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SHOCK-ISOLATING BACKPACKING MATERIALS,
A REVIEW OF THE STATE CF THE ART
by
George C, Hoff*
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SYNOPSIS

From a review of the types and c2ffects of nuclear blast loading on
buried structures, a basic design criteria for backpacking materiais has
bécn established and is veviewed along with the techiniques used in deter-
wining the energy-absorbing characteristics of the béckpabking m?tef;als.
An cxample is developed to show hoy backpacking materials, when placed
around buried structures, will absorb a portion of the applied shock
eaergy thereby reducing the forces which reach the structure,

Various programs in the development of such materials as foamed
plastics, honeycombs, Insulating concretes, granular materiais’ and- other
similar materials which could he adequately used as backpacking are re-

viewed with limited data being presented,

Project Engincer, Eugineering Mectanics Section, Corp of Engineors, U, S,
Army Engiveer Waterways Fyxporbwent Statior, Vicksburg, Mississippi,
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I, INTRODUCTION

The field of structure-medium interaction has long commanded the
attention of individuals concerned with the design and construction of

bu:ied structures. With advances in the use of thermonuclear weapons,

e v o 7 e e 2

the difficulty in understanding structure-medium interactions and there-
fore the designing of buried structures has become further complicated Ly

the introduction of complex ground motions and very high applied loads.

o et | e o e e a

The design of buried structures to resist these effects usually results
in design loads which are so high that overconservative design.would be
extremely costly. On the other hand, catastrophic failure of the struc-
ture due to under-design cannot be tolerated, ,

The applied forces for which a blast-resistant structure must be

designed are transient in nature and their probability of occurrence is
small, The magnitude of these forces depends on a number of factors over

which a designer has no control. To eliminate some of the many unkrowns

o ol

! imposcd on the structural design of buried structure, the designer may
employ various structural systems in selected environments which will in-
crease the probability of survival of the structure and its contents. It
is the purpose of this paper to review the state of the art of a technlque
that can be used for controlling the magnitude of the forces being applied

to buried structures by blast loading, i.e., the use of backpacking materials

for shock isolation of buried structures,

BACKGRO UND
Approximately 50 percent of the fistion encrgy of a low-altitude
detonation (less than 100,000 feet) is utilized in the production of blast
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uéd shock?l.* The effective energy of the burst will be dependent upon
the actual height c¢f the explosion, as well as upon its energy yield, but
the general phenomena are similar in all cases, WNearly all the shock
encrgy appears as air blast which indirectly transmits energy to the
ground. Some energy is also transmitted directly into the ground. Re-
gardless of the mode of transmission, tremendous amcunts of energy are
{ntroduced into the earth and, although somz energy dissipation occurs
through internal damping and the process of doing work on the media, con-
siderablé shock energyis still present at great distances frcm the ex-
plosion. The character and strength of the shock reaching a buried
structure may be influenced by the stress-strain characteristics of the

media the shock travels throuthG. In order to prevent excessive amounts

!

of this shock energy from reaching the structure, a suitable method for

dissipating the cnergy must be developed. This paper deals with the

concept of using backpacking materials and reviews the types of materials

currently uander investigation for this purpose.

Recent Investigations

Interest in the use of backpacking for shock-isolation of entire
buried structures has gemerated many ideas as to the feasibility and cowm-

position of various systems and materials that could be satisfactorily

used as backpacking. As carly as 1953, Engineering Rescarch Assoclates,

et al? in a report to the USA Corp of Engineers on Underground Explosion

1]

Test Programs suggested that

*
Raisced numerals refer to similarly numbered ftems in the Literature Cited

Appendix 1T,
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"The space between the lining and the tunrel surface
should be filled with a material of low density that will
absorb the cnergy of the flylng rock, distribute the pressure
from fallen rock, and provide a mismatch of acoustic im-
pedance so that reflection will take place at the tunnel sur-
face rather than at the surface of the lining."

