum of that same

function of the individual customer wai'ing times in a single busy

cycle, divided by the expected number of customeri; served in a busy

cycle. This fact may be used with the above-mentiv, ned ý,ndepend..nce

to enable the simulator to perform a thorough stotiatical analys!.s

of the steady state. One merely directs his analysis toward the

Ustimation of properties of the individual busy cycle and then

infers corresponding properties for the steady state. The former

task is simplified because of the independence and identical

probabilistic structure of different busy cycles, which petmits

classical statistical analysis.

Iv



To illustrate the application of these ideas, consider the

problem of ebtaining a confidence interval for the expected steady-

state waiting time, E{W). Let denote th,2 sum of the customer

waiting times in the kth busy cycle and let 7 and s2 denote

*.respectively the sample wean and sample variance for Yk in N

observutIons (busy cycles). Let ak deriate the number of customers

served in the kth busy cycle, and let 3 and a2 denote

respectively the sample mean and sample variance for ak in N

observations. To obtain a confidence i.nterval .or E{W} with at

least lO0(l-y)% confidence, we obsey 'e the system for N busy

cycles. The interval compuued is then

Max(O, Y-z 1 yi/2 'a Yi Y + z1 _Y1 / 2 'Y

< E(W)

"CL + Z l-y,/2 s a/. - - axO, ;-Zl_Y2/2'a

where z is the lOOx percentile for the nory-:!.l distribution and

'fl and 72 satisfy y1 + Y2 - Y.

I.-, Section 5, a two->:, ep procedure is developed for obtaining

an approximate confidence interval for the ýteady-s ,ate mean of a

S!eneral funftions-of the customer waiting time. The fi.-Bt 8L,,y

consist& of a short simulation run which serves as a plaM!ng guide

for a much longer secrc.;a iA.. AL the end of the first run, the

simulator is able Lo LStimate the mriimum confidence interval length

which cn be Itaned from the se.Gnd run .;iven specified level of

confidence and run time. The procedure is thus viewed as a tool

"by which the simulator may. balance computation cost against level

v
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of precision and hence implement a rational desIgn of experiment.

In Section 6, we illustrate the application of the statistical

techniques to an actual queueing simulation. For illustration

purposes, we choose the single-servw; queue with exponential Inter-

arrival and service time distributions, since its theoretical

properties are well-known and provide a means of comparison with

simulation results. Confidence intervals are obtained for various

steady-state quantities of interest, including the mean and standard

deviation of the waiting time, the expected number of customers in

the system, the expected valie of a penalty function on the waiting

time, the tail of the waiting time distribution, the expected number

of customers served in a busy cycle, the expected value of a penalty

function or. the number of customers served in a busy cycle, the

tail of the distribution for the number of customers served in a

bisy cycle, and others. The two-step procedure is then illustrated

for the meaa waitin; time. In a single realization of a second-

step run consisting of 18,000 busy cycles, a 98% confidence interval

[.086, .108] is )btained for a queue with an arrival rate of 5

customer, per time unit and a service rate of 10 customers per time

unit (the theoretical mean waiting time is 0.1). Two systems with

different service rates are then compared by means of a confidence

interval on the difference of the mean waiting times. Finally, a

method is illustrated by which one may infer sensitivity to an

unknown parameter. In particular, if the arrival rate is unknown

and one observes the system at two different values for the arrival

rate, then under certain linearizing assumptions, one may make

vi



confidence interval statements for any arrival rate between the two

observed values. Indeed, one may obtain a confidence band about the

expected waiting time (or some function of the waiting time)

expressed as a function of the unknown parameter. It is felt that

such a capability could be an effective aid in assessing the

adequacy of the input daLa accuracy, and in efficiently uncovering

those parameters that warrant more in-depth analysis. Of course

this technique, together with all of the techniques illustrated in

Section 6, is only feasible because of the busy period structure

which is exploited.

Finally, in Section 7, we compare our approach for estimating

the mean steady-state waiting time with a commonly used alternative.

In our approach, one arrives at an estimate essentially by forming

the sample mean of the customer waiting times in some fixed number

of busy cycles. The actual number of customers observed is thus

random. In an alternative approach, one might simulate a fixed

number of customers, disregard an initial fraction of the customers

as transient observations, then form a sample mean with the remaining

customers. In both cases, the estimate obtained converges to the

theoretical value as the number of observations becomes large. In

our approach, however, one is able to make rigorous statistical

statements by taking advantage of the independence of the busy cycles.

In Section 7, we seek to determine whether this advantage is obtained

at the expense of reduced accuracy in the estimator. Experimental

results are obtained for the single-server queue used in the previous

illustrations. It is found that for this queue, statistics which are

vii



obtained in comparable length computer runs for these two approaches
are very close in accuracy. Thus. one may apparently make use of
the methods of this report without fear of reduced accuracy.

Continuing research in this area will extend and Illustrate
this approach for more general simulations and describe in detail
the steps necessary for implementation.

I
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A NEW APPROACA TO

SIMULATING STABLE STOCKASTIC SYSTEMS,

I - GENERAL MULTI-SERVER QUEUES

by

Michael A. Crane and Donald L. Iglehart

1. INTRODP'CTION

The principal goal of most simulations of stable stochastic

rystemn is to estimate propertieo of the stationary or steady-state

behavior of the system. Two of the major problems ia such simulations

are the statistical dependence hetween auccessive observations and

the inability of the simulator to begin the systeým in the steady-state.

