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ON THE MINIMAX PRINCIPLE AND ZERO SUM

2aange

STOCHASTIC DIFFERENTIAL GAMES

[Tt

By

Yu-Chi Ho

Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

ABSTRACT

The problem of prior and delayed commitment in zero sum
stochastic diffcrential games is discussed, A new formulation and
solution based on the delayed-commitment model is derived and its

significant implications to stochastic game and control are considered.




1. Introduction

One of the fundamental tenets of game theory is the Normalization
Principle of Von Neumann which roughly says that given an extensive
game one can always reduce it to an equivalent game in normal form
involving only strategies and payoffs and where all dynamic and in-
formational aspects of the original problem have been suppressed in
the form of strategies by considering all the possible actions of all the
players under all possible circumstances, As a conceptual simplifica-
tion this device is extremely useful, In fact it is so useful that one can
argue that it has disproportionately influenced the development of game
theory in the past two decades with the result that very little work has
been done on the extensive form of games, Recently, Aumann and
Maschler [1] reexamined the normalization principle and pointed out
persuasively via a simple counter example of its inappropriateness
_ under certain conditions, Their results have immediate and serious
consequences in‘ stochastic control and differential game problems since
both are special cases of general extensive games, In this paper we
shall;

(i) present a counter cxample in the same spirit as that of [1] but
within the framework of a zero sum stochastic two person difference
game, This example will point out the restricted circumstances under
which earlier results on minimax strategies can be considered socure,

{1i) point out that (i) is actually a blessing in disguise and that from
our new viewpoint we can actually solve the minimax problem for two
person zero sum Linear-Quadratic-Gauseian stochastic differential

(difference) games much more effectively than before, Finite dimensional
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minimax solution that is eminently computable will be presentéd.

(iii) Show that the structure of the well known optimal stochastic
control law (Kalman-Bucy filter in cascade with a 2Zero memory linear
map) for LQG problem is in fact ”optimal"* under circumstances which
are neither gaussian nor linear, This explains in part the incredible
robustness of the LQG result in practical application and points the way
to efficient solution of more general stochastic control problems,

2. The Example

The notation we shall use in this section are as follows: we write
X to denote the fact that we are considering it as a random variable,
while the plain x indicates a particular sample of X: X then denotes the
expected value of % in particular, X' stands for the unconditional (prior)
expectation of x and X", the conditional {posterior upon information
obtained as the game evolved) expectation,

Consider the scalar two stage dynamic systems

+u) +v %, = X ~N(0,0) {1

x3=x2+v=(x 1 £

1
where u and v are the controls of players 1 and II respectively, We have
the performance criterion
1 ~ 2, 2 2
L -
Trs ’Z-E((x3) + 0 . 2v) (2)
which I attempts to minimize and Il maximize, Player I is given the

measurement

TaR4+W , @ NOD (3

e
{n the sense to be explained more fully in section 6,
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W, X are independent while II receives no measurement, Both players
know all the parameters and functional forms of (1)-(3). These are

the common prior information,

The class of admissgible strategies, T', for I is

U =v(%) v €' = class of all Borel measurable v: R-=sR (4)

The class of admissible strategies for II is

v=ec ceR {5}

1]

constant

Strictly speaking, of course both v and ¢ depend on the common prior
information such as, ¢, etc, Such dependence, however, will not be
explicitly shown, The expectation in (2) is taken w, r.t, the gaussian

r.v.'s X, W. Using (1) and (2) we can rewrite equivalently
-1 - l‘ 2 2 ~ -~ 1
Nj —-iE{Zu - v +2uv +2vx +2%u) (2)

where the term E[? 2] is a known constant, g, and does not enter into
the game, This simple zero sum stochastic difference game can then
be stated as: Findv® ¢ I', <% ¢R such that (y“, ¢®) constitutes a saddle
point for J' in (2)', This is Problem (P-1),

1t is not difficult to derive that (F-1) has a saddle point in pure

strategies with

~ ~ ln-, l ~
u°=v°(z)=~~§x*=~-za%-rz (6)
V(J =c° =
Forvsz=0
Min . Min w_ Min
vel ¥ “yvel Es B (3] = Eg vel E)y o n

