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ABSTRACT

-(Distribution Limitation Statement A)

This study presents a study of the polarization of infrared waves due topropagation through the atmosphere. Cumulus cloud and Haze M particle

size distributions are considered for various optical depths at wave-
lengths of 4.0 and lO1Op. Results at these wavelengths are comparedto
results at a wayslength of 0.5p for the same physic6l atmosphere.
Initially the radiative transfer integral equation's are derived which
'N clude the Stokes polarization vector. r•om these integral equations
a Monte'Carlo simulation technique is used to simulate photon histories
through the atmosphere. The effectsof multiple sca'tering on the
polarization state of the scattered. intensity is included. A diffuse
scattering ground which causes comp~lete depolarization of the incident
intensity is included in the simalation model. Numerical results are
obtained for clooudy and hazy atmospheres. it is shown that the degree
of depolarization is a function of ,atmosoheric particle density and,
wavelengh,, thereby leading to the ,coniclusion that in a llnearj homo-
geneous, %sotropic scattering medium, depolarization -is a result of
rriultiple scattering. Significant depolarization'at wavelengths of
0.5 and 4M0p is shown to occur for cumulus clouds -and optical depthso
3.0 when the cloud is 1 km'ih height. Polarizati'on factors are obtained
with and without grc'und-,reflections, with ground albedos playing, a
significant part in the polarization of the backscatter intentity.
Detectors arejudicious.ly placed,6belowand ablove the cloud layer so that
fo'rvrd and backscatter are measured.
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SECTION I

S, INTRODUCTION

Polarization is a fundamental characteristic of electromagnetic

waves. The polarization of a wave propagating in a, media is defineo

as the orientation and direction of the electric field'vector. The

polarization properties of electromagnetic waves have been used spar-

ingly inh describing the proptrties of a scatterer. In radar circular-

g [• polarization has been used to discriminate between desired targets ,and

rain. Orthogonal polarization has been used in communication s-stems

to prevent interference between two overlapping channels.

One of the obstacles in the greater use of polarization has been

the difficulty of controlling and measuring the polarization state

of a system. Interference between targets which causes depolariza-

I Vion beyond that which was expected has been another problem. The

polarizatibn of television signals used in the United States is

differrent from that used in Great Britain. In Gredt Britain the

polarization is vertical. Vertical polarization is used to reduce

ground reflections and interference frQm overhead wires. Horizontal

polarization is used in the United States. Ignition and industrial

noise contains vertical components which are usually. greater than the

horizontal components and therefore interfere with vertically polarized

signals.

Optimum discrimination can be achieved if the unwanted reflected

Swave is completely depolarized with respect to the wave reflected from

the desired target. In practice this situation is never achieved. In

real life both the desired and unwanted signals will be partially

P1



polarized with the ektenotof depol'arization of one greater than the.

other. If the difference in depolarization between the two signals is

sufficient some degree o7 discriminatioin can be achieved.

-Recently, Manz [1]' has proposed a discrimination technique .uing

polarization which will separate simultaneous returns frcim cloud: and

terrain when using a laser. In his model of the cloud and the terrain,

MAnz:has assumed that the cloud is composed of Mie particles, i.e.,

spherical particles, and, that the 'terrain is rough for all wavelengths

of interest. The backscattered&return from the cloud consisting of

Mie particles will be depolarized less than the backscattered return

from the terrain. MWe S work [2]-shows that for incident linear

polarization, as Manz has proposed, perpendicular or parallel to the

Splane of scatter, no depolarization will occur. On the other hand,

for very rough terrain one would expect, on the average, to receive

equal parallel andcperpendicular components for an incident lirearly

polarized wave. Re'.ent workers [3, 4, 5] have calculated the cross-

"'olarization ratio for •rugh terrain defined by

<E Ep>(1)

where Ec is the cross polarized electric field component of the scat-

tered electromagnetic field and Ep is the component of the scattered

electromagnetic fieil which is colinear with the incident field. The

asterisk denotes the complex conju:gate. Using random sampling from a

normal distribution to -v.,iulate the surface function, Beckmonn [6] shows

'The numbers in brackets refer to the corresponding numbers in the
references.

2



Sthat the cross-polarization ratio Q depends on the ang_' of l dncesj

the rms slope of the terrain, and the. dielectric const-nt. Mini~ium,

depolarization,, according to Beckmahn and others [3, 4, 5), occurs at a

zero angle of incidence. The ratio Q .rcreases with angle of incidence.

It is therefore reasonable to assume that at optical frequencies, where

the terrain is re'latively rougher than at microwave frequencies, the

ratio Q is equal to at least one-half. While it is true that, at

opti.cal frequencies, the distance betweenparticles ih a cloud is large

compared to, a wavelength so that near field effects may be neglected,

far-field multiple scattering will probably cause some depolarization

of the backscattered wave. Therefore Manz's discrimihation- technique

,does not give a sure way of separating returns from clouds and rough

targets for all situations as borne out by his experimental results.

Fung has also shown that, for smooth reflectir,,g plane surfacest, the

cross-polarized component will be zero for

I i,(a) locally grazing incidence,

(b) incident polarization parallel with or perpendicular to the

local plane of incidence, and

•- I (c) R+ + R 0 0. Where R+ is the Fresnel reflection coefficient

for inc.'/dentv polarization in the plane of incidence and R" is

the Prr;srel reflection coefficient for incident polarization

perpetidicular to the plane of incidence.j Depolarization of electromagnetic waves can be caused by different

phenomena. A's implied above, a wave can be depolarized by multiple

scattering. One has to take care when discussing multiple scattering

since it may be understood to occur when two objects are within mutual

near-fields or it may be understood to occur as a result of multiple

3



reflections, ibe., the reflecting objects, may-not be in mutual near-

fields. One example of depolarization due to near-field scattering is

that of two or more spheres in close proximity, where the individual

scattering functions can no longer be considered separately but must be

derived only by including the interdependence of the individual sphere's

field.. In this 'case the conglomerate scattering function will give

rise, in general, to polarization in a particular direction which is

different than -if one had considered the individual sca'ttering functions

separa'tely. When considering depolarization due to multiple reflection

or multiple bounce one assumes that the scatterers are in each other's

radiation or far-field zone. In this case one can consider the indi-

vidual scattering functions separately; and these will, in general',

* lead to a different polariZati-on state than had the scatterers been in

close proximity. The difference in polarization statedbelween the two

"types of multiple scattering may be greater than or les's than that

given by the other method, depending on the scattering angle being con-

Ssidered. There is one possible solution to this dilemma. If we approach

the problem of scattering from a photon-particle collision standpoint

and if we further select the particle-scattering function which was

determined for a single particle in the radiation zone to represent the

probability density for scattering in a certain direction, we can then'

bring particles as close together as we wish without touching. This

approach will give some approximation to the multiple scattering prob-

*;" lem since if we run many photon-particle collision histories for the

conglomerate, we may now measure the probability scattering function

for the conglomerate. Tt. new probability scattering function will not

in general be equal to the sum of individual particle scattering func-

tions because of the multiple collisions whith were allowed to take

4



place. For ,example; c~onsi',e 'the,,scattering ýof an electromagnetic

wave by a sphere., !s'inge sphere may have a scattering functiori which

is highly peaked it, 'the forward, scatter~inq.dire;-tion (figure 1)-.

A

9

Tr

Figure 1. Scattering Function for a Single Sphere

For this particular case, other sr'eres placed at o = _ ir/2 will inter-

fere negligibly with the origina'l sphere since the probability of scat-

tering in the direction e = iT/2 is almost zero. If we place a sphere

along e 0 we will certainly be faced with multiple scattering since

the probability of forward scattering is large. Thus by using this

simple model one can account for multiple scattering at least to the

first order. One thing we have not discussed is the phase dependence

=, on the position of the scatterers relative to each other. This mutual

dependence leads to the phenomenon of interference. If two beams of

light originate from the same source, the fluctuations in the two beams

are generally correlated and the beams are said to be either partially

or completely coherent [7]. If two beams originate from two independent

5



s6urces, they are said to be mutually incoherent or uncorrelated. 'We

can therefore conclude that for scattering by two spheres placed At

0 = 0 in figure 1, the waves scattered by the two spheres will be at
least partially coherent since the incident plane wave origqnated from

a single source, We can also consider that the two- spheres are two

different sources which are partially correlated. If we consider a

large number of spheres placed at. random relative to each other, the

scattered waves due to each sphere in the random collection till be

uncorrelated and the scattering will thus be incoherent. This situa-

1tion. is similar to the problem of scattering by two spheres' that are

vibrating r.ndomly, i.e., the waves scattered from them will be uncor-

related. Thus, if we assume that the atmosphere, for example, is made

up of many randomly placed spheres., we can determ.ine the scattered

intensity at any point incoherently, i.e., without regard to 'nhase.

This is the manner in which we will approach the problem of scattering

in the atmosphere.

Depolarization of electromagnetic waves is also caused by aniso-

tropic media where one or more of the characteristi:ecs of the medium

depends on direction. In anisotropic media, depolarization takes place

because of the reradiation of secondary waves with characteristic

polarizations depending on direction. Crystals are a good example OF

anisotropic medium in which the preferred directic,, is determined by

the direction of the magnetic field. Due to the anisotropy of the

medium charges can move only in a specific direction and are not free

to move in the direction of an incident fie:d with general polarization.

Only if the incident field is parallel to these characteristic direc-

tions will the polarization of the reradiated field be the same as

the incident field.

6



Faraday rotation is another phenomenon which causes. t1ie depolaritza-

tion of an electromagnetic wave. Michael Faraday in 1845 and Fresnel

in 1837 found that when light propagates through a medium in the direc-

tion of magnetic field the plane of polarization rotates with the angle

7 • •of rotation proportional to the path length between two points. The

exact •derivation of this phenomenon can beiaccomplished only through

the use of quantlm mechanics. This. form of depolaizatio'h occurs in

"the earth's ionosphere [8] and can cause problems for radar tracking

systems.

In this study we wish to investigate the depolarization of electro-

magnetic waves in the atmosphere. We will •onbiderywavelengths sma'll;

,compared to interparricle distances. We will begin. in section II by

jiscussing the radiative transfer of energy in the atmosphere and

derive the appropriate integral equations. Section II follows the-work

of Chandrasekhar [9] and Kourganoff [10] closely. The class of integral

equations which describe the problem of radiative transfer are the

nonhomogeneous Fredholm equations

b

-(9) = F(9) + •, Nv(;x) •,-x), dx (2)

a

which has been solved by Chandrasekhar [9] for the isotropic scattering

function. Evans et al. [11] have produced solutions for this equation

for anisotropic scattering functions. Both Chandrasekhar and Chu have

* used Cai.ss quadrature in solving the resulting integral equations. The

scatterin9 function is expanded in the form

= f(p)
N

ai Pi(,) (3)

7



where

I = Cos e

o = angle of scatter

¶= angle between f and sY

-•P (P) ar, the Legendre polynomials

j_• [and. ai- are the coefficients of the expansion. Equati6n ,(3) has the

I same form as the exact expression forspheres.

Solutions of equation (2) by Gauss quadrature are very complicated

and, difficult to obtain. In this study we obtain numerical results to

the problem of depolarization of electromagnetic waves by the atmos-

here through the use of Monte Carlo-techniques [12, 13]. We assume that

the atmosphere is composed of ,spherical scattering particles such as

water droplets in clouds :or fogs. An excellent summary of various

forms of atmospheric conditions, is contained in [l].

In section III we discuss the polarization and depolarization of

electromagnetic waves by scattering. We also present thetS'ckec'

parameters in describing the polarization of an electromagnetic wave.
Section III follows, Van De Hulst [14] closely in obtaining an analyti-

cal' description of the ,polarization parameters. Two basic forms of

scattering by -articles v,,ll1 be used in this study, One is Rayleigh

scattering.,where the scatterer is small compared to a. wavelength and

- the other is Mie scattering where we consider scattering by arbitrary

spheres.
Also in section III we present a general method, as was obtained

by Deirmendjian [15], for describing the size distribution of particles

in the atmosphere. The exact solution of scattering by spheres origin-

ally derived by Gustav Mie [2] as a function of the size parameter

8



- - 2,r r(4)

will be used. In equation (4) r is the sphere's radius and x is the

wavelength of the incident wave. The Mie scattering function is aver-

- aged over the size distribution, which results in a volume scattering
.'r- function. If f(e,r/x) is the scattering functionas a function of e,
I the scattering angle and the ratio r/x is as defined above; and n(r)

is the s:,&e distribution, then

F(e) f f(ejr/x) n(r) dr (5)

is the volume scattering function for particles of radius betweei r1

and r2 .

f In section IV we describe the computer program usedfor simulating

the depolarizationof polarized electromagnetic waves in the atmosphere.

The computer program is based on previous work by Kattawar and Plass [.i61I-

and by Collins and Wells [17]. The program was used on the Air Force

Weapons Laboratory CDC-6600 computers.

In section V we present the results of some sample problems. We

will present the microscopic scattering functions for Mie Scattering, by

"Cumulus Clouds" and "Haze M" size distributions. By microscopic we

mean that several representative size particles from each type distri-

S! bution are obtained. We will also obtain and present the volume scat-

tering functions for each 'size distribution. The microscopic and volume
1 •scattering functions will be presented for several different wavelengths

varying from 0.5 micron to 10.0 microns. The volume scattering functions

are t4,'n used to analyse different atmospheric problems containing either

9



the "Cumulus Cloud" or the "Haze M" size distribution or combinations'

of both. The computer-program has been written to accomodate linear

or circular polarization. In general, the distances being consi'dered

here are small, i.e., in the order of 10 km to 20 km maxi, ,m. Scat-

tering from the ground is included and-we will therefore incTude the

ground albedo in each problem. The albedo is defined as the ratio of

scattered to incident energy.

The result of all these problems is the determination of the-

degree of depolarizati6n of the initial source electromagnetic wave.
Depolarization- for the vOriqus geometries being considered is pre-

sented for different wav'elengths. The polarization factor defined-by

D'- ±- -I (6I r + (6)

is given as a function of polar angle; where Ir is the perpeqdicular

intensity component and I is the parallel -intensity component. In

equation (6) both I and I are referred to a vertical plane which
r k.

contains the propagation vector (figure 2).

Z

I

k

I r _ _

/
x

Figure 2. Vertical Polarization Reference Plane
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SECTION II

ELECTROMAGNETIC SCATTERING IN THE ATMOSPHERE

1. INTRODUCTION

For the past seventy years, astrophysicists have been concerned

with the transfer of radiation in the atmospheres of planets and

stars. Physicists have been concerned 4ith similar problems in the

diffusion of neutrons in various materials. We should also mention

that radar has been used extensively in the study of certain atmos-

pheric properties.

Recently, with the invention of the laser, problems of light

transfer in the atmosphere have become of interest to a greater

number' of scientists and engineers. In this section we are concerned

with the formulation of the problem of the transfer of polarized

light in the atmosphere. We are particularly interested in the

depolarization effects of scattering on the propagating light beam.

The notation used in this study l.., for the most part, that used by

astrophysicists and follows along the same lines as in the books by

Chandrasekhar and Kourganoff [9, 10].

Basically, the problem of radiative transfer must deal with a

spherical geometry (if we can assume a spherical earth); but the

problem is simplified somewhat if the atmosphere is plane parallel.

In this study we are concerned with problems with short range trans-

mission of highly directive, monochromatik, light, i.e., the distances

involved are short compared to the curvature of the earth. It is also

assumed that, at the frequencies considered, absorption is negligible.



2. DERIVATION OF BASIC QUANTITIES

In this subsection v:e are concerned with the derivation of the

essential quantities, necessary for the solution of the problem as

defined. Since all quantities defined in this study are for moho-

chromatic light no special notation is used to denote frequency

dependence, although the-reader should keep-in mind that all quan-

tities are highly dependent functions of frequency.

Let dE be the energy transported across an ,element of area dA,

in time dt, and in a direction :confined to an element of solid

angle dw and making an angle o with the normal +n to dA (figure 3).

P1-
n

Figure 3. Energy Across dA in the Direction dw,

Then,. dE can be expressed in terms of the specific intensity or

more b. iefly the intensity by

dE = I cos e dA dw dt (7)

If the intensity I is independent of the direction at a point the radia-

tion field is said to be isotropic. The radiation field is said to be

homogeneous if the intensity is the same at all points and in all

directions.

12



Radiation:which is propagating through a-medium may be par'tially

scattered or absorbed by the material in the medium which in essence

w~akens or attenuates the incident intensity I. The incident inten-

sity I becomes I + dI after traversing a thickness ds .(figure 4) in

[ a the direction of propagation. Therefore,

dl = -KP I ds (8)

where_, is the mass absorption or scattering coefficient and p is the_• I
density of the material. Inwhat follows K will be assumed to be a

scattering coefficient exclusively.

d I

-• ds -

Figure 4. Intensity Through: Element ds.

Consider a pencil beamof radiation incident on an element of mass

with cross-section dA and thickness ds. The scattered intensity in

a direction dw is given by

S; IdEs (Kp Ids) dA dw dt (9)

I . TThe mass of the element is

dm p dA ds (10)

Now we can write

d KIdm dwdt 4 7t (11)

13



I Obviously, in the, most :general case the scattered energy will, be

dependent on direction)hi; therefore, a scattering function P(cos o) is

introduced to arccunt for this dependence. The energy scattered

into ar. element of ,volid angle dw= making an angle 0 wti•h the direc-

tion of incidence is then

dE• = K I P(co e) dm dwdt (12)

and the total scattered energy is

E= K I dm dt dw t'-fP(cos o) dw< (13)

where the integration is carried out over all solid angles. In

general, for perfect scattering (no absorption)

.1IP(cos E) dwo = 1 (14)

in general,,where both scattering and absorption occurI o0= •-.fP(cos o) dw• <1 (15)

[where 0 is the fraction of intensity lost due to scattering and

00"•0is the fraction absorbed; i eeedt~steabd o

I single scattering. If

constant = P(cos o) (16)

the scattered intensity is isotropic.

An important quantity is the emission coefficient j. The emission

coefficient indicatec the amount of energy emitted by an element of

mass dm in a direction of solid angle dw. The emitted energy includes
scattered energy both from the element being considered and any other

scattered energy originating at some other source contained in the

14



so-lid :angle dw being considered. Thus the energy emitted by mass dm

'in the direction dw, is given by
1,

Ee j dm dw dt (17)

The scdattering of energy, incident from a direction (e -','into a

- [i'directiohr-(e,f) results in

7t = dm dw P(e,o;er,,) I(oý,) sin eA de'dý, dt fl 8)-

KK
•; {;Thus, comparing '(17-) and (18)

"j =" " P(e,,;o,') I(eO,,') sineA do d (19)

0 0

A ! for a. scat.tering medium. In this ,tudy'we consider scattering only.

The ratioof the emission to the absorption coefficient is called

the source function an{ is written as

K (20)

or from equation '(19)

-" • 1 2,# T

-, : ] P(e,@:eo,') I(e',') sin eod eod ýA (21)

0 0

"3. THE'EQUATION OF TRANSFER

Consider a cylinderical elemen't (figure 5) of cross-section dA and

length ds. Tihe amount of energy absorbed by the element is

Ea = (KpI d s),d A dw dt (22)

the amount emitted is

15



d dlI' -ý -) - 1_) - :I + dl

dA

'Figure 5. Cylindrical Element for Derivation of
the Equation of Transfer

1 Ee jp d s d A dwdt (23)

The difference between the absorbed and the emitted energy results in

the net energy crossing the two faces of the element in the normal

SA-jrection,. and

dl dA dwdt = e - Ea

or using (22) and (23)

d-- p I + jp (24)'

Using equation (20) and rearranging we,-obtain the equation of transfer

dl-- =I -J (25)
Kds

The equation of transfer (25) can be solved easily through the use

of the nmethod of variation of parameters. We can rewrite equation

(25) as

dFI+ KPl =P J (26)

Then

l - 1s

Ihs exp [-I scpd (27)

16



is a, sol]ution 1f 1the, clrresponding homogeneous lin~ear equation. WejiOst finW 'a flinction f(s) such that

I (s), f(s) 1 (28)

b is the general' sol-vtion of (26). Substituting (28) into (26) we obtain

Ii ~f-, I (I- + KP I) :• (29)

where

f df

and
d'xh

Since, Ih is the solution to the homogeneous equation

Ih + Kp Ih 0  (30)

and we are left with

f, I h =Kp J (31)

or

df Js

- •cp J(s) exp [4 Kp ds"] (32)

Integrating equi ion (32) yields

f(s) =KP J(s') exp [ p d s- ds' + C (33)

17



where I is a constant of integration. Combining (21) and (33) accord-
I

ing to (28), we have
S

Ig I(s) C e"7(S'0) + f p J(s) e"T(s ds' (34)

0

where
S

T(S,Si) Kp ds (35)

is the optical thickness of the m-t-rial between s and s'. At s = 0

we finJ that

1(0) = C

therefore

S

I(s)'= 1(0) e"T(SO) +f Xp j(s') e"T(s's') ds" (36)

0

is the solution to the equation of transfer (25).

For the case of scattering in a plane-parallel atmosphere we

measure linear distanres normal to the plane of stratification, then

the equation of transfer becomes (figure 6)

>z

Figure 6. Plane-Parallel Atmosphere
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Ii
Cos d!(z'e) l(z,o i) - j(z,o,) (37)

.o pdz

I were the angle o is measured from the z axis and 0 is the azimuthal

angle. We can set

1d = -Kp (38)

and substitute into (37) to obtain

dl(rp,4)d = I ,) - J z,u,,) (39)
dT

where Pi cos 0. For an atmosphere with finite optical thickness the

solution (36) reduces to (figure 5)

'--"•( • I'(T,+•,@)= I(T,U,0) e ( l z /

+ J(t,w,@) e(t')u dt(40)

and

d dt
• :t T

+÷• J(t,-Ij,O) e"(T't)/u dt (1

3) where i > u > 0 for both equations (40) and (41). Equation (40)

represents the intensity in the positive z or outward direction,

. while equation (41) repre.ents the intensity in the negative z or

downward direction. The intedsities emerging from the atmosphere at

:0 and T: are given by

Ic 19



Ie
-t dt

- f

and

T , = I(O,-u,O) eT1/u

J-), /, "(43)

0J

The first term on the right [:and side of equations (40) through (43)

may be interpreted as the direct intens 4ty attenuated exponentially;

the second term is the sum of the intensities due to all orders of

scattering within the atmosphere.

The source function (equation (21).) may now be written as

2n +1
SJ (fu, f P (I,,;',0

N -- ",,u"•P')d I,' d • (44)

"Writing
•¢ (T,+,) = J ( e(t-T)/p dLt

I- f (45)
T

and

Is(,v, =O (t,-11,0) e'(T't)/pv d~tt (46)

0

for the scat1lr contributions in equations (40) and (41) and substi-

tuting eouation (44) into (45) and (46), we obtain
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T 2 7T +1

Is (T.+1'1) 4 P(l•1p(,;P,,)

li d e(:47)
• •." l~~(t,v ,€) d ii d V" e-(tT)/u udt (47

,and

T2Tr +1
Is(T7f )-- P(-P,;ww)

0 0 -1.

l(tjý,00) d lo Ad 0' e! L-- (48)

If we now compare equations (47) and (48) with equations (40) and (41)

we can see that we now have a set of integral equations to solve in

order to acquire the intensity at any point. We can also write

I~ ~ Di)P) (T ISPSO) e-(T 1)/ (49)

and

ID(,.-,.) = I(O,-P,.) e"T/P (50)

as the direct contributions of the incident intensity. Therefore,

using equations (47) through (50), we can now write equations (40) and

(41) as

* I(T,+P,f) ID(Tl1+1I)ý) + I s(T,+P) (51)

"and

-I(T,-,,) ID(TI-I,) + IS(T,-0,0} (52)

i.e., the intensities propagating in positive and negative directions

can be considered as being made up of a direct contribution attenuated
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exponentially and a- contribution consisting of the intensity from all

orders of scattering.

4. RADIATIVE TRANSFERkFOR POLARIZED LIGHT

Polarized light can be described in terms of the Stokes )ara,"eters

(section Iil). There are four Stokesparameters which describe the

total intensity, the polarization ellipse, and the orientation of the

polarization ellipse; The four Stokes parameters are written as

I:= (I,,Q,U,V) (53)

where the boldface letters will indicate a matrix representation.

Proceding with matrix notation, we can now represent the scattering

function by a scattering transformation matrix. The transformation

matrix will bea 4 X 4 matrix and is. of the form (see Section 11) [18]

al b, b3  b5

c1  a2  b4 b6
F= (54)

c3  c4  a3  b2

cs c6  c2  a4

Furthermore, if we write the polarization parameters as

then the matrix transformation will be denoted by F'. We will find,

in section IIl, that, for a spherical scattering; particle, the scat-

tering matrix will be of the form

22
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Ja; 0 0 0(

0 a 0-O 0S•iF'- (56,)
a3 2b'

• 0 0 ac a'

where b2 -c' and a' a'.
2 2 3 4

iUsing matrix notation we can now~write equations (51) and (52) as
I

I (+ ID(_r,+, + Is(T,+P,ý) (57)

and

(T ID(t-,P4) + I(T,-,P4) (58)

where
.• :: ~ ~ID(T,)+P,@ (ln e" "

J, ID(,,p,P) = ITO,-11) e"-T/11 (60)

T 27r +1

s f f. fF"19 i Is(s,+-,j)j F (-u,4,;i/,c')

, • T o -I

- i I(t~p'@,')d "d @"e"('I L ._t (61)

.t"• •- T 2n• +1
s 4n f I

0 0-1

I'(t4,t@) d Ii d e -e -t)/Ii L (62)

$ Equations (57) through (62) describe the intensity of radiation at any

point in a semi-infinite, plane parallel scattering atmosphere.

The solut:ons (57) and (58) are nonhomogeneous Fredholm integral

I equations. The difficulty in solving this type of integral equation
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is that the function being solved for also appears under the integral

equation. Generalized physically realizable kernals may be solved

numerically through the judicious use of series expansions.

5. MODELING THE TRANSFER PROBLEM

A study of equations (57) and (58) will help in envisioning the

physical events which take place diring the propagation of energy

through a scattering atmosphere. First, as already indicated, the

intensity at any point canzbe thought of consisting of the direct

intensity attenuated exponentially and of the srattered intensity from

all scatterers surrounding the observation point. The polarization

properties of the-direct beam do not change, while the scattered

intensity will' in general have its polarization properties modified by

the scattering function matrix of each individual scatterer.

The intensity of electromagnetic radiation is defined [19] as the

energy per unit time, passing through a unit area at right angles to

the direction of propagation. In terms of a beam of monochromatic

photons the intensity is given by

I = E p (Photon Flux) (63)

where Ep = hv. h is Planck'-s constant and v is the photon frequency.

Equation (63) suggests that a beam of monochromatic photons is the

proper representation for directed electromagnetic radiation. Suppose

Swe approximate equations (61) 'nd (62) by the triple summation of a

large number of terms

n m
~ ~ ~~u~j) It~Ipj eI("tk)lu p'A0.'At (64)

i=l j=l k=l
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this triple summation is equal to (61) in the limit as AuA,AýA, and

At go to zero and n, m, Z go to infinity. Furthermore, the beam:maýy

be thought of as being composed of many photons according to equation

(63). We may therefore simulate a beamrnof radiation by individual

photons or individual photons individually propagating and scattered

randomly about throughout the medium. Since we are only considering

noncoherent scattering, the results may be added arithmetically at

some point of observation. It will further be assumed that near

field effects are negligible.

The essence of the model is.this: Consider a photon or group of

photons with a defined set of Stokes polarization parameters, launched

from an isotropic source; these photons will be attenuated exponen-

tially as they propagate through the medium, and upon-.colliding with

a particle the photons' polarization parameters will be modified

according to the scattering matrix and scattered in~a new direction.

The history of this group of photons may be followed to all orders of

scatt'ring. In thisway many histpries may be followed and estimates

of the intensities at a detector (observation point) may be made.

This technique has been used by other investigators [16, 17, 20] with

excellent agreement with experimental results for natural, i.e.,

unpolarized electromagretic radiation. In this study we use this

approach for the case of a polarized light source and'determine the

effect of scattering on the initial polarization state of the beam

of light.

In the next section we discuss the Stokes parameters and deter-

mine the effect of scattering on these parameters.
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SECTION III

POLARIZATION AND DEPOLARIZATION OF EM WAVES

1. INTRODUCTION

Electromagnetic waves have several properties which can be used

SU to convey information from one point to another. The most commonly

used properties, are the frequency, phase, and amplitude. The

electromagnetic wave propagating in a medium whether it be a wire,

a waveguide, or the atmosphere can be used to carry information by

modulating the frequency, the phase, or the amplitude according to

some prescribed code. The information can be recovered at the

receiving end through demodulation.

Another property of electromagnetic waves which has not been

used to oa great extent is the polarization of the wave propagating

through-a medium. It is known that the electric and magnetic field

vectors are transverse to the direction of propagation in-an isotropic,

homogeneous medium. The orientation of the electric field vector

-defines the polarization of the electromagnetic wave. By convention,

if the direction of the electric vector is constant in time the wave

is said to be linearly polarized, if electric Vector rotates then the

wave is said to be elliptically polarized.

The polarization of an electromagnetic wave propagating through

a continuum remains unchanged if the medium is homogeneous and iso-

tropic. On the other hand, if scattering occurs the polarization

characteristics will, in general, change. Therefore, if the polari-

zation characteristics of a wave prior to and after scattering are
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known, it is possible, at least in principle, to categorize the

Sparticular type of scatterer causing the depolarizdtion. In this

study,, we are primarily interested in the dEiolaration of a com-

pletely polarized wave by a scattering atmosphere. By depolariza-

tion we mean the degree to which an arbitrarily polarized transmitted

wave is transformed to some other polarization state.

2. POLARIZATION AND THE STOKES PARAMETERS

The most gpneral type of polarized wave can be written as

E zE I + rEr (65)

where

E is the total electric field vector

Ek is the parallel, component

Er is the perpendicular component

z and r are unit vectors

In writing equation (65) we used the :ime notation used by

Chandrasekhar [9] and Van De Hulst [14], where the subscripts z

and r refer to the last letters in the words parallel and per-

pendicular, respectively. The parallel and perpendicular

components are referenced to some arbitrary plane, usually the

plane of scattering. In general, we can write each component as

E a e" C e&ikz' + iwt (66)

and

Ef ar e -i 2 e-ikz + iwt (67)

wrre
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a. and ar are the positive real amplitudes

el and C2,are the phase angles

k = 27r/x is the .propagation constant

w = 2fff is the monochromatic angular frequency

Equations (66) and (67-) representa plane wave propagating in

the positive z direction. These equations also represent a general

elliptically polarized wave. In this study we are using the Stokes

parameters to characterize the polarization. The Stokes-parameters

(I, Q, U, V) are defined as

I : Eg E +,Er E* (68)

Q = E E Er Er (69)

U = E E + E* E (70)
~r $r

V i(E, ErE (71)

from (66) and (67) we have

E E : a, 2  W)

'E E ar2 (73)

S ar ( - 274)

E* E * a a e-(1 2)

Z r Z r. , i C 1 C€
•cEZ Er = az ar e (75)

applying equations (72) thrQigh (75) to equation:, (68) through (71.)

we obtain
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SI 2= + at2 (76)

0= a 2 - a 2(77)

U 2 aI ar Cos6 (78)

V = kag ar sin6 (79)

where

-- 6 = C I -, C2

r•om equations (76) through (79) we see 'that for parallel polariza-

> tion (ar b)

I I= a 2

Q a•? (81)

U u= 0 (82)

V= 0 !(83)

for perpendicular polarization (az = 0)

I = ar 2  (84)

= Q = 2ar (85)

U = 0 (86)

V = 0 (87)
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For circular polarization, we must define a convention for describ-

ing the sense of rotation. For this we use the standard convention

which defines right handed-'polarization with a wave that is viewed

traveling away from the observer and whose electric vector rotates

in the same. diection as a right handed screw. Similarly, left

handed polarization is defined with a wave viewed traveling away

from the observer and whose electric vector rotates in the opposite

direction to that of a right handed screw. Figures 7a and 7b show

typical, right hand and left hand polarization, respectively.

Now, let us write

EZ = a• cos(wt-6) (88)

Er = a r cos Wt (89)

If we let 6 + 1/2, we obtain

EZ = a• cos (wt - v/2) aZ sin t (90)

But, since

E = z Ek + r-Er a Z. sin wt + r cos Wt (91)

this is a general right hand elliptically polarized wave (figure 8).

From figure 8 we can also see that if ar = a• right nand circular

(RHC) polarization is obtained. 'If 6 = - n/ 2 , equation (88) becomes

E= a kCos (wt + r/2) - aZ sin wt (92)

and

+ 41
E=- Z aR sin t + rar cos t (93)

30



//-- dieto ofx

E

______Zdirection of

propagatior

131

x

E

I propagation

Figure 7. Typical Right and Left Hand Polarization
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ar E

•~a•

Figure 8. Right Hand Elliptical Polarization

Equation (93) is the general-representation of a left hand ellipti-

cally polarized wave. Figure 9 shows equation (93) for a r = ak aO.

ao/2

Figure 9. Circular Polarization for ar = a =0

Therefore, letting 6s + w/2 and aZ = a r aO, the Stokes parameters

for right'hand circular polarization are

I = 2a2 (94)
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Q = 0( (95)

U = 0 (96)

V = 2a2 j97)

Similarly, if6=- :/2 and ar a. = aO, the Stokes parameters for

left hand circular polarization (LHC) are

I= 2a2 (98)

Q= 0 (99)

u-= 0 (100)

'V = - 2a2 (101)

If we let

SI a 2

and

'r = r

where I and Ir are the intensities for the paralle] and perpendic-

- ular intensities9 respectively, we can rewrite, equations (76)

- through (79) as

I I k + I r - (102)

Q - - Ir (103)

IU :2j I[ cos6 (104)

1FV =2 jI r sin7 (105)
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A more intuitive representation of the polarization would be to use

_' the set (I,, Ir , U, V) rather than (I, 0, U, V). This new set of

'parameters `ýs more pleasing in that the relative siýze of parallel

and perpendicular components can be quickly determined-.

Up to this point we have discussed the Stokes polarization

parameters for the case where the major and minor *axis of the

polarization:ellipse are along the z and r axes. -In general,, this

may not be true although a simple rotation of axis would realign

*-he axes in the propev orientation. Suppose the ax- is of 'the •,pol,ari-

zatioh ellipse were rotated by an angle x (figure 10)

rr

Ir

.• 
q ,

polarization e ipse

Figure 10. Rotation of Polarization Axis

along the new axas p and q. The electric vector can be written as

4. 4
E a p cose sin(wt-kz) + a q sina cos(wt-kz) (106)

where
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a coso is the amplitude along the p axis

a sin fis the amplitude along the % axis

p p and ~qare unit vectors

'If'we let 0,= 0 in (106), then

E = a p sin(wt - kz) (107)

which ,is •a linearly polarized plane wave. Similarly 'If a Tr/4

we have RHC .polarizatioh and' if a = - i/4 we have LHC polarization.

In general, the ellipticity is given by tans, if it is 0 we have

linear polarization, if it is -l we have LHC polarization and 'If

it is +1 we have RHC polarization. The orientation of the ellipse

is given by the angle X. From figure 10 we have

r = p sin x + q cos x (108)

z= p cos x - q sin x (1019)

Rewriting equatibns (66) and (67)

EZ =a, e -iieik (Atý(66)"~i£ 2 -ikz + iwt

Er = ar e-l2 e-ikz + iwt (67)

we have that

E - Re ( + Err) (110)

Substituting (r and (67) into (110) results in

E -LaL cos (wt - kz - C) + r ar cos (wt - kz - C2) (111)
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Upon equating equations (106)- and (111),. introducing equations

('108) and (109), and equating 1,ike terms we have

a cos (wt-kz-, 1 ). = a cos a cos x sin (wt-kz)

- a sin 0 sin x cos (wt-kz) (112)

ar cos (wt-kz-e 2 ) = a cos a sin x sin (wt-kz)

+ a sin a-cos x cos (wt-.kz) (113)

We can now apply the relations

A cos 0 + B sin o = VA2+B2 cos(e-tah-n (114)

and

A sine -o-B cos'e = VfT+T cos O+tan' A) (115)

to the, ri,gh)t hand side of equations (112) and (113) 'is follows

az cos,(wt-k.z-ci) = a NVcos2 a Cos 2 x + sin 2 a s-in 2 x

Cos ('t-kz + tan-I Co co x (116)
sin o sin X

a cos (wt-kz-e 2 ) = a N/cos2 0 sin 2 x + sin2 a Cos 2 X

cos t-kz - tan"I 0 I sin x (117)

so that

a2 = a2 (cos 2 a cos 2 x + sin 2 a sin2 x) (118)

ra2 = a2 (cos 2 o sin2 x + sin 2 0 cos 2 x) (119)

and
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tan l = -cot a cot x (120)

tan 2 = cot s tan x (121)

or since

£,-c2 = 6 = -tan'l(€ot B cot x)-tan-l(cot a tan x) (122)

we have that

tanrtan'l(cot a cot x)] + tan_.'afi-l(cot B tan X)]

t, -tan[tan4l(€ot B cot x)]tan[tan-l(cot B tan X)]

=cot B cot x + cot a tan X
cot 2 _- -1

I l tan2 X + 1

cot 2 B 2 tan x

tan 2 (123)
sin 2 x ( 3

Using equations (118), (119), and (123), the Stokes parameters

become

I = a• + ar 2 = a' (124)

Q a a r 2  a2 cos 2 a cos 2 x (125)

U = 2a ar cos 6 = 2a2 (cos 2 B cos 2 x + sin 2 B sin 2 X)

(COS 2 o sin2 x + sin 2 B COS 2 X)COS 6

To obtain cos 6 we use equation (123) and figure 11.
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tan 2ý

sin 2X

Figure.11. Triangle for Deriving Cos 6

Therefore, we have

Cos 6= sin 2X
v'tan 28 + sin2 2X

and using straightforward algebra

U = a2 sin 2x cos 28 (126)

Again, from figure I1 we obtain

tan 20sin 6 =

ta'n4 2o + sin 2 2x

and

V = a2 sin 28 (127)

* Equations (124) through (127-) lead us to another way of describing

the polarization state of an electromagnetic wave, namely through

the use of the Poincar6 Sphere.

For convenience we now rewrite equations (124) through (127)

I a2  (128)

Q = a2 cos 28 cos 2 x (129)

U = a2 cos 28 sin 2x (130)

V = a2 sin 2a (131)
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If P is any point on a sphere (see figure 12) it can be described

by the parameters (I, Q, U, V).

RHC

Figure 12. Representation of the Polarization Parameters,
with the Poincar4 Sphere

Comparing equations (124) through (127) with equations (94) through

(97) we can see that if 20 = v/2 we obtain right hand circular

polarization; this is the north pole of the sphere. Comparing

equations (128) through (131) with equations (98) through (101) and

letting 20 = - ir/2 we obtain left hand circular polarization; this

is the south pole of the sphere. If 2B = 2x = 0, we get parallel

polarization; for 2s = 0 and 2x w, we get perpendicular polariza-

tion. In general, the upper hemisphere yields right handed

elliptical polarization, the lower hemisphere yields left handed

elliptical polarization, anJ the equator yields linear polarization.

The total intensity is given by the magnitude of the radius vector.

Shurcliff [21] discusses the graphical mapping of one polarization

state to another through the use of the Poincare Sphere.
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3. RESOLUTION OF AX C-FNERAL ELLIPTICALLY POLARIZED WAVE INTO RHC

AND LHC COMPONENTS

According to the previous subsection, an tiliptically polarized

wave may always be resolved into a perpendicv;ar polarization

component and a parallel polarization component with a phase dif-

ference between them. In like manner., an'.elliptically polarized

wave can be resolved into an RHC component and an LHC component.

This latter representation yields more information than the former

because the phase difference is automatically included. In this

subsection, a general elliptically polarized-waye will be resolved

into its RHC and LHC components.

Consider a polarized wave of the form

E-= E= Ek + r Er (65)

as before, with

E aZ cos Wt (132)

Er =ar cos (Wt -6) (133)

Each component, E• and Er, may be individually resolved into RHC and

LHC components, i.e.,

z E= EgRHC + ELHC (134)

with

4. a
E RHC =2 (k cos wt - r sin wt) (135)

E ZLHC 2 " (9 cos wt + +r sin wt) (136)
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While for the perpendicular component

+4.
rEr =ErRHC + ErLHC (137)

where

*a [+
ErRHC =r sin (wt-6) + r cos (wt-s (138)

a rc ril+ + r
ErLHC .r '- sin (Wt-s) + r cos (Nt-s) (139),

Therefore, from equations (65), (134), and (137)

i÷E = (ERHC +ELHC) (ErRHC ErLHC) (140)

or

MC= ( Hc + rRHC) + (EzLHC +ErLHC)

letting

+ +

RHC = RHC rLHC (142)

and'

LHC =ELHC + ErLHC (143)

we arrive at

E = ERHC + ELHC (144)

Substituting equeoions (135), (136), (138), and (139) into (144)

and writing the RHC and LHC components separately we have
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Ia

ERHC = '-- cos At - r sin At]

+ -- sin (wt - 6) f4r cos (wt 6 s)

1 /2 k [a. cos At + ar sin' (wt - 6)1

+ 1/2• E-al sin At + ar cos (Wt -6)] (145)

and

a a7

ELHC =2- Cos Wt + 'r sin w•t]

ar[÷÷)

+ - - sin (At- 6) + r cos (Wtt 6

1/2 [a, cos At - arsin (At - 6,

+ 1 ý? r [a. sin At + arcos (Wt- 6)] (146)

For (145) and, (146) we can write

sin (wt - 6) sin At cos 6 - cos wt sin 6 (147)

and

cos (Wt - 6) cos At cos 6 + sin wt sin 6 (1,48)

Substituting (147) and (148) into (145) and (146) we obtain

ERHC = 1/2 z, at - ar sin 6) cos At + ar cos 6 sin A (
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and

ELHC= 1/2 z a2 + ar sin 6) cos At - ar cos 6 sin w

+ 1/2 'r a + a, sin 6) s'. wt + a Cos COSWtj (150)

Now,,equations (149) and (150) are of the form

A cos wt + B sin. wt = 2/ + cos t - tan-l") (151)

and maybe written in this form as follows:

ERHC I/2 ' V ,- ar sin 6)2 + (ar cos 6)2

a cos6
cos t - tan"I r

a. - ar -.; (a

+ 1/2 'r ýaar sin 6)2 + (ar Cos 6)2

cos wt + tan-I r(152)
ar Cos 6 )

ELHC = I/2 x (a:+ ar sin 6)2 + (ar cos 6)2

a Cos 6
cos A + tan"1 -,

a ra sin 6)

+ 1/2 ' i/(a, + ar sin 6) + (ar cos 6)2

at + ar sin 6
cos (t- tan-r1  (153)

ar cos 6(13

Furthermore we may write from equation (152)
4
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ar Cos54
tan-a - ar sin 6

a - a sin 6

ýrRHC = tan- 1  r (155)
ar Cos 6

with

'MRHC = 7/2 - @rRHC (156)

(see figure 13).

arCOS6 qbrRHC

ýZRHC•

a - ar sin6

Figure 13. Triangle for Deriving OrRHC and ýPRHC

Similarly, from equation (153)

a r cos 6

ZLHC = tan'1 (157)a,, + ar A'in 6

a, + ar sin 6
OrLHC = tan- 1  (158)

ar Cos 6

with

OzLHC =ir/2 - OrLHC (159)

(see figure 14).
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OrLHC

a r~cOS 6
,• OkLHC

a•, + ar sin6

Figure 14. Triangle for Deriving 0r HC and 0LHC

Using equations (154) through (159) and carrying out the squaring

of the terms under the radicals equations (.152) and (153) become

ERH 1/2 ja 2a a sin 6+a 2

cos (t - rRHC + cos (t - •RHC + Tr/2

MC (w IH

ELHC /2 ja2 + 2a9, ar sin 6 + a2

Cos (wt + 0zHC + Cr (os t + 0LH - T,/2)

but

Cos (Wt'T OZRHC + 'r/2) = -sin ( t - 0zRMC)

and

Cos (Wt + -LH 'T/2) = + sin (wt + 0ZLHC)

therefore,

ERHC= 1/2 ja2 + 2a a sin 6 + a2

Cos (wt - OZRHC) - r sin (wt -ZRHC)] (160)
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ELH T /2 ja2 + 2az ar si~n 6 + a2 ,

Cos (Wt + *ZLHC) + r sin (Wt + OLHC)] (161)

The phase difference is

a cos6 a cos6
S= €•RHC + LHC = tan-' r + tan'1 r

a -a sin A + a sin 6

which, when using the identity

tan"1 x + tan-1 y= tan-l(X + y
1 xy/

becomes

E( h = tan- 2a a r Cos 61 (162)S\ a2a -- a2

-Equations (160) through (162) constitute the RHC and LHC components

of a general elliptically polarized wave. Note that o is defined

only when the wave is not circularly polarized. When the wave is

circularly polarized, either the RHC or LHC component will be zero

and o will not be defined. That this is true car. be seen by letting

a a r and 6 = ±T/2 simultaneously as is required for circular

polarization.

4. DEPOLARIZATION AND POLARIZATION FACTORS

In this study, depolarization will be defined as the change in

polarization state which includes the completely depolarized state as

natural light. The definition f natural or unpolarized light is

taken from Chandrasekhar [91:
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Natural light 'is e'quivaient to any two independent
Oppsjtely polarized streams ofhalf the intensity;
aneKnc .wb independent polarize'i streams can t,-
gether be'equivalent to na'tural light unlessý they
be oppositely polarized and&of equal intensity.

Experimentally, if natural light is resolved in any direction in the

transverse plare,. the measured intensity is the same. The necessary.

and sufficient condition fiJr light to be nat'ura, is that

Q.= U = V =:0 (163)

A theorm-due to Stokes [22] states that the most general mixture

of light can be regarded ,a• mixture~of an elliptically polarized

wave and an independent wave of natural light.

From equations (68) through (71) we can show that

12 = Q2 + U2 + V2  (164)

But, for the most general representation we can write

12 >Q 2 + UZ + V2  (165)

since Stokes theorem, says we can write the Stokesparameters as

I= + Ir + 1P (166)

Q = it- Ir (167)

U = 2 V t cos 6 (168)

V = 2 ZI sin (169)

Where I,, is the intensity for natural light. The degree of polariza-

tion of a wave is defined as [9)
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jQP= (170)

and from equation (165) it follows that

0 :1.P ': I (171),

When P= I the wave is said to be completely polarized• When P = 0

the wave is said to be completely unpolarized (natural light). In

general- --

S0 <'P < 1 (172)

and the wave is partially polarized.

In this study, we will be dealing with 1lhe transmission of com-

pletely polarized (P = 1) or completely unpolar~ized light through

model atmospheres. We will be interested ir the affect of scattering

on the polarization properties of the transmitted'wave. Comparisons

with natural or unpolarized light will be made. It will further be

assumed that due t the randomness of the particle distribution in

the atmosphere, the intensities of the individual scattering events

can be summed at the detector, the transmitted energy will be

monochromatic, and the individual scattering particles are located

far enough from each other such that the far zone approxi, .tion may

be used.

Since we are interested in the degree of depolarization, i.e.,

the amount of cross-polarized component produced by scattering of

a polarized wave in the atmosphere, therefore, in an effort to

provide qualitative results and for comparison of various cases, we

will introduce the polarization factors. For linearly polarized and

unpolarized transmitted waves, we will use
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'Ii DL _r.I (173)I +*'
r 9

while for' circularly polar 4,zed transmitted waves we'will use

DC = IRHC " ILHC (174)
1RHC + ILHC

The sign of either DL or Dc will indicate 'the amount of each component

contained in the de-ted wave. The only p-roblem which may arise will

be for DL = 0; this will mean that I= = I which may happen for unpolar-

ized or for circularly polarized waves. For the type of problem being

' studied here, the U and V parameters are always small and circular

pol:arization will not result for a transmitted unpolarized wave.

5. MIE AND RAYLEIGH SCATTERING

In general, the scattered components of the electric field are

given by [1,4]

2 S3 e-ikr + ikz ZE
Ee (175)

s)ikr Ei
Er \r S rl

where the incident field is a mnonochromatic plane wave propagating in

the positive z direction with components

EO e-ikz + iwt (176)

ir ErO/

and the S i elements are scattering functions which depend on the

material properties and orientation of the scatterer.
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Vk A transformation matrix can also be defined [9] for the Stokes

parameters,

SQ QO.

:F (1,77)
U U

V V0

"or

V0V Vo

where F and F are 4 x 4 matrixes and are given by (see appendix):

//2(Ml + M2 ), 1/2(-M, + M2 ), 0 , 0

l/2(-M1 + M2), l/2(M1 + M2 ), 0 , 0

F (179)
0 , 0 , S21, 421

0 0 , D21, S21/

and

M2  0, 0, 0

0 , M1. 0 , 0

F= (180)
0 , 0 , S21, -D21

0 , 0 , D21, S21

The derivation of (178) and (179) in the appendix used the fact

that for a spherical scatterer A3 = A4 = 0. This is equivalent to
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setting S3 ='S4 0 in equation (175). Therefore, we can write

IE s 2 0 E''E 2 eikr + ikz P,
(E) = -s!ek k Ei (181)

, Er 0 S, ikr E

Furthermore, f rom (180)•, we know that

M, = A, A, = 1A112  (182)

M2= A2 A* = ]A212  (183)

S21 = 1/2(A1 A2 + A* A2 ) (184)

D21 T (A, A* - A* A2) (185)

Also, comparing (175')- with (2) from the appendix, we obtain

A1  5  -ikr + ikz";) •A, = S1 e (186)

i kr

i ei kr + ikz

A2 = S2 e (187)
Sikr

so that

1A112 = 1 IS1!2  (188)
k2 r 2

JA21' = -IS 212  (189)
k2 r 2

1S - (si S* + StS 2) (190)
2k2 r 2

D21 W- r (SI S*2 -* SO 2 (191)
52k2 r2
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In general, S, and S2 will be complex:

S, = s, ei° (192)

S2 = S2 ei 0 2 (193-)

I ivhere s, and S2 are real amplitudes and al- and 0,2 are real phases,

therefore

lA1J2  (194)
k2 r 2

IA212  (195)
k2 r 2

-S? ="-- cos (a1l - 02) (196)
k2 r2

s1 s.2
D21  sin (a1 - 02) (197)

k2 r2

Substituting equations (188) through (191) into equation (180)

results in the phase matrix

IS212  0 0 0

0 Is,1l 2  0 0

k2 r 2  0 0 Re(SiS*) -Im(SS*) (198)
0 0 Im(S1 S*) Re(SS*)

with S, = S, (e) aaid S2 = S2 (e) functions of the polar angle. Note

that, according to (198), if the incident wave is lineary polarized

in the plane of scatter the scattered wave will also be linearly

polarized; this agrees with the Mie theory [7].
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K i All scatterers treated in thts study are spherical and (198)

will play an important role in the results. From the theory of

Mie, we have that

-S (e) = 2nE
n=l n (n +l)

•an 7n (cos e) + bnn (csz • (199)

and

)~
• •' • 2n + •I

6 )- ) n=l n-(n•+ E): - -

* [bn Tn (cos,e) + an Tn (cos o)] (200)

The detailed 6efinition of Tn, 'n' an' and bn is postponed until the

next section,

T he phase-matrix for Rayleigh scattering is

cos2 e 0 0 0

0 1 0 0
R= 3/2 (201)

0 0 cos e 0

0 0 0 cos e

Equations (198) and (201) apply only when the Stokes parameters

are referred to the plane of scatter. In general, the incident

wave's Stokes parameters will not be referred to the plane of scatter,

therefore it wi.'l be necessary to rotate the incident Stokes parameters

into the plane of scatter [9]. Referring to equations (128) through

(131), it is clear that the I and V parameters are invarient to a

rotation of axes. If we rotate the axes by an angle ý in the
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clockwise direction (figure 10) then

Q' = a2 cos 2 a cos 2 (x -) (202)

and

U, = a2 cos 2 a sin 2 (x -) (203)
I

$ Expanding (202) and (203) we obtain

Q' Q cos 2 ý + U sin 2 (204)

and

U =-Q sin 2 + U cos 2 (205)

But, we also have that

P= I' + I =I + 1r (206)

V= V (207)

P= - = (I' - Ir) cos 2 € + U sin 2'" (208)
A. r k r

U=- (It - I) sin 2 € + U cos 2 ( (209)

and solving for I' and.1I we have

Iý = 1/2 I (l+cos 2 0) + 1/2 1r (l-cos 2 €) + 1/2 U sin 2 €

= I cos 2  + Ir sin 2 € + 1/2 U sin 2 (-210)

•rr

_P= 1/2 I1 (1-cos 2 *) + 1/2 1r (l+cos 2 0) - 1/2 sin 2

= I, sin2 € + Ir cos 2  1 - 1/2 sin 2 0 (211)

The transformation law for a rotation of axes is therefore
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I cos2,ý sin24 1/2 sin, 4 0 (1

" sin2o coslo -1/2 sin 20
I€ ; (212)

0 V" 0 O1

Prior to applying the scattering matrix, (198) or (201),, the incident

Stokes parameters must be rotated into the plane of scatter according

to (212) and rotated back into a referehce plane, if desired after

application of (198Y or (20T),. Let us write

dos24 sin 2 o 1/2 sin 20 0

sin2 o cos 2€ -1/2 sin2€ 0
L (0) = (213),

-sin 20 sin 20, cos 20 0

0, 0 1

Sas the transformation matrix for'rotation in the clockwise direction

then L () is the transformation matrix for rotatior. in the counter-

clockwise direction.

I The contribution to the source function due to scattering of a

j pencil beam of radiation of solid angle dw' ir, the direction (W, 00)

is

.- 1 dw- (214)

for Rayleigh 
scattering 

and

I i (215)
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for Mie scattering if I (W, .') is referred to the directions parallel

and perpendicular to the plane of scattering. In general, I (e', *')

{ is not re~frred to the kcattdring plane and we must therefore rotate

I the incidertt,volar•ization components into the plane of scatter. Sup-

pose that I (e¾, (e ) is referred to directions along the meridian

S plane OBA in 'figure 15 and at right angles to. it. We use equation (213)

to transform I(o% *) into the plane of scatter, and therefore, the

contribution to the source function is,

R (cos dw (216)

I z
'A

.22

C 1

y

ý 2"

-Fi-',, T Polarization Reference Planes
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We can then transform the Stokes parameters back into the reference

plane by once again applying the transformation matrix'such that

L (O - 02) R(cos 0) L(-0 1) I(e, 4)7 (217)

is the scattered contribution except that now the St'kes parameters

are referred to the planeOCA.

If we now assume the several scattering events occur successively,

I that contribution due to,1 scattering would be

- Ln -(n -t4n- '"-Li. (IT ` 2) R(cos, o) Lj (-0i)""

dw'
Ln (T60, (Oe, r') T- (218)

where n such scattering events occur. If Mie scattering were taking

'place rather than Rayleigh scattering one would simply use sthe

scattering function F rather than R

In this section we have shown how scattering affects the polari-

zation properties of the incident intensity and have-derived the

scattering matrixes for Mie and Rayleigh scattering. These ideas

will be used in the modeling of scattering of electromagnetic

radiation in the atmosphere.
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SECTION IV

COMPUTER SIMULATION

1. INTRODUCTION

A Monte Carlo computer simulation of electromagnetic scattering in

the, dtmosphere, similar to those proposed by Kattawar and Plass [16] ana

Collins and Wells [2'2, is used to predict the degree of depolarization

of an incident polarized electromagnetic wave. Basically, the computer

program is a simulation of the equation of radiative propagation in the

atmosphere as.derived in section II. The atmosphere is composed of a ran-

dom distribution of particles of different s\izes; those which are much

smaller than one wavelength are called Rayleith particles since they

follow the X" scattering law originally derived by. Lord Rayleigh in 1871;

while those particles whose size is comparable to One wavelen§th or larger

are called Mie particles after Gustav Mie who first derived a rigorous

solution for the diffraction of a linearly polarized plane wave by a

sphere. Since we are-principally concerned about polarization effects,

absorption is neglected.

The atmospheric densities considered here are selected such that near-

field effects maybe* neglected. Also, since the particles which make up

the atmosphere are randomly distributed, all scattering will be assumed

to be incoherent, and therefore, the Stokes parameters can be summed with-

out regard to phase.

2. THE SIMULATION MODEL

Consider the integral equation which governs the radiative transfer

of electromagnetic energy in the atmosphere

I(T,,,l = I D(TI,) + IS(TPj) (219)
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where

SI• IDT,•,•)= I(O,u,¢) e-T/•

and
2v +1 T

Is(,u,) f fF(

0 -10

I(t,ij';ý') "-( dt da' de!

The direct intensity, ID(T,P,C), can be calculated easily. The scattered

intensity is much more difficult to calculate since the unknown intensity

also occurs under the integral. Equations of the type (219) are known as

nonhomogeneous Fredholm integral equations. In an isotropic and homoqenous

medium the polarization parameters of the direct intensity are only atten-

uated and the polarization state remains the same. The polarization
parameters of the scattered wave are, in general, modified during the

scattering process by the scattering matrix F(V,O;v, 0') (see equation

(179)), where p and 0 give the direction of the incident wave while '

and €' give the direction of the scattered wave.

a. Source Distribution

Assume a source which emits photons either isotropically or aniso-

tropically. The probability that a photon is emitted in the directiojn

(e,O) is proportioral to the magnitude of the source intensity pattern in.
A the direction (e,¢). Let the intensity pattern be denoted by the function

, G~e,÷)(220)

If we normalize the intensity function
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2ir it

KffG(-e,) sin o de o do= 1 (221)
0 0

where K is the normalizing constant, then the probability that a pho.ton is
emitted in the interval (o + de, o + do) is

P(o) G(e) sin d 6 d (222)

J JfG(6,0) sin de dd d

0 0

or upon integrating between fixed limits

*2 02

f f G(e,o) sin ed e d €
01 B

P l(f.<-o<- 2 ' 1<€<S2) 2 2 (223)

f f fG(o,) sin e d e d
0 0-

Equation (223) gives the probabi~lity of emitting a photon between the

angles (e0,e2) 'nd (€1,€2).

Suppose the distribution is isotropic, then,

SG(O,¢) = 1 (224)

and

(o2 " 1) (COS 01 - COS 02) (225)P ( 1 .S6<16 2, 1.10._0 2)=,a

Using equation (223) any intensity pattern may be used.

b. The Extinction Coefficient

All scatterers can be characterized by their scattering function,

which describes the scattered intensity as a function c4 aspect angle. If

I0 is the intensity incident on the scatterer, then the scattered intensity
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is given -by

110I - (226)

k2 r2

where F(e,4) is a dimensionless function which describes the ihtensity

distribution for all directions (e,&') and k = 21/A.

We now define the scattering cross sectr6h, ass by

js L J F(-e,o) dw (227)

where dw = sin e d o d 0 is an element of solid angle, a. is an equivalent

area such that th& energy falling on as is equal to the energy removed

from the incident wave. Noi,,•ally there is also an absorption cross

section, Oa' which describes the amount of energy removed from the

incident wave through absorption. The total extinction of the incident

wave is defined by the sum of the scattering cross section and absorption

cross section.

aext as + Oa (228)

In this paper we ignore aa and let

Sext = as

c. Path Lengths

Radiation intensity is attenuated exponentially through a medium

according to

I(s) = I0 e.S/aext(s) (229)

where 10 is the incident intensity, s is the distaoce traveled, and a is

the extinction coefficient of the medium. The optical path length is
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defined as

h

TO):= %xt (h') dh' (230)

0

where T(h) is also the number of mean-free-paths between 0 and h. In

equation (229) the ratio s/a(s) is the fractional num6er of mean-free-paths

traveled with s : ext(s) being equal to one mean-free-path. If we know,

the optical depth of ',;he atmosphere as a function of distance in mean-

free-paths, then the number of mean-free-paths, traveled between collisions

is, dis bted exponentially, i,.e., the probabi~ity, of a collision between

p and dp, where p = S/aext(S), is

p(p) dp = e-P dp (231)

or
P2

P(P1 <PnP2) f e-P dp (232)

P2

Equations (231) and (232) hold for O<p<o• For O<P<Pmax we use

P2

f e-P dp
""(Pl!<P<0 2 ) = (233)i" - i~max ePd

S ad
0

Equations (231) end (232) hold for an atmosphere infinite in extent while

equation (233) holds for a finite atmosphere

a. Rayleigh Scatterirg

The term Rayaigh scattering is used for sca~tring of electro-

magnetic waves from particles which are small compared to a wavelength ot

more precisely, particles which are small compared to the wavelet.gh in
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the particle, i.e