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I
ABSTRACT

Selected recent developments in chance -constrained programming

both published, unpublished and new, are presented in a framework

which unifies the many variants of probabilistic programming under

the rubric of chance-constrained programming. Developments pre-

sented range from two stage linear programming under uncertainty,

through acceptance region theory, and cross cýance-constrained games.



1. The Origins of Chance-Constrained Prograxaming

The fundamentals of chance-constrained programming (CCP) are

now nearly two decades old. During this time, theoretical research and

practical applications have clarified and strengthened the original ideas,

injected new insights into the meaning of chance constraints, and led to

the development of important new classes of probabilistic programming

models. Regretably, this development has been accompanied by a pro-

liferation of terminology, symbology and essentially equivalent model

formulations. Consequently few attempts have been made at presenting

a unified summary of CCP results. In the remainder of this paper we

present a summary of the most significant recent results. First, however, we

recall the circumstances surrounding CCP's original development.

CCP was originated by Charnes, Cooper and Symonds [591 in the context

of developing a planning and operations model for Standard Oil of New Jersey

for the scheduling of heating oil manufacture, storage and distribution with

weather-dependent demand. Initially the situation was modeled as a con-

strained game against nature [461. The constrained game approach, however,

was not entirely satisfactory. While the constraints on the permissible

strategies of nature were substantially better than none at all, the "clair-

voyant malevolence" of nature implicit in the rminimax solution did not seem

appropriate to the behaviour of weather.



-2-

Another important consideration was that while the policy of the

company as the major supplier of a product of national importance was

to supply all emergent demand, one could find random considerations of

weather whose associated demand would be impossible for the company to

meet from its available resources. Indeed, it was discovered on further

investigation that several incidents had actually occurred in the past in

which the company could not meet the demand. On these occasions, extra-

ordinary measures, outside the company's control, had to be taken to

alleviate the crises.

A model was therefore sought which (a) did not place nature in the role

of a clairvoyant malevolent competitor, (b) would express a "policy" as a rule

which was to hold almost all, but not all, the time, and (c) would develop

a plan and an operationally implementable procedure for "most", but not all

randomly emergent situations. These challenges chance-constrained pro-

gramming met through (a) representation of nature more classically via

joint probability distributions, (b) representation of a "policy" as a "chance

constraint, " and (c) posing the problem of chance-constrained programming

as determining from a preassigned admissible class a vector of stochastic

Ic'~i'on rules whic-htwould ztizy the ehanr- r-nctrjintg and optimize the

expected value of a preassigned functional.

It is clear that within these prescriptions chance-constrained pro-

gramming may be considered a method of tremendous flexibility with innumer-
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able individual possible variations or models. A chance constraint, e. g.

the requirement that a given function of the sought vector satisfy a given

condition to at least a prescribed level of probability, admits as many

interpretations as does the probability cperator, e.g., total or conditional,

etc. Again, where a system of constraints is desired to hold, chance constraints

may be imposed individually on the members of the system ("individual

chance constaints") or jointly ("joint chance constraints"). One might employ

functionals ranging from minimization of expected costs to maximization

of the probability of some event. Additionally, the preassigned class of

admissible stochastic decision rules, which represent the operational

prescriptions of the model, can range from preset parameters to be deter- I
mined ("zero-order decision rules") to the most general class of "infor-

mationally feasible" measurable functions of sample points of the random

variables, and, non-operationally, to "clairvoyant" rules. In any particular

situation to be modeled, of course, the choice is in the hands of the statis-

tician to select the blend of representation of the real features of the situa-

tion with an effectively operable and qnalyz,'oie structure.

From the work of Charnes, Cooper and Symonds it was immediately

dppart-Wr that 11hc CP ?ý--ccr h pc,'c"ntiallly gr:a* applicability to a far

wider class of problems than those of scheduling the production of heating

oil. Thus, tbeoretical work continued in parallel with the original application

effort in order to establish the beginnings of a framework for future theoretical

4
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developments as well as additional applications. (see 121 for an example

of early results of such work). Since these beginnings, interest in CCP

has mushroomed and the list of individuals making contributions grows

longer annually.

