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DISTRIBUTION-FREE INTERVAL ESTIMATION OF
THE LARGEST Q-QUANTILE*
by

M. Haseeb Rizvi and K. M. Lal Saxenas
Stanford University and University of Nebraska

1. Introduction and Formulation of the Problem

Ordering of several unknown parameters is a problem of wide practical

applications. Saxena and Tong (3] and Saxena [2 ] have recently constructed

confidence intervals for the largest location and scale parameters res-

pectively. This paper deals with the distribution-free interval estima-

tion of the largest Q-quantile of several continuous distributions.
Consider k(> 1) distributions with unknown continuous cdfs

Fi, i=1,...,k. Let xa(F.L) denote the unique @-quantile (0 < & < 1)

of F, . If xa(Fi) is not unique, it can be defined to be so in an
obvious manner. Define © = max x_ (F,) . For a specified constant
I<i<k & °

y, @& random interval I 1is desired such that

(1) iSfP[ee I} > v

where { denotes the set of all possible k-tuples (Fl’Fé"“’Fk)
Such an interval I, based on order statistics of random samples of

equal sizes from each Fi’ is proposed below.

*The second author's work was supported in part by University of
Nebraska Research Council.
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2. Proposed Procedure and Its Probability of Coverage

Independent random samples of common 8slze n are taken from each

of the k aistributions. Let Y_, denote the B order statistic
)

from F, and Y = max Y for r=l,...,n; define ¥ = -=» and
i r 1<i<k z?,i o]
Yo, =*e . For s <t, consider the random interval I = (Ys’Yt)

and assert that 6 ¢ Io’ where 8 und t are chosen so as to
satiafy (1).

With Gr(p) denoting the inzomplete beta function

P n
(2) G(p) - r(“)]; ) e = Y (Dpdap)

J=r
the cdf of L is given by Gr(Fi(y)) . We will adopt the conven-
2’

tion that Go(") =1 and G

n+l( *) = 0 . The probability of coverage

of 8 by I0 is then

—
A
~
o
—
[a0]
™
—
~
4

BY < 6) - KY,

A

6)

"

PY 5 S8 iul,00k) = KYy o <0, i=l,...,K)
k k

n G (F(8)) - G (F,(8)) .

i:ls i i:lt i

We know that Fi( 6) >a for 4:1,...,k with equality for at least
one 1 . Hence without any loss of generality we assume that

Fk( 8) = @ . Thus (3) beccmes

W T

s
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k-1 k-1
X Gy (F(8)) - 6(@) x Gy(Fy(0)) .

(4) - P(€e I) =G(%)
o & i 1=1

5. Minimization of the Probability Coverage

For one-sided random intervals the minimization over 0 of
P(o ¢ Io] is glven by Theorem 1. The proof of the theorem follows from

congiderations of (U4) and noting that Go(-) 21, G . .(*)=0 and

n+l
a< Fi(e) <1 for each 1 . The details are omitted.

Theorem 1
(a) For 8>0, t =n+1, that is, with I, = (Ya,m),

(5) tnf P(6 ¢ 1) = G (®);

and (b) for 8 =0, t <n + 1, that is, with Io = (~w,Yt),

(6) izf P(6 ¢ I)=1- Gt(cz) ) 3

Note that for any s < t, Gs(x) > Gt(x) . Therefore in (a) of
Theorem 1, we choose s to be the largest integer such that the right
side of (5) exceeds y of requirement (1) with 0 <y < (l-(laa)n]k .
Further in (b) of Theorem 1, we choose t +to be the smallest integer
such that the right side of (6) exceeds y with 0<y <1 -a . It
is clear from the sbove upper bounds on y that, for fixed k and @,
Io can satisfy (1) for any value of y between O and 1, provided n
is taken large enough.

Next we consider the minimization over O of P(8 ¢ Io] for two-

sided random intervals.




T T | | T T

Theorem 2 (two-sided intervals)

For 0<8s8<t<u+l]ll,

(7) 13{ P(6 ¢ I) =min(G (a) -G (), Gﬁ(a) - t(a)) .
Proof

Since P(6 ¢ Io), given by (4), involves Fi's evaluated at 6

(constant) and Fi( 8) >a for i=l,...,k-1, we can write Fi(e) = Q+ bi'

vhere 0 < 61 <1 -0Ca. This enables us to reparametrize (4) as &

function of the bi's . Consequently the problem of minimization of
(4) over u = ((Fl,...,Fk): Fy is continuous for each 1) 1is reduced
to its minimization over ((8;,...»8 1)t 0 <6 <1 - i=1,...,k-1)]

We have
k-1 k-1

G (@) n G (a+p,) - G (@) x G (0+p,)
i=1 i=1

(8) P(6 e I)

= J(Gl,...,ﬁk_l), say .

For some Jj, fix 51""’63-1’53+l’""E’k-l and consider BJ/BE>:j .

Using (2), we define
d n,
8,(?) = 3 G,(p) = x(;Jp "(1-p

gnd observe that (p)/g (p) 1is increasing in p for t > s .
&g &

FPITIUR
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Let |
k-1 k-1 ;

A = 121 Gg(o+8,), B = T G (a+b,), A > B . |

143 14

Then from (8) we obtain

- . BG,(@)g, (@+8,)
&g = AGs<a)gs(a+bj)[l - Acs(‘ﬂ@s(mﬁp ] .

