——

© - — ct—

AD 7419712

AFOSR = TR -T2 =1 ;01

NATIONAI. TECHN!CAL
'NFORMAT (U\ SERVICE

Department of Physacs

University of Miami, Coral Gables, Florida
33124

for pudlic relonsed
p ~<riodri RN




THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




CaGlAs st

Carenirite Li.nptfication

{ ' PCCU. 14T CONTIZOL DATA-RA&D

Secreltv closatlication of *1tls, trcty of sbatract and indexing sminots lon must be entered when the overail report Is cl---“)-dL

: 1 onnt.uuA‘..A-Ng ACTIMITY (LCorpurate authee) 28, REPORY SECUMITY (LASMPFICATION
1 VR IVERS DY MIANML PNCLASSIFITD
§oobEEAN L Ul JUYSECS 26. CROU®
i CORAL CAbIEs, FLORIDA 33124

3 REPORT YTITLE

THE CUKRELT ALGEBRA OF GLOBAL MID STABILITY
4 CESCR:FPTIVE HOTES (Type of rupet and Inclusive datae)
i Scientiiic Interim
1S AUTHOR(3) (Fitel name, middie iniilal, (a8t nase)
DANIEL R WELLS

i4 PEPORY DATE 3. YOTAL NO. OF PAGKS 5. NO. OF REPF3
' 50 14
sa. CONT’NAC T OR GRANTY NO £3. ORIGINATOR'S REPORT NUMBDY R(S)

AFOSR~72-2295

5. PROJEC T NO. MIAPH-PP--]() .13
9752-01

<. 6]‘1021‘ Lh., OTHER AEPORT NOLY) (Any olhsr muabers thel may Lo sazsigned
Ae report) . ~ ,)
. 631308 AFOSR - Ti-72-103°

Y3 CISTAIGUTION STATEMENT

Approuved for public release; distribution unlimited,

b

ST —v
Tttt e TR 4 ANEEZETIL e ket N WA weet s T R . T CURE R ol A A g dnae
R R AR
, . N ..
L PRI I v NJ .

T S Y T T

e . Wi PRSP G 9003 s

PR IV LR VR I IR I SRR I i § L. TSI tuliTASY L OCTINIT Y

: : AF Oftice of Scicntific Rescarch (HAE)

P TECH, OTHER 1400 Wilson Boulcvard

5 | Avlingren, Virginia 22209

(& ABSTRACT

? A thecory of nonlivnear aglobal wagnciohydrodynamic stability is desceribed.  The

}’ foramalism is an entively new approach to the problem. The concepis of space=time

+and generalized savge symmetrics ol the {Tou Clelds are irvoked to find constants of

2 the nortion,  The consiants corcespond to charpe operatoss in o theory ot the curreat

{ algebra of the fic lds.  7The chavses, n buvrn, ave detined by inteorals that are

1 determined by the syomotvies of the {ields,  The strensths o the tadividual:

E components of the curvents determioe the soount of syesstry breaking in each physical

} situction,  The constants of the wocion covrespondiny to the charge operaloer are Usc.

;i conjuction witn tiw princivle of Jeast constraint to geucrate che Fulec-Digvan

Pocquatoons covvespoanding to stoble plasea wotion, i
:
3
|

5; [

i .




Plasma Phvsics Laboratory MIiAPH-PP-70.13

THE CURRENT ALGEBRA OF GLOBAL MHD STABILITY
by
Daniel K. Wells

L
[




MIAPH-PP-70.13

THE CURRENT ALGEBRA OF GLOBAL MHD STABILITY
by
Daniel R. Wells
Department of Physics

University of Miami
Coral Gables, Florida

ABSTRACT

A theory of nonlinear global magnetohydrodyramic stability is
described. The formalism is an entirely new approach to the problem.
The concepts of space-time and generalized gauge symmetries of the
flow fields are invoked to find constants of the motion. The con-
stants correspond to charge operators in a theory of the current
algebra o7 the fields. The charges, in turn, are defined by integrals
that are determined by the symmetries of the fields. The strengths
of the individual components of the currents determine the amount
of symmetry breaking in each physical situation. The constants of
the motion corresponding to the charge operator are used in conjunction
with the principle of least constraint to generate the Euler-Lagrange
equations corresponding to stable plasma motion. For every symmetry
there is a corresponding conserved integral or charge (Noether's
Theorem). The principle of least constraint states that if the total

enerav of the fiow field of a bounded plasma cell is varied, subject

-




to a set of constraint integrals, then the fewer the number of constraint

integrals applied, the more stable the resulting flow. The constraint
integrals which generate a linear (superposable) fieid yield a set of
equations which describe force-free collinear flow. If linearity is
sacrificed, then fewer constraints can be used and many other types

of flow structures are possible.

The symmetries and corresponding T1ow structures are classified by
the Lie algebra of the currents and charges. The formalism Jeads to
unigdJeness theorems necessary to calculate the type of structure
present for a given set of boundary conditions. It is demonstrated
tha: a multiple integral variation problem can be related to the
principle of least constraint. The fundamental variational formula
for the appropriate tensor fields is developed. The group generators
for a particular space-time and gauge transformation are then used
tc cdemonstrate that the variational approac: of Woltjer and Wentzel
i3 a special case of the problem of Lagrange wit.. expanded integral
constraints.

Proof that the theory actually descrihbes the lowest lying and !
nost stable energy states of the flow structures is given in a succeeding F
paper in <he form of cxperimental data which is a measure of the actual
magnetic fields trapped in the linear structures. Agreement with theory

is exceilent.
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Sectior: I - Introduction

In two previous papers (Wells and Norwood, 1969, and Wells, 197() hereafter
designated I and II respectively, a new method of calculating the structure of
naturally occurrina stable plasma cells was outlined. The method invokes a
variat” 1al principle in which the total energy of a closed (btounded) plasma
configuration (cell) is varied subject to a sec of constraint integrals on
the flow. The resulting Euler-Lagrange equations describe the magnetic and
flow fields in the plasma "bunch" or plasmoid. These differential equations
can be solved subject to appropriate boundary conditions to give a quantitative
desciipticn of the structure of globally stable plasmoids; i.e., the stability
is calculated for the whole plasmoid (plasma cell) in its actual geometric
configuration and ambient plasma surroundings.

The Tow-1lying cell energy states are analogous to the low-lying stable
states of an atom in which the lowest lying and most stable atomic configura-
tions correspond to minimum energy and the higher energy states correspond to
structures that are more easily perturbed and broken down when subjected to
external disturbances. The type of stable cell-state changes as one changes
the type and number of constraint integrals used in the variational calculation.

The total eneray is used in making the calculations because nearly all

plasmoids {cells) are interacting and exchanging energy with their surroundings.
This means that the structures are non-concervalive systems, and the usual
m2thods vt swability calculation utilizing effective potentials have no meaning.
The method is interesting hecause the calculations include a consideration of
all nonlinear states, they are giobal and not local, they make no assumption

abuut the strength of coupling between various modes in the plasma and include




the dynamic ncnlinear terms in the equations of motion or equivalently in the
equations describing conservation of formal currents and charges in the plasma.