To illustrate more concretely the nature of the opportunities and the

difficulties of chance -constrained programming, we turn now to a mathe-

matical representation of the problem of CCP.

2. Definition of Chance -Constrained Programming

The CCP literature contains a wide variety of differing formulations

of varying degrees of generality. All these formulations, however, possess

several common ingredients, including decision rules which must be selected

from some prescribed class, an extremization objective function, linear

or nonlinear constraints of the conventional deterministic type, and chance

constraints which stipulate that certain relations (equations or inequalities)

between various random variables and the decision rules must be satisfied

with at least a specified level of probability.

In order to state the CCP problem in a typical but general form we

reproduce here the CCP problem as first presented in [101. Virtually every

formulation in the literature can be obtained by considering various special

cases of this problem.

J?



-5-

We use b (b ... b ) to denote a vector of random variables1,. m

b, i 1. . m with a known joint distribution function,

FMt = F(tI 1 . . t )=P( b. < !ti, i = 1. . . }
1 nl I

From its definition F is right continintis. Tlh subset of m space which

is the range of the random vector b will be denoted C' The operators 11

and E will denote respectively probability and expectation integrals; these

are to be evaluated with respect to the Lebesgue-Stieltjes measure (also

denoted by F) induced by the function F. The letter a will denote throughout

a given, fixed real number such that 0 < a s 1.

For any univariate distribution function G, the a fractile of G is given by

G-l () = inf(s: G(s) 2 a).

-1 -1
Thus, in general, G (G(t)) s t and G(G (a)) ! a, but if G is continuous at

G-1 (a) then G(G- 1 (a)) = a.

A decision rule (or rule) x(t), where X: Rm" Rn, is a vector function

which is a member of some prescribed nonempty subclass C of the Lebesgue

measurable functions. Examples of the class C which we will consider are-

(a) CO (x: x(t) x0 for all t], the class of constant or zero-order

rules.

(b) CL (x: x(t) Dt + d, where D is m x n, d is m x 1), the class

of linear or first order rules.

(c) CM or CPA or CPL, the class of measurable or piecewise ara1'NLi'

or piecewise linear rules, respectively.
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(W) Ck [x: xi(t), the i-th component of x, is an arbitrary measur-

able function of t1 , .. , ti some ji, and a constant function of t for

j > ji., the class of k-stage or k-order rules.

Note that ifj 0 for allithen C ,while ifji m for alli then
CkCCk -- C

m"

For our purposes, the interpretation of a decision rule is that x(b)

represents a decision which will be taken as a function of the random

variable in b. In j33, 34] the class of clairvoyant decision rules, in which

the decision rule is permitted to be a function of all the random variables

involved in the model, was introduced. This class of rules is important

for in principle evaluationof the importance (or value) of information and in

obtaining bounds on the optimal value of the objective function. The chance-

constrained programming problem with clairvoyant decisimn rules contains

as a special case the stochastic linear programming models of Tintner

155, 561. The special case results from the fact that the chance constrained

formulation also admits constraints which are required to hold only with

probability at least a < 1, whereas the constraints of stochastic linear

programming are required to hold with probability one.

The extreme opposite class of decision rules, in terms of the amount

of information which is employed by the decision maker in the decision rule,

is the class C of "zero-order" or "*pre-as, igr:,c•d parznieter" rule,. i fit-

term "zero-order", like the term "first-order", refers to what sort of

• r , r



-7-

mathematical functions of the random variables are involved in the rules.

In informational terms, the class of rules x(t) x0 for all t might bette.'

be ca!led the -lass of "non-,idantive" ri•les. I)fcision rtiles in l'isses

intermediatc between the "non-adaptive" and "clairvoyant" classes per :'nit

adaptation in response to observed values of the random variables.

When information (observed sample values of the random variable

becomes available stage-by-stage ,Ck' the class of k stage rules, may

correspond in informational terms to the class of informationallv feas Ule

rules. In [17, 18, 19] such rules have been considered in 'het context 'f

n period modtels in which the decision rule for the ktth period is permit .ed

to be a variable function of the random variables of periods 1 to k-l, but must

be a constant function of the random variableF of the kth and future pc -iods.

