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\M1n1max problems are fundamented to nonlinear programming, because
of the way constraints can be represented using Lagrange multipliers.
Zetter ways of solving minimax problems would lead thus lead to break-
taroughs in sovling most other problems of optimization. This _
dissertation opens a new avenue to the study of minimax problems by
ieveloping a theory of dual operations on saddle-functions convex-concavq
functions parallel to, that already known for (purely) convex functions.
Zesults are thereby obtained concerning minimax problems which are
iual to each other. It is cxpected that these results will find
computational applications analogous to those already acclaimed in the
sonvex case, for instance in decomposition of large-scale problems.
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fraface

Due to the frequercy with which results from Rockafelle, (44] are citec

tiroughout the thesis, a sgecial abbreviation is used. Namely, the number of

taoe recult being cited is yiven enclosed in:parentheses. For example, Theoren
23.8 is cited as (¢3.8), Corollary 6.3.1 as (6.3.1), and so forth.
Throughout the thesis expressions sometincs appear which involve taking
the supremum or infimum of an empty set of rumbers. Whenever these occur
they are to be interpreted using the conventions sup # = -« and inf ¢ = 4w,
The common abbreviation “Iff" {s used for the phrase "i¥, and only if.*

Finally, for §1 the reader need only read 50 up to Lemma 0.5. The rest

of the thesis draws on all af §0,
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Introduction

 Minimax theory may be said to have originated 1n 1928 with von Neumarn's
minimax theorem for matrix games (34). Various proofs and generalizations
of this theorem have been given by many authors, including Ville [59], Kaku-
tani (2€¢), Wald (601, Shiffman [50], Fan (18, 191, Kneser [27], Glicksberg
(241, Nikaido [35], Berge (41, Sion (51], Ghouila-Houri {23], Moreau [33],
and Rockafellar [39, 40]. .

Much of the early work in minimax theory was done in connection with
game theory. However in about 1950 two equivalences were established which
made it apparent that minimax theory had much relevance for mathematical pro-
gramming. One of these equivalences was that petween matrix gaines and dua?
pairs of linear programs (see Dantzig [12], Gale=Xuhn-Tucker [22], and Charnes
[8]). The other equivalence was - that between convex programs and Lagrangian
saddlo~poiht problems (see Kuhn-Tucker [28], Slater [52], and extensions
given by Hurwicz-Uzawa in (2]). Various authors, including Stoer [53, 541,

duality results for constrained maximization and minimization problems by
means of minimax theorems.

In [39] Rockafellar defined a conjugacy correspondence among sauddle-
functions parallel to that of Fenchel (20] for convex functions. This corros-
pordence was used in [43] to represent (in finitely many different ways) a
certain dual pair of convex programs as a dual pair of minimax problems. At
a later date Tynjanskii [57] independently defined the conjugacy correspon-
dence for a more restrictive class of saddle-functions. He used it to assoc-

iate with a given concave-convex game another game of the same type, and

showed how solving such 8 pair of "dual games" is equivalent to solvihg [
related pair of convex programs. Also, papers of Moreau (33] and Ioffe—

Tikhomirov [25) contain implicit results concerning the conjugacy
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correspondence among saddle-functions.
The reievance of minimax theory to mathematical nconomics has lung been

recognized, dating back to the beginnings of game theory. More recentliy,

minimax theory has been useful in the calculus of variations and optimai con-

T T

trol theory (e.g. Rockafellar [47, 483). It also plays a role in differen~ .

e o

tial games (e.g. Sakawa [49]; see &lso the survey articie by Serkovitz {5)).
Related to minimax problems are max-inin problems, i.e. two-stage prob-

| lems of the form max(min f(x,y)). These have been studied by Pshenichnyi

R R T T O IR o

X Yy
;_ {36), Danskin [10], and Bram [6]. Such problems correspond te “half" a
saddle~point problem qnd arise from such practical considerations as iwo-

stage resource allocation.
The preceding references deal primarily with theory. However the task

of actually finding saddle-points has also been studfed. Work in the early

1950's was done by Brown-von Neumann [7], Robinson (37], and Danskin (%1.

Charnes [8] showed that a minimax problem correspondin§ to a constrained

matrix game is equivalent to a dual pair of iinear programs, so that such
techniques as the simplex method could be applied. Conversely, in order
to utilize the Kuhn-Tucker theorem [28) and its generalizations for solving
concave programs, Arrow-Hurwicz (2, p. 1187 developed a "steepest desceni”
method for locating the saddle-points of the Lagrangian. More recently,
algorithms have been giver by Dem” Janov [14, 16], Auslender (3], and Dans-
kin [11]. See also Tremolieres' survey paper [567].  Algorithms dealing with
max-min problems have been given by Pshenichnyi [36], Dem” janov [15], and
Oanskin (11].

The problem of minimizing a convex function subject to constraints has
been analyzed by various authors by means of the duality theory arising

from Fenchel's conjugacy correspondence. This approach, as expounded in [441,
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rests ultimately on the duality between two operations which combine a con-

o e,

vex function with a 1inear transformation. The aim of this thesis is to

analyze constrained minimax problems in a similar fashion by means of the ! ]
duaiity theory arising from the conjugacy correspondence among saddle-funce

tions. To accomplish this we develop for saddle-functions analogues of

these fundamental operations on convex functions. But before actually des-
cribing our results, we shall sketch the two operations and the applications
of them which this thesis extends.

The simpler of the two operations is to form the composition: fA of a
convex function f with a linear transformation A. The other operation may
be called "taking the image of f under A." The resulting function Af f{s
defined by (Af)(x) = inf(f(y)|Ay = x}. The fundamental result connecting
these operations is that, under certain mild hypotheses,

(Af)* = fope, ‘ (1)
where - * of a linear transformation denotes the adJoirit linear transforma-
tion and * of a convex function denotes the conjugate convex function.

One of the main consequences of the duality formula (1) is the duality
between the operations of addition and infimal convolution for convex func-
tions. This can be obtained by taking f to be the separable function

flxpoeeoxp) = £1(x5) +.04 £(x),
where each f, {s convex on R", and defining A to be the linear trans-
formation which sends each element x of R" into the m-tuple (X,...,x).
In this event fA {s f, +...¢ f  and A*f* {s the function

x* + inf(ff(xf) +...4 f;(x;)lx* = xf 4.4 x2),
1.e. the infimal convolution of ff.....f;. Formula (1) then implies that
under mfld hypotheses “the conjugate of the sum is the infimal convolute of

the conjugates.” This gives a framework encompassing problems of the form
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"minimize h(x) subject to x ¢ C, where h and C are convex." Simpiy
take m = 2, lat f] = h, and let fz(x) equal 0 when x e C and 4+
otherwise. '

The duality represented by formula (1) is also fundamental in the per-
turbational duality theory developed by Rockafellar for generalized convex
programs [44]. Among other things, this theory generalizes the classical re-
sults about dual linear programs and generalizes Fenchel's Duality Theorem
{21, p. 108] (see also [41, 42] and Stoer—Witzgall (55]). It also sheds
light on the Lagrange multiplier principle for convex programming and thereby
on the celebrated Dantzig-Wolfe decomposition principle for linear and convex
programs [44, pp. 285-290] (see also Falk [17] and Lasdon (291). |

In the next three paragraphs we indicate an essential difference between
minimax theory and convex function theory, and briefly review the notions of
"clased" anq "conjugate" for saddle-functions.

The principal difference between convex function theory and minimax
theory is not the difference between one and two argumenis. Rather it is
that in convex function theory the natural object of study is the individual
convex function, whereas in minimax theory the natural object of study is a
whole equivalence class of saddle-functions. This stems from the fact that
there is an equivalence relation among saddle-functioﬁs with the property
that equivalent saddle-functions have the same (lower and upper) saddle-values
and also the same saddle-points. The relation, introduced in [39], fs the
Yollowing: two concave-convex functions K and L are said to be equiva-
lent if and only if the closures of the convex functfons K(x,:) and. L(x,-)
coincide for each x and the closures of the concave functions K(-,y) and

L(-,y) coincide for each y.

Recall that in convex function theory, in order to have the crucial

U S DR PO I R T O O P
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formula

(fo)* = f _ (2)
hola, one considers convex functions which are lower-semi-continuous, 1.e.
closed. Similarly, in saddle-function theory one considers "regularized®
; saddle-functions in order for an analogue of formula (2) to hold. A saddle-

function K defined to be closed if and only'if it 15 equivalent to both its

concave closure and its convex closure, where by concave (resp. convex) clo-
sure we me.n the saddle-function obtained from K by closing it (in the
sense of convex function theory) in its concave (resp. convex) argument. It

is easily seen that a saddle-function is closed if and only {f every member

of its equivalence class is closed. It is shown in [39] that the property

. of being a closed saddle-function is constructive. In [39] it is also shown

red

_that equivalent closed saddle-functions must be very nearly equal. Roughly
speaking, they can differ essentially only at the "corner points" of thetir
“domain of finiteness." In (39] it is shown that each equivalence class (K]
of closed saddle-functions is an "interval" in the sense that there exist
unique members K and K of (K] such that [K] contains 211, and only
those, saddle~-functions R satisfying K < X < K.

We now review the conjugacy correspondence for saddle-functions, first
developed in (39]. If K is a concave-convex function from R x R" to
[-=,+=], the lower conjugate K* and upper conjugate K* of K are defined
. by

K*(x*,y*) = sup inf (<x,x*> + <y,y® - K(x,y)}
and R

Ke(x*,y*) » inf sup (<x,x*> + <y,y* - K(x,y)}.
¥ X Yy

These functions are concave-convex. If K is closed, then K* and K* are

equivalent and closed, and moreover they depend only on the equivalence class
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{K] containing K. Thus, associated with [Kj is a well-defined equivalence
class [K*] of closed concave-convex functions, namely the class centaining
K* and K+, The class [K*] is said to be the conjugate of (K1. This
conjugacy correspondence has the property that the conjugate of [K*] is
(K]J. This 1s the analogue of formula (2) for saddle-functions.

With this review of general facts in mind, we now describe the results
obtained in this thesis. He begin with the analogues of the two fundamental
operations described above. Let K be a closed concave-convex function and
let A be the linear transformstion Ay x A2 obtained from two other linear
transformations A, and A, by A x A, (x,y) = (A]x,Azy). One of our
operations consists of forming an equivalence class [KA] containing all the
saddle-functions of the form -

(x,y) » RA(x,y) = R(Ayx:A,)
for ¥ any membér of (K]. A mild hypothesis is given which ensures that

~ {in fact such a single class exists and, moreover, that all its members are

closed. The other operation 1is to form a single equivalence class ([AK]
containing all the saddle-functions both of the form

(u,v) +  sup inf  K(x,y)
(xjAjx = u} (y|Ay = v}

and of the form

(u,v) + inf sup Kix.y)
(y|Ay = v} (x]A)x = u}

for K’-any member of [K]. A mild hypothesis is given which ensures that
indeed such a class exists and that all its members are closed. What is
surprising is that this hypothesis 1s precisely the same as is needed to
ensure the existence of the class (K*A*] formed by the first operation

from [K*] and A* = Af x AE. Furthermore, it is shown that under this

hypothesis [AK] and [K*A*] are conjugate classes. This is the analogue

1
4
4
J
!
:I




af foreula (1) for saddie-functions.

The development of these operaticns and tha proot of the duality bovtuesu

them make up the main contribution of this thesis. Tnree forms of this Ju- ;
aVity ave glven. The most genarzl version i3 proved 1n §i. In 32 a mere ﬁ
auplicit version is given; this 1s the Form we find must usaful for the sul- '3
saquent appi!cat§ons. The formuiation fn ¥3 contalns the sharpess conclusions f
and requires the strongest hypstieses. f
In 54 the first application of this dualty is made in defining adgi- ;

tion and minimax convolution for saddle-funvifons ard showing that thuse are %
dual operations. The result 4
3('(] * Kz)("o)’) E BK](X,},’) # 35(2(.4‘:'."3 3

{5 also obiained for the subdiffersntial of Cae swp of Two szddfie-functinng, !
This parailels the resui¢ for convex functicns obtainec by Rockafeliar 381, :

Moreau {323, and others. The duality belw:ien aodition ard miniaex convgly-

tion gives a genersl framework within which to consider problems of the

“Yorm, "find the saddle-points of  H with respect to £ x O, whare N 4y 7

saddie~-function and € and D are convax sets.”

From the first applicaeticn we obtain the following result. [For
f=1,....p et K; bea closed concave-convex function en Y x & which
is not 1dentically 4= or -« and &t Ti ba the 5aximai ponslone oparator
on " arising from the subdifferentizi of K, (sce (44, 461). !f sach
R(T1) is bounded, where R(-) denntes the range cf an operater, then AP
is maxima} monctone and -

el R(T,) = el RZT.). : )
It §s known thet this formula helds wheneyver the Tp's s subdiffercntials

of closed proper convex functions and each R(T{) is bounded, O the oher

hand, formula {(3) fails in genersl {or maximai monctone onavaicrs, Howeway 10




&
is not known whether formuia (3) holds far arhitvary maxime) monvtore overa-
tors under the assumption that the sals R(T,) are bounded. But the Tact
that it helds for those maximal monotone operators arfsing From saddie-
functions leads one to conjecture it holds in general. This s Decause such
operators, unlike the subdifforentiazis of convex functlons. exniLit most of
the pathelogy of arbitrary mezimal monotone oﬁeratcrs. Indead, the last
fact 1s one of the main motivations for studying saddle-functions,

In §6 we make a second principal applicetion of our fundamental dual
operations in developing a perturhational duality thacry for genaralized
saddle programs. We lefine ¢ genzralized s.ddie program to be on "objective”
saddie-tunction ku (thought of as some giver minimay probiem) Logether with
@ particular class of perturbations. The entive program 1s glven by anofier
saddie-function K. To this generalized saddle progrem X we assoclele a
dual generalized saddie program (. Under mild hypothesss on the periurba-
tions in X, the dual program L has & unfgue {up to squivalence) “"ebjective”
saddle-function Lo. The minimax problem correzponding to [o is 2 dual! to
the original minimax problem. Optimal seclutfons, stablie optimal solutions
znd Kubn-Tucker vectors for ghese dual programe are stydied, Tn 85, as &
subsidfary appliceticn of the fundamental dual operations, we define 3
partial conjugacy correspondence among closed saddle-functions which 1s one-
vo-one and swamelric. By weans of this covrespondence we are able €0 2ss0C-
iat. with 2 genevalized saddle program and 1ts dual a well-defined Lagrangian
saddie-function. Uz themn give & characterization of tha primal and dua?
stabie optimal solutions and Kuhm-Tucker vectors in torms of the saddie-points
of the Lagrangian.

In 57 this perturbational duality theory is used to study the problen
of fianding a saddle-point subjcct te finitely many convex end concavs

AR
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constraints. Ordinary saddie programs are defined ac a frawewari i {rogl

such probiems, A question of particular concern 1o whether oy wnd & Liyren,:

multiplier principle holds for these saddle programs. The ana’ionosus question

for ordinary convex programs (i.e. minimizing n convex funciion subjeul to
finitely many convex constraints) has & very satiscying atfivnative ansver
(see, for cxample, [44, Theorem 28.1]). It is shown thit cre taunet Ywopz
for a correspondingly general Lazorange muitiplier principle sy ordivary
saddle programs. This {s essentially duz to the fact that, unliks thoe con-
vex program case, the set of saddle-peints of the Lagrangian does not spiis
un into the product of the primal stabie optimsl solutions and the pirimsd
Kuhn~Tucker vectors (Lagrange multipliers). Put znother way, ‘the svebie op-
timal solutiuns and Kuhn-Tucker vectors are shown to be in a cartain zwe
dependent on each othep.

Finally, in §8 the perturbational duality theory 15 specialized ia
another direction to yleld a winfmax version of Fenchel's Duility Thaorua,
We deal with dual pairs of minimex problems of the following form (wheir: we
suppress for simplicity now th; fssue of the domains of the varfalles):

(1) Find the saddle-peints of K(x,y) - LA{x.y},

(11) Find the saddie-points of L¥(z,w) - K*4(z,w}.
Here K 1s closed and concave-convex on R x R". L. is closed snd corox-
concave on A x RY, and A s a (product) linear transformation from
B« 8™ to P2 x R, The results obtained generaiize certain resuiis of
Rockafellar [43], Lebedev-Tynjanskidi (301, and Tyujanskii [H7, =97

it is known that many vesuite in the iheory of convex Turzzions have
refirements when polyhedralness s present. For closed sacdlz-functions

there is a property of polyhedrainass which ig preservaed under conjugzcy i

well as the operations in 5§42, 4 and 5. Nearly all the results {n the thesis

e
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adnit refinements when such polydediatness 18 oresent. 1o s discasst
. |

| in the Apnendix.
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|
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$0: Prclinlnarigs

In this thesis we use sweinly the definition: and motation set forth 44
Rockafeilar [44], and any terms not defined in *he thesis are {9 He under-
stood as in (44). For convenience we veview some definitinns here and ajzo
introduce some of our own, In addition, we present 3 fow hackground resuits
wrich will be of use later on,

The topology taken on R s the usual one, and the interiar and
closure of a subset S of R" are denoted v it S and 1 5, vesnoer.
tively. A set is called gffipe iff 1L {s efther the empty sei. denulod by
#, or a translate of a linear subspace. The aftine hull o¥ « subsel fu th.
smallest affine set containing ft. If € s a convex subset cf & i’

relative interfor, written ri C, is the interior of C wi%h perpect Lo T/

affine hull aquipped with the relative topology.
If A 1s a linear transfurmation from *P to km. then n* oznnes |
!\

the adjoint Vinesr trensformation mapping G T O

The affective domain of & coavex function ¢ on &% 15 the ser

dom £ = {x|f(x) < 4a},
and the conlugate of f 1Is the convex fumcticn % on R" giver by
fr{x*) = gup{<x,n%> - fix}}
(where <-,-> denotes the ordinaryxinner product). Similterly, the effrc-
tive domein of a.concave function g on R is the sat
' dom g = (x|g{x} » -~},
and the conjugate of g 1s the concave function gt on RY gives by

ge(x#) = inf{<r,x® - yln)}.

X
Our multiple use of the superscript * should cause po dir{ic iy, siace ¢t
is always clear from the context what aperation s inteaded,

For any subset ¢ of /A the furctinn 50-4C) o ¥, ualted the

indicator function of €, is deTined by setting &(xi%) exwnt ta 2 1€




L5
&5

12
xeC and += otherwise. Clearly C 1is convex iff 6{-|C) 15 convex,
m{d in this case the f:oruugate of &(+|C) i3 denoted by &*(-IC) and is
given by
$%{x*|C) = supl<x,x™|x ¢ C),
He call &%(-|C} the support funciion of C.

A concaye-convex function on R x R" 1s a function K from R = &"
t0 [-w,4=] such that K(x,y} 1is a concave function of x & {" for each
fixed y e R" and a convex function of ye R" for esch fixed x ¢ K. A
convex-concave function is defined the same cxcent Tor interchoaging “cone
cave® with "convex.® A saddle-funcifon i: either & concave-convex ar a

convex-concave function.

A

For the remainder of 0 lat._ K denote a concave-convex function on
& x R",

We say that X has a saddie-vaiue, or that the sacdle-value exisiy,

iff the two quantities
sup inf X(x,y)
N

inf sup X{x,y)
y x

are equal, in which case this common value is the saddle-value of X, A

patr (%,7) ¢ R x &% 1s 2 saddle-point of K 1Ff
k(0,9 < KZF) < KTy
for sach (x,y) ¢ & x &".
Define subsets domK of & ond douX of R
dom, K = (xiK{x,+] is never -«},
donzx = {¥IK(+,¥) 1s never +=), .

-~
<

The product set
du-ll( ndnu‘l! » dom K
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is the domain of K. We say that X s p_v_'_om iff its domain 1s nonempty.
The kernel of K {s the restriction of K to the relative interfor of its
domain. We say that K {s simple 1ff dom K(x,.) & cl(dom,K) for every
X ¢ ri(dom]K) and domk(°,y) & cl(dom]K) for every y ¢ ri(domzl(). The
function cl,&' obtained by closing K(x,y) as a concave function of «
for each fixed y 1is called the concave closure of K. Similarly, the
function clzx obtained by closing K(x,y) as a convex function of y
for each fixed x 1{s called the convex closure of K. If L 1s also a
concave-convex function on R™ x R", we say that K and L are equivalent
and write K~1L {iff cl,K=clL and c!ZK . c'IzL. The collection of
all concave-convex functions on R™ x R" which are equivalent to K is
called the equivalence class containing K and is denoted by ([K]. We say
that K fs closed Iff cl,K~K and K~ clX.

It is an easy exercise to show that K~'L implies both that dom K =»
dom L and that K {s closed iff L 1{s closed. Thus, an equivalence class
is called closed (resp. proper) 1ff any of its members is closed (resp. pro-
per).

The function f on R* x R" given by f(x,y*) = sup{<y,y* - K(x,y)}
is convex in (x,y*) Jointly, since 1t is a pointwise s'zpremum of convex
functions. Similarly, the function g on R® x R" gfven by
g(x*,y) = infl<x,x* - K(x,y)} 1s concave in (x*,y) Jointly. We call f
(resp. g) t:e convex (resp. concave) parent of K. Notice that this usage
of the term "parent" differs by some minus signs from the original usage
in Rockafellar [43]. Vith these definitions, (34.2) implies the following.

THEOREM 0.1, Let f (resp. g) be the convex (resp. concave) parent of

K. Then K is closed 1ff f(x,y*) = -g*(x,-y*) and g(x*,y) = -f*(-x*y),
in which case (a) and (b) below hold..

S il R T




14

.l

{2) Fov each ¥ '1 ¢ [X), ihe ronvex (resp. congive) pvent of 7 o

-
,.
i
23
(7]
Y=
)
¥+
‘.ﬂ

....... E!f),rm:es!.m foznd g are closed, and
doaK v PTU,Y™) < be For som yei,
e,k m.iyln(x ®.9) » -~ for s (Y,

#{x,%)

glx*,y} = ~F¥(-x*.y).

|

RO

(b} Ths equivalense clas: (KD consiste ¢F o'l ang crly those con.

v el AV ST W e ate Ao

cave-convex funcidony K on A" x & whigh satisty <% < K, wrere
Koy} = suplay®ys = fix )]
y*
. Kixay) » tnffondn - alxt,
® = o
Heregvzr, el K=k and oK =K for each ¥ {62, aud
K(w,x) = Rix
wheaever x e vi{domK) er vy ¢ ri{dem¥}.
The “..lfiff.', ﬂ"r”‘ﬁ'_g;i?‘: of K, denoted by K*, ‘s & fanctier oo v i
defined by
WYY« osup dnf (et 4oy e v
v X
similarly, the upper mnh,_u_ﬂg_t_:_e ? K, donoted by ®r) is a funcricr on
A" 5" defined by
TA(xs, %) = 40F sun fac, ks 1 o,y - .\hc ¥
From {37.7) we have the f-:»ﬂbwin‘g recult.
THEDREM 0.2, Assume ¥ s closed.  Ihar K¥ oend X0 erd enuivaling,

closed concave-convex Functiens whicn depend only en K3, Morzovar, it |

o B b . b e I et mes e e man aeswe

Is any elemant of the uwquivelerce <lass cantaintog 1

b =X',  elL =&,

- -

S Lt o= K.

and the convex (resp. voncave) gavent of L s tae

o alad o=

S oo i

T

U T

£le o
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(resp. convex) parent of K.

The equivalence class containing K* and K* is cailed the conjugate
of (K) and is denoted by (K*]. Each member of ([K*] 1s called a
conjugate of every member of (K]. It is immediate from Theorems 0.2 and
0.1(b) that (at least when K {1s closed) K* and K* are the least and
greatest elements of (K*], respectively. The notation thus conforms to
that introduced in Theorenm 0.1(b), where a lower (resp. upper) bar indicates
the least (resp. greatest) element of the equivalence class.

By (34.2.3) the only equivalence classes which are closed but not pro-
per are the one containing the constant function += and the one containing
the constant function -e, Since each of these two equivalence classes is
the conjugate of the other, it follows that [K*] 1is closed and proper
whenever [K] fis, |

Suppose for now that K 1{s closed and proper, and let K* bec a con-
Jugate of X By (37.1.3) the saddle-value of K exists whenever
O0c¢ ri(don]K*) or O¢ ri(domzl(f). and by (37.5.3) a saddle-point of K
exists when both these conditions are satisfied. To use these facts it
would be helpful to have characterizations of 0 ¢ ri(domjx*) for § =1 and
2. These are furnished by the next two lemmas.