Min
=By T, Ep 01 =

R

At A A A

it s B

Lo
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o _ 1 ~ _ l—'
u = -EE(x/z) = -—Z-x' (8)
Similarly for
~ _ O, o] ~ /é ~
u =y (z) -—'*_“2(34_1)3‘32
Max g1 Max 1p2a3% - o2 4 (208 +28) v +22% %) (9)

=M3x%{4a2 - vZ +2a)}=3»v°=c%=0

T'(vo, c°)=232+a . (10)

The saddle point property of (vo, co) is thus established, Concomitant
with this saddle point property, it is often asserted or implied that if
player I chooses the strategy «° then he is guaranteed a minimax expected
payoff value of (10) above, This statement has to be interpreted with
considerable care as the following discussion will show, Let us consider
the situation facing player 1 after he has received the inforraation z but
before anyone has acted, Instead ol (2)', his payolf is now evaluated by
\T”=%E/z {Zuz-v2+2\w+2v§' + 2Xu} (11)
To be sure, if player Il uses v? = ¢® 2 0, then the optimal act for
player I is still given by (8), i, e., W = --%;”. However, this action docs

not guarantee his security level which is obtained by solving

. Min Max
J'H(u;;«' V"‘) - ue‘R \':;\R 3‘:: (P-Z)

Note that in (P-2), {2 no longer a random variable but a given number,

To solve (P-2), we shall derive u® and v as a saddle point pair for T,

wtilincoA s Al

b bt v L sk i




For the purpose of solving the ZSTP game of (P-2), z can be regarded

as part of the common prior information without violating the restriction

of (5) on the class of admissible strategies for v. For f{ixed u, Mix Tir=
vk =y x" (12)

'j"n.@

Substituting (12) fnto (11) and M

Min %E/z 2u? - (0 +5% 4 2u(u £ T + 2xla +3) + a) D (13)

u% = _% x" v = g 4 x' =_;;n (14)
and
2
= . . | QA 1 2
I (uk, v = - [x1]" = --6—-—9——-2- 7 (15}
’ (o+1)

Similarly for fixed v =-:l,-’§" :—13- 5—%—17., we can directly verify that
2w
uX = --3-!(" is the optimal rcply and yields the security level of (15),
" On the other hand, the strategy v© = -—é—?" against v = u + X" produces

a payoff

Trv v =g (@0 > Toqur, v s g ()7 (16)
as the case should be, The innquality of {16) is disconcerting, It says
that for all possible values of z, the strategy u* {s actually a safer
strategy than go. Unless 1 has reason to belicve that Il has irvevocably
committed himseif to v& = ¢© or that I can convince I that he has
irrevocably committed himself to vo‘ there is no reason at all to play w0
when u* ig safer and availahls, The reason for this phenomenum, as
pointed out by Harsanyi [2] and Aumann and Maschler [1], is the problem

of prior and dolayed (posterior) commitment, Put it another way, after

3

e s i st
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the information is received we really have a nonzero surn game facing
the two players with (11) the payoff for I and {2)' for II. The strategy
pair (yo, co) is an equilibrium pair for I and II (in the Nash sense},
However, it is well known that equilibrium strategies do not in general
possess any minimax or guaranteed value propertics in nonzero sum
games. The above example is simply one illustration of this fact, If
the game takes place at a very fast time scale such that human reactions
are not practical and mechanical decision is necessary, then the prior
strategy pair (yo, co) represents a reasonable solution, On the other
hand, in many socio-economic multistage games, the idea of a purely
mechanistic decision procedure with no human intervention and irrevocable
commitment to a strategy is rather untenable when confronted with the
kind of evidence in (16). In such cases, the posterior strategy u* seems
much more preferable, Of course, one may counter with the argument
that since both the prior strategy and the posterior strategy for II from
II's viewpoint are the same, ve = 0, we should expect him to play
it hence I should play v%, This reasoning is defective on two accounts:

(i} Iis dependent on II's intelligence (i, e,, II is clever enough to
compute both the prior and posterior optimal strategies) for his payoff,
But what {f 11 is dumb but lucky to play v*?