o war -

In 1957, Vaile®2 reported on the beneficial use of 2 frangible back-
£i1l in isolating and jrotecting underground structure; in operarion
PLUMBROB from violent ground motions in their vicinity. During operation
PLUMB203, vertical concrete pipes covered with concrete slabs were lined
one layer thick on tite sides and bottom with empty glass quart gin botéles.
When compared to the contzol pipe for the expefimenc, which had soil back-
filled direccly against it, it was found that the peak accelerations pro-
duced by shear forces exerted on the sides of the isolated pipes were
reduced té 26 percent of those experienced by the control pipe. This
reduction was attributed in part tec the collapse and crushing of the glass
which dissipated a portion of the shock encrgy.

In two related studies performed by Sevin, et 81,30131 at the Armour
Rescarch Foundation (now the Illinois Institute of Technology Research
Institute), various devices were employed on or about cylinders buried
in silica sand in order to alleviate shock-induced motions of the cylinders,
Thase devices consisted of, 1) wrapping the cylinders in flexible and rigid
pelyurethane foams; 2) the use of air voids between the medla and cylinder;
3) the use of pre~expanded polystyrene beads as a crushable backfill aggre-
gate and, 4) the use of sand of varying densities as backfill aggregate
separated from the over-all bed by a stove pipe., The ccnclusions reached
were that polyester urethane fouams placed around a cylinder and other
materials functioning as a loose back{ill aggrepate were effective in
attenuating tae response of the isolated structures
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Da Deppo and Werner”, Iin a study on the influence of mechanical
shiielding on the response of buried cylinders, introduced a crushable
layer directly over the buried cylinder. &he use of this crushable mate-
rial greatly reduced the magnitudes of the loads reaching the cylinder.

Fowles and CurranlQ, in presenting theoretical descriptions of thea
propagation of a pressure pulse in a potential backpacking material,
suggest that foamed or distended materials are effective in reducing the
peak pressures delivered to a structure when an impulse is applied to ghe
opposite surface of the foam.

In discussing the methods of mitigating the effects of shock for
lined tunnels in rock, Newmark and Merritt26 state that the current design
concept for protective linings in competent rock includes the provision
for a highly deformable material between the face of the rock and the
lining:

"It would appear that the magnitude of , . . forces

{generated by small impacts) reaching the l.ning could be

significantly reduced Lf a crushable material is introduced
between the face of the rock and the liningZG."

36, suggest that the shock energy reaéhing a

Smith and Thompsaon
buried structure in rock can bepartially dissipated by: 1) areflection
of energy, and 2) by energy abhsorption. They suggest that these require-
ments be met by iuterposing a material between the structure and the con-
fining medium that has a low shock impedance with respect to that of the
confiring medium. The lwmpedance mismatch which occurs will cause some
energy to be veflected. If the low~shock impedance wmaterial is also very

deformable urder applied loads, it will absorb the energy present in the

form of ground moticns, thereby meeting the two requirements,

5
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Design Criteria

A review of the investipations cited above and other similar projects
provides an insight as to what is necessary in designing a backpacking system
for shock-isclation purposes. In general, a suitable backpacking should
be a frangible or crushable material possessing a low breaking or crush-
ing stress level and a high degree of compressibility. If possessing
these characteristics, the material should dissipate a portion of the

shock energy, thereby reducing the magnitudes of the forces reaching the

structure and should accommodate the deformations of the cavity in which
the structure has geen placed. Due to the large reiati&e costs of con-
struction versus design over-pressurcs3 the scope of interest of this
paper will be restricted to design over-pressures less than 1000 psi;
that 1s, the magnitude of stress transmitted to the structure through
the backpacking material will be less than 1000 psi. Assuming single
burst loading where closure of the cavity is imminent, deformations of
the backfill to accommodate this closure should be approximately 507%.