The first problem has necessitated using methods c, time series

analysis rather than classical atatisti,:s. The second has inspired

man-7 simulators to let the system run for a sufficient length of

time so that the initial transient wears off and a steady-state

condition obtains. This procneJre, of course, requires a Judgement

on how long to let the system run before making observations.

For many stochastic systems being :,imulated it is possible to

find a random grouping of observations which produces independent

identically distributed (i.i.d.) blocks from the start of the

simulation. This grouping then enables the simulator to avoid the

two problems mentioned above. He has at nis disposal the methods of

classical statistical analysis such as confidence intervals,

£ hypothesis testing, regression, and sequential estimation since the



observations are now i.i.d. Furthermore, information that is useful

in estimating the steady-state behavior of the system can be collected -,

from rcratch thus eliminating the problem of the initial transient.

The key requiremcnt for obtaining these i.i.d. bWockc is that

the system being simulated return to a single state infinitely

often and that the me•i. time between such returns is finite. This

requirement will b. met fcr many, but not all, stable systems that

might be simulated.

In this papel we shall illustrate the main ideaa of this

approach in the context of the GI/G/s queue, where s > 1. Other

stochastic systems which can be dealt with in this same manner will

be discussed in future publications. This paper is organized as

follows. SectIon 2 reviews some revelant results from the theory of

statistical inference. Section 3 summarizes the probabilistic

structure of the GI/GIl queue with an eye toward using these results

in carrying out a simulation. In Section 4 a similar treatment is

given to the GI/G/s queue for s > 1. In Section 5 we discuss a

two-step procedure for estimating the stationary expected value ofI

a generai function of the waiting time. Numerical illustrations

for the M/M/1 queue are given in Section 6. Finally, in Section 7

we co.apare our procedure with a commonly used alternative.

2. PRELIMINARY RESULTS

Before proceeding further, it is useful to review some relevant

ideas from the theory of statistical inference. As us';al, we have a

given probability triple and a sequence of random variables (r.v.'s)

2



defined on it. Since the detailed coustruction of this triple is

not important, we omit it from the discussion. Let 8 be some

unknown parameter and let 0 ind 6 be two random variables

obtained foom a statistical experiment. If 0 < Y < 1 and

P(O C 8 < 0) > 1 - y, we say that [6, •J is a confidence interval

for 0 with at least lO0(1-y)% confidence. Roughly speaking, if

many values are obtained for 0 and 6 in independent replications

of the experiment, the interval [8, •] will surround 8 at least

100(1-Y)% of the time.

Given confidence intervals for one or more parameters, it is

possible to obtain confidence intervals for various functions of

these parameters. For example, suppose 81 and 02 are two

unkicwn parameters, and [O1, •1] and [f2' •2] are confidence

intervals for 01 and 02 with at least lO0(l-Y1 )% and 100(1-Y2)%

confidence, that is P{8 < e6< > i-Yl, and-1 --- 1 - 1- l n

P-2 2 < 2> 1-2 Then by a straightforward argument,

P{O-1 - 02 <61 - e2 -< 1 - 2  1" 1)- 2 " (1)

If A > 0, then

P1A8_ + B < AO + B <_AO + B) > I Yl. (2)

P(A01 +B<A +B} _15
if a,>0 and a>0, then

3Y



where (x] - max (O,x). If 01 0 and 02 > 0, then

e- (_ '} > 1 - Y "- Y2" (4)

Finally, suppose 0(X) is an unknown parameter which is a linear

function of the parameter X. Suppose XI < X2 and

p(e <(i) < 1 > I - Y and P{2 2 <0 (X2 ) 2< ;2 > - Y2

Then

P (X- 1 )(- 2 -2-1< +(1) < (.(x-x)(6 2- -1 2 )
x- + 2  - - x 2

for all. X < < 2 } > I - Y1 - Y2" (5)

This fact is potentially useful for studying the sensitivity of a

nonlinear function MX) to X over some small intcrval [(X, % 21.

Now let (X n:n > 11 be a sequence of i.i.d. r.v.'s with

2 2
finite second moments, and define 6 - E{X and a .a (X1  Let

Sdenote the distribution function for a norral random variable with

zero mean and variance one; i.e.,

4(x) = f 4(•)d• -- < x <

where
-- 1 12,I(• e= 2 /2 -I < C < CO

For 0 < x < 1, define z. O(x). Also, define the sample mean

r4 rl:ilI lt



and sample standard deviation

1(n) - xn

[ (Xj X(n))2]1/, n-2,3,..s(n) -~) 2- ...

Now we know by the central limit theorem that the

lir P{Vn' (R(n) - 6)/o < z} - §(z), -• < z <

Furthermore, it may be shown using the strong law of large numbers

that the

P{lim s(n) -) - 1.
n-b-m

It then follows by a well-known result, cf. CHUNG (1968), Theorem

4.4.8, that the

lira P{Vnn(X(n) - 8)/s(n) z} , $(•), -' < z <

"Hence, for 0 < y < 1 and large n,

P{-z < VAnX(n) - O)/s(n) < z _2 l"-y
1-Y/2 - 1- Y/2

or

"P{X(n) - z-Y/2' (n)/A4 < 0 < ,1(n) + z1 -y/2s(n)/14i) a 1-y,

5



giving an approximate 100(1-y)% confidence interval for 0. This

method will be used for analyzing sequences of i.i.d. r.v.'s

introduced in later sections.

