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ABSTRACT

A theory of nonlinear global magnetohydrodynamic stability is

described. The formalism is an entirely new approach to the problem.

The concepts of space-time and generalized gauge symmetries of the

flow fields are invoked to find constants of the motion. The con-

stants correspond to charge operators in a theory of the current

algebra of the fields. The charges, in turn, are defined by integrals

Lhat are determined by the symmetries of the fields. The strengths

of the individual components of the currents determine the amount

of symmetry breaking in each physical situation. The constants of

the motion corresponding to the charge operator are used in conjunction

with the principle of least constraint to generate the Euler-Lagrange

equations corresponding to stable plasma motion. For every symmetry

there is a corresponding conserved integral or charge (Noether's

Theorem). The principle of least constraint states that if the total

erierQv of the flow field of a bounded plasma cell is varied, subject



to a set of constraint integrals, then the fewer the number of constraint

integrals applied, the more stable the resulting flow. The constraint

intcgrals which ge:ierate a linear (superposable) fie-d yield a set of

equations which describe force-free collinear flow. If linearity is

sacrificed, then fewer constraints can be used and many other types

of flow structures are possible.

The symmetries and corresponding flow structures are classified by

the Lie algebra of the currents and charges. The formalism leads to

uniqjeness theorems necessary to calculate the type of structure

present for a given set of boundary conditions. It is demonstrated

tha: a multiple integral variation problem can be related to the

principle of least constraint. The fundamental variational formula

for the appropriate tensor fields is developed. The group generators

for a particular space-time and gauge transformation are then used

tc demonstrate that the variational approdch of Woltjer and Wentzel

i;, a special case of the problem of Lagrange wit.. expanded integral

constraints.

Proof that the theory actually describes the lowest lying and

post stable energy states of the flow structures is given in a succeeding

paper in the for,, of experimental data which is a measure of the actual

magnetic fields trapped in the linear structures. Agreement with theory

is excellent.
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Section I - Introduction

In two previous papers (Wells and Norwood, 1969, and Wells, 197() hereafter

designated I and II respectively, a new method of calculating the structure of

naturally occurrin9 stable plasma cells was outlined. The method invokes a

variat ial principle in which the total energy of a closed (bounded) plasma

configuration (cell) is varied subject to a sec of constraint integrals on

the flow. The resulting Euler-Lagrange equations describe the magnetic and

flow fields in the plasma "bunch" or plasmoid. These differential equations

can be solved subject to appropriate boundary conditions to give a quantitative

desLi'iption of the structure of globally stable plasmoids; i.e., the stability

is calculated for the whole plasmoid (plasma cell) in its actual geometric

configuration and ambient plasma surroundings.

The low-lying cell energy states are analogous to the low-lying stable

states of an atom in which the lowest lying and most stable atomic configura-

tions correspond to minimum energy and the higher energy states correspond to

structures that are more easily perturbed and broken down when subjected to

external disturbances. The type of stable cell-state changes as one changes

the type and number of constraint integrals used in the variational calculation.

The total energy is used in making the calculations because nearly all

plasmoids (cells) are interacting and exchanging energy with their surroundings.

T.is means that the structures are non-conservaLive systems, and the usual

" U;,�c~ uT sLability calculation utilizing effective potentials have no meaning.

The method is interesting because the calculations include a consideration of

all nonlinear states, they are global and not local, they make no assumption

about the strength of coupling between various modes in the plasma and include

3



the dynamic ncnlinear terms in the equations of motion or equivalently in the

equations describing conservation of formal currents and charges in the plasma.

The principle of least constraint (discussed in II) is invoked in order

to find the various lowest lying cell energy states. The fewer the number of

constraints applied to the system in performing the variational calculation,

the more s'table the corresponding plasmoid. It was also shown in II that the

lowest lying states correspond, under certain co,didiouis, to superposable fic, s

and fields. All other states are non-superposable and nonlinear. Two of these

nonlinear states wi I interact to form new states, rather than simply superpose

to form a composite structure.

We will rederive the entire theory utilizing an approach that is more

rigorous and physically more transparent than the methods utilized in I and II.

The methods and formalisms of field theory will be used to derive an operator

formalism that will enable us to extend the concept oC the stable plasma states

to a method of calculating the growth of motions and currents from an arbitrary

initial plasma state.

There has been much discussion about the validity of this approach for

"calculating the stability of plasma confinement schemes. A second paper

fol;ows this one in which some of the predictions of the theory are verified

in detail in the laboratory.

In this second paper (Nolting, Jindra and Wells, 1972), we will describe

a plasma confinement scheme (TRISOPS) which utilizes all of these results to

guide the production of high temnperature, high density plasma with a long

[)article confinement time. Experiments will be described that compare the

structure of the iowest lying plasma L, :tZteF ith tht tk-oretically

predicted structure.
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Section II outlines a derivation of the formal charges and currents, dis-

cusses the principle of least constraint and illustrateý why the lowest lying

linear cell states have minimum "free energy" available to drive "instabilities".

Section III develops an operator formalism that can be used in a general

attack on the problem of the growth and dynamics of interacting plasmoids (cells).

Section IV applies the concept of broken symmetries to plasmoid interactions.

_otion. II Fcrmal Chirges -nd Currents

In I and II the lowest lying stable plasma cell states are derived. ihe

constants of the motion corresponding to space-time and gauge symmetries are

derived usina the Clebsch potentials and the concept of a "generalized gauge

transformation". In this section we consider all of the constants of the motion

corresponding to space-time and gauge symmetries. We discuss the expansions

uf Lite crttrsponding functionals and utilize them in a fundamental variational

formula to show thaL minimum constraint corresponds to minimum total energy.

We then show that minimum total energy corresponds to minimum "free energy"

available to drive instabilities in the case of the lowest lying linear states.

in II we dizcussed the fundamental importance of Noether's theorem in

relating the symmetry properties of the Lagrange density of the MHD fields to

the constants of the motion for clused plasma structures. It is necessary to

give a precise formulation of the basic problem of the calculus of variations

if further progress is to be made in understanding the global stability problem

for bounded plasma cells. We merely outline the necessary theorems. A rigorous

treatment of the problem is given by Rund (Rund, 1966).
i,

Given n real variables x , together with m independent real variables t',

(Latin and Greek indices run from 1 to n and 1 to m respc-•.tively) consider the
space Kn<m or nrw dimensions of x ,t. -eiotc su-sacc C in

n+rn m n-m

5 • m I



A set of n equations of the type

xi i (t_) (I)

defir,.s this subspace. It is assumed that we can form the derivatives

i

"or C We denote these derivatives as

x ( ):

S3ttAssume that G t denotes a fixed simply-connected domain in the m-dimensional

space of the t', bounded by a hypersurface iG t' Each point of this surface

corresponds to a set of values of the t. Consider a second set of
-i -i

equations of the type x = x (t") representing another subspace Cm of Rn+m.