In other cases, it may be considerably less,

II, THEORY

Pressure-volume, Stress~strain Relationships

The majority of the materials Investigated both in the past
and at present generally [:l1 {nto two distinct categories: 1) materials
having no distinct yleld point and some degree of compressil tlity, and
2) materials possessing a distincc yleld point plus some degree of com-
pressibility, Ideally these materials can berepresented by pressure-
volume curves for a single-rigld lockiug solid (Fig. 1) and an elastic-
rigid locking solid (Fig. 2) respcctively.lo
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Consider first the case of a simple-rigid locking solid (Fig. 1).

The original volume is designated Vo. Under a very small applied pres-

sure, the specific volume decreases to V; at no appreciable increase in
the pressure. At V,, the material locks with no further decrease in volume
occurring with additicnal increases in the pressure,

In the case of the elastic-rigidlocking solid (Fig. 2), the pressure-
voivme curve 1s very similar to that.of the simple-rigid locking curve but
with the acdition of an =lastic region containing a definite yield point.
As in the previous case, the initial specific volume is representad b;-

Vo. Under the application of pressure the material behaves as an isotropic

elastic solid until Pe, the elastic yleld pressure is reached, Beyond

that pressure, the material behaves like a simple-rigid locking solid.
Under biast loading conditions, the lcaded area is normally so

great that the portion of the medium under consideration and its inclu-

slons cau be assumed to be laterally confined with displacements occurring
only in the direction of loading. By applying this assumption of lateral
restraint to the ideal pressure-volume curves, thiey can readily be converted
to stress-strain curves for simple-rigid and elastlc-rigid.locking solids
subjected to one dimensional compression (Fig. 3). To indicate more

clearly the behavior of real materials, the locking portion of the curves
has been shown asj?nclined line representing the elastic behavior of the
solids composing the materials under consideration. With the addition of
this elastic portion, the simple-rigid and elastic-rigid locking solids will
hereafter be referred to as plasto-elastic and elasto-plustic materials
respectively, This conversion to a stress-strain relationshkip provides a
convenient tool for evaluating the encrgy dissipating capability of the

materials,
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Energy Absorntion

The energy absorbed by a material depends on two factors: 1) the
deformation of the material, and, 2) the forces in the material during the
deformation8. The product of the strain and the unit force results in the
amount of energy absorbed by the material;

Ep = G X ¢ = arez under the stress- (1
strain curve (Fig. #)

E, is expressed as the energy per unit volume of material and an be

shown for all cases to be,

F’l’l = ~ > de (2)

Before procceding, a distinction should be made between the terms,
"energy absorbed” and “cnergy dissipated." Figure 5 represents a typical
stress-strain curve for a naterial possessing elasto-plastic properties.

The entire shaded area vepresents the energy absorbed per unit volume by

the material to a given strain g,. When the applied forces are removed

from the waterial, some strain (€, - £,) way be recovered due to the elastic

propertics of the material. The energy regained during this recovery is

known as rebound energy. The actual energy dissipated by the material

then is equal to the absorbed energy minus the rebound energy8, or,
Absorbed Energy = Dissipated Fnergy + Rebound Energy &))

Much work has been done in the past both by industry and government
in the developuent of encrgy-dissipating theories and mechanisms. 1t is

not my purpose here to make a thorough survey of all the literature on the

absorption of energy but rather to discuss the use of backpacking materials

8
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fgr.dissipating shock energy reaching buried siructures. An annotgted bibli |
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ography of literature pertain’ng to the absorption of impact energy has been

P ]