3. PROBABILISTIC STRUCT'IRE OF IHE GI/G/. QUEUE

Consider now a GI/G/l queueing system in which the 0th customer

arrives at time t0 - 0, finds a free server, and experiences a
service time v0 . The nth customer arrives at time t and

* n

experiences a service time vn. Let the interarrival times

tn - t 1 - Un, n > 1. Assume that the two sequences v n:n > 01

and {u :n > 1) each consist of i.i.d. r.v.'s and are themselves
n

independent. Let E{un I -i E{Vn i and P - A/u where

0 < A, v < -. Thus w (X) has the interpretation cf the mean
service (arrival) rate. The parameter p is called the traffic

intensity and is the natural measure of congestion for this system.

We shall assume that p < 1, a necessary and sufficient condition

for the system to be stable.

The principal system characteristics of interest are Q(t),

the number of customers in the system at time t; Wn, the waiting

time (time from arrival to commencement of service) of the nth

customer; W(t), the work load facing the server at time t; B(t),

the amount of time in the interval [O,t] that the server is busy;

and D(t), the total number of customers who have been served and

have departed from the system in [Ot].

Here we shall review the basic structure of the GI/G/l queue

relevant to our simulation study. For a comprehensive treatment of

6
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these and other results for the GI/G/1 queue see IGLEHART (1971). To

begin the analysis of the process {W n:n >_ 0} let X- Vnn1 - un

and set S 0 MO, Sn - X1 +...+ X n, n > 1. The following recursive

relationship exists for the Wn 'a:

W0 -o0
0O

w n+1- [W + X n +, n >O.

By induction one can show that

Wn - max{S n-Sk:k - 0,1,...,n), n > 0.

Using the notion of optional r.v.'s, it can be shown that there exists

a sequence of r.v.'s {B:k 0 0) such that B0 . 0, Bk < Bk+iP and

W a a 0 with probability one. In other words, the customers numbered
8k

8k are those lucky fellows who arrive to find a free server and

experience of no waiting in the queue. The fact tOat there exists an

infinite number of such customers is a direct consequence of the

assumption that p < 1. The time axis R;- to,) can be divided

into alternating intervals during which the server is busy, idle, busy,

etc. We call these intervals busy periods (b.p.'s) and idle periods

(i.p.'s). An i.p. plus the preceding b.p. is called a busy cycle

"(b.c.). If we let ok - ' - 8kl' k > 1, then ak represents the

number of customers served in the kth bucy period (b.p.) and they

are numbered {0k-l' Ok-l + l""*6k-l)"

7



Next define the random ve,.tors Xk- (Vkl, ut) and

Vk (I {k'k XkI +1,...,XB k) , k > 1. Note that these vectors are

unusual in the sense that they have a random number of components,

namely, ak+l. Observe that the vector V1 .. (al "

includes all the data required to completely construct the

behavior of the system in the first b.p. The principal fact Lhat

permits us to decompose the system into i.i.d. blocks is

that the Vk are i.i.d. Hence we have the intuitively plausible

conclusion that comparable r.v.'s in different b.p.'s are i.i.d.

Now define the following r.v.'s for k > 1:

&k 6 k - 1 k

k k

(1) kl1(s - ) v + 12

k 6k-1 +j B k-l -

k j-O Bk-i +j 8k-l 6k-i J + 2 6 -l+

These r.v.'s have the following interpretations: rk is the length

of the kth b.p., Ek the length of the kth b.c., vk the

length of the kth i.p., Y(I) the sum of the waiting times in

k

8
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t kth b.p. y (2) the integral under the curve Q(s) in the kth

b.p., and Y 3) the integral under the curve W(s) in the kth b.p.
k

Because the Vk'a are i.i.d. so are the a. k, , Y) ',

Sand Y It is these i.i.d. sequences that we shall

observe in our simulation with an eye toward using classical

statistical methods of analysis.

Next we record some known results on expected values of these

r.v.'s. We shall assume that the E2 * . Then the

E{)k} - exp{ i n-1 P[Sn > 01), E{nk} - UPI E{k1,

A.-1~ nal -1 (1)
E(EkI E- A ak), Elvk) X (1-0) E(ck) , ,.k I E{W) E )<

E(Y(2)} - (XE{W) + p) E{ýI and EY (3)} = (pE{WI + X 2 )) E{&
k k' k 2 0

where W is the r.v. to which. W converges in distribution. In othern

words, W is the so-called stationary waiting time. An expression for

the characteristic function of W exists, in terms of the E(e t n},

however, It is difficult to evaluate for specific cases. Also

E{W} - • n- E{Sn • If u has a non-lattice distribution, it
n-1 n 1

is known that Q(t) -6Q and W(t) -- W* as t - ®, where -• denotes

weak convergence (convergence in distribution). Hence Q is the

stationary queue length and W* is the stationary virtual waiting

time. Furthermore, E(Q) - XE{W}+p and E(W*} - pE{WM + XE~v}1/2

which are the terms appearing in the expressions for E{Y(2)}} and

E{Y (3)1 } k
k

More generally let f be a measurable function from [0,-) I .ito

(-m•o). Assuming that the E{f(W)} < , then
mk-l

E 0 f(S 8 k-l+a -. Sekl) ) - E(f(W)) E(cOk} . This identity plus the

fact that the Vk 'a are i.i.d. allowas us to treat E(f(W)) in the

9



same manner that we do E{W}. In Section 6 a variety of functions f

of practical interest will be discussed.