The principle of least constraint (discussed in II) is invoked in order
to find the various lowest iying cell energy states. The fewer the number of
constraints applied to the system in performing the variational calculation,
the more s.able the corresponding plasmoid. It was also shown in II that the
Towest 1ying states correspond, under certain condiiions, to superposable Ticws
and fields. A1l other states are non-superposable and nonlinear. Two of these
nonlinear states will interact to form new states, rather than simply superpose
to form a composite structure.

we will rederive the entire thenry utilizing an approach that is more
rigorous and physically more transparent than the methods utilized in I and II.
The methods and formalisms of field theory will be used to derive an operator
formalism that will enable us to extend the concept o7 the stable plasma states
to a method of calculating the growth of motions and currents from an arbitrary
initial plasma state.

There has been much discussion about the validity of this approach for
calculating the stability of plasma confinement schemes. A second paper
folliows this one in which some of the predictions of the theory are verified
in detail in the laboratory.

[n this second paper {Nolting, Jindra and Wells, 1972), we will describe
a plasma confinement scheme (TRISOPS) which utilizes all of these results to
guide the productinon of high temperature, high density plasma with a itong
particle confinement time. Experiments will be described that compare the

structure of the lowest tying plasma ¢.17 ctates rith the thogretically

predicted structure.




Section Il outiines a derivation of the formal charges and currents, dis-
cusses the principle of least constraint and illustratec why the Towest lying
linear cell states have minimum "free energy" available to drive "instabilities".

Section II] develops an operator formaiism that can be used in a general

attack on the problem of the growth and dynamics of interacting plasmoids (cells).
Section IV applies the concept of broken symmetries to plasmoid interactions.

Cection 11 - Tormal Charges and Currents

In I and Il the lowest lying stable plasma cell states are derived. The
constants of the motion corresponding to space-time and gauge symmetries are
derived using the Clebsch potentials and the concept of a "generalized gauge
transformation”. In this section we consider all of the constants of the motion
corresponding to space-time and gauge symmetries. We discuss the expansions
of Lhe corresponding functionals and utilize them in a fundamental variational
formula to show tha. minimum constraint corresponds to minimum total energy.

Wde then show that minimum total energy ccrresponds to mininum "free energy"
available to drive instabilities in the case of the lowest lying 1inear states.
In II we dizcussed the fundamental importance of Noether's theorem in

relating the symmetry properties of the Lagrange density of the MHD fields to
the constants of the motion for clused plasma structures. It is necessary to
give a precise formulation of the basic problem of the calculus of variations

if further progress is to be made in understanding the global stability problem
for bounded plasma cells. We merely outline the necessary theorems. A rigorous
treatment of the problem is given by Rund (Rund, 1966).

Given n real variables xi, together with m independent real variables t,
(Latin and Greek indices run from 1 to n and 1 to m respontively) consider the

. : . 1 .a .
or nvw dimensions of x , v . OCenote » subspace €, in R

K .
Space n m n+in

+m




A set of n equations of the type

defires this subspace. It is assumed that we can form the derivatives

.i

2 oon Cm' We denote these derivatives as
ittt
. i, .8
*1 R 35X (t
ey = )
X Bt
Assume that Gt denotes a fixed simply-connected domain in the m-dimensional
space of the t’, bounded by a hypersurface jGt. Each  point of this surface
corresponds to a set of values of the t’. Consider a second set of

equations of the type x = x (t*) representing another subspace Eﬁ of R (o

We require that this second subspace coincide with Cm for thcze values of ¢

which define the boundary “Gt of Gt' Then

x1 (t*) = x'(t*) = f1(t*) for t'e 3G, s

where the functions fi(t‘) are separately prescribed.

Consider a suitably differentiable function L=L(t‘,xj,§i) with m+n+mn
arguments. This function is defined as a function of t' over each subspace of
the type of Eg. (1).

We now form the integral

where




The value of Eq. (2) depends on Cm’ i.e., the choice of the functinns defined
by Eq. (1) together with their derivatives. The fundamental problem is to find
the necessary and sufficient conditions the xi(ta) must satisfy in order to
yield an extreme value of the integral (2).

In order to proceed with the proof another set of n equations of the type

x' = x4, u)

is considered. These represent a l1-parameter family of m-dimensional subspaces

C (n) of R

. . ) \ .
. nam- Consider two neighboring subspaces C (u ) and Cm(L/sMEre(U*b) is

considered to be small and quantities of order |u-u0}2 are neglec.ed. Let Pand

P' be points on Cm(uo) and Cm(u) respectively, corresponding to the same t*-values.

The components of the displacement PP' in R are given by (0,....05 «x',....,

n+m

m
“x ), where

A*X.I = (u_.uo) i—'i:—~

It can then easily be shown (Rund, 1965, p. 213) that

) o , ® s
X=X st 4 oy (4)
" u=u
and 0
* e * 4
x] - A;“,. ( x])
e

If one defines the first variation of I (as given by (2)) as

(d1]
= l\_ = ——
= I(u) - I(uy) U id’ L
Q

then 1% can be shown that

. * [

=] b e K e ¢ | e
Gt X ¢Xl tht
7

O b



This can ke written as

a / [ : r * il ) fey
1 = ; ii‘_'L_1_ g_f) "_,1_4JC X1d(t) + d_ iL it o+ ,-L,_I R X]!d(t" :
G, dt ;)‘(J! Lt | %
t ow) t i : !

using Eo  (4).

The first variation takes the final form,

1, . |
re o2k d Ai‘.—ﬂ“ dae) + |4 e Lk T
R dt* x| s dt™ iX
t! i L i t . 1
b lagy) (6)
=
! }

Equations (5) and (6) are the fundamental variational formulss for multiple
integrais. The integrand of the second integral is formally o divergence.
It is now easily shown from Eq. (6) that an 2v*rer=. Jur the integral defined by

£q. (2) is uniquely determined by the solutions of

oL L.
d‘i‘; T T TR 0
dt X X
where
<=3, ... ., n

This set of n equations reduces to the Euler-Lagrange equations for single

inteqrals when m=1. They are the Euler-Lagrange equations for multiple integrals.

Wreitten out in full they take the form

} - 1 ot ol
L: )k_ + .,4 L 2(_ i L VL ) (7)

it




It can be shown (Rund, 1866) how certain invariance properties of multiple
integrals imply that various quantities are constant along an extremal. These
results <an be formulated in terms of Ncether's Theorem. The so-called con-
servation laws then easily follow. Application of Noether's theorem to MHD
giobal stability is discussed by Wells in II (Wells, 1970). Here we utilize the
formalism of the fundamental symmetry transformations to directly tie together
Noether's theorem and the principle of least constraint.

Consider an r-parameter Lie group operating on the variables (t“,xi). A

typical element of the group is thne transformation

to = ff (t!,XJgis)s ;q = zq(tw’xa’as)’ (8)

where xs(s,t=1, ....,r) represent the r parazeters of the group. We assume
that the identity transformation of the group is given for . 0. The
infinitesimal transformations corresponding to the finite transformations

given by Eq. (8) are

i i

T ) X T sy (summation over s), (9)
where ) ) . ] .
CrT et J ; o LN !
) ) t (t .X ,ut); _.i - 3X(t ,.x-‘s lt,'
()7 T e T
"‘“t:O Lt=0

Corresponding to the infinitesimal increments given by Eq. (9) we have,
from Eq. (4,
i e : \
X = oox - X ctho=o- 5) s (summation over s',

where

(s) - (S)-x: ‘(S) {summation over s).




