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FOREWORD

This teport was preparyd % nerconnel of the Flight Mechanics Divicion
of the Air Force Flight Dynamics Laboratory and the Digital Computation
Livi.ion ot e Aeronautica:r oystews Vivision, The report was prepared
under Project 1431, “Flight Path Analysis,'" Task 143109. "Trajectory
and Motion Analysis of Flight Vehicles.'" The formulation and interim
documentation were completed by Capt. Urban H.D. Lynch. Programming
was accomplished by Mr. Fay 0. Young of the Digital Computation Division

(ASVCP),Computer Science Center, Aeronautical Systems Division.

This report is prepared by Capt Lynch and Mr. John J. Dueweke of the
High Speed Aero Performance Branch (FXG), and combines the applicabie
portions of FDL-TDR-64~1, Part 1, Volume 1, with the interim documentation

prepared by Capt. Lynch.

This report is divided into four parts:

Part |: Capabilities of the Takeoft and Landing Analysis Computer
Program

Part 11: Problem Formulatio

Part t1i: User's Manual

Part 1V: Programmer's Manua!l

This report was submitted by tire author in November 1971,

This technical report has teen reviewed and is approved.

o /%7%

A"/PHI P P. ANTONATOS
Chief, Flight Mechanics Division
Air Force Flight Dynamics Lab.
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ABSTRACT

TOLA is an acronym for a takeoff and landing anaiysis digital computer
program. This part of the report d.:cusses capabilities of the TOLA

program,

The program provides a complete simulation of the aircraft takeoff
and ‘anding problem. Effects simulated in the program include: (1)
aircraft control and performance during glide slope, flare, landing roll,
and takeoff roll, all under conditions of changing winds, engine failures,
brake failures, control system failures, strut failures, runway length
and control variable limits, and time lags; (2) Tanding gear loads and
dynamics for aircraft with up to five gears; (3) multiple engine
aircraft; (4) engine reversing; (5) drag chute and spoiler effects;
(6) braking; (7) aerodynamic ground effect; (8) takeoff from aircraft
carriers; and {9} inclined runways and runway perturbations. The program
is modular so that glide slope, flare, landing, and takeoff can be

studied separately or in combination.

Results from this computer program compared well with those of other
programs and actuai test results. The program is very versatile through
its completeness in the simulation of the many systems and effects
involved in the takeoff and landing probiem. Appiicacion i TOLA hac
shown the need for a total system analysis since many unexpected results

have been obtained.
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The TOLA program is ideal for dynamic tradeoff studizs in aircraft
design, landing gear design end landing techniques. The formulation is
programmed for both the [BM 7094/7044 1t Direcy Couple Computer
Ssstem in the FORTRAN |V Computer Language and the CDC 6L40OC/6500/6600

Scope 3.3 Computer System in the FORTRAN EXTENDEL Computer Language.
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NOMENCLATURE

total vector force acting on aircrafrt

total mass of aircraft

inertial vector acceleration of nominal mass center

number of gears

mass of moving part of kth gear

vector acceleration of mass center of m, relative to aircraft
total vectcr momeat acting on airc;aft about nominal mass center
aircraf. moment of inertia tencor about nominal mass center
inertial angular acceleration vector

inertial rotation rate vector

vector from nominal mass center to the wing-gear root of kD gear
vector from wing-gear root to mass center of my

desired angle of attack

nominal elevator trim position

actual angle of attack

da/,,

da d/ 4,

rate feedback constant

allowed angle cf attack error

desired elevator position

elevator deflection/error constant
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SECTION |

INTRODUCTION

The design of an aircraft requires that the tanding gear system
be designed to interface properly with the airframe and to be compatible
with other systems affecting takeoff and landing performance. Of these
systems, the primary ones are the landing gear system, the power system,
the elevator control system, and the rudder control system. Usually,
the landing gear design is based primarily on vehicle initial impact;
the power system requirement is based primarily on climdo or cruise
performance; elevator size is based primarily on vehicle rotation at
liftoff airspeed; and rudder size is based primarily on engine out
conditions. The firal evaluation of all these systems during takeoff and
landing, however, lies in the answer to the question: How do all the
systems perform as a unit? The TOLA (takeoff and landing analysis)
computer program attempts to generalize the aircraft, the capability of
the main aircraft control systems, and the landing-takeoff situation
into a single comprehensive calculation to answer thic guestion. The
program does not perform the design function; it simply takes input data

on the systems and computes dynamic results.