(i1) Suppose we endow Il with the measurement

T=x+% , T~ N0, 1), T, W, X arc independent, (17)
then in general I will not have the same prior and posterior strategices,

In fact, {t can be shown that from the viewpoint of player [,

gt s i




=0 =20y (18)
206 +1) +o ;
«\-;0 - BOG) - \3!3 +&) A}.; ‘
2(0 + 1) +g¢ ‘

constitutes a saddle point for J' and

& = E_—n_ ____ZU
e T T Yl (19)

~ —_ 1 1
. _ _ "o g foy o oy
v’--u+E)/y,z[x]=u+x 0+1[2y %-1.]

is a saddle point pair for J". Note vo(z) # u* and —.f"(vo, vEYS T, v,

Furthermore, from the viewpoint of player II, he faced a payoff

'j"m - E ['J‘] #T]"u = E

Iy (7 (20)

|z

Since I does not have knowledge of T", there is no compelling reason

to assume that II will play v® unless I believes in prior commitment, In
fact, the "optimal" action from II's viewpoint may just turn out to be
numerically equal to v¥, In other words, I need not assume II is malicious

in order to prepare for the worst,

3, Some Preliminaries to Stochastic Differential Games,

At first glance, the result of section I scems to spell disaster for
practically all previous work on the stochastic (in particular Lincar.
Quadratic-Gaussian) differential game problem, The "minimax" or
saddle point strategics that have been obtained are all of the "prior"
varicty, They ave useful or reasonable only if we have Tirm helief that
our opponent has made irrevocable prior commitments, before the game

has begun, This severely limits their applicability not to mention the

fact that in general these strategies can only be realized with infinite-




dimensional dynamic systems [3] which are hardly practical. We would
tike to show in below sections that our new awarcness is actually a
blessing in disguise and that a secure "posterior' strategy can be
derived for both players that is both simule and realizable by finite
dimensional tinear systems.

Before we describe the problem farmulation in the game situation,
let us vecall a few facts for the one-player linear-quadratic-gaussian
stochastic contvol problem which we shall require later, ®

Consider the finite dimensional linear slochastic dynamic system

described by the lto stochastic differential equation
dx = AQ) xgt + B{1) udt + () dw(i) x{t )~ N{§°. P} {n
da = H{t) xdt + F(1) de(t) o {2)

where A, B, C, H, F are known nxn, nxm, nxr, pxn, pxq matrices
whoev zlements are rontinuous on {lo. Y ] and F is of full rank with i>p
for all t, *;w(t) and #{t) are indepandont standard Wiener processes, We
also consider the payolf

. e

HEE -1\ S X PPLER TR +J () TR uit) + x0T Mx(0]dt] (3)
[}
(4]

swhere S‘:» 8, MU0, R{)>»>C are nxn, nxn, mxm, symmetric

matrices whose elements are continuous on ho’ tI],
Fizot we have the following well known resalt,

Result 1, x(1} and 2(t}) arc measurable separalile gaustian random

I3

2 padors well versed in control theory or enginecriag can skip the below
* shnical specifications and go directly to the next section.
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processes with values in R" and RP respectively and each having
continuous sample paths with probability one {4, pp, 135-136].

Next we shall define the class of admissible control laws, T
{strategies)., Let I denote Ito. tf]; C[to.ti the space of continuous functions

on [to. tl: Z,, the minimnal s-algebra generated by z, =eC[to. tlie,,

tt

Z, = o{2(s), seft_, t]].

An admissible control law is a functional v: IxC{to. t] -R™

such that v{., zt) is Lebesque measurable for each z, ¢ C[to. t]

and «(t,. ) is Zt—measurable for all t ¢ I, Essentially this means

that the control u at t caa only depend an the past and present values

of the measurement history 2. With the above set up there follows the
next two well known resuits,

Result 2, (Kalman-Bucy Filtering) {8] The conditional mean of x(t)

on 2y, o 2 E(x(t}/Z ) is given by

d3 = (A(E + BlOwdt + PROHTFFT)" ! (dz - HY R (4)
X)) e ¥
whore Pt) satisfies the DE
peaparaTace . pulTErn) tup P(t) = P, (5)
Corollary 8, pp. 70-72] If in addition {A,H) constitutes an observable

pair, i e,,

%

*

p T ) HTEET) T s 0 ¥Veet, {6)
v‘ ‘

where {(t, 7) is the fundamental matrix associated with A(t) then P(Y)

cxists and is bounded for ail ¢t > to.
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Result 3, (The Separation Principle] The optimal control law v ¢ T which

minimizes (3) [5, pp. 100-101] subject to (1} and (2) is given by

att) =Y (t, 2) = - BB sty & ()
where
§=-AYS-SA-M+sBR™!BTS ; stt) = 5 (8)

