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ON THE MINIMAX PRINCIPLE AND ZERO SUM

STOCHASTIC DIFFERENTIAL GAMES

By

Yu-Chi Ho

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

The problem of prior and delayed commitment in zero sum

stochastic differential games is discussed. A new formulation and

solution based on the delayed-commitment model is derived and its

significant implications to stochastic game and control are considered.



1. Introduction

One of the fundamental tenets of game theory is the Normalization

Principle of Von Neumann which roughly says that given an extensive

game one can always reduce it to an equivalent game in normal form

involving only strategies and payoffs and where all dynamic and in-

formational aspects of the original problem have been suppressed in

the form of strategies by considering all the possible actions of all the

players under all possible circumstances. As a conceptual simplifica-

tion this device is extremely useful. In fact it is so useful that one can

argue that it has disproportionately influenced the development of game

theory in the past two decades with the result that very little work has

been done on the extensive form of games. Recently, Aumann and

Maschler [1] reexamined the normalization principle and pointed out

persuasively via a simple counter example of its inappropriateness

under certain conditions. Their results have immediate and serious

consequences in atochastic control and differential game problems since

both are special cases of general extensive games. In this paper we

shall:

(i) present a counter example in the same spirit as that of (II but

within the framework of a zero sum stochastic two person difference

game. This example will point out the restricted circumstances under

which earlier results on minimax strategies can be considered secure,

(ii) point out that (i) is actually a blessing in disguise and that from

our new viewpoint we can actually solve the minimax problem for two

person zero sum Linear-Quadratic-Gaussian stochastic differential

(difference) games much more effectively than before. Finite dimensional



minimax solution that is eminently computable will be presented.

(iii) Show that the structure of the well known optimal stochastic

control law (Kalman-Bucy filter in cascade with a zero memory linear

map) for LQG problem is in fact "optimal" under circumstances which

are neither gaussian nor linear. This explains in part the incredible

robustness of the LQG result in practical application and points the way

to efficient solution of more general stochastic control problems.

2. The Example

The notation we shall use in this section are as follows: we write

to denote the fact that we are considering it as a random variable,

while the plain x indicates a particular sample oft: • then denotes the

expected value ofl in particular, Z' stands for the unconditional (prior)

expectation of x and ", the conditional (posterior upon information

obtained ah the game evolved) expectation.

Consider the scalar two stage dynamic systems

"-3 Z + v (XI + u) + v -= .N(0,o) (I)

where u and v are the controls of players I and II respectively. We have

the performance criterion

-E + u - Zv } (2)

which I attempts to minimize and II maximize. Player I is given the

measurement

in the sense to be explained more fully in section 6.

[•
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-W, 3 are independent while II receives no measurement. Both players

know all the parameters and functional forms of (1)-(3). These are

the common prior information.

The class of admissible strategies, r, for I is

=(•) v cFr class of all Borel measurable v: R--oR (4)

The class of admissible strategies for II is

v c c R (5)

constant

Strictly speaking, of course both v and c depend on the common prior

information such as, a, etc. Such dependence, however, will not be

explicitly shown. The expectation in (2) is taken w. r. t. the gaussian

r.v. s x,v . Using (1) and (2) we can rewrite equivalently

2 - E 2u - v + 2uv + Z + 2z (2),

where the term Ex 2 1 is a known constant, c, and does not enter into

the game. This simple zero sum stochastic difference game can then

be stated as: Find v° e r• c° e R such that (y, co) constitutes a saddle

point for5' in (2)'. This is Problem (P- 1),

It is not difficult to derive that (P-.I) has a saddle point in pure
! strategies with '

u () +-' a (6)
a0 =0

V 0c CO

For v - 0

Min Min E-: i iMnE. (7)
v C r v er YE, /Y[1 c r. n E

. u /Min
Z u EWPI=
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u E /) X- (8)

Similarly for

'-0 0,- __

Ma ,Max 1 .2v

= -'E(Zaz2 - v2+ (Zai+2Z) v +2 -Za ) 9)
•c v2

Max -1{4a2  vZ 2a) .v o 0

and

J"(v, ) c Za +a (10)

The saddle point property of (v0 , co) is thus established. Concomitant

with this saddle point property, it is often asserted or implied that if

player I chooses the strategy v° then he is guaranteed a minimax expected

payoff value of (10) above. This statement has to be interpreted with

considerablle care as the following discussion will show, Let us consider

the situation facing player I after he has received the information z but

before anyone has acted. Instead of (2)', his payoff is now evaluated by

T=E/z Zu - v + Zuv + 2vZ . 2£u} (4. 1!