The variations {(9) induce a variation &I of the fundamenta! integral (2)

which we evaluate according to (5). This gives

Q2

op o= ! ek _d  feb [ d |, .° 8L )
21 = /!th: 1 dtOL [d).(;JJn(S)JSd(t) ,G dt L (S) 3;(; \'\(s) J.Sd(t). (]0)

(summation over s)

We now require that this fundamental integral be invariant under {9) wup to
an 'independent integral". This means that L transforms under (9) according to

o) = |t i)+ e,

]
6, 6, |

where = i(tt,xJ,Q{,Js) is the integrand of an independent integral. We must

now examine carefully the meaning of ¢ because much of what follows depends

on this concept.
A thorougn discussion of the concept of an independent integral is given

by Rund (Rund, 1966). For our purposes it is merely necessary tec state that
the integral of a divergence depends solely on the values of its argument

functions on the boundary th of the domain Gt over which we perform the

integration. Divergences are not the only inteqgrands which have this property.
There are a large class of integrands giving rise to this type of independence.
These are referred to as "independent integrals”. Integrands which are
divergences provide & satisfactory and relatively simple theory which is
adequate for our purposes. This approach was extensively developed by Weyl
(weyl, 1935). There is another special sub-class, furnished by certain
determinants, which yield a theory for multiple integral problems. This work
is commonly associated with Carathébdory (Carathéodory, 1935). There is a more
generail theory discussed and developed by Rund (Rund, 1966, p. 250) that

inciudes the theories of Weyl and Carathéodory as special cases. This theory

10
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is interesting because it classifies the independent integrals by expressing
their  jntegrands as homogeneous polynomials. This is extremely useful in
treating MHD stability problems for the case of broken symmetries, since, as it
will be shown below, it is necessary to expand the integrands c¢f the
constraint integrals in order to treat these problems.

In order to greatly simplify the discussion of the general treatment of
symmetry transformations of the type given in (9), we assume now that the func-

tions : are divergences, i.e., there exist m functions ;? , (t,x3,x7) such that

» S) i
diy
o= :~—§i)-, (]‘l)
(s) ate
where
d;, | def. > 3%
s) o ZAs) y Ts) i, L
4t 5t° ax!
and
def. ;
- 9
; dt’

if : depends on t ' only, Qia and 33; have the same meaning.
dt it

We also assume that + is linear in the parameters a3

s -J)qs. (summation over s)

D= :(s) (t*,x X

Then we obtain

-1 = "Gt ;(S)usd(t) . (]2)

Comparison with (10) yields

(summation over s)




By hypothesis, this egquation is valid for any region G

The i are tne r

t
parameters of an r-parameter Lie group and therefore must be independent. We have

i d .~ Lo i . -

.1 ﬂ(s) .r(s),(S],...,v‘).
I "xk
v - J

S N R '
! :;i "(s) T "(s)!)” (s=1,...,7). (13)

{ i3

\ - : ‘ (summation over s)

In 11 we have discussed the concept of generalized gauge symmetries as
developed by Calkin. We have related the corresponding constants of the motion
to the linear superposablc states of closed plasma structures. We will now
show that Eq. (13) ties together the concepts of Noether's theorem, least
ccastraint, and symmetry breaking (i.e., expansions of b?s) in complete sets
of functions of the spatial coordinates).

From Eq. (11) we note that there exists a system of m properly behaved
functions ;° = :‘(ts,xj) obeying the divergence equation. In order to simplify

the discussion and make the formalism directly comparable to that developad in

Il, we now introduce the following change of variables

L

I \
t5ox (x],xz,x3,t;,

where t 15 the time. We assume that there are N dependent functions ;a of these

independent variables, and these, in turn, replace the functions x1(t3) used

previously

A detailed discussion of Noether's theorem and related problems in this notation
is given by Hili (Hill, 1951). The reader is referred to this paper for a

rigorous treatment of the conservation equ-.ions which we now develop.

12




Considering transformations that arise continuously from the identity

transformation, it is sufficient to consider the infinitesimal transformations

and (14)
ST = (k) +suT(x)

The finite transformations are found by iteration. It is then easily shown

(Hi11, 1951, p. 258) that one can associate a differential conservation equation

with each infinitesimal symmetry transformation in the form

¥ | .
T Y e (15)
k +i77¢ Lo R oy T
dx gy 9X iy
i ’ 1 | !
| & x

Then we can write

I S =0, (16)

where -, the "formal charge density" associated with our symmet-y transformation

(14) is
i)
o= [L - _;‘_L_, _,_E_’ st - ———“L, él(_'V,) + JL“ fiu + “l"t (]7)
: R , b WSy
Tt o
and the "current density" S is
S = - _.l'_: _’_E_ t o+ (L\K - _'.L_: 5_)(_"",.1) + GL‘ \A‘“. . (]8)
. e avy

Then - and the three components of S can be associated with the ms functions

et

;ES) of Eq. (11). Integrating over a closed volume : with surface ; and using

Gauss's theorem, we have

13




. ( d(x) = - fgd}j .

i

)
Calkin has shown (Calkin, 1965 , Wells, 1970) :hat one can write a

Lagrange density for an MHD fluid in the form

> .

-1 : tT 3 X " 1 -
140 }B] + P'E+p{?t' -n ',;tg-*z— ‘Vl

5

- e "pdx'i

M| —

L = K IE‘- -
0

N} —

2

whe~e £ is the electric field intensity, ho and ", are the permeability and

permittivity of the fluid, v is the velocity of the center of mass of a fluid
element, . is the mass density, p is the scalar pressure, x, n, ¢ are the

Clebsch potentials defined by

. - >
v+ . BXxP=-vx+nv:

and P is 2 "polarization" vector. The vector P is in reality a type of

"vector potential” that defines the current density according to

j = % b ox(Fxv) + (7-P)V, = veP,

and is the electric charge density.

Then P is defined only up to a generalized gauge trasformation of the form

[aie)

P - P' + /., where %%-+ ox(fxv) = 0 and Vel =

The last two equation. imply that 7 is frozen into the fluid. In II it is
shown that the three vector fields that move with the fluid are B, z and v
where

. def. . . .
z = x(v + .7 BxP).

14
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Then one can make the following infinitesimal transformations:
(I) -2 =0 The resulting finite transformations are just the canonical
transformations of the fields.
(11) -7 = :aB
P +P'" =P + :aB

This transformation leads to conservation of the integral

j;-EdT.
(IL1) »: = ﬂeg
PPtk i
This leads to conservation of the integral {5-5d1.
(IV) 6. = -,v ' 3

This leads to conservation of the integral JA‘VdT.

For given symmetry transformations arising continuously from the identity
we can write the conservation law (15). The corresponding density =« and current
S are found from (17) and (18) respectively. The appropriate conserved integrals
fconstants of the motion) are then found by the application of wvector
identities. In *“his way the conserved integrals in (II), (111), and (IV) above
nave been found (see II).

wWe now consider one of these transformations in more detail in order to

relate our fundamental Eq. (12) to the principle of least constraint and the

concept ¢f symmetry breaking.