We require that this second subspace coincide with Cm for thcse values of t'

which define the boundary -,Gt of G Then

Xi (t') = xi(t') = fi(t') for t'r jGt1

where the functions f (tW) are separately prescribed.

Consider a suitably differentiable function L:L(tL,xJ,xj) with m+n+mn

arguments. This function is defined as a function of t' over each subspace of

the type of Eq. (1).

We now form the integral

I(Cm) = L(t',x J,xJ )d(t), (2)
m G t

where def

d(t) a dt. ..... dtm.

6



The value of Eq. (2) depends on Cm, i.e., the choice of the functions defined

by Eq. (1) together with their derivatives. The fundamental problem is to find

the necessary and sufficient conditions the xi(t") must satisfy in order to

yield an extreme value of the integral (2).

In order to proceed with the proof another set of n equations of the type

i x (ti, u)

is considered. These represent a 1-parameter family of m-dimensional subspaces

C m(n) of R n+m Consider two neighboring subspaces C m(u ) and Cm (),where(u-uO) is

considered to be small, and quantities of order lu-u o2 are neglec-ed. Let P and

P' be points on Cm (u ) and Cm (u) respectively, corresponding to the same ta-values.

The components of the displacement PP' in Rn+m are given by (0,....0 ; ,• .......

ýx m), where

*xi (u.u •'xii + (3)=~ ~ ' (u-Uo L.uU=Uo 0 '

It can then easily be shown (Rund, 1966, p. 213) that

.x1= (t) t + x (4)
U=U

and
X i

If one defines the first variation of I (as given by (2)) as

I I(u) - IN) (u-uo) 1- 9
U=U 0

then i' (Ldn be shown that

"L * i + L •" t
I=- x + } d(t) + ( L t )d(t)

G t .x jG tdt'

7



This can te ,.Jritten as

'L d KL ,*d + * i d(t,! 1id t ' ,x i

GtX dt 'k, IG dtI

using Eo (4).

The first variation takes the final form,

d
7L dt •L xl xd(t) + xd '(L • , j i

Gt! 'x dt G t dt 'x

+ L d(t) (6)
"X )

Equations (5) and (6) are the fundamental variational formulas for multiple

integrals. The integrand of the second integral is formally a divergence.

It is now easily shown from Eq. (6) that cfn .y.re',.. .u, the integral defined by

Eq. (2) is uniquely determined by the solutions of

d n L L

dt -x k

where

k 1........ n.

This sEt of n equations reduces to the Euler-Lagrange equations for singlc

integrals when m=l. They are the Euler-Lagrange equations for multiple integrals.

W&itten out in full they take the form

L x +- L x + L - ;L+ i+ k 0 (7)x x t: t x x , ' t .x x

8



It can be shown (Rund, 1966) how certain invariance properties of multiple

integrals imply that various quantities are constant along an extremal. These

results can be formulated in terms of Noether's Theorem. The so-called con-

servation laws then easily follow. Application of Noether's theorem to MHD

global stability is discussed by Wells in II (Wells, 1970). Here we utilize the

formalism of the fundamental symmetry transformations to directly tie together

Noether's theorem and the principle of least constraint.

Consider an r-parameter Lie group operating on the variables (t",x 1 ). A

typical element of the group is the transformation

-i (tý',x ), xi (t "x 1, )t (8)

where (s (,t=l. .... ,r) represent the r paramieters of the group. We assume

that the identity transformation of the group is given for , = 0. The

infinitesimal transformations corresponding to the finite transformations

given by Eq. (8) are

"t (ss' xi r (summation over s), (9)

where

ttx(t-"x 3  V"x "x ' t) i ' •t'

(S) ' , (s)
" At=O •t=O

Corresponding to the infinitesimal increments given by Eq. (9) we have,

from EQ. (4),

* 1 i "i -iX = X - X "t s)• (summation overs

.,ihere
i i

(s) ) (summation over s).

,S) ) X (s)

9



The variations (9) induce a variation A1 of the fundamental integral (2)

which we evaluate according to (5). This gives

A -d [A nfs)sd(t) + L:-(s)+ A ni(s) sd(t). (10)
" dt dt

(summation over s)

We now require that this fundamental integral be invariant under (9) up to

an'Tndependent integral". This means that L transforms under (9) according to

L t ,x-', xJ )d )= {L( t ,x , ) + }d(t),
Gt t

where W(t,xxJ, s) is the integrand of an independent integral. We must

now examine carefully the meaning of A. because much of what follows depends

on this concept.
A thorougn discussion of the coe:ept of an independent integral is given

by Rund (Rund, 1966). For our purposes it is merely necessary to state that

the integral of a divergence depends solely on the values of its argument

functions on the boundary Gt of the domain G over which we perform thet t

integration. Divergences are not the only integrands which have this property.

There are a large class of integrands giving rise to this type of independence.

These dre referred to as "independent integrals". Integrands which are

divergences provide a satisfactory and relatively simple theory which is

adequate for our purposes. This approach was extensively developed by Weyl

(Weyl, 193E). There is another special sub-class, furnished by certain

determinants, which yield a theory for multiple integral problems. This work

is conmonly associated with Carathe'odory (Caratheodory, 1935). There is a more

general theory discussed and developed by Rund (Rund, 1966, p. 250) that

in ciudes the theories of Weyl and Caratheodory as special cases. This theory



is interesting because it classifies the independent integrals by expressing

their integrands as homogeneous polynomials. This is extremely useful in

treating MHD stability problems for the case of broken symmetries, since, as it

will be shown below, it is necessary to expand the integrands of the

constraint integrals in order to treat these problems.