Thus, the kth period dei_ •sion is taken in response to all information awailable

then e.g. the observed values of the random variables of periods I to k-I

and in anticipation of values which may arise for the random variables in

periods k through n. One may consider the informationally feasible rules,

and all other n period rules in whir h less informitiro is us,,i, to be non-

randomized rul'f, in the sense that we require the decision x(b) to be deter-

mined once the appropriate random variables have been observed. Randomized

rules can of course be cmn-prehended under this rubric' by the device that

the randomization at -ach stage can bo considered as rcalized h1v random

drawing or sampling of other random variables prior to the onset of this

stage.
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Within the above framework we define the chance-constrained pro-

gramming problem as follows:

Select, if one exists, a decision rule x(b) with x . C which yields an

infimum to

Ef(x(b), 1)

subject to

PLg (x(bb) Oj a , .1) 1 0) 2 (1)

and

x(b) e K with probability one (w. p.1).

In (1), the functions f, g are assumed to be Borel measurablý_ and to

be such that f: Rn xRm 41I and g:1{ xR - I? "ae bethis assumed

to be some nonempty subrFt of in.

Example 1: Take C ý C (with k = 2) and j, 0 for i -,.... n1 and
k

"|i m for i n + 1, .... n. Then

xt) = Ix1 . . nl Flit). . Vnn-n t

Let

K = i(x, y(t)) : Dx z d, x > 0, y(t) Ž 01

and set

f(x(b), b) c X + c 2Y(b)

for fixed vectors c 1 and c 2 .

A
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Let J 2 and let g Ax + My(b) - b -g g 2 . let a, a 2

Then (1) becomes the two-stage linear programming under uncertainty

problem:

mrin cIx + Ec 2 y(b)

Dx > d, x : 0 (2)

subject to

Ax + My(b) = b, y(b) Ž 0 w.p. 1.

Example 2: Use the same choice of C as in Example 1, and take

1 2 12b = (b1, b2) where b = (b1, . *, bm), b = (b .+.., b_) so that

x(b) = (x, y(b 1 )). Choose K = ((x,y): x > 0). Choose J iii + (n - n1).

Let m = 1 for all j =1 . .. 1 J. Let g AJ X - b , j 1, . . m;

gi = AJ X + AJ Y(b 1 ) - b, j = m + 1, .. f.. f g. Y. (bl), j Fn + 1,.
21 22 '1 J I -rn

M• + (n - n 1 ); where the superscript j denotes the j-th row of the matrix.

Let f = C X + C 2 Y(b ) for fixed vectors C1 and C Problem (1) then

becomes

min C IX + EC 2Y(bl)

subject to

P(AJ X a b.) > a , 1, i .. m,

P(Aj X + Aj Y(b1) Z a , i = m + 1, ., (3)
21 22 j

and b 1
Y 0) > ab .Z Z ni + 1 ...... n.

3-• 3

This is the two-stage E model of chance-constrained programming.

If we interpret the P operation in the constraints of (3) to be a total
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probability operator, then we get the chance constrained model with total

probability constraints [see 8,19, 221. If we interpret P to mean that we

compute the probability using the conditional distribution of b2 given bI

then we get the chance constrained model with conditional probability con-

straints [see 17, 33, 34].

Example 3: If we use the same functions as in Example 2, hut re-

define f to be equal to l ife 1 x + c 2 y(b1 ) > a 0 and 0 otherwise, for some

prescribed L., we obtain the P-model objective of chance-constrained pro-

gramming namely,

min P(C 1 X + C 2 Y(bl) a L0 1.

P models have been discussed in 18, 35].

Example 4: If we now define f to be the function [C 2 Y(b - 12E(C2Y(b

then the objective becomes that of the V model of chance-constrained pro-

gramming [6], namely,

min var[CIX + C 2 Y(bl)].