. prepared by Ali and Bensonz, which, although concerned with tne problem of

bop

sbsorption of impact energy ih the air drop of supplies and equipTent, re~ %%%:
views t:ht::the'ory and d'esign of energy-ab;;orbing systems plus-_the energy- \. ‘%’
absorbing materials which may be’ayailable. This bibliography may‘be. j %gi
h xefcrréq to fgr % more compreheasive review of the energﬂ-absorption con-~ . t i:
cept., - ! i if
B
From the energy rglationships described previously?.it becomes ob- ‘§ :
vious fro“ the shape'of the‘stress-strain cu%ve that elasto-?lastic mates ‘-%ﬁ
\ _ rials ére hofe efficient energy absorbers than the plasto-elastic materiafs; J %
Bpth materials are\under co;sideration for use as backpacking, however, %. ‘
because the plasto-elaséic materiils may be more economical and thus more * ?, %
attractive when large volumes are necessaryx ‘ \ . i’
YStress Trlansfer - . 1 : i
] i
When the closure of a ;avity contain}ng a ba?kpacked liner is \ i
uniform, the deformation of the backpacking will also be uniform, and i

hence, if the backpacking is homogencous and isotropic, the circumfer-
ential stress transferred to the structure will also be uniform. The ' '
\ ! ’

magnitude of the load reaching the structure will depend on the load-

deformation chardcteristics ?f the backpacking plus the amount of deforma- ?

\ }
tion occyrring, If, however, the deormatlon‘or stress in the backpacklng I
{s non-yniform, the liner will tend to deform fato an qval or ellipeical
shape as shown in Fig. 6, \
c .
Nowmarky“, in dqfcussing the factors to be considered in designing
[ 'last and ground shock-resistant structures, approached this problem by §
: ) 9 . \ %
H Ol i {
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permitting t%e lining to deform by-such an amount so as to develop in

the backpacking apprépriate resisting stresses against the deformation.
Tiie lin?ng‘must, 15 this case, have requisite strength fa compression-.and |
in buckling, and must be able to defor@fsufficicnt@y, without failure or
fracture, in order to deve%op therequi;ed.resistance.

In deyeloping the stress-transfer theory, Newmark25 allowed a and
b (Fig: 6) to represent the aisplécegen; of the cavity walls, H?weveg,
because of the defbfmations, y, of the'finer itsélf, the net cha;ge in.. \
thickness of the backpacking at the sides is b -y and 5\4 y. By assuming

a general sltuatxon of load- deformation for an elasto- pl;stic materLaI
(Fig.. 7), it can be readily seqn that the magniru“e of the net differential
pressure between points b and a, assuming the lining does nct deform, is
much greater th%n the net differential pressure between points b -y

and a + y when the li?ing does deform, &f‘the loads at deformations

b -y and a + y are expressed as q + py and q - pj, reSpectivgly, it

can then be saild that the average of these pressures’is the uniform

1}

component of load, q, and that the difference )rom the average is py, ‘!
the inward.ot outwaﬂd component of load. It is this component of load,

!
<Pl whidh tends to produge tne elliptical or oval heformation of the

lining. As can be seen from the ideal curve in Fig. 7, the'larger the

net differential pressure is, the greater p) is, When p; is large, the'
deEOfmacions of the lininy are largé. when lining deformations are large,
the backpacking is comprcsqu'more ‘thus causing the pressure différential
to become smaller, which in turn reduces p; and Lhug the duformationq of

the lining and so on until an equilibrium is reached at a uniform pres-

sure q.' If the deformations of the cavity are such that point b lies on

10 \ ' \
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tie yield plateau of the load-compression curve for the backpacking, the

LT

maximum stress transferred to the structure will be equal to or less than

the yield strength of the backpacking.

This same approach to stress transfer can be implemented using

a load-deformation relationship for plasto-elastic materials but with a
little more difficulty as it is relatively impossible for a lining inter-
acting with the progressively increasing stress-strain relationship of a

plasto-elastic material to develop a resistance characterized by a nearly

uniform compression on all sides,

R XY

Thickness Determinations

, ' In general, the backpacking is most effective when designed to have

an energy absorbing capacity equal to that of the core of material removed
to form the cavityzs. For a plane wave of stress, assuming average de-