LEMMA 0.3. Assume K _fs closed, and let f (resp. g) be its convex

(resp. concave) parent. Then
ri(domK*) = Ulri(dom g(-.¥))|y ¢ ri D)

and
ri(domzK*) = Uri(dom f{x,:))|x ¢ ri C},

where C = dom,K and D = dom,K. These formulas also hold when “ri" is

deleted throughout.

PROOF. From Theorems 0.2 and 0.1 (a) it follows that




T T R— 2 it il ol il L b e et Gl L il Aubisadiavin b L ahe it deadulia L e an R TR Y P R SN T AT dalaa s aeutiaiia datiso bl et L

ib

1 . | ufme!k* = A dom § .

and |

don g » Utdem g(-uy) ~ (y3]y e 05, "

!
2 whera A 1 the projaction (x*,y) + x*. Mence (5.6} jmmlies

M(dom,K*) = A i{don g) r

, and (6.8) implias g

f 3

ri(dom g) = Uiri(dem g{-.y}) x {yHy e ri I, | :

|

The formulias for dcm!K* and its velativa interie: follow {egm those. and ‘ E

the other twe formulas are proved similarly. ; ; 2

For the next lemma more definitions erm necded., 1€ 0 1y & proney ]

convex function on R, the receseion funetfon of f, writive vec 0o 94 3 1

funciion on R defined by _ ' o

{rec )y} = sup(f{x + y) - Fdin o dor 7, . i

! and the recession ccne of f is the sel | ] i

rec cone f = {y|{rac #3{¥) < Gl | ]
1 The recession function and recessinn cone of a propey eongve Funetion ¢y 1
. |
? defined similarly by repiacing "sus" by "in#" avd "< by Thisy wbalion
for these objacts differs from that in [447. :

Now weite € = dmn]h’. and D = domzlt The convzx recesston Funciion !

of K is the function iuck on R" cefined by B

ug.C)(w; »suel{ivec K{x, )0 {wilx ¢ vt C}, 3 ’

Yhe convex ~acission cone of K s the seif J

rae -'.'.f).n&._:'.'?i 52 {5'fi§;rv_-7('.“..\’.){w} = 0}, - §

Standarly, the gonczve recassion function of 0 It the fancrion . :‘

M defined by
(vecyK)(z} = daél((rec Ki-yi}iniiy « »i 1))

and the concave recassion cone of X 15 ‘hc et

o G o, st 2 ) Lini Vated it s A i g T e
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rec cone;K = (z|(rec,K)(z) > 0}.

Trivially,

rec cone,K = N{rec cone K(x,*)|x ¢ ri C}
and

rec cone,K = Nirec cone K(:,y)|y ¢ ri D).

When K 1{s closed and proper, Theorem 0.1 (b) implies that the recession
functions and cones of K depend only on (K], and in fact, (37.2) states '*
that |
rec,K « 6*(.|dom,K*)
and
rec,K = -6%(-- |dom,K*).
Furthermore, when K {s closed and proper 1t follows from (34.3) and (8.5)
that the recession cones of K are closed convex cones containing the ori-
gin. Hence they are subspaces iff they are closed under muitipiication by
-1, '
LEMMA 0.4. Assume K is closed and proper. Let J equal 1 or 2
and put Sy = rec cone,K.. Then
0 ¢ ri(domk*) 1ff S, -S,, :
and
0 ¢ int(domk*) 1ff S, < (0).
PROOF. We use the following SUBLEMMA. If w* c R" and h 1s a posi- E

tively homogeneous prdper convex function on R", then the following two
conditions are equivalent:
() Vwe R, w,wo < h(w) with strict inequality for each w ]
such that -h(-w) # h(w);
_ (b) VweR", hiw) < oW implies h(-w) < <-w,w*>,
PROOF OF SUBLEMMA. Assume (a) and suppose h(w) < <w,w*>. Then actually
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h(w) = <w,w*>, JIf we had -h(-w) # h(w), then (a) would imply <w,w* < h(w),

a contradictior]. Thus -h(-w) = h(w) = <w,w*> and (b) 1s proved. Converse-
ly, assume (b) fand let w be given. If h(w) < <w,w*>, then (4.7.2) and

(b) imply =h{v
<h(-w) 7 h(w).
would {mply

L < h(-w) < <-w,w*> and hence <w,w*> < h(w). Suppose
By (4.7.2) we have <-h(-w) < h(w)? If h(w) < <W,w*>, this

-W) < <w,w*> while at the same time from (b) we would have

,w* < -h(-w§. Therefore <w,w*> < h(w) whenever -h(-w) # h(w), and (a)
is proved.

Define h = *(-Idomzk*). By (13.1) and the Sublemma, O ¢ r.i(domzl(*)
itf for each w ¢ R", h(w) <0 1implies h(-w) < 0. B8y (13.1) we also have
that 0 ¢ 1nt(dom2l(*) 1ff for each w ¢ R", h(w) <0 fmplies w=10. The
assertions for Jj = 2 follow frogn these equivalences and the fact that
hs= reczl(. The assertions for J =1 follow similarly, using the fact that
rec\K = -6‘(--|d0l'K*).

In view of Lemmas 0.3 and 0.4 and the observations preceding Lemma 0.3
concerning the existence of saddle-values and saddle-points, formulas are
given in §52 and 4 for the parents and recession functions of the saddle-
functions resulting from the operations developed there. This is done in
Theorem 2.4, Corollary 4.6.2, and Lemmas 2.5 and 4.7. By combining these re-
sults with Lemmas 0.3 and 0.4 the reader can easily state existence theorems
as needed.

The next lemma is used in $32 and 4 to dualize various conditions. Also,
taking Lj = {0} 1in this lemma yields the assertion "0 ¢ ri(domJK*) iff
SJ c ‘53" of Lemma 0.4.

LEMMA 0.5. Let L, (resp. L,) ba a subspace of R (resp. R"), and

assume K 1is closed and proper. Then for Jj = 1 and 2 the following con-

ditions are equivalent:
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(ag) Ly ri(donks) # 45
('{1) L N (rec coneJK) is a subspace;
(cJ) Lj N (rec coneJK)C -(rec coneJK).

PROOF. We prove only that (az). “’2) and (cz) are equivalent, as the
proof for J =1 1is similar. By the remarks preceding Lemma 0.4 and the
fact that L, is a subspace, (bz) is equivalent to (°2)° Write D* = domyK*
and L = L,. By (11.3), (‘2) fails {ff there exists a hyperplane separating
L and D*. By (11.1) this occurs iff there exists a we R" such that

inf{<y*,w>|y* ¢ L} > sup{<y*,w>|y* ¢ D*)

and
sup{<y*,w>|y* ¢ L} > inf{<y*,w>|y* ¢ D*}.
But since _
sup{<y*,w>|y* ¢ D*} = trec,K)(w)
and

inf{<y*,w>|y* ¢ L} = (0 if wel
. {- if wyel,

this means that (a,) fails 1ff there exists a we L such that
(reczx)(w) <0 and (reczx)(-w) > 0. Therefore ("2) holds iff for each
we lt, (rec,K)(w) < 0 implfes (rec,k)(-w) < 0. But this last condition
is the same as (cz). '

Define K to be polyhedral iff it is closed and either its convex or
its concave parent is polyhedral. By Theorem 0.1, if K 1is polyhedral and

L 1s equivalent to K, then L 1is polyhedral. Thus. an equivalence class

s called polyhedral iff any of its members is polyhedral.

From Theorem 0.2 follows the important fact that (K*] is polyhedral '

whenever (K] 1is polyhedral. Polyhedralness is also preserved by each of

the operations developed in §§2, 4 and 5.




§1: A General Theorem

The goal of this sectfon {s to prove Theorem 1.1, which concerns the

AR S s

following question. Let K be a saddie-function on R" x R", let
Al‘ R+ " and Azz R + R be linear transformations, and suppose that
all the saddle-functions of the form (u,v) + R’(k]u.sz). vhere K 1s equi-

valent to K, belong to a single equivalence glass. What can be said about

Rt

the conjugate (1.e. “dual") equivalence class? Theorem 1.1 describes this
§ class explicitly. In 82 this duality is developed in more detail as two dual

operations on equivalence classes.

| THEOREM 1.1. Let K be a concave-convex function on R x R" and let

A=Ay x Aps vhere A,: R+ R and Ay R+ R" are linear transformations.

Assume K 1is closed and that there exists a closed concave-convex function

H on RP x R such that KA is equivalent to H whenever X is equiva-

, lent to K. Define J, and J, on R° x RY by ‘
L Jy(u*,v*) = inf K*(x*,y*)

sup
{X*Iﬁfx* s y*) (y*IAgy* a y*)

’f’ : Jp(u*,v*) = inf sup  K*(x+,y%),
| (yt'AEV‘ » y*) (X*IA‘X* s y*}

and Jet J be any concave-convex function on RP x RY such that

Jy £J 2 Jy. Then J is simple and satisfies 4
’ elclyd = BY, clyel,d = Y,
dom(clzcl‘d) = dom H* = dom(cllclzd). f

shere
dom H* < cl(A*dom K*).
1f W is proper, then J Js proper and has the same kernel as H*. - ,q
From Theorem 0.2 and Lemma 1.6 (below') it follows that in the theorem . {4

J can be taken to be either 61 or "2'

The proof of this theorem uses seven lemmas. The assertion of Lemma 1.2
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was first noted in Rockafellar [39] and the proof given is the one indicated
there. Lemma 1.3 was suggested by the proof of (34.5). Lemma 1.4 was first
proved in [391.

LEMMA 1.2. Let K be a concave-convex function. Then the lower con-

Jugate of K* fs cl,cl,K, and the upper conjugate of K* s clyclk.

PROOF. Cbserve that for any convex funccion fr

(c) f)(y) = sup inf {<y - w,y"> + f{w}}
y* w

follows trivially from the fact that ¢l f = (f*)=_ Similarly,

(cV g)(x) = inf sup {<x - z,x*> + g(2)}

X2
for any concave function g. If H denotes the ypper conjugate of K*,
2 then these facts together with tre definitions imply
H(x,y)

inf sup {<x*,x> + <y*,y> - int sup {<Z,x™ + <oW,y*> - K(z,w)}}
A v z W

inf sup {<x - z,x* + sup inf {<y - w,y* + K(z,w)}}

x* z y* w

= inf sup {<x - z,x™ + (clzk)(z.y)}
x* z

= (cllclzx)(x.y).

The other assertion {s proved similarly.

LEMMA 1.3. Let X be a concave-convex function. Then domK =

doml(clzK), domél( (e domz(cl,K), and dom chK(-.y) = domK for every y.
If dom]K F ¢ and dom K(x.;) < cl(domZK) fur every x e ri(dom]K), then

actually domzl( < domz(clz'&) < cl(domzk) and moreover c]ZK agrees with

K cn the set ri{dom K). Parallel assertions hold concerning clyK.

PROOF. By the definition of domk eng dom,K, when x ¢ domK the
. convex function K(x,:) somewhere has the value -=, whereas when x ¢ dom,lK
the funiction K(x,°) 1s never -= gnd its effective domain includes domz‘ri.

Thus (c\zk)(x,') js the constant function -= when xgdomlx, whereas
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when x ¢ dom K ft is never -= and {ts effective domain includes dum,K.
This shows that dom](dzl() = dom,K and domz(clzx) D domyK, and in fact
that dom]K is the effective domain of every one of the concave functions
(clzk)(°.y). Now assume that dom K(x,')c cl(domzk) for every
X e ri(domll(). Since dom,K c= dom K(x,-) always holds, (6.3.1) implies

ri(dom K(x,*)) = ri(domzkj ("
for every ¥ ¢ ri(domll(). Thus, for each x ¢ ri(dom]l() the ¢onvex function
K(x,*) agrees with {ts closure on ri(domzk). That is, K agrees with
clzK on the set r1(dom1K) x ri(domZK) = ri(dom K). Finally, ascume
dom]K # 4. By (6.2) we can pick some x ¢ ri(dom]K). Then x ¢ danel(clz.\f,)
implies dom(cl?x)(x,-)c ¢1{dom X{x,-)), and equation (1) and (6.3.1) imply
cY(dom K(x,*)) = c!(domRK'). Thug, forany y ¢ domz(c'lzt('). {clzK)(x,y) < tw
implies that y ¢ dom(clzK)(x.-) and hence y ¢ cl(domzK}. This shows
dom,(c1,K) < c1(dom,K).

———a—

LEMMA 1.4. Let K be a concave-convex function. Then chK and
cllk are simple. .

PROOF. It suffices to prove clzK is simple. This requires shiwing
(i) dom(cl,}()(-.y)CC'l(dom](leK)) whenever y ¢ ri(dom?_(clzl()), and (43}
dom(clzl()(x.-)c cl(domz(c'lzK)) whenever x ¢ r‘i(dom‘(c'lzk')). Lenma |.?
implies dom!(clzl() a dom,K and dom(clzk)('.y) = dom,K for every y.
This establishes (i). Since a concave function agrees with its closura on
the relative interior of its effective domain (see (7.2) and (7.4)), lLenma
1.3 also implies (cl?_K)(x.y) = c1((c12K)(',y))(x) n (c11c12K)(x.y) whenever
X € ri(dom](clzk)). Applying Lemma 1.3 once nore yields dom(c],clzK)(x.-) :

domz(clzk) tor every x. Combining these facts establishes (i1).

oY

LEMMA 1.5 Let K Dpe a concave-convex function. If ri(dom(dzcllr)) :

~1(dom{clyc1, K)), then K is simple.
1¢'0 een 15 s1mple.
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PROOF. Assume there exists an x ¢ ri(domll() such that dom K(x,-) q‘_
cl(donzx). Then there exists a y such that K(x,y) < +» but
y¢ cl(donzk). Lemma 1.3 implies dom(clzx)(°.y) = dom,K. Since an improper
concave function euqals +e everywhere on the relative interior of its effec-
tive domain (by(7.2)), (c1K)(X.y) < K(x,y)< 4= implies that (c1,X)(.y)
is never +=. Hence y ¢ domy(cl1,K). From Lemma 1.3 1t follows that

domK C dom,(cl,K) = domp(cl c1K) & c1(domyK),

By (6.3.1) this implies
ri(dom,(c1,c1,K)) # ri(dom)K). (1)

By (33.1.1) cl]K 1s a concave-convex function. Hence Lemvma 1.3 implies

dom,K = domy(c1iK) C domy(clycl k) |
and domK < dom,(c1,K). Since x e ri(domK), this shows dom,(c1\K) # 6,
and by Lemma 1.4 cllK is simple. Hence Lemma 1.3 also implies
. dom,(c1,¢1,K) < cl(domy(c1K)).
These facts together with (6.3.1) imply that
ri(domz(clzcl]l()) = ri(domX). (2)
From (1) and (2) 1t follows that ri(danz(clzcl]l()) . ri(domz(cllclzl())
implies dom K(x,*) © cl(domzk) for every x ¢ ri(domlk). The other con-
dition for K to be simple can be estabiished similarly.
LEMA 1.6. Let L be a concave-convex functior; on B x R" and
B =8, xB, be a linear transformation from "« R to RP = RY, _De?f_i_r_t_g

Jy(z.w) = sup inf  L(x,y)
(xlle = 2} (lezy = w)

dp(z,w) = inf sup  Lix,y)
{ylszy = W) (x|B]x = 2)

for every (z,w)e RP x RY. Then Jy and J, are concave-convex functions

_o_n_Rpqu.
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PROOF. Let z ¢ RP be fixed and write f = y(zse). Then f(w) =
sup((le.(x.o))(u)lnlx = z). Since (5.7) implies BzL(x.-) is a convex func-

tion for each x, (5.5) implies f dtself 1s convex. Now let w e RY be
fixed and write g = J;(-,w). The function k(x) = inf(L(x,y)|Bpy = w} is
concave by (5.5), so g = B,k 1s concave by (5.7). This shows Jy is con- |
cave-convex. Similarly, (5.5) and (5.7) fmply J, s concave-conves.

LEMMA 1.7. Let the notation be as in Lewna 1.6. Then L*B* <J§ and
Jy < T#8*, where B* = B} x B,

PROOF. For J =1 and 2 Tlet Rj denote the range of 33' Observe
that Jz(-.w) is constantly +» whenever w ¢ Rz. and Jz(z.w) ® .= when-
ever W e Rz but z¢ Rl. These facts and the definition of lower conjugate
yleld

Q(z'.v*) = gup inf (<z2,2% + <w,w™» - J,(2,0)}
w 2 2

= gup Inf (<2,2™ + <w,w® - Jz(z.w))
wzuz nkl

»sup Inf sup_, Inf_, (<2,2% + <ww®> - L(x,y)}
n:Rz ch, ych w ch,

2 sup sup_, inf Inf . {(<z,2% + <ww® - L(x,y))
wckz ytﬂz w zcl!l xcl| 2

= sup _sup inf _inf {<8]i.z*> + <825.w'> - L(x,y)}
y yty"'BzO x XtX*Bl 0

= sup inf (<x,Bfz*> + <y, Biwk> - Lix,y)}
y x .

s L*(sz.'al"')
. L4B%(z%,w*),
where the inequality follows from (36.1). This proves the first inequality,
and the second is proved similarly.
LEMMA 1.8. Let K and A be as in Theorem 1.1, write C = domK and
0 * domyK, and let f (resp. §) be the convex (resp. concave) parent of K.

i D0 il ¢ ik P o A AR M N At £




If K i3 concave-closed, then
dom, (KA)* = U(dom c1(Afg(.y))|y ¢ DN range A}

1f K is convex-closed, thep
dom, (RK)* = U(dom c1(A$f(x,:))|x ¢ CArange A},

PROOF. We prove only the first formula, as the second is similar,
Assume K s concave-closed. Then (16.3) implies (K(-.y)Az)* - cl(A!g(-.y))
for every y. Also, if y ¢ 0 then K(¢,y) 18 4= somewhere, which implies
that g(+.y) = K(<,y)* and hence cI(Afg(:,y)) are constantly -=. From
these facts i1t follows that

(KA)*(u*,v*) = sup 1nf (<u,u™ ¢ <v,vy» - K(A]u.sz))
vV u

= Sup {<v,v® + (K(+,Apv)A)) *(u*)) |
v
. v:::‘D {cv,v™ ¢ C](“f’('o‘z'”("'“-

Nence u* ¢ dom,(KA)* 1ff ,

Vv, Jve K'0 such that u* ¢ dom cI(Af(:.A)),
and this occurs 1ff

3y ¢ DNrange A, such that u* ¢ doa c1(Af,9(+.y)).
The first formula is {mmediate from this.

PROOF OF THEOREM 1.1. Since K {s closed, Theorem 0.2 {mplies that
the lowar conjugate of K* {s K and the upper conjugate of K* is K,
Thus, Lewns 1.7 implfes KA < Jg and Jp < KA. From J, <J <J, and (36.1)
1t follows that J§ <J* <J* <Jp. Therefore
KA <t cJ* < TR
Together with Theorems 0.1 and 0.2, this implies that the lower conjugates
of J* and H coincide and the upper conjugates of J* and H coincide,
But by Lemms 1.2 this means that
clyclyd = ¢ and clyclyd = He,
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Since equivalent saddle-functions have the same domain, this implies that

dom(clzclld) = dom H* = dom(cl]clzJ) (1)
By the hypothesis on H and Theorems 0.1 and 0.2 we have that
{‘ dom H* = dom, (RA)* x dom,(RR)*, (2)

Let f, g, C and D be as in Lemma 1.8. Since K 1is closed, Theorem
0.1 impifes that K f{s concave-closed, K 1s convex-clused, and both 4
and K have the same parents as K. Hence Lemma 1.8 implies, for example,

that

e —

dom,(RR)* = Utdom c1(Agf(x,+))|x ¢ C N range A,}.
Since
dom c1(A3f(x,+)) < c1(dom A3f(x,:)) = c1(Agdom f(x,:))
for each x, we conclude that
domz(KK)* C cl(AEU(dom f(x,+)|x ¢ C N range A]}).
But by Lemma 0.3 we know that
| dom,K* = U{dom f(x,*)|x ¢ C}.
Using (2), 1t follows that .
doij* c cl(A;domjK*)

for J = 2. The corresponding inclusion for § =1 follows from (2) simi-

larly. Hence

dom H* CC c1(A*dom K*).
From (1) and Lemma 1.5 it follows that J 1is simple. Now assume H {s
proper. Then the set in (1) is nonempty. If dom]J were empty, then chJ
and hence cl'clzd would be constantly -=, contradicting the fact that
dom'(cl‘c'lzd) is nonempty. Hence domJ f 4. A similar argument shows
domz.) # P, so that J {s proper. Since J is also simple, {t follows
from (6.3.1) and Lemmas 1.3 and 1.4 that J has the same kernel as ¢1,J,
which in turn has the same kernel as clzcild. Then since cl,clyd ~ %,

Theorem 0.1 (b) implies that J has the same kerrel 4s H*,




§2: Two Dual Operations

In 'this section we develop two fundamental operations involving iinear
transformations and equivalence classes of closed proper saddie-functions.
Specific conditions are given under which the operations can be performed,
and the operations arec shown to be dual. Various results are proved con-
cerning the equivalence classes resulting from these operations. The sec-

' tion concludes with examples showing that the conditions under which the
operaticns can be performed cannot in general be weakened.

g The first operation we develop 1s analogous to that of composing a con-
vex function with a 1inear transformation. Let X be a closed p'roper con-
cave-convex function on R x R" and let A= Ay A2 be a 1inear transfor-

1
4
;:
h mation from RP x R to R™ x R". We seek a condition on K and A ensur-

ing the existence of an equivalence class of closed proper saddle-functions
which contains every function of the form KA for ¥ ¢ [K]. Such a condition
is given in Theorem 2.2. When this equivalence class exists, it will usually
be denoted by (KA.

LEMMA 2.1. Let K be a concave-convex function on R" x R" aad let

A=Ay x A, bea linear transformation from R xR to A" xR". Then KA

is 8 concave-convex function on RP x RY, and A" (dom K) & dom KA. The

inclusion can be strengthened to equality if K 1s closed and proper and

range A M\ ri(dom K) A #.
PROOF. Write dom K = C x D. By (5.7), KA is concave-convex. If

Ue A'ilc. then K(A‘u.-) is never -= and hence kA(u,-) . l((A]u,-)A\2 is

never -=. This shows A;'C c dom]KA. Similarly AE‘D < dom,yKA.  Now

assume K fs closed and proper and range ANri(dom K) £ 4. If uy A'lc.
. then (34.3) implies K(I\]u.-)l\2 equals -= everywhere on ri D and hence

I((A]u.-)A2 equals -» everywhere on A;(r‘. D). Since AE‘(ri D) #4 by

hypothesis, this shows dom KA C A7'C. Sinilarly domKA C A;'0.
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THEOREM 2.2. Let K be a closed proper concave-convex function on
R x R, and lgt A Ay x A, be a Yinear transformation from P x RS to
R" « R" such that range AN ri(dom K) # 4. Then the collection
(KAIK ¢ )} of saddle-functions is contained in an equivalence class (W]
of closed proper concave-convex functions on R® x R having domain
A"}(dom K). Morsover,

He=KkA, H=FRa,
ri(dom H) = A™*ri(dom K),

c(dom H) = A"*c1(dom K).
PROOF. Lemma 2.1 implies KA and KA are proper concave-coavex func-
tions on RP x R? with domain A"'(dom K). From Theorem 0. (b) it is
clear that a closed proper 'saddle.-function is the least member of its equi-
valence class 1ff it is convex-closed. Now it follows routinely, using (6.7),
(34.3) and (9.5), that KA satisfies the six conditions of (34.3) and more-
over is convex-closed. Hence KA 1s closed and is the least member of its
equivalence class. Similarly, KA 14s closed and 1s the greatest member of
its equivalence class. According to (34.4), two closed prober saddle-func-
tions are equivalent iff théy have the same kernel. Suppose
(usv) ¢ ri(A”'(dom K)). By (6.7) this means A(u,v) € ri(dom K). Since K and
K are equivalent closed proper, KA(u,v) = KA(u,v). This shows KA~TKA and
hence [KAJ = (KA} » (H]). If Ke (K], then K <K <K {mplfes
KA < KA < KA and hence KA ¢ [(H] (Theorem 0.1(b)). The formulas for
ri(dom H) and c){dom H) are immediate from (6.7).
THEOREM 2.3, Llet K and A be as in Theorem 2,2. Then
a(KA) (u,v) = A*aK(A(u,v))

for each (u,v) ¢ AP x RY, and
ri(A" (dom K)) < dom 3(KA) < A”}(dom K),
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PROOF. The inclusions are immediate from (37.4) and Theorem 2.2. It

follows that the identity holds trivially when (u,v) ¢ A”'(dom K). Suppose
(u,v) ¢ A dom K. By the definitions, (u*,v*) ¢ a(KA)(u,v) {ff
! u* ¢ 3(K(+,AV)A )(u) and v* ¢ a(K(Ayu.e)A,)(v). Now by (34.3),
Aju ¢ domK implies that K(A]un) 1s a proper convex function with
".; . ri(dom K(A]u.-)) = ri(dom,K). Hence range A,N ri(domK) # ¢ and (23.9)
imply that v* ¢ a(K(A]u,-)Az)(v) 1ff vv ¢ AzaK(A‘u.-)(sz). i.e. 1ff
vt ¢ AzazK(A(u.v)). Sim{larly, u* ¢ a(K(-.sz)A])(u) 11f
u* ¢ AfalK(A(u.v)). The 1dgnt1ty follows.