While the parameters E{c 1 ), F.W}, E(Q), E(W*), and E{f(W)}

can theoretically all be calculated from the distributions of v0  and

Ul. these calculations are very difficult and one might choose to

estimate them through simulation. It is problems of this sort that we

address in this paper.

4. PROBABILISTIC STRbCURE OF THE CI/G/s QUEUE

Now suppose there are s > 1 servers. The appropriate value

of the traffic intensity is now p - X!• , which we assume again is

strictly less than one. It is known (see KIEFER and WOLFOWITZ (1955,

1956), and LOYNES (1962)) that p < 1 is a necessary and sufficient

condition for the queueing system to be stable. However, p < 1

is aot enough to insure that the queue becomes idle infinitely often,

which is the key to the analysis in the case s - 1. A simple and

reasonable condition, which we shall henceforth assume, was recently

provided by WHITT (1971); namely, that the '{un > v > 0.

Additional results on this problem are contained in KENNEDY (1971).

The analysis of this queue is best approached through a vector-

valued waiting time process (W :n > O} introduced by KIEFER and

WOLFOWITZ (1955, 1956). We assume the customers are served by the

first available server. If more than one server is free, the

customer is served by that server with the smallest index. For a

fixed realization of the queueing syetem, think of assigning the

customers when they arrive to the server who will eventually serve

10



them. Let W - (W P,...,W ) be the vector-valued process whose

components Wni denote the workload of the server with the ith

lightest load just prior to the arrival of the nth customer. Thus

Wn is the actual waiting time of the nth customer. The 1n

sequence can be generated recursively as follows:

Vn+l = + Vnn - Vn)

where V (v 0,...,0), U - (Un,'".Un), [X] + )
-n-l (v 1 , In n "

for -- (xl,... ,xa) c Rs, and P:-o rRO rearranges the components

of its argument in ascending order. It is clear from this

representation of W that {W n:n >0 } is a Markov process with

state space E [x c R:o .. < X.). The condition of Whitt

mentioned above guarantees that the

P{Wn - 0 infinitely often} - 1

and that the expected time between visits to 0 is finite. This

condition allows us to define the sequences of r.v. 's (ik:k 2 11

(8k:k > 01, and {Vk:k > 11 just as in the case of the single-

server queue. In this case customers numbered 8k arrive to find

all servers idle.

Thus we can again proceed to decompose the queueing system

into independent b.c.'s just as was done in the case a 1 1. Now

a b.c. is defined as an interval of time during which at least one

-- 11

r



server is busy. In fact we can take over the same notation. Howpvpr,

in this case we have no closed expression for E{c k) and thus we have

no alternative but to carry out a simulation. Again E nk - u -i E(ak.

E ) . X-I Eiuc}, E{v I - -1 (1-P) E{ak}, and Y y(1))- E(W) Efak)

where W is again the stationary waiting time and y(l) is the sum of
k

the waiting times in the kth b.p. There is no closed expression for

EMW} and again simulation seems like the only recourse.

5. A TWO-STEP PROCEDURE FOR ESTIMATING E{f(W)J

( Let f be some positive measurable function on the customer

waiting time and let

Sk w a0 f(w 8 6 ) "

& k-i"

We know from the general theory that {Yk:k > 1) is a sequence 'f

i.i.d. r.v.'s aad that E{Y 1 ) - E{f(W)} E{a 1). This last relation

is at the heart of the method to be proposed. By observing the

sequences {Yk:k > 11 and {cik:k > 1) and obtaining a 100(l-yl)%

confidence interval for E(Y1 } and a l00(Y-Y 2 )% confidence interval

for E{a 1}, it is possible to obtain a lO0(l-y1 - y 2 )% confidence

interval for E{f(W)} using (4). Two questions naturally arise:

given a desired lO0(l-y)% confidence interval for E{f(W)}, how

should yj and Y2 be chosen, and what effect do tiese choices

have on the required sample size N ? It is these questions which

we address in this section. Given a desired y, we develop a two-

step procedure in which the simulator chooses yI, Y2' and N

after obtaining preliminary estimates for system parameters in an

initial "short" simulation run.
12



The full procedure consists of two independent simulation runs,

the first for a total of m busy cycles and the second for N busy

cycles, where N is to be determined. The initial run is a short

run which serves an a planning guide for the much longer second run.

The first run provides the simulator with estimates of confidence

interval lengths for E{f(W)) which could be obtained in the second

run for various choices of y1, y2, and N. For each N, the

estimated length is minimized over all possible values of yI and Y2

with y+ y , and the minimal length is expressed as a function

of N. The simulator is thus able to consider tradeoffs between

the length of confidence interval, level of confidence, and cost of

computer resources.

Let (Y1 ,... ,Ym) and (a,,... ,a) be observations during the

initial run, and define

m

1
min jl )] 1/2%

Given these statistics, the simulator can estimate the size of

confidence intervals for E{Y 1 } and E{al} which could be obtained

in a second run, for various values of N, Y1 , and Y,. If the

second run were to be made with sample size N, Yl - x. and -2 *y x.