The program is very versatlile through its completeness in the
simulation of the many systems and effects involved in the takeoff and
landing problem. The following iist of complex problems are within
TOLA's capability and are suggestive of its completeness:

a. What effect does limited runway length, changing winds, and

engine failure have on a go-around decision for a particular situation?
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b. How does a change in the control schedule for the landiny roll
affect maximum gear loads? (Spoiler activation and not initial impact
appears to play a significant roli here.)

c. What limitations would have to be placed on the landing if one
strut failed to brake or to extend from the fuselage?

d. With multiple engine aircraft and a thrust reversing capability,
is it safe to have some engines in reverse durirg landing in view of
possible engine failure?

¢. How nonsymmetrical can the landing impact be and yetprovide an

acceptable landing?

This part of the report discusses the TOLA simulation and its

capebilities by specific application to the Air Force C-5A aircraft.

}
&
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SECTION 11

PROBLEM ANALYSIS

1. DEFINITION

In this report, the landing problem Is broken down into four main
areas: glide slope, flare, landing roll, and takeoff roll. For the
glide slope, the basic requirement is to remain near the glide slope
position and come down at a constant inertial speed. For the flare,
the basic requirecmert is to touchdown at a desired sink rate and landing
speed so as to meet the limitations of expected landing roll distance and
remaining runway length. For the landing roll, the basic requirement,
is to scquence the spoilers, engine thrattle, thrust reversers, drag
chute, and braking to bring the aircraft speed down to the taxi speed.
For the takeoff roll, the basic requirement is to rotate the aircraft
to thr lift-off attitude at the proper airspeed. These requirements
must be met subject to changing winds, contrel deflection limits and
time lags, aerodynamic ground effect transition, engine failures, and

selected braking failures.

2. EQUATIONS OF MOTION

The equations of motion assume that the main aircraft frome is rigid;
the dynamic effects of up to five independent landing gears, owever,
are Included in the equations. Equations | and 2 are the two-vector
rigia-body equations of morion when moving gears are included (for

details see Part !i).
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Fr=mg R + gimk LN (1)
— 3 . — K —
Mo = Iy Wp+ Wox (T @) + ka [(ng + Tuc]" (ﬁc)k (2)
k=1

3. LANDING GEAR

The landing gear model, shown in Figure 1, is a double air chamber
oleo strut with balloon tires, similar to that used on the C-5A
aircraft; the secondary piston and air chamber can be eliminated from
the problem, if desired. Each of the struts must lie in a plane parallel
tc the aircraft plane of symmetry, but the strut axis may be nonperpendicular
te the longitudinal aircraft axis. The position and velocity of each
strut and secondary piston are obtained by numerical integration subject
to position constraints (for example, the main strut must move within
the limiis of the fully extended position and strut bottom position).
Orifice coefficients can depend on the direction of oil flow through
the orifice. Winy-gesr root friction (i.e., bindina friction between
moving strut and its support at the wing) is also included. Tire forces
depend upon tire deflection and a coefficient of friction which is a
function of '‘percent skid" (i.e., the ratio of tire footprint velocity
to axle velocity). Tha c<imulation is desianed to consider that the

gears may bounce off and back onto the runway.

¥ TR T erer o ST Ve
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. UPPER AIR CHAMBER

i __.- PRIMARY METERING ORIFICE
L _ .. — SECONDARY METERING ORIFICE

. —SECONDARY PISTON EXTENSION STOP

/ M,_.,,~~~fSEC0NDARY PISTON
air |1 —-—SECONDARY PISTON COMPRESSICN STOP

———LOWER AIR CHAMBER

Figure 1. C-5A Strut Configuration

L, AUTOPtLOT

The function of the autopilot is to specify the magnitude of the
control variables (within the capability of the aircraft) that will
result in aircraft performance to satisfy the basic requirements of the
glide slope, flare, landing roli, and takeoff roll. As such, the
autopilot performs three functions:

(a) Senses errors;

(b) Defines a maneuver to correct the errors; and

(c) Specifies the magnitucdes of the control variables to achieve

the corrective maneuver.