To be sure, if player II uses v° ! c0 = 0, then the optimal act for
player I is still given by (8), i, e. , uo 1 -,". However, this action does

not guarantee his security level which is obtained by solving

Y (u*, vXN')-Mn Maxit (P-2)

ucR v'eR

Note that in (P-2), :- iý no Ion.goe' n random variable but a given number.

ro solve (P-2), we shall derive u'i' and v'. as a saddle point pair for Y".

!!
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For the purpose of solving the ZSTP game of (P-2), z can be regarded

as part of the common prior information without violating the restriction

Max-
of (5) on the class of admissible strategies for v. For fixed u, Mx-,v

v* u + x" (12)

Substituting (12) into (11) and Mi
u

x• _u =4u(3
.Min 1 2 [El (2u- (u +x") + 2 u(u +•") + 2 xu +x) + Zxu (13)1u 7

2- xV*u +x, zx- (14)

and

2
(u,1 2(

Similarly for fixed v* 1_x'' ~- _z, we can directly verify that
Similarly~ frfedv 1"-3 c + I

u -- is the optimal reply and yields the security level of (15),
3~

On the other hand, the strategy vy against v +,, produces

a payoff
*=,,1-,,2 > 1 - 2(6

- (O, v) -tx') > (16)(u*, v (.,,)216
8

as the case should be. The inoquatity of (16) is disconcerting. It says

that for all possible values of z, the strategy u0 is actually a safer
o

strategy than e. Unless I has reason to believe that II has irrevocably

committed himself to v c or that I can convince I1 that he hlas

irrevocably committed himself to v°, there is no reason at all to play 0

when u* is safer and avznilibhl. The reason for this phenomenum, as

pointed out by Hlarsanyl (2) and Aumann and Maschler I]. is the problem

of prior and delayed (posterior) commitment. Put it another way, after
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the information is received we really have a nonzero sum game facing

the two players with (11) the payoff for I and (2)' for II. The strategy

- pair (yO, co) is an equilibrium pair for I and II (in the Nash sense).

However, it is well known that equilibrium strategies do not in general

possess any minimax or guaranteed value properties in nonzero sum

games. The above example is simply one illustration of this fact. if

the game takes place at a very fast time scale such that human reactions

are not practical and mechanical decision is necessary, then the prior

strategy pair (yO, c°) represents a reasonable solution. On the other

hand, in many socio-economic multistage games, the idea of a purely

mechanistic decision procedure with no human intervention and irrevocable

commitment to a strategy is rather untenable when confronted with the

kind of evidence in (16). In such cases, the posterior strategy u" seems

much more preferable. Of course, one may counter with the argument

that since both the prior strategy and the posterior strategy for II from

lI's viewpoint are the same, v 0  c0  0, we should expect him to play

it hence I should play v°. This reasoning is defective on two accounts:

(i) I is dependent on II's intelligence (i. e., II is clever enough to

compute both the prior and posterior optimal strategies) for his payoff,

But what if II is dumb but lucky to play v')?

(ii) Suppose we endow I with the measurement

+ , Z-~ N(0, 1), 7, w, ^ý are independent. (17)

then in general II will not have the same prior and posterior strategies.

In fact, it can be shown that from the viewpoint of player I,

il4
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-0 vO(•) : (+~ a (18)Za"U Z (18)

Z({ + 1) + a

,-0 : o) .

2(a + 1) +a

constitutes a saddle point for P and
2-a

S3(+1)z (19)

v* u + E u +x/1  + 12 . T

00 -is a saddle point pair for J'. Note v°(z) • u* and " , , v*)>'J"(u'', v'*).

Furthermore, from the viewpoint of player II, he faced a payoff

7' E/ ['I] :'Y" Ez P1 (20)

Since I does not have knowledge of P", there is no compelling reason

to assume that II will play v° unless I believes in prior commitment. In

fact, the "optimal" action from II's viewpoint may just turn out to be

numerically equal to v0. In other words, I need not assume II is malicious

in order to prepare for the worst.