13



then estimates for 100(l-yl)% and lOO(l-y 2 )% confidence intetvals for

E{Y and E(a I are

(Y - ZlZx/ 2 Sy/, + zl-x/2 By

and

[a - Z1-y/ 2 + x/2 sale'L - + z1-y/2 + x12 s/a1].

Using (4), an estimate for the length of a 100(1-y)% confidence

interval for E(f(W)) is therefore

S+ zl1-x/29y/, [ z 1-Zlx/2S8y/]

i(N,y,x) - 1- xl2 Y - lx12 Y

For a fixed N and y, it is desirable to choose that x which

minimizes t(N,y,x). Using the expansion

a+b a

we have, for large N, the approxiation

2ay 2q sa

Z(N.y,x) a F(N,,,x) - 1-x/2 +-2g l-Y/2 + x/2 (6)

We thus consider the problem of choosing x so as to miniwize

F(N,y,x), subject to 0 < x < y.

14



Recalling that z - (y) for 0 < y < 1, it may be easily

shown that F(Ny,x) is a strictly convex continuous function of x

for 0 < x < y and that F(N,y,x) - ' as x • 0 or x -6 y. it

follows that a unique minimum is obtained at x - xo, the unique

root in (O,y) of the equation a F(N,y,x) - 0.ax
Now

a y 1 1a_!F(N ,.x) =- +
?X J ;&A ,(f-1(1-x/2)) •2X, 1(-l(.y/2+x/2))

Sexp 12 1+ a rI 2
--- exp. -e 1 l-x/2 -2 q 21-y/2+x/2}'

Setting this equal to zero, we obtain

- 2 2Zn C.(l-y/2+xO/2 1-x /2 7a
III

Note that the solution x 0  obtained in (7) is independent of N.

That is, for a fixed y, there is a unique choice y, M X0  which

is optimal for every value of N. The estimate of the length of the

confidence interval for Eff(W)) is obtained from (6):

L0 (N,y) - L(N,y,x 0 ) D(y)/I (8)

where
2s~ Y 1
D Z 0-o/+ Z l-y/2 + x0 /2.

15
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Given (8) and (9), the simulator can make a rational choice of N

and y based on a consideration of computer time available, desired

level of confidence, and desired length of confidence interval.

Table 1 shows, for several values of y, the quantity

z-2 2 ati a function of y and h 2 x/y. For a
1/2+ x/ l-x12

given value of c, computed after the initial simulation run, and of

y , Table I may thus be used to find that value x0  solving (7).

D(y) can then be computed from (9) using standard tables for the

normal distribution. These computations are illustrated in Section 6.

It should be noted that (8) and (9) give only an estimate of

the length of the confidence interval which could be obtained in thr

second simulation experiment of N busy cycles, this estimate being

made at the end of the first experiment. The actual confidence

interval is computed at the end of the second experiment, using

confidence intervals for E{Y and E{a 1) together with (4).

It is interesting to contrast the method outlined above with

classical sequential estimation procedures; cf. ANSCOMBE (1953).

In the classical procedures, one generally desires to c'mpute a

confidence interval of a fixed length for a single unknown parameter.

The interval length and confidence level are fixed at the start of

the procedure, and the number of observations required is then

dictated by the experimental observations and a sequ,!ncial sLipping

rule, beyond the control of the experimentor. In contrast, the

two-step procedure outlincd in this sectior deals with estimation

of the ratio of two unl-aown parameters, so that one must consider

the problem of minimizing the interval length for the ratio over all

possible lengths for the individual parameters. Furthermore, any

16



TABLE 1

VALUESrOF1-y/2 + x/2 Zl-x/2 AS A FUNCTION OF yAND h-X

r. .005 .01 .02 .025 .05 .1 .2

.05 -5.4 -5.4 -5.3 -5.3 -5.2 -5.1 -4.9

.10 -4.0 -4.0 -3.9 -3.9 -3.9 -3.8 -3.6

.15 -3.2 -3.1 -3.1 -3.1 -3.0 -2.9 -2.8

.20 -2.5 -2.5 -2.5 -2.5 -2.5 -2.4 -2.2

.25 -2.0 -2.0 -2.0 -1.9 -1.9 -1.8 -1.8

.3-- -1.5 -1.5 -1.5 -1.5 -1.5 -1.4 -1.3

.35 -1.2 -1.1 -0.7 -1.1 -1.1 -1.0 -1.0

.40 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.6

.45 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.3i

.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0

.55 0.4 0.4 0.4 0.4 0.4 0.4 0.3

.60 0.7 0.7 0.7 0.7 0.7 0.7 0.6

.65 1.. 1.1 1.1 1.1 1.1 1.0 1.0

.70 1.5 1.5 1.5 1.5 1.5 1.4 1.3

.75 ,..0 2.0 2.0 1.9 1.9 1.8 1.8

.80 2.5 2.5 2.5 2.5 2.5 2.4 2.2

.85 3.2 3.1 3.1 3.1 3.0 2.9 2.8

.90 4.0 4.0 3.9 3.9 3.9 3.8 3.6

.95 5.4 5.4 5.3 5,3 5.2 5.1 4.9

17



b#

"lecisions involving the desired degree of confidence, the interval

length, and the ultimate number of observations are deferred until

the end of the first-step experiment, when preliminary estimates for

the parameters are available. The first step thus provides a basis

for the economic decisions which must be made by the simulator in

using limited computer resources.