Figure 2 is a basic functional diagram of the autopilot. The
maneuver logic takes information on the state of the aircraft, computes
errors, and defines a corrective maneuver bv specifying angle of

attack, angle of sideslip, roll angle, thrust, condition of engines
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DES IRED CONTROL
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VARIABLE

RESPONSE
T

ACTUAL CONTROL
VARIABLE MAGNITUDES J

Lo ]

Figure 2. Aircraft Autopilot

and brakes, and the staging of events such as spoiler actuation, kill
power, reversing the engines, drag chute deployment, and brake actuation.
The autopilot control systems then take the output information from

the maneuver logic and determines the desired magnitudes of the control
variables. These values are then sent through a basic model of control
variable response where control variable lags are simulated. The actual

control variable magnitudes then determine aircraft response.

Figure 3 shows the maneuver iogic and autopilot control system in

more detail.

6
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Figure 3. Autopilot Contrnl Systems
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a. Maneuver fogic

The maneuver loyic is divided into four main phases: glide slope,
flare, landing roll, and takeoff roll. The glide slope phase determines
the trim angle of attack and thrust needed to maintain the inertial glide
slope velocity magnitude and direction. In a cross wind situation, the
aircraft is ''crabbed' into the wind. Long period motion in the glide
slope vertical plane is damped by modifying the trim angle of attack
command, and long period moticn in the horizontal plane is damped by

commanding slight roll angles about the level wing position.

The flare phase begins at an arbitrary altitude set during data
input. The aircraft is then required to perform a constant acceleration
flare that results in touchdown at & specitic vector position and vector
velocity, which are limited by an expected landing distance and known
runway length. Because of the slight lags and overshoots in aircraft
response, the possible effects of engine failures, wind changes, and
limited aircraft flare capability for a given situation, the magnitude
of the constant acceleration is continually updated subject to acceptable
touchdown constraints. A '"hold mode' is entered as the aircraft nears
the ground, where all controls usually remain fixed except for a decrab
in the case of a cross-wind ltanding, and a possible pitch maneuver to
limit the maximum pitch angle near the ground. A "kill power' option

is also provided in the hold mode If desired.

The landing roll phase begins as soon as any one of the gear tires

touches the runway. From this point, nearly all control is Jdetermined
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by time after impact. The following events can be staged, if desired:
deploy spoilers; deploy drag chute; kill power; reverse engines; apply
brakes; brake failures; and a gradual change of elevator position.
Throughout the landing roll, roll control is reduced to zero and the
yaw autopilot attempts tc keep the aircraft's longitudinal axis parallel
to the runway center line. The landing roll can be terminated on either

position, velocity, or time.

The takeoff roll phase begins from a near equilibrium position for
the aircraft and landing gears. Throttle position is commanded at a
"takeoff'' value. The elevator deflection is left at a fixed input value
until a particular takeoff airspeed is obtained. At that time, a takeoff
angle of attack is commanded. As with the landing roll phase, ro!l
control is zero and the yaw autopilot attempts to keep the aircraft's
longitudinal axis paralliel to the runway center line. The takeoff roll
phase is terminated on a preproqrammed aircraft altitude above the

runway .

Prior to entering the autopilot control systems, a check on engine

failures is made.

b. Autopllot Controi Systems
Five major autopilot control systems are simulaced: pitch, yaw,

roll, throttle, and braking.

The function of the pitch autoplloet is to command the alevator

position to achieve the desired angle of attack received from the maneuver

Y |
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logic. Let us examine Figure 4. The pitch autopilot first evaluates

the nominal elevator trim position, & by evaluating the static

qn’
aerodynamic pitch moments at the desired angle of attack and the engine

thrust pitch moments. The angle cf attack error signal, a is composed

o s
of a pasition error and a relative rate feedback error. The amount of
rate feedback error is determined by an input constant, Rfg . The angle
of attack error signal is allowed to have a fixed error, Aa {also set
by data input). If the angle of attack error falls within the allowad

fixed error, the desired elevator position, & becomes the nominal

qd?
trim positicn. If he angle of attack error is cutside the allowed
fixed error, the desired elevator deflection is a linear combination

of the nominal trim position and a constant, Py, times the angle of
attack error. The desired elevator deflection is finally limited by

the upper ard lower deflection limits of the elevator. By appropriately
selecting the allowed error constant, the rate feedback constant, and
the constant defining the ratic between elevator deflection and angle of
attack error, a pitch autopilot can be built to meet the needs of a

specific aircraft configuration. The yaw and roll autcpilots are similar

in concept to the pitch autopilot.