Corellary [5, pp. 98-99] If in addition (A, B) constitutes a controllable
pair, i, e,

t
j' (e, t) BR”BTQT(t. t)dt> 0 ¥t> t, (9
M

[¢]

then 5(t) exists and is bounded for all t< tf .
Operationally, what these results say is that the optimal control law can
be realized by linear combinations (Eq, (7)) of the state (R(t)) of a tinear
finite dimensional dynamic systems (Eq, (4)) which has as its input 2(t),
“This is one of the most suceessful and widely used results in control
theory,

1n the next section we shall be using results 2 and 3 exmnsiyeiy.
In order to avoid cumbersome notation, we shall display these two resulis
graphically to highlight their significance, This isvdone in Figure [.
The optimal vontrotler for the linear dynamics sysatem (block@) is an-
other linear dynamic system ol the same dimension (block @ ) followed
by & static linear map {block @ ). Dotied lines indicate major parameter -
inputs to the vontroller which are pre-computed via Egs, {5) and (8),
In the sequel, we ghall only utilize resulte 2 and 3 in the form of
Figure ! and avoid spelling out the various detail parameter mafriccs

associated with each block,
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w ¢
¥ L
Linear
Dynamic System

Kalman-Bucy
Filter (Linear
Dynamic System)
state: x kiq, (1)
output: z Eq, (2)

input: u Eq., (1)
noise: v,w Eq, (1), (2)

state: 2 Eq. (4)
output: &
input: z,u

>

P(t) Eq, (5)

Zero memory
controller
(Linear static
system) Eq, (7)

o

¥
|
[}

8(t) Eq. (8)

_—..—_———..—.—J-——-———-———_-—————r—-——-.-—-——_——_
1

Optimal stochastic controller for
Eq. (1) which niinimizes (3),

Figure |, Graphical Representation of Results 2 and 3

4, A New Formulation and Solution of the Linear-Quadratic-Gaussian

Stochastic Differontial Games,

\ , In the LQG games, instead of Eq. (3, 1) we have

dx = (A(t)x + B(tlu + D(t)v) dt + Cdw(t) {1)

L
.
Ll
i
:1’t
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where D is a nxs matrix sim.arly defined for the control input, v,

player II. Iand Il are endowed with measurements

dz = Hxdt + Fd4{t) (2a)
dy = Gxdt + Kde (1) (2b)
respectively

where (2b) is similarly defined as (3. 2) with ¢(t) an independent Wiener
process, K is kxi (i> k) and of full rank,
The payoff is similarly deiined with
i
te g BlxT(t) Sx(t + jt [wTRu - vTQv + x" Mx]dt} (3)
)
where Q> 0 for all t ¢ I and the addition of -vTQv term is due to the
fact that v is maximizing, The strategy class, I‘u , for u is same as
before and I‘v is similarly defined for v, i,e,, B{t, +) is Yt~xx*.easurablc
for all t and B{*, yt) i{s Lebesque measurable for each Yy ¢ C[to.ﬂ.
The minim’ax strategy pair (\’0. Bo) has beoen formally oblained earlier
in [3]. They are infinite dimensional in the sense that block @ in
Figure 2 for cach player can only be vealized by linear dynamic systems
which are describable by partial rather than ordinary linear differential
cquations,
In terms of our discussions in section 2, (‘fo. So) are strategies
of the prior commitment type, After the game has started, at time t

and from the viewpoint of player [ the payoff now becomes
—_—_—
vegE, (7) )
t

While (Yo, 30) still rotain thelr equilibriom property, they no longer

arc secure strategics, The quostion then arises as to what secure




strategy can player I adopt? Note that in (4), for fixed Y, B, J" is

parameterized by the observation history Z, € Z . For the purpose

¢
of computing the security payoff of (4), z, is merely part of the prior

information, It is reasonable to base the computation on the knowledge

of LA i. e., we assume the admissible strategy class of B to include
Zt-measurable functions in addition to being Yt-measurable. This
amounts to saying that in calculating his control we shall assume that
player II either through divine guidance or a perfect spy has access to

player I's information, We submit that this is an eminently reascnable

viewpoint to take for the purpose of calculating player I's security payoff.