6. SOME NUMERICAL ILLUSTRATIONS FOR THE M/M/I QLMUE

In this section, we give numerical examples which combine the

statistical techniques of Sect.ons 2 and 5 with the queueing results

of Sections 3 and 4. The M/M/l queue is used for illustration

because its theoretical properties are well-known and provide a means

of comparison with the simulation results. In this case, the inter-

arrival and service times are distributed as exponential r.v.'s with

parameters A and V respectively.

From Section 3, we know that the sequences {c[k:k > 11,

:k > 1}, :k > 1}, :k > 1}, {y(1):k >_ 1 , (Y((2)3:k >) 1 ,

and {Y(3) k > 1) each consist of i.i.d. r.v.'s and are thus
k -

amenable to statistical analysis. In order to demonstrate the power

and versatility of our methods, we define five additional sequences

of i.i.d. r.v.'s. For k > 1 let

(4 %-1 k-1 2
j =0 -ki=

Y f4 W6 +J E (W~ 2 J
J-1 k-1 J-I0

Yk(5) ak-O fs(W~k j a•= [(kk+ _ I _ I) +]1/2,
k 5(W +J) E [(W

k ; juk-l ~ - 1-

18



i.

() akl1 k-1

. :j. W-6O a +j)k-+ >- .2)

(7) 0o ak -1,2

Ykk W f 7 (ak) 5, ak 3,4,5
_10, otherwise,

Y(8) . f _ , %- 1,2
0, otherwise,

where the indicator function I takes on the value 1 on the set A

and 0 otherwise. The function f 4  is user,1 'lor estimating the

F second moment and variance of the stationary wa.' iiq, time W, since

Eff 4 (W)} - E{W 2. The function f 5  can be interpreted as a

penalty function on the waiting time of the customer. The Function

f 6 provides a means for estimating the tail of the stationary

waiting time distribution, since Elf 6 (W)) - P{W > .21. The

function f7 can be interpreted as a penalty or cost function on

the number of customers served during a busy period. This might be

appropriate, for example, if servers are to be relieved at the end

of each busy period and a penalty must be paid when a server is

required to serve an excess number of customers without relief.

Finally, the function f 8 provides information on the distribution

of al. since E{f 8 (a 1)} - P{a 1  1 or a, - 2).

In order to illustrate the computation of confidence intervals

for the various parameters of interest, a single-step simulation

run was implemented with A - 5, V - 10, and N - 2000 busy

cycles (demonstration of the two-step procedure of Section 5 follows

later). That is, 2000 observations were made from each of the

sequences given above.

19



Now we have sean earlier that if {X]I...,XN} is a sample of

i.i.d. r.v.'s with sample mean X, sample standard deviation s, and

finite second moments, then [X - Z1 -y/ 2 s/'N, X + Zy/2 s/914] is an

approximate 100(1-y)% confidence interval for E[X } for large N.

In this manner, we obtain approximate confidence intervals, shown in

Table 2, for EfaI} E{nl}, VCI) Efv }, and EMYn} n = 112,...,8,

based on the observed samples of 2000 (The moment condition is satisfied

beceuse all of the moments of u1 and vI are finite.) Given

approxima1te confidence intervals for E{Y 1 'Y 4)} E[Y (5 )}, E(Y(6~) and1oY 1  1, 1'

E{a.}. we use (4) to obtain approximate confidence intervals for

EMW}, E{f 4 (W)), E{f 5 (W)}, and E{f 6 (W)}, since

EMY4 - 1

E{ f 4 (W)} -

4 E{cI

E{Y•5

E~f M) E{a}

and E{y• 6 )

E{f 6 (W))} - E{c 1 )

Given an approximate confidence interval for E(W}, we use (2) to

obtain an approximate confidence interval for E{Q} - AE{W) + O.

Finally, given approxImate confidence intervals for E(W} and for

E~f 4 (W)} - E{W2 }, we use (1) and (3) to obtain an approximate

confidence interval for the standard deviation o{W)- [E{W2 
- (E{W}) 2JI/ 2 .

20
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Table 2 summarizes the results of the simulation run. For each

entry through E1y(8)), the value given in the table for the "point

estimate" is the value of the sample mean. For each of the remaining

entries, the point estimate is the appropriate function of the other

point estimates; e.g., the estimate for E{W) is the ratio of the
estimates for E(Y() and E

Table 3 shows the point estimates and 90% confidence intervals foc

E{W) in ten replications of the experiment. As can be seen, for these

runs, each of the ten intervals surrounds the true mean EMW} a .1.

We next demonstrate the two-step procedure of Section 5 for

obtaining a confidence interval for Eff(W)) . For illustrative

purposes, we let f be the identity function, so that we estimate

E{W).

In order to illustrate the procedure a first-step run of 500

busy cycles was made. Estimates obtained from this run are

Y- .178

a - 1.95

Sy M .749

s - 2.20

so that asy

- 2 in ( as- 2.63.