In order to greatly simplify the discussion of the general treatment of

symmetry transformations of the type given in (9), we assume now that the func-

tions : are divergences, i.e., there exist m functions s) (t', ,xJ,xj) such that

d

((11

where

def. 0ýýs (s +.
dt A•t xi

and
def.
• dxI

X
"dt,

If depends on t' only, d--- and -- •-- have the same meaning.
dt I t

We also assume that is linear in the parameters a S;

=is) (tI'xJ'J), (summation over s)
(S)$

Then we obtair

.I = ý d(t) • (12)
Gt

Comparison with(lO) yields

d . L i- L&s) + I. s - s d(t)
G t , .dr J' ;7t 'x I S) (S

(summation over s)

1I



By hypothesis, this equation is valid for any regior; Ut. The N s are the r

parameters of an r-parameter Lie group dnd thereforc must be independent. We have

id dt- i d i -

'(s)

Combining this with Eq. (11), we have, finally,

,I._ d L• ) +1 n(l (s l r 3)

1i 1 (s) - -T . S)- {(SW 'dt• x 'I xldtX , (jx.
(summation over s)

In II we have discussed the concept of generalized gauge symmetries as

developed by Calkin. We have related the corresponding constants of the motion

to the linear superposaLl•c states of closed plasma structures. We will now

so1ow that Eq. (13) ties together the concepts of Noether's theorem, least

coiltraint, and symmetry breaking (i.e., expansions of (s in complete sets

of functions of the spatial coordinates).

From Eq. (11) we note that there exists a system of m properly behaved

functions ; = ;(t,xJ) obeying the divergence equation. In order to simplify

the discussion and make the formalism directly comparable to that developed in

I1, we now introduce the following change of variables

t• -J(xl 2,3 t),

where t -.s the time. We assume that there are N dependent functions ,a of these

independent variables, and these, in turn, replace the functions xi (t) used

previously
i ) a x

x (tL . a(x,), (a,b, 1. , ... 9N).

A detailed discussion of Noether's theorem and related problems in this notation

is given by Hill (Hill, 1951). The reader is referred to this paper for a

rigorous treatment of the conservation equ-.-ions which we now develop.

12



Considering transformations that arise continuously from the identity'

transformation, it is sufficient to consider the infinitesimal transfjrmations

.k k k

and (14)

' (x') = ý,(x) + sy(x).

The finite transformations are found by iteration. It is then easily shown

(Hill, 1951, p. 258) that one can associate a differential conservation equation

with each infinitesimal symmetry transformation in the form

d A L L+ k LL k

xk I[, 6x£ x + L , + 0 = . (15)
dxj

2'') k

Then we can write

+ :S= 0, (16)

where -, the "formal charge density" associated with our symmet'y transformation

(14) is

= L 'L. _ ; • L x , L , •
I- -. I --.v +-I, (17)

A. Iv - -

- t

and the "current density" S is

S .A - _ t + ( L .x AL:) •
,t- ,~~ 'x~v,__ + -. - + (18)

Fhen , and the three components of S can be associated with the ms functions

;(s) of Eq. (11). Integrating over a closed volume , with surface and using

Gauss's theorem, we have

13



' d(x) :- Sd).

Calkin has shown (Calkin, 1963 , Wells, 1970) o-.at one can write a

Lagrange density for an MHD fluid in the form

L = K oE -2 + P.E + -, -p 2d,

0o Y~ 0t 2 )t

v.it-e E is the electric field intensity, 1,o and Ko are the permeability and

permittivity of the fluid, v is the velocity of the certer of mass of a fluid

element, . is the mass density, p is the scalar pressure, x, n, are the

Clehsch potentials defined by

v + B x P v x +

and P is - "polarization" vector. The vector P is in reality a type of

"vector potential" that defines the current density according to

P is d e o 'x(F'xv) + (v.P)-', = v.P

and is the electric charge density.

Then P is defined only up to a generalized gauge tra-sformation of the form

P P' P , where { + vx(.xv) 0 and v 0

The last two eqjation imply that is frozen into the fluid. In II it is

shown that the three vector fields that move with the fluid are B, i and

where
def.

.x(v BxP).

14



Then one can make the following infinitesimal transformations:

(I) 0 The resulting finite transformations are just the canonical

transformations of the fields.

P P' = P + :qB

This transformation leads to conservation of the integral
.- + -*

JA'BdT.

(III) "=•

r P' P + ,sz

This leads to conservation of the integral vdi.

(IV) .

This leads to conservation of the integral A-vd,.

For given symmetry transformations arising continuously from the ilentity

we can write the conservation law (16). The corresponding density ý' and .'irrent

S are found from (17) and (18) respectively. The appropriate conserved integrals

(constants of the motion) are then found by the application of vector

identities. In this way the conserved integrals in (II), (III), and (IV) above

nave been found (see II).

.Ce now consider one of these transformations in more detail in order to

relate our fundamental Eq. (13) to the principle of least constraint and the

concept of symmetry breaking.

Following Calkin (Calkin, 1961, p. 88) we consider again the transformation

P P, + - B (19)

15



The lagrangian L transforms into L', where

. . .. I x ') L (• ' : x ') , • -

To show that Eq. (19) leaves the action principle invariant, we write (see

Calkin, 1961, p. 88)

- ,•EB = t(v•JxA + DA vx)

in the form

" t

-- +

After considerable algebra, we find

Lx' L( ' x') + [•t- (A-B) + v.(ExA + PB)]L ( ', ix' ' ) : ( ', 2x ý

Since the Lagrangian does not contain derivatives of the transformed variable

P, we have from Eq. (15),

1-- (A-B)= f- {',-[(ExA) + .B]) • (20)

If n is the unit rurmal to a boundary surface Y, then

( .6)}d, +I [v-(EA + pB)]dT

I -•. -,. -4. *

(A.• (E,,A-n + ,Bnd
,t f {•-(-B)}dT + •-¢~~•(21)

where, for the transformation (II) above, we see that

-•(A.B) and S = - ExA + ýB}.

16



Wt see that ,, plays the role of a "formal charge density" and S plays

the role of a "formal current density." Thus one can discuss the current

algebra of global stability if one can rr2ate these formal charges and currents

to the equilibrium and stability of the plasma (magnetofluid) inside the

boundary surface E of Eq. (21). For nested surfaces in an infinitely con-

ducting fluid, the surface integral goes to zero, since v, B, j and A are all

assumed to lie in the surfaces (see discussion of boundary conditions in II)

and rA-BdT is a constant of the motion (see I, page 27). If both sides of

Eq. (20) are muttiplied by a time independent set of functions of the space

coordinates (see I, page 32) arranged in a convergent series, then a-( where

def.
f={f(xk), }.

Then

i - f(xk) (A-B)d, (22)4 id ' t i2

f•x")ff xA)Bd: -[(E×A) + oB]ud - jfxIAxA+B•d

We assume that A, B, and v lie on nested surfaces of constant c, p, and •.