To be sure, we may endew player [ with additional information pertain.

ing to the problem, e, g, we may assume that 1l also knows w(t) or 2(t},

However, such assumptions are less natural,
Summarizing then, we wish to find v* ¢ T‘u . B I‘u xr,
such that
= Min  Max ©
T (re, ) = (7 (5)
' e r, B¢ rSJry

Our overall approach to the solution of (5) is this, We shall arbitrarily

fix Y* and then use the result of section 3 to solve

TR, Bz TUYE B WBeT xTy ()’

Let Bopt(v*) be the optimal controller for II when I employs the fixed v¥,

Then fix Bopt(w) and usec the result of section 3 again to solve

T“(Yopt' Bopt! < T By ¥ve T (5)"
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Let vopt(eopt) be the solution, Consistency then requires us to solve
the implicit equation
Yty = Yok
Y optBopt(1* 0= ¥4 (6)

Thus, let v¥*(-, ') be a particular strategy adopted by player 1.
Let Y*(*, ) be realized by an n-dimensional linear dynamic system with

state s, input z, and output u, i, e,,
ds = A%sdt + B¥dz s(t ) = S?o (7
u = C¥s

Then Eqa, (1), (7), (2a) and (2b) appear as a combined linear dynamic

system of dimengion 2n (with states (x, 8)) to player II through the

measurements (2a) and (2b), The payoff (5) for fixed Y* becomes

Max
Be I“u" I‘V

t

{

i T T T..T T

7 E ((x Sfx)tf + J’t (x"Mx + o CTRCHs-vIQu)at/Z, ¥,)

(8)

This is a standard LQG control problem to which results 2 and 3 of
section 3 apply directly, ‘The optimal controller ﬁom(t, 2y yt) {s given
as in Figure 2,

The combined lincar dynamic system is indicated by the block @ !
enclosed in dotted line, This plays the same role as block@ in Figure 1,
The optimal controller, as in Figure 1, consists of blocks @’ and (ORH
The filtering part, block @‘ computes the estimate fand® It docs
this by reproducing s{t) and u(t) exactly since both g{t) and u(t) are
Z‘-meaaurabiu {Hence 3(() 2 E(s(t)/?‘.t) = g(t) 7 G(t) z E(u(t)/Zt) = u(t)),
The conditional mean %(t) g E(x(t)/?.‘. Yt) is computed via an

n-dimensional linear system via resalt 2 (Kalman - Buey filter @ Y.
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Eq.(7)

Eqs. (1) ) / //
8,
* 2a) s
v (2b) 7’ ,f
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__________ @, [/

-
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Q

|

s>
1t
[

n-dimensional
linear system

@ '

Lo .
8 =

A .4
[ X = E(x/Zt, ’1t)

E(S/Zt)

‘.—J

@:

{
L................._..r.... —

Figure 2 Optimal Controller §

opt *

a*

=

— et
g%

Block (' is a static linear map of % and 2 to v similar to @ in Figure 1,

i, e,

wt) = Sl(t)?t(t) + sz(e)ﬁ(t)

(9)

Now suppose II fixed his strategy at Bopt(Y*) z p* as determined

above, we shall show that Eq, (6) precisely defines the optimal strategy

fory

opt’

Thus y*, B* constitutes a saddle point pair to (5) and
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consequently solves the problem, To see this, let us consider the
combined dynamic system Eqs, (1) (2) and blocks @' @‘ as appeared
to I, They constitute a 3n-dimensional linear dynamic systems

(with states (x,?c;ﬁ)): 2n from Eq. (1) and blocks @ ', and @'; n from

block @ . Furthermore, using (9) the payoff (4) becomes

t
f
- 1 T T T
J! =-2-E {(x Sfx)tf+jt (u Ru+[x§\:’§ [»]) [:}])'dtlztl (10)
2
s
where
M 0 0
- T T
9 = 0 'Sl QS1 --S2 QSl