Since gt(a+6j)/gs(06+5 ) 1is increasing in & it follows that the

J hlg
expression inside the brackets is decreasing in 63 . Hence we con-

clude that BJ/BS‘j has either the same sign at every value of &, or

J

at most one change of sign from positive to negative and consequently
inf J 18 either at E>lj =0 orat %, =1-a, This conclusion is
5J v

valid for every other J . Therefore infimum of J is achieved when

a certain number m of bj’s are zero and the rest equal to 1 - a ,

Define

(9) Hy = Hy(s,t) = 62

m+l, .
" ) -G, Ya), o <Sm< e,

Differentiating }{m with respect to m, and noting that ¢ a) > Gt(a)’

S(
it 1s seen that éHn/&)m either has the same sign for every value of

m or has at most one change of sign from positive to negative. Hence

(10) min H = min(K_, ]
m=0,1,...,k-1 O 0’ F-1

This proves the theorem.
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Note that for fixed k and Q, I, cen satisfy (1) provided

lie: between O and

min ([1-(2-0)")F - &) - p(k,q,n), say .
r=1,k

Clezrly, p(k,a,n) can be made arbitrarily close to 1 by taking n

large enough.

4. An Optimum Two-Sided Random Interval

" For specified k,4,y and n, the choice of integers s and t,
such that the two-sided random interval I - (Ys,Yt) satisfies (1),
may not he unique unless some criterion for an optimum choice is intro-

duced. For the case k=1, Wilks (4] proposed an optimality criterion

that requires the ranks s (of Ys) and t (of Yt> to be as close

together as possible. Extending this criterion to k > 1, we would be

interested in choosing s and t so that the rank-difference (t-s)

s

is minimized for & preassigned y . For this purpose we present the
following algorithm. Let ¢ be a positive integer less than n and
consider I = (Ys’Ys+c) . Denote by Q(s,c¢) the infimum of

'P{Ys <6<y ) over 0 as given by (7). For every fixed ¢, 1let

so(c) be that value of s for which

Qs (c),c) =  max Qls,c)
1<s<n-c

Now choose the smallest c, call it o such that

s

o i el s sl it
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Q(s( ),C)>7-

[o]
o 07 0" -

Then the optimum chbiée of the random interval satisfying the require-
ment (1) is (Ys’ys+c) with ¢ =c, and 8 = Bo(co) .

For moderate values of n, say n <50, the above algorithm cau
be carried out in an easy manner using the incomplete beta function
tables or the more readily avallable binomial tables for smaller values
of n in view of (2). For example, when k=4, @=0.5, »=0.90, and
n=L5, we obtain s=8 and t=17 . In this'illustration, it is inter-

esting to note that even for k=1,2,3 and the same values of <,y and

n, we obtain s and t=17 .

5. Large Sample Approximaticns

Fcr large n, using normal approximation to binomial in (2), with

4(+) denoting the standard normal cdf, we obtain

(11) 6,(®) ~ o (-rma)/(na(1))%/2)

For one-gided intervals of Theorem 1, using (11), in the case (a) we

take s to be the largest integer such that
s < na + (no(1-0))Y 201,

and in the case (b) we take t to be the smallest integer such that

& > na + (no(1-2))Y207(5)

S, ket

sk,

b
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For the twe-side1 opl imum random int-rval described in Section 4, ;
asing (11), we have ;
(13! Qs,n) =min(Md-x) - ¥ -x). Tk(d-xb - @k(-x)] ; %

:
where
0 claa e M (nu-s)(nu(1-(1)')'1’/2 .
hdewlcz and Tong {11 show that for any glven d, the value of x,
34y Xg th+' maximizes the right side ~f {12 1s ¢ither the value for
which the twe terms within braces of (12) are equal er the value which .
maximizes the second of these twe tzrms. Table 1 of |1] gives X for %

K ool ro1ie and  do (0.1 . For k-1, obvinusly xo . d/2; also -

for ke, x - ; as shcwn in |11, Thus for k l.,2 and n large,

\

trem 170 1t 18 se-p o that 8 ana ¢ will be oQuiastant from w&  on
sither o s1de,  Table 2 of [1] glves coverage preusbility (12) evaluat=d
a0, 0f Tabl- 1. We consider once sgain the -xample of Section »
ooullusirate the us~ of the taples of |1 tor adapting our algorithm
feo large gsampre s12:ds8, For Koh, 00070 5050, and a5, Table 2
gre2s dohLha o, tisiaz 4 .t.u we obLtain f'rom Table o LN 1.452, Qow
From (% with x X, w2 obtsin 529,77 and ¢ 8.v . These vaiues
s and ¢ are then the OptImMUR Values sq(cct and cO respeciively
ot Seocaon hL Since these Cotimum valuss have te be dntegers, we round
“tem P 43 s e, Y yri , » Thus 1n this example we obtain
. the randem int-rval obhrained previendly.,

The gocdnsse ~f tie large sample appessimstion oonsidered above is

Arre-ct by relsted te the wel] knewu converzence of binomial to normal

(]




Fer semmonly used values of G« it ig felt that this approximation ia

adequar~ for sample sizes lurger than 0

i I ~enclusion it ghould be peinied out that the preblem of interval

estimaticn of the smajlest G-quantile (' - min
1< i<k

x (F. ' can be handledq

i1 8 manner snaloegous to the discussicn ¢f this paper by considering tne

ranlem intertal (Y, Y, s <o t, where Yo - min Y_
S ' v Lo r,il
1< 1<k
¥
;
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