THEOREM 2.4. Let K and A be as in Theorem 2.2. Let f (resp. g)
denote the convex (resp. concave) parent of K, and let h (resp. k) de-

note the convex (resp. concave) parent of KA. Then
h(u,v#) = (A3F(Aju,+))(v*)

and
k(u*,v) = (Af9(«:Apv)) (u%).
PROOF. Suppose u ¢ don]KA. Then h(u,°) 1s constantly +=, Also,
Aju ¢ dom K implies f(A]u.-) is constantly += and hence
(A!f(Alu.-))(v*) - inf(f(Alu.y*)lkgy* = y¥} = dw
for every v*. Now suppose ue doanA.' By (34.3), A ¢ dom,K implies

K(A]u.') is a proper convex function with ri(dom K(A‘u.-)) = ri(domzl().
Thus from (16.3), Theorem 0.1 (a) and range Azf\ri(douzl() g it follows
that h(u,v*) = (K(Aju,e)A))*(v*) = (AgK(Aju,<)*)(v*) = (ASf(Ayu,:))(v*) for
every v*. This proves the first identity. The second is proved similarly.

polyhedral, then KA is polyhedral.

PROOF. Let I, and I, denote the identity transformations on rP

and R". respectively, and let f and h be as in Theorem 2.4. Then

bt i, A0 . bt . B il e ascile M RAS GRS L ¢ e
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hoe (I, % AS)(P(Ay x 1)), Hence (19.3.1) fmplies that h {s polyhedra)
it f 1is polyhedral. Since KA 1{s closed by Theorem 2.2, this concludes

the proof.
COROLLARY 2.4.2. Llet K and A be as in Theorem 2.2. Then
dom(KA)*  Avdom K+,
In particular, if f (resp. g) denotes the convex (resp. concave) parent
of K, then

ritdu](KA)') = M Utri(dom g(+,y))|y ¢ range Ay N ri(dom,K)}

2

ri(dom,(KA)*) = A!U{ri(dom f(x,°))|x ¢ range AN ri(domK)},
where these formuylas also hold when “ri® is deleted throughout.
PROOF. By Lemma 0.3, .
LEMMA 2.5. Let K and A be as in Theorem 2.2. Then
(rec,KA)(u) = inf((rec K(-.y))(Ayu)|y ¢ range A,/ ri(dom)K)}
and
(nczl(A)(v) = sup((rec K(x.-))(sz)lx c range A, Nri(domK)}.
PROOF. By definition and Theorem 2.2,
(recKA)(v) = sup{(rec(KA)(u,<))(v) Ju c A7 ri(domK)).
= sup{(rec K(x.o)Az)(v)lx e range AN ri(dom,K)}.
If x¢ ri(domll(). then (34.3) and (9.5) fmply (rec K(x.-)Az)(v) .
(rec K(x.-))(sz). This proves one formula, and the other is proved similarly.
THEOREM 2.6. Let K and A be as in Theorem'2.2, Then for § =

1 and 2,
cl(de(KA)*) . cl(AsdomJK*)
iff

recJ(KA) . (recJK)Aj.
PROOF. By (37.2), I'ecz(KA) = 6‘(-|dm2(KA)"') and
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(rec,X)A, = 6*(Azo|douzk*).' Now apply (16.3.1) and (13.1.1). The assertion
for J =1 {s proved similarly.

Next we develop an operation analogous to that of taking the image Af
of a convex function f under a linear transformation A. Suppose K 1is
a concave-convex functionon R" x R and A= Ay x Ay 1s a Tinear trans-
formation from R® x R" to RP x RI.

We seek a condition on K and A cnsuring that all the functions on
R® x RY either of the form

(W) +  sup inf  K(x.y)
(x]Ax = v} {y|Ay = v}

or of the form

(u,v) » inf sup  K(x,y),
{ylAzy = v} (x Ajx = u}

for X ¢ X3, belong to a single equivalence classl of concave-convex func-
tions on Bp x R9. By analogy with the operation in the convex function case,
this equivalence class (when it exists) will usually be denoted by ([AK].
Theorem 2.8 gives a condition which guarantees that [AK] exists and, more-
over, that all of its members are closed and proper, and that its conjugate
is ([K*A*],

LEMMA 2.7. Let K be a closed proper concave-convex function on

RP x A9, Assume range A*~\ ri(dom kK*) ¢ 6. Thep
(R*A%)*(u,v) = sup{c1(AK(x,+)) (V) [Ayx = u},
where the supremum can be taken over just those x jn domK guch that
Ayx = u, and
(KFAF)*(u,v) = inf(cl(AIF(-.y))(u)lAzy = v},

where the infimum can be taken over just those y in dom,K such that

Azy-v.
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PROOF. Only the first formula will be proved, as the second can be

proved similarly. Let J denote the lower conjugate of K*A*. The defini-
tions yield

f
J(u,v) = sup{<v*,v> + inf{<u*,u> -'(K'*(-.Agv*)Af)(u*)}). B
vt u* )

Since K* is concave-closed, it follows from (34.3) and (6.3.1) tha;:

ri(dom K¥(+,y*)) equals ri(domK*) when y* ¢ domK* and equals R

when y* ¢ dom,K*. Hence (16.3) and the hypothesis range Afnri(dom]l(*) té
imly (R*(<,Agv*)Af)*(u) = (AR*(-,Agv*)*)(u) = sup(k(x,A$v*)]A;x = u)

for every v*, where k denotes the concave relative of K*, Thus,

J(u,v) = sup{<v*,v> + sup, k(x,A%v*)}
v* xcA slu Aiv

= sup, sup(<v*.v> - (- k)(x.Agv*)}.
xeA‘ uv*

But Theorem 0.2 implies -k {is the convex parent f of K, and hence (16.3)
imp1ies sup{<v*.v> = (k) (x,Agv*)} = (f(x,-)A3)*(v) = cU(A,F(x,:)*)(v) =
cl(AZK(x. ))(v) This establishes the asserted formula for J. Finally,
for each x ¢ domK, the fact thét K 1s convex-closed implies K(x,-) and
hence cl(Azg(x.-)) is constantly =,

THEOREM 2.8. Let K and A be as in Lemma 2.7 and assume
range A* N\ ri(dom K*) # §. Define functions Jy and J, on RP x RS by

Jq(uw) = sup inf  K(x,y)
{(x|Ayx = u} {y|Ay = v}

and

Jp(u,v) = inf sup  K(x,y).
{ylAy = v} {x[A;x = u}

Then there exists an equivalence class [AK] which contains every concave-

convex function J on RP x RY satisfying Jy <J <J,. Moreover, [AK])

is closed and proper and its conjugate is [K*A*]. If (K] is polyhedral,

then [AK] 1is polyhedral.
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PROOF. Theorem 2.2 implies that K*A* and K*A* belong to a closed

F—

proper equivalence class [K*A*), Let ([AK] denote the cbnjugate equiva-
lence class. From Lemma 2.7 and the fact that ¢l f < f for any convex
function f and cl1 g > g for any concave function g, it follows that
(Rea)* < 9, and J, < (K¥AF)*

Hence .Theorem 0.1(b) implies that each concave-convex function J on
RP x RY satisfying Jy £J < J, belongs to [AK). The polyhedral asser-
; tion follows from Corollary 2.4.1 and the fact that K* 1{s polyhedral
whenever K fis.

The following lemma dualizes the hypothesis used throughout this sec-
tion.

LEMMA 2.9. let K and A be as in Lemma 2.7. Then for Jj =.1 and 2

the following conditions are equivalent:
(aJ) range Ajf\ ri(donjk*) ts;
(bJ) Ai‘{O}f\(rec coneJK) is a subspace;

(cJ) A‘;'(O}f\(‘rec coneJK) C ~(rec coneJK).

PROOF. Apply Lemma 0.5 with I.‘1 = range AJ.

We conclude this section with two examples showing that Theorems 2.2
and 2.8 can fail if their hypotheses are weakened. These examples are pre-
sented in the notational scheme of Theorems 1.1 and 2.2.

EXAWPLE 2.10. Take m=n=p=q=1, and let A, and A, each be
the zero transformation on R. Let K be a member of the equivalence class
of closed proper concave-convex functions on R x R having as kernel the
function

(u,v) + u's V(u,v) ¢ (0,1) x (0,1).
(This equivalence class is discussed in [44, p. 360).) Then domK =
[0,11 x [0,13, K(0,0) = 0, K(0,0) = 1, and K(u,v) = u” = K(u,v) whenever
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(u,v) € dom K\, {(0,0)}. Moreover, for each o ¢ [0,1] the function K,
belongs to (K1, where K (0,0) = a and K (u,v) = K(u,v) whenever
(u,v) # (0,0). Observe that, for J = 1 and 2, range Ajﬁdomjl( f g while
range Ajr\ri(domdk) = ¢. Also, for any K ¢ [K], the function XA is
constantly equal to K(0,0). Since 0 < %(0,0) < 1, this implies that KA
is closed and proper. However, it also 1mpl%es that, for any two elements
K, and K, of (K1, KA is equivalent to KA 1Ff K (0,0) = K)(0,0).
Thus, as K ranges over [K] the functions RA determine 2"’ distinct
equivalence classes of closed proper saddle-functions (cf. Theorem 2.2).
Now let ) and J, be as in Theorem 1.1, Since A] is the zero trans-
formation on R,
sup 1_af K* if u*=0 and v* =0

Jl(u*.v*) = +§ if u*=0 and v* 40
oo if urgd o
and
infsupX* if ut=0 and v* =0
3 (ur,v¥) = -5 ) if w70 and vt =0
+u if v* £ 0.

But s:p 131’ K* = -(K¥)*(0,0) = -K(0,0) = -1, and similarly 1af s:p == 0.
Hence J] and J2 are closed and proper but not equivalent (c¢f. Theorem 2.8).
EXAMPLE 2.11. Let K -and A] be as in Example 2.10, but now let Az
be the fdentity transformation on R. Observe that range Azf\ri(domzx) ' )

and range A,/ domK # 6 but range A/ ri(domK) = 6. For each K c X1,

KA(u,v) = K(0,v) = K(0,0) if v=0
+  if v¢ (0,13,

where 0 < K(0,0) <'1. This implies that KA is proper with domain
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R x [0,1] and that KA 1s closed 1ff K(0,0) = 0. It also implies that,
for any two elements K] and Kz of (K1, K.'A is equivalent to K.’ZA iff
K](0.0) = K?_(0,0). Recalling the functions Ka for o ¢ (0,17, we conclude
that as K ranges over (K] the functions KA determine ZN’ distinct
equivalence classes of proper saddle-functions, where only the class con-

taining KA 1is closed (cf. Theorem 2.2).




§3: Sharper Results

In this section Theorem 1.1, which has already been sharpened in §2, is
sharpened sti11 further. The principal results are Theorems 3.4 and 3.5,
Among the conciusions are facts concerning the attainment of the extrema
appearing in the definitions of J, and JZ’ Lerma 3.6 states simple con-
ditions sufficient for the more general hypotheses of Theorems 3.4 and 3.5
to hold.

Throughout §3 we adopt the notational setting of Theorem 2.8. That is,
K s & closed proper concave-convex function on R" x R", A = Ay x Ay s
a linear transformation fron K" x R" to RP x RY, and Jy eand 'le are
functions defined on RP x R9 by

J;(u,v) = sup inf  K(x,y)
. (x[Ayx = v} {y[Ayy = v}

and

Jz(u,v) = inf sup  K(x,y).
{ylAzy = v} {xIA,x = y)

LEMMA 3.1. Let f be a proper convex function on R", Jet D be

a convex set such that D& dom f & c1 O, and let E be a convex set such

that EAri D4 4. Then

inf f = inf f,
ENO 13

PROGF. By (6.3.1), L<C dom fcocl D implies vi D = rildom f), Hence
S=2ENri(dm f)c END E implies trivially that

inf £ > inf £ > inf f.
S END 3

et ycE begiven., If y¢ domf, then f(y) = 4= » inf f. Suppose

y e dom f. Since ENri DF ¢, we can pick an x ¢ S. T}sxen (6.1) impliies
that y, = (1 - A)x + Ay « S. for each 0 < <1, Hence (7.5) implies that
fly) > ¢l f(y) = 11? f(yx) 2 ir'af{f(yx)lo <A <) > igf f. This shows that

f(y) > inf £ for every y ¢ E. Thus inf f > inf f, and the proof is
S E S
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complete.
THEOREM 3.2. Let (u,v) ¢ A ri(dom K) and agsume that
A?(Ol/\ Mt rec cone K(xse)|x ¢ ri{domK), Ayx = u}
and

A;'(O)f\m{rec cone K(«,y)|y ¢ ri(domzl(). Ay = v}
are subspaces. Then there exists a nonempty closed convex product set
Xx Y in dom 3K\ A" ((u,v)} such that (x,y) ¢ X x ¥ iff (x,5) isa
saddle-point of K with respect to A '{(u,v)} for each K c [KI. If the

two sets in the hypothesis are actually nullspaces, then X x Y {s bounded.
PROOF. Define a concave-convex function L on R" x R" by

0o fif Alx-u and Azy-v
L(x,y) =4 += if Ajx=u and Ay #v
- 1if Alx fu '
Clearly, L s closed and has domain Al{(u,v)}. Since (u,v) ¢ A ri{dom K),
ri(dom K) A\ ri(dom L) # 8. Therefore Theorem 4.2 (which doesn't depend on

the results of §3) implies that the equivalence class (K] + (L] 1{s defined ,
and has domain S x T, where S = A;l{u)ﬁdom‘i( and T = A;{v)f\domzx. ;
Moreover, Theorem 4.2 also implies that for any Xe CKJ, CK] + [L] contains |
the closed proper saddle-function M given by
K(x,y) 1f xc¢S and yeT ]
M(x,y) = § +» if xc$S and y¢7 |
- if x¢8§
Suppose xe ri S = A;l{u}r\ri(domlk) (use [6.5]). Then (34.3) implies

I ——

'i(xn) = K(x,+) 1s a closed proper convex function with effective domain
dom,K. Hence (9.3) and the definition of M imply
rec M(x,+) = rec K(x,*) + rec 6('|Aél(v)).

But rec 6(-|A51(v)) = 6(-|A{,‘(0)}. Therefore
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rec M(x,+) = Aé‘(O}ﬂ rec cone K(x,-).
Since M(x,e) = M(x,*) whenever x ¢ ri S (Theorem 0,1(b)), this implies
that
rec cone,M = A;(O}nf\mc cone K(x,*)]|x ¢ ri 3}.

By hypothesis this 15 a subspace. Similarly, rec coneIM is a subspace,

It follows from Lenma 0.4 that (0,0) ¢ ri(dom M*), and hence (37.5.3) im-
plies that 3M*(0,0) 1s a nonempty closed convex product set X x Y, By
(37.5), aM*(0,0)<s dom aM, But Theorem 4.9 (which doesn't depend on the
results of §3) implies that dom aM = dom 2K N dom 3L, and (37.4) implies
dom aL & dom L. Therefore X x Y Cdom aK MA™ ((u,v)}. Now (x.y) e X x ¥
iff (x,y) 1is a saddle-point of M, which (by (36.3)) occurs iff (x,y) fis
a saddle-point of X with respect to S x T. Using (x,y) ¢ dom K together

with (34.3) and Lemma 3.1, 1t follows that this occurs 1ff (x,y) is @ s

saddle-point of X with respect to A'l((u.v)}. Since any member of (K]
could be taken in the definition of M, (36.4) {mplies that (x,y) ¢ X x Y
iff (x,y) is a saddle-point of ¥ with respect to A™'{(u,v)} for each
[ [(K]. Finally, suppose the sets in the hypothesis are actually nullspaces.
Then rec coneJM = (0} for J =1 and 2, so that Letma 0.4 implies

(0,0) ¢ int dom M*) From this, (34.3) and (23.4) it follows that the sets
aM*(.,0)(0) = X ~and aM*(0,-)(0) = Y are bounded.

LEMMA 3.3. For x e dom;K the following three conditions are equiva-

lent, and they imply A]x 3 dom‘J‘:

(a‘) range Agf\ri(doml((x.-)*);,' E

(a,) AE'(O)r\rec cone K(x,*) is a subspace;
(24) AEI(O}K\ rec cone K(x,+) € -rec cone K(x,*).

Similarly, for y e domzl( the following three conditions are equivalent

and they imply Azy'c dom,J, :
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(b]) range Af M ri(dom K(-.y)*");’
(b,) A;l(O)ﬂ rec cone K(-,y) is a subspace;
(b3) A;I{O}f\ rec cone K(+,y) & -rec cone K(-,y).

PROOF. Only the first assertion is proved, as the second can be proved
similarly. Since rec cone K(x,*) {s a convex cone, clearly (az) holds
iff (a3) holds. By Theorem 0.1, K(x,*)* 1is proper convex and its conju-
gate is K(x,*). Hence (16.2.1) implies that (a]) fajls iff (a3) fails.
Thus, the three conditions (a1) - (a3) are equivalent., Suppose now that x

satisfies (a3). Since K(x,*) is closed proper convex, (9.2} implies that

Azl(_(x.-) is too. Hence Azl(_(x.o) is never -=. But A2_l5_(x.-)_<_J](A]x.-).

Therefore A]x € dom]J].
THEOREM 3.4. Assume that each x e rildomK) (resp. y ¢ ri{domyk))

satisfies one of the equivalent conditions (a;) (resp. (b;)) of Lemma 3.3.

Then the conclusions of Theorem 2.8 hold, and

ri(A dom K) C dom AK C A dom K.

Furthermore, for each (u,v) ¢ ri(A dom K) there exists a nonempty closed

convex product set X x Y in dom aKN A (u,v)) such that (1) (x,y) ¢

XxY iff (x,y) is a saddle-point of ¥ with respect to A (u,v))

for each K¢ [K), and (2) (x,y) ¢ X x ¥ dmplies J(u,v) = K(x,y) for
every Je (AK] and K ¢ [KI.

PROOF, The hypothesis implies that ASI(O}K\ rec coneJK {s a subspace
for j = 1 and 2. Hence by Lemma 2.9 the conclusions of Theorem 2.8 hold,
and in particular J] and Jz belong to [AK], where [(AK)*] = [K*A*],
Thus dom AK = dom‘J] » domzdz. Therefore the hypothesis and Lemma 3.3
imply that ri(A dom K) < dom AK. On the other hand, Lemma 2.9 and Corol-
lary 2.4.2 imply that dom AK < A dom K. Let (u,v) ¢ ri(A dom K). By

Theorem 3.2 there exists a nonempty closed convex product set X x Y in
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dom 3K/ A"{(u.v)) such that (1) holds. Suppose (x,y) € £ x Y. Since
(1) implies (x,y) is a saddle-point of K with respect to A ((u,v)1,
certainly J](u.v) = K(x,y). Since ri(A dom K) = ri(dom AK) by (6.3.1),
Theorem 0.1(b) implies that J](u,v) = Ju,v) for each T ¢ CAK]. Also,
(x,y) ¢ dom 3K and (37.4.1) imply that K(x,y) = K(x.y) for each ¥« (K]
This establishes (2). '

THEOREM 3.5. Assume that each x e domK (resp. y « domjk) satisfies

one of the equivalent conditions (a‘) (resp. “’1)) of Lemma 3.3. Then dom AK

actually equals A dom K. Moreover, writing cl,(AK) =J and cl,(A¥) = Js
Jy *d and J, =J on range A

In particular, J,(u,v) = J(u,v) except when u e range A,\ A,domK and

v ¢ range Ay, and J,(u,v) = J{u,v) except when u ¢ range A, and

V ¢ range A2\ Azdomzk.

PROOF. By Lemma 3.3, A dom l(c:domldl x domzdz. From this it follows
as in the proot of Theorem 3.4 that A dom K = dom AK. We only prove the
assertion about J]. as the other is similar. From the proof of Lemma 3.3,
Az_K_(x.-) is closed for each x ¢ domK. Hence Lemma 2.7 implies

Juyv) = sup{AZL(_(xu)(v)!)i_“c domK, Ax = u}. (1)
If x ¢ domK, then K(x,:) 1is constantly -, 0 that

AK(xye)(v) = {:

Since J](u.v) = sup(Azi_(_(x.-)(v)lA]x = y} by definition, (1) implies that

if , ¢ range Az (2)
if v ¢ range A2'

J](u.v) equals
max{J(u,v), sup(Azﬁ(x.-)(v)lAlx = u, x ¢ domK}},
which by (2) equals J(u,v) whenever v ¢ range A2. Henceforth assume
v ¢ range A2' Suppose u ¢ A]c_iomlk. Pick an x ¢ dom]K such that A],v = U,
Since A;‘{v) s, o= AK(x,+}(v) < d(u,v) < Jq(u,v). Hence
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J(u,v) = J‘(u.v) * 4= whenever u ¢ A;domK. Observe also that the
conventfon sup § = -» implies J(u,v) :,J](u,v) = -w» ywhenever u ¢ range Ay
In the only remaining case, i.e. when u ¢ range A]\\ A]dom]K, (1) implies
J(u,v) = sup g = -= while J](u,v) = sup(inf ¢|A]x =y} = e,
While the hypotheses of Theorems 3.4 and 3.5 are general, they may ap-

5 pear somewhat cumbersome to check. The next lemma gives simpler, "global"

conditions on K and A which imply the hypotheses of both Theorems 3.4

and 3.5.

For a nonempty convex set C in R". define the recession cone of (

to be the set
o' Cotylx+arye C,¥xe C Ya>0).
LEMMA 3.6. The three following conditions are equivalent, and they

imply that conditions (a,) - (aj) of Lemma 3.3 hold for each x e domK:
(c;) Az (01N 0" c1(domyK) = (0};
(c,) Az'(virdomk is bounded for cach v ¢ RY;

(cy) Aél(v}r\vﬂ(domzk) is nonempty and bcunded

for some ve RY,

Similarly, the three following conditions are equivalent, and they

imply that conditions (b]) - (b3) of Lemma 3.3 hold for each y ¢ domZK:
(d) A (01N 0* cl(domK) = (0}
(d,) A'{urdomK is bounded for cach u e R”;

'(da) A;‘{u)(\tﬂ(domlk) is nonempty and bounded

e, M s S e

for some wue RP.
PROOF. Only the first assertion is proved, since the second is simiiar,
For each v ¢ Aydom,K, (8.3.3) and (8.4) imply that
Ay' (v} Acl ([domyk ) 15 bounded 1£f A1 (0) N0 c1ldomk) = (0). ()
It follows from this that (c]) implies (cz). By picking any v e A,ri(dom,K)




T o e -

42

it follows that (cz) implies (ca). Now assume (ca). Then (6.3.1) and
(6.5.1) imply that

A5' (v} A cl(domk) = A7 v} M c1(ri(dompK)) = €1(A (v Nri(domyK)).
That this set is bounded foilows from the fact that AE‘(V)!”\ri(domzx)
is bounded. Hence (c]) follows by (1). Finally, let x¢ dom,K be given.
Write f = K(x,») and C = dom f. Then by (34.3) and (6.3.1), f 1is a
proper cﬁnvex function with cl C = cl(domzk), But by (8.5) and (8.1) it
follows easily that dom(rec f) & ot cc 0+(c1 C). Hence
rec cone K(x, ) C 0*(c1 domZK), and therefore (cl) implies that x satis-
fies (a,) of Lemma 3.3. '

Finally, observe that if conditions (c,) and (d]) of Letma 3.6 are met,

then the sets X and Y given by Theorem 3.4 for each (u,v) ¢ A ri(dom K)
are actually bounded and hence compact. This is because the two sets in the

hypothesis of Theorem 3.2 are then nullspaces.
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§4: Addition and Minimax Convolution

This section begins with the development of the addition aperation on
equivalence classes of saddle-functions. Next, some results concerning separ-
able saddle-functions are presented. These are used together with the results
of §$2 and 3 to define another operation on equivalence classes of saddle-
functions. This operation, called minimax convolution, is dual to addition.
The theorems proved concerning these dual operations closely parallel existing
theorems about the dual operations of addition and infimal convolution on
convex functions.