3. Some Preliminaries to Stochastic Differential Games.

At first glance, the result of section I seems to spell disaster for

practically all previous work on the stochastic (in particular Linear-

Quadratic-Gaussian) differential game problem. The "minimax" or

saddle point strategies that have been obtained are all of the "prior"

variety. They are useful or reasonabhe only if we have firm belief that

our opponent has made irrevocable prior commitments, before the game

has begun. This severely limits their applicability not to mention the

fact that in general these strategies can only be realized with infinite-



dimensional dynamic systems [3] which are hardly practical. We would

like to show in below sections that our new awareness is actually a

bessing in disguise and that a secure "posterior" strategy can be

derived for both players that is both simule and realizable by finite

dimensional lineai systems.

Before we describe the problem Jormulation in the game situation,

let us recall a few facts for the one-plave: linear-quadratic-gaussian

stochastic control problem which we shall require later. '

Consider the finite dimenisional linear stochastic dynamic system

described by the Ito stochastic differential equation

dx A(t) xoit + B(t) udt + C(t) dw(t) x(t )I Ntx. (P)
00 0

da 11(t)xdt + F(t) dt(t) (2)

where A, B, C, Ii, F are known nxn. nxm, 1.1r, p.n, pxq matrices

whoov elements are continuous on ft. tif and F is of full rank with q2 p

for all t. w(t) and !(t) are independent standard Wiener processes, We

also consider the payoff

Ea' - () E (,(t da'S xft• 4• R %ut)r (t1, 4 Xlt)Tmx(t)),dt } 3)

0

where > 0 , M(t) 0 U . A(t) >, 0 are nn,. nxn, mxm. svimmetric

matrices whose elements art r-onthtuous ono It0 If]

Fi,-Ot we have the following well known restlt.

Result 1. x(t) and r(t) are mneasurable separable gaustian randollo

! eaders well versed in control theory or engineetri•g can skip the below
"hnical specifications and go directly to the next section.



processes with values in Rn and RP respectively and each having

continuous sample paths with probability one [4, pp. 135-136].

Next we shall define the class of admissible control laws, 7

(strategies). Let I denote to0 , tf] C[toRtithe space of continuous functions

on [to, t]. Zt, the minimal i-algebra generated by zt =C[to, t] i. e.,

Zt = UtZl5). se[to, t] ) .

An admissible control law is a functional v: IxCfto, t] - R

such that v(., zt ) is Lebesque measurable for each z t CRt0 , t]

and v(t,. ) is Z t-measurable for all t c I. Essentially this means

that the control u at t can only depend on the past and present values

of the measurement history ztV With the above set up there follows the

next two well known resuits.

Result Z. (Kalman-bucy Filtering) (51] The conditional mean of x(t)

on Zt, x(t) E(x(t) z) is given by

T T .
d'x (A(t)x 4 B(t)u)dt + P(t)1i (FFT) (dz li(tk dt (4)

Xt0 X0

where (t) P satisfies the DE

A 1A + PAT +C - PH(TFr I1" 1 P(to) P (5)

Corollary [S, pp. 70-721 If in addition (AJ-l) constitutes an observable

pair, iL e.,

I ftl t 1T(FFT) hi (t. tf)dt> 0 t< t( 15)

where (t. r) is the fundamental matrix associated with A(t) then P(t)

exists and is bounded for all t > t:• o

'4:
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Result 3. (The Separation Principle) The optimal control law v E P' which

minimizes (3) [5, pp. 100-1011 subject to (1) and (2) is given by

u(t) = Y (t, zt) R - I B STs(t) A(t) (7)

where

5 =-ATS- SA - M +SBR'I B T S(tf = f (8)

Corollary [5, pp. 98-991 If in addition (A, B) constitutes a controllable

pair, i.e.

t

ft (t, t) BR IBT T(t, t)dt> 0 it> to (9)

0

then S(t) exists and is bounded for all t <tf

Operationally, what these results say is that the optimal control law can

be realized by linear combinations (Eq. (7) ) of the state (x(t)) of a linear

finite dimensional dynamic systems (Eq. (4)) which has as its input z(t).

This is one of the most successful and widely used results in control

theory,

In the next section we shall he using results 2 and 3 extensively.

In order to avoid cumbersome notation, we shall display these two results

graphically to highlight their significance. This is done in Figure I.