Example 5: If we consider the case of (1) in which J-l, but in which

mI is not necessarily equal to one, the chance constraint becomes

Ptgi(x(b), b) a 0, i = 1 , m j a a

whe re

Rmxfn Igi: R x -R R

Thus we obtain a joint chance constraint. Models with joint chance constraints

have been considered in several recent papers, notably [11, 13, 42, 43].



For use in the following sectic)ns we write here some nonlinear and

linear joint chance -constrained problems with decision rule class C M

min Ef(x(b))

x(b) C K w. p. I

subject to

P (gi(x(b)) a b, all i = 1, m a (4 a)

and

x C C M

min Ecx(b)

x (b) C K w. p. I

subject to

P(Ax(b) z! b) 2t a (4 b)

and

x C C
M

Note that (4a) is specialized to the extent that g i Wb), b) is written

(with slight abuse of notation) as g (x (b)) - b and f .= Vx(b)), while in (4b),

gi(x(b), b) is a i x (b) - b where a i is the i-th row of the matrix A.

3. Properties of Optimal Decision Rules

In recent years, considerable effort has been devoted to establishing

properties of optimal decision rules for various probabilistic programming
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models, but particularly for the two stage and n-stage models described

in Examples 1 and 2 above. Results on the two stage linear programming

under uncertainty problem (Example 1) can be found in [49, 51 , 52, 53, 54).

These results show that the two stage problem can be rewritten in the form

of an equivalent deterministic convex nonlinear programming problem.

Several such deterministic equivalents have been established and algorithms

for their solution have been, or are being, developed.

A major issue raised by the two stage problem involves determining

conditions thber which the second stage constraints

My(b) = b - Ax

y(b) > 0

are consistent for all possible values of the random vector b and all first

stage decisions x. In the early work on the two stage problem it was simply

assumed that the second stage constraints were consistent. Subsequently

Kall [5 ] established the following result:

Kall's Theorem: For Ax = b to have a non-negative solution x for all

b.Rm it is necessary and sufficient that there exist p, L 0 and < 0

such that
m+k m

Z ",A. Z XA.
=m+l j= 1

where A. is the j-th column of (m + k) x n matrix A and A . . .,. A are

linearly independent.

A stronger result, which we have presented for some years in our classes

but not previously published in the literature, is the following:
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Theorem

A necessary and sufficient condition that Ax b, x Z 0 have solutions

for in linearly independent vectors 0 . . ., b and their negatives
+ -

is that there exist non-negative nx(m + k) matrices N , N such that

AN+ = I, AN" -I.

Corollary

Under the hypothesis of the above theorem, non-negative solution

vectors x exist for all vectors b e Rm, to wit,

x = b + N b

where

b+ = 1/2 fb+ Ibl).

Solution theorems and characterizations of the optimal decision rules

for the n-stage chance-constrained programming problem are given in

[17, 18, 191. For the two stage problem (Example 1) with the class of

informationally feasible rules, the main result is tke following:

Theorem

There exists an optimal vector of second stage decisions y(b 1 ) which

is a piecewise linear function of the vector of conditional fractile points

F2"I1 - a2) and the vector of first stage decisions x,

More useful results for special forms of A 2 2 and specific distributions

of the random vector b can be found in the literature. However, an

algorithm for finding the optimal piecewise linear rule does not exist for

the general two stage problem.
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4. Acceptance Regions in Chance Constrained Programming

In section 1 we noted the highly desirable aspects of chance-constrained

programming in allowing one to formulate plans and procedures for "most",

but not all, of the time, where the precise exceptional situations are locked

up implicitly in the problem and need not be known a priori. The fact,

however, that an optimal class of stochastic decision rules is determined

on the v`able system sample points (and indeed rigorous specification of

the problem requires explicit consideration of the unviable or "rejected"

regions) suggest analogies with the Neyman-Pearson theory of testing

statistical hypotheses. Thus the notion of "acceptance regions" for chance

constraints has recently been formulated by Charnes, Kirby, and Raike [10O

and applied to derive essential simplifications in chance-constrained pro-

gramming theory, particularly in the more recondite areas of joint and

conditional chance constraints.

To introduce the concept of an acceptance region we proceed as follows:
n m m

Let g(x,b) : R x R -. Rml. Let 7(t): H '- R be some prescribed

decision rule which is a member of the class C.