There are two technical difficulties involved in defining the operation
of addition. The first stems from the fact that we are working with extended-
real-valued functions; we must deal somehow with the expression « - =, The
second and more fundamental difficulty is that, from the point of view of
minimax theory, we want to define addition of whole equivalence classes and
not just individual functions. The following definition is designed to handle
both these difficulties.

For 1 =1,...,s let K; be a concave-convex function on R" x R"
with domain C, x D,. We say that (K,] +...+ [K/] is defined iff the sets
Ce= c]r\...r\cs and D= o]r\...rwos are nonempty and

if('i(x.y) z“f.’l(i(x._y). Vixy)eri CxriD
whenever X, ¢ [K]] veoes K € [K. In this event  [K;) +...+ [K.1, which
will usually be written as ‘[K] +...4 Ks]. or [EIKi], is defined to be the
unique equivalence class of closed proper concave-convex functions on
" x R" having as kernel the function on ri C x ri D given by (x,y) +
SEKi(x.y). Such a unique equivalence class exists by (34.5.1). The opera-
tion which sends [Kl] S nexslh [Ks] into [K] $, okt Ks] is, quite naturaily,

called addition.

LEMMA 4.1. For 1 =1,...,s let K; be a closed proper concave-convex

——ae

s
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function on K" x R" with domain C, x D,. Then (K] +...+ (K] fis
defined if either C,N...NC, F ¢ and r 0yN... AT D £ ¢
(G ..ATrC fg and DA...AD Y 4.

PROOF. This follows easily from (6.5) and Theorem 0.1(b).

or

It is actually not hard to establish a weaker condition sufficient for
(K] +. .04 [K;] to be defined. Loosely speaking, the condition 1s just
that the K, be closed and that (possibly after renumbering the Ki's)
there exist an integer r, 0 < r < s, such that
ri C]f\...f\ri Crﬂcrﬂf\...f\cs /s

e ———n e

v

and

D]/\...ﬁbrf\ri D”]f'\...f'\ri Ds.)‘ .
(The conditions in Lemma 4.1 correspond to the values r=0 and r=s - 1,)
Instead of appealing to (6.5), the proof uses the generalization of (6.5)
described in the Abpendix.
| THEOREM 4.2. Let Kyue..Kg
on R" x R" such that ri(dom K,)N...Nri(dom K) # 4. Then [K;] +...+ [KJ)

is defined, has domain dom K] N...Ndom Ks’ and contains the closed proper

. EV e e T —

be closed proper concave-convex functions

saddle-function K given by

ZKy{xyy) if xcC and ye D
K(x,y) =< 4= if xeC and y ¢ 0
- if x¢¢C .

PROOF. Lemma 4.1 implies [KyJ #...+ (K] is defined. Hence it is the

unique equivalence class of closed proper concave-convex functions on A? x /"
having the same kernel as K. Therefore by (34.4) the proof will be complete
once we show K is closed. This we do by checking that K satisfies the
six conditions of (34.3). This follows routinely by applying (34.3) to the
Ki's with the aid of (6.5).
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In order tu apply the results of §52 and 3 to an equivalence class
[K] +...4 Ks] and its conjugate, we need to define and establish some pro-
perties of "separable" saddle-functions. For i =1,...,s let K, be a
proper concave-convex function on R™ x R™M with domain c1 x oi. Write
m= ini. n = ini and define a function (K,,...K ) on R" « R¥ by
EKy(xgayq) 1f xeC and ye O
(Kl""’Ks) s ¢ t= if xeC and y¢ D
- if x¢C
where x = (x,.....xs). y= (y‘.....ys). C=Cy xeux €y D= Dy <..ox O,
With the aid of (34.3) and the following Lemma 4.3, it can easily be verified
that the function (K].....Ks) is concave-concave with domain € x 0. Such
a saddle-function is called gggg;gglg. Lemma 4.3 reviews some useful pro-

perties of separable convex functions, and in Theorem 4.4 similar properties

are established for separable saddle-functions.

LEMMA 4.3, For 1 =1,...,5 let fi be. 2 proper convex function or

R' with effective domain C,. Define C = () x...x C and f(x;,....x) =

f](x‘) +...+ fs(xs). Then the following statements hold:

(a) f is proper convex with effective domain C;

(b) (cl f)(x].....xs) s (¢l f‘)(x]) +...+ (cl fs)(xs);
(c) f is polyhedral if each fi is;

(d)  fA(xf...oxd) = FH(x}) +...0¢ £2(x2);

(e) af(x].....xs) = af‘(x]) Hio g e X afs(xs);

(f) (rec f)(yseniiyg) = (rec fy){y ) +...+ (rec T)(y.).

PROOF. Assertions (a) and (d) are trivial. Assertion (1) follows imme-
diately from (a) and (8.5). To see (b), let x = (x].....xs) ¢ ¢1C =
; 0 0
cl C‘ X,..% ¢l Cs be given and fix any Xq * (x]....,xs) eri C=

F €y x...x i C. Define x, = (x;‘,....x;) by x, = (1= a)x, +ax for

A
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0¢<x< 1. Then (a) and (7.5) imply that
(c1 f)(x) = Vim f(x,) = Zim fi(x’;) = T(ch £,)(x).
At} Atl

On the other hand, if x ¢ ¢l C then X3 £ cl CJ for some 1 <js<s and
hence (a) and (7.4) imply that (c! f)(x) = 4= = () fJ)(xj) < Z.(cl fi)(xi)'
This proves (b). To see (c), define hi(xl““"xs) » fi(xi) for each 1.
Then
| epi h; = {(x1.....xs.u)l(xi,u) c epi f.}
and epi f1 polyhedral imply that epi hi is polyhedral for ecach 1. Hence
(19.4) implies that f = hy +...¢ hs fs polyhedral. Finally, we prove (e).
Suppose first that x = (x]....,xs) ¢ C. Then (a) and (23.4) imply that
af(x) = p and also afJ(xJ) =g forsome 1< J<s. Thus
af](x]) +o.ot afs(xs) = ¢, Now suppose that x ¢ C. Using (6.1) and (7.5},
one can easily verify that, for a convex function h on R" and a subset ¢
of R" containing ri(dom h), x* ¢ ah(x) 1iff
h(y) > h(x) + <x*,y - x>, \Vy e C.
Applied to the situation at hand, this implies that x* = (xf,...x;) ¢ of(x)
iff
TFyy) 2 Zlfi(xy) + <xtayy - xp) (1)
for every (y],.f..ys) ¢ C. Let J be any fixed index. By letting Y5
vary over Cj and requiriqg yy =%y for i#j, (1) implies
fj(yj) + E;% foxy) g_fj(xj) +xTayy - X 4 ?;S(fi(xi) +ahxy - xp).
Since all the numbers fi(xi) are finite, this reduces to
fj(yj) > fj(xj) + <x3".y‘j - xj>, Vyj € CJ‘ (2)

But this is equivalent to xg € afj(xj). Thus we have shown that (1) implies

x; € afj(xj) for j = 1,...,s. The converse follows easily by summing the

s inequalities of the form (2). This completes the proof of (e).
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THEOREM 4.4, For 1 =1,...,5 Jet K, be a closed proper concave-

convex function on R™ = R with domain C; % Dy, Put K= (K],...,KS)

and write € = €y x...x €y D= Dy xouux Oy x = (x1,...0x) and y =

(y],....ys). Then the following statements hold:

(a) K is closed proper concave-convex with domain C x D.

(b) I K'ici,k',].fg.g i = 1,...,5, then (?]....,'k‘s)e[l(] (i.e.

[K] depends only on [KyJs...s[K. D). -

(c) The least and greatest members of ([K] are given by

ZK‘(X.‘J.‘) if xeC and yeci D
K(x,y) =q = if xeC and y¢ clD

!

\ - if x¢¢

walle

L Ki(xjoyy) if xecl C and ye D
K(x,y) =4 = if x¢clC and ycD
is if y£D
(d) For j=1and2 and (x,y) ¢ CxD,
ajK(ny) = 33K3(X‘vy]) X, . 0% 3JKs(xs’ys)
(and 3K({x,y) = ¢ whenever (x,y) ¢ C x D).
(e) (K*,...K;) e [K*]
() (recyK)(x) = Z(rec)k,}(x;) and (rec,K)(y) = Z(rec,K,)(y,)
(9) If f (resp. fi) denotes the convex parent of K (resp. Ki)’

then f(x,y*) = Zfi(xi y}). Similarly for concave parents.
y

(h) If each K, is polyhedral, then K is polyhedral.

PROOF. (a) It suffices to check that K satisfies the six conditions
of (34.3). Let x = C. Then X; « C‘. together with (34.3) appried to K,
imply that Ki(xi") is a proper convex function with effective douain con

taining D.. Since K(x,y) = ZKi("i’yi) + &(y|D), it follows from Lemma

T N T T g S R o s e ST .
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4.3(a) and (5.2) that K(x.o) is proper convex with effective domain D,
Now suppose x ¢ ri C. Then X € ri Ci. so that (34.3) implies K(xi,-)
is closed and its effective domain actually equals Di' Thus K(x,y) =
foi(xi.yi). and Lemma 4.3(b) implies K(x,) s ciosed. This estabiishes
the first two conditions of (34.3) for K. Of the remaining four conditions,
two have parallel piroofs and the other two are satisfied trivialily.

(b) tet K, e (K1 for i=1,...,s andwrite K= (R},....K). Since
by (34.4) two closed proper saddle-functions are equivalent iff Lhey have
the same kernel, K}(xi,yi) - Ki(xf’yi) whenever (xi,yi) e ri C; x ri.Di.
Hence X and K agree on ri C x ri D. Since eguivalent saddle-functions
have the same domain, dom R, = C, x D,. This implies dom K = C x D.
Therefore K and K have the same kernel.

(c) Since K is closed, Theorem 0.1(b) implies K = cl,K and K= clyK.
If y £D, then K(-,y) equals +» on ri C and hence K(:,y) = c1{K(-,y)) =
+w. Now suppose y ¢ D. As in the proof of part (a), K(x,y) = EEKi(xi,yi) -
s(x|C) 1is proper concave with effective domain C. Since g(x) = iﬁKi(xi,yi)
is proper concave with C < dom g < c1 C by (34.3) and Lemma 4.3(a), it
foilows from (6.3.1) and (7.3.4) that (cllK)(x,y) = (cl gj(»). But
(c1 g)(x) = EZ(C]lxi)(xi'yi) by Lemma 4.3(b). Since cl,K, = K, this es-
tablishes the formula for K. The other formula is proved similarly.

(d) By part (a) and (37.4), dom 3K & C x D. Suppose (x,¥) e { x D.
By (37.4.1), aK(x,y) = aK(+,y)(x) x aK(x,){y). But from part (c) and
Lenma 4.3(e), aK(-,y)(x) = aia(~.y])(x]) X...X aK;(o.ys)(xs) where by
(37.4.1) the K} can ba replaced by Ki' This establishes the assertion
for j =1, and the case J = 2 1is exactly the same.

(e) The proof is by induction. First observe that separable saddle-

functions can be given an equivalent, inductive definition. Namely, for
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s = 2 Jet the definition be as given above, and fer s . ¢ define
(K].....KS) » ((K],....qu),l(s) where a space of the form
(R"'l X, . 0X !f"s-l) x R {s identified with R™ x...x R™s. For the pur-

pose of this proot we adopt this inductive definition. Suppose the asser-

TR I PR, TR W e

tion has already been proved for the case s = 2, and let s > 2 be fixed.
Since (Kf.....K;) = ((Kf,f..,K;_]),K;) by definition, the inductive hypo-
; thesis

| | (K¥suoooKE 1) € D{K)hee ook )*D

] together with parts (a) and (b) imply that (K*.....Kg) is equivalent to
((K].....Ks_])*.Kg). But by the case s = 2

this is contained in [((Kl""’Ks-l)’Ks)*]' winich by definition is the

same as [(K!,...,KS)*]. Thus, part (e) will be proved once the case s = 2 ﬂ
is established. "=Sb et s = 2 .and write dom K; = C; x D;. By (36.3) and

(36.1),

K*(x*,y*) = sup inf (Z<x1.x:> Yy - K(xgyyld
yeD xeC _

< sup inf {exyux3> + <y,0y5> ~ Kz(x.,,y?) + gf(xf,y{)}
yZED? XZCC? “ d

}:_K_;.‘(xg,y;) i xf € C’]" and yf ¢ dom ﬁf(xf,-)
={ 4o if xf € Cf and yf ¢ dom Ej(x?,-)
.o if xf ¢ Cf
Moreover, in the event that xf € Cf and yf ¢ dom Ef(x?’ ) we have

}:_!g'('x;,_v;‘) e R if X3 € Cé' and y3 e dom 5§(x§. )

Z_l_(_*‘.(x;.y;) =§ oo if x3e CE and y% ¢ dom 5’5("5» )
g ;
if x3e C3 |
Also, x¥ e Cr implies O} < dom Ki(a¥,-) by (34.3). If C*=CfxC2 1

and D* = D*]* x D%, then the above facts imply

2!

dom,K* €2 C*, D* & dom,K*,
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and

K*(x*,y*) < Zg(xf.y;) whenever x* ¢ C* or y* e D*,
parallel reasoning starting from K*(x*,y*) yields that

cr C dom]l?.*. domzf*C: 0>,

and
_ ZKf(xi*.yT) < K*(x*,y*) whenever x* ¢ C* or y*c D*.
’ Therefore dom K* = C* x D* and
H K*(x*,y*) < TKY(x}oy]) < K*(x*.y%)
whenever x* ¢'C* or y* ¢ D*. By applying Theorem 0.1(b) to K*, it

follows that (Kf.K!) and K* have the same kernel. Since they are both

closed and proper, (34.4) implies they are equivalent.
(f) From the definitions, Theorem 4.4(a), (34.3) and Lemma 4.3(f) it

follows that
(reczx)(y) = sup((rec K(x.-))(y)lx eri C}
= sup(Z (rec Ky(x;0e))(y Mxy € rf Cyunixg e vl Co)
= 2, sup{(rec Kib‘i"”(yi”"i e ri C} .
= Z(rec,K)(y,).
The other formula is proved similarly.
(g) By part (c), K(x,y) =Z 5,1(::1 »y{) whenever x ¢ C. Hence Theorem g

M it 3 Lo i

0.1(a) implies that f(x.y*) = sup{<y,y™> - ZK,(x,,y,)} =

Z:s.tylp{q1 WP - Ki(xgay)d = T..fi(xi ,y]) whenever x ¢ C. On the other hand,
i .
if x ¢ C then Theorem 0.1(a) implies that f(x,+) and fj(xJ.-) for some

1 <J<s are constantly +=. Since each K, is proper, each f1 is proper
and hence never ==, Therefore (x,y*) - ‘211’1(311 »¥}) is constantly e
whenever x ¢ C. This establishes the formula.

(h) By part (g) and Lemma 4.3(c).

For the remainder of §4 iet cert&in notation remain fixed as follows. 3
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For i =1,...,5 let Ki be a closed proper concave-convex function on

K" x R with domain C, x D,. Write €= ()A...AC, and D=D;N...AY,

E | and define K = (K],....Ks). Let A] map each x ¢ R" {nto the s-tuple
- (x,00.9x), let A2 map each y ¢ R" into the s-tuple {y,...,y¥), and
; ' put A= Ay x A,
| The following condition is frequently used:
ri{dom Ki)M...Nri(dom K.) # ¢ (%)
The next lemwa dualfzes it. y

s LEMMA 4.5. The condition ri(dom]K])f\...f\ri(dom]KS) # 4 is equiva-
| lent to
; Zx} =0 and Z(rec)Kd)(xy) » 0 = Tlrecykd)(-x¥) - 0.
; Similarly, tne condition ri(domzkl)r\.../\ri(domsz) £ 6 15 cauivalent to
:’ Zyy = and Z(rec,K¥)(y#) < 0 = T(rec,K)(-y?) < 0.

PROCF. Apply Lemma 0.5 to the saddie-function (K{,...,K;) and the
é | subspace ((x{,...,x;)lx{ B,..¥ x;) and simplify usiag Theorem 4.4, The
. second assertion is proved similarly.

The next theorem enables us to apply the results or 552 and 3 to the

equivalence class [K] # fiane ¥ KS].

THEOREM 4.6. Assume (). Then (K, +...+ K.} 1is defined and equals,

{KA]),

FROCF., Theorem 4.2 inpilies [Kl +...+ XK 1 is defined and has kernel

S
(x25) » ZK(x,y)y Vxy) € ri Cxrib,

Theorems 4.4(a) and 2.2 imply that (KA] exists, and it is easy to check

that its kernel is the function given above. The theorem now follovis from
(34.4).

COPOLLARY 4.6.1. Assume (). 1f each (K,1 f1s pelyhedral, ‘hon

Ky #ooor K)o Bs polyhedral,
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PROOF. By Theorem 4.4(h) and Corollary 2.4.1.

COROLLARY 4.6.2. Assume (3). If h (resp. k) dengtes the convex
(resa. concave) parent of [K, +...+KJ and f, (resp. g;) denotes the

convex (resp. concave) parent of [K,], then
h(x,y*) = inﬂzf‘(xdplz.V? s y*}

and
k(x*,y) » sup(igi(x}'.y)IZx; = x*},
PROOF. By Theorems 2.4 and 4.4(g).
COROLLARY 4.6.3. Assume (). Ihen

dom (K] +,, .4 KS)'C dom K*,' +.,.+ dom K;.

In particular, if f, and 9 are 3s in Corollary 4.6.2, then
rifdom Ky +...+ K)*) = U(Z ri(dom g;(-,y))|y e ri D) '

and ~
ri(domy(Ky +...+ K )*) = LHEri(dom fi(x,))|x e rt C)

where these formulas also hold with “ri" deleted throughout.

PROOF. Apply Corollary 2.4.2, using Theorem 4.4(g) and Lemma 4.3(a) to
simplify.
In convex function theory there is a result correspondir~ to the inciu-
sion in Corollary 4.6.3. Namely,
dom (fi +.. .4+ fs)* = dom f‘]" +...+ dom f;

whenever f],...,f are proper convex functions satisfying

3
ri(dom f])ﬂ.q.nri(dom fs) t ¢ (see(16.4)). One might hope in the saddle-

function case to have at least
ri{dom K§ +...+ dom K;) < dom (K‘ ... Ks)* C dom Ky +...+ dom K¥

satisficd whenever K]... .,K_ are closed proper concave-convex functions

3
satisfying ri dom K]h.../\ ri dom Ks # #. However this can fail drastically,

as can be seen by taking s = 2 and putting K‘(x.y) = <x,y> and
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Ko(Xsy) = =<x,y> on R" x /™. In this case dom (K, + Kp)* = {0) x {0)
whereas dom KT » " x R" = dom K!‘ Theorems 4.8 and 4.11 give conditions
which guarantee that this "collapsing" behavior of dom (K] ook K )

cannot occur.

LEMMA 4.7. Assume (). Then
(recy(Ky +...+ K ))(x) = inf(X(rec K. (+.,y))(x)|y ¢ ri D}

b
S
Q.

(recy(Ky +...+ K))(y) = sup{ Z(rec Ky(xoe D (y)]x € ri C}.

PROOF. By Theorem 4.6 the formylas in Lemma 2.5 can be applied. Sim-
plify using (34.3) and Lemma 4.3(f).

THEOREM 4.8. Assume (%). Then for J = 1 and 2,

cl(domJ(K] +...4+ Ks)*) - cl(domJKf +.. .4 domJK*s)
recJ(K] touot Ks) T rech] +,..4 rechs.

PROOF. By Theorems 4.6 and 2.6.

The next theorem parallels the result obtained by Rockafellar (38],
Moreau {32], and others for the subdifferential of a sum of convex functions.

THEOREM 4.9. Assume (%). Then

a(Ky +oo ot K)xay) = oK (xy) +.o.# aK (x,y)
for each (x,y) e R" x R,

PROOF. Since dom (K‘ +.. .4 Ks) = C x p= dom K]f).../\dom K¢ (37.4)
implieslthat a(Ky +...4 K)(x.y) and aKJ(x.y) are empty (for some j)
whenever (x,y) £ C x D. So suppose that (x,y) ¢ C x D. Then Theorems 4.6
and 2.3 imply that

a(Ky +o.+ K (xy) = ARK(A(x,¥)).
The formula follows from this together with Theorem 4.4(d) and the defini-

tions, after observing that Af and A5 are just the appropriate addition
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linear transformations.
The next theorem identifies certain members of the equivalence class
conjugate to [K] +...¢ Ks].
THEOREM 4.10. Assume (3%). Let dom K¥ = Cf = 0, and define func-
tions ¢ and v on R"x R by
. o(zw) = sup Inf TK¥ (z,m,)

£z,%2 Lw,sw
i
ziéc;
and
v(z,w) = inf  sup ZF{(zi.wi)
W I2.%2
wieDf

Then [(Ky +...4 Ks)*] contains each concave-convex function J on R x R

satisfying ¢ <J <v. [Lf each K, is polyhedral, then [(K] ot K )*)
is polyhedral.

PROOF, By Theorems 4.6 and 2.8, [(K] +...4 KS)*] contains each
saddle-function lying between two certain functions J] and JZ‘ By parts
(e) and (c) of Theorem 4.4, one can easily show that Jl = ¢ and J'é =y,
The polyhedral assertion is fmmediate from Corollary 4.6.1 and the fact
that (K*] 1is polyhedral whenever [K] is.

There are actually many representations of the functions ¢ and ¢ in
Theorem 4.10. Suppose Z.l and w1 are any sets (not necessarily convex;

such that ri C¥C 2, @ A" and ri re W, C ' (for i =1,...,8).

i
Then
o(z,w) = sup  inf 2 KH(z ;)
£Z,22 IW.*W
zieC’; w,ewi
and

vlz,w) = inf  sup Slf;"(zi.wi).
Zwi"‘.'! ;'.21:1

i
o
#
j

;

p

;
s
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This follows from the observation that, if A: R" » R" is a linear trans-
formation and f is a proper convex function on R", then (Af)(y) =
inf(f(x)|Ax = y, x € C} for any set C such that ri(dom f) < ¢ < R".
The fact that [(K] *...# K)*1 contains ¢ and v suggests writing
[(K] +,..4 KS)*] = (Ky]o...0 [K¥]

and calling this class the minimax convolution of [Kf].....[K;]. This is

the saddle-function analogue of the operation of infimal convolution on con-
vex functions. The identity above expresses the fact that the operations
of addition and minimax convolution are dual, just as in convex function
theory the turmula (f‘ LR fs)* = f¥0...0 f¥ expresses the duality be-
tween the operations of addition and infimal convolution.

The next theorem gives information concerning attainment of the extrema
appearing in the definitions of ¢ and y.

THEOREM 4.11. Let ¢ and ¢ be defined as in Theorem 4.10, and assume

that whenever (zi'"i) ¢ ri(dom K“.') for i =1,...,5 the following condi-

tions are.satisfied:
(a) zw‘l =0 gﬂﬂ Z(rec _K.:(zii‘))(gi) < 0 %i(rec ﬁ?(zi"))('wi) ~ 0
(b) Zii =0 and Z(rec K;(-.w'))(ii) > 0 =>T(rec Fg(-.w‘.))(-?i) > 0.