The optinial controller for the linear dynamics system (block()) Is an-

*i other linear dynamic syslrem of the same dimension (block G ) followed

by a static linear map (block G I. Dotted lines indicate major parameter

inputs to the controller which are pre.computed via Eiqs. (5) and (8),

In the sequel, we shall only utilize resulta 2 and 3 in the form of

Figure I and avoid spelling out the various detail parameter matrices

associated with each block.



np P, -ll

Linear ( Kalman-Bucy
Dynamic System Filter (Linear

Dynamic System)
state: x E:q. (1)A

output: z Eq. (2) state: x Eq. (4) A
Sinput: u Eq. (1) X output:

noise: v, w Eq. (1), (2) input: Zu

P( t) Eq, (51).

Zero memory

controller
(Linear static

system) Eq. (7)

I 0

Sit) Eq. (8)

Optimal stochastic controller for
Eq. (1) which minimtzes (3),

Figure 1. Graphical Representation of Results 2 and 3

"44 A Now Formulation and Solution of the Linear-Quadratic-Gausstan

Stochastic Differential Games,

In the LOG gnmes, instead of Eq. (3. 1) we have

dx (A(t)x + B(t)u + D(t)v)dt + Cdw(t) I1
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where D is a nxs matrix similarly defined for the control input, v,

player II. I and II are endowed with measurements

dz = Hx dt + FdO (t) (2a)

dy = Gxdt + KRde (t) (2b)

respectively

where (2b) is similarly defined as (3. 2) with e(t) an independent Wiener

process, K is kxi (i> k) and of full rank.

The payoff is similarly de-ined with

tf1tTf T T (3
'= Efx (tf) Sfx(tf) f [uTRu TVQv x TMxldt (3)

t
0

where Q > 0 for all t e I and the addition of -vTQv term is due to the

fact that v is maximizing, The strategy class, I' , for u is same as

betore and r is similarly defined for v, ie. , 8(t, .) is Y t-measurable

for all t and y( , yt) is Lebesque measurable for each Yt c: C(to. ti.

The minimat strategy pair (Yo, 00) has been formally obtained earlier

in (31, They are Infinite dimensional in the sense that block W in

Figure 2 for each player can only be reali•ed by linear dynamic systems

which are describable by partial rather than ordinary linear differential

equations.

In terms of our discussions in section Z, ( 0 , 0o) are strategies

of the prior commitment type. After the gamen has started, at time t

and from the viewpoint of player I the payoff now brcomes
J" E/ tY (4)

While (YO, 00) still retain their equilibrium property, they no longer

are secure strategies. The question then arises as to what secure
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strategy can player I adopt? Note that in (4), for fixed Y, p, 7" is

Sparameterized by the observation history z e Z For the purpose

of computing the security payoff of (4), zt is merely part of the prior

information. It is reasonable to base the computation on the knowledge

of zt, i. e. , we assume the admissible strategy class of P to include

Zt-measurable functions in addition to being Yt-measurable. This

amounts to saying that in calculating his control we shall assome that

player II either through divine guidance or a perfect spy has access to

viewpoint to take for the purpose of calculating player I's security payoff.

To be sure, we may endow player I with additional information pertain-

Ing to the problem, e.g. we may assume that II also knows w(t) or t(t).

However, such assumptions are less natural.

Summarizing then, we wish to find 10 r u v

such that

Mill Max (5),,(y,, 09) r Fru oerv rv
U v V

Our overall approach to the solution of (5) Is this. We shall arbitrarily

fix 'f* and then use the result o! section 3 to solve

",(V* o)> T"(Y ) v fv (5)'

Lo Let Pt(v*) be the optimal controller for 11 when I employs the fixed v,.

Then fix 0 opt1 (v) and use the result of section 3 again to solve

"(Yopt' o _ •" e) • , (5)" optl

A!
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Let vopt( opt be the solution. Consistency then requires us to solve

the implicit equation

y (• (Y*'))=Y,~ (6)
opt' opt(

Thus, let V*(. , ) be a particular strategy adopted by player I.

Let Y*(" , *) be realized by an n-dimensional linear dynamic system with

state s, input z, and output u, i. e. ,

to (7)
ds =Asdt +B*dz , s(t) 0 x°

u C*s

Then Eqa. (1), (7), (2a) and (2b) appear as a combined linear dynamic

system of dimension 2n (with states (x, s)) to player II through the

measurements (2a) and (2b), The payoff (5) for fixed Y* becomes

Max T + (' + TcTRc*s'vTQvdtZYt

(8)

This is a standard LQG control problem to which results 2 and 3 of

section 3 apply directly. The optimal controller 0 opt(, zt, yt) is given

as in Figure 2.