Definition: The acceptance region for the chance constraint

Pfg(x(b), b) 2 0] z a. under the decision rule W is defined as

Ag(r) = ft e Rm: g(X(t), 0 a 0).
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Definition: Let V (0) (t . Rm: g(T(t), t < 0). V (7) wil be
g g

termed the rejection region for the chance constraint Ptg(x(b). b) -' 013 a

under the decision rule V. The subscript g and the argument T will occasion-

ally be suppressed if no confusion would result.

We summarize some pertinent and elementary observations about the

rejection and acceptance regions in the form of a lemma. The proof is

obvious and will be omitted.

Lemma

(a) For any x ; C, V (x) and A (x) are measurable sets.

(b) A (x) = V '(x), the complement of V W.

(c) x 9 C is feasible (i.e., x(b) e K w. p. 1 and Pfg(x(b), b) z 0) z

if,and only if, Ptb z Vg (x)) :.- 1 , or equivalently P~b -c A (x)l Ž a,g g

x(b) e K w.p.1.

The regions V (x) and A (x) are thus simply the sets of those points for

which a given decision rule x violates or satisfies, respectively, the relation

g > 0.

Before proceeding to establish properties of optimal acceptance and

rejection regions for (1), we make the following two assumptions about the

functions f, and gj, j 1, ... , J and the set K.

I
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Assumption: The functions - f(x,t) and g,(x,t) are assumed to be

concave and twice continuously differentiable functions x for each t and to

be continuous as functions of t. The set K is assumed to be defined as

K = (x: hi(x) z 0 i C I1, where the hi are twice continuously differentiable

concave functions. The set (x: h i(x) z 0, gI(x,t) Z 0 for all i and 9) is assumed

to have a nonempty interior for each t. The set

(x: gj(x,t)Z 0, j = 1, . . ., JJ n Kn ( x: f(x,t) !;u]

is assumed to be compact for all constants u.

Assumption: It is assumed that one of the following holds.

(I) For each t, at least one of the f, or -hi, are strictly convex functions.

(ii) Nonnegativity constraints are present for all variables.

(iii) There are n-independent linear constraints present; Note that (ii)

is a special case of (iii).

Then, if (1) is "regularized", the following result can be established 1101:

Theorern

Let A = (A., j 1, .... J) be any collection of measurable sets. Then

there exists a measurable rule xA' for (I) such that xA* (b) C K w. p. I and

Ag jxA*) :Aj for each j, and such that f(xA*(b), b) r f(x(b), b) a.e. for all

measurable x having Ag W) ZA, for each j and x(b) e K w. p. 1.
3 -

As a direct result of this theorem we have the following:

.1

/
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Corollary

If there exists a rule x e CM which is feasible and optimal in the

class CM for (1), then for some A tA 1 ..... Al the rule xA*(t) is

also feasible and optimal for (1).

The importance of this corollary is that it says that if an optimal rule

exists for (1), then x (t) given by the above Theorem is also an optimal

rule for (1) for some set of acceptance regions A, j = 1, .... J. This

means we can view (1) as a problem of finding an optimal set of acceptance

regions rather than an optimal rule. Thus we have the followi ng important

result:

Theorem

Suppose that there exists an optimal rule for (1) with C C . Then
M

under A1-A3, (1) may be replaced by the equivalent problem.

Find an A = (A 1 .. ., A I with each A measurable which yields

muin Ef(x *(b), b)
A A

subject to (5)

PLb e A a j, j= 1, .. J.

Any A which yields a minimum in (5) will be termed a collection of

optimal acceptance regions. Thus, we may speak freely and interchangeably

about either optimal CM rules for (1) or optimal (acceptance) regions in (5).

. . .. . ... .
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In 110, 42, 43) it is shown how the latter may be used to advantage in

characterizing optimal classes of decision rules for certain problems,

and in constructing explicit solutions to others. These results are parti-

cularly useful in problems which have only a single chance constraint or

In which all the random variables involved in the problem are discrete.

