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PREFACE

Ludwig Prandt], ccncerned about the degree of validity of certain
assumpticns in his lifting line theory, proposed for W. Kinmer (1937) the
problem of the circular wing in its exact formulation. Kinner determined

. overall lift and mument but did not solve the span loading problem; his

5 results are infinite series which appear to diverge at the wing tips.
Unfortunately, the answer had to lie in the tip solution, since the key
problem 1s the transition between the lifting line concept (resp. its modern
extension, the standard collocation analysis) and the Max Munk concept of
the slender wing. :

The gap remained until Jordan (1971) showed that the apparent diver-
‘ gence can be overcome, It turned out that, contrary to both the lifting
line result and the slender wing result, the correct span loading has a
logarithmic component (which, incidentally, causes a vigorous impulse to the
vortex trail roll-up).

In the present work, the 1971 analysis is clarified, extended, and
_ brought to its logical conclusion, The complete asymptotic description
. of the pressure singularity at the wing tip is constructed.

The wing tip pressure singularity 1s composed of elements of progres-
sively increasing order. Its leading part is general in the sense that the
amplitude ratios of its components are fixed numbers., Different golutions
are different only in the specific part which consists of components of higher
order, Our solution is complete in the senge that the leading general part
is completely described, and the orders of the leading components of the
specific part also are given. A practical consequence of these analytical
results is the ease with which one may calculate specific numerical solutions
routinely and to very high accuracy; only a few numbers are required to de-
scribe such a solution completely.

Although the main analysis of this paper deals with the circular wing
in incompressible flow, the form of the genevral solution for wings of arbi-
trary aspect ratio is deducted readily from the results and allows, for
example, discussion of the transition between the finite aspect ratio wing
and rhe slender wing model,
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I, INTRODUCTION

This paper is concerned with the theory nf thin lifting surfaces of
finite span ('wings") in linear subsonic flow. The distribution w(p,y) of
the downwash over the wing surface is given. The given downwash implies a
field of flow disturbances and, consequently, a distribution p(§,y) of
the aerodynamic pressure force which acts on the wing. The specific problem
at hand is to find pQ’,y). Because of analytical difficulties which arise
in particular at the wing tips, no complete solution for any problem of
this type had been available,

A gpecific solution, namely, the solution for the planar circular
wing in incompressible flow, has been presented recently . The circular
wing represents a truly threec-dimensional (3-D) problem in that it is well
ramoved from either of the two 1limit cases for which solutions are known:
the two-dimensional (2-D) case of a uniform wing having infinite aspect
ratio and the slender wing limit (zero aspect ratioc). Also, the circular
wing represents a case of a wing having parabolic wing tips. The parabolic
wing tip is of particular interest because it fits the usual assumption
{which stems from lifting linc theory as well as from Munk's minimum drag
lemma) that the span loading over any finite wing would be of an elliptic
type (i.e., would fit an ellipse at the wing tips). From a technical
point of view, the fit should minimize the tip drag; also, because of the
fit, one would expect the analyticai problem to he less difficult than for
any other wing tip shape.

Nevertheless there is a reason why the analytical problem of the
parabolic wing tip has remained an intriguing challenge for many years:
the assumed fit does nct. in fact exist, The actual span loading is not of
the elliptic type. A corrective (logarithmic) term was derived in Ref, (1).9

In the present paper, the analysis of Ref., (1) 1s generalized and
is brought to a logical conclusion. Already the corrective term of Ref. (1)
is a general term in the sense that it arises not from the specific downwash
w = const., of the planar wing but from a common property of all technically
meaningful downwash distributions w. A sccond such general term is derived
in the present paper. Not only do such general terms describe the struc-
ture of the genmeral solution, but to know them reduces the numerical work
required to calculate specific solutions. (It also greatly reduces the
number of numerical values which one has to list to describe a given spe-
cific solution.) On the other hand, no such practical benefits arise from

@ The corrective term is in conflict with a standard assumption of collo-
cation analyses. This discrepancy is not of major concern where the goal

is to find the pressure load over the main part of the wing, but it markedly
affects the roll-up mechanism of the vortex trail,
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knowing general terms which are of higher order than the differences
between specific solutions. It will be shown that with the determination
of the second corrective general term this practical limit 1s reached.

A sequence of specific solutions has been calculated. These provide
insights of technical interest into the mechanism of lifting surfaces.

Although the present analysis deals specifically with the circular
wing 1n incompressible flow, the conclusions regarding the structure of the
general solution can be formulated to apply to arbitrary wing plianforms
with parabolic wing tips in subsonic flow. This is briefly discussed,

Mathematically, the analysis deals with a type of infinite series i
(a combination of power series and Fourier series) which does not seem to
have been explored extensively before. A by-product of our investigation
E are two sets of formulas of general mathematical interest. These formulas
E connect the sums of infinite progressions involving ﬂuzy-function (and
: thus the logarithm) to the Riemann ¥-function. They are derived in
Appendix B and seem to be the first formulas of this kind,

II, SURVEY OF THE ANALYTICAL PRORLEM FOR THE CIRCULAR WING

In oxrder to be able to give a survey of the analytical problem at ]
hand, we start this section by describing briefly one aspect of the results
of Ref. (1). In the subsequent section, some additional formulas of Ref. ;
(1) are listed (sometimes in modified form resp. supplemented) for easy
reference. For brevity, we refer to Eq. (n) of Ref. (1) as (1.n). For
further details and fot proofs see Ref. (1),

We deal with the circular wing in incompressible flow. It was
assumed in Ref. (1) that the given downwash is symmetric and does not con-
tain wing camber. Since no essential aspect of the analytical problem
is lost by these restrictions, we retaln them here. Thus, using the wing
coordinates Fig. 1, we have (1.4)

w(f,y) = wy) = w(-y) (1)

The pressure distribution p(§,y) which arises from w(y) can be described
(see Eqs. (9) and (14) below) by an infinite set of coefficients C
n=0,1,2,3... . These coefficients are Legendre coefficients of the
span load distribution, see Eq, (9a) below. The leading coefficient, Cg,
can be determined from the subset Cp, , M= 1,2,3.., by means of the
condition (1.15)

Q0
> Cop=0 (2)
" =0

"
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The subset remains to be determined. We call it the '"solving set" for the
given downwash w(y),

Ordinarily, the coefficient Cy is positive, since it megsures the
total 1lift: Cqg = C; /8, see (l.6a). Hence the elements of the solving set
are ordinarily negative. They can be written in the form

- Coq = 5+ Ry (vd 1) )

Here a, is a constant, The remainder Rn'has to converge faster than the
leading term:

Rx=0(l'2) as M wpoo (3a).

Thus the 02& converge as n2

We describe the pressure p(f,y) by the non-dimensional pressure
function p = (1-}2)ip/q where the factor (l-}z)i eliminates the trivial
singularities of half-orders at the leading edge (l.e.) and the trailing
edge (t.c.). The function p is shown for the planar case {w(y)al) in
Fig. 2. This relief diagram exhibits an interesting type of tip singu-
larity, a singularity which is characteristic for the pressure distribution
near any parabolic wing tip. This singularity is produced by the leading
term of order W2 in Eq. (3); its amplitude 51 (1) is related to the
constant a, and to the tip value of the local 11t coefficient Cgly) by

By , (1) = 8Wa, = 2¢,(1) (4)

see (1.34).

The relations Eq. (4) are valid for any arbitrary set of numbers
Cop which obey Eqs. (3,3a), resp. for the pressure function p which one
woﬁld calculate from such an arbitrary set. This arbitrary pressure
function P 1s finite everywhere. There is thus a temptation to assume
that any such set Cgy would represent the solving set for a technically
meaningful lifting surface problem.* However, this is by no means the case.

* e_pressure distribution p which belongs to p has a singularity of order
(1+f“)% along the l,e,, but this singularity is accepted as "technically
meaningful' in linear theory.




Onc recognizes this as one calculates the induced downwash wi(y) of P over
the wing surface. One finds that wy(y) will in general diverge toward the
wing tip:

wi(y)-r T oo as y=» 1-0

Such divergence is not acceptablc: the wi(y) of the solving set is supposed
to equal the given dowmwash w(y), and any technically meaningful given
downwash w(y) is finite everywhere.

In Ref. (1) the fact that w;(y) has to be finite was used to deter-
mine the leading term of the remainder Ry. Incorporating this term, and
making use of Eq. (4), we re-write Eq. (3) as

C,o(L)
WG w L 22 g (X2 1) (5)
wn [n2 4&3;’ 4T ®

The new remainder Ry herc differs, of course, from that of Eq, (3); now
Rw= o(nf3). Referring to Eq. (5), we can now describe the structure of
the solving set as follows: it consists of a known general term (the

term in [ J-brackets divided by 4T) with an unknown amplitude Ce(l), and
a remainder R*.

Between Eq. (3) and Eq. (5), the infinite set K:3 has been trans-
ferred from the remainder into the general term. The first question to
which the present paper is addressed is this: is it possible to continue
this process, transferring step-by-step further infinite sets C(hopefully
of successively increasing order of convergence) ?

There are indeed further general conditions which are fulfilled, in
practice, by all given downwash distributions w(y). Significant for our
purpose is the fact that all the derivatives of w(y) arc finite (or zero)
at the tip. For each successive derivative, this statement translates
into an analytical condition of increasing severity for G,y and should
yield one (or several) additional general sets of successively increasing
order. This expectation is in agreement with the fact that such sets
describe asymptotic properties of the tip singularity in p which are of

increasing oxder of convergence to zero as the tip is approached (see Ref. 1,
Table I).