The combined linear dynamic system is indicated by the block (0

enclosed in dotted line, This plays the semit role as block® in Figure 1.

The optimal controller, as in Figure I, consists of blocks 01 and ( 1.

The filtering part, block @1 computes the e xtimate and 2. It does

this by reproducing s(t) and u(t) exactly since both s(t) and u(t) are

Z -measurable (lience S(t) -E(s(t)/Zt) s(t) , U( =) l (u(t)/Zt) = u(t)).

The conditional mean .(t) E E(x(t)/Zl, Y1 ) is computed via an

n-dimensional linear system via renilt 2 (Kalman- Bucy filter O



aq7 Eq/7

V (2b)

n-dimensional

opt

Block to i a static linear map of and to v similar to in Figure 1.

i ~ ) t^Xe.(() 9

Nowsupos 1 fixed his strategy at 8t(Y*) 8~as determined

above, we shall show that Eq. (6) precisely defines the optimal strategy

for V pt Thus y*, 8*constitutes a saddle point pair to (5) and

opt'
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consequently solves the problem. To see this, let us consider the

combined dynamic system Eqs. (1) (2) and blocks ®' ®' as appeared

to I. They constitute a 3n-dimensional linear dynamic systems

(with states (x,',s)): 2 n from Eq.(1) and blocks '" and('; yn from

block ®. Furthermore, using (9) the payoff (4) becomes

tf
" "E ( + (uTRu [x T [x ).dt/Ztl (10)

XA t

where

[M 0 0
o -S T QS1  S T QS1

•I I - -s2s 1sTs
T T°

"o -SJQS 2  S T2QS 2

Thus I sees for fixed Oý a standard LQG problem with 3n state variables

to which results 2 and 3 again apply,

We have

ult) I il(t) E(x/Zt) + KYt" lr(!Zt) + • 3 (t)E(•IZt) 11)i

However, since all outputs of block Q are Zt-measurable by construction,

they are deterministic as far as I is concerned. In fact, by definition

and the requirement of Eq. (6) they are also outputs of 'v that we are in

the process of determination. Thus they need not be estimated or

computed. The states of 'I and x , i.e., x and x can be estimated

via result 2, i, C., we have

xw e "r E(x/Z c tae v - ( bzlo(t)/Z) by E(E(x(t)/Zt, Yt)/Z t E(x/Zt) a • ® e
which, are computable via a b.lock CZ by regarding an '.rd ®
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as a new block Q.The states of®" an n-dimensional linear dynamic

A
system, is x which by construction and definition is precisely the state a

e

of the block (D and is the conditional mean of both x and x given Zt.

Consequently from result 3, we conclude that the optimal control ucan

be produced using a linear combination of x only in a block e" i e.
e

11 become P) 't). This is shown inSFigure 
3 which is simply a rearrangement of Figure 2.

A A

Figure 3. Optimal Controller Y*

Finally, it Is worthwhile to clarify the meaning of the strategy fY' as com-

pared to othur strategies. Let (10, o 0) he the minimax strategy pair

determined according to (31 (the prior commitment model). At time t t0

if I has to make a comrmitmont to a strategy for playing the rest of the
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game, Y¥ certainly represents a reasonable choice (similarly for •o)

since

V~y* P") A jY* 0) 0 Y0 0 (12) *

On the other hand, as soon as the game has progressed for some time,

we have at t>t 0

Max
M a Nxr 7 -(Y j> (Y 0, > ) i y , *)(1 3 )
U v

From the vantage point of I at t, Y becomes a rather unsafe strategy

for the rest of the game compared to YX*. To be sure, we still have

•,(y*, ,) >'"T,(yO0, 0o). But there is no compelling reason to believe that

II will definitely play o as explained in section 2. Conceptually, at

t> to# we use (v*, *) for the purpose of determining u(t) only. At t5 t,

we have a different J" based on new information and a different minimax

game to solve. A different (y'*, 01-1) will be used to determine u(t'). In

general, this would require the solution of a TPZSG for each t. However,

in the LQG game being discussed here, a great practical simplification

occurs due to the fact that the parameters of -t *, i. e. , S 1, S 2 in Eq. (9)