Following Calkin (Calkin, 1961, p. 88) we consider again the transformation

P .P =P+ B . (19)

15




The lagrangian L transforms into L', where

>

Lty e xT) = Lt e, xT) - et

To show that Eq. (19) leaves the action principle invariant, we write (see

Calkin, 19€1, p. 88)

» > >
- ~uE*B = .5,;1(:j¢.VxA + = 'VXA)

> >

L'(et, S, %) = LS 2, x') + 5% [ (A<B) + 7-(ExA + 4B)]

Since the Lagrangian deces not contain derivatives of the transformed variable

>

?, we have from Eq. (15),

= 4-2— (A-B)} = - 2— {v-[(ExA) + ¢B]} - (20)

If n is the unit rurmal to a boundary surface ), then

=3 -}' ‘5 (A-B)}dr + JT gﬁ [v-(ExA + 4B)]dt
‘ r Se IR > > -
- | 5E (AB)dr [ 83 (Exhen + oBon)d] | (21)

l

where, for the transformation (II) above, we see that

»

- = 5% (A-8)  and S = 5% (ExA + 4B).

16




We see that ¢ plays the role of a "formal charge density” and S plays

i

the role of a “formal current density.” Thus one can discuss the current
algebra of global stability if one can relate these formal charges and currents
to the equilibrium and stability of the plasma (magnetofluid) inside the
boundary surface ¢ of £q. (21). For nested surfaces in an infinitely con-
ducting fluid, the surface integral goes to zero, since ;, E, 3 and ; are all
assumed to lie in the surfaces (see discussion of boundary conditions in 11I)
and fK-EdT is a constant of the motion (see I, page 27). If both sides of

Eq. (20) are muitiplied by a time independent set of functions of the space

coordinates (see I, page 32) arranged in a convergent series, then g+- where

def.
. Ky
so= (f(x7)ys .
Then
o '; oo 2 (92 k - 1
T T g ) (e (22)
i} 2} if(xk) a_t (AB)dr = - _2—* Jf(xk){v- [(ExR) + sB)rds = - —gﬁ £(xK)[(ExR)+1B]nds .

> -

We assume that A, B, and V lie on nested surfaces of constant o, P, and ;.

Thus ., 7p, and 7: are assumed normal to those surfaces. Since

m
1l
'
<y
E g
oy
"
'
<3
>
1
lQ)
>4

Q)
[ad
-

f% must be collinear with ve if surfaces of constant : are to te coincident

-

with surfaces of constant -, p, A, é and v and if the gauge symmetry is exact

>y

J

(not broken). After equilibrium is achieved, goes to zero. The requirement

e
ot

17




that f% be normal to the surfaces of canstant A is relaxed in the case of
broken symmetries since then VB is no longer normal to the nested surfaces
{there is leakage of magnetic field and mass through the surface of the plasma
sIructure).

Returning riow to Eg. (13) and Noether's theorem, we consider a special
group of transformations defined by Eq. (9). If we make just the gauge trans-
formations corresponding to ¢/ = 4B, we have from Egs. (21) and (22)

‘%E :5dt = - %&.} f(xk)[(ExA) + bB]-ﬁdi . (23)

If f(xk) is a polynomial with constant term equal to unity, then one term

of the integrand in Eg. (23) is (K-g). If only this single term in the integrand

is retained, we will say that the gauge symmetry corresponding to &% = :.B is exact.

The right hand terms in (23) are then zero and ¢ is a constant of the motion.
If other terms in f(xk) are Included in the expansion of the integrand, we will

say that the symmetry is broken. As we allow more terms in the expansion of

f&}k), we put more constraints on the system. The more terms other than the

constant term that are included, the more badly broken the symmetry. The right
hand terms in Eq. (23) are no longer zero but determine the coefficients in the
expansion in the following way.

Let 1 = 7f(xk):A.-Bd-

then
2o f(xK)(AB) 1 = - ? fF(xK){ExA-n + :B-nids.
and
f(xk)
‘ TN L Ky Lk
X3 A+ e An(c\}{A-B}dr = n(t), wheref(X') is a polynomial in x
and  -(t) correspcnds to the initial value of the surface integral.

18




Now

o
-n

J Fdr - 4 FVends

)
g

for convective flow and any space-time function F (Wells and Norwood 1969, p. 27).

Therefore
{%- [+ ---A ()} (R-B}lde= G5 J [0+ —--An(¢)}{;'g}]dr
, 4 [i1 + -——An(o)}{z-g}];-ﬁdz.
Therefore
G L1+ w6 HABVIA = ol8) - 6001 + -=-A ()} (A-B}IV-ndl,
or I r
g L0 A8 = n(6) - § 1, (6)(A-8) Ivonas.
This gives
MR8 = = (5D (E-R) + 6B + (A-BIVndmt (24)

We can solve Eq. 724) for A{M (K-g)dr. Tke right hand side depends on

n
initial and boundary conditions.
Knowing ;{Mn(¢)ﬁ-§dr for a give at, we can calculate a corresponding ~u(¢)
{(Wells and NorWood 1969, p. 44) or {sn(:), as(e), aw(e), 2:(¢)} and can then
insert them into Egs. A(30) through A(33) of Wells and Norwood to find AE, 33,
sv, P, and - for a given at. This determines %% , etc., for a given set of
initial and boundary conditions and hence gives the explicit growth-rates toward
stability of the fields for given initial conditions, boundary conditions, and

degree of symmetry-breaking. The method is independent of the conventional

linearization restrictions and seems quite tractable for a numerical study.
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It is convenient to define M(¢) in some applications as a pclynomial with
constant term unity. In other applications M(¢) must be expanded in some
convenient complete set of functions of the e!ectr{c scalar potential (see II,
p. 648).

If one does not want to perform the iteration calculation indicated by
Eq. (24) but, instead, wants to calculate the final cell configurations
that will result for a given degree of symmetry breaking, then a modified
constant of the motion must be found. In this case

def

g = Mn(¢)3 s

where Mn(¢) is an appropriate complete set of functions of the electric potential,

[

Then Wwe obtain

-+ >

~ N - x > > S Ny d
Tf de o= L ).( 53 1 () (A-B)er = - 2—“} M () (7-T(ExR) + ¢B])dr.

R ¢ > > > > > >
This gives §€-j Sdv = - IVMn(¢)-[(ExA) + ¢B]dr - [V-Mn(¢)[(EXA) + ¢B]dt

’ > > -> r -5 - > ~
© o [M(e)-[(ExA) + 9BJdx - [t (¢)L(ExA) + oB]}-nd: .
z
One must now assume that during the time that the cell decays to its final
3> > -»>
Towest energy state, the time average fields (Ex/) and ¢B remain on the nested
surfaces. Then for the boundary surface,

M (¢) = IM(¢)) = a fixed constant.
n n 5

Thus

%Y'J ad: = - [an(¢).[(ExX) + 6B)ds - {Mn(¢)J [(ExA) + ¢E]}-ﬁd:' (25)
L ] s

The first term on the right hand side drops out because VMn(o) is normal to

> > >
the nested surfaces. The second term on the right is zero because (ExA) and :B

lie on the surfaces. i ‘
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Now consider a different group of transformations of the type defined by
Eq. (9) which include not only the gauge transformation corresponding to, say,

4; = ‘ué but also a simultaneous transformation of the time. Then by Eq. (9)

‘t = - and %xp = gf 1l (summation over v and 1) (26)

where

> ->
t=t+ . and EP = x +10=P+ suB.