Thus .i, vp, and 7: are assumed normal to those surfaces. Since

= v- -B ..
Dt

,A must be collinear with v¢ if surfaces of constant -are to [e coincident

with surfaces of constant c, p, A, B and v and if the gauge symmetry is exact

(not broken). After equilibrium is achieved, ý-- goes to zero. The requirement

17



that 3 A be normal to the surfaces of constant A is relaxed in the case of
I~t

broken symmetries since then v-B is no longer normal to the nested surfaces

(there is leakage of magnetic field and mass through the surface of the plasma

s ;ructure).

Returning row to Eq. (13) and Noether's theorem, we consider a special

group of transformations defined by Eq. (9). If we make just the gauge trans-

formations corresponding to = , we have from Eqs. (21) and (22)

d 1a f(xk)[(E-A) + ýB].nd . (23)

If f(xk) is a polynomial with constant term equal to unity, then one term

of the integrand in Eq. (23) is (A.B). If only this single term in the integrand

is retained, we will say that the gauge symmetry corresponding to 61 = ýaI is exact.

The right hand terms in (23) are then zero and o is a constant of the motion.

If other terms in f(x k) are included in the expansion of the integrand, we will

say that the symmetry is broken. As we allow more terms in the expansion of

fkfjj,_weput more constraints on the system. The more terms other than the

constant term that are included, the more badly broken the symmetry. The right

hand terms in Eq. (23) are no longer zero but determine the coefficients in the

expansion in the following way.

Let I =

then

Stfxk)(A'B)Ldd -, f(xk){ExA'n + ýB-n}d•.

and k
f(x

S![l + An()}*(A.B1dT = n(t), wheref( ) is a polynomial in x

and it) correspcnds to th. initial value of the surface integral.

18



Now

d = d-t Fdt -. Fv.ndl
dt

for convective flow and any space-time function F (Wells and Norwood 1969, p. 27).

Therefore

12- [{, + --- A (¢)hA-B}]dT= d [{ + --- A (,)}A.B}]dT

- i [If + --- A n()}{A.B}]v-ndE.

Therefore

[I + ---A (ý)H{A.B]dT I(t) [l + --- A (¢)}{A.B1]v-ndZ,dti n n

or

[(Mn(;))(A.B)]dT : n(t) - n(f)(A.B)]vrdE.

This gives

M (;)(A.B)d: = - (EA) + B+ (A.B)v}-ndT•t (24)

We can solve Eq. (24) -for <, Mn%(A.B)d-. The right hand side depends on

initial and boundary conditions.

Knowing M (-n)A.Bd1 for a give tt, we can calculate a corresponding >s(¢.)

(Wells and Norwood 1969, p. 44) or {Ln(;), >(¢), 3f¢, ) and can then

insert them into Eqs. A(30) through A(33) of Wells and Norwood to find AB, z j,

Pv, K and . for a given nt. This determines , etc., for a given set of

initial and boundary conditions and hence gives the explicit growth-rates toward

stability of the fields for given initial conditions, boundary conditions, and

degree of symmetry-breaking. The method Is independent of the conventional

linearization restrictions and seems quite tractable for a numerical study.
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It is convenient to define M(o) in some applications as a polynomial with

constant term unity. In other applications M(f) must be expanded in some

convenient complete set of functions of the electric scalar potential (see II,

p. 648).

If one does not want to perform the iteration calculation indicated by

Eq. (24) but, instead, wants to calculate the final cell configurations

that will result for a given degree of symmetry breaking, then a modified

constant of the motion must be found. In this case

def
S= Mn(•)c ,

Mn o

where M (n) is an appropriate complete set of functions of the electric potential,

Then we obtain

-= - •-- Mn ý=- -2 Mn(ý){V.[(EA) + cB]}dT.

This gives : dq = - (ý)-[(ExA) + ýB]dT - V (M[E×A) + 0>

j vMn(,p)[(ExA)' +fpelT I [(ExA) +-Bjn%

- VJ )[EA)+-r ~-

One must now assume that during the time that the cell decays to its final
-.. -*

lowest energy state, the time average fields (Ex×) and .B remain on the nested

surfaces. Then for the boundary surface,

M(¢) = {Mn(¢)} : a fixed constant.

Thus
Sd :-vMn(0).[(ExA) + ýB]di - {M [(ERA) + cB]}.,dl (25)

nt zj: 
I

The first term on the right hand side drops out because ?M (f) is normal to
n

the nested surfaces. The second term on the right is zero because (E×A) and -B

lie on the surfaces.
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Now consider a different group of transformations of the type defined by

Eq. (9) which include not only the gauge transformation corresponding to, say,

= B but also a simultaneous transformation of the time. Then by Eq. (9)

tt =t and :xP = TP 11 (summation over v and n) (26)

where

-P = Pt = t + and x = x + n = P + UB.

One must examine the meaning of this transformation. Consider the change in a

function F(x) under an infinitesimal transformation of the form

X' = f (x x; a ar), i 1, , n, (Hammermesh, p. 296).11 ni r

-F n ,F r
dF u. (x),a,dF = ' -- dxi i ,

il Xi i=l xi Z=I

where

a. (x) a ak"

a=O

Then
r n r

dF = .a ( a (x) - ) F = a•x .

The operators n

x. i ai (x) Wi. ,xi

are the group generators.

In the particular case of the group described by Eq. (26), one has

dP --
,t
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We have, therefore,

'P = l ) -

Jne can now easily anticipate from this relationship, derived from the

propErties of the group generators, the form of the Euler-Lagrange equations

of the corresponding flow.

For a nonmagnetized medium moving with a velocity v which is small compared

with the velocity of light

"xB =-P + vJx(Pxv) + V(e-P).

Then

-xB - [7x(PxV) + V(7.P)].

44

The requirement on the group generators is that -L-be parallel to _B, _z, and V_.

Then

'P + 1r

- . {2'xB - x =x(Pxv) +

'P [;.xB -~x(Pxv) + v(v.P)].t

where s, B, and are scalar constants.

These eqcations are trivially satisfied for a force-free collinear flow

on cloqed nested surfaces. This is the flow described by the Euler-Lagrange

equations resulting from a variation of the total energy of a closed plasma

volume subject to the constants of the motion corresponding to these three symmetries.
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The coefficients of the group generators then become

t = , and , :

=0 11=

We now write Eq. (13) in the form

dT n(si _ dt (s) + ý(s) (summation over (s)), (27)
sdt), -'s dt(s

where

L •" .L i
'( ) = - L V s - £• '(

i

Frorm the definition of we have

-xi A(. - (summation over s).I -i '(S) '(s)

It is now convenient to define a Hamiltonian tensor (Rund, 1966, p. 240) in

the form

H' (t ,xp) = - f L(t',x (txh + , i h

This implies

(s) , (s) - 'T (s)
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From the transforyations Eq. (26) and the definition of r~s) given on page 9

above -

P P - t
n = C -, - P t

or

P t~-n., TI - t tv

and
r-= 1 -

We then obtain

(s) H t (s) s) (Summation over s)
e )= Ht(s •IL (swhich reduces to

(s) tt

since L does not contain terms in P . We have assumed that -7 6v • B6a

The left-hand side of Eq. (27) is zero on any extremal subspace (i.e.,

the Euler-Lagrange equations are obeyed). Thus, it takes the form

d 4 B
f d I + =0.- -{Hj + }=O

dt

Utilizing the Lagrange density given above, the Hamiltonian density, H,

is proportional to the total energy per unit volume (Rund, 1966, page 300) of the

fluid; i.e., we have

H 4 =- where t= t.