The function of the throttle autopilot is to command throttle settings
that result in the thrust requested by the maneuver logic. The throttle
autopllot can simulate up to four independent engine locations. A
throttle fix logic is provided so that any of the engines may be fixed
forward or reverse. The remaining engines not in a fixed mode are
variable throttle and are required to complement the fixed throttle

engines in achieving the thrust requested by the maneuver logic. This

10
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Figure 4. Pitch Autopilot Schematic
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allows tanding studies to be done with some engines in reverse and othor:

forward. In either the fixed or variable modes, almost any combination

of engine tailures can be staged. When an e¢ngine failure combination

vccurs, the remaining variable engines are required to meet the requec. d

. chrust if physically possible; they can also carry different thrust loads,
it desired. Wwhen engaging reverse thrust, a throttle constraint can be
applied, if desired; that is, one can require the actual throttle setting
te be belo. a fixed value before engaging reverse, There are no

cons. ants in going from reverse to forward thrust.

. Tne brake autopilot contrels the braking moment applied about the
. .‘»'. axle of cach gear strut individually. Four options are provided for
cach landing gear: (1) a constant braking moment set for each gear
> X at Jata input, which is similar to applying constant braking pressure;

{2) 3 controlied braking option, in which wheel angular specd is
controlled by the braking moment to keep the ‘bercent skid'' of the
tirtes @ constant; this indirectly controls the tire-rumvay coefficient
of friction to be a constant; (3] o failure mode simuluting no braking
moment ; and b oa failure mode simulating a locked sheel where the tire
rotatiovnal spe 4 would be cerc. The staging of o raking optioos for

each gear is done in the brake tailure lougic.

5. COMPUTER OQuTPUT
The output information un TOLA is explained ir Jdetail in Part 111

of tnis report. The following word Jdescription of the output is
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presented to give the potential users an idea of the kinds of information
computed:
a. Six-degree of freedom information for the general airframe.
b. Complete information on the state of the maneuver logic, five
autopilots, and conticl response.
¢c. Complete informaticn on the dynamic state of the five landing
gears,
The next section shows some calculations done on the Air Force C-5A

aircraft ond presents a major portion of the output mentioned above.
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SECTION 111

ANALYTICAL RESULTS

1. GLIDE SLOPE

Figure 5 shows the changes required in trim angle of attack, ay ,

trim thrust, Ty, and trim elevator position, 3.,, to maintain glide

qn
slope position and velocity as the C-5 A aircraft begins the transition
into ground effect. The calculation hegan with the aircraft in a trimmed
condition on the glide slope at 300 feet altitude. The glide slope

was terminated at 100 feet altitude, where the flare began. Error in
glide slope altitude was maintained to less than 0.5 ft, and in velocity
down the glide siope tc less than 0.5 ft/sec. (Note that the angle of
attack and power required to maintain the glide slope are reduced, and
that even though the pilot wants to nose the aircraft over, the required

reduction in thrust and increasing effectiveness of the horizontal

stabilizer dictate tha: he pull back on the stick.)

Figure 6 shows results for the same glide siope situation except a
sudden 20 ft/sec .cidwind is encountered at approximately 300 ft altitude.
Glide slope position and velocity are controlled very well., Phugoid

damping was essential to maintain the glide slope vertical position.

Figure 7 shows the resulting cross range control for a sudden right
sidewind encounter of 20 ft/sec at 300 ft altitude foliowed by a right
outboard engine failure at 200 ft aititude. The alrcraft is 'cra*hed"
into the wind to take out the major cioss range aisrurbing force and is

rolled slightly right and then left to dampen out horizontal osciliation:

14
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and maintain the ground track. The yaw autopilot and throttle autopilot
response to the right outboard engine failure is so quick that little
noticeable perturbation in glide slope performance occurs. The lower part
of Figure 7 shows the rudder trim required because of engine failure.
Imnediately on failure the left rudder trim required is 7.43 degrees.

In this particular calculation, the remaining .three working engines were
requeste.i to each carry one third of the required glide slope thrust.

As the three working engines come up to power, the rudder trim gradually
increase: <o 9.40 degrees. Because of ground effect, the required
thrust in the glide siope decreases and so does the required rudder
trim. Glide slope altitude error was less than 3 ft and velocity error

was less than 0.5 ft/sec.