Then the conclusions of Theorem 4.10 hold and

ri(dom K‘]* +...+ dom K;) C dom (K] t,..4 Ks)* < dom Kf +...+ dom K;.

Moreover, for each (z,w) ¢ ri(dom Kf +.,.+ dom K;) there exist nonempty

closed convex sets Z < R°™ ad WC R*" such that for each

(zys.0002,) ¢ 7 and (W]....,WS) ¢ W the following statements hold:

(1) Z(zywy) = (zow) and (Z).W,) ¢ dom aK* for each i;
(1) oz.w) = ZKk¥(zym)) = wlzw)s
(”i) 2";(21 .W,‘) < EK;(;‘ D;‘) ;ZY’;‘G, '"1) _“_"_\_?___"e_.\l_(_‘_!'_ E(zi'wi) =

(z,w) and (7‘1’"1’) ¢ dom k* for each i.
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PROOF. By parts (e) and (c) of Theorem 4.4 together with Lemma 4.3(f),
A* and K* = (Kf.....K;) catisfy the hypotheses of Theorem 3.4. The asser-
tions are immediate from this and Theorem 4.4(d).

If conditions (a) and (b) above are actually satisfied whenever
(zi'"i> e dom K“* for 1 =1,...,5, then Theorem 3.5 implies that
dom (K.‘ +,,.+ Ks)* = dom K? +, ..+ dom K’: and that ¢ and ¢ are the least
and greatest members of [(Ki Fouat Ks)*_].

The following lemma may be useful in applying Theorem 4.11. Notice for

example that its conditions are satisfied when each of the sets dom K;.‘ is

‘ bounded.
{ | LEMMA 4,12, The following condition implies that condition (&) aof
’ Theorem 4.11 is satisfied for each choice of Zy € dom Ky, ...z ¢ dom K¥
] (¢) Zw, =0 and w,c o* ci{dem,K¥)  tor
each 1 1imply thet w, =0 for each .
Similarly, the following condition implies that condition (b) of Theorem 4.11
is satisfied for each choice of wy e dom K¥,... W, e dom,Kx:
(d) £z,=0 and z, ¢ 0" cl(domKt} for
cach i imply that 7, = 0 for each i.
L PROOF. Apply Lemma 3.6 to A* and K* = (K*]',.‘.,K;). Condition (c)
% {resp. (d)) corresponds to condition (c,) (rasp. (dl)) of Lemma 3.5, and con-
dition (a) (resp. (b)) of Theorem 4.11 corresponds to conditisn ("3) (resp.
(53)) of Lenma 3.3.
The next lemma furnishes alternate characterizations of conditiens (c)

and (d) of Lemma 4.12

LEMMA 4.13. Let Py,...,P. be convex cones in R" which contain the

origin. Then the following conditions are equivalent:

(1) Zp; =0 and py o P, forcach i imply pg <0 for each 15

‘ b s
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(11) (-Pj)n(conv:.éf’i) = (0} _f_q.r_:gg_t_;p_ BTN PSS
PROOF. First, observe that for each j, (3.3) implies
ccvaF'1 s NZ x'viio < Ay and in = 1},

i 143
From this 1t follows that convlJP, = 2. P,. Thus, condition (11) fails 1ff
TIRERT A
3,1 and BpJ ¢ Py such that 0 ¢ Py € %Pi.

This occurs iff
3p, ¢ P].....aps ¢ P, and 33 such that 0 p -py = {}jpi’

which occurs 1ff condition (1) fails,

We conclude this section with an example concerning maximal menotcnz
operators arising from saddle-functions. This will suggest a conjecture
about arbitrary maximal monotone .operators.

By (37.5.2), each closed proper concave-convex function K on R" x B
induces & maximal monotore operator T (generally multivalued) from
A" R" to 4R by means of the formula

T(x,y) = ((-x*y*} | {x*.y*) e K(x.y)}).
By (37.4.1), T depends only on the equivalence class containing K. It
R(-) denotes the range of an operator and B is the linear Lransformation
which sends (x*,y*) to (-x*,y*), then (37.5) implies that
R(T) = & dom oK
whengver T arises from K as above.

EXAMPLE 4.14. Assume that conditfons (c) and (d) of Lemma 4.12 are
satisfied. Thea by Lemma 3.12 the hypotheses of Theorem 4.11 are met,
and these in turn imply that condition () is satisfied. Lot & be the

Yinear transformation defined above, let T‘. be the maximal wonotone ouera

tor {induced by Ki as described above, and similarly (using Theorem 4.5) let
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T be the naximai morotone cperator induced by §Eki. Bv (37.4), (6.3.1)
and (9.1) it folicws that ¢} R(Ti) 2 8 ¢l dom K¥, and simitarly cl R(T) =
F el dom(Z Ki)*. Theoren 4,11 and (6.3.1) imply ¢l dom(E;Ki)* = ¢l 2L dom k¥,
Combining these facts with {6.5.7) ylelds 2 ¢!l R(Ti) < ci R(V). Since
Theorem 4.7 implies Z‘:i = T, this shows that ZT, fs¢ a maximal monotone
operator satisfying
el R(T,) @ o R(ET,). )
Furthermore, it can be deduced fram (1), R(ZT‘) ol R(Ti) and {3.1) that
2o arrpa ot argT.
Ii is easy to show that ccnditions () and (d) of lemma 4.12 can he reformu-
lated equivalently as follews:
Siz’ =0 and z, € 0" ¢l R(T,) }

for eact: 1 imnlies 2 =0 for each i

{t1)

Now {tt) and (9.1 1) tmgly 2 ) R(T,) = ¢ 2 K(T,),
RET,) < (T < 2l R(T,) holds trivially. Combining these facts
with (1, yields
<<l RT) =l a(k‘Ir,). {2
Furthermore, from (2), (++) and (9.1.1) 1t follows immedintaiy that
£0" 1 R(T) = 6" ¢} R(ET,).
1t is known that E.'Ti i3 a meximal monotone operater satisfying (1)
whenever each 'I'i is the subdifferential of a clused praper convex .*runction
on R" “and the condition
ri D(Ti)!’\...f‘-ri D<T$) ) {t)
is satisfied, where O(T) = {z!T(z) # #}. Moreover, in this situaticn {(2)
actually holas if (t+t) 1s satisfied.
On the other hand, (1) fails in general for maximal monotone operators

satisfying (t). (For example, take s = 2 and consider the T.'s nduced
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by the saddle-functions K] and K, defined following Corollary 4.6.3.)

It 1s not known, though, whether (2) holds for arbitrary maximal monotone
operators satisfying (+i). But the fact that this formula does hold for
those operators arising from sadcle-functions leads one to conjecturs that
ft holds in general. This is because such operators, unlike the subdifferen-

tials of convex functions, exhidvit mosti of the pathology of arbitrary maximal

monotone operators. Indeed, the last fact {s one of the main motivations for

studying saddle-functions.
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§5: The ©arifal Conjugacy Operation

In this section tne cesults of i2 are used to develop another operaticn
on equivalence classes of closed proper saddle-functions. It foliows from
Theorems 5.1 and 5.2 that this opsration induces a symmetric Jne-to-one
corvaspongence amony such eaulvalence classes. In §6 this operation is uted
' te assian a well defined Ligranjian to each dual pair of generalized saddle
programs,

Throughout §5 Tet K be & closed proper concave-convex function on
(R R") x (R x R"), and Tet W, and W, be functions cn (R x R")
(RY x R™) defined by

w.'(u*,y.v*.x) = sup inf Leu%,u> + <vh,ve - K{U,X,V,y5}

T IR O P T e A T

Y U

ard
;' Nz(u*.y,v*,x) - 1;‘111’ s:i'p fcu®, > + <y, v~ KU, X7, ¥}t
[ THEGREM 5.1. The functions W, and W, belong to an equivelenci: siacs
L (W) e¢f cinsed proper concave-convex functions., Furthermore, (W) depends
| only on [K], and W] dis colysedrai §f (K] is.
R PRCOF. Define a linear transformation A = A] ” Az and a function H
' Yy
3 Bi{viuty) = (uhy),
* Agfu,v*.x) 2 (v*,x),
i und

H{v,u*,¥,u,vA x) = <u,u®> + <y vl - 'K(u,x,v,y).

Claarly H is closed preper ¢oncave-convex on {Rq x R x Rn} X {Rp x RY « Rm).

If (v.y) e ri(domZK). (34.3) implie; that the functicn
(4sv* 1) » -Klu,n,v,y)

is closed proper convex, and by (8.5) its recessicn funttion cin be shown %0 ' 3

be 1 :

{u,v*,x) + -{rec K+, ,v,y)}{u,x).
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Also, the function
(Upv*,x) + <u,u*> 4 <y,y®

is closed proper convex and coincides with its recession function. Hence
(9.3) implies that

(rec H(v,u*,y, ., ))(u,v¥,x) = <y,u™ + <v vy -(rec K(+,*,v,y))(u,x)
whenever (v,y) ¢ ri(domzK). Therefore Aél{o}ﬂ(rec conezﬂ) equals

((u,0,0} ) <u,u» = (rec K(- .+ v,y}){u,0) < 0, Vure &P, V(v.y) ¢ ri(domak)l.
Now by (34.3) and (8.5), (v.y) « «s(domng implies that rec K(-,°,v,y) is
never +w, It follows that ﬁé:iﬁ}(\ (rac coneZH) is the nullspace of
RP x RY x ]™ Similarly, A;'(ﬂ}fﬁ (rec cone]H) {s the nullspace of
Rl x AP « R". Therefore by Lemma 2.9, range A*M\ ri(dom H*) # 8. The first
two assertions of the theorem now follow from Theorem 2.8 and the fact that
K <X <X whenever ¥ e [K]. If K 94s polyhedral, then Corollary 4.6.1
fmplies H is polyhedral and hence Theorem 2.8 implies [MH] = {W] 1s
polyhedrai.

The equivalence class [W] containing ”1 and H2 is called the

partial conjugate of (K) in u and v, and the operation which sends (K]

to [W) 1{s called partial conjugacy. This terminology is suggested by the
fact that forming (W) involves only parts of the arguments of K, whereas
forming the (orcinary) conjugata (K*] idnvolves all of the arguments of K.

THEOREM 5.2 Yhe partial conjugate of (W] in u* and v* is (K].

PROOF. By Theorem 5.1, (M) contains the function W, where

Hlur,y,v*,x) = inf sup {<b,u™ + <V,v™> - K(u,x,v,y)}. Hence the partial
u v
conjugate of [W) in u* and v* contains the function M given by

M(u,x,v,y} = sup inf (<u,u*> + v,y - Wlu*,y.v*x))
y* oy
= sup inf sup inf {cu¥,u - U + <v*v = v + K(u.x,V,y) .
v® u* u v

By the same technique used in the proof of Theorem 5.1 it can be verified
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that  raage B= ri(dom %) * §, whern B = B] x BZ ard J ave given by

L I

B}(v*,ﬁ.u,x) = lu,»
By{ur, v, vy} = {v,¥),
and
V¥, U,UL X, U™V, V7)) = curu = U= + <y*, v = ¥+ KiiLx.v,y).
Therefore Theorem 2.8 ihplies thet (BJJ 15 well-defined. dow by «36.7)
and Theorem 0.1{b) it follows easily rthat ™ and N belong t¢ [R2], where
¥ 1s given by

N(u,x,v,y) = sup inf sup inf (<u*,u - W + <y < ¥ 3 K{o 6 7,y
U v vr® oy¥

Thus, to complate the proof i¢ suffices to show tnat N < [X]. .
Let u.Xx,v,y bhe arbitrary bus fized. For 2ach u defing
p{) = inf sup Inf {cut,u « W + ¥ v - ¥ + X(i,,V,y)).
v v* o y*

Ocserve that

N{usx,v,y) = sup {p(E)}2 eVl {1}
where U = (Ul {4,%) < dompki. Indied, 4f {G.x) ¢ domyK then
K(G. X% 50) = = 89 that p(u) = ~=. Thus,

MU v,y) =~ = X(u,x,v,y) 2)
whenever U = ¢. Now assume U3 8. For each ue U, K(0,x,-.+) s never
-» and henca

o{U) = _inf_ sup iaf {cuv,u - U> ¢ <y=,v - > + E(D,X.0,y) 0,
veV(u) v* u*

where V(U) = (V|K(U,x,V,y} < =}, This implres p(iij = 4= wheiever
V(u) = 8. Hence (1) implies Nlu,x,v,y} = += if there exists & u e U
such that V(U) = #. But far such a u, K{t,x.v,y} = =, Therefore
N{u.x.vay) = 4o 5 K{t,x,v,7) %3
whenever there exists a u ¢ U such thet ¥(0) = 4. Finally, éssure

U#g and V() £ forevery uce U, Then for each e U,
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- p(u) = _inf {K(U,X,V,y) + sup (<v*,v - v + inf (<u*,u - W}}}
*

5 veV(u) v ut
{- if ufu
_inf  (K(u,x,V,y) + sup {<v*,v - ¥>}} if us=u,
veVY(u) vt

where
p(u) = inf {K(u,x,v,y)|v e V(u), v = v}
to it v ¢ V(u)
) {g_(u.x.v.y) if v e V(u).
Hence (1) implies that in this case
N(u,x,v,¥) = sup {p(u)]u ¢ U, u = u)
~o if vgu
8! tw if uelU and vtv(h)
K(u.x,v,y) if ue U and v e V(u)

= K{uyX,¥,¥}.

TR N IR S R

Combining this with (2) and (3) yields K < N < K everywhere. Hence Theorem

0.1(b) implies N e [K3.

THEOREM 5.2. The 7ollowing conditions are equivalent:

(a) (u*,x*,v*,y*) ¢ ak(u,x,v,y)
(b) (u,-y*,v,~-x*) ¢ W(u*,y,v*,x)
PROOF. By (37.5) condition (b) is equivalent to
(u*,y,v*,x) ¢ aW*(u,-y*,v,-x*).
But from the prcof of Theorem 5.1 we know that [W*] = [H*A*] and
range A*\ri(dom H*) # 4. Hence by Theorem 2.3,
aW*(u,-y*,v,~-x*) = KaH*{A*(u,-y*,v,-x*)).
It follows that condition (b) is equivalent to the existence of raints

and v° such that

(v0,u*,y,u0,v*,x) ¢ aH*(0,u,-y*,0,V,-x*).
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Jut by (37.%) and {37.4) this contaimment occurs iff (v° Ly, vex)
15 4 saddle-point of
H - < (o,u,-y*)> « < (2,v,-x*)>
nd KV ,u*,y,u0 v, x) € R, Therefore by the definftion of H, condltion
¢

vb) is zaulvalent to the exicterce of pofnts ' and v® sueh that

v, x,v",y) ¢ R and '
K(U,%,%%y) ~ <l = uu® = <@ o y,% - X - u,xh
< K{u?x,v0,y) - il - u,um - <0 -y
< K(u9,x,¥,¥) - <l - u,i% - <y ~ v,y*> - <y - y,y*>
for all (v,u*,y) and {(U,v*,x). Now pick ary (v'.7') ¢ do,K.  Choos ing
vEy' and y = y' in the zbave condition fmplies
KWl ,x,v'.y') = a v «® « uu*> for a1l u*,
where o s a certaln real constet. Thus 3¢ u® were different iei u,
wee would have K{u0,x,v',y') = 4=, contradicting (v',y') ¢ dnmzk. Hence
in the above condition we must have ¥ = u, and simiiarly V% = v. There-
Fors condition (b)) s equivelent ta {K(iwx,v,y) ¢ K and)
K{U 2, vey) = <l = wgufs - <X = 0% < K{u,x,v,y), Y (4,%)
and

K(U»)’,‘l.l’) i K(U,M,Q,;’) > ‘1:; . V|V*> - "-5 - y,}'*>n "V'(;'S;):

ut these conditions are cieerly eguivalant o (a),
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§6: Generalized Saddle Programs

In this section the results of §52, 3 and 5 are applied to the problem
of associating with a given minimax prcblem a dual minimax problem and
developing a perturbational duality theory for such patrs of problems.

Ignoring technical details, we can outline the general approach as
follows. Suppose we are given a minimax problem {n the form of an equiva-
lence class [Ky]l of saddle-functions on R x R". This minimax problem
fs first extended to a saddle program in the form of another equivalence
class (K] of saddle-functions on (Rp x Rm) x (Rq x R™). The extension
is such that (Ko) 1s suitably "embedded" in [K), {.e., the saddie-func-
tions (x,y) » K(0,x,0,y) for K e [K) are all requirad to belong to [Kgl.
By a mdification of the conjugacy c~rrespondence, an equivalence class ([L]
of saddle-functions on (R™ x k%) x (R" x RY) 1is then obtained from [X].
The saddle program given by [L] 1is called the dual of the prcgram given
by [K]. Under a mild hypothesis on (K], the saddle-functions
(zw) » T(o,2,0,w) for T e [L) all belong to a single equivalence class
[Le]. In this event the minimax problem given by (L) 1is the dual of the
minimax problem given by [Kyl. In thic sense [Ky] may have many such
duals, since (L] and hence (L] depends not only on [ky] but aiso on
the particular "perturbations” introduced via [K].

We proceed now with the formal development. A qeneralized saddie pro-

gram S(K) on " x R" with perturbations in RP x RY is a closed proper

saddle-function K on (RP » @) x (R? x /"). cfach saddle-function
K(0,-,0,+) on R" x R" for F in (K] is called an objective function

of S(K). The particular functions K(o,-,0,-) and K(o,-,0,:) are called
the lower and upper objective functions, respectively. (Recall the conven-
tion established in Theorem 0.1: for a closed saddle-function K, 1ts

convex-closure 1s denoted by K and its concave-closure by K.) A pair
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{x,y) is a feasible solution of S{K) iff 1t {s in the domain of every ob-

jective functien of 3(K). It is no* hard to chow that this is equivalent
to the condition that (o,x,0,y) ¢ dom K. The optimal value in S{K) existy
{and equals a) ifT the saddle-values of all the ohjective functions of 5(K)
exist finitely and are equal (to a). A pair (ix,y) is an optimal solution
of S(K) iff (x,y) 1s a saddie-point of every odjective function of S(k}
and K{o,x,0,y) = Rlo,x,0,y) ¢ K. It is not hard to show that if {x,y} is
an optimal solution, then 1t is a feasible solution and the optimal value
exists and equals K(6.x,0,5) forany K in (K]

The program $(K) {5 consistent (respectively strongly consistent) 1ff

tners exist puints x and y such that (o0,x,0,y) ¢ dom K {respectively
(0.%,0,¥) € ri(dom K)). Thus, S(K) is consistent iff it nas a feasible
sclucion. Also, 5(K) 1is consisten: whenever tne optimal vaiue in S$(K)
exists.

We say that S(K) has a well-defined primal problem 1ff all! the objec-

tive functions belong to the sene equivalence class, wnich we denote by [K,].
In thic event the definitions of reasible solutions, optimal value and optimai
sotutions of S(K) can be simpiified, stnce equivaient saddin-functions have
he same domain, saddle-vaiue and saddle-points. By Theorem 6.2 below, if
30X) is strangly consistent then it has a well-defined primal probiem which
i5 in fact given by a closed peoper equivalence class. More genera'ly, for
any (u,v) we say thet the perturbation (u,v) in S(¥) 15 well-defined
i+ the saddle-functions K(u. ,v,) on R" « R", for ¥ in (K], aN belong
to a single equivalence c¢lass, which we denote by [Ku.v]' Thus, S{K) has
a well-defined primal problem 1ff the perturbation (0,0) in S(K) is well-
defined (in whiich case lKo.03 is denoted simply by [Kol).

n

Suppose S(K} is a generalized saddle program on RM x 4" with

il i il s s L 2 ; o
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perturbations in RP x RY, and let [L] be the equivalence class of closed
proper ssddle-functions obtained fram (K] via the relation
; L(s,z,t,w) = -K*(-2,8,-w,t).
| The generalized saddle program S(L) on RP x RY with perturbations in
' R" x R" {s the dua) of S(K). It is easy to show that the dual of S(L)
{ : is S(K). The program S(K) has a well-defined dua) problem iff the dual
' program S(L) has a well-defined primal problem ([Lo], and in this event
the dual problem of S{K) 1s the minimax problem given by [(Lgl. Example 6.3
shows that a generalized saddle program can even be strongly consistent with-
out having a well-defined dual problem. However, Lemma 6.4 furnishes cundi-
tions on S(K) which ensure that the dual problem is well-defined.

For the remainder of §6 let S(K) and S(L) be dual programs, where
for definiteness K 1s assumed to be concave-convex on (RP x R") x (R9 x /"),
Thus, L is convex-concave on (R" x RP) x (R" x RY). Also, Tet concave-
convex functions P, and P, be defined on RP x RY by

Py(u,v) = sup inf K(u,x,v,y)
Xy

and

Pz(u.v) = {nf sup K(u,x,v,¥),

y x
and let convex-concave functions Ql and 02 be defined on R™ x R" by
Qy(sst) = sup inf L(s,2,tw)
w 2
and
Qz(s.t) = {nf sup [Is.z.t.wi.
LA T Q. . o
Finally, let 1inear transformations Al’ R x R" » R", A2: R7 » R+ RY,
By: K" x R% » A" and B, R" x R% + A" be defined by
A,(u.x) =y, Bl(s.z) .g,
Az(v.y) = v, Bz(t.w).- t,
and put A = A] x A2 and B = 8] x 82. Observe that A% = Af x Ag and
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] B* = Bf X B!. where

,E M(2) = (2,0), B{(x) = (,0)
f Aj(w) = (w,0), B3(y) = (y,0).

The saddle-functions P1 and P2 are calied the lower and upper per-

{ turbation functions of S(K), respectively. A pair (z2,w) is a2 Kuhn=Tucker
' vactor for S{K) 1ff ’ ' . ]
E | P](u.o) = PZ(o.o) sae f ?

| and
- W,z> + Polv a) <o < Pluy) + vuw>

| i for cach (u,v). Observe that P (o o) ~ Pz(o,o) s g¢ R Iff the optimal

' : value in S(K) exists and equals a. It is not hara to show using (37.4.1)
; | that if P, and P2 belong te a proper ecuivalence class [P], then (z,w) - i
is a Kuhn-Tucker vector for S{K) 17t -(z,w) ¢ 3P{0,0). Kuhn-Tucker vertors ]
for S(L) ere defined similarly by using the lower and upper perturbation
functions of S(L), 1.e., Q, ad Q, These Kuhn-Tucker vectors can he fn-
terpreted as generalized “equilibrium price vectors" in muca the same way as

in (44, pp. 295-2961,
The following example shows that the foregoing framework of dua’l pairs of 5

e B e o R e e i et e

generalized saddle-programs includes as a spacial case Rockafzlilar's dual
pairs of generalized convex proyrams. ' i

EXAMPLE 6.1. Let F: Rq ~ B be a closed proper convex bifunction, and

let (P) and (P*) denote the generalized convex program and its dual which |
correspond to F and 1ty adjeint bifunction F*; R" + RY. Define

K{u.X,vsy) = (Fv)ly) for every (u,x)z R” x 8 and (v,y) ¢ RY x R" .
(rere p and m can be any posftive intagers). Then K 1is a closed proper ]

concave-convex function. It can be verified as an instructive exercise that

the concepts defined above for tha program S(K) and fts dual S(L) exactly




"mirror" the 1ike-named concepts from Rockafellar (44] tor (P) and (P¥),
For example, S(K) (resp. S(L)) 1s consistent or strongly consistent ac-
cording as (P) (resp. (P*)) {s consistent or strongly consistent; and 'so
on. Furthermore, it can be seen that the Lagrangian saddle-function M
associated with S(X) and S(L), which will be introduced following Theorem
6.8, exactly mirrors the Lagrangian associated with (P) and (P*). The
fact that all the various concepts asscciated with (P) and (P*) are re-
flected in this program S$(K) and 1ts dual furnishes a general means of con-
verting examples from convex programming into examples in saddle programming
which exhibit the corresponding pathological behavior.

THEOREM 6.2, Assume (u,v) ¢ A ri(dom K}, 1.e. assume there exist points

x and y such that (u,x,v,y) ¢ ri(dom K). Then the perturbation (u,v) in

S(K) is well-defined. In fact, the equivalence class (K, .1 1is closed and

proper with least and greatest members K(u,¢,v,*) and K(u,+,v,*) respec-

tively, and
ri(dom k, ) = {(x, )1 {u,x,v,y) ¢ ri(dom K)}

where “ri" can be deleted or replaced by "c1" throughout the identity.