One must examine the meaning of this transformation. Consider the change in a

function F{x) under an infinitesimal transformation of the form

X' = fi(x] XAy e ar)’ i=1, «+++ , n, (Hammermesh, p. 296).
n n r
- F = oF
dF = ; —_— dx = Z -—_— }: u.n (X)\a
‘i:] 1X1 1 i=] -JX,I 2:] 11 5,
where . )
r iaf.
a1 (x) = : 47—l; éak.
k=1 { "k
a=0
Then
r n r
dF = " ca (1 ey (x) 5-) F= o TosaxF
=1 9=t 4 =1 .
The operators n
x. = oa (x) =—
j=1 1 X5

are the group generators.

In the particular case of the group described by Eq. (26), one has

B
dp = %
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We have, therefore,

-

* 5“;
,‘P >
So sv = 425
it Y ooe

v8Y

Jne can now easily anticipate from this relationship, derived from the
properties of the group generators, the form of the Euler-lLagrange equations
of the corresponding flow.

For a nonmagnetized medium moving with a velocity Vv which is sms!l compared

with the velocity of light

IxB = %%— + ux(Pxv) + V(-P).

Then

> > -

= 7xB - [ox(Pxv) + v(v-P)].

&l-‘m

>

The requirement on the group generators is that %% be parallel to E, ;, and v.

Then
£= B = i - [x(Bav) + V(7-B)D),
P _ - ey ] z ‘)\ _ > . > (S r
T ez 7 alixv :‘BXPJ = [vxB - vx(Pxv) + v(v-P)],
= = v = [xB - ux(Pxv) + v(v.F)]

where ., 8, and 7 are scalar constants.

These eguations are trivially satisfied for a force-free collinear flow
on closed nested surfaces. This is the flow described by the Euler-lLagrange
equations resulting from a variation of the total energy of a closed plasma

volume subject to the constants of the motion corresponding to these three symmetries.
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The coefficients of the group generators then become

_ [.;a
I—%l =1, and ;E = éé* =1,
L’ i lﬁn F=0
We now write Eq. (13) in the form
7 ']' NI i (s)), (27)
—«T] =i s) =5 %) T H(s) (summation over (s)),
. s dt” |
4) j
where
L;;‘ :_L .._'_L_. n
(s) (s) 5t (s)

. L) i
o = = 7l JL_. : - L= ior .
(s) ‘LJ 5 x| 5s) T (s) (summatior over s)
|

It is now convenient to defire a Hamiltonian tensor (Rund, 1966, p. 240) in

the form

f J - ) J ‘j : h ¢ a Ai € h .
H' (t ,x ,Dj) = Tz L(t s X "y (t s X :Ph)) + pi .ﬁ(t s X :ph)'

This implies




From the transformations Eq. (26) and the definition of “ES) given on page 9

above - - .
> t
np -+ = CP > T Pt g
(5aB) (6aB) (v)
or N 5
P 2t
np T oip - Py g,
and
n= 1 - ¢
We then obtain N
65 | = HBgt L gP (Summation over s)
(s) to(s) ~ Sp. (s)
which reduces to B
B = B - .& - S
e(s) Ht 35 Ht
Pe N
since L does not contain terms in PB' We have assumed that ;% Sv = Béa

The left-hand side of Eq. (27) is zero on any extiemal subspace (i.e.,

the Euler-Lagrange equations are obeyed). Thus, it takes the form

- e By =0,
dt n

Utilizing the Lagrange density given above, the Hamiltonian censity, H,

is proportional to the total energy per unit volume (Rund, 1966, page 300) of the

fluid; i.e., we have

We may write

where ¢ = energy density of the plasmoid

- o+ = Nt tY) = f(x,y,z)

{-. + v}d: = constant

»

o]
E + )o(;) dr = constant (summation over s)

def.
E = the total energy of the closed plasma structure

f&,s)d: = E + constant (summation over s)
Y

= f = + .
" (s) (¢)dv = E + constant
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From the discussion above, it follows that the smaller the number of terms in-
cluded in f(;), the polynomial expansion of the constraint integrand, the lower
the total energy of the closed plasma structure under consideration.

The arguments pre-ented above apply specifically to the
generaiized gauge symme.ries. For the space-time symmetries, the Lagrange
density is invariant. Thus the independent integrals w?s)are identically zero for
the-e transformations. The constants of the motion corresponding to the latter
symmetries are also independent integrals, however, and can be written as
divergences in the sense of Eq. (15). If we perform the space-time trans-
formations, Eq. (27) can be shown (Rund, 1966, p. 296 and 297) to take the
form

dH"

— = 0.
dt

Any other independent integral of the form

ey,

s} 4e

can be added to dH®

dt®

Since the constants of the motion corresponding to the space-time symmetries
are of thio form, tne relationship between the total energy and the independent
integrals is of the same type for these symmetries and the generalized gauge
symuetries discussed above. We have here an alternate proof of the principle
of least constraint (see 11, page 663) if the total energy of the structure

can be directly related to the free energy available to drive various types of
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instabilities. This relationship must be established independently for each
type of plasma structure formed for the various possible combinations of con-
straint integrals (see I, page 45). In I and II we have described the force-
free, collinear structure as a very low energy and very stable structure. This
structure corresponds to exact gauge symmetry and totally broken space-time

symmetry, i.e. the constants of the motions are
[
}A'Vd1

B-vd:
and

¥

A-Bd..

Linear momentum, angular momentum and total energy are not conserved. The
resulting tuler-Lagrange equations are found to be
'/Xg = Kg

and

>

'v; = .58,
where . and - are scalar constants.

If we write Euler's equation for a steady state fluid in the form

cv7) 4 JxB - o (Zxv),

the force-free collinear equilibrium squation becomes

6o - v(p + ;—v) (28)

It can be shown (see Shercliff,1965, p. 187) that the ccmplete thermo-

dynamic energy egquation can be written
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oo Doue ¥y Eef - div Q- div ov + viscous termsid: = 0,

v

Dt 2

where f%} E-ju- is the rate at which electrodynamic energy is supplied to any

instabilities growing in the structure, f divQd: is the heat flux available for

driving instabilit. :, |div pV dt is the flow work available for driving instabil-

ities and the viscous term is the energy avaiiable for recistive mode instabilities.

From Eq. (28) and the relation

=3
u=3p,

where U is the internal energy of the fluid, we have

Gus 12— ) =0 (29)

for the force-free collinear structure. But the rate of change of the energy
available to drive all the instabiiities (the free energy for our plasma model)
15

D

> +
T

) = :t (U + om) + Voo (U + = ovi).

rel<

For a steady state force-free collinear structure |

AT SR
TGV ) =0

This implies

- ) = V'?(%‘U"'% L)VZ) = 09

oo
roj<

U+.

wino

£ (

where we have used Eq. (29). We see that for this model, the lowest lying

Tinear plasma state has no free energy available to drive instabilities.