K l(, K13, in Eq,(ll) (see also Eqs. (5. 9) (5. 11) (5. 15) (5. 17) next

section) are comipletely independent of 2?. and Y t' Consequently, they

can in fact be computed beforehand, In other words, the different

(y*, 1*) pair I determines for each t > t0 are in fact independent of the

actual z Note, however, this does not mean that we advocate I should

commit himself to 'e beforehand, Conceptually, he uses y. at t to

Note this is different from deciding what value to use for u(t ), v(to).
In fact (y * ) and OP) will produce the same u(to) uincA" o
z Yto"

t - t0
0 oi
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compute u(t) only. He then re-solves for Y* at each different t and uses

the new (but identical) Y* to compute the new u(t)o In practice, what this

means is that he must have secrecy if he decides (i. e. , commits

himself) to adopt the posterior strategy Y*. He should convince his

opponent that his decisions are made as the need arises and that all

his options are open at all times. If no secrecy is possible and he muEc

announce his strategy beforehand then Yo should be his choice.

Note that under the fictitious saddle point condition when (Y*, ?)

are employed, the blocke and Y* are identical as well as the outputs

s, s and u, u Of course, if we choose to use a different 8 @ * by

say, using a) # y in such a case u A and s S r, and x, xe can no

t longer be interpreted as conditional mesns. However, 3"(Y*, p*)> T (Y*, O)

in this case by the derivation just given. Consequently, the minimax

security level of (5) 's achieved when we render 0, such that the Y block

to identical to block in Figure 3. in other words, under the con-

ditions stated, the worst that 11 can do to I Is to use the strategy 0c,

and the L st counter strategy is Y* with T" (Y*, 8 *) the security level

at thie t. Of course, in real life when II does not have available

both the Information .(t) and y(t), I can probably expect better returns

P titan P ( 8).

5. Existence Questions and a Simple Ex.ample

r So far we have not addressed ourselves to the qufatlon of existence

fictitious in the sense that this game ts solved only for the purpose of
computing I's security payoff.
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of the solution which was derived in the previous section. Since the

solution is obtained by solving a pair of coupled stochastic control

problems (Eqs. (4. 5'), (4 5") and 4.6)), the existence question is

directly dependent on the existence of solutions of a set of coupled

Riccati equations associated with the control problems. The explicit

form of these Riccati equations while straightforward to write down

is rather cumbersome notationally in the general case. Nor is it

possible to state simple and meaningful sufficient conditions to guarantee

the existence of the solutions to these DEs. What we propose to do in

this section is to carry out the derivation of the explicit solution for a

very simple problem to show the various equations involved. Tie

procedure is cnmpletely simiiltr in the general case.

Let the scalar dynamic system and observations be

• x - u 4 Y x g ( ,) 6 N ( , o 0 p o) 01

dz xdt + dý are statiatically Indeplendent (2)
slandard wiener processes

dy Odt + dt with liZero me'1an and (3)
va rrance I - 0

and payoff

t 4to -t 2 )dv (()
0

Iet YO be given bV

do asdit + )dt (5)

where o, b, and v are' 1parnimtte rs to ht, doltrmintd. From l's viewpohnt

o a a secure stratetv, It maxhiitt'li, at I ". I
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t
E= E. (tf) + Ir 2• 2EVV/Z, Y t+ (cYs -V)dt/ZY (7)

t-t 

t

subject to (1), (5), and (6). Using standard LQG results, we get for

all t > t

d = (c2 + v)dt + p(dz + dy 2^dt) x(t =x (8)
o o

d= a~dt + bdz =(t )

where

2
-2p p(to) Po (9)

and the control

v -4(s 1 1(t).x + S•(Q)S) (10)

where

S( a: [0: 02 0SO
'• s~t)_- tf)

S 
0:

Eq8. (8-II) define opt (Y). Now from the viewpoint of 1, opt and (I)

define a 3ri-dimensional linear dynamic system

dx SI I + u)dt x(t)... N(XoP12 S11  x 0 P0

AI 2I)A A A
(xd + (S 1 1 2p + (v 4. S 1 ))dt + pdr. + pd(t Xft) =X2 (12)

A 
A Ada aAs dt + bdt) ((t) x0 0

with a payoff at time t > t
-0

• A



E:ZX (tf) + ^ S S k) Idt/ZIt

EfIZ 12 ( I 12~ A
it

2 1
(13)

to be minimized. Once again using standard results, we first compute the
A

conditional mean of x(t) and x(t), rt- xe(t) and Xe(t). Note that since s is

Z t- measurable we have

dxe S ( + 12 t + u)dt + .ltlldz xedt) xe 0o)_Xo (14a)

de 0 (px 0 + (IS. '2P)e •2 a+uW)dt+pdz +r 12(t)(dz -xdt) (14b)