We may write w

-d
dt

where def.
= energy density of the plasmoid

- + = f(t 1 ,t. ,t-) = f(x,y,z)

I- + I}dt = constant

- E + ;( dT = constant (summation over s)
(S)

def.
E the total energy of the closed plasma structure

d: - E + constant (summation over s)

(s) f(f)di = E + constant.
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From the discussion above, it follows that the smaller the number of terms in-

cluded in f(;), the polynomial expansion of the constraint integrand, the lower

the total energy of the closed plasma structure under consideration.

The arguments pre-ented above apply specifically to the

generalized gauge symme~ries. For the space-time symmetries, the Lagrange

density is invariant. Thus the independent integrals Is)are identically zero for

there transformations. The constants of the motion corresponding to the latter

symmetries are also independent integrals, however, and can be written as

divergences in the sense of Eq. (15). If we perform the space-time trans-

formations, Eq. (27) can be shown (Rund, 1966, p. 296 and 297) to take the

form

dH"

dt

Any other independent integral of the form

=0
(is) / dt

can be added to dH•
-0

dt-

Since thie constants of the motion corresponding to the space-time symmetries

are of thil, form, tne relationship between the total energy and the independent

integrals is of the same type for these symmetries and the generalized gauge

synnetries discussed above. We have here an alternate proof of the principle

of least constraint (see II, page 663) if the total energy of the structure

can be directly related to the free energy available to drive various types of
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instabilities. This relationship must be established independently for each

type of plasma structure formed for the various possible combinations of con-

straint integrals (see I, page 45)_ In I and II we have described the force-

free,collinear str'icture as a very low energy and very stable structure. This

structure correspo,,ds to exact gauge symmetry and totally broken space-time

symmetry, i.e. the constants of the motions are

and

Linear momentum, angular momentum and total energy are not conserved. The

resulting Euler-Lagrange equations are found to be

and

where - and .- are scalar constants.

If we write Euler's equation for a steady state fluid in the form
-4 -*

0 = (p + 1 •V") + jxB - r(Zxv),

the force-free collinear equilibrium equation becomes

( - 7(p + I .'v.). (28)

It can be shown (see Shercliff,1965, p. 187) that the complete thermo-

dynamic energy equation can be written
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D V" -•.i• - E.j - div Q - div o + viscous terms~dt = O,
Dt (2

where E.ju' is the rate at which electrodynamic energy is supplied to any

instabilities growing in the structure, f divQd, is the heat flux available for

driving instabilit. [, fdiv p• dT is the flow work available for driving instabil-

ities and the viscous term is the energy available for recistive mode instabilities.

From Eq. (28) and the relation

U =3

where U is the internal energy of the fluid, we have

:(2 U + 1 ,v') = 0 (29)

for the force-free collinear structure. But the rate of change of the energy

available to drive all the instabilities (the free energy for our plasma model)

is

D (U + -v (U + )+ v,.C.( +dt L2- t T V* 2 -:)

For a steady state force-free collinear structure

* +2 U+ 2 0.

This implies

D c2 V' - . .
U+. 2-- ) v,7(UL+. V = 0,

where we have used Eq. (29). We see that for this model, the lowest lying

linear plasnia state has no free energy available to drive instabilities.

Rewriting Eq. (27) in the form

d - ". I'

dt- '(s) - (S) = 0
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•or an extremal subspace, we see that the exact form that the integrands will

take depends not only on the amount of symmetry breaking present in a given

physical situation, but also on the particular representation of the independent

vector fields that is utilized in writing the Lagrange density and making the Lie

group of transform ions represented by Eqs.(9). The number of terms retained in

the expansion f(ý) is determined by how badly the assumption underlying the

symmetry is violated. For example, if there is some ohmic resistance present

in the fluid, then the lines of magnetic induction will slip slowly through

the fluid and the symmetry represented by the transformation 6t = c will be

weakly broken. This amount of line slip must be represented by the terms re-

tained in,,A)A-Bd'. If there is no slip, i.e., an ideal fluid, the symmetry is

exact and f(:) = 1, etc. If one uses a special representation of the fields,

for example, te representation for azimuthally symmetric fields described in

11, (Wells, 1970, p. 653), then the group parameters as in Eqs. (9) will be

different and we have an entirely different representation of the same Lie

group. This wil1, in turn, mean that the integrands in the constraints will

ch~nge and there will not be a one to one correspondence in the integrands cor-

responding to the same degree of symmetry breaking. This is why we have written

in !1, r, age 5, Eq. (32),

I T(-- P)'da, 'A-rd
21

1.e, •.•d replaces T( P)'d, but the mapping is not one to one. The resulting

Euler-Lagrange equations are the same, however, (compare Eq. (38) page 656 in 11

wit,' Eq. (14), page 29 of I). This must be so since the two group representa-

tions Kave the same group algebra. It is interesting to note that the expansion

utilized by Woltjer for azimuthally symmetric systems, i.e. a; (J)n, meets
n=0

our requirement that Jf(,) = n6 an(,,p)n) is normal to the nested surfaces.
n=0
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We have shown that Eq. (27) can be written in the form

+ 1(s) •i = constant (summation over s) (30)

where • is the total enerqy density and. t)is the integrand of an independent

integral represent ' the sum of the constraints. These integrands have been

assumed to be linear in the parameters, . Indeed, for our specil problem,

we found thiat the integrands ;(S) took the special form

( ,A.), - (9.v) and T(A4v)

where d, and are proportional to the group parameters iB, Uz and

If Eq. (27) is considered to represent z relationship between the total

energy of a closed plasma configuration and the appropriate constraints on the

"flow, then one can vary the integrands and replace the coefficients - etc.,

:;tn a new set of parameters, the Lagrange multipliers. These will now be

uroportional to the original group parameters. The old parameters -,s and the

fir,,t L-,e group of transformations transform the arbitrary vector fields x , or

equivalently ., into a subspace which represents equilibrium flow, i.e., the

£uler-Laqrange equations are satisfied and the left hand side of Eq. (27) is

identicdllY zero. If we write the equation for this second variation, Eq. (30)

takes the for-•,
- d, - , (d, 0 (summation over s) (31)

For t'ie •-as,. of the generalized gauge symmetries, this equation is in the form

of Lq. (2) of II, i.e.