The optimal value y- x0 may now be obtained from Table 1. For

several values of y, Table 4 shows the optimal y1, y2 - Y-y1,

and the associated D(y). For a second-step simulation of N busy

cycles, L0(N,y) - D(y)/A is the estimate for the minimum length

21
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TANIL 2

SIMJLATION LESiLT,, FOR THE M/M/i QUFUE

(arrival rate -5; aervice rate w - 10; N - 2000
oboervod busy cycles)

Parameter rheoretical Point Confidence Level of
Value Estimate Interval Confidence

E{cý 2.000 2.110 [1.994, 2.226] 95%

Efn 1) 0.200 0.215 [.199, .2311 95%

e{•} 0.400 0.416 [.396, .435] 952

E{v ) 0.200 0.201 [.192, .2101 95%

E {Y( ) - E w 1 0.200 0.232 [.187, .277) 952
J.0

E (Yj' E(] Q(s)dal 0.400 03.447 [.387, .5071 95%

E(y• - E{ I W(i)ds) 0.040 0.045 (.038, .0531] 95%

E(Y - (WE{Z '/ 0.080 0.096 [.066, .127] 95%
J-.0

EY 1 (5) - E(f VUW-,--31- 0.240 0.280 [.226, .333] 952

E{Y(6)) -. 0.368 0.438 (.357, .519] 95%jo(W J1.2I

yl7)) - E{f 4 (ail)I 1.225 1.375 [1.248, 1.502] 95%

E(Y (8)} f P .a1 i or a .21 0.815 0.792 [.774, .8101 95%

E{W) 0.100 0.110 -. 084, .139] 90%

2
E( 4 (W))- ElW 1 0.040 0.046 [.030, .064] 90%

44

E{f 5 (W))- E{,/(W-.l)+} 0.120 0.133 [.102, .167] 90%

Elf 6 (W)) P(W>.21 0.184 0.208 [.160, .2601 90%

E(Q) 1.000 1.050 [.920, 1.1951 90%

o{W} 0.173 0.182 [.101, .238] 80%
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TABLE 3

ESTIMATES FOR E{W} IN TEN SIMULATION REPLICATIONS

( X - 5; u 1 10; N - 2000 observed busy cycles; level of confidence 90%)

Replication Point Estimate Confidence Interval

1 0.110 [.084, .139]

2 0.091 t.071, .114]

3 0.095 (.075, .117]

4 0.111 (.075, .1511

5 0.096 [.073, .1221

6 0.100 [.077, .1261

7 0.092 [.071, .116]

8 0.099 [.074, .128]

9 0.096 (.073, .122]

10 0.090 [.068, .115]
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TABLE 4 A

VALUES FOR YI, Y2' AND D(y) AS A FUNCTION OF y

(Based on a simulation run with A - 5, w - 10, m - 500 observed busy cycles.)

Y Y1 Y2 D(Y)

.2 .167 .033 1.50

.1 .082 .018 1.83

.05 .041 .009 2.11

.02 .0164 .0036 2.44

.01 .0081 .0019 2.67

TABLE 5

SIMULATION RESULTS FOR THE TWO-STEP PROCEDURE

(X a 5, 1 = 10, N = 18,000 observed busy cycles)

Parameter Theoretical Point Confidence Level of
Value Estimate Interval Confidence

E~cI} 2.000 1.983 [1.932, 2.035] 99.64%

E(Y'I)) 0.200 0.192 [0,175, 0.209] 98.36%
1

E{W) 0.100 0.097 [0.086, 0.1081 98.00%

24j
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confidence interval for E(W), and Figure 1 shows L0 (N,y) as a

function of N and 1. For example if N is chosen to be 4000

(abouL a 5 second run on the IBM 360/67) and y - .05, then the

estimated confidence interval length is .033, for a deviation of

±18% about the point estimate for E{W}.

Using Figure 1 as a guide, it was decided that the second

experiment be run with N - 18,000 and y - .02 (98% confidence).

Table 5 shows the actual results of this run. The confidence interval

obtained for E(W) is of length 0.022, compared to a length of

0.018 estimated at the end of the first step.

Suppose now that one desires to make comparative inferences

about two different queueing systems. For example, one might be

interested in comparing the mean stationary waiting times E{W(1))

and E{W(2)} for systems with P - 10 and P - 16, each having

an arrival rate A - 5. One method of comparison is to obtain a

confidence interval on the difference in the mean waiting times.

This can be done by computing confidence intervals on the means

E{W(I)} and E{W( 2 )} separately, then using (1) for the difference.

To illustrate, a run of 18,000 busy cycles qas made with

- 16, resulting in a 98% confidence interval for E{W( 2 )} of

[.025, .030] (Y1  and 2 were chosen the same as earlier for

S- 10). Combining this with the previously computed interval for

E{W(1)}, we obtain the interval [.056, .063] for E{W (1 ) -E{W(2)

That is, with confidence not less than 96%, the mean stationary

waiting time for u - 10 exceeds that for v - 16 by at least

.056 but not more than .083. Statements of this type would be useful

for assessing the relative value of different proposed system

-* modifications.
25
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Suppose one wiahes to study the sensitivity of the queueing

system over a range of parameter values, say for 3 < X < 5 with

S* - 10. We illustrate again for the mean waiting time E{W(X)}.

If one assumes that E(W(X)) is approximately a linear function of

X for 3 < X < 5, then (5) may be used to obtain an approximate

confidence band about the function E{W(X)) over that interval.