: formations of the cavity, the total strain energy, both elastic and plastic,
which would have existed In the core of material that was removed can be
evaluated and equated to the relationship shown in equation (2). By

i trial and error procedures, g , the average plastic stress in the back-

% packing and, e, the plastic strain in the packing, can be evaluated,l7
Tne total plastiec strain plus volume allowances for the solid elastic parti-
cles of the backpacking form the basis for determining the thickness, tg,
of the backpacking. When the cavity is in rock, the bulking phenomena*
and the kinetic energy of spall projectiles must also be considered in

the thickness detcrmination.z5

A reduction in diameter (of the cavity) occurs, arising from the fact
that the rock is crushed and displaced around the outside of the cavity,
In the process of doing so, it "bulks" and increases in volume thereby
decreasing the volume of the cavity,25

11

] EOPRNSIRER

v [
P - cam e - X - o € . v e ey o o .
- it i L T T e e e IONA TRy S AN AR S PR Rt SR ERTRG I TR (rmnaeess




I7I. MATERIALS

The two i{deal stress-strain relationships shown in Fig. 3 define
the properties of a variety of materials. Fig., 8 shows the relationship
between the ideal and ty, - al ¢’ cess-strain curves for both types of
materials.

The typical curve shown in Fig. 8a represents the stress-strain
relationship for materials that do not possess a definite yield point

(plasto-clastic) but are still very compressible, either elastinally or

inelastically, or both. Granular materials are & reéresentative material

for this type of curve, Some plastics and rubbers also possess these
characteristics. However, the plasto-elastic materials discussed in
this paper will be primarily the granular materials,

Fig. 8b represents the typical stress-strain curve for elasto-
plastic materials compared to the ideal curve, Insula;ing concretes and
plastic foams are good representatives of this class of materials, although

some granular and other materials also exhibit this type of behavior,

Cost: 7

In the following discussion, no attempt will be made to compare
any of the materials on the basis of actual cost in place, but for general
informat ion purposes, it may be mentioned that granular materials are,
with few exceptions, the least cexpensive materials., The iInsulating concretes,
which cost more in place than the granular materials, are less expensive
than the most economical foamed plastics and honeycombs in place by a
factor of 10 or wmure,
Such factors as the actual wmaterial used, degree and amount of
isolation required, the environment in which the structure is located,

12
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construction techniqﬁes, and other related factors, while all somewhat
i
8 interdependent, contribute in varying degrees to the total 1n-p1ace-cos%

b 4

of the material, thus making any cost comparison except a general one

almost impossible. The cost of the backpacking system and, hence, its

ONCHHTT,

feasibility, should be evaluated for cach proposed structure considering

>

the known environment, assumed loading, and desired response that will be

»\fﬁ’%tir Dt

unique to that structure.
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Plasto-Elastic Materials -

: Granular Materials, Numerous studies have been made to define the

H energy-abéorbing mechanisms of granular materials subjected to applied
states of stress. The bulk of thiese studies, however, have been concerned

with granular materials of considerable strength that were subjected to

stresses well in excess of our present level of interest. Excellent
summaries of the state of the art pertaining to the mechanisms and behavior
of these granular materials hav; been compiled by Deresiewicz’ and Whit-
man43,

The general stress-strain relationship in granular materials is
very complicated and is to a large extent dependent on the magnitude of
the applied pressure. Hendron, et allz, in reporting on the energy-
absorption capacity of granular cohesionless materials in ore-dimensional
compression provides a description of a typical stress-straln curve and
consequently the cenergy-absorbing mechanisms for granular materials which,
although concerned with materials subjected to much higher stress levels,
adequately illustrates (Fig. 9) the phenomena necessary for backpacking

using granular materials,
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The behavior in Region 1, the very low stress-range, reflects
rearrangement of the particles. When vesiculated granular particles
are subjected to the same lou stresses, fragmentation by shearing and
crushing also occur during the particle rearrangement, thus resulting
in a concave upward curve for the same regionzo. The absorbed energy
in both cases 1s nonrecoverable,

As the stress increases (Region 2), the particles begin to lock
together in a stable matrix of elastic particles. Some rearrangement
is still taking place, but the over-all behavior is essentially non- -
linear elastic in nature, therefore, allowing most of thg energ; ab-
sorbed to be reéoverable.