4
[ + .. 'in 'Iin = 0 (32)

i=] n=o
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For the case of space time symmetrie:, 'Ks) is zero, i.e., the Lagrange density

is invariat~t with respect to the space time transformations (Calkin, 1961).

Thus, if constants of the motion corresponding to space time symmetries are

to be incorporated into the variations, they must be added separately to Eq.

(32). As we obse, ed above, however, this does not affect any of the present

arguments.

Equation (31) is a special case of "the problem of Lagrange" (Rund, 1966,

P. 323). In this problem,the curves which afford extreme values to the funda--

mental integral are required to satisfy certain subsidiary conditions. These

may be in terms of first order differential equations or, in our case, constraint

integrals.

The Lagrange multipliers _s)are a new set of parameters corresponding to

a second Lie group of transformations that take the equilibrium vector fields

of the first variation and transform them into the special subset of fields

describing the equilibria corresponding to the constrained fields. These may

or may not be relatively stable, depending on the number of constraints

employed. The variational calculation of Woltjer and Chandrasekhar (See I and

II) is simply a method of incorporating the Lie group of transformations on

P and the time into another second group of transformations of the equilibrium

fields into constrained equilibrium fields.

It is interesting to note that the reason each integrand in the con-

straints n.',t be expanded in an analytic series if one is to recover all

possible equilibria is now quite clear. We have already determined all possible

equilibria when we obtained the fundamental variational formulas, i.e. Eq. (6)

and (7). When we seek constants of the motion by performing the Lie group of

transformations given by Eq. (9), we are projecting out a subgroup of constrained
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equilibria. When we perform the second group of transformations given by Eqs.

(31) and (32), we make a second projection to a manifold corresponding to a

further specialization of constraints. When we again demand all solutions of

Eqs. (6) and (7), we must reverse the whole projection process by complete expan-

sions of our constr. nt integrals. This reverse process is of practical interest

only for fields close to minimum energy when one is studying the rate of change

of the stable structure for weakly broken symmetries. We will illustrate these

concepts in detail in Section IV.

We should note here that if one performs the second variation to solve our

problem of Lagrange using many terms in an expansion of one or more of the

cofistants of the motion (independent integrals) corresponding to the gauge

symmetries, combined with a constant of the motion corresponding to say one

exact space-time symmetry, the resulting energy may be higher than that resulting

frori :rther situation in which all symmetries of whatever type are nearly exact.

In this sense, the energy is not a monotonically decreasing function of the

number of classes of constraints employed.

The details of these transformations for the case of the exact gauge

symmetries is most easily developed in terms of the "formal charge density"

defined by Eq. (17) and the corresponding formal charge, Q.

In a field-theoretical formalism, a formal charge Q is defined as the

space integral of the zeroth component of a local four-vector current,

4,(Xo) dV 3jo(x). (33)

These Iljar.tities appear in discussions of symmetries and broken symmetries

in quanturl field theory and are used in the "current-algebraic" approach to

particle theories.
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In quantum field theory, relations of the type given by Eq. (22) have

rather troublesome convergence properties. There are other major difficulties

in quantum theory which do not arise here as long as the Lagrangian and the

fields remain unquantized.

In order to m. ý clear the relationship of Eq. (22) to the formal

charges defined in Eq. (33), we note that for our purposes, j 0 (x) in Eq. (32)

is defined by Eq. (22). Then Q, the formal charge operator, is given by

";'[Jo ]dV3 where j '. In the usual formalism, Q is actually time independent.

In our case we have already proved that

-tad(x) = - [Q] = 0. (34)

Section III. The Lowest Lying Plasmoid States and the Charge Operator for

Linear Fields

In Section II we derived the formal charge [Q], i.e., Eq. (34). [Q] can be

used to perform a variational calculation of the fCow equilibrium solutions for

the fluid (see I). This variational calculation is equivalent to a Lie group

of transformations that take the vector fields describing a general MHD flow

field into a vector subspace (manifold) which describes linear (superposable)

equilibrium flows.

if one defines a complex vector field

u u+iB

then the transformation is of the form;

f(.. -,Q).
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i'"i a vector subspace describing equilibrium solutions that corre-

Spond to force-free, collinear flow. This subspace is defined by an eigenvalue

equation of the form

v 7 B> i<]B> (35)

where
-- def,I> - (i __) B,

is a constant (see I), 6 is a scalar defined below, and

" -23 + iM14

"2 - M3 1 + iM2 4

"-3 - 12 + iM34.

The M are defined in terms of the Maxwell stress tensor.

The electromagnetic force terms are introduced formally in the usual way

as

- f iJ- ,
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where

f 0 B3  -B2  -E

-B3 0 B -E2

B2 -B1 0 -E3

E1  E2  E3  0

if 2 3  0 0 0 0 + if31 0 0 i 0

0 0-i 0 0 0 0 0

o i 0 0 -i 0 0 0

0 0 0 0 0 0 0 0

+ if]2 0 -i 0 0 + if4 1  0 0 0 +i

i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 +i 0 0 0

+ i' 0 0 0 0 +if1 3  0 0 0 0

0 0 0 +i1  0 0 0 0

0 0 0 0 0 00 +i

0 +i 0 0 0 0 +i 0

J is the electromagnetic four current.
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The equation for f can be written

f if 2 3  + if 3 M + if'M

+ if4I M + if 4 2  + if 4 3 M43

or

[f ]=½ [[if"V M ].

The matrices M are the Hermitian and anti-Hermitian generators of

Lorentz transformations (Kursunoglu, 1962, page 50). They are introduced

here because they will be used later in a group theoretical discussion of the

formal charge operators.

Maxwell's equations take the form,

-.f

X .f

if f jf
+ + 0.

X ,X X

Equation (35) is equivalent to the equations derived in I and II for

describing the fields for exact gauge symmetries, i.e.,
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VXv v vxB KB

and *= ±+B

Sv =0 v.B 0

where r. and ý. are -onstants.