2. FLARE

Figure 8 shows nominal flare perforimance for a case of unlimited
runway length. It was initially requested to set the aircraft down at
runway position +100 fr, at a sink rate of | ft/sec, and a landing speed
of 200 ft/sec. Since plienty of rumvay exists, the flare logic elects a
nominal runway touchdown position of approximately +850 ft and the touch-
down velocity constraints remain unchanged. Actual touchdown conditions
were as follows: runway position - +8390 ft; sink rate - 1.6 ft/sec; and
landing spsed - 197 ft/sec. Figure 8 shows the actual angle of attack,
a , and desired angle of attack, a,, sink rate, ground speed, and

altitude histories.

Figure 9 shows flare performance for the same situation as Figure 8

except there is a limited runway length that forces touchdown to occur
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no further than the 600 ft runway position. The flare logic senses the
situation and elects to touchdown at the limiting runway position which
requires a sacrifice of the desired touchdown sink rate from 1 ft/sec to
3.3 ft/sec. Desired landing speed remains unchanged. Actual touchdown
conditions were as follows: runway position - 585 ft; sink rate -

2.7 ft/sec; and landing speed - 199 ft/sec. Data plotted in Figure 9

is similar to that plotted in Figure 8.

Figure 10 shows flare performance for the same situation as Figure 8
except the aircraft is crabbed into a right sidewind of 20 ft/sec and
the flare is short, forcing touchdown to occur at least after the '000 ft
runway position. The decrab begins in the hold mode when the main gear
wheels are approximately 7 feet above the runway. Actual touchdown
conditions were as follows: sink rate - 1.48 ft/sec; runway position -
1167 ft; landing speed - 201 ft/sec; horizontal flight path angle -

-0.27 degrees, and yaw-angle - -0.68 degree.

3. LANDING ROLL

To show the capability of the simulation in the landing rol), one
complete landin, rell calculation is shown by computer plots. The
planned landing roll was as follows: landing weight - 635,850 lbs;
landing speed - 200 ft/sec; sink rate - 5 ft/sec; trim angle of attack -
10 degrees; inboard engines fixed reverse - 10,000 lbs each; outboard
engines forward at 30,000 Ibs each (engines had to be at idle speed to
actuate reverse); actuate spoilers | second after touchdown; begin
controlled braking {(coefficient of friction 0.2) at 2 seconds
after touchdown; begin engine reverse at 3 seconds after touchdown;

and begin elevator nose-over at 5 seconds after touchdown.

20
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Table | lists the major events throughout this particular landing roll.

Strut | refers to the nose gear, struts 2 and 3 to the forward main

gears, and struts 4 and 5 to the back main gears. Because the impact

was planned symmetric, the response is essentially the same for struts

2 and 3 and for struts 4 and 5. The simulation is capable of analyzing
unsymmetric impact. Figures 11 through 44 show the computer output

plotted every 0.05 seconds from O to 23 seconds to indicate the long-

term response of the aircraft. The actual integration interval --

obtained by a varlable-step Runge Kutta method -~ is much smaller than

the plotting interval, which explains what might appear to be discontinuities

in the plots.

Figures 11 thru 19 show the rigid body response of the main airframe.
Figure 1] shows the total ground reaction pitch moment that is transmitted
to the aircraft main frame by all five landing gears. tThe first negative
impulse (between 0.14 and 1.14 seconds ) was caused by initial impact of
gears 4 and 5, which are behind the aircraft's mass center. Spoilers were
actuated at 1.14 seconds, causing the aircraft to sink back onto the
runway, which produced a second, much larger, negative impulse between
1.4 and 2.54 seconds. Nose gear impact at 2.54 secunds caused the pitch
moment to go positive. The nose gear bounce¢ at 3.1% seconds, and
the pitch moment once again went negative. The nosc gear impacted for the
second and last time at 3.64 seconds, and once again the pitch moment
went slightly positive. The braking which began at 2.14 seconds, kept the

pitch moment negatlve,; the pitching moment finally damps abuut zero as

the aircraft slows to taxl speed.
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TABLE |