In Region 3, the stress magnitude is such that the particles begin
to cruih and further rearrange them .ives, Most of the energy dissipated
here in forming new surface and consolidating the particles is nonrecoverable,

Region 4 behavior is similar to that of Region 2 with some additional
crushing taking place,

As can be seen from the upper curve in Fig, 9, the average stress
required for compaction depends on ma;y things including the initial void
ratio of the granular mass, the angularity of the particles, the duration
and magnitude of the loading, and the inherent strength of the mineral
which composes che grain. Because our interest is in materials whose
stress level at approximately 50% strain is less than 1000 psi, we will
be concerned mainly with Region 1 and perhaps the lower portiouns of Region
2. ,

Normally the strength of the grains of competent naturally occurring
material are too great to provide the large deformations required before

14
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1000-psi applied pressure is reached, Some naturally occurring grainms,

SLaR A ok, Ry Rty . -

however, do possess this deformation capability because of the very

friable, vesicular nature of the grain. Klot220 reported on one such

2

material, volcanic cinders, in an Investigationof various materials- for
use as backpacking for Operation NOUGAT, Shot HARDHAT. Other -aturally
occurring materials can be altered by various meciinical and thermal

methods to produce grains of a composition suitable for shock isolation
purposes, Such materials as expanded clayls, expanded shale, expanded

slag, coke, coal cindersZ0, vermiculitel5,27,36, and perlitel3,27, have

becn investigated for their shock-dissipating characteristics by numerous

e

investigators with some of the results of thelr static tests being shown
in Fig. 10a,

Artificial grains can also be used for shock-isolation purposes.

P

The waste products of varijous plastic-foam manufacturing processes
often can be adapted for use as granular material. The industrial waste
as wellas artificial grains manufactured in the form of chips or aggregate,

often provides adequate shock-dissipating characteristics, Such artificiat

materials (Fig. l0b) as phenolic micro-balloonsl®,15, expanded polystyfene
bead515»30, plastic foam chipsl5:20, foamed metallic waste, and foame&
rubber wasteld have been evaluated and found adequate, There are many
waste materials which could prove adequate, but because waste is not de-
liberately manufactured, availability and perhaps cost would probably be
limiting features,

Foamed Materials, Many foamed materials do not possess a definite

* ¥
yield point but begin to deform with the application of very small pres-
sures. The resulting stress-strain curve is progressively locking and

15 °
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can be assumed to represent a plasto-elastic material, Examples of this .
i
type of foamed material are shown in Fig. 11l, :

Elasto-Plastic Materials

Many investigations into the energy dissipating characteristics of
various elasto-plastic materials Lave been conducted over the years in
connection with the packaging industry and the Quartermaster Corps' re-
quirements for air-drop cushioning1a2»28:38. From these investigations
emerged a family of foamed plastics and honeycombs whose stress=-strain re-
lationship approximate that of the 1ideal elastic:rigid locking solid, These
materials ca; be fabricated so that the binder will furnish the crushing
stress level desired with the fractional volume of voids or pores in the
material being controlled so as to obtain the necessary deformations.,

This is not the final answer, however, A good many of the foamed plastics
and honeycombs are very expensive and are relatively difficult to handle

and place in sufficient quantities and in adverse cnvironments which may

be dictated by the design and location of a buried structure. These problems,
in general, fostered the need for a relatively inexpensive construction
material which would serve the same purpose., Kesearch a: the University of
Illinoiszo, University of Tcxas33»35»36, and the Waterways Experiment
Stationls, has shown that insulating concretes, i.e,, concrectes having
oven-dry density of less than 50 pfc, while not as efficlent as foamed
plastics and honvycombs in some respects, will provide the desired shock-
isolation characteristics, The discussion in the next few paragraphs will
be restricted to these three types of m.erials, i,e., foamed plastics,
honeycombs, and insulating concretes, as it i{s the author's belief that

they are most representative of what can at the preseni time be used
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aost effectively as an elasto-plastic material for shock isolation, . :