One notes that

A1  0 0 0 1

0 0 i 0

0-i 0 0

1 0 0 0

A2  0 0-i 0'

0 0 0 1

i 0 0 0

0 1 0 0

A 3 0 i 0 0

-i 0 0 0

0 101 3

0 0 1 0o

and

;4 = 1 0 0 0

0 1 0 0

0 0 1 0

We may now write 0 0 0 1

I . +222 + .333 + A4 a4
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One can now differentiate between the formal charge, which, in this case,

explicitly di plays the generalized gauge symmetry (see II) for a conserved

current, and a "differential charge operator." The formal charge operates

through a variatic'-al transformation to define a Lie group of transformations

of the fields related to a definite symmetry. The "charge operator* is related

in this case to the differential operator that defines the vector subspace

corresponding to the transformation.

We may wr Le

which implies

S(36)

'n addition to the force-free conditions, the linear superposable fields are

collinear (see II).

This means that

u

where

(a scalar),

so that we may write the defining equation for :r- as

0 ,- B.

For the special case of collin.ear fields,

-- B'. (37)
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The charge operator must produce both of the transformations, Eqs. (36) and

ý37). We wi ' also require that our charge operator conform to most of the

other restrictions usually put onto similar operators in quantum field theory.

In most casecý thc , requirements will not have the same physical significance

that they have in field theory since our theory is classical. We will,

nevertheless, find the analogy very useful in our later discussion of symmetry

breaking given in Section IV.

The differential operator G corresponding to the formal charge operator

Q is
[G,] - -i ,

Then for

def.
iB:. 0 0 B1

B2

B3

0

G iB, = wB,. (38)

( operates in the vector space defined by JB- since the formal charge Q

trancfor'i, the ,pace defined by all solutions of the equilibrium equation, i.e.

to the special subspace corresponding to force-free collinear flow, the

B. We have written 'B-. as a three-vector in order to retain the M., (Lorentz

grouo generator--,. The B- would more properly be written in covariant form.

Since this would only make the formalism more obscure, we sacrifice the elegant co-

variant formalism for the sake of clarification of the physical principles involved.
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Section IV Broken Syminetrie': and Plasmoid Interactions (An Example)

One now proceeds to apply the complex operator description given by Eq. (38)

to the calculation of the fields of two interacting plasmoids.

Equation (38) describes the structure of a force-free collinear plasmoid.

Two of these plasmoid will superpose linearly if a1 = a2 and I = :2 for the two

structures. If I 2 or <I f <2 or both inequalities hold, any interaction of

the two piasmoids will be nonlinear and a detailed treatment of the process

would involve expansion of all the Lagrange multipliers and a machine calculation

of the resulting interaction (Wells and Norwood 1969). This will be treated in

detail in a later paper. We are content here with an approximate treatment which

we will apply directly to a problem of immediate interest, i.e., the interaction

of two plasma vortex structures interacting at the center of a magnetic mirror.

The experiment is described in detail in paper II following and in (Wells

and Norwood 19b9). Two plasma vortex structures are fired at each other inside

a magnetic mirror by conical theta-pinch guns placed inside the mirror system

as shown in Fig. I of paper II. It has been demonstrated elsewhere (Wells and

Norwood 1969) that one structure is corotational and the other countrarotational.

This means in the equation expressing collinearity

V = B

both structures do not have the same sign of ý, which implies that the interaction

will be nonlinear. We assume that <2 since it can be shown that - - •pc

where p is the plasma frequency and c the speed of light; and the plasma

parameters are the same at each end of the machine.
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Thus one sees that although the vector fields describing a force-free

collinear stri2ture corresponding to unbroken generalized gauge symmetries

(described in II) are linear fields, and the free noninteracting structure is

built up from those fields, supplementary conditions on interacting structures

produces a nonlinea, interaction.

The structures meeting ct the center of the mirror are not low • structures

even thcu.h they are force-free. (See discussion in Appendix II.) The inter-

actino inertial flows an! magnetic fields build up a magnetic barrier or %',ll

(Wells 1968) which isolates the twu structures for times close to zero and thus

justifies an approach which might be termed a "quasi-free structure" approach.

One assumes that the linear theory that describes a free structure applies for

times close to zero but that the initial interaction produces a small Ircaking

of the generalized gauge symmetries. This means that .,, which is shown to be a

constant if the gtuqe symmetries are not broken (see I and II), is now a

function of the spatial coordinates.

W,,e have show-,n,

0

Tnt numerator :ind denominator go to zero at the same rate as = (•o,-)"

If t-e gauge symmetries are broken, then one can expand the constraint

inteqrals in a complete set of functions of the space coordinates, say Mn(:)
n

and N (:) see Wells and Norwood, 1969, p. 43). This gives

. n.. .. . f(x,y,z) n

I- (.n N )
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We will assume that experimental observation indicates that initially the

symmetry breaking is small. Then K Z f, i.e., f is a slowly varying function of

the spacial cnordinates. In order to proceed with the calculation of the initial

decay rate of the interacting structures, it is necessary to show that G in

Eq. (38) is the time development operator for the "quasi-free" structures.

In the quantL -mechanical description of an energy eigenstate juE(t)M , one

has

Hlu (t , j- (t

where

E = 11.

We then may writo

!uE(t)-. = e-i-(t-to)luE(to).

= e - E t t / , lu E ( t o ) >

which na' be put into the form

1UE(t)-• = e ill(t-t°)/f•l U (to . (39)

This defines

U(t't 0  e- iH(t-to)/h

where U(t,t 0 ) is the unitary time development operator for the eigenstates IuE(to0).

In a forcu-free collinear structure, both the velocity and magnetic field

are described by differential equations of the form (Bjorgum and Godal 1952).

VxC =C = 0

7C + C = 0

If the medium has viscous losses, the equilibrium equation for the structure

can be written

G -" u62 U_:2- ux.xu- F -! vp - V •-+ k~u

where F = jxB = 0 (force-free) and - v viscosity coefficient
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From these equations one has

+ ()j = 0

which may be sulved by the method of separation of variables

L =ft'xy)

to give

U = e-t v(x,yz).

This implies that

S= e-''t (to)>, (40)

but from Eq. (38)

-• B• - i,: iB,

so that in complex operator space

IB(t)> =o B(to0)>, (41)

where Equations (37) and (40) were used. Comparison of Eqs. (39) and

(41) indicates that

U(t,to) p exp (0J•) t t ).

The value of can be calculated independently and is a function of the

plasma temperature and density. U(t,t ) is a hermitian time development operator

that is generated by (,-G:). Thus one has proved in this approximation that G.'

is the generator of the time development operator for the decaying structures.