To illustrate, a run of 18,000 busy cycles was made for the case

X - 3 and u - 10, and a 98% confidence interval obtained for

the mean waiting time is (.037, .045). An interval [.086, .1081

was previously obtained for X - 5, and v -10. Then under the

linear assumption for E{W(X)} between X 3 and X - 5, a

96% confidence band for EfW(X)} is shown in Figure 2 together with the

true function E{W(X)}. That is, with at- least 96% confidence,

.037 + (.049)(0-3)/2 < E{W(X)} < .045 + (.063)(X-3)/2 for all

3 X < 5.

The same method could be combined with the previous method for

comparing alternative systems. For example, if E{W(X,w)) is the

mean waiting time for a system with parameters X and ij, and

if p 1  and p are two alternative values for v, one might wish

a confidence band for g()) [E(W(X,oI)) - E{W(>,u 2 )}] over a

range X < I < X2 • Tha. is, inferences would be made on the

sensitivity of the system differences over the given range for 1"

based ou the assumption of linearity over this range. This is done

by making runs at only four different parameter settings: (Xi, Pi1 ),

(yl,' 2 ), (2 2 ,ul), and (X2 ,p 2 ). Figure 3 illustrates our results.
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This graph illustrates one parLicular experimental realization, based on

observation8 at the two endpoints N - 3 and X - 5. In at least 98% of such

realizations, the confidence limits at either endpoint will surround the true

value. In at least 96% of the realizations, the coiifidence limits at all

pointe 3 < X < 5 will surround the true values. Thus, for exaample, a

98% confidence interval at X - 4 is [.062, .076] in this realization.

.2

Theoretical value

.15

Upper confidence limit

'-4. .15

V U Lower confidence lfimit

.05

0

0 1 2 3 4 5 6

Arrival Rate, X

Figure 2. A 96% CONFIDENCE BAND FOR THE MEAN WAITING TIME, AS A FUNCTION OF THE

ARRIVAL RATE X OVER 3 < X < 5. (Service rate w - 10; N - 18,000
observed busy cycles.)
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This graph illustrates one particular experimental realization, based on
observations at the two endpoints X - 3 and X - 5. In at least 96% of
such realizations, the confidence limits at either endpoint will surround
the true value. In at least 92% of the realizations, the confidence limits
at all points 3 < X < 5 will surround the true values. Thus, for
example, a 92% confidence interval at 4 Ifi [.039, .057] in this
realization.
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Figure 3. A 92% CONFIDENCE BAND FOR THE DIFFERENCE IN MEAN WAITING TIMES
BETWEEN TWO SYSTEMS WITH DIFFERENT SERVICE RATES, AS A FUNCTION
OF THE ARRIVAL RATE X OVER 3 < X < 5. (Service rates

P 10, P2 - 16; N = 18,000 observed busy cycles.)
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The key assumption is of course the linear relationship over

the range of interest. Thla aoaumption is fairly accurate in the

c:.1-ples given, as seen ir Figures 2 and 3. In future work, we intend

to explore the possibility of obtaining confidence bands which are

non-linear. It is believed that the theory of nonlinear regression

4t may be brought to bear on this problem.

7. COMPARISON WITH AN ALTERNATIVE METHOD

In previous sections, we have shown how to obtain a confidencr

interval for E(W) roughly centered about

lwolag nmerthta N -N

N

SN k(1 1{[) a, E(W} a.e.

k I

and

a NN.

N E{ci.} a.e.

k-l

so that

WN* E{W} a.e.

1 N
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Hence, the estimator QN is consistent. Given any E > 0, the

lim P ( JýWN - E (W }I <. " I
N-ý

An alternative natimator for E{W} is

M-1-,~ ~ ! }wj.wM " 0

For many queueing systems, e.g. the M/G/l and GI/M/I queues, W is

that estimator among the class of estimators

M-i

Mm M. ZJ-m

which minimizes the "mean square error"

- E}2}"WM,m Ef}

for all large values of M, see BLOMQVIST (1970).

Now let N be a fixed positive integer, and let
0

M E({aI) N0 .

The two estimators W and W' require, on the average, the
N0 LmN0

same length of simulation, and it is of interest to compare their

respective differences from E{W. For a fixed E > 0, define
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p • P(IW1 o - E(WII L O},

p rljw[M0] - E(W}I < cO0.

By replicating a number of simulation experiments, it is posrible to

obtain point estimatee and confidence intervals for the par:umeters

P %nd p'. To illustrate, 400 independent simulation replications

were made for the M/M/l example of Section 6, with X - 5 and

u - 10. In this case EcaI} - 2 and we set N . 100 and H0 - 200.

Point estimates and confidence intervals for p and p' are shown

in Table 6 for three different values of c We see from Table 6

that there are no significant differences between p and p'

implying that one can generally expect comparable "accuracy" from

the estimators WN0 and W . Similar results are obtained forN0  [H0 ]
other values of N0  and M0 E{a } N- These findings lend

respectability to the methods outlined in the previous sections, for

those methods %ould be of questionable value if they were based on

estimators less "accurate" than commonly used alternatives. Of

course the main advantage of our methods over alternatives is the

ability to use slatistical analysis appropriate fir oequences of

Si.i.d.r.v.'s.

32



2

TABLE 6

ESTIMATES FOR p P{IN 0 -E(W) _< Eo AND p, = P(laIo] -E(w) _< fo

(400 rep'ications with I - 5, u - 10, N0 - 100, and M0 - 200; E{WM - 0.1)

Point Estimates 90% Confidence Intervals

L P P P P

0.01 .220 .225 (.18 6 , .254] [.191, .259]

0.02 .455 .423 [.414, .496] [.382, .464]

0.03 .625 .623 [.585, .665] [.583, .663]
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