Plastic Foams. Not all plastic foams possess an elasto-plastic

stress~-strain relationship, As shown previously, the "flexible” plastic ?

foams often produce a plasto-elastic stress-strain relationship as shown :
fn Fig. 11. "Rigid" plastic foams generally produce the elasto-plastic i

relationship. Both types transfer stress and dissipate energy, but, as

-,

shown before, the elasto-plastic material is more efficient in both {

respects,

A variety of rigid foamed plastics are available and suitable for
shock-isolation purposes, but, more often than not, they are extremely '
expensive, The rigid polyurethane foam 1is perhaps the most widely in-

vestigated15’20'32'35'40, and used10v23»30, for this purpose., Fig., 12

A+ o o

shows a numier of stress-strain curves for a rigid polyurcthane foam,
Despite its high cost, rigid polyurcthane is still attractive as it
1s available in most arcas, is fairly homogeneous and isotropic when |

formulated properly; it possesses the desired stress~strain relationship

(Fig. 12); it possesses the capability of being fabricated in the field
and, if closed cell, is somewhat nonsusceptible to ground-water infil-
tration which would reduce its energy-dissipating potential,

Other types of foam which have been repoxted as suitable energy

dissipators are polyst renels'zz, and polyvinyl chloridel0s15, These
p polysty y

two materials are also very expensive and are normally available only in
relatively small pleces as compared to the needs of isolating a structure.
The cost of assembling and fitting the small picces around a structure
would be very great,

Research into and development of the capability of casting large

volumes of foamed plastics around tumnel liners is currently being undertaken

17
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to make them more attractive for shock isolation purposes. ) ;

é ’ and, {f successful, will undoubtedly influence their in-place-cost so as
Honeycombs, The use of prefabricated honeycombs has “proved an effek-
tive means.of energy dissipation and stress transfer. Honeycombs have the
o advantage of being very isotropic if designed properly so that the maximum .
"% stress in the packing can always be limited, They can also be largely
fi impervious to ground-water infiltration. The main disadvantage honeycombs
have is the large costs tuat w%ll be incurred in the placing of the ma-
terial around the structure, )
There. are two basic types of honeycombs: paper and metallic honey-
combs. Paper honeycombs are used primarily at stress levels less than
100 ps.il’s’w'lg'39 (Fig. 13), while the metallic honeycombs are more
effective at stresses in excess of 100 psil:11:13:21»29:38 (Fig. 14).
B;cause of the nature of the composition of the honeycombs, it is doubtful
1f a good bond between the honeycomb and the structurewlll be obtained,
Manufacturersll, however, claim that an excellent forming and bond can be
)

obtained with metallic honeycombs.

Insulating Concretes., Insulating concretes are best defined as concretes

" made with portland cement, water, air, and possible aggregate additions to
:

form a hardened material whichk will have an oven-dry density of 50 pef or

less,

As in the case of the foamed plastics, the hardened matrix provides

the crushing stress level while the voids necessary for deformation are
provided by the air and in part by the aggregate. The strength of the
hardened portland-cement paste can be recadily controlled but the deforma-

tions present some problems, If an apgregate Is used, it must be very

.
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Jcak and friable. Regar.iless of its strength, however, it still contri-
tutes somewhat to the over-all strength of the hardened mass. Experience
sas shown that the addition of too much aggregate in order to obtain more
aeformation, adversely affects the workability of the concrete, thus making
ft very difficult to handle and place, The solution is that most insula-
ting concretes, such as vermiculite4»15s33r35»3§, and perlite20,27 concrete,
require as much as 20 to 30 percent entrained air in order to become suit- -
zble shock dissipators. Cellular concrete14'15'20, which may or may not
contain a fine sand or filler, can often be found with air contents as high
as 75% of the.total concrete volume,