Rewriting Eq. (27) in the form
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for an extremal subspace, we see that the exact form that the integrands will
take depends not only on the amount of symmetry breaking present in a given
physical situation, but alsc on the particular representation of the independent
vector fields thet is utilized in writing the Lagrange density and making the Lie
group of transforn. ions represented by Egs.(9). The number of terms retained in
the expansion f(¢) is determined by how badly the assumption underlying the
symmetry is violated. For example, if there is some ohmic resistance present

in the fluid, then the lines of magnetic induction will slip slowly through

the fiuid and the symmetry represented by the transformation ¢/ = o8 will be
weakly broken. This amount of line slip must be represented by the terms re-
tained ﬂ1£ﬂ¢)A~édv. If there is no slip, i.e., an ideal fluid, the symmetry is
exact and f(:) =1, etc. If one uses a special representation of the fields,
for example, the representation for azimuthally symmetric fields described in

IT, (Wells, 1970, p. 653}, then the group parameters o in Egs. (9) will be
different and we have an entirely different representation of the same Lie

group. This will, in turn, mean that the integrands in the constraints will
change and there will not be a one to one correspondence in the integrands cor-
responding to the same degree of symmetry breaking. This is why we have written
in II, page 5%, Eag. (32),

— ! . tqd,. ~ l . .
I,y = T(oP)'ds JA Bd:

1.e, A.-8d replaces 'T(.-P)'d: but the mapping is not one to one. The resulting
fuler-Lagrange equations are the same, however, (compare Eq. (38) page 656 in 11

witn tgq. (14}, page 29 of I). This must be so since the two group representa-

tions rave the same group algebra. It is interesting to note that the expansion
utilized by Woltjer for azimuthally symmetric systems, j.e. : an(@P)n, meets
n=0
our requirement that uf(:) = wi7 an(@P)n} is normal to the nested surfaces.
n=0
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We have shown that Eq. (27) can be written in the form

-t ?(;)id* = constant (summation over s) {(30)

where ¢ 1is the total energy density and ¢%)t the integrand of an independent
integral represent 17 the sum of the constraints. These integrands have been
assumed to be linear in the parameters, ~_. Indeed, for our special probiem,

we found that the integrands @?s) took the special form

(AB), 5 (BV) and 55 (A-V)

r

>

where - ., -- and - are proportional to the group parameters :aB, *:z and

If Eq. (27) is considered to represent e relationship between the total
anergy of a closed plasma configuration and the appropriate constraints on the

“low, then one can vary the integrands and replace the coefficients > etc.,

«itiv a new set of parameters, the Lagrange multipliers. These will now be

vroportional toc the original group parameters. The old parameters g and the
first Lie group of transformations transform the arbitrary vector fields xi, or
equivaiently ., into a subspace which represents equitTibrium flow, i.e., the
tuler-Lagrange equations are satisfied and the left hand side of Eq. (27) is
identically zero. If we write the equation for this second variation, Eq. (30)
takes the form,

,
f
i
I

- =dr - ";1(s)¢?s)dT = 0 (summation over s) (31)

For tne case of the generalized gauge symmetries, this equation is in the form
of ty. (2) of 11, i.e.

4
£+ 7 I =0 (32)
i=1 n=0




. . B . .
For the case of space time symmetrie:, *(s) is zero, i.e., the Lagrange density

is invarianrt with respect to the space time transformations (Calkin, 1961).
Thus, if constants of the motion corresponding to space time symmetries are
to be incorporated into the variations, they must be added separately to Eg.
(32). As we obse., ed above, however, this does not affect any of the present
arguments.

Equation (31) is a special case of "the problem of Lagrange" (Rund, 1966,
P. 323). In this problem,the curves which afford extreme values to the funda-

mental integral are required to satisfy certain subsidiary conditions. These

may be in terms of first order differential equations or, in our case, constraint

integrals.

The Lagrange multipliers {s)are a new set of parameters corresponding to
a second Lie group of transformations that take the equilibrium vector fields
of the first variation and transform them into the special subset of fields
describing the equilibria corresponding to the constrained fields. These may
or may not be relatively stable, depending on the number of constraints
employed. The variational calculation of Woltjer and Chandrasekhar (See I and
IT) is simply a method of incorporating the Lie group of transformations on
p and the time into another second group of transformations of the equilibrium
fields into constrained equilibrium fields.

It is interesting to note that the reason each integrand in the con-
straints nct be expanded in an analytic series if one is to recover all
possible equilibria is now quite clear. We have already determined all possible
equilibria when we obtained the fundamental variational formulas, i.e. Eq. (6)

and (7). When we seek constants of the motion by performing the Lie group of

transformations given by Eq. (9), we are projecting out a subgroup of constrained
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equilibria. When we perform the second group of transformations given by Egs.

(31) and (32), we make a second projection to a manifold corresponding to a
further specialization of constraints. When we again demand all solutions of
Eqs. (6) and (7), we must reverse the whole projection process by complete expan-
sjons of our constr. nt integrals. This reverse process is of practical interest
only for fields close to minimum energy when one is studying the rate of change

of the stable structure for weakly broken symmetries. We will illustrate these

concepts in detail in Section IV.

We should note here that if one performs the second variation to solve our
problem of Lagrange using many terms in an expansion of one or more of the
constants of the motion (independent integrals) corresponding to the gauge
symmetries, combined with a constant of the motion coriesponding to say one
exact space-time symmetry, the resulting energy may be higher than that resulting
froui crother situation in which all symmetries of whatever type are nearly exact.
In this sense, the energy is not a monotonically decreasing function of the

number of classes of constraints employed.

The details of these transformations for the case of the exact gauge
symmetries is most easiiy developed in terms of the "formal charge density"
defined by Eq. (17) and the corresponding formal charge, Q.

In a field-theoretical formalism, a formal charge Q is defined as the

space integral of the zeroth component of a local four-vector current,

Llxg) = V3 (x). (33)

R

These auartities  appear in discussions of symmetries and broken symmetries
in guantur field theory ard are used in the "current-algebraic" approach to

particle theories.
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In quantum field theory, relations of the type given by Eq. (22) have

rather troublesome convergence properties. There are other major difficulties
in quantum theory which do not arise here as long as the Lagrangian and the
fields remain unquantized.

In order to me- 2 clear the relationship of Eq. (22) to the formal

charges defined in Eq. (33), we note that for our purposes, j.(x) in Eq. (32)

)
is defined by Eq. (23). Then Q, the formal charge operator, is given by
;’[jo]dv3 where jo 5. In the usual formalism, Q is actually time independent.

In our case we have already proved that

5 Jodtx) = 11 = 0. (34)

Section III. The Lowest Lying Plasmoid States and the Charge Operator for

Linear Fields

In Section Il we derived the formal charge [Q], i.e., Eq. (34). [Q] can be
used to perform a variational calculation of the fiow equilibrium solutions for
the fluid (see I). This variational calculation is equivalent to a Lie group
of transformations that take the vector fields describing a general MHD flow
field into a vector subspace (manifold) which describes linear (superposable)
equilibrium flows.

if one defines a complex vector field

»

= u+ iB ,

then the transformation is of the form;

= f(1-,Q).
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lu»: ic a vector subspace describing equilibrium solutions that corre-
spond to force-free>collinear flow. This subspace is defined by an eigenvalue

equation of the form

.".'VIB/\ ’i<]B> (35)
where

-+ def. >

'8> ) (1t8)89
< is a constant (see I), 3 is a scalar defined telow, and

= - M,, +iM

] 23 14
g = m My ¥ My,
g = My, My,

The M are defined in terms of the Maxwell stress tensor.

The electromagnetic force terms are introduced formally in the usual way

as
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where

-+

i£23

if12 ]

-cl"",
1¢7°7

0

0 00
0-i 0

0 0 +i
0 0 0
0 0

J~ is the electromagnetic four current.
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The equation for fu” can be written

f = if23 M

€31 if17
» 3 + if3 M+ ifle M

31 12
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or

[F, 1= 5 [if™ m 1.

-

The matrices MAJ are the Hermitian and anti-Hermitian generators of
u\
Lorentz transformations (Kursunoglu, 1962, page 50). They are introduced
here because they will be used later in a group theoretical discussion of the

formal charge operators.

Maxweil's equations take the form,

£

b = J
aX .

y
f f if
oy oy _EE o og.
X X X

Equation (35) is equivalent to the equations derived in I and II for

describing the fields for exact gauge symmetries, i.e.,
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V}(_\; = KV vxB = «B
and U = +gB
vey = 0 VB =0

where « and g are -onstants.

One notes that

A, = [0 0-i 0]
C 0 0 1
i 000

and

o
-
o

o o o

o
o
o
—_

We may now write \

Foso= o . /
ST T Rl T gyt Ay,

)
(o)}

A




One can now differentiate between the formal charge, which, in this case,

explicitly di plays the generalized gauge symmetry (see II) for a conserved
current, and a "differential charge operator." The formal charge operates
through a variatic-al transformation to define a Lie group of transformations
of the fields related to a definite symmetry. The "charge operator® is related

in this case to the differential operator that defines the vector subspace

corresponding to the transformation.

We may write

which implies

-y = - r :'A-'jlr-_‘:, . (36)

I'n addition to the force-free conditions, the linear superposable fields are
collinear (see II).

This means that

where

fa scalar),

CD.v‘i c o,

so that we may write the defining equation for |n~ as

-v = g, {37)




The charge operator must produce both of the transformations, Egs. (36) and
(37). We wi ' also require that our charge operator conform to most of the
other restrictions usually put onto similar operators in quantum field theory.
In most cases the  requirements will not have the same physical significance
that they have in field theory since our theory is classical. We will,
nevertheless, find the analogy very useful in our later discussion of symmetry
breakirg given in Section IV.

The differential operator G corresponding to the formal charge operator

Q 1s
(G] = [-i/x (F-9)].
Then for
» def.
1B = (i+8) B]
B,
B3
0
G [B» = [B>. (38)

G cperates in the vector space defined by IB>rJl since the formal charge Q
trans forr, the space defined by all solutions of the equilibrium equation, i.e.

{=» to the special subspace corresponding to force-free collinear flow, the
58- . We have written 'B-  as a three-vector in order to retain the M , {Lorentz

L

group generators;. The '8~ would more properly be written in covariant form.
Since this would only make the formalism more obscure, we sacrifice the elegant co-

variant formalism for the sake of clarification of the physical principles involved.
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Section IV Broken Symmetriec and Plasmoid Interactions (An Example)

One now proceeds io apply the complex operator description given by Eq. (38)
to the calculation of the fields of two interacting plasmoids.

Equation (38) describes the structure of a force-free collinear plasmoid.
Two of these plasmoid wiil superpose linearly if 61 = 8, and <= for the two
structures. If 5] # 8, or < # xp Or both inequalities hold, any interaction of
the twe plasmoids will be nonlinear and a detailed treatment of the process
would involve expansion of all the Lagrange multipliers and a machine calculation
of the resulting interaction (Wells and Norwood 1969). This will be treated in
detail in a Tater paper. We are content here with an approximate treatment which
we will apply directly to a problem of immediate interest, i.e., the interaction
of two plasma vortex structures interacting at the center of a magnetic mirror.

The experiment is described in detail in paper II following and in (Wells

and Norwood 1949). Two plasma vortex structures are fired at each other inside

a magnetic mirror by conical theta-pinch guns placed inside the mirror system

as shown in Fig. 1 of paper 1I. It has been demonstrated elsewhere (Wells and
Norwood 1969) that one structure is corotational and the other countrarotational.

This means in the equation expressing collinearity

both structures do not have the same sign of 8, which implies that the interaction
w
will be nonlinear. We assume that <1 % % since it can be shown that . - ER ,

where - is the plasma frequency and c the speed of light: and the plasma

parameters are the same at each end of the machine.
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Thus ore sees that although the vector fields describing a force-free

collinear strinture corresponding to unbroken generalized qauge symmetries

(describad in I1) are linear fields, and the free noninteracting structure is

built up frem those fields, supplementary conditions on interacting structures

produces a nonlinea. interaction.

The structures meeting ot the center of the mirror are not low = structures

even thcugh they are force-free. (See discussion in Appendix II.) The inter-

acting inertial flows and magnetic fields build up a magnetic barrier or wall
{Welis 1968) which isolates the tw. structures for times close to zero and thus
justifies an approach which might be termed a "quasi-free structure" approach.
One assumes that the linear theory that describes a free structure applies for
times close tc zero but thal the initial interaction produces a small breaking
of the generalized gauge symmetries. This means that ., which is shown to be a
constant if the geuge symmetries are not broken (see I and II), is now a
function of the spatial coordinates.

We have shown,

Tne numeratcr and denominator go to zero at the same rate as . = (.

[f tne gauge symmetries are broken, then one can expand the constraint

integrals in a3 complete set of functions of the space coordinates, say Mn(:)

and N _{:} (see Wells and Norwood, 1969, p. 43). This gives
M
LIS = f(X,y,z) .
o LenNg )
40




We will assume that experimental observation indicates that initially the
symmetry breaking is small. Then « = f, i.e., f is a slowly varying function of
the spacial coordinates. In order to proceed with the calculation of the initial
decay rate of the interacting structures, it is necessary to show that G in

Eq. (38) is the time development operator for the "quasi-free" structures.

In the quantu. -mechanical description of an energy eigenstate luE(t)\, one

has
| Yo o= >
Hiug(t,) Elug(t,)>,
where
E = H..
We then may write
o miu(t-tg) .
lug(t)- = e Jug(t,)

_ e-i[(t-to)/ﬁluE(to)>

which ma be put into the form

uglt) = e MRl /Ay (4 ). (39)

£
This defines
__-iH(t-tg)/h
U(t,to) e
where U(t,to) is the unitary time development operator for the eigenstates IuE(tO)*.

In a force-free collinear structure, both the velccity and magnetic field

are described by differential equations of the form (Bjorgum and Godal 1952).

UXC = wC V-E =0

If the medium has viscous losses, the equilibrium equation for the structure
can be written

f-U . > F"l

Xy = u? LB oo
o - UXUxu = vp - ¥ + =0
p 2 0 u)

z
>
o
=
o
-
L
[&F
»
(o]
it

0 (force-free) and = v - viscosity coefficient .

41 : . ‘

et R




From these equations one has

%%-+ (vxz)a = 0,
which may be sulved by the method of separation of varigbles

= f{tWV'x,¥,2)

<.

to give
~  —ykit o
u==ae W(Xayaz)'

This implies that

§U(t)> = e'v<htla(to)>, (40)
but from E£q. (38}

> » -

,"A':];B\ = 1&;8'\‘

so that in complex operator space

B(t)> = {ev[K'ﬂ‘(t'to)uE(to)>, (41)

where Equations (27) and (40) were used. Comparison of Egs. (39) and
(41) indicates that
Ut,t,) = exp (~¢<4G2)(t-to).

The value of . can be calculated independently and is a function of the
plasma temperature and density. U(t,to) is a hermitian time development operator
that is generated by (..-G~). Thus one has proved in this approximation that G~
is the generator of the time development operator for the decaying structures.

Infinitesimal unitary trarsformations may be written

U=1+1.04

where is infinitesimal and 0. is Hermitian.

G

42




An operator :: changes under an infinitesimal unitary transformation in the
following way:
d=e o= (1 4+ ieOG)m(1 - igOG) = o+ i{[OG.u] {to first order in ).

The change in *the form of an operater is

o= i[F,2],

where
def

Thus the time development of a system may be visualized as a seaquence of
infinitesimal unitary transfoimations with the generator F. F is the time

develcpment operator.

If, in rarticular, OG = G- and G’ is independent of time, then (taking t0=0),

U= exp(.-G)

and
Ut = exp(..-G )k,

Tne operators . G- and U commute and therefore
F=U(. G)U = 7G.

Then defining

def co
A . (?;:)4-(the time development operator if the svumetries are

svokent one ¢an write

We note that

Re-i('~.)'; PR
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which implies

Tuc2(A-0) F < = - JucduefTy,

We define
def

‘P’szf—? - - nL’,,

then,
)
Q%%_l T {=ue?92f72) = - un2, (42)
t=0

Equation (42) allows a simple example of how the operator algebra can be
used to roughly approximate the effects of the interaction on the structure

decay rate.

One assumes that g%%—li remains constant for times of the order of an
t=0

e-folding time, then if one defines 1 as tne e-folding time for the structure

GO TR
dt ‘v, A\VAg]
;A‘(t)5 - -

;A?{t)i the change in A'(t) in time <.
however, the expression for (B(t)> is

B() = exp - - (tt )1 [B(E)>

if the symmetries are not broken, thus

B(t)- = exp - (2) 3kt )] [B(E)
if (t-to) = and
Bt = exp - o(<" + n2)(t-t ) [B(t )~ (43)

if the symmetries are broken,
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It has been shown elsewhere (Norwood, 1969) that .- %73 where L is of
the order uf the diameter of the structure.

One can now make a rough estimate of the increase in the decay rate of the
structures interacting at the center ¢f the mirror system by noting that f is

a very siowly varying function of (x,y,z), thus

TofTe e o

\.‘lt

This implies that v-e~"" °, i.e., the decay rate is not altered appreciably

if the symmetry is slightly broken due to the interaction.

A more precise estimate can be easily made if the amount of symmetry breaking

can be estimated more accurately. Returning to « : f, the function f(x,y,z) can
be evaluated if the expansions for anMn(¢) and ann(¢) are known. If these
expansions are made in the form of an analytic series, the amount of symmetry
breaking can be related to the number c¢f terms retained in the expansion. For

example

with anMn(:)

"
S

1 for n
. - def 4 Ui - >
LM () ABd Lil - VP (¢)}ABdr
K n;0 n

"
#

and P ()

n 0 forn

0,

where Pn(:) is a complete set of functions of the coordinates whose sum has
veen normalized to unity. Then, if all terms from n=0 to n== are retained,
the ~ymmetry corresponding to jﬁ-ﬁdr is completely broken. If only the n=0
and n=,; terms are retained, the symmetry js weakly broken, etc. Similar ex-
pansions ‘or f

;nNr(:)5-§d: and anPnK~Vdr can be made. A more complete dis-

cussion of these expansions will be given in angther paper.




It has been shown elsewherc that each of the integrals can be associated
with one of the independent vector fields that are convected with the flow
{Wells 1970). Thus a breakdown in the convection of é, v, or z (the generalized
vorticity vector) can be estimated from experimental observation of the corres-
ponding interactions. This, in turn, will enable one to determine the number
I

of terms to be retained in the expansions of I1 , and IBn’ i.e.,

n® °2n

fg]nM (;){A°B}dr, fs]nNn(¢)dT, and fY]nPn(¢)dr.

It is suggested that the "equal time commutation algebra" represented by -
Eq. (42) combined with a knowledge of the group algebra of the MLv operators k
allows calculation of some detailed properties of the interactions of force-
free,collinear structures.

The difficulties counected with operator convergence in the case of broken
symmetries for quantized operator fields (Orzalesi, 1970} does not arise in this
classicel theory. Our "current algebra approach" is only an analogy employed to

clarify the classical field symmetries involved in global stability calculations.

V. Lonciusions
Group *heoretical and symmetry formalisms have teen used to derive and
discuss the Chandrasekhar-Woltjer-Wentzel variational approach to finding
equilibrium solutions of the conservation equations of an MHD fluid plasma
modei. The theory has been derived from first principles utilizing the
multiple integral techniques of Caratheodory and Weyl. The principle of least
constraint 1s shown to emerge naturally and rigorously from these formalisms.
This principle combined with the fundamental variaticnal formula for multiple
independent integrals, allows calculation of the global stability of closed

plasma structures. The second paper of this set presents experimental verifi-

cation of the most important predictions of this theory.
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Append-x

Much confusion exists in the current literature about the possible values
of 8 for a force-free structure. These are references to the solution of the

magnetohydrostatic equation

Vp = JxB. (A 1)

There is much discussion of the stability of plasma configurations which are

bounded by regions of vacuum fields for which

> + >

jxB =0 or (vxB)xB = 0.

it is then noted that one must have
vp = 0,

and since thic condition must exist in a boundary where pressure gradients must

be finite, then p'0 and

%‘7’— = p30,

2,
“he implication is that force-free fields are associated with low o plesmas. This
is true if £q. (A 1) is the equilibrium equation for the region of the plasma
under discussion.

The plasma we are discussing in this paper has the equilibrium equation

-> > -+ &> - def,
0 =-v(p + %-cv2) + jxB - po(zxv) where , = UXV.
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If the flow is force-free and collinear, this eguation takes the form

(p + ]7 ;5V‘) =0

o

or p + g , V- = constant.

and v = ——1! B), then one has
(. o)1
0
1 . B-
— VA.v., = _“__
2 2“0
and
P+ %%— = constant. (A 2)
"0

The integral of %-—- over the surface of any fluid element within the boundary

"o
of the closed piasma structure under consideration must be identically zero
since the body force, jwé, is zero throughout the volume of the structure.
Thus Eq. (A 2) does not define g inside the boundaries of tne plasmeid. The
structure must be supported by currents somewhere in the surrounding plasma
which interact with the vacuum guidefield. This -eans that somewhere on the
bourigary c¢f the plasma, presumably close to the walls of the containing vessel,
there must be a transition to vacuum magnetic field if the whole configuration
15 to be supported free of the walls. Thus, somewhere near the walls, 8 must

again b~ a definable quantit and we must have the condition

This means that the configuration consisting of the plasmoid and its
currounding plasma is limited to values of & between one and zero. It does not
mean that all force-free structures in a dynamic plasma are necessarily low -
siructures.
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