PROOF, Define linear transformations T,: "+ RP x ™ and
TZ: g" + B9 x A by T](x) = (0,x) and Tz(y) a (0,y), and put T = T] x Tz.
Define a function H by

H(u'ox'yv'yy') = K{u' + ux',v' + v,y').
Clearly, H 1is closed proper cuncave-convex and dom H = dom K - {{u,0,v,0)}.
Thus the hypothesis on (u,v) is equivalent to range T N ri(dom H) # 8, and
hence Theorem 2.2 implies various facts about the equivalence class (HT].
Since HT = K{u,e,v,*), these facts convert easily into the assertions about
(K .]. The formulas for ri(dom Ku.v) and c¢1(dom Ku.v) follow by (6.7).

UV
COROLLARY 6.2.)1. Assume S(K) is stronyly consistent and that




ez

T W ——

R R e

' 70

rec coneJKo is a subspace for j « | and 2. Then there exists an optima:
solution of S(K).

PROOF. By Theorem 6.2, S/K) has a well-defined primal problem and
(Ko] 1s closed and proper. By Lemma 0.4, (o0,0) ¢ ri(dom(Ky)}*). Hence
(37.5.3) impiies K, has a saddle-point.

Before proceeding any further, it might be well to illustrate some of

the pathology which Is possihle in a dual pair of generaiized saddie programs.

The next example exhibits a program S(K) having the following properties:
(1) every perturbation tn S(K) is well-defined (so a fortiori S(K) has a
well-defined primal problem); (2) the lower and upper perturbation functions
of S(K) fail to be equivalent; {3) the dual program is censistent; and
{4) S(K) fails to have a we!l~§ef1ned dual problem.

EXAMPLE 6.3. Suppose J is a closed proper concave-convex function on
R «R", Put p»m ana q = a and define K(u,x,v,y) = J(x - t,y - v).
Let T‘ and T2 be 1inear transformations given by f](u,x) = % -y and
12(v.y) =y .y, and put T = T2 X TZ' Since range T vi{dom J) £ ¢
trivially, Theorem 2.2 implies that K = JT is closed and prorer with

ri(dom K) =’T"1ri(d0m J). By Theorem 6.2 it follows that for each

{u,v) ¢ RP x RY the perturbation (u.v) in the orogram S(K) 1s wel!-defined.

It is easy to compute that ? (u,v) = sup inf J = -3*(0,0) and Py(u,v) =
int sup J = -9%(c,0). Heace Py~ P, iff J*(0,0) = J*(0,0). Nuw suppose
J is suck that dom g* 1is bounded. Then Lemma 3.6 and Theorem 3.5 imply
that [K*] = [T®*], dom K* = V*dom J*, and {since Tf(s) = (-5,5),

Tg(t) = (-t,t)) the least and greatest members of [K*] are

K*(z,5,mw,t) = <up inf J*(x,t)
15]-522; (t]-t=w)
and

K*(2,s,m,t) =  inf sup  J*(s.t).
(t]-t=w) {s| -s2]

i
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Since L(s,z,t,w) ® -K*(-2,5,-w,t) and [(s,z,t,w) = -K*(-2,5,-w,t), this
fmplies that
~J¥(s,t) If s=z and t~w
L(s,2,t,w) = \{«- if sdz and t=w
. if t#w
and
~-J*(s,t) if s=z and t=w
Us,z,tw) = { if s=2 and t#w

4o if s¢éz
From these formulas it follows that, for each (s,t) ¢ dom J*, the perturba-
tion (s,t) in S(L) 1s well-defined iff J%(s,t) = J*(s,t). In view of
all these facts, in order to obtain properties (1) through (4) we need only
specify a J such that dom J* is bounded, (0,0) ¢ dom J*, and J*(0,0) #
J*(0,0). It suffices to take [J] to be the conjugate of the equivalence
class used in Examples 2.10 and 2.11. ‘

While we are concerned mainlv with applying the results of 482, 3 and 5

to dual pairs of generalized saddle programs, we note here some of the results
that follow from §1. From Lemna 1.7 it can be deduced that in general
L(0,040,0) < (-P)* < (<P)* < T{o,-50,°)
and dually o
K(0,410:¢) < (-0})* < (Qp)* < K(o,,0,°).
If S(L) has a well-define;-;;imal problem given by [Lgl and [Llel is
closed, then it can be deduced from Theorem 1.1 that each concave-convex
function P satisfying P‘ <P 5-92 is simple and satisfies
clyclyP = -(Lo)*. clyel P = -(Lg)¥,
dom(clzcllP) = dom{Ly)* = dom(cl]clzP).

where
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1 dom{Lo)* < ci{(u,v)i(u,x,v,y) ¢ dom K for some x,y).

t If in addition [Lp) fs proper (i.e. S(L.) 1s consistent), then P 1is also
proper and has the same kernel as -(Lg)*.

By Theorem 6.2, S(K) has a well-defined dual problem {Ly] whenever
5(L) is strougly consistent. The next lemma dualizes this useful condition.

LEMMA 6.4, S{L) s strongly consistent iff

(rec]K)(o.x) > U implies (reci!()(o.-x) » 0

-9
=
[ =%

c (recK)(o,y) 5 0 implies (rec,K){o,-y) < 0.
| PROOF. Observe that L(0,z,0,w) = -K*A*(-z,-w). Hence $(L) 1is strong-

ly consistent iff range A* N ii{dom K*) # £. Now apply the eauivalence be-

R

tween (a) and (c) of Lemma 2.9.

THEOREM 6.5, Assume S(L)} s stronqly consistent. Thei Py and P,

belong to the closed proper equivalence ciass [P} = [-{Lg)*] and

dom P ¢ A dom K.

PROOF. By Theorem 6.2, L(0,-,0,*) 1is the least member of [lql,
which is closed and proper. Heace -L{0,-Z,0,-w) = ~Lgl-2z.-w; = (-(Lq)*}*{z,u).
But as noted in the proof of Lemma 6.4, S(L) is strongly consistent iff

range A\ ri(dom K*) # ¢, and K*A*(z,w) = -L(0,-2,0,-w). Hence Theorem 2.8

implies that the equivalence ciass [AK] is well-defined and equals [-(Ly)*],

and dom AKCC A dom K. MNow ohserve that

Ay Ll A Ev) Ay (Vi Ay {u)

Thus P] and P2 belung to [AKj. Taking [P3 = [AK], the theorem

Pylu,v) = syp - daf K, Polusv) = inf  syp i

follows.

COROLLARY 6.5.1. Assume S(i) is strongly consistent. Then the follow-

ing conditions on (z,w) ¢ R? x R® are equivalent:

(1) {z,w) lggp optimal sciution of S(Li;

00 ot 22 s 250 e
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(ii) (z,w) is a kuan—Tucker vector for S{(Kj;

(ifi) -(z,w) ¢ aP{0,0);

(iv) (-z,0.-w,0) ¢ aK(0,x,0.y) for same (x,y) ¢ R" « R".
PROOF. By (37.5) and Theorem 6.5, (i) is equivalent to
(z,w) ¢ 3(-P)(0,0), which 1s equivalent to (1it). Since Py and F, belong

to (P1, (37.4.1) implies that aP(o,0) = a}P?(o,o) x aZP](o.o) and

P](o,o) = Pz(o.o) = a. Also, (37.4) implies dom 3P € dom P, so that a is
finfte. From these facts it follows that {i1i) is equivalent to (ii). Fin-
ally, observe that {37 .5) impiies (1ii) is equivalent to (0,0) ¢ aP*(-Z,-wj.
Since (P¥] = [K*A*] by the proot of Theorem $.5, Theorem 2.3 implies that
aP*(-z,-w) = AaK¥(A*(-z,-w)}. Hence (o0,c) e aP*(-z,-w) is equivalent to
the existence of (u,x,v,y) ¢ aK*(-2,0,-w,0) such that A](u,x) = 0 and
A?(v,y) = 0. By the definitions of A, and Ay and (37.5), this last con-

dition is equivalent to (iv).

COROLLARY 6.5.2. Assume S(L) is strongly consistent, and let ([Pl be

s s e e

the equivalence class containing P, and P.. Then

sup inf 1y = P(0,0) < P{o,2) = int sup ly.

Furthermore, for any P e LP.

- sup inf Ly = Tim inf P(o,v)
v + 0
whenever = < sup inf Ly or F{o,0) < +=, and

1im sup P(u,0) = inf sup Lo
, . u-=o0
whenever ~= < P(0,0) or 1inf sup Ly < +w.
PROOF. Clearly sup inf Ly = -(i;)*(0,0) which equals P(o,0) by 3

Theogrem 6.5 Similarly, inf sup Ly = -{Lg)*(0,0) = P(0,0). Now let Perm

be given. By Theorem 0.1, P(o.6) = (c1,7}{0.0), which by definition equals
(¢! Plo,+))(0). MNow in generai, for a convex function f one has (cl f){x) =

1im inf f(y) oxcept when (cl £)(x) = -= and f(x) = +e. Applying this fact
y+X
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to the case at hand yields thaot sup inf Lo = (c! Pio, ))(0) = lim irt Flo,v)

E except when sup inf Ly » - &nd 3?0.0) = 4, The remaining a:szrgion
F follows similarly.
E COROLLARY 6.5.3. Assume S(L) 1s strongiy consistent. If the optimal
E value in S(L) exists and equals «, then the optimal value in S{K) exists
E. and 2quals «. .
1 PROOF. Since the saddle-functions L(e,»,0,*) for T in (L] ere all
equivalent to Ly, sup inf L, = Ol(o.o) and inf sup iy = Qe(o,o), Also, tha
optimal vaiue in S(L) exists and equais a 1ff (y{0,0) = Qz(o.o) =g ¢ R
Since [ < Py« Py < B, the asse tion now follows frem Corollary 6.5.2.
| CORMLLARY 6.5.2. fssume 3K) :g strenqly comsisteat. In order that
| ri(5 den L) = dom KF < B dom i,
1t is necessary and sufficient thar
(rec]K)(n,x) = irec;Kc)(x), Wi g®
and
g’ (rec M o.y) = (recKo)ly), Yy e R
f PRUOF. OQualizing the proof of Treorem 6.5 shows that

range 8%/ ri{don L*) # 6 and dum KF = dom B! < B dom L. Hence by Theorem

2.6 and (6.2.1), ri{B dom L) < dom K& < B dom L occurs iff recJ(L*B*) =

(rech*)8§ for j§ = 1 and 2. But the idertilies -(rec]K)(o,"x) »

(reciL*)(fo) and -(reL]Kg:(-x) = (rec]L*B*)(x) can be verified, aleng

with similayr identizies for i = 2. The corollary then follows.

cxample 6.14 demonsirates thal the domain inclusion in Theorem 6.5 can-
not be strengthened to equalizy without a stronger hypothesis. For any pro-
duct set C x U contained in dom K, let Hyp(C x D} devote the following

hypathesis:

Y(u,x) € C, (rec K{u,x,+,+) ) {0.y) < 0 = (rec K{u,x,»,-})(e,-y} < C:

s daatn, o i
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and

V(v.y) € D, (rec K(*,*,v,¥))(0,x) > 0 => (rec K(-.,-,v,y))(0,-xj > O.
1f Hyp(C x D) for some C x 0 = ri(dom K), then Lemma 6.4 implies that
S(L) 1s strongly consistent.

LEMMA 6.6. TYhe following conditions are equivalent, and they imply

Hyp(dom K):
f(o,x) € o+(c1(dom]K)) = X =0
U (ouy) ¢ o*lci(domyK)) =b y = o
There exist points v and v such that the sets

() « ({u} x K") Ari(domK) and ({v} x R)Nri(dom,K)

(a)

are nonempty and bounded,

PROOF. By Lemma 3.6.

THEOREM 6.7. Assume Hyp(ri(dom K)). Then the conclusions of Thecrem

6.5 hold, and in addition A ri(dom K} < dom ? C A dom K.

For each (u,v) ¢ A ri(dom K), the perturbation (u,v) in S(X)

is well-defined, [Ku.v] Is closed and proper, and the set of saddle-

points of (K, .1 Iis nonempty. Each such saddie-peint (x,y) satisiies

(u,x,v,y) ¢ dom 2K and Plu,v) = K(u,x,v,v) for every P e [P1 and Ke [KI.
PROOF. 8y Lemma 6.4, Hyp(ri(dom X)) implies S{L) is strongly consis-
tent. Hence the conclusions of Theorem 6.5 hold, and in particular
dom, P, dcmsz = dom P. Thus it follows from Hyp(ri(dom K)) and Lemma 3.3
that A ri(dom K) C dom P. If (u,v) ¢ A ri(dom K), ther. Theorem 6.2 impiies
the pertusbation (u,v) 1is well-defined and that [Ku,v] is closed and proper.
The assertions concerning the sadcle-points of [Ku,v] are immediate from
Hyp{ri{dom K)) and Theorem 3.4.
If actually Hyp(dom K), then Lemma 3.3 and Theorem 3.5 imply that
dom P = A dom K and that P! and P2 are the least and greatest members

of [P], respectively,

T iR, Kb aln Tee—— -
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COROLLARY 6.7.1. Assume S5{K) is strongly consistent and sither
dom g 1S bounded or Hyp(ri{com K)). Tnen there exist

both S{K) and S(L), and the optimai values in the two programs are egual,

Moreover, the optimal soluticas of one program are preciseiy the Xuhie=Tucker

vactors for the other.

PROOF. 3y Theorem 6 2 and tLemms 6.6, 1f S{K) is strongly consistaat
and dom Ky is bounded, then Hyp{dom K}, and hence Ryp{+i{dom K)). 8y
Thecrein 6.7 and (6.3.1), S{K} s stongly consistent iff {c,o} ¢ ri{dom P, -
A ri{dom K}. Hence Thacrem £.7 implies tnerz exists a saccle-point of (K.,

1, m0

G

i.e. an optimal solution of S(K). Alsc, rifdom Pj ¢ dom 3P bv {37
that oP{u.c) 7 #. kv forollars 6.5.7 this implies ther2 enisis m cpiimal
sclution of S{L). Since bath programs ar2 strongly corsisteat. Carallary
6.5.) implies that the optimat soiuticis of one are the Kuhn—Tucker vectors

foer the other. TYhe two ¢ptimal valuas are equal by Coroliary 0.5.3.

As & criterion guaranieaing the existence of an optiaal solution of S(X4,
the hypothesis 9v Ceroilary 5.7.1 is strenger than recessavy. This 13 clear
from the rext lemma and Coreilivy €.2.3. In Fact, as will hecome cloar jater
ir the section. tie hypothesis of Corcilary 5.2.1 suffices for the first asser-
tion of Corcilery 6.7.1,

LE¥MA €.8.  Assume S(:) s

»
s

strongly censistent. Then Hyp(witdor KY;

pace ror J

-

=1 and ¢

!.A

implies that rec cunejko is & su

. — e

PROOF. L=t T be as in tne proo” of Theorem 5.2, Tren wirong consis-
tency of S(Kj is equivalent 1o range Ty rildom K) # @, ond henca X35 =
{KT1 by Thecrem 2.2. Therefore the formulas in lemna 2.5 cin be anplied to
show tast

rec coneikc = [x]{0.x) € rec core ¥(«,-,0,y} whenever {c.y: = ri(ﬂcﬁz~;}

and
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rec conezxo = {y|(0,y) € rec cone K{o,x,*,<) whenever (0,x} ¢ ri(dom]K)).

For these two sets to be subspaces it suffices to show they are closed under

scaler multiplication by -1, and this follows immediately from strong consis-

tency and Hyp(ri{dom K)). _
Let M be defined on (R" x R%) x {R" = RP) by

T

M(X,W,¥52) = sup Inf {<u,2> + <v,w> + K{u,x,v.¥)}.
Then M(x,w,y,2) = -H(-z,y,?w.xy. where W belongs tu the partial conjugatz
of [K] in u and v. Hence it foilows from Theorsm 5.1 that M is closad
proper concave-convex and depends only on [K], and that i i{s polyhedrai
whenever K {is polyhedral. The equivalence ciass containing M is called
the Lagrangian of S(K). Similarly, the Lagrangian ¢f S${i) is the equiva-
y " lence class containing the function N given by
! , N{X,W,Y,2) = sup 1né {<s,0 + <t,y> + L{S,z,t,w)}.
] | in view of the next theoremf [Mg is called the Lagrangian of the duel pair
5(x), S(L); From the fact that the partial conjugacy operation induces a
symmetric ona-to-one correspondegce among closed proper equivalence classes,

it follows that a dual pair of generalized saddie programs is completely de-

termined by its Lagrangian.

THEOREM 6.9. The saddle-functions M and N are equivalent.

PROOF. Since [L] 1is obtained from [K*] via the relation L(s .z,t,w} =
“X*(-z,5,~w,t), it follows by (36.1) and Theorem C.1(b) that (L) contains
the function L given by

L(s,z,t,w) = = sup inf inf sup {<u,-2> + <x,s> + <v,-w + <y, t> -K{u,n,v,y)}
y x u v

= - sup inf {<x,s> + <y,t> -M(x,w,y,2)}.
y x

If [H] denotes the partiai conjujate 0 {M] in x and y, chis moans

[L] = (-H]. Now by Theorem 5.1 the function N depends only on [L}. Hence
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N is equivalent to the function ﬁ given by
ﬂlx,w,y,z) » sup 1qf {<5,% + <t,y> -H{s,z,t.#)}.

put N belonys to the partial ::njugate of 43 1n s and t, 2nd by
Theosem 5.2 tais 15 the same as [M1. This shows that N ¢ (NI, znd hence
(N1 = [#].

The next theorem says that, up to & retrdaring of the variabies, che
conjugate of the Laigrangian of S(¥) conincides with both tne partial conju-
gate of [K] in x and y and ihe partial conjugate of (L] in z and w.

THEOREK 6.10. Let (M} be the Lagrangian of 5(K), let H be any mem-

ber of the partial conjugaty ot (K] ir x and y, and let J be any member

¢f the partial corjugqate of (L} in 2z and w. Thea (M¥) contairs the

.... — o s

functiors

(s.v,%,u) + H{v,s,i,t)

and 0
(s.votyu) + J{2,u,55v).

PAOOF  Recall that M} contains (x,w,¥,2) -« -l .2z,y,~vi,4), where ¥
is a member of the partial conjucate of [KJ 1w u and v. Herce {using
{36.1) and Thecrem 0.1(h) to interchange "sup" with “inf*), (M*} contains

(5,v,%,u) + sup inf sup inf f<x,6> + <w,v>z+ <y, O-iz,u> + W(-2.9,-¥,x)}.
g T Y
dow observe thar (U x,v,v) » inf sup {<-z.u b <owv> W(-2,Y,-w,.%)) s a
nepber of ihe partial conJugate.of wawy in 2z and w, which by Yhecrem 5.2
5 fust (K3, Herce M aontains {s.v,t,u) - |

r~

sup inf {ex,55 + <y ts Klu,z,v,y}}  for some e FK). 8But up te reordering
{e vgriab]eﬂ thiy funation belonygs 1¢ the parcial conjugate of [K} n x
and 'y This shows thait [M*1 contains  (s,v,t,u) - H(v,s,u,t). Similarly,
TM*] containy |

{3,v,0,0) = cup inf sup Inf fox, .0 & ewi v oy, e 4ot BUK, 0y g,
;oW oy

sl S i
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1 ) wiere {x,w,y,2) = sup inf (<u,2> + <v,w> + K(U,x,v,y)}. Since “
(z.s.v;.t) + sup infuig\'vsgp (<U,2> + <X,8> + <V,w> + <y,t> K(U,X,v,y)} @
y »x u v
betongs to (K*3, this means that (M*] contains
E . %, tal) s:p 1:r“ (<z,u> + <w,v> + Ra(-2,5,-w,t)}
for some K ¢ (K*), {.e.

5 (s,v,t,u) + sup inf (<z,u> + <w,v- -f(s.z.t.w))
zZ w

for some T e [L). But up to reordering the variables this function belongs
to the partial conjugate of [L] 1in 2z and w. This shows that [H*! con-

tains (s,v,t,u) = J(t,u,s,v).

COROLLARY 6.10.1. If the saddle-value of the Lagrangjan exists and eguais !

a, where a ¢ R, then the optimal values in S(K) and S(L) exist and equal

GQ

PROOF. Tne saudle-value of ¥ exists and equals a i{ff M*(0,0,0,c) =
¥#(0,0,0,0) = -3. By Theorem 0.1(b) this fs equivalent Lo M*(0,0,0,0) = -2
for every M* ¢ (M3, For 1 =1 and 2, -Pi(u.v) 7 Hi(v,o.u.o) for a cer-

tain member Hy of the partial conjugate of (K} in x and y, and

-Q‘.(s,t) = Ji(t,o.s,o) for a certain member J; of the partial conjugate
of (L] in 2z and w. Hence Theorem 5.10 implies that ~Pilo.o) = -
-01(0.0) = -.q for 1 31,2,

COROLLARY 6.10.2. If there exist points u and v such that

a0 i s 3 o i

(0,v,0,u) ¢ ri(dom M*), then -P, and -F, belung to a closed prope: gyuive-

lence class which contains the upper and lower conjugate of every objzctive

function of S(L). Dually, if there exist points o and t suck thet i

{5,6,£,0) ¢ ri(dom M*), thep -0y and -G, belong to 3 cle 4 groper gjuiva- |

——— — o ecwe s

lence class which contains the upper and lower conjugate At «very objective

——re - 4

function of S5(K).
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PROOF. Assume (o0,v,0,u) ¢ ri(dom M*) for some u and v. Then
Theorem 6.2 impiies that the funstions (v,u) « M*{o,v.o,u) for ¥ ¢ M+
all belong to a single closed proper equivalence class. By T.eorem ...
this implies that the functions

(vou) » -Py(uyv) = dnf sup (00 + <y,00 =K(uxon,v)),

(v,u) » Py(u,v) = st 1gf {<x,00 + <y,00 -K{u,t,v,¥)1,

N AR 3
(vyu) + ((0,+.0,* 1) *(u,v} = Inf sup (<z,u> + <w,v> -L(0.i,9,u)},

W 4
(viu) + ([0,:,0,:))*(u,v) = sup inf {<z,u> + <w,v> -i(0.2,0,})
P w

are equivalent, closed and proner, The dual assertion foliows sipilariy.
ascociated with S(K) and S7L).
LEMMA 6.11. For any (x,y) ¢ R" x B" and (z,w) ¢ 8% x R°, the follow-
ing conditions arc equivelent:
(a) (~z,o.~w,o)'a 9K{0,%,0,¥)
{(b) (-x,0,-y,0) ¢ iL{0,2,0,w);
(¢) (©,0,0,0) ¢ aM(xX,W,¥,2);

(d) (x,w,v,z) 1s a saddle-point of the iagranaian,

PROOF. Jbserve that ~M(x,-w,y.-z) = W(z,y,w,x), wher: W is {n the
partial conjugate of [K] 11n u and wv. Also, Theorem 5.3 irplies (a) is
eguivatent to (0,0,0,0) e W(-2,y,~w,x). By (27.47 it followe that (2) is
equivalent to (c¢). Trivially, (¢} is eauivaleat to [d}. rinaliy, {47.9)
implies that (a) is equivalent to (0,x,0,y) ¢ 9K*(-z,0,-w,0j. #y 37,4} and
the relaticn L{s,z,t,w) = =A% -2,6,-wt) it foliow, that this lasr conditior
is equ.valent to (b).

n

THEOREM 6.12. Assuiic  (x,y) ¢ B x K" and (z.m) ¢ RP 2 B} catisy

H

the extremality conditicns. Then (x,y' is ai optimal solution of €00 gng

(z,w) s a Kuhn-Tucker vecior tor S(K). Dually. (7,4} Js anoptime}

SRl e bt s b i 5 s a i e it i a4
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solution of S(L) and (x,y) is a Kuhm=%ucker vector tor S(L).