LANDING ROLL EVENTS

Time (Sec) Event
0.140 Initial impact of tires 4 and 5
0.160 Struts 4 and 5 move
0.760 Sink rate reduced to zero
1.06 Sink rate -1.307 ft/sec
1.140 Spoilers activated
1.690 Struts 2 and 3 impact and move and secondary
pistons in 4 and 5 move
2.140 Secondary pistons in 4 and 5 bachk, braking
2.540 Nose strut | impacts and moves
2.590 Secondary piston in | moves
2.790 Secondary pistons in 2 and 3 move
2.890 Secondary pistons in 2 and 3 back
2.3990 Secondary piston in | back
3.140 Landing reverse signal, nose gear | bounces
3.390 Nose strut | back
3.540 Secondary pistons in b and 5 move
3.640 Nose gear impact second Lime
3.69 Strut ) moves, secondary pistons in 4 and 5 back
5.14 Elevator nose over begins
9.94 inboard engines up to full reverse
3.99 Outboard angines tu reverse throttle constraint
16.84 Elevator nose over complete
17.59 Outbuard enygines at full reverse
21.29 Calculation stopped

23
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Figure 12 shows the pitch rate which begins at zero and finally damps
to zero. Figure 13 shows the pitch angle which damps to & slight nose
down attitude, caused mainly by the braking forces and reverse thrust.
Figure 14 shows the ground reaction force transmitted to the main airframe
normal to the longitudinal axis. Note that the largest load dozs not
occur on impact or even imnediately after spoiler activation, but is
1,180,000 1bs (almost twice the aircraft weight) at 2.80 seconds. The
ground reaction normal force finally damps to the aircraft weight, as

expected.

Figure 15 shows the total aircraft normal acceleration, which includes
all forces except gravity. As expected from Figure 14, the highest g
loading ocurred at 2.80 seconds and damped to -32.2 ft/sec?. Figure 16
shows the aircraft sink rate history. Impact occurred at 5 ft/sec, as
planned, went to a higher value 5.6 ft/sec after spoiler activation, and
damped (0 zero, as expected. Figure 17 shows the aircraft altitude
history, which finally damped to a stable value cf 19.05 ft. Figure 18
shows the longitudinal aircraft axis acceleration achieved by controlled
braking (0.2 coefficient of friction) and engine reverse., Figure 19
shows the landing speed history. The calculation was terminated at

12.80 ft/sec landing speed, at which time the aircraft had moved

down the runway 2650 7t from the impact point.

Figqures 20 tihrough 25 show the dynamic response of the rear main
gear, Strut 5. Figure 20 shows the tire deflection histo.y. Maximum
tire deflection does not occur on the first impact impulse, but on the

second impulse which occurs after spoiler activation. Tire deflection

24
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tinally damps to approximately 0.22 ft to support its portion of the
static weight of the aircraft. Figure 21 shows the ground force along
the strut axis; once again, the maximum load, 350,000 Ib, occurs after
spoiler activation, and damps to where Strut 5 finally supports
approximately 121,000 1bs of the aircraft static weight., Figure 22 shows
strut velocity which finally damps to the.expected zero value. Figure 23
shows strut displacement; the maximum displacement, 1.86 ft, occurs

after spoiler activation and approaches the bottoming limit of 2.083 ft.
Figure 24 shows the ground reaction moment about the wheel axle. The
first large negative impulse is due to tire spin up. Controlled braking
begins at 2.1h4 seconds; the braking moment to keep the tire at 0.2
coefficient of friction averages approximately 45,000 1b-ft. Figure 25
shows the tire angular rate history. The first negative impulse is due
to tire spin up. The angular rate gradually reduces us the aircraft

velocity slows to the taxi speed.

Figures 26 through 3] show the dynamic responsc of the forward main
A gear, Strut 3. Except for different impact time and magnitudes,
Figures 26 through 31 are similar to Figures 20 through 25 for Strut 5.
Figures 26 through 31 are presented primarily to emphasize the capability

of the simulation to individua. ize each gear location.

Figures 32 through 44 show the dvnemic respunse of the nose gear,
Strut 1. More output on the nose gear is shown to indicate the general
output capabllity that is available for each gear. Figure 32 shows the
tire deflection for the nose gear. Tire deflection for this gear,

0.59 ft, is the largest of _l] the gears. This large deflection is due,
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predominatly, to @ high impact velocity resulting from a nose down pitch
rate caused by the main gear initial impact. Note that the impact was
SO severe as to cause the nose tire to bounce off the runway between
3.14 and 3.64 seconds. Computer output showed the bounce to be about

0.13 ft for this landing sequence.