T T
o -5 Qs, —S2 Qs,

Thus I sees for fixed g a standard LQG problem with 3n state variables
to which results 2 and 3 again apply.
We have

ult) = K () E(x/2,) + 1<2(tm(§e/zt) * Kyft) E(é/Zt) on

However, since all outputs of block @ are Zt-measuramc by construction,
they are deterministic as far ag I {s concerned, In fact, by definition
and the requirement of Eq, (6) they are also outputs of ¥ that we are in
the process of determination, Thus they need not be estimated or
computed, The states of (I)' and (@ ', f.¢., % and X can be estimated
via result 2, i, ¢,, we have

x, % Elx/Z,) x, & EG(/2) 1 BEX/Z,, Y /Z) = E(x/7,) P

which are computable via a block @" by regarding @'. @ ', and @'
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A

I

X

Figure 3 which is simply a rearrangement of Figure 2,

¢

as a new block (D". The 3tates of @",' an n-dimensional linear dynamic
system, is Xy which by construction and definition is precisely the state s
of the block @ and is the conditional mean of both x and % given Zt'
Consequently from result 3, we conclude that the optimal control u can
be produced using a linecar combination of X, only in a block @” i.e,

Eq.(11) becomes u(t) = [Kl(t) +K,(t) + K3(t)]xe(t). This is shown in

- ) —/

31

[=¢4

z V%

@.:

|
-

|

— —— ——— oo— ——— ——— e Wt s ot ]

Figure 3, Optimal Controller Y*

Finally, it is worthwhile to clarify the meaning of the strategy ¥* as com-

pared to other strategies. Lot (1°, 8% be the minimax strategy pair

determined according to [3] (the prior commitment model), At time t = to

if I has to make a commitment to a strategy for playing the rest of the
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game , v certainly represents a reasonable choice (similarly for Bo)

since
Tlvx, #) > Tlvx, 89> T(r°, 89 (12)*

On the other hand, as soon as the game has progressed for some time,

we have at t> to

s:IA::?V TUYC, )2 TvC, ) 2 TU(v, B¥) (13)
From the vantage point of I at t, 1% becomes a rather unsafe strategy
for the rest of the game compared to ¥*, To be sure, we still have
T (y*, 8% 23"(Y°. BO). But there is no compelling reason to believe that
II will definitely play B° as explained in soction 2, Conceptually, at
t> to‘ we use (v¥, B¥*) for the purpose of determining u(t) only, Att>t,
we have a different 7" based on new information and a different minimax
game to solve, A different (v¥, #) will be usud to determine u(t'), In
general, this would require the solution of a TPZSG for cach t, However,
in the LQG game being discussed here, a great practical sintp;ification
occurs due to the fact that the parameters of v*, B*, i.e., Sy, 5; in Eq.(9)

K KZ‘ KS' in Eq, (11) (sce also Eqs, (5, 9) (5, 11) (5, 15} (5. 17) next

10
section) are completely independent of 2 ¢ and ¥ ¢ Consequently, they
can in fact be computed beforehand, In other words, the different

{v*, 8%) pair I determines for cach t> t, ave in fact indepeondent of the

actual 2 v Note, however, this does not mean that we advocate I should

commit himself to ¢* beforchand, Conceptually, he uses v# at t to

 ——
Note this w ddﬁuront {rom dociding what value to use for uft ), v(t )
In fact (Y , 8§)and (v¥, £) will produce the same u(t ) sinc
Zt = Y .

o o
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compute u(t) only, He then re-solves for Y* at each different t and uses
the new (but identical) Y* to compute the new u(t), In practice, what this
means is that he must have secrecy if he decides (i, e,, commits
himself) to adopt the posterior strategy Y*, He should convince his
opponent that his decisions are made as the need arises and that all
his options are open at all times, If no secrecy is possible and he musc
announce his strategy beforehand then Y° should be his choice.