PROOF. By Lemma 6.11 we can suppose that (~-2,0,-w,0) € K(0,x,0,y).
Then (37.4) and (37.4.1) imply that all the members of ([XJ] have the same
finite value o at (o0,x,0,y), and moreover

V(u.x',0,9) F <z < a < K(0,%,v,7') + <vw
sorall (u,x') ¢ RP x P, (vyy') e R x 1" and K e [KY. Taking u = o
and v = 0, this shows (x,y) 1is a saddle-point of f(n,-,o.-) for each
X ¢ [K). Hence (x,y) 1s an optimal solution of S(K), and F1(o.o) g v
P,(0,0). Also, by taking K = K we obtain <u,z> + sup K{u,,0,¥) < a
for all u ¢ RP, and by taking R = K we obtain a < inf K(o,x,v,+) + <v,w>
for all v ¢ RY. Hence (z,w) fs a Kuhn=Tucker vector for S(K). The dual
assertion follows similarly, using the condition {-x,0,-y,2) ¢ 3l.(0,2.0,w).

The next result is a generalization of the Kuhn-Tucker theorem. [t is
refined somewhat by Corollaries 6.17.2 and 6.17.3.

THEOREM 6.13. Assume S(K) {s strongly consistent. Then the pair

(x,y) ¢ R" « K" is an optimal solution of S(K) iff there exists a pair

(zw) ¢ RP x RY such that  (x,w,y,2) 15 a saddle-point of the Lagrangien.

Such a pair (z,w) it 3 Kuhn=Tuckar vector for S({K).

s o mmn

PROOF. By the dual versior of Corollary 6.5.%, (x,y) s an optimal soi-
utton of S(K) iff there exists a pair (z,w) such that (-x,0,-y,6) ¢
aL(0,2,0,w). The theorem follows from this by Theorem €.12.

By analogy with (36.6) for convex programming, one might ask whether the
last assertion of Thecrem 6 .13 can be strengthened to the following: "Such
pairs (z,w) are preciseiy the Kuhn-Tucker vectors for S(K)." Tie next
example demonstrates that this does not hold in general. Tie reason i< uvasic-
aliy that the set 3M*(0,0,0,0) of saddic-points ot the Laqrangian is ihe

product set
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aM*(+ ,,0,9)(0,0) x aM*(0,0,*,*)(0,0),
% in which each "factor" involves both the pair (x,y) of "solution variables”
i and the pair (z,w) of "Kuhn—Tucker variables.”
EXAMPLE 6.14. Teke pwn and q=m and define S(K) by

§ K(u,x,v,y) = <u,y» + <x,v», It {s easily checked that A;I{O)r\ (rec coneik) =
{{0,0)} for i = 1,2. MHence Lemma 2.9 implies that range A* N ri(dom K*) 7 ¢,
or in other words S(L) 1s strongly consistent (see tﬁe proof of Lemma 6.4),
1f (P) denotes the equivalence rlass containing Py and P2‘ then [P} =
(AK] by Theorem 6.5, Since

o 1f u=o and v=o0

P](u.v) = 4« if u=o0 and vy o

1 - if ufo

1 | this implies that dom AK = dom P = {(0,0)}, whereas A dom K = RP x g9,
Clearly S(K) 1s strongly consistent, the set of optimal solutions of S(K)
is RM x R", and the set of Kuhr—Tucker vectors for S(K) 1is RP x Ry, The

Lagrangian of S(K) contains the function

| M(x,W,y,2) = sup inf {<u,2> + <v,w> + K(u,x,v,y)!
1 u v

| o if x+w=o and y+2=0
sy % if x+w=0 and y+z4eo

-~ {f x+wifo

Hence the set of saddle-points of the Lagrangian is just dom M =

{(x.w)li +w=o}x {(y,2)ly + z=0). Thus, if (z,w) is any given Kuhn-

Tucker vector for S(K), the set ' h
({x,y)]{x,w,¥y,z) 1s a saddie-point of the Lagrangian)

equals ({-w,-2)} and hence is far from the equalling the set of optimal solu- .
tions of S(K). It is of intercst to note that the dual program S{L) s H

given by L(s.z,t,w) = <s,w> + <2t> and hence is “identical” with S${K).

E
A
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In order fo describe ﬁore fully the duality between the optinal soiutions
of S(K) and S(L), we introduce smother definition. For sack x in &
define the function f on RY by f (v) s {nt" K{0,x,v,<}, and for sach
in R" define the function 9, on P by 9, (u) = sup Z(u,+,0,v). [t foi-
lows easily from (5.7) that f, 1s convex and 9y is concave. An optimal
solution (x,y) of S(K) s said to be stable iff the directronal derivative
function

v+ fioiv) = Tima l(f () ~ f (o )
Ade

is never -o and the directional derivative function

u -+ gy fosu) = ;3» \ ‘(q () - g (o))
0

is never +w, It is not hard to show that (x,y) {is en optimal solution cf
S(K) iff f (o) = 9y (0) ¢ R. Hence hy (23.1) the directional derivatives
mentioned in the definition exist (+» and -« boing allowad as Vimits).
Stable optimal solutions of S(L) are defined similariy, using the funciicns
h,(s) = inf L(s,*,0,w) and k() = sup {o,z,t,°}.

LEMMA 6.15. Let (x,y) be an optimal solution of S{K). Thes (x,y} Js

stable iff f, and 9, Aare suddiffareatiable at the cprigin.
PROOF. By (23.2) and (23.3).

LEMMA 6.16. For (x,y) e A7 x &

o0 :
and {zw) ¢ B x &9, eash of ihe

foilowing conditivns is equivalent to the extremality conditions in ieima

-t

(e} ~(z,w) e Bgy(O) w 3f (a) and 7 (o) = 9y(0) e R;
hw(c) @ kz(O) e R.

(=8

(7} ~(x,¥) e ai {0) = 3k, (o) and
PROOF. DBy {37.4) and {37.4.1), (-z,0,~w.0) ¢ sK{0,%,0,y} occurs {F{

K(04%,0,¥) = K(o.x,00y) ~a e R

b innbat? bl s R e
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<, 2> + F(u,X,0.9) <3 < K(0,X,V,¥) + <v,uw>
for a1l ue R, XeR% veRY and ¥ ¢ K", But this occurs iff
gy(o) = fx(o) “ax¢ R

[ 1]
=
.

<b,z» + q.{u) <ag f‘x(v) $ <y u>
for a1t ue P and v o RY. this last condition holds 16F {£} holas., Simi-
Yarly, (<x,0,-y,0) & si{u,z0,%) ocsurs 1FF () holas.

TREOREN 6.17. The pair (x,y) Is a stable optimal solution ot 5(%;

iff (-2,0,-w,0) ¢ 3K(9,x,0,y}) for seew pair {z,w).

PROOF. By temma €.¥5, (x,y) Iis a stadle optimat selution of S{k} fY
f m) "9, (o) R and oqy(o,- x 87 (o) 15 nonempiy. New apply Loeme 8,43,

COROLLARY §.17.1. The » ~qram S(X) has @ gtable opiimed scinting {ry

.‘-..‘ LT

S(L) does, in which case the iwo optimai values are equal.

PROOF. Apply the theorem to both S(K) and S{L)} and use Lewm: &..7,
The two optimal values are equail by Coroflary 6.10G.1. '

COROLLARY 6.17.2. If S{K} 13 strongly consistent, ther syery asitwai

-

solutien af S(K) is stable.

A

PROOF. Suppose S{K) s streagly consistent, 2nd let ({x,y} oe any

~

optimal soiution ot S{K). Ry 'tf\e dual version of Corollary §5.5.1, ihwere
exist polnis & and w sush &hat {wx.0,-v.0) ¢ 2{0,2,0,0) . Fenwn Lot
6.11 an¢ the theorsi fmply ({N,y) 15 scatla.

COROLLARY 6.17.3. A pair (»,y) ig & stapl® optimal soleti~a of S{X

P€f there exist: a pair {z,w} such thet {x,w.y,2) i3 2 sodele-nuizt of the

fpor

Lagrangian, and such a paiy {z.w) 1s a fulip-Tucker vectior 7o {0,

PROGF. By Theorem €.17, Lawma €.17 and Theovem 6,02,

COROLLARY 6.17 4. Aysume rhat the optii .]_ value i 80K

.'.
o3
R

L
i

equals .

"4 A SE o e
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Ha A7} (Py(0,V) - a) = ~
Ato

Vim A7 (Py(au,0) - a) = 4w
A+0
for some u, then neither S(K) nor S(L) has a stzble optimai solution.

PROOF. .Suppose (x,y) 1s an optimal solution of 35(K). Then fi(o) #
qy(o) ¢ R. Notice that
fo < s:p o= P](o,-) and 92(-,0) = i;f 9y % 9
Hence the hypothesis implies eftner ff(o;v) = .o for some v or gglo;u} =
+= for some u. This means that (x,y) s not stable. Thus S(K) has no
stable optima) solution, and byVCorol1ary 6.17.1 neither does S(L).
According to Corollary 6717.2. if a program is strongiy consistent then
all of its optimal solutions are stable. The next example shows that in the
absence of strong consistency thére may exist unstable optimal solutions.
EXAMPLE 6.18. In Example 6.3 toke m=n =1 and take ([J] to be
such that '[J*] contains the closed precper concave-convex function
-/ if sc 0] and t e [0,1]
(s,t) + € 4= 1 s ¢ (2,17 and t ¢ [o0,1]
- if s ¢ [o,}]

Clearly dom J* = [0,1] x [0,1], J*(0,0) = J*(0,0), and 2aJ*(0,0) = p. From
the analysis in Example 6.3 1t follows that Sil) is consistent but fails to
be strongly consistent, S(L) has a well-defined primal sroblem, and (0,0} fis
the only optimal solution of S(L). If (0,0} were stable, then by Corollary
6.17.1 there would exist a stable optimal solution of S(K). But the set of
optimal solutions of S(K) 1s easily seen to be aJ*(0,2), which is emply.
Hence (o0,0) 1s unstable.

By Corollary 6.5.1, if the dual program S(L) 1s strongly consisteni then

each Kuhn-Tucker vector (z,w) for S(K) "corresponds” to a saddle-point of
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the Lagrangian in the sense that (0,0,0,0) ¢ aM{x,w,y,2) for sowe pair

(x,y). Example 6.18 shows that this need not be true when S(L) fails %o

be strongly consistent.
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§7: Ordinary Saddle Programs and Lagrange Multipliers

Suppose that § and T are nonempty convex subsets of R™  and R".
respectively. and that H 1{s a finite concave-convex functicn on S x T,
g],....gp are finite concave functions on S, and f].....fq are finite
convex functions on T. Consider the problem of finding the saddle-points of
H with respect to the pairs (x,y) in $ x T satisfying the constraints

| gi(x)g_o. 1 =1,...,p
and
fly) <0, J =t
Under suitable regularity assumptions this problem can be cast in the form of
a generaiized saddle program of a certain type.

Let H be a closed proper concave-convex function on R x R". for
1=1,....p let 9 be a closed proper concave function on R" such that
domH < dom g9, and ri(dom]H) < ri(dom g,).
and for J «1,...,q let -fJ be a closed proper convex function on R" such

that
dom,H < dom fJ and ri(domzﬂ) < ri(dom fj).
Let subsets C < RP x K" and D RY x R" be defined by
€= {{ux)]x ¢ dom,H and gi(x) 2y for 1 =1,...,p}
and
D= {(vy)|ye« doniH  and fj(y) 5 ¥ for §=1,...,q9},
and def‘!ne a function K on (Rp « B") x (RY x R") by
AR(GY) I (ux) € € and {viy) € D
K{u,x,v,y) = 4o if (u,x) e C and {v,y) £ 0
- if (u,x)£¢C

THEOREM 7.1. The function X 1is closed proper concave-convex with do-

mzin C x O. Moreover,

ri Cs= ({u,x)|x = ri(dom]H) ang gi!x) >ug for 4= V,....p0




and

ct & = {((ux)jx ¢ cl(com,H) and g,(x) 2u for 1 =1,...,p},
snd similar formulas hold for vi D and ¢! D.
on (Rp x Rm) x (Rq x Rn) as

PROOF. Define functfons Hg,...,H

PHq
Tollows:
Ho (usx,v,¥) = H(x,y)
0 if (x,u;) ¢ epl g
Hi(u.x.v.y) . { L LI YoerosP
- {f (x.ui) ¢ epi 9
0 {1f (y,v,)cepif
Hp... (ulxDVOY) ot { J ] j L 1.-..,q
J = {f (y.vj) £ epi f,
Clearly,

dom Hy = (Rp x dom]H) x (Rq x domzﬂ)
dom Hy = {{u,x)](x,u;) € epi g} x (RRxR" 1=1,...,p

dom H " (Rp x R') x {(v.y){(y.vj) ¢ epl fj} J=1,...,9

pt
and from (34.3) it follows that each I-ik is closed and proper. Since
ri{dom H )...Nri{dom Hp+q) f 4,
Theorem 4.2 impiies that [Hyl +...+ L'HM] is well-defined, has domain
C x D= dom HyN ... Ndom “M‘
and contains the function K. The formulas for ri C and ¢l C (resp. ri D

and ¢l D) follow from (6.5}, (7.3) and the fact that epi g, {resp. epi fj}

is closed.
According to the theorem, S{K) is & generalized saddle program on

A"« R" with perturbations in RP x RY. We call S{K) the ordinary saddle

pregram associated with H, g],....gp, tl"“’fq'

It will be convenient to {nt.oduce the following notation. For any sub-
set S of RP x A" write Su v {vi{u,x} ¢ S; for each u ¢ P, Sintiariy,

for any subset T of RY x R! write Tv = {yl{v,¥) ¢ T} for each ve rY:

™ i i




89

Since the feasible solutfons of any genaralizec¢ saddle program are those
} : pairs (x,y) such chat {0,x,0,¥) ¢ dom K, the set of feasible solutions of
the ordinary saddle program $(K) 1s Just Cp x Dy, f.e.
: ‘ {(x,y) ¢ dom ngz(x)‘g_o.....gp(x} >0 and fl(y) 5_0,...,fq(y) < o).
3 Recall from the general theory that S(K) 1s consistent {ff S(K) has a
feasible solution, 1.e. 1ff Cy x Dy s noneﬁpty.

COROLLARY 7.1.1. The program S(K) 1is strongly consistent iff there

exists a pair (x.y) in ri(dowH) such that g,(x) > 0.....gp(x) >uo and

f.(y) < o....,fé(y) < 0. Moreover, this equivalence still hclds if "ri" is
deleted.

PROOF. The original equivalence assertfon is immediate from the formuias
for ri C and ri D given by Theorem 7.1. MNow suppose (X,y) ¢ domH s
such that g](x) » o.....gp(x) >0 and f](y) < o....yfq(y) < g Let (xl,yi)
te any element of ri{dom H). Then (6.1) and {7.5) {mply that, for sufvicisnt-

1y small positive 1, the patr
(x,0,) = (1 = A} (xay) + Mxqayy)
is in ri(dom H) and satisfies g](xl) > 0,..,8.{x) >0 and
fl(yx) < 0,.J.,fq(yk) < 0.
If S(K) 1s strongly consistent, then a1l the objective functions of

S{X) are equivalent and hence the notions of optimal value and optimal solu-
tion can be expressed in terms of the single objective function

H{x,y} 1if xe C ard ye D

K(04x,0,¥) * < 4= if xef; and y ¢ B

- if x¢ G

In this event, the optimal value in S(K) exists and equais o ifV ‘ {

sup Inf H = inf sup il = a ¢ R,

Gy By By G

and (x,y) 1is an optimal soluticn of S(K} {ff {x,y} is a sacdle-poin¢ of

Al i




e 2ooin
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Yy

%0
H with respect te €y x Dy, The characterizations in the faliming coroilavy
hold even when S(K) is net strongly consistent.

CORCLLARY 7.1.2. ¥rite ci1C=C' and cl 0=D'. the optimal value

in S{K) exists and equals o« iff

sup inf 4= Inf supR sac R,
L I b &

A pair (2.w) is a Kuhn-Tucker vector for S(X) iff the optimal value i

o m— o — Wt Gt

S{K) axists and equals a and

<u,> + infsup H <a < sup inf H + <y, Vv V.
& & © 0
A pair (x,y) is an cotimai solution of S(K) Iff

inf #(x, ) = sup H(-.7) ¢ R
! ~

An optimal solution (x.y) of (K} 1is stable iff

Hm A (inf Kix,e) - dnf H(x,*)} > =, Wv
At0 D):v 03

and

Him 2" (sup B(-.y¢) - sup A(-,y)} < =, Hu.
A+0 C)'N G

PROOF. By Theorems 7.} and 0.1, the least mesber K of [Ki 15 tha

convex closure of K. [Direct computation thus yields

Qx,y) if {u,x}) ¢ C and {v,y} ¢ D

g(u.x;v,y) » (4w 1f (u,xj ¢ ¢ and {v,y} 2 D
a4t (U A C
end hence ;
Pyuey) s%p ‘.gf H.
u v

Analogous formulas hold fer X and Fa. A pair l2,w) s 2 Xunp--fucker vac-
tor fcr S{(K) iff P‘(o,o) S Fz(o,o) = g¢ R and <,z ¢ F{e 0} 2 a s ]

.- -
R

5 a o Ry
P](o.v) + <v,w>,v‘uV v. Sirce Py{s,0) = P?(c.a) v ge fooCdcs 1Y e
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optimal value tn 5(K} existe oni cjualt o, the First two escertion, of
y the corollary follow immediately frem the formuies for Py and P,. Now
F reca'l from §6 the functions fx(v) « inf K(o,x,v,*) and gy(u) =
, sup K{u,*,0,y). The formslas for X and K imply that
3 I
r £ {v) = inf A(x,*)
o ‘v',“|
whenever x € C  and
. g, (0) » sup M{+.y)
b .y "o
g W, .
i
whenever y e Dy, Since & pyir (x.y) fs an cptimatl solution of Stkl  Iff
fr(e} a gy(c) e Rovend {roX) e Uy = B), the third assertion follows vame -
] Jdtately. The last assertion g'so fellows immediately fvom thre formulas for
] f and 3
. x and 3y
All the general tueorv of 36 can oe applied to the ordinary saddle pre-
gram S(K). Howevsr we chall deal only with the cuestion of whether ‘hera
E exists a gead Lagrange mutiiolier principgle foo S{K)}. As a first step, the
next results {dentify the Lasrapaian and the extremality conditicens associated
with S(K).

THEOREM 7.2. The Lagrengizn of S{K) contains Lhe function

rR(x,¥) ?f’fz‘.gi(x) + :.‘.'wj.‘jiy} if {xw)e S and {v.2) ¢ i
: h
{x,w.y,2) + z . 1T ix,w) e S end {y,z) g7
-o lf‘ (X‘W) f S’

where € = dom.H x R? and T = onmait RE.

PROCE. By definition, the Legran@ran cortaing the function

S

M(X,w,v,2) = sup 1af Lou, 0 + vvows + KU, x,0,Y)
S
= sip int (su,2> 4+ <o+ H{x,y) ),

)
-~

Xy
whore 0= (Gl {uyx) e 0 oand O, = Ivif{viy) o O Now C, earals
K "
TN C YIRS ul,...,gr(\Y s u ) when . Somli ane equals the ernty set




G?

GUwerwise, wno st tarty Uy euals vlt(y) o ove.

g

Y o dowgw and equrls the orpty set otherwise. Therefore tle

mply that Miv,w,v,2) » ~= when x [ domH and Mix,w,),z)

2 A dom‘H and gy ¢ dunzH. Whei: (x,y) ¢ dom K,

Mx,w,y.2) - K{x,y) + sup {<u,z> ¢ in* v,y )}

Y

- if wt Rg
P I dee if we HS
L!ﬂx,ﬁ + fi'gdx) + Zvjﬂﬁy) iYW LQS
it 1s ea<y to s"om that M« ¢l M ‘g given by
[ Alxy) ¢ Zrg(x) v w0t (xw) oS
Mix.v,y.z) = ? te it (x,w) ¢
. -n 1f (x.w) ¢%

+1nally, otserve that tre fin tion In the thec-em {5 bounded below by

bove hy N,

COROLLART 7.2.7. Twn paiss (a,y) and (z.w)
wonditions assaciated wizh S(K) ff
(x,3) €Ty = Bon (2um) o R £Y,
2,9 fx) » 0o for 1e) R

wifl"..)} *0

0« 3IH{x‘y)-* 525(213;)(X)-

o e 3H{x.¥) ¢ Talw fily).

() -

when

v
convaer byers

= +=  when

1 ¢ Qp

and L

and 7 ¢ Rg.
and {/,2) ¢ o)

and (y,z} ¢ 1

satisfy the eqtremalfty

- ’ ,
Tre term  2.3(z.4,i(x) (an e replaced by 22,49, (x), where the sumation
ewtercs unly over there i Gugh that ¢y > 0. Sinflerly, the term
Zalwgf)(y) car be replaced by Ziw 2afy{y). whers the sumnsticy o tends

4 ~

only gver trose § such that ~ - c.

PROGF. By dev.nition, “x,y) an1 {s,w) sebicty the eytromai. ;o (on

1 ff A oL wgint of the fyyrangian,

(‘-"‘ivvz} 1

ditiors

B v

trhe treagrem

and

~

|

r
]
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optimaY value in S(k) existe o S a. be s twt ancertios, of !
the corollary fallow immediately from t'e formetas fo- P] and 1 Now

reca’l from §6 the functions ‘x(v) ~ tnf Klo,»,v,*) and qy{u) g

sup F{u,+,0,y). The formulas tor X and K {imply that

fAv) « Inf A(x,-)

whenever x ¢ Gy and

»

g,(v) » sup (- .y)

cup
Lu

whenever y ¢ Uy, Since a patr (A y) fs an cptimal wolutien of Sk} 0ff

f{o; =g (¢c) v R (and {y.x) « C ~ B, the third assertion follows 1a¢eme -

dtately. The last assertion also follows immediately from the formulay for
fx and gy.

All the generai theorv of Yo can be applied to the ordinary >addle pre-
gram S(K). However we c<hall deal only with the crest oo ¢f wnetker ‘hore
exists a gond Lagrangs muitinMer principle foo S(r). As a first step, the

{ next ~esults fdentify the Lagraritan and the- eaxtremality cond=tion, assnciated

wit., S(K).

THEOREM 7.2. The Lagrangian of  S{K) contains the fur:tion
J'H(x,yi ffizigi(x) + :fwjtjfy) if (x,m) e S and {v.z) o i
-

{x,w.y,2) ( = 1T (x,m) e > and {y,e} ¢ 1

where S « dOWN‘H x RS and T = uom2H x R’:.

PROOF. By definition, the Légrengian cor21ns the function

Ty RPN T ST W W e,
i e————

M(x,w,y,2) = sup 1nf {<u,2> *+ “v,m ¢ K{u,x,%,y)1
vy
s sep int {<u,2> 4 </owe + H{X,y)),
b ")_)

I

| where = (u]{u,») ¢ ) and UY 3 {vi{viy) D). Now C‘ eqials

fupgy (x) > TRRE () > u} when . jom 1 ane equals the ernty +nt

P

e—

————
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and (36.3), this occurs 1ff (»,y) r domH and (z,w) ¢ Rz x R?.
H(x',y) + 2119‘("') + 2“§fj(-") < Rix,y) ¢ '2:1191(1) v 2".;%“-’ (1)
for all {x',w') ¢ domH x Rg. and
(x.y) + Zz,9,(x) + Zwyfly) < Hixiy') 4 22i9,(x) + Zwa‘,'y') (2}
for all (y',z2') ¢ domzH x Rf. Taking z' = z In (2) and using (23.8) im

plies o ¢ aZH(x.y) + Z?a(wjf,)(y). Taking y' =y, 2 = ] 4+ z, and

zi -2, for X' P 1. (2) implies that 9 :,g'(x). Yhis holds for each 1.

But taking y' =y and 2' = o in (2) implies sz’g,(x) < o. Rence

z’gi(x) = o for each {. Simiiarly, (1) implies that fj(y) <o and

waJ(y) = o for each J and o ¢ a]H(x.y) ¢ Efa(z‘gi)(x). This ectablisnes
one implication, and the converse is now clear. Now observe that "J >0
trivially implies a(waJ)(y) n ”J”fj(y)' On the other hand, {f o= ¢ then
y ¢ dom,H C dom 1’J tmplies a(waJ)(y) = 25(y|dom fj) < a8l donH) =

o' aZH(x,y) and herce aZH(x,y) + 3(wjfj)(y) . Q?H(x.y). Thus the terw

b a(wjfj)(y) can be replaced as indicated. The other asserticn is proved
similarly.