Infinitesimal unitary trarsformations may be written

U= 1 + 0OG,

where is infinitesimal and 0G is Hermitian.
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An operator changes under an infinitesimal unitary transformation in the

following way:

'I( + i~O GY.(l - icoG ' [ 0 : to first order in )

The change in tI-e form of an operator is

whe-~e
de f
F - -OG'

Thus the time development of a system may be visualized as a sequence of

infinitesimal unitary transfo.-mations with the generator F. F is the time

devel cpment operator.

If, in pa~rticular, 0 G G. and G,' is independent of time, then (taking to=0),

U exp(,,.G-)

and

U- expL.-'G)k

Tne operators G and U commute and therefore

F =U(.. G)U-1 :.J-G.

Then defining

def
A. (the time development operator if the sym-metries aref

eOný one can ,.,rite

dt zL.,A

t=U

ýe note that

Rei *. i

43



which implies

ivc 2 (A7)•f-:-"_ iVK 'V f-

We define
def_.,'v 2 f-. • _ - i

then,

dt- { 22f-2.1 = V12. (42)

t=O

Equation (42) allows a simple example of how the operator algebra can be

used to roughly approximate the effects of the interaction on the structure

decay rate.

One assumes that d-A---f remains constant for times of the order of andt It.O

e-folding time, then if one defines T as the e-folding time for the structure

dt

:Ai t)~ - .-

..A2 (t) the change in A(t) in time T.

however, the expression for B(t)> is

B(t). = exp 0: (t-to)}jB(t 0 )1>

if the symmetries are not broken, thus

1B(t) = exp (..,)i + 'J}(t-t 0  B(t

if (t-t) and

B(t)> r exp - •( + n2 )(t-t )IB(t 0 )> (43)

if the symmetries are broken.
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It has been shown elsewhere (Norwood, 1969) that ' 17, where L is of

the order of the diameter of the structure.

One can now make a rough estimate of the increase in the decay rate of the

structures interacting at the center cf the mirror system by noting that f is

a very slowly varying function of (x,y,z), thus

-7 f-- .< .- -

This implies that ve-e:' t, i.e., the decay rate is not altered appreciably

if the symmetry is slightly broken due to the interaction.

A more precise estimate can be easily made if the amount of symmetry breaking

can be estimated more accurately. Returning to K Z f, the function f(x,y,z) can

be evaluated if the expansions for an M n() and B N n(.) are known. If these

expansions are made in the form of an analytic series, the amount of symmetry

Lreakirýg can be related to the number of terms retained in the expansion. For

example
with a Mn ) = 1 for n = 0

def • ...
,-Mn( A-B-d" 1ýl - P (¢l)A.Bd,
n• n•0 n

and Pn() = 0 for n = 0,

where P (n) is a complete set of functions of the coordinates whose sum hasn

Deen normalized to unity. Then, if all terms from n=O to n=- are retained,

the -ymmetry corresponding to )!A.dT is completely broken. If only the n=O

and ri=, terms are retained, the symmetry is weakly broken, etc. Similar ex-
pansions 'or -N,()B.•d- and can be made. A more complete dis-

cussion of these expansions will be given in another paper.
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It has been shown elsewhere that each of the integrals can be associated

with one of the independent vector fields that are convected with the flow

(Wells 1970). Thus a breakdown in the convection of B, v, or ` (the generalized

vorticity vector) can be estimated from experimental observation of the corres-

ponding interactions. This, in turn, will enable one to determine the number

of terms to be retained in the expansions of Iln' I2n' and I3n' i.e.,

"In M n(ý){A.B}dT, fBinNn( )d;-, and fYlnPn(;)dT.

It is suggested that the "equal time commutation algebra" represented by

Eq. (42) combined with a knowledge of the group algebra of the M operators

allows calculation of some detailed properties of the interactions of force-

free, col linear structures.

The difficulties connected with operator convergence in the case of broken

symmetries for quantized operator fields (Orzalesi, 1970) does not arise in this

classical theory. Our "current algebra approach" is only an analogy employed to

clarify the classical field symmetries involved in global stability calculations.

V._ Conclusions

Group theoretical and symmetry formalisms have teen used to derive and

discuss the Crandrasekhar-Woltjer-Wentzel variational approach to finding

eq._iiibriu,1, solutions of the conservation equations of an MHD fluid plasma

r';odel. The theory has been derived from first principles utilizing the

multiple integral techniques of Caratheodory and Weyl. The principle of least

co,,straint is shown to emerge naturally and rigorously from these formalisms.

This principle combined with tne fundamental variaticnal formula for multiple

independent integrals, allows calculation of the glohal stability of closed

plasma structures. The second paper of this set presents experimental verifi-

cation of the most important predictions of this theory.
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Appendi.x

Much confusion exists in the current literature about the possible values

of B for a force-free structure. These are references to the solution of the

magnetohydrostatic equation

4- 4-

Vp = jxB. (A 1)

There is much discussion of the stability of plasma configurations which are

bounded by regions of vacuum fields for which

jxB = 0 or (vxB)xB = 0.

It is then noted that one must have

Vp = 0,

and since this condition must exist in a boundary where pressure gradients must

be finite, then p0O and

P_ 0.B

The if.,plication is that force-free fields are associated with low o plasmas. This

is true if Eq. (A 1) is the equilibrium equation for the region of the plasma

under discussion.

The plasma we are discussing in this paper has the equilibrium equation

1 -+4def.

v(p + i v2 ) + jxB - p(ýxv) where r vxv.
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If the flow is force-free and collinear, this equation takes the form

or p + v constant.

II

if the flow is an equipartition flow (the most stable structure has • - __

- 1l

and v --- B), then one has
0~ : )/.

1 B-'

and

P +B2 - constant. (A 2)
0

The integral of over the surface of any fluid element within the boundary
0

of the closed plasma structure under consideration must be identically zero

,;ince the body force, j-B, is zero throughout the volume of the structure.

Tnus Eq. (A 2) does not define a inside the boundaries of the plasmoid. The

structure must be supported by currents somewhere in the surrounding plasma

which interact with the vacuum guidefield. This neans that somewhere on the

bounaary of the plasma, presumdbly close to the walls of the containing vessel,

there must be a transition to vacuum magnetic field if the whole configuration

i'• to be supported free of the walls. Thus, somewhere near the walls, 6 must

again b;ý a definable quantit' and we must have the condition

B+ o

2.o . 0

This means that the configuration consisting of the plasmoid and its

,urrounding plasma is limited to values of 6 between one and zero. It does not

mean that all force-free structures in a dynamic plasma are necessarily low

s Lruc Lures.
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