Note that under the fictitious* saddle point condition when (Y%, §)
are employed, the block@ and Y* are identical as well as the outputs
8, § and u, 4. of course, if we choonse to use a different § # g% by
say, using a' # Y%, in such a case u thands ¢ 3, and X, X, can no
longer be interproted as conditional means, However, J1"(V¥, g*) > Tr(re, 8)
in this case by the derivation just given, Consequently, the minimax
security level of {5) {8 achioved when we render 3 such that the Y block
is identical to @ block in Figure 3, in other words, under the con.
ditions stated, the worst that Il can do to 1 is to use the strategy 8%,
and the & st counter strategy is Y& with T"(¥%, %) the security level
at time £, Of course, in real lile when II does not have available
both the information 2(2) and y(t), I can probably expect better returne
thian J"(v2, B*).

5. Existence Qluestions and & Simple :Example

8o far we have not addressed ourselves to the quaation of exiatence

e
fictitious in the sense that this game is solved only for the purpose of
computing I's security payoff.
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of the solution which was derived in the previous section, Since the
solution is obtained by solving a pair of coupled stochastic control
problems (Eqs,(4.5"'), (4 5'") and 4, 6}}, the existence question is
directly dependent on the existence of solutions of a set of coupled
Riccati equations associated with the control problems. The explicit
form of these Riccati equations while straightforward to write down
is rather cumbersome notationally in the general case. Nor is it
possible to state simple and meaningful sufficient conditions to guarantee
the existence of the solutions to these DEs, What we propose to do in
this section is to carry out the derivation of the explicit solution for a
very simple problem to show the various equations involved, The
procedure is completely simitor in the general case,

Let the scalar dynamic system and observations be

L -
Xxsutvy .\(t(') ~ N(xo. po) (1)
dz = xdt + de ) are statistically independent (2)
: » ¢ standard wiener processes
e ¥
dy 2 xddt 4 de with zero mean and (3
voriance ¢«
0
and payolf
2 '
| 1 ¢ 2 2
T :-2' 5 (Q{) 4 3 |( (u‘ <2t ()
o
Let 72 be given by
de = asedt + hels ‘ {5
[V AN » {6)

where a, b, and ¢ are parametors to be determined, From I's viewpoint

of a secure strateqy, I maximizes at £ L
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f
2 2
E[¥/2,, ¥,] = E{3x (t) +a th (c?s? . ZVZ)dt/Zt,Yt} 7

!
)
é
i
'Zl‘ S
|
!

subject to (1), (5), and (6). Using standard LQG results, we get for

allt>t
- 0
dX = (c8 + v)dt + p(dz + dy - 28dt) fw‘(to) = S‘co (8)
dS = aSdt + bdz S(t) =%
0 o]
where
b= -2p (t,) = (9
p=-2p pt) =p,
and the control
1 A A
v =35I8, (X +5),(8)3) (10)

where

. $,, S , I
S(t)Q_' ll 'lz = 'S g ¢ - 0 b S . [} 02 -5 2 0 S(ll)
12 522 b a ¢ oa 0 c 00

1o
s(t,) =
f 00

in=

Eys, (8~11) define ﬁopt(Y’é‘). Now from the viewpoint of I, Bopt and (1)
define a 3n-dimensional lincar dynamic system

1

. . ALl A ) A
dx = (2- s“x ty Slzs +u)dt .\(t0)~ N(xo. Pe)
A 1 i A A
dx = (px + (2-8“~ Zp)Q +{¢ + ?Sxa)g)dt tpde + pdt x{to) Xy (12)
" A A A
ds = asdt + bdt a(to) X

with a payoff at time t > to
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f
12 2 1 2 R
E[/2,) = Bigx’(t) + jt [W*- 30 57 5,8, m Jat/z.)

2
S5 S

(13)

to be minimized, Once again using standard results, we first compute the
conditional mean of x(t) and Q(t), asy xe(t) and Qe(t). Note that since s is
Zt-measurable we have
e a,d a . D
drg = (3 S, R+ 5,8 +udt +5(t)dz - x dt)  x (t )X (14a)
A 1 A 1 A A -
dx = (pxu + (—z Su - Zp).\te + ~§S!2s +u)dt +pdz 47 R(t){dz - xedt) {14b)

[

2, “ ) A
E =X
’(Q 4] (4]

where
07 0 48 0 P
AR Bt L - T
ot = x PR S (15)
K M } : ,
iz Taal #2507 tA VI A TR
E T f -
" tl W f(, 0] P, 0
| S
. e P o 9
;fu‘:z ol L8