Variables of the sort z,.....zp and w]....,wq appearing in the la-

grangian of S(X) are known tracitionally as Legrange multipliers. Sometimes

this term also denotes the particular values of these varfables whizh satisfy
certain "extremality conditions” relating to a "Lagrangian furction." In this
second sense, Lagrange aultipliers (z,,....zp. "l""’“q) = (z,w) for an
ordinary or generalizec¢ saddle program necessarily form a Xuhn—Tucker vector
for the program (Theorem 6.12). However, a Kuhn-Tucker vector need not satis-
fy the extremality conditions, i.:. need not b= a Lagrange mu'tiplier. (This

behavior can occur if tre dudl progrem v291s to be strongly consistent, See

the remarks following Example 6.18.} {n other words, Kuhn-Tucker vectois sre

defined even when the extramality conditions are not satisfiable. Thus, Kuhn—

Tucker vectors (rather than Lagrange mu'tipliers) are the natural "ecguillibrium
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price vector<” fo. s2yaricrc ecddVe-point oroblems. ;
B/ the general theory of 36, I¥ (x,y) and (z,w) satisfy the ertrem-
ality conditicns then the optimal value fn S(X) exists and equals H(x,y),
fx,y) 1{s a stable optimal solution of 35(K), and (z.,w) {s a Kuhn—Tucker
vector for S{K). In fact, such pairs (x,y}] and (z,w) eactually satisfy
<, + B(c'y) < Hix,y) < Hix,y') ¢ <v,m
for every (u,x') ¢ ¢l C ard every (v.y') ¢ ¢l D. (cf. Zorcllary 7.1.2)
The next theorem is the main existence result.

THEOREM 7.3. If S(¥) 1s strongly consistent, then the extremality

conditions can be satisfied whenever the sets

D
{x ¢ N\ rec cone g1|1nf {ec H{-,y)(x}|io.y) ¢ ri D} - o0}
{=)
and ]

q
{y ¢ /”} rec cone fjlsup {rec H(x, ){y)|{o,x) ¢ ri C} < 0}
J-

are closed under scaler multiplication by -1.

PROOF. By Corollary 6.17.2 and Theorem €.17, 1f S(X) 1s strungly con-

sistent and has an optimal solutinn then the extremality conditions can be

satisfied. The remainder of the proof coasists of showing that Coroilary
1 6.2.) applies to yteld an optimal salution. Suppose S(K) 1{s strongly con-
! sistent. By Theorem 5.2, S(K) has a weli-d«fined primal probiem which 15
given by the ciosed proper equivalence class [Ky). Moreover, dom Ky =
Co x Oy, ri(dom Xy) = (r1 C)g = (ri 0)o, and (K] contains the function

. Hi(x,y) 1f xe C and ye Dg

K (x,y) =( = if xcC and y¢ Oy
- it ngC

let ¥V = (y{f](y) :.o,...,fq(y) <0}, Then Uy Y Ndorh, so that Ke(x,-) =
H(x,+) + a(-|Y) whenaver » ¢ ri(domzﬂ). It fcllows from the definition. and

(9.3) that
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(reczl(o)(y) = sup (rec H(x,:){y) + rec (1Y) (y)!{o,x) « =t Cj.

q
Now note that rec 8(-|Y) » a(-io* Y) by (8.5), and o Y = M\ rec cone 'j
by (8.3.3) and (B.7). These facts together imoly that (mczK.,)(y) <0 ¥

q
y € M\ rec cone fJ and sup {rec K(x, )(y}|{a.x) ¢ ri C}) < 0. A sintlar

3=1
argument shows that (rec‘l(o)(x) >0 ift xy fp\ rec cone g, an?
i1
inf {rec H(-,y)(x){(0.y) ¢ v1 Dy > 0. These two equivalences show that tre
hypothesis is just what is needed to apply Corollary 6.2.1.

For each (z.,w) ¢ Rf x Rg define a functicn Hz w o A" xR oy
H(x,y) ¢ 21191(:() + ?:wjfj(y) if xe dom]H and y ¢ dom?H
Hz w(x,y) .q = if xe¢ dom‘H and y ¢ dom,H
~- 1F x/ dom]H

By Theorem 4.2 it follows easily fron the blanket regularity assumptions

that Hz w fe closed and proper and has the same domain as H. Observe
]
that i1f M denotes tnhe Lagrangian given in the statement of Theorem 7..,
Hy wl%0¥) = Mx.w,y,2)
for every (z,w) ¢ Rf x Rg and every (x.y) e ™ x R, I (2,0 ¢ Rg x Rg

2 [ v e P » 7 & ¢ 3 c
put Sz.'w g, and 1f (72,w) ¢ Ry » R, let Sz,w denote the set of pairs

(x,y) which are saddle-peints of H ané which satisfy the concitions

z.W
}{ g'(x) > ¢ and z1g1(x',' 20 for & =1,...,p
| and
fj(y) <o and waJ(,v) =0 for J=1,...,q.
(These conditions together with the condition (z,w) ¢ RE x R': are tradivion-

ally called complementary slackness conuitions.)

For ordinary convex programs there exists a good Lagrange multiplier prin-
ciple (Theorem 28.1 in [44]). The anaiogous result for ordinary saddle pro-
grams would be the following: “IFf ({(z,w) {5 a Kuhr-Tucker vector for S{#),

then Sz 2 is precisely the set of optima!) solutions of S(X)." However, the
'k

bt st inincin 8
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situation is 1n genere!l more camplicated ¢t an this.

LEMMA 7.4, iwo pairs (x,y) and (z,w) <catisfy the extremality condi-

tons 111 (x.y) e §, ..
PRYOF. For any (z.w) ¢ Rg x Rg. o pair (x,y) i{s a saddle-point of
Hz.v 1ff (x,y) ¢ dom H,
H(r',v) + 22191(:(‘) < H(x,y) + Zzig'(x).Vx' ¢ domH
and
H{x,y) + ijfj(y) < Hix,y') + ZWJfJ(y').Vy' ] dmzﬂ.
Now 1% 1s an easy exercise to show (using (7.5) and (6.1)) that for any con-
vex function f and any conver set ( containing ri(dom f), x* c af(x) {¢f
f(x') > #(x) + <x*1’ - x>.Vx' ¢ C.
but ri(dom(H(x,-) + Twf,)) = ri(domH) and ri(con(h(-.y) + 22;9,)) =
r%(dw]) whenever (z,w) ¢ Rf > R? and  (x,v) ¢ dom H. Herce 1L follows
from these facts and (23.8) that for (z,w) ¢ Rz x R}, (x,y) 1s a saddie-
point of H, - 1ff (x,y) ¢ dom K, '
0 c 3jH{xy) + Lalzyg,)(x)

cnd

~

o€ 32H(X;,Y) + za('jfj)(y)°
The lerma fcllows trivially from this by Corollary 7.2.1 and the definition
of Sz,w'
THEOREM 7.5. The set of stable optimal solutions of S(K) ic precisely

q
(S, J(2w) ¢ R x g9,

and when S(K) 1s strongly corsistent this set coincides with the set of all

optimal solutions of S(K). If Sz w # o6, then (z,w) 1s a Kuhn—Tucker vec-

tor for S(K); the converse hclds wher the program dual to S{K) is stronaly

consistent.

PROOF. The assertions icllow immediately from Lemma 7.4 and toroilaries

.
b—-—-—-——m——-m
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AVIUs, 6.17.2 and 6.5.1,

Tnis means that in general thers A~co a9t exist 2 gaoa Leyrange medtf -
plier principle for ordinary saudie proarems. [n certain circunstances,
though, there fs an analogue of (28.1).

(OROLLARY 7.5.1. Assume that the program dual to S(K) 1s streagly

consistent. 1f S(K) has 4 umgue runn-Tucker vector (z.w) {or egitfva'ent:

1y, a urnique optiras soluti€n (z.w; of tts dual problem), then the set of

stable optimal soluticns of S(K) .y rorenpty and equals 7w

ine next result characterizes dual stvang corsistency for ordirary sed-
die nrogyams.

LEMMA 7.6. The program ual ty S{Xi is strongiy corsistent ftf the

<

twe sels

rec Coneyit Jyrec cone ¢,y L Nirec cone gp.
rec coneZH M mec rope flﬂ. ..MNrec cone fu
ere closed wnder scelter multizlicarion by -1.

FROOF. By Lemme A.4 1t sutf zes Lo shon that

(rec]K)(x) >0 ftt x o rec cone BN rec rcre o
. 1'? ]
anrd
)
(recZK)(y) <0 iff y o oret cone M\ rec cone fj.

Lot Hpye.. M be as in the proof of Tncorerm 7.1 and 1ot (u,x) ¢ ri (.

rtg
By (9.3),

rec K(u,x,+,*) Erec H‘:(u,x.- o).
Observe that trivially

rec Ho{u,x,-, 3 v,y) = rec d(x,-jly)
end

rec H.-(U-X»'-'N",'/} R S R S

aith tre aid of (8.9) and (9.71) 1t 15 eery ‘a vnow that
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- IR N 3 f . ‘4 R
res “p*j(u‘*' il p((y.\j),cpl(reb ’j))

for J = ),....q9. These 'ac's together imply that (rec?K){v‘y) PQUals

(fvczH)(y) wher  (rec 1J)(y) < for §»1,...,4 and equals < other-

size. Thic establishes the second equivalence stated sbove, The it (an

a¢ proved similarly, :
Theorem .5 and Carollary /.5.1 are actu2lly vaitd for any gereralizoed

saddle nrogra, piovidec thot for 2ach (z,w) ¢ R¥ x RY  the set . s

defined o he the set of natrs ta,y° such that (x,y) and {z,W) satisfy

o extraralicy condiltons, 79 preofs 9o through evectly the same excent

thet tha cefintticn of S_  lays the radte of Lemma 7.1
P J

Ly

I S

e ——— A———




By cadle Pregrams o Fenchel Type

Throughout ti . sertion £ 15 & ¢!nsed proper concuve-convers Tunet on

n , 4
on R R, L 1s a closed proper convex-ccncave function on R ,’.q. and

1

[(]

A= A] x Az ts a Yinecar transformation from - G tu Y R, Mefine

Yo koo dom XjAx ¢ domgt.
Yot {y o vom,KiAyy v doal ],
Los (20 ALY AT € domK?y,
W= (v dom?L'{A;w ¢ dom,K*},
and consider the 10llowing pair ¢f minimax problems.

(1} Fing the saddle-polats ¢f K - {A with respect to X » Y:

(I1) Find the saddle-ncirts of L* - x*A* with resoect to 7 x W.
Wien m = p, n = q, A is the ‘dentity transrermaticn and ! i given by
(o if xe ' end y . n;
L{x,v) = { “n i x¢ K an¢ y e R
S e i v ¢ R,
crobieme ([} and (I1) are those censidered by Pockafeilar in [43]. The re-
i selts in Lebedev=Tyntanskit {307, Tynjanswii (58], and some of the reoults in
Tynjanskii (57] are imprevad in this section.
Cefine a funczior & on (i » R") x (cP > P.n) by
fb'{x._y) - L{u + Ayx,v ¢+ .r‘\:,.,y‘, if fu.,x) e U and (v,yj ¢ 2
\ ;

E t{u,a,v,y) ‘j tee it (u,x) ¢ T and (v,y) 73

S e Wf {u,x) ¢rT

wiiere

s {u,a)lxoe cr.;r,];(‘ o+ AIK v (h)m]U,

aox {vyily ¢ dan‘l-,K. Vot )'lzy ¢ dOmQU.

LEMMA 8.1. The function » 19 clowc! proper concive-convex witn domein

? ror b, and

_——_—
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and
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‘mply that 5(e) f{< strorgly consistent iff A r(dom £)  aeets  —iydom L),

and

fined and gives the prima) problem associated with S{¢). By {(36.4 tny

the same as (I). A gareratlized saddlie pregram having the form of S'g) 15

saju

ray bte qgiven by

t{s,2,t,v} = Z ~o 9 (s.2) £ @=nd  dLdb o @
+w :f :’,Vvl:' TEERYS

where

This, the dual of a program of Tanchel Zgpe ic aqrother prouranm ¢f Feached
type. dHence 5(¥) is scrongly consistent 1 9f Atrildom t*) meely rr{oon K7

and in this case [L* - K*A*) {. woll-defipned and qgives the nrimel oroblem

_———-———L
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4
rEr o (Ui e eildomoa), 0o Aix 3 rr(dom]L};.
rie s {h,vlly o r1{10n2K). Ay e ri(domd;)‘. :
PROOF. Trivially, 1 i¢ wonvex., Define N2 ful{u, ) ¢ ') fur each j
Than r‘ 15 empty when  x ¢ dma, K and equals dom]L - Ak wher
. ] ’
dom]K. Hence {3.8) fmpite. that (uaiy o rt 7 iff » & rildunLTy s
ri(dom,L - Ax)o Tovs estoblishes the vormula for i ., a:d 7 one oy !

is «imilar. rrom these tormuiag ana the fact that ¥ and L are (Towe!
proper, it 1s not harc to verity (using 134.3)) thet o has the wroter ey

rted.,

By Lemma 8.1, ¢ deterinnes a generalized sadcle program  :{e) n

R" ith perturbetions in R” « K. the formulas Tor riT and rioa

in this case Theorems 2.3, 4.2 and 6.< imply that (K - LAl s well-de-

to be of Fenchiel type,

[t <an be coarutec as an exercise that tho pregram S{y) dual o Sis)

L*(z,w) - K*s ¢ Afz, 4 A%, f {s.2) ¢ and W) oo

{{e.2)lz ¢ dam]L*, S 4 ATZ o dompk*,
o ((twhle e (!(szi."; t 4 irae dom
~ [
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associated with S(v) ({.e. the dual problem assoctated with S(e)). Tnis 1
problem {s the same as ([I).

With these facts in mind, it is clear that all the results of 56 can be
translated into assertions about problems (I) and (Ii). In the remainde: of
this section we {1lustrate some of this.

A saddle-point of X - LA with respect to X x Y 1{s called an optimal

solution of (I,. ii 1. convenient to say an optima) solution of (I; is stable :

1ff it is a stable optimal solution of S(¢). Similar definitions are used
for (11).
LEMMA 8.2. If A ri(dom K) N\ ri(dom L) 7 ¢, then

sup Inf K - LA < sup Inf L* - K*A* < {nf sup L* - K*A* < inf sup K - LA,
X Y W 2 I W Y X

PROOF. By the dual version of Corollary 6.5.2.
LEMMA 8.3. In order that A*ri(dom L*)\ ri(dom K*) # ¢, it is necessery

and sufficient that

(rec]K)(x) > (rec]L)(A]x) imply (rec]K)(-x) > (rec]L)(-f«]x)
and |
(recK)(y) < (rec,L)(Ay) 1imply (rec,K)(-y) < (rec,L)(-Ay).
PROOF. The leama will follow from Lemma 6.4, once it is veritied that

iAa

(reclo)(o.x) >o0 {ff (rec,K)(x) > (reclL)(A]x) and (reczo)(o.y) <o Iiff
[ (reczl()(y) < (rech)(Azy). Only the second equivalence will be checked, as
b the first is analogous. For each (u,x) e rir, it fcllows from Lemma 8.1,
| (9.3) and (9.5) that
‘ ) rec o(u,Xx,+,<)(v,y) = rec K(x,*)(y) - rec L{(u + A‘x.-)(v + Azy).

Hence, (reczo)(o.y) <o {ff rec K(x,:)(y) < rec L(u + Alx,v)(Az_y) | holds for

each (u,x) ¢ ri r. But this latter condition accurs {ff rec K(x, )(y) <

e

rec L(u.-)(Azy) holds for each x ¢ ri(dom]K) and u ¢ ri(dom]L). which

occurs iff (reczx)(y) < (rech)(Azy}.

" a—
. ki -
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[t can be shown that the least member of the Lagréaylan £ 578) e
che function
( K(x,v) + L*(2,w) - rQ]x > -~ fAzy wr» 1€ (x,y) Cand (z,4) ¢ 21D
(XY 02) »-i. 1 (x.y) ¢ Cane (2w ¢ ¢ o
(f (x.y) £ <
where C x D = (dom]K x domZL*) x (dom?K v doan, ¥} is the domain of tha 'a-
yranaian,  Fron this it foilows casily by (36.3), (36.4) and {37.4) Lhai iz
patrs (x,y) ¢ " x R" and (z.w) € 3 < A% saticfy the ertrematiiy condi-
tions assocliated with S{#) and S(7) ivf
A(x,y) € al* ¢,w) and A*(z,w) z sKi<,y).
The next thrz2e resuits are simply transiations gt Theosvem 6 17, Lovoilary
5.17.1 and Coroilary 5.17.2.
THEGREM 8.4. A pafi: (x,;} 13 3 steble optfwal solution of (i) if¢

there exists a pafr (z,w) such that

Alx,y) ¢ aL™(z w) ond A%z,w) . aK{x,v) i)

Wally, a pair (z,w) ic a ¢table untimal solutier of (11} i7f there exists

a pair (x,y} such that (=) hulds.

i

THEOREM 8.5. Froblem (!} has : stebie cptimal colution iff problen (11}

does, in which case the optimal selues in i1} ang (11} are 2gnel

THEOREM B.6. if » ri{dor X}yrijdon L} 4 6, then cvery optingl tel-

tion of (I} is stable. Duallv, if A*ri(dem L*}/y ri(dom K¥) 0, 'h avery

—

optimal solution of (I} is staila.

To go along with trese results, we heve twe existence resuits.  The Tav!
is a corollary to the next theorem.

THEOREM &.7. Assume A rildom K) M rildom L) 7 §.

-
>
o
pa

dom(X ~ LA)* <2 dom K* - Axdom L%,




1) p
ri{doam K* - Btyam 1Y) ¢ comty o L)
LA
rec.(¥ - LA) ® rec K - (rv.jl)AJ

v J
or =1 and 2.

—— .

PRESr. The “airct vnclusion to)iows trom Corollartes 4 4.3 and 2 4 2. |
“ha osecona assertion tollows froe Treurens 4.5 ann 2.F, with tne hely of (5 1.1
CORCLUARY 8.7 10 Assume A ri(dom )/ <l w0l ey,

A*ricdam L) ri(dos KT p B, A

eC K - LA 7 mil k- (et L)A

3 TS J B
tor o= 0oang 2. Then thire exicts en optomal solutise of (i),

PEOUF. The treorem ang (6.3.0) tmelv that  ri(gom(l - L20% agpal

t
TR AEAN ]

r1{dom ¥+ - ATdom L*j, which cquals ri.cw 7*Y - A%ricaom L*0 5y (9 6) anc

(6.6.2}. Hence (n,c¢) v mifaemly - 0 23V?) o0 wrri(don L)/ (Cum ooty BB

hus, (37.5.3) implie; there eatots g <addle=-pu.rt 2f X - AL

A more gererai exisience vasott {5 the folawing.
THEGPEM €.8.  Assuma that A rijcon n, /0 ~Hldom L) £ 8 ard taar tne
falleding teg conditiens are satisfle

cel o reC Rikc)(y) < rec L(Ayr,cJ{ALy) for every . ori X,

. i oA

~

then  rec K{x,*j{-y) » rec L\A]x.-)(-Azy) for every

(b) 1f rec k(-,yM{x) - rec i{-,A {72 to-every ;oo ri Y, then

= ’ e e

rec K{+,y}(-x} > rec L{-.Azy)(-A]x} for every v ¢ or1h.

Then therc exists an optimal soiution of (1).

FROQF. Sirce (8,0 = [¥ - LAY, the therramwi ity follow inmcdrately tror

Corollary £.2.1 cnce it 1s checked that rec,

rec K(+, )(y) - rec L{A,x,-)(Azy) for evem o r X, and :hat

(K - 1a)(y) <o if

rec, (K - LA)Ix) ~ 0o Y rec K(-,y)(») » rec L7 FortAyad for every

y « 1 7. We show only the tairst couive enie, au the <econd 1 cimplar. Q-




1C4 |
Viercrew 4.z and ¢.8, (X - DAY hay domafn X o< Y and coatain the ta ot 4

1 glven by

K{n.y) - CA{x,y) it x o X and y o Y

1%,y ) v} = if » ¢ X and v €Y
~ AR 3
| Crar this together with (9.3) aind (S 5), it folicws that . ;
' rec X, 'ly) < e m{x, )iy - rec I(ATx.-)(A?J)
~.for every aooort &0 ain 2 a2 LAY(y) 2 cup (rec H{a, -, fy)lx o =t X},
(NP 2QuiIva.er e 10 1ons,

Finally, we remark that coonditiong (a) and 4} accve are <at1.Tred for

example when X » ¥ 1s bouundes
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APPENDIX: Polyhedral Refinements

Polyhedre] saddie-functicas have much nicer properties than do aroiirar

e it e Mttt et .

closed saddle-functions. Consequently, many of the results in the thesis
admit refinements when some of the saddle-functions involved are polyhed-al.
These refinements generally {nvolve weakening the hypotheses in either o
both of two ways. The first way may be described loosely as follows: if x
theorem can be proved using & hypothasis of the form (C x D) N\ ril{dom K} ¢ 4,

where K 1{s a closed saddle-function and C and D are convex sets, then

the same conclusfons (and sometimes even sharper ones) can be obtained from
the weaker hypothesis (C x D) Vdom K ¥ ¢ when K is actually polyhedral.
Refinements of this type rest ultimately on the fact that the main tools frem
convax function theory which are used in the proofs (e.q. (16.3), (}6.4),
(23.8) and (23.9)) admit polyr;edral refinements of the same type. This covers
most of the polyhedral refinements. However the results which are essentially
assertions about the existence of saddle-points admit refinements of a diffe--
ent sort. Generally speaking, such resuits hyoothesize conditions of the furm

(rec\k)(-x) > 0 whenever (reciK)(x) > o
and

(reczx)(-y) < o whenever (reczx)(y) < 0.
These are dual to the condition (0,0) « ri{dom K*} and hence imply the exic-
4 tence of a saddle-point of K. However, when X {5 proper and poiynedral,
it can be shown (using (23.10)) that dom 3aK* = dom K* and hence that ¥ has
a saddle-point 1ff (0,0) ¢ dom K*. Thus, for K proper and polyhediai, only
the weaker conditfons of the form

(rec]K)(x) <o for all x

and
[' (reczk)(y) >0 forall y

are needed.

[_—‘
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hypothesis (*) can be replaced by
dom K]ﬂ...ﬂdw Ks 4.
In the mixed case, when for example the saddle-functions Kl""'Kr are

polyhedral but Kr*].....K are not, we can still prove evervthing with ()

s
replaced by

dom Ky ...ndem K O ri{com K )N .. .Ari{dom K} £ 8.
The proofs, however, do not foliow from §§2 and 3 by the device of represent-
ing (K‘ L KSJ as (KA} (cf. Theorem 4.6). Instead, one must zarry out
proofs parallel to those in 552 and 3 but which appeal t¢ (20.1) in place of
(16.3) and the polyhedral version of {23.8) in place of (23.9).

Concerning §6, define a generalized saddle program S(K) to be polyhedral
iff X 1s polyhedral. It is easy to see that 3(K) 1s poiyhedra! 1(f fts
dual program S(L) 1s polyhedral. The polyhedra) refinemants of the first
type described above take the form of replacing the hypothesis "S{K) s
strongly consistent" by the hypothesis "S{K) is polyhedral and ccnsistent.”
The refinement of Corollary 6.2.1 combines both jeneral types of refinement:

If S(K) fs polyhedral and consistent, then it has an optimal solution iff
(reclxo)(x) <o for all x and (reczxo)(y) > o for all y.

The polyhedral refinements for s6 yield refinements for §7 when all of
the functions H, g]....,gp. f).....fq are polyhedral and alsc for §8 when
both K and L aive polyhecral. The mixed case of §7 does not appear to go
through in general. The troudblesome spot i{s establishing a version of Coroi-
lary 6.17.2, i.e. establishing the existence of Lagrange multipliers. The
mixed case of §8, though, does allow refinements of all the results.. The hypo-
thests "S{e) is strongly consistent,' f.e. ri(dom L)/ A ri{dom K) ¢ @, is
weakened by replacing ri(dom X) with dom K in the event K is polyhedral

and by replacing ri(dom L) with dom L in the event L is polyhedral. Then

_—_7 —
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everything goes through by appealing to the polyhedral case of §2 and the

mixed case of 4. |
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