These air voids, while desirable from the point of view of deformation,
tend to absorb moisture when it is available from the surroundings., The
voids; upon becoming filled with fluid, lose their #tectiveness for
shock dissipation as they then transmit shock loads through the fluid,
Tcstsls»36, have shown that very large water pressures are necessacy to
saturate these concretes over a short reriod of time but the long-time
saturatfon effect of a considerably smaller pressure is not knows. It is
the author's opinion that this absorption problem is not insurmountable
and could be remedied, ar least in part,by the use of such mothods as
chemical '"waterproofers," sandwich construction, grout curtains, and well-
point systems,

Typical stress-strain curves for khrec of the most popular insulating
concretes are shown in Fig, 15, along with a curve for concrete made with
a plastlc aggrugate (expanded polystyrene beads)15, All of these con-
cretes are relatively inexpensive when compared to the cost of the foamed
blastics and honcycombs and can be fabricated and placed in most environ-
Ments using conventional construct ion cquipment,
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As evidenced by the introduction of a plastic aggregate into a
artland-cement matrix thown in Fig. 16, it becomes obvious that many .

‘ !
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sfferent types of materials systems possessing an elasto-plastic stress-

yirain relatioaship rcan be developed simply by the inclusion of air or a

.sllapsible aggregate into a suitable binder. Various types of ultra-

€ e

t{ghtwelght concretes, plastics with aggregate inclusions, and such foamed

+{aders as epoxyls, asphalt, gypsum, sulphur6v21:37, and various chemical

oapounds all possess possibilities as shock dissipators.

IV, SUMMARY

The behavior of a buried structure subjected to blast loading must

ne evaluated on the basis of the loads reaching the structure, Research

. i AN LW e e W T oea WO smese

v1s shown that the use of a properly designed backpacking material placed

.round the structure dissipates a portion of the sheck energy present in
the free field, thereby reducing the magnitude of the forces reaching
the structure. The response ofthe backpacking then and that of the
ttructure are completely interdependent and the design of one cannot be
snsidered without the design of the other.

Unfortunately, sufficlent data have not been accumulated to date to
c:aluate quantitatively the combined response. Both laboratory and field
.tograms have been initiated to remedy this deficiency. Analytical models
ite being developed at the Illinois Institute of Technology in an attempt
'3 describe the response of backfilled structures in soil. Other work is
Yoo béing conducted to measure the response of backpacked models subjected

‘Y blast loading,
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Each of the types and systems of materials reviewed undoubtedly hasi
nay unique problems associated with its use as backpacking. However, the
solementing of adequate research and development of the materials in ques-
.;on would probably solve the majority of these problems. An excellent
aazole of this is the study currently being conducted at the Southwest
1eseaxch Institute6'2a’37 on the feasibility of foaming bulk sulphur for
.;ras'é shock-isolation material around buried structures, A relatively

~we-cost foamed sulphur possessing an elasto-plastic stress-strain curve,

fig. 16), plus some other desirable features, has been déveIOped and the

P easibility of its large scale application is being studied.

This type of laboratory research coordinated with such field pro-
stams as Operation NOUGAT, Shot HARDHAT,23 Operation HARDTACK%aand other
tlated programs will, together with the development of suitable shock-

wolation backpacking materials, probably result in less vulnerable buried

tlructures at reduced costs.
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APPENDIX I: NOTATIGNS

displacements of cavity walls

RN PR

energy absorption per unit volume of material
varying component of packing pressure on linery

pressure at elastic yield-point of the.material

W AR W L S

original pressure

i
pressure at the locking ctate of the material ?’
uniform component of packing pressure on liner ;
radius ' . ;
thickness of backpacking j%
volume of material at pressure Pe ;ﬁ

i

Vo @ original volume ;;
vV} = volume of material in the locking state % ;
y = deformation of "liner %f
¢, ¢, €2 = strain ) , ié

¢ = stress .

Qt
]

average stress
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