A A
Now setling by definition s = 8 = eec and noting the easily checked identity

E”(i) 2 ?‘z(t) + P, S’tz(t) g "u(i) . we can verify that

5 o M 14
x 00 2 X (0 2 B(x(1{2))

and we have finally

S ‘m
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2l -
dx = = (Su + SIZ)xe +u)dt +° ll(dz - xedt) (14y!
where
=%,5,-3% 2 S T = !
uSn - In - P nite) = Po (15)
Furthermore,
2 A A .
u =K, (tx + K (%, + K, ,(t)s) (16)
= (K * Kpp + K3,
where
w -
0 0 0
e T | 2 ’
K= =.KA - ATK 4y |0 S S¥p (n
0 S&, S2
0 e e
1 ¢ 0 1 00
v looo of kK« K= 0 0 0
6 0 0 0o o0 0
.y
~and
U VR L. ]
0 g8y Tw
R P P A
AT 12
Lo e
‘The consistency requirement of Fq. {3, 6) now specifies

(18)

e 2 -(Ky * Kpp ¢ Kyg)

1)
Bt
L
¢ .




b1y, (19)

a=g(S,+S ) -btc (20)

If we substitute Eqs, (18-20) into Eqs. (9), (11), (15"}, and (17), they
form a set of coupled nonlinear differential equations of the Riccati type.
Their solution completely specifies the secure strategy v* via Eqs. (5),
{6), (18-20), Consequently, the existence of v¥ is equivalent to the
existence of solutions of Eqs. (9), (11), (15') and (17).

6. Practical Implications, Open Problems, and Conclusions,

There are several implications of the results obtained that are
worth further discussion,

First of all, il should be understood that the strategy we derived
for ui,e., v¥, is secure only with respect to a set of assumptions
which we assert to be reasonable, Roug-!!ly speaking, we allow our

opponent to know everything that we miay know, This seems to be as

pessimistic an assumption as ane would like to use, It appears paranoid
to assume that the other player can have access to knowledge concerning
the choices af Nature, {e., vatues of £(0), cft), w(1) ete,, beyond the

probabilistic knowledge that are already permitted in the statement of

the original problem, Qur assumption is also in line with other approaches

to the control of uncertain svstem {6, 7], They have taken the
vicwpaint that such problems may be repgarded as o game against an
opponient (Nature) where the upper value of the game {8 sought, In other
words, the opponent {Nature oy uncertaintly) makes the moves knowing
everything you have kaown and/or have done,

In this respect, the derived solution has an addittonal appealing
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feature, Consider the linear stochastic dynamic systems
dx = (Ax + Bu)dt + Cdw +vdt (1)
dz = Hxdt + dg (2)

where v(t) represents terms which arise due to approximations and
inaccuracies in modelling of the real (probably nonlinear and nongaussian)

system, Now if we consider a payoff
t
1. T T
J =-5E1(x S[x)tf + L (0" Ru)dt } (3)
o

and a size-of-approximation constraints

t
Eor

Ef vivdte A (4)
tO

then the rosults in section 4 state that a "pood" control law in this

situation is an n-dimensional linear dynmmic system followed by a zero

memory tinear map, This explains the almost unbelievable robustness
of the structure of the well known optimal control law (Results 2 and 3)
in widely diverse applications \;vh(‘rc tinearity or gaussianness has
been clearly violated, In other words, evvept for parameter values,

the linear structure of % remaing appropriate (L e, . safe) in highly
nonlinear and poorly defined situations. s fact, the above discussion

inyplies that optimal' stochastic control of nonlineay systém Can now

be atteroptud by finite dimensional optimizntion on the parameters of

ve  The engineoring significance of this cannot be overstated,

The recogaition that in the delayed vommitment mode all stochastic
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game in extensive form are nonzero sum raises iateresting problems as
well as possibilities, In this report we have only explored two solution
concepts associated with NZ8 games, namely, Nash equvi.librium and
individual minimax solutions, There are many other solution concepts
involving bargaining, coalitions, etc, For example, we can visualize
that the two players may wish to enter into information exchange during

the play of the game,
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