Figure 33 shows the ground reaction along the nose strut. Except
for the magnitude and bounce, this figure is similar to Figures 21 and
27 for struts 5 anc 3, respectively. Figure 34 shows the resistance
of the nose gear strut to movement. Flgure 35 shows the upper chamber
air pressure. Figure 36 shows the acceleration of the strut relative
to the airframe. Figure 37 shows strut velocity. Figure 38 shows strut
displacement. Figure 39 shows lower air ch: ~  ressure and indicates
that the secondary piston moved on once. Figure 40 shows tne secondary
piston acceleration relative to the main strut. Figure 41 shows the
secondary piston velocity relative to the maiin strut. Figure 42 shows
the secondary piston displacement. It may be puzzling that the lower
chamber pressure in Fiaure 39 and the secondary piston displacement in
Figure 42 do not return to their initial values; the reason is that in the
integration logic near a physical constraini, the accuracy required was
initially set by data input at 0.0208 ft. Figure 43 shows the wheel
axle moment for the nose gear. Since no b aking was done on the nose
wheel, the axle moment is very small and nominally positive. Figure Lk
shows the nose tire angular rate. During nose gear bouace, the tire

angular rate remains at the value when the tire comes off the runway.
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L4, TAKEQFF RCLL

As with the landing roll, capability in the takeoff roll is shown
by computer plots. The planned takeoff roll was as follows: weight -
635,850 Ibs; full flaps; comnand a 10-degree angle of attack at 00 ft/sec
airspeed; and engines full throttle. Table '!' zhows the list of major

events that occur throughout this particular takeoff rcll.

The aircraft was started at a near equilitrium position except for
the engline pitch moments. Figure 45 shows the ground reaction pitch
moment transmitted to the main airframe throughcut the takeoff roll.
The full throttle engine pitch moment is approximately 6C0,000 ft-ibs.
The gear reaction to this nose up moment is damping to approximately
-600,000 ft-lbs as the up elevator command is given at 12.40 seconds.
Ful) up elevator is achieved at 13.40 seconds; this nose up moment also
couplus with the gear reaction and causes the ground reaction pitch
moment to increase in the negative direction. As dynamic pressurc
increases, the up elevator causes the ground reaction pitch moment to
become more negative urntil 1iftoff occurs at 33.40 seconds, at which

time the ground reaction moment goes to zero.

Figure- 46 a:d 4] show pitch rate and pitch angle, respectively.
Figure LB shows the ground reaction force transmitted to the main
airframe normal to the longitudinal axis. The ground reaction begins at
the aircrart weight, -635,85C lbs, and goes to zero as the airspeed
increases and tifroff¥ occurs. Figure 49 shows the sink rate history.
Note the tendency of the aircraft to sink back onto the runway as the

forwaid main gearcs and back maln gears leave the runway. Figure 50 shows

27
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TASLE 11
TAKECFF RGLL EVENTS
Time (Sec) Event
0 Velocity 12.8 ft/sec
12,40 Velocity 100 ft/s=c, begin up elevator
13.40 Full up ~levator, 25°, achieved
25.20 Nose Strut 1 full extension
27.30 Nose tire 1 off runway
31.10 Struts 2 & 3 full extension
1.20 Tires 2 & 2 off runway
33.30 Struts 4 & £ full extension
33.40 Airborne

the mass center altitude hictory, and Figure 5] shows the runway veiocity
build-up. Lift-off uccurred at 33.40 secords, 209.7 ft/sec alrspeed, and
4170 feet of runway. Figures 52, 53, #nd 54 show the rose gear tire
deflectlon, ground reaction, and strut displacement, respectively. Note
the tendency of the englne and elevator pitch up moments to lessen nose
gear loads. Nose tlire )iftoff occurred at 27.3 seconds. Figuves 55, &6,
ana 57 show the same gear dats for the forward main gear, Strut 3, which
Tifts off at 31.2 seconds. Figures %8, 59, and A5G show the same gear data
tor the rear main geasr, Strut 5. Note that just prior to the alrcraf?
becoming airborne, the loads 1n the rear main gear increase. This is naot

unaxpected sirce the aircrafs is pitching ep and the back geers become the

pivot polit
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SECTION iV

CONCLUSICONS

Thte conceut of a siagle comprehensive. quantitative simulation of
total system perforwmarnce has y'zlded very promising results for the takeoff
and land!ng protlem, To date, use ¢V the program's capablliity as a
design tool t3 do traaeof” studies in major sy:tem component design has
only just begun. |In order to develop better technolojy, the Air Force
Fiight Dynamics Labora.cry will continue to improve the TOLA simulation

«nd use it as a tool to study the iakeoff and landing probiem.
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