5. Chance-Constrained Programming and Games with Random Payoff Matrices

We define a two person, zero sum random payoff game to be a two

person game in which the elements a of the mxn payoff matrix A are

random variables. We assume that the distribution function G of the

matrix A is known; the distribution of each a.. is the appropriate13

marginal distribution.

If player I plays row i and player II plays column j, the payoff from

player II to player I is determined by observing the random variable ai 3 .

In particular the actual payoff on any play of the game will be a.,(w) where
Ij

w is selected from the domain of a according to the known probabilityii

distribution of a
lj m

Let X (xI, x2 . x ), where 2 x. = I, x.0, be a mixed
21m i i i

wher 1 =11n

strategy for player I. Let Y = (y 1 . Y2 . .. y.. where 2 y= 1,

Y 0, be a mixed strategy for player I. Let Z(X,Y) be the observed

payoff when player I and player II use mixed strategies X and Y respectively.

Let u, v be independent rantuir variables such that P(u l) x. i 1, 2, ... m

I1
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and P(v-j) = yj j = 1, 2, ... n; and u and v are independent of the

random variables a for every i and j. Player I plays according to theii

sample value of the random variable u and player II according to that of

v with each plaVer unaware of the sample his opponent draws. Then if

u=i and v-j, the payoff is given by the random variable ai. It is then

straightforward to verify that Z(X,Y) has the following distribution
m n

P(Z(X,Y)< t) --=l E-- , P(aij <t0 x iY

i=1 j=:i 1 3

We assume that both players know the distribution function G of the

payoff matrix A.

One criterion for optimization is as follows:

Player I assigns a weight w(o) to each ý in the range of payoff levels

82
[S1, 2] such that i 'w(t) dt 1. The weight w($) indicates the importance

player I attaches to each payoff 0 in the interval[•l, 2 1. Thus player I

chooses the mixed strategy, X*, which maximizes the weighted average

of the probability of his obtaining a payoff level at least 0 e [5If 21 no

matter what strategy player II uses. Mathematically, the problem player I

wants to solve is:

max nin j$ P(Z(X, Y) t) w(t)dt = min j P(Z(X*, Y) 0 t) w(t()dt.
X Y 01 Y 1

It can be shown that this problem reduces to the following linear program:

max a
X m 82

such that xi f P(a. -- t) w(t) dt] > for every j
i=l1
m (6)

x. :1, x. Z 0 for every i1 1 1 1
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In the special case where we define w(t) to be the l)iracdelta

function with nmns point at $, problem (6) reduces to that of finding the

optimal strategy for player I in the deterministic game with payoff matrix

(P(a _-O].

Suppose now that rather than using the optimality criterion of (6)

player I wants to maximize his payoff level g, subject to the constraint

that he achieve the payoff level 0 with at least a prescribed probability aL,

no matter what strategy his opponent uses. We suppose a > 0 since other-

wise the problem is unbounded. This problem can be expressed mathe-

matically as:

max

such that min (P(Z(X,Y) z g) 2 a (7)Y

which is equivalent to:

max 0
m

such that x. P(a . 0) a a for every j (8)i=l ' ii

m

x. = X
i=I

x Z 0 for every i

where a is given constant 0 <a ýr 1.
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Because of the form of the cunstraints of (8) the problem is not only

nonlinear in the variables x. (i61, 2 ...... m) and $but also the region

of feasible solutions may not form a convex set. Despite the problems of

nonconvexity, an algorithm for the solution of (8) is given in [581.

In papers now in preparation, various results are developed for models

in which:

(a) The players have no information about the distribution function

F(A) of the random matrix A.

(b) The players have a partial ordering on the probabilities of the

states of nature of A.

(c) The players know bounds on the probabilities of the various

states of nature. That is, the players know that a < p(k) < b wherek k

a , bk are given, k =1, 2, ... , K.k k

(d) The players have complete information about the distribution F(A).

In addition, models are being developed which involve other optirnality

criteria and in which additional constraints are placed on the possible stra-

tegies of the players. These latter models are extensions to random payoff

games of the original work of Charnes [56] on constrained deterministic

zero sum games.
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