0 S00

Fi~ r

Now setting by de(Wit~ioti s Na nd notinR the easily chocked id~entty

F.() l)4 v,, 5'1 (t '2 (t) ,wer van ve rify that

C -etot

and we have finally
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dxe (½ (S11 + Sla)Xe + u)dt + r -(dz xedt) (14)'

where

s S PSI F11(to) po (15)'

Furthermore,

u ..-Ku(t)xe + K12(O) + K1 3(t)0) 
(16)

+ KI 2 + K1 3)xe

whe re

0 0

f j3 Zp ½S 231 I~A-AK ~ 0 S1  1 s 2  (7

K 3 1
12 

0 113 2

01

4(0 0 01 ~ f)[

and

s19

Si+ i s

yrequirement of Eq. (3. 6 now specified

.he conA.8t-KII g l• n ÷

c (K11 4 +K 3
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b (19)

a - (S11 + S12) - b + c (20)

If we substitute Eqs. (18-20) into Eqs. (9), (11), (15'), and (17). they

form a set of coupled nonlinear differential equations of the R iccati type.

Their solution completely specifies the secure strategy v* via Eqs. (5),

(6), (18-20). Consequently, the existence of v* is equivalent to the

existence of solutions of Eqs. (9), (11), (15') and (17).

6. Practical Implications, Open Problems, and Conclusions.

There are several implications of the results obtained that are

worth further discussion,

First of all, it should be understood that the strategy we derived

for u L, e. v*, is secure only with respect to a set of assumptions

which we assert to be reasonable, Roughly speaking., we allow our

opponent to know everything that we maty know., This seems to be as

pessimistic an assumption as one would like to use, It appears paranoid

to assurme that the other player can have access to knowledge concerning

the choices of Nature,. L, ., values of ;(I), r(t), w(t) etc. , beyond the

probabilistic knowledge that are alreadv permitted in thle tatement of

the original probhitm. Oor aijsumption is also in line with other approaches

to the tontrol of uncertain y.stem o, . rhey have taken the

viewpoint that such problems mar bt, regiarded as a game allainst an

opplonent (Nature) where tht- uppvr value- of fhi, game i• soought. In othe r

words, the opponent (Nature or in-e.rtaintly) makes the inoves knowing

everything you have known andior havte done.

In this respect, the de rived soluition has .n additional appealing

•'
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feature. Consider the linear stochastic dynamic systems

dx = (Ax + Bu)dt + Cdw +vdt(1

F dz = Hxdt + dF (2)

where v(t) represents terms which arise due to approximations and

inaccuracies in modelling of the real (probably nonlinear and tiongaussian)

system. Now if we consider a payoff

3 .. F2(XT Sfx)t + t (u T Ru)dt (3)
f t

00

then the results Ini section 4 state that it "good' control law in this

situation is an n-dimiensional tlinvar dynamic systemt followed by at zero

memnory linear map, This explains the almost tivbel iuvable robustness

of thev strueture of the well known optimal control law (Ile-stilts 2 tind 3)

in widely dive rse applivations where liInea rity or gilos eanness his

been clearly violated. lit other words, t.vc-.pt for parameter valuevs,

(the linear structure of -'re ma ins appropr iate (i. r, .safe) in highly

nonlinear and poorlyL defined situations. 1-1 filct, tOw lbove dIiscusilonl

im~plies that ''oltimlal'' stochastir control of nonli bar systeml canl nlow

be atteniptod by, finite dimens ional opt bob at ion on thw pa ra meters of

V ,The enginee ring s ianlfiance of this cannot be ovler stated.

The recognition that in the delayed commitmenvt mode all stochastic,
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game in extensive form are nonzero sum raises initeresting problems as

well as possibilities. In this report we have only explored two solution

concepts associated with NZS games, namely, Nash equilibrium and

individual minimax solutions. There are many other solution concepts

involving bargaining, coalitions, etc. For example, we can visualize

that the two players may wish to enter into information exchange during

the play of the game.

Ij

L

.,

"k - .- .. .. . .•, .• -': . . . . . . .• . ,• • , . . ..... :•:, .. .. . . .. . .... ,. .. ... . . . . . / 1
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