One is interested to learn more details of the general term because
this should reduce the numerical work involved in calculating, for a
given downwash w(y), the remainder set Ry and the amplitude q‘(l). On the




other hand, one has to expect to reach a point beyond which to procced
would have 1little practical purpose. Namely, Ry must contain, in addition
to all the identifiable general sets, a specific signature which describes
the given downwash. Fram the expectation that this specific signature will
describe the overall span load distribution rather than its asymptotic tip
behavior, one concludes that it will be expressed more by the leading
elements (X = 1,2,3...) of the set Ry rather than by its tail behavior (the
behavior of R, as {#o0). Nevertheless, the specific signature has to comn=
verge to some order, say to the order Oy, as H-® 0o. There would be little
advantage in knowing details of the genmeral term which converge more rapidly
than O_,

s

The second problem which has to be addressed thus is to determine
the order Oy. The specific signature we define as followg: we select as

reference downwash the planar downwash w,(y) @ 1. For a given downwash
w(y) # wy(y), we define its ''void" downwash w,(y) by

w,(¥) = w(y) - Zw (y) (6)

with the factor X defined by the condition that the tip value Q£ v(1) of
the "void" span loading becomes zero: ?

Cy,v(D) = Cp(1) - XC, (1) =0 (6a)

The solving set for wv(y) is then, due to Eq. (5),

- C2)L,v = Ry - XRK,O s Rx,v (7

This solving set, which is by definition void of all identifiable general
terms, we use as the specific signature of w(y).

We anticipate here briefly the answers to both questions, In (1.18)
it had been assumed tentatively that the remainder Ry of Eq. (5) could be
written in the "rational" form

00
R&= E (ar/x‘r) (8)
re4

However, later numerical evaluation of the planar solution, Fig. 2, indicated
that Eq. (8) was incomplete: step-by-step determination of the constants ay

O

b A4
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did not converge in a satisfactory manner. Indeed, a review of the analysis
confirmed that at least omnc "missing set” has to be added to Eq. (8). .In
the ana‘ysis of the present paper this missing sct is determined. It is
O(m~%1og?m) and is the third general sct (it follows the two gencral sets
which are given in Eq. (5)). To proceed further with this analysis wouid
entail increasing difficulties. TFortunately, the limit of practical
interest has alread" been rcached: the order of the fourth general set
(appears to Le &~ log W and) 1s higher than the ovder 04 of vold sets which,
from numerical results, appears to be ® Alogx...

The span loading distribut?sus which belong te the clementaty sets
mentioned in the preceding discussion are illustrated in Appendix A.

A third aspect of the problem, also discussed in this paper, are
the numerical methods required to obtain a specific solution. For the
reference downwash w,(y), one determines Cg(1l) by truncatirg the given
infinite linear system to N cquations, matching the solution with the known
geuweral terms, and extrapolating to (1/N) = 0, For additional solutions,
one determines X (rather than Co{l)) in a simpler process. After the re-
mainder Ry has been determined, its leading terms are extracted; one is
then left with a final rcmdxndcr sct R“ which converges very rapidly. The
numerical proceduxc is self-checking since the leading coefficient Cjy is
calculated directly and the result must fulfill Eq. (2).

In the present paper, three additional solutions are presented

numerically. Thus one has available a three-fold variety of solutions by
linear superposition,

IZX. REFERENCE FORMULAS

The formula for the non-dimensional pressure function p = (l-}z)%p/q
is (1.5)

(1_y2) [Z CourNcos 2ug + Z Cypigr sin(zxﬂw] (9)

The local 1lift coefficient is (1.6)

)

C (y) @ ——=— CoxP 9
Ay Z WP oM (y) (9a)

P

o~




and the position of the local center of pressure is (1.7)

T2 ;
- - 2A+1)C P 9b
11¢2 57 2 (A aPA®) (9b)

The le(y) and Pq (y) are systems of orthogonal polynomials. The former
are the Legendrc polynomials, the latter their derivatives (Gegenbauer or
ultraspherical polynomials), normalized such that

Pou(11) = Py (F1) = 1 (all &,R) (10)
Thus
oy (y) = m—i—— S, (1)
) T FD (2arD) dy At :

The two sets of unknown coefficients in Eq. (9), the Cow and the
Cop+1, are fully interdependent. We introduce the abbreviation

Az A+ (12)

Then (1.13) reads

c
- _2AH1L
Co = EO 3T 0 "G "

(13)

ﬂho
o

IMs
i:l
i

We have available also the reversed form (1.19) of Eq. (13):

2
Coas T Y

,J‘

(14)
K=

(Note that the system Eqs. (13) fulfills Eq. (2) for any arbitrary set
Cop1 )
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Usually, the span louading Cq(y) is of more ilmmediate concern than
: the center of pressune}A(y) or the complete pressure function p. Hence
' the set Copy would appear to be of more limediate interest than the set
Cop+1- However, Eq. (9a) takes the form (0/0) as y=s 1; the important
tip value ql(l) is thus not immediately given by the set Cqy.

For this tip valuec we have the formula (1.22b)

m.
Cef1) = 8 EA Coat1 (15)

This formula has two interesting comnsequences. One, consider an arbitrary
set Ry which obeys Eq. (3a) (for instance, any finite set Ry is eligible).
According to Eq. (4), this set Ry does not contribute to Cp(l) (i.e., the

tip value of its pressure function p is zero). From Ry, calculate the set
Ry which corresponds to Ry by means of Eq. (14). From Eq. (15) follows

E -

FLg

m-
=12 Ry = 0 (15a)
A =0

for all such sets RA'

Two, using Eq. (15) in Eq. (9b) to determine the tip value of the
pressure center function, we obtain, noting Eq. (10)

§o = - T (16)

v for any pressure distribution (at least so if Cg(1) ¢ 0). This result is
B in agreement with the prediction of slender wing theory for the planar
elliptic wing. As an illustration, the pressure center function.r4(y) for
the planar circular wing is shown in Fig. 3. (The planar span loading is
shown in Fig. A3).

The given downwash w(y) entera the analysis in the form of its set
of Gegenbauer coefficients wg (1.39)

00

w(y) = ?:T; (s+1) (2s+1)w B, () (17)

@ We use here the notation w_ in place of the notation Gs of Ref. 1,




For example, for the planar wing (i.e., for our reference downwash wo(y))
E we have

wo =l o w =0 if w(y) sw(y) =1 (17a)

o] o}

The set of given downwash coefficients wg and the unknown set C,,, are inter-
related by the infinite linear system

00
‘ 1 1 1 2 )
; = - — - S— C
s T 238 [ w5 RAE+y k-5 d R as)

see (1.12) with (1.37). The notation
s+

is here used. It corresponds to the notation X, Eq. (12); in fact, the two
indices, s and A, play rather similar roles in the analysis (as we will sce
shortly).

The svstem Eq. (1B) is a convenient basis for our analysis because
of the relative simplicity of its matrix. It is directly equivalent to the
(less convenient) original Kinner system, Eq. (60) of Ref. 3. The alternate
| system

00
w. =T Sc (19)

see (L.14), relates the pgiven set wg to the unknown set C,y4.;. This system
is preferable for numerical work. ?t converges well because its matrix ci
differs little from the unit matrix (see Table IIIb of Ref, 1); on the
other hand, the cﬁ are too complicated for convenient analytical treatment
{see Table II of Ref, 1).
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Iv. THE OPERATOR §,

Using operator notation, we can write Eq. (18) as
\ -1
wg = 8(Coy); Cop = 5§ "(wy) {20)

Our problem would be solved if we could find an explicit form for the
reversed operator s-1, Realistically, we cannot expect to f£ind thls explicit
form in spite of the relatjvely simple form of S, However, we can determine
the salient features of S™1.

The operator 5 would be still simpler if the summand % in the denomi-
nator of the second term of its matrix would be zero. Indeed, when (+s)
is large, this % would appear to be negligible. Actually, as we will sce,
all the complications which make our analytical problem so interesting are
caused by this %.

Separating out the complication we have for Eq. (18) the form

-C OO0 1 1
= Z on , 1
= 28 + Z [ - — G

W=0 % z g2 7 X+5+L A+ ZA

= So(Cpy) + 51(Cyy) (21)

Elimination of C0 by means of Eq. (2) yields

2
-n C
Sa(Coy) = (2/5) /1.0 (21
0 pA'l é ni_sz a)
0 1 1
S1(Co) = L [ - ]u c (21b)
P sy Gyesyd

Of these two operators, Sy is dominant in Eq. (21); S; is of higher order.
With 35 we Tre already familiar, and we also know already its reversed
operator Sg~: we can write Eq. (14) as

Coptt = (1/T)SC00 5 Cox = Tsg (Cope) (22)

and can read Sal_directly by comparing Eq. (22} with Eq. (13).
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It follows that we possess alrcady a first order approximate
solution, namely, thc solution which arises when we set S; & 0. The set
Cyy can then be calculated from the given set wy by means of Eq. (20),
and the set Cpy 4y 18 equivalent with the set w_ since both sets arise from
Con by meane of the same operator (setting 51 & 0 1s equivalent with
replacing the matrix c§ in Eq. (19) by the unit matrix from which, in fact,
CR does not differ much). The brief table which follows 1llustrates the
degree of approximation which is recached in this manncr for our reference
casc, Eq. (17a). The first lime of the table gives the formula for each
coefficient, the seccond and third lines give the (rounded-off) numcrical
values, approximative and correct:

coefficient CO Cl —Cz Cl -C4 C5 -Cﬁ
2% 1M 43 0 4/ 0 47350
approx. i
0.2026 0.3183 0.1351 0 0.0270 0 0.0116 ;
correct 0.2238 0.3496 0.1446 0.0041 0.0307 0.0014 0,0135 (23)

One sces that the error made by sctting S; s 0 is of the order 10%.G

Because of the thus illustrated importance of the operator Sg, we
set out to investigate its properties in some detail. Since our results
will be accurate relations between the sets Cgp4) and Cop but only approxi-
mate rclations between wg and Cj,, we will write our analysis in terms of
Cop+1 (however,we will later use these results in discussing the relations
between wg and Copw).

We use the notation Ey for any ouwe of the clementary sets of wh
the solving set -Cpy may be composed. We do not stipulate that Ey has to
be a rational set {i.e., E, = W) but assume, on the basis of Eq. (3)
and of numerical experience, that Ey is a progression in M which converges
to zero smoothly as m-s00. We use the integer r to describe the range of
convergence between ®~F (included) and Wt (excluded), writing

E,= l'rgn (r =2) (24)

with g, = o(®) but not o(l). If Ey is a rat{onal set we have gy = 1; we may
also have, for example, gy = log"™n or gy = ®=.

The contribution to C2‘+1 which arises from Ey by means of Eq. (14)
we d3note by CZH-I,E; thus

@ See also Appendix D,
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00 I 1
Tc - Z 2 _ (25) |
20+1,E - ,
‘ The sum on the right we take apart by means of the identity
’ (2/R) - r-2 T

———— = - (1A 1+ (] &Y
(uZ_RZ)Hr'Z )E [ ( ] &)

ryd 1 1y r f1 1
+(1/o\){u_l- X () (n+X "_} (26)

Terms with ¢ arise if r& 4. Summation of these terms in (25) does not
pose any difficulty* and leads to rational elementary sets i}_ (x-2+
Cop+1» with (r-#+1) odd and % 3. More interesting 1s the final term on

the right of Eq. (26). For its contribution we use the following abbreviation: 1
=
ﬂ.Cu_'_l,E st (1/‘ ) Ol,x(f,n)

Thus

[ Sl or (1)
| Oml(g")'g 3w O (mFal) e (27)

From the point of view of analytical difficulties, the operator 0~x (Bn)
forme the nucleus of the operator Sp. ’

The details of the reversed operator sl are similar to those of Sp.
e Corresponding to Eq. (24), we write E, for the elementary sets of Cop+1 and

Ey =X gy (t2 3 (28)

@ If gy = 1, summation leads to the Riemann ¥ -function. If gy is more
complicated, it may be necessary to use Eq. (B2).
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From Eqs. (13) and (22)

8
- - —_
FCZ!,E 2 g RN TS 0 ¥0) (29)

An identity similar to Eq. (26) is used to tramsform this sum. Its terms
with # produce ra::onal elementary sets in Coy. There remains a final
operator which is rimilar to the operator Oﬂ,x(g‘):

- WCzn,E = ,,... + (l/l.t)Ox)l(gA)
with

[0 0]
o, ) =S {.;1 gt (3 -;)}SA (20

A=0 A+a

The two O-operators, Eqs. (27) and (30), are readily executed in
the case of rational clementary sets (L.e., ga =1 resp. ga = 1), They
then lead into the realm of the psi (digamma) function. One finds

4L,¢} even
0r (1) = if t is { i (31)
An { 0 odd
with
= 141 1 -1 -4
Ly=ltg+i++ Lo [\r(ﬁ%) \r(%)]
—+ k(loghty) + log 2 + 1/48¢2 + ..., (31a)
and
W (1/;)} ¢ even
0 1) = if r i (32)
R { -4Ly Y }
where

Ly = Ly + (1/4%) - log 2 (32a)
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The significant observalion here is that the O-operators can produce
logarithmic elements from rational elements Ey resp. Ej.

If we apply the preceding results to the tentative assumption, Eq. (8),
that only ratioual elements W' occur in Ggy, we find that the corresponding
alementary contributions CZ&+1,E have the following form:

Teoptr,p = (A5AD) + (A5/A%) + ASATy + ... (33)

The factors A: are glven by the following matrix:

5 5 ;A
=2 | L* 0 0 0
3 4Ly 0 0 0
4 23(2) 1 0 0
5 -2%(3) -4Ly, 0 0
6 ~2¥(4) -2%(2) 1* 0
7 -24(5) -2%(3) =4Lx 0 (33a)

As expected, this matrix contains logarithmic elements. It follows a simple
law and is easily extended; also, it is easily reversed,

Conversely, no logarichmic elements can arise if the operator syt
is applied to Eq. (33) to regain the elements of Cy This explains, see
Eq. (31), why only terms with t odd occur in Eq. (3;} Interesting is
the observation that the operator Op , (g,) even eliminates the logarithm
from the elements with Ly . To this’ observation we will return later,

The main result of the preceding investigation of the operators
So and Sg~ is that their nuclei are the two O-operators. A stimulus for
investigating the latter further will arise when we consider the complete
relations between the sets C,, and wy. Befare we turn to this tagk, let
us utilize Eq. (33a) to take a look at the actual solutions, the sets
Coy and Cop+1, for our reference case Eq. (17a). :

Let Gy be the negaiive of the general term in the [J-bracket of
Eq. (5):

6 =+ [$2 -3 ]

Go=-[%2-w3] o (34a)
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In Fig. 4, the ratio Cyy /G, 1s plotted over M. For X - o, this ratic
should converge towarxds 04?1)/41'2 0.12677. Indeed, after an initial
disturbance around k=1, couvergence is both rapid and smooth.

From Eq. (33), the set G, which arises from Gy is
G, [1 + 1y J/meR (allA) (34b)

The ratio C2A+1/QK is also plotted in Fig. 4. There is again smooth con-
vergence, but convergence is now slow. Indeed, all the elemente W% con-
tribute elements O(A~3) to C +1, see Eq. (33a). Thus, while the components
A-3logA should have correspoﬁéing amplitudes in Cpp4q and Gp, already the
components O(A-J) are likely to be different, Slowness of couvergence is

an obvious consequence,

A final remark: the formulas of this section can be used to derive
certain summation formulas of mathematical interest. This is discussed
in Appendix B,

V. THE DOWNWASH CONDITIONS

In view of the normalization Eq. (10), it follows from Eq. (17) that
the downwash coefficients wg must converge o(s™”) if the tip value w(l) is
to be finite. If one differentiates Eq. (17) once, one finds that the
derivatives of the Ppg are of order 82 at the tip; hence in order that w'(l)
be finite, the wg rmuat converge o(s-3)., Further differentiations impose
further convergence conditions of increasing severity. However, as already
indicated, there will be no need for us to drive our analysis beyond

0¢s~4),

We have to use Eq. (20) in order to translate tlie convergenge Con-
ditions for wg fnto conditions for C,y. At first, we make again the
tentative assumption that Cu is composed of rational sets Ey, Eqs. (6),
(8). For these sets, we know already approximate elements wg g, namely,
the elements W Cop+1 E of Eqs. (33), (33a). (We have to repiﬁce A by s,
of course.) To thesé we have to add as corrections the contributions of
the operator Sy. As we do this, the regular form of Eq. f33s) is lost,
and there is then no longer an advantage in using the abbreviations § and
L:. Therefore we write our results in terms of s and log s:

00

o ,E = %E‘;’ [(]_og s +r)85 + C:J/s’, (s * 0) (35)

[T T———
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It turns out that the matrix of coefficients B, is (about) a tri-
angular mstrix, with zerous below a zigzag line along its diagonal, The

matrix Cr 1s a full matrix, Of the two, we will ugse explicitly only the
following coefficients:

BY ¢l BY
r=2 | -1 | 42.5 2.25
r=3 -4 -§(2) 7.3
24 o 1 -[ay(r-2) +3-1)] 0 (350)

Both matrices, By and CJ, must have their basis in the matrix AJ,
Eq. (33a). Specifically the mechanism which produces BX is as follows:
this matrix must arise from the log-terms -41%  in E . (33a). For
example, the cogfficient Bg corresponds directﬁ& to A From this, contri-
butions to Bz,Bg .3 arige in two ways. One, from developing the factor,
X3 in Eq. ( 3), 87 in the case of Vg, Es in terms of powers s™3,s”
Two, from the operator Sy

g

The mechanism is the same if r=2, in principle at least, even though
there is no log-term for r=2 in Eq. (33a). The point is that in principle
there is a log~-term A%. Ity factor is zero because now r 1s even in Eq. (32).
But Eq. (32) does not apply to the opergtor S;. In consequence, S creates
non-zero nigher order coefficilents BS,By,B5, ... .

The mechanism for all r odd is similar to that for r=3, and for r
even similar to that for r=2. The result 1s an almost trlangular matrix BT,

The farst non-zero coefficients on successive lines r are B%,Bs,Bg,B5 Bg

By a similar mechanism, a full matrix CE arises from the constant
coefficients in Eq. (33a). Because of this, it is readily possible to
fulfill successively the conditions that the rational terms s'3,s'4,
in wg should have the factor zero, Combine Egs. (5), (8) to read

-CZK = rz=2: (ar/xr) so that w, Z (a Mg, B (36)

r=2

@ This is as described in the text which precedes (1,42). Regrettably,
the manncr in which the oxrder of the remainder terms are written in both

(1.42) and (2.21) is incorrect Both equations should be corrected to
agrec with Eq., (35a).
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One simply has to use a sufficient number of elementary sets ' and has
to determine their amplitudes a,. such that the conditions

% arCS =0 (36a)
r=

are fulfilled for all required values V.

Conversely, it is not poesible to extract more detailed conditions
for the a, from Eq, (36a). Hence, in what follows we can disregard the
rational terms as neither causing complications nor providing useful informa-
tion.

Specific conditions arise from the log-terms, however. First, the
factor to the terms s'3log s is zeroY, from Eq. (35a), 1f and only if

ag = —a2/4 (37)

This result is already incorporated into Eq. (5).

In order to prdceed beyond this result of Ref, 1, we have to eliminate
next the term s'“log s. Here we encounter an obstacle. Because of Eq. (37)
we have now, due to Eq. (35a),

wg = (3/16) ap s™log s + ... (s # 0) (38)

This term is different from zero because, in general, a, = Ce(1) /4F# 0. No
further set is available in Eq. (35a) to cancel this term.

The inescapable conclusion is that Eq. (38) requires an additional
elementary set in Cyy, a set that is "foreign' to the rational sets u-%
which are represented in Eq. (35a). Applied to this "missing" set, the
operator § must produce a contribution which cancels the leading term in
Eq. (38) but must not contain lower order terms (disrcgarding lower order
rational terms).

@ We omit the g of Eq. (35) for simplicity. If we wish, we may consider
as part of the rational term,
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VI, THE MISSING SET E?L

The task of finding the missing elementary set would appear to
imply that one has to try various likely sets, apply the operator 5, and
hope to obtain a result suitable to cancel the term Eq. (33). Since for
transcendental sets the required summation formulas are not usually
avallable, the task as thus described would appear to be formidable.
Fortunately, we have availabie an argument that reduces the same task to
a direct form which, furthermore, requires only the performance of analyti-
cal integrations.

In view of Eqs. (26/7), we write the missing set as
Ex = n"gy (39)
The operator Sy produces the following contribution to C2A+1

T Copan, pr = ~255 (D /K + 0, T(e /A’ (39a)

where
RERD
(r) =2 —=
8 1

Assume that we can find g, such thaa the result of the O-operator in Eq.
(39) produces logA as leading term, Then the corresponding contribution
of the operator S; will be of the general order A'S; this contribution

is thus not here of interest. Hence we can use the same O-operator for wg;
the leading terms here are thus found to be

Vs, E* ™ -2[Sg(2) + % Sg(S)J /83 + s=%log s + ... (39b)

¢ The logarithmic sets Ly and 1& which we used earlier were defined for
alls and all); in particular, Ly=0 and L0==% - log 2. Just as we used
log s instead already in Eq. (35), we use henceforth also log A even though
log 0 does not exist. This formal procedure simplifies the analysis, and
it is justified because we are concerned only with the asymptotic behavior
as s resp. X resp.A wpoo. It is readily shown that in this respect the
formal analysis leads to the correct result,
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The log-term in Eq. (39b) can be used to cancel the term Eq. (38).

Further, since we had to use only the O-operator of Sj, not of 5y,
we can reverse the process. Again disregarding rational sets, we have for
the missing set from Eq. (30), since gg = g/,

g = 05, (log /% (& =4) (40)

Equation (40) puts the task of finding the missing set into a direct
form, This form still involves inconvenient infinite summations over pro-
gressions which involve log s. However, agailn because we are only inter-
ested in the leading term, we can deal with these summations by the method
of corresponding integrals. (Essentially, this means using only the lead-
ing term on the right of Eq. (B2).)

With t=4, we have from Eg¢s. (30), (40) formally

00
Ty == (2-L - L )1ops (1)

s=0 5 8-W stn

This sum, after some rearrangement, including folding of its middle term,
bezomes

00
Mts 1 . 2
s+}‘; SZ-O +35 [ s-1 sz_.::._ s+ log (1-(¥/s)%)

2‘2‘_ log s
8=0

The corresponding integral of the second of these three sums is

-k 1
| log M dx . [ 1o Lu du 7' + oY (42a)
n-%-x x (2&-1)-1 l1-u u

The integral which corresponds to the last sum is

® 9 2
[ log(1-(/w)?) _dx = ! log(1-ud) __du = - T 4o} (42b)
o x+% s(hy 12

T
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Neither contribution is here of interest., The leading contribution arises
from the first sum:

21 X dx = 21 Log(u-%) St = 10g%k + 0(1) (42c)

As we had to expect, the lcading contribution 1s not a rational set. Also,

note that this contribution arises as s-##&; clearly our formal precedure
was justified,

We can now list the sets (leading terms only) which belong to E* in
wg (from Eq. (39b)), Coy and Cop+1*

v i% | “ComEx | Convl,Ex
log s 1og?'& log A
4 T2t L (43)

This list completes the task which was set by Eq. (39). We use Vg Bt LO
: cancel the undesirable term on the right of Eq. (38) and arrive at’a more
| detailed form of Eq. (5):

! _ 1 1 3 log2k ) Sa(D
| CCpem Lo Ly dle® iy Gan C44)
25 I w3 e ] K.

l To the new set E* in Eq. (44) belongs, because of Eq. (43), a set
5- in Cpp41 which is not contained in Eq. (33a). This term was indeed found
; in a numerical analysis of the set Cop4q, Fig. 4.

Equation (44) esscntially completes the task of describing Che struc-
ture of the solving set Cpy. It disproves the tentative assumption Eq. (8)
and implies that to proceed beyond Eq. (44) would require a more involved
analysis. In particular, in using the method of corresponding integrals
for E* we neglected the higher order terms which we would than nned.

! Fortunately, as already mentioned, there is no practical need to drive the
analysis any further.

We round off this discussion of the sats E* o showing that the
: relation between them, Eq. (43), can also be derived by applying the method
i of corresponding integrals in reversed ordcr.

e amy Semmmma e tEaie s o A e e =
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From Eqs, (27) and (43)

[o.0]
?2"5,15* - v L -1—) logZx, {45)

Kellx-5 M+3

By rearrangement, the sum becomes

- 8
_].Qg:‘:ﬂg)_ + 2 ;}'; [1082(u+l0 - 1052(5-n+1)J

K=l

00

+ E ....1.. [logz(uﬂ) - 1032()1.-6-1)]
N=g+2 -

The single term is of no interest and can be dropped. The corresponding
integrals for the sums are

8-1 oo
;{ [10g2(5+x) - logz(é-x)J % + 5311 Llogz(x+§) - 1ogz(x-§)] -‘-%

Setting x=us in the first, ux=s in the second and combining, we arrive at
the following integral

1
r 1. l+u du
20‘ [2 log s + 1og(u u)] log it

after the limits of the two integrals have been replaced by their values

for s=poo. We have here the integral Eq. (42a), multiplied by 4 log §,

and a further integral which is 0(1) and not hece of interest. Inserting
in Eq. (45), we confirm Eq. (43).
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VII. INTERPRETATION

Since the solving sets Cop converge with increasing slowness as K
increases, a lengthy tabulation would be required should one wish to com-
municate a given numerical solution without knowing the structure of Cay,
Eq. (44). Beczause of Eq. (44), one has to list only the number C,(1)
plus the much faster converging set Ry. We refer to the problem of deter-
mining the structure as the "inner problem" and tc the problem of calculat-
ing Cy (1) as the "outer problem". With the latter we will deal in the
next section and conclude the discussion of the former in the present
section,

First we collate our results, Eqs. (31), (33a) reversed, (43) for
the operator 05 “,For this purpose let
]

wg = 8'gg and -Cg, = Kty /T2

Again only the leading terms of each set are listed:

&s ' Eu,t even Ex, t odd
1 2 log n 0
log s log2& -1/2 (46)

In general, the gy are 0(log"w) and are thus within the convergence range
defined for g-sets. In all these cases, neither O-operator alters the
genexal order of convergence, i.e., r=t. The two exceptions are borderline
cases, gg=l with t odd, and gy=1 with r even, see Eg. (32).

The operator Oz , increases the power of the log-function by one if
t is even and decreased it by one if t is odd, Its reversed operator
Oa,g increases the power when r is odd and decreases it when r is even.

This observation we extrapolate to speculate, in a heuristic manner,
abzut further st uctural details beyond those given in Eq. (44). Sets
R *logn and W produce only rational sets s> (if we disregard t X 5).

There is thus no obvious reason to expect these sets in the general term
of Cp,. Rather, if we accept the scheme Eq. (35a) up to 0(s=4), then
(again because the matrix C; is a full matrix) these two sets are the first
sets for which there is no detailed general condition for their amplitudes.,
To this observation corresponds the (numerical) result that these two sets
are the leading sets in the remainder R, of Eq. (44).
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It follows that the next general term should be of the general order
r=5. Note that E¥ produces, besides s~%log s, also a potential term
(having the factor zero) s'ilog3a. The latter spawns a term s~>logls via
the operator Sy; to cancel this term, a term u'5logzx is required, This
then would appear to be the fourth general term.

Whether or not this speculative result is correct, the point is clear
that complications would increase rapidly. With these we are not going to
involve ourselves any further. Instead we rewrite Eq. (44) somewhat for
the purpose of representing numerical solutions.

A modification is that we combine the first two general terms in a
manner which producee a simpler contribution to wg:

Con,E 8vs E
1.1 [10 +%2)] 73 + 1.5 87410
_— ™4 8 8 s
4 -3 +1 =41
adD 10 s .5 s OZ 8 ..

The difference between the iwo forms of Co) g 18 O(uTa) and is thus not of
concern in the general term (it does of course affect RN?'

From the remainder Rnwe split off its two leading terms. Thus

2 Co(1) =
l 4 3 log™n 4 1 [ ] =
-G = - —_— e — b,L.+ + R 47
sl CYZETRRPTR FUN BT U R " “n)

To represent a given numerical solution, we have to list the three constants
Ce(D), b, and ¢, plus the final remainder Ry We will find that the latter
converges very rapidly.
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VIII, THE OUTER PROBLEM

Even though Eq. (47) gives more details of the structure of the
general term than Eq. (5), it would still be difficult to extract its
amplitude C,(1) from a given (and necessarily truncated) numerical set Cop
The use of Eq, (15) and thus of the set Cgy 4y appears preferable.

We mentioned already above at the end of Section II that for a given

wing one has to determine QL(I) only for the reference downwash wo(y) ~ ],
In Ref. 1 the extrapolation formula (1.52) was used for this purpose and

led to the approximate amplitude
C (1) & 1.5931 (48)

We show in this section how this value can be improved by utilizing our
neyly derived knowledge about the structure of the set Cppyy.

Write Eq. (15) in the form

N 00
Cu (1) = 5(N) + a(N) = 4% (2AH1IC, s + 4 g] (2M1)Cyy 4

For a given (truncated) numerical set C +1: the sum S(N) 1is readily calcu-
lated. To explore the structure of A(N), write

Dglogh + Dy N D,logh + Dy
(2a+1) 2 (2A+1)3

in agreement with our earlier results, Using Eq. (B2), then

s() = [(1 + log MD, + Dl](_;r:_jﬁi +

This shows that the curve S(N), plotted over u = (1/N), has a vertical

tangent at u=0, Its cxtrapolation to u=0 (in order to obtain Cp(1) = S(o0))
would be rather unreliable.

The vertical tangent is eliminated if one uses the method of Ref. 1,
writing

q‘(l) = S*(N) + a*(N) (50)

o~
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with
S*(N) = S(N) + lm(..”.N+1)Cm+1 (50a)
Then
4N+3 2N
*(N) = ————— D, - [(log N - 3)D, + Dy | —m+ ... (50b
¢ (2m1y2 0 [og 2 * D3] (28+1)3 )

The curve a*(N) has the form O(u), and the curve S*¥(N) therefore has the
form QI(I) - 0(u). Extrapolation has now bacome much more reliable.

To improve the procedure of Ref., 1, we make use of the fact that the
constants Dy and Dy in Eq. (49) are directly related to the unknown QI(I):

2 2
Dy = C(L/T? 5 D, = -3¢, (/4T (51)

from Egs. (33),(37) and (4) for Dy, Eqs. (43), (44) for Dy, In other words,
we match our extrapulation procedure to the known structure of the set
Cop+1: (The constants D; and D3 are related to the remainder R, rather than
to the general term and are hence unknowns; note, however, that D; does not
appear in the leading terms of Eq. (50b).)

Inserting first only Dy, we write

+alog’ﬂ-b+

4N+3 e (52)
T2(2N+1) 2] (2§+1) 2

G = s*(N)/[ ;

We can plot the first term on the right, S%/[], and know that its curve,
extrapolated to u=0, has to have a horizontal tangent at its end point C/(1).

The steps which we discussed go far are illustrated in Fig. 5. The
almost vertical line S* at the left is the interpolation curve of Ref. 1.
There are two curved marked S*/[]; these illustrate the remarkable increase
in reliability and accuracy that is achieved by imserting the relation
between Cg(1) and Dy, The lower of the two curves is constructed using the
values C§A+l’ the results of solving the reversed system Eq. (19), truncated
at A= R, The curve through the points which have thus been calculated for
a number of values N must reach C4(1) at u=0, but we do not know its shape
near its end point,

To obtain the final (upper) curve, the values CN +] were extrapolated
to N = oo for each A. Through a remarkable coincidence, it was possible to
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construct a curve, through the thus calculated points, using only the last
written out term on the right of Eq. (52), without allowing for any addi-
tional terms, and using constant numbers a and b. This curve is shown in
Fig. 5. It connects all calculated points to within drawing accuracy (no
points were calculated beyond N = 40) even though the vertical scale of
Fig. 5 is highly stretched. The first noticeable deviation between points
and curve occurs to the right outside Fig. 5, at N = 10.

The end value of the new curve is Cp(1) & 1.5930904, It confirms
the result, Eq. (48), of the less sophisticated extrapolation of Ref. 1.
However, it is clear that the new value cannot be quite accurate. One, we
cannot cxpect that the higher terms in Eq. (52) are entirely negligible;
two, the number a in Eq. (52) should be related to the end result C4(1)
via Eq. (51). Making use of point two and allowing for point one we found
Ce(1) & 1.5930884. The smallness of the difference between the two new
values indicates the order of accuracy which one achieves with this extrapo-
lative method. The last decimal of the last value is to be considered
uncertain.

In the tabulation of the planar solution, Table I, we will use the
amplitude number

ag = 0.1267740 (Table I) (53)

From it follows C‘(l) = 41Ta2 = 1.5930890.. . This number a, is treated
in Table I as an exact number. It allows to construct C to 8 decimals
even though ag itself is given only to 7 decimals. To tﬁ?ﬁ point we will
return later.

IX. THE PLANAR SOLUTION

In the last section we used the truncated set C§A+1 which was obtained
by solving the truncated linear system Eq. (19). The corresponding
set Cg is calculated by means of Eq. (13). Again the final solution Coyhas
to be gbtained by extrapolation.  However, convergence as Ne®»oo is con-
siderably slower in the case of C3, than in the case of C5) 4, and the re-
quired extrapolative procedure deserves a brief description,

Two successive results, Cgil and Cgu’ differ because of two independent
reasons., One, correspording elements ngil and C§A+1 differ. Two, the
new term Chyiy is added in Eq. (13) when chy 15 calculated. The
second cause has by far the larger effect. Taking this into account, we write
for N large on the basis of Eq. (13)¢

@ A factor % has to be added when M = 0, However, the extriupolative pro-
cedure is the same for all N.
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N, N1, Ny Ny
“Cow * Cou ¥ by = T2 (1-¢) (54)

The number & is introduced here to cater for the first effect. Numerical
testing shows that ¢ 1s small compared with 1.

To simplify further, we replaced CZN+ in Eq. (54) by Copnyq from Eq.
(49) with the higher constants Dy, D3, %1 set equal to zero. Using
this simplified form, we calculated & for N = 37,38,39,40, We found that @
changed little with WK, and changed even less with N.

If one assumes that @ is sufficiently independent of N, one can,
using Eq. (B2), sum for cach & the All to N=oo and obtain a tentative final
solution Cyy,. To check the result, we repeated the procedurc using N = 60.
Since, within our accuracy requirement, the result was the same, we accepted
it as the final result.

We calculated the a to 12 decimals. About 2 decimals are lost in ?
the summation. The further calculation was done carrying 10 decimals. The
final result, R“, is tabulated to 8 decimals in Table I

In Table I, the planar solution, presented in the form of Eq. (47),
is denoted by Czu o to distinguish it from the other solutions, Tables II to
IV, The set 02! o is tabulated to ¥ = 15, and the remainder Ry (which is
CZ&. o plus the géneral part) is tabulated in the second column.g

To split off the leading terms of Ry, see Eq. (47), one proceeds as
follows. One chooses a tentative pivot point ® = p. The amplitudes b, and
e, are determined from the two conditious

= P _
a) §p=0 ; b) zoﬁ (55)

Condition b) arlses from Eq. (2) due to the fact that all the sets in the
general part as well as the two leading sets of Ry fulfill Eq. (2) individ-
ually.,

Of course, the goal is that Rxe 0 for all W& p. If p was chosen
too small, then this will not be the case. The tail sum of R,‘ will

still be zero, but the values Ru beyond R = p will describe a wavy curve
around the zero line. On the other hand 1f p was chosen unnecessarily

large, significant decimals will have been lost, and the constants by and
¢ will be ill-defined.

In Table I, R < 0, 5x10 already when &= 15, Thus knowledge of the
structure of Coy, Eq (47), has enabled us to represent the slowly converging
set Cgy in a relatively very brief table to very high accuracy.

# The leading constants Co g of the here required sets CZ& E are given in
Appendix C.
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Table I can be used to reconstruct Cj, to about the accuracy of Ru,
that is, to about 8 decimals. 1In doing this, one has to treat the constants
az, b, and c, as exact numbers, even though these constants are given to 7
decimals only and are only approximations of their mathematically defined
counterparts.

The inaccuracy just mentioned, the differcnces between the listed
constants and thelr mathematically defined values, interferes, to the
accuracy of Table I, neither with the validity of Eq. (2) nor with the
manner in which ﬁudoes converge, Namely, these inaccuracles affece columns
2 and 3 only as fdar as the first few values (for X = 0,1,2..) are concerned,
and the sum of these values is zero, for each column, closely enough to
cancel out the discrepancies,

The first few values ﬁn in Table I are not claimed to represent thelr
mathematically exact images accurately to 8 decimals, but they are accurate
to 8 decimals if the purpose is to reconstruct Cj),. (At the higher values
of X, of course, the lnaccuracies in question affect only decimals beyond
those listed.)

In the process of calculating the set Cp,, including Cp, no explicit
use was made of Eq. (2). The fagt that it was possible to extract after-
wdrds a smoothly converging set Ry which satisfics Eq. (2) serves as an
overall confirmation of the numerical procedure.

It might seem contradictory that, while it is relatively easy to
determine the set Coy to very high accuracy, it is considerably more diffi-
cult to determine C¢(1l). The point, already mentioned, is that Co, defines
the span loading q‘(y) well enough over the inner part of the wing but not
near the wing tip. An illustration of the tip region is Fig. 6. Curves
Co(y) are shown which have been calculated with Eq. (9a) truncated at
N = 20,25,30,35,40. All these curves turn to + oo as y - 1, where cor-
rectly, from Eqs. (5) and (A4), (see (1.47a))

3 = 1 - 4 290
Co(y) [1 + 1 (1-y2)¥ 10g - ] e (56)

To obtaln the curve C;(y), one has to fair the curve Eq. (56) into the curve
for N=40, say, at about y=0.98. The result is shown in Fig. A3,

Note that the key which makes this matching process possible lies
in the fact that certain analytical functions, Eq. (A2), have Legendre
coefficlents which behave asymptotically like the rational sets w-F.
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X, ADDITIONAL SOLUTIONS

The principle which allows to calculate additional solutions quickly
once a reference solution has been determined was already indicated in Eqs.
(6) and (7). We have used this principle to calculate the three solutions
02.’1 for the downwash distributions

wi(y) = Boy(y) (i =1,2,3) (57)

Together with the reference planar solution Cox.0s these solutions form a
set of four independent solutions (and thus repfesent, by linear super-
position, a three-fold multitude of solutious).

e sets Cgﬁ § weregcalculated for N = 60. By comparing the tall of
a set Cy, 4 with that of C 2w, 0y @ Preliminary value X was obtained and, using :
this valué, a preliminary void set CE‘ iv Was calculated. Since for this set ;
the constant Dg in Cop4q is (almost) zéro by definition, extrapolation to
Neoo is simplified. e vesulting sel is treated essentially like the set
Ry in the referxence case, cxcept that now there is, in addition to by, and ¢y,
a third parameter,namely, a small adjustment AX to X, This parameter is
necessary to make the final remainder Ryconverge towards zero without waviness.
In this numerical step, we again carried 10 decimals. No difficulty was
encountered when p = 25 was chosen as the pivot point. The results, again
rounded to 8 decimals, are listed in Tables II to IV.

A graphical presentation of the four soluticns QI,i and their respective
downwash distributions w, is Fig. 7. All curves C; y form a downwash hook
near the tip with a vertical tangent at the tip itsélf; however, in the pre-
sentation of Fig. 7 this hook is too small to be recognizable when i=3 or
i=4. 'The corresponding void curves q&,iv are shown in Fig. 8.

The relative scales of Cp i and w; are chosen in Fig. 7 such that
C4 o and wg have about the same Amplitude. For i#0, the amplitudes of the
waves in Cp ;4 are much smaller than the amplitudes of the corresponding weves
in wy, The’ amplitude ratios correspond roughly to the ratio between half-
wave length and wing span (this is what one would expect from slender wing
theory).

An interesting obsexvation is the following: one may form the ratio
between two integrals over the wing area, the lift integral and the downwash
momentum integral, For a planar wing this ratio is %CL. For the void parts
of the solutions i = 1,2 and 3, this ratio is found to differ from that for
the planar wing by less than 1%. 4s one calculates the same ratio for the
complete solutions, Fig. 7, small differences between large figures have to
be formed, and the resulting ratio varies somewhat more, between 0,895 for
i=0 and 0.821 for i=3. The indication remains that, as far as the total
1lift of a given wing 1s concerned, the details of how the total downwash is
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distributed over the wing span are of relatively little relevance. The
details of this distribution tend to have negligible effect on the outer flow.

We have discussed in this section only the span loading functions
C‘li(Y)' The complete pressure distributions p(8,y) of closely related
50

utions are discussed in Appendix D. These provide further interesting
ingight into the mechanism of lifting surfaces.

XI. GENERALIZATION OF THE SOLUTION

Pressure singularities of orders -% (l.e.) and +% (t.e.) arise due
to linearization at those wing edges which cross the direction of the undis-
turbed flow. These singularities are well understood. The wing tip problem
is the problem of the transition, between the two types of singularities,
where the wing edge becomes parallel to the flow. This problem is consider-
ably more involved, We wecre able to resolve it for the specific case of the
circular wing because here a complete set of analytical relations of relative
simplicity are available: the elementary pressure solutions in Eq. (9); the
reversible relatlon between the two sets of coefficients, those for the span
loading and thosc for the chordwise moments, Eqs. (13) & (14); the relation
between amplitude coefficients and downwash coefficients, Eq. (18).

Corresponding analytical tools are not available for wings of arbi-
trary planform, and it will not readily be possible to determine the details
of the solutions for such wings to the extent that we did in Eq. (47) for
the circular wing. On thc other hand, it is in the nature of the lifting
surface mechanism that the type of pressure singularity which arises at a
local wing singularity is not affected by the far field from other parts of
the wing. For the circular wing, we found that the leading part of the
pressure singularity is independent even of the slope of the downwash dis-
tribution at the tip and is determined solely by the geometric tip shape;
the remainder part which describes a particular solution goes to zero and
does so of higher oxder as the tip is approached. The essence of this
observation must be valid for all wings having parabolic wing tips, and the

reference length for the coordinates which describe the tip singularity must
be the wing tip radius Rp.

Since to bring this qualitative statement into a detailed quantita-
tive form would require extensive further investigations, we confine our
present observations tc a few main points, In particular, we do not concern
ourselves with details of the pressure distribution (which we did not discuss,
beyond Fig. 2 and Appendix D, even for the circular wing). The span loading
distribution is more readily discussed since here we have available certain

i
analytical functions which conveniently describe the leading terms of the :
limit behavior at the tip.
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The analytical functions in question are those whose sets Fg of
Legendre coefflcients converge like the rational sets Ey see Eqs.'?hZ,Za).
Hence we can represent the first two general sets of Eq. (44) as already
shown in Eq. (56) where, on the right, we should add a remainder function
R(y). Howsver, we do not have a corresponding analytical function for the
set hfalog wn. A further difficulty, discussed in Appendix 4, is that already
a set 0(W-4) might have a finite tangent at the tip, Fig. Al, or a vertical
tangent, Fig. A2, To decide on this point one has to review the complete
set, not only its rate of tail convcrgcncea. To avoild further discussion of
such higher order detalls we confine our further attention to the two terms
already given in Eq. (56).

Let b be the wing span, so that u = (l-y)b/2Ry is the proper spanwise
coordinate for describing the wing tip singularity asymptotically near the
tip y=+1. Here (l-yz)z 2u for the circular wing. For general wing plan-
forms, we can hence write the local lift £{y) as

- L(1-y2 LI I
P 4¢%) {[1 + 16((1 y )b/ZRT) log (1_y2)b] Cp (1) + R(y)} c(y)q (58)

We use the wing chord c(y) since the curve A(y) tends, to a degree, to
imitate c(y) over the inner part of the wing. Considering two wings having
the same tip radius, the difference between the two chords is 0uc(y)) near
the tip and 1s hence of higher order.

The complete lift function.‘(y) has a vertical tangent, but it differs
from the parabolic type O(u?) of c(y) by the log-term. The remainder
function R(y) of Eq. (58), taken by itself, may be expected to go to zerc
about like O(u%).

The generalized form of the solution, Eq. (58), is valid for any
aspect ratio and thus in particular for the slender wing. For the elliptic
wing, slender wing theory predicts an elliptic span loading, that is, Eq.
(58) Bithout the log-term and without R(y). The log-temm is of the order
u(AR)“log u if AR the aspect ratio. It follows, as a sample application of
Eq. (58), that slender wing theory is valid strictly only in the limit AR=POQ,

@ The void span loading curves Fig. 8 represent void functions R(y) and
appear to have finite tangents. However, it might be that the smali com-
ponent O(m-4logw) in Ry enforces a vertical tangent; this detail would not
be visible in the scale of Fig, 8.
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XII. CONCLUSIONS

In Ehe earlier paper(l) we had shown that the apparent divergence of

the Kinner(3) geries is eliminated by the physically necessary condition that
the infinite set of span loading coefficients Cog has a zero sum, and that

the properties of the sum of the Kinner series can be investigated by means

of the sets of Legendre ccoefficients of certain analytical functions. We had
further shown that, in order to have a finite downwash inside the tip, the span
loading function must have a logarithmic component.

This earlier analysis is pursued further in the present paper and is
brought to its logical conclusion. The duality between the set Coy and the
set Cohyy of moment coefficients is worked out, and the close relationship

between the Cgp4) and the downwash coefficieuts wy is formulated and is
utilized.

It is shown that either C-set has to contain logarithmic elementary
sets in addition to rational sets, and the asymptotic description cf the
pressure singularity at the wing tip is counstructed. Its elementary sets
are identified up to the order of the 'void" part of the solution, the
latter being that part of a specific solution which distinguishes it from
a reference so}ution. The void part converges to zero at the tip, essen-
tially like u3/2 if u is the distance from the tip referred to the tip
planform radius Rr.

With the structure of the solutions thus identified, it becomes
relatively easy to calculate numerical solutions to very high accuracy, in
particular once a reference solution has been determined. Furthermore,
only a short tabulaticn is required to fully describe such a solution.

The mailn analysis of this paper deals specifically with the circular
wing in incompressible flow. The form of the general solution for arbi-
trary wings with parabolic wing tips is briefly discussed. This form shows
in particular that the result of slender wing theory is valid strictly only
in the limit of zero aspect ratio.

Certain conclusions of direct engineering interest can be drawn from
the calculated gample solutions for the circular wing. One, the detalls
of how the total given downwash is distributed over the wing span affects
the total lift relatively little., Two, a spanwise wavy incidence distribu-
tion is well reproduced by corresponding waves in the pressure distribution
along the wing leading edge, but over the rear part of the wing no visible
waviness in the pressure remains (assuming, of course, that the wavelength
is relatively short).

A by-product of the analysis are two sets of formulas of general
mathematical interest. These formulas connect the sums of infinite pro-
gressions involving the §-function (and thus the logarithm) to the Riemann
:s—function and seem to be the first formulas of this kind,
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Planar Solution 02“’ 0

3

w C2a,0 Czu,o*”“z | Ru
0 + 22375288 | +.04654659 | 1,N0184543
1 - 14455/78 | -.04313858 | -.00148142
2 -.03065010 | -.00255042 | ~-.00030011
3 - 1349032 | ~-. 52375 | - 4664
4 761010 | -. 17088 | - 1125
5 489108 | - 7158 | - 355
6 340778 | - 3510 | - 134
7 251341 | -. 1619 { - 57
8 192964 | -. 1137 | - 27
9 152820 | -. 716 | - 13
124027 | -, 473 | -
102674 §  -. 325 | -
86400 | -. 231 | -
- 73712 -, 168 | -
- 63628 -. 125 | -
- 55481 - 96 (r315)
3 1og2& 1
C + - &n + —(b, L, + ¢c,) +
28,0 2 st oy
" [x(tmﬂ) 16ﬂ2p\4] n#
ay = 0.1267740
b, = 0.0029655
¢, = 0.0416545
wo(y) s1
Table I.
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Lip, 2 .
Cox, 1v *_?‘54Lu,+ e) Ry =0

. 32,= (4]
by = 0.0086548
ey = 0.1053370

X Cox, iv Ry,

0] -0 12| +,20721931
1|  +.10240765] -.21639945
2| -.01601144 | +.00870664
3 -.00186437{ +. 40008
4 - 523611 +. 5546
5 -, 20553] 4+, 1224
6| -. 9737 +. 355
7 -, 5216 +. 124
8 -, 3048 +. 49
9 -, 1902] +, 22
10| -.  1248] +. 10
11 - 854 +. 5
12| -, 604) +. 3
13 - 439) +. 2
14 - 3271 +. 1
15 - 29| +, 1
16| ~. 192 mx16) 0

W) = Bpy) - X = (y? - 1/4 - 0.4324159

Table II. Solution CZM, iv




" Cow, 2v Ry
0 | -,05930407 | +.30776604
1| +.04670161] -.27618971
2 | +.02349934 | -.03789344
3 | -.00856274 | +.00571340
4| - 137425 + 47133
5| -, 46234 ] + 9207
6 | -. 20422] + 2548
7| -. 10521 + 865
8| -. e00L] + 337
9| -. 3683] + 145
10| - 239 + 67
' 1| -.  1620] + 33
: 12 -. 1138 + 17
13| - 823 | + 9
%] - 610 | + 5
150 - 46l + 3
16| - 357| + 1
17 | -. 280 | + 1
18 -. 222 (ua18) ©
{
C2x, 2v +£lz(b41’n+ ) t Ry =0

a2 =0

ba = 0.0024522
3

¢ = 0.2270359

wy v = Buly) - X = @uy* - 14y% + 1)/8 - 0.2795066

Table III. Solution C2l ov
)




& Con, 3 En
0 - 04502880 +.43750001
1 +.03210567 -.39520727
2 +.00938151 -. 3174875
3 +,01056414 -. 1494365
4 ~.00519578 +. 381883
5 -. 98681 +, 42559
6 37073 +. 10118
7 -, 17716 +. 3217
8 -, 9684 +, 1211
9 -. 5786 +, 510
10 -, 3686 +, 233
11 -. 2466 +. 113
12 - 1716 +. 57
13 - 1232 +o 30
14 - 908 +, 16
15 - 685 +, 9
16 -. 526 +, 5
17 - 411 +, 3
18 - 326 +. 1
19 - 262 +, 1
20 -, 213 (220) 0

1 R. =
Cow,3v * ;'z(baLu."' c4) + Ry =0

32 =0
bg = -0.0156775
cg = 0.3787791

ws,v(y) = 1-’6(y) - X

(429y% - 495y% + 135y2 - 5)/64 - 0.2068387

Table IV, Solution C2N,3v
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Fig. 5. Extrapolation to Determine ‘34,(1)
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APPENDIX A
ELEMENTARY SPAN LOADING FUNCTIONS

In the analysis of this paper the solving set C,,, forms an inter-
mediary between given downwash w and required pressurezéistribution p.

The critical analytical problem arises in the relation between w and Coy,
and the clementary sets Ey which arc used to build up Cgy are taylored

for this critical problem, Comparatively, the relation between Cgy and,
say, the span loading C;(y) is a simplc mathematical formula, Eq. (9a).
Nevertheless, this formula does not give the reader an immediate illustra-
tion of the contributions of the sets Ey to C4(y). The purpose of this
Appendix is to provide this illustration,

If Ey occurs in the general term of Eq. (6), then its contribution
to Cu(y) is .

00
= EyPop(y) (A1)

E
C,(y) = ———
4 2(1-y2)% 0

if the normalization Cy(1) = 1 is made. We usc Eq. (Al) as our definition
of elementary span loading functions.

In Ref. 1 elementary sets FE& were considered whose span loading
functions are simple analytical fupctions, see Table I of Ref. L.
Abbreviate by writing § for (1-y2)#; then, for r & 2,

ZCE( - { §r-2 if r 1s even
YIp=ft =
4 n ir'zlog(z/ﬁ) if r is odd (A2)

The first six of these functions are plotted in Fig. Al, 1In standard
collocation analyses, only the functions with r=2,4,6.. are used. Of these,
r=2 denotes the strictly elliptic distribution (a straight horizontal line
in Fig. Al)., The curve r=4 has a finite tangent at the tip; the subsequent
curves r=6,8.., have zero tangents. On the other hand, the correct curve
Cq(y) has a vertical tangent at the tip. Clearly, one has to include the
function r=3 if one wants to properly represent this fact.

The curves for the sets W'Y, Fig., A2, have a different tip behavior;
they converge toward a finite limit curve which has a vertical tip tangent.
This limit function is determined by the initial coefficients of the limit
set, Namely, for r = o0

e s, b
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Co=¥1l; Cp=-1; Cpu=»0 if X22 (A3)
The limit function in Fig. A2 is heuce

g _ 2.4

Ce(y) = 3(1-y")*/4 (r—=» o) (A3a)

On the other hand, the tip behavior of the curves in Fig, Al is produced
by the tail behavior of the sets Fhy:

r 00
VT

We can use thls fact to determine, by means of Eq, (A2), the tip behavior
of the curves for W2 and W3 in Fig, A2, The result is

) gan? = 1+ Hlog(2/5) + ...
CE(y)E,.;3 = Wlog(2/3) + ... (A%)

see (1.33). Therc would be no point in pursuing this comparative procedure
further. Already for r=4 it yilelds a leading term, O(y ) , which is over-
shadowed by the limit function, Eq. (A3).

Also Blotted in Fig. A2 are the curves for the logarithmlc sets
'y Lb‘and " 1og A. The former has C2 = -1 and Cg ® 1. _The contributions
of the first two Lebcndre polynomials to its function ct (y) thus correspond
to those of the scts WT Accordlngly, its curve fits well between those
for k=3 and N4, On the other hand, in the case of the set x-%4logZp we have
Cy) = 0 and Cj small. Therefore, its curve remains close fo the zero ’1ine
aiuo over the main part of the wing span.

By combining the curves for n'z, w3 and u:alogzx()f Fig. A2, we can
form the curve for the span loading due to the general term of Ej, (44},
However, taken by itself this span loading would not be very meaningful.
Of the three conditions that the terms of orders s"3log s, 73 and s-4log s
in wg must be zero, it does fulfill the first and the laut but not the
second, To fulfill the second condition also, we add the sect w4 (other

sets could be used instead, e.g. the set Eq. (A3)). We then get a refined
form of the "basic solution" (1.48).
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First, wo reformulatc the latter to conform to the modification
Eq. (47). 7Thus

bl ™ lf n
B, baster " KD T el (A5)

The second condition ir fulfilled by setting
dy = 5/[ 83(2) + 2}(3)] = 0.3212627..

To fulfill also the third condition, we have *o add the third general term:

B 4 3log?w s  we
b ke £ - - a n
#,basicik R(4n+1) 161"2)(4 4

For this the sccond condition yilalds

_5+3 [4 See(2) + S ]/8?

= (),3412738..,
% 85(2) + 2(3) 341273

where

o 2
LY. _lé(_)g .3
Slt (r) ’"2 T
1 N
a. ] specifically

‘S“_(z) = 1.989280.. ;  Yp(3) = 0.239747..

The span loading curves for these two basic sets are shown in Fig. A3,
The vertical scale of this figurc is stretched. Repeated for comparison is
the curve r=2 from Fig. A2; this curve cuts over the basic curves near. the
tip (compare Fig. 4 of Ref. 1) because its log term in Eq. (A5) is too large
by a factor 2 for the first of the above three conditions to be fulfilied.

Alsc shown in Fig, A3 is the plarar solution; it also is here nor-
malized to Cp(l) = 1. This solution approaches the basic solutions asymptot-
ically at the tip, as, indeed, must any solution (for any downwash w(yj;.
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That thn planar solutlon agrees well with the basic soluticns over the inner
part of the wing span also is fortuitous. In this latter respect otler
solutiong are quite diffevent, see Fig. 7

i

To the illustrations of elementary span loadings, Figs. Al to A3,
Fig, A4 adds a few illustrations of corresponding elementary downwash dis-
tributions, Denoted by wy 1s rhe curve due to X2 alone; this curve does
not fulfill any one of the three conditioms and goes to - oo at the tip.

a curve wp - w3/4, due to »~2 - w3/4, fulfills the first condition and
hence approaches the tip more smoothly than the first, For the last two
curves, a third term is added to fulfill the second conlition also; thus
here w(l) is finite (but w'(l) is infinite). In one of the two curves the
added set is the infinite set "% (that ig, this is the ‘'basic solution"
(1.48)); in the case of the other curve, the finite set Eq. (A3) is added. One
sees that the 'basic solution'' approaches the case of a constant downwash
reasonably well., On the other hand, the use of the set Eq, (A3) introduces a
curvature corresponding to that of the limit function Eq. (A3a).
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APPENDIX B
SUMMATION FORMULAS

In the analysis of this paper the sum
S.=f E (B1)
E K
k=1

of an infinite set E, is frequently rcquired. For cxample, one needs Sg to
determine the leading coefficient Eg by means of Eq. (2). Since the Ey
are progressions, term-by-term summation is not a practical proposition
{the rate of convergence slows down indefinitely as the summation proceeds).

Numerical tables (e.g., of the § -function or the §-function) are
sometimes available from which S; can be read either directly or after some
transformation. This 1s not the case, for example, if Ey contains lougx.
Still, high numerical accuracy is obtained by means of the fornmla, obtzined
from 25.4.1 of Ref., (4)

00 0D
E, = § & L o lrdRGy 4 B
ﬁiﬂ x N}zmdx = - )x=N (B2)

The only requirement here is that the function E(x) which interpolates E,
can be integrated, either analytically, or numerically after transformation
of the integral onto a finite range.

Because Eq., (B2) is available, there is no absolute need for the
closed form summation formulas which we will derive next. These formulas
are of considerable mathematical interest, however, bscause they appear to
be the first of their kind, namely, the first to involve the logarithm,

Consider the sets Cop4j g which are given in Eqs. (33, 33a). From
Eq. (15a) follows ’

M

75 e 7 O (83)

1}
o

except if r=2, Performing this summation for r even, one obtains the
familiar closed form expression for ¥(2n), see 23.2.16 of Ref. (4 ). No
corresponding expression for ¥(2n+l) scems to exist.
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Performing the cummation Eq. (B3) fer r odd, we obtain a new kind
of result., Making use of 23.2.20 of Ref. (4 ) and of some simple trans-
formations, we find for 1=3

00

L
‘n}; _m . [_'73(3) + 12§(2) log 2]/16 (B4a)

=1 (2n-1)2

Correspondingly for r=5

® L
= |31P(5) - 6Y(2)Y(3) + 60Y(4)1log 2//64 B4b
S, o2 - [ - epy + soyrios 2] (B4b)

n=1

The set L, here is given by Eq. (3la), It contains log n and is closely
related to the'-function.

The procedure is readily continued for r=7, 9.. . HNote that the
resulting formulas, Eqs. (B4), are homogeneous of order r if one counts as
follows: one counts the arguments of the ¥ -functions, counts the power of
the denominator on the left, counts L, as 1, and notices that log 2 = % (1),
see 23.2.19 of Ref. (&).

The formulas Eqs. (B4) are related to the sets Cgy4j p through the
form of the derominator on the left. In order to obtain formulas which are
related to the elements WF of Cow, one reverses the process, setting
Ex ™ (1/AY), applies 561 to obtain the corresponding sets Co, g, and makes
use of Eq. (2). For t odd this leads again to the familiar éxpression for
!(Zn). For t=4 and t~6 one finds

|

n

00
21 —121 = 74(3) /4
n=

S - Euy(s) - 1YDY ] /4 (B5)

Again the process can be continued ad libitum,

Particularly interesting because of its simplicity is the first
formula of Eq. (BS)2 This formula relates directly 3(3), the sum over n-3,
L

and the sum over n™“L,.
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The second formula of Eq. (B5) is used in this paper to calculate
the coefficient Ey of its set Ey, see Eq. (C3). For this purpose it is very
convenient. On the other hand, our new formulas may not be more convenient
than the numerical approach Eq. (B2) if the given set Ey contain logy
directly. An example would be the slowly converging sum

00
b 2081 = 0.9375482. .
n=2 n

which one may calculate either way.

Note that the two sequences of new summation formulas, Eqs. (B4,5),
arise solely from the series presentation Eq. (9) for the pressure function
p. No statement about the downwash w is involved, not even a statement that
w should be physically meaningful. Rather, the Kutta condition Pt o =0 in
Eq. (9) leads directly to Egs. (2),(13),(14) and (15) and thence to Egs.
(B4,5). The salient fact is that the Kutta condition enforces duality
between the two sets Coy and Cpy4q.
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APPENDIX C

F ELEMENTARY SUMS Cj g
: )
We have

Q0
Co,E = - 21 Cou,E

3 for the leading constant of the elementary set E, because of Eq. (2).

: Thus Cp = Y(r) for the elementary sets -Coy = ®-Y with ¥ the Riemann

: function, Table 2.3. of Ref. (4). For the remaining sets E, which are
used to construct Tables I to VI, we have

=S4 =ufyem +x] (c1)
— 2 = 4\ (5/4) + ) [= 1.39908526.. c1
1 A (4u+l) &' 4
from 6.3.16, Ref. (4);
00 2
S loa® - 0.06505816. . (c2)
%
1 XK
by means of Eq. (B2);
00 Ly
Z — = 1.115624875., (€3)
R
from Eq. (BS).
o'l
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APPENDIX D
PRESSURE DISTRIBUTIONS

The solutions C.t {» Fig. 7, can be considered as elementary solutions,
defined by their downwash coefficicnts

1/(s+1) (25 +1) for s=i
{ 1)

w =
i
& 0 " gl

see Eqs. (57)and (17). A given downwash w(y) and its solution can be built
up from a sufficient number of such elements.

If we disregard the operator Sy (as in Eq. (23)) we have wg 2 7°u+1
for A=s. Hence, if we define

— 1/(A+1) (22+1) for A= A%
ey = {
0 "OANEAR (D2)

we have alternate elements A* (= 0,1,2,..) which are somewhat related to the
elements 1. They also can be used to build up any desired solution, It is
of some interest to compare the two types of elements,

The downwash distributions wy(y) were shown in Fig. 7; Fig. D1 shows
the w)‘*(y). The major difference is that the latter all turn down to - oo
at the tip. The reason for this is clear from Eq. {13): the .clving set
Cou ©f wy % contains only even-numbered rational elementary se’ . = = - 2r,
It is evident from Fig. D1 that, by superposing a sufficient :.Mmura of
elements A%, one can approximate a given w(y) closely enough within any
given imner rangelyi{y,<1l. chever, in order to achieve w(l) finite, one
has to represent the set E, n“3, and this requires an infinite number of
elements A%,

The purpose of the present appendix is to discuss pressure functions
p. We are interested in cases where w(y) is wavy, and are interested in
the nature of the pressure distribution over the inner part of the wing span.

¢ In some respect, this corresponds to the procedure of collocation analyses.
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From this point of view, thec elements i and A* are equivalent, Figures
D2 and D3 show the cases A* = 1 and A* = 3 (instcad of the corresponding
cases 1 = 1,3 simply becausce the present figures had already been prepared).

Like Fig. 2, Figs., D2 and D3 are velief dlagrams, however, the right
half-wing is stretched into a rectangle; furthermore, the rectangle is cut
at y = 0,9 for belter visibility of p. (The wing tip point is stretched
into a straight line, a "chord" y = 1,0; thus the linear distribution of §
over the front part of this 'chord" is shown.) A vertical plane through
the leading edge of the rectangle is drawn; Lt shows horizontal lines of
congtant p (the scale of p is arbitrary) and vertical lines of constant y.

The left half-wing is not shown in Fig. D2. It is shown, ungtretched,
in Fig, D3, and over it the wavy incidence distribution w(y) is indicated.

The pressure distributions Figs. D2,3 lead to a somewhat unexpected
observation of technical interest: while the waviness of the incidence
distribution is well reflected in p along the leading edge, this waviness
is rapidly damped out along the chord and already at midchord is no longer
recognizable., Over the rear part of the wing, the pressure distribution
p no longer reflects the waviness of w(y). This stabilizing effect (shown
here on an idealized model) must be generally significant for the influence
of disturbances of short characteristic spanwise extension. It is, of
course, also the mechanism which makes the wave amplitudes in q‘ i of Fig. 7
smaller than the corresponding amplitudes in wy. g

Another way of describing the mechanism which leads to Fig. D3 in
particular is to say that already the vortices which are shed by the front
wing creats a downwash field which is almost identical with that of the back
part of the wing, such that at the back part almost no new vorticity is
created, This mechanism, respectively the chordwise distributions of the
1lift which are shown ir Fig. D3, are distinctly different from the assumptions
of lifting line theovy. Accordingly, lifting line theory cannot be expected
to perform adejuately for the downwash wy. In Fig. D4, the curve Cy 3 of
Fig, 7 is repeated (one half-wing only, iarger vertical scale), and the
result of lifting line theory is also shown. Comparison of (he two results
reminds one of the fact that lifting line predicts the lift coefficient of
the planar slender elliptic wing too large by the factor 2. According to
Fig. D4, this amplification factor 2 applies also to wings which have a
wavy distribution of the wing incidence, supposing of course that the wave
lengths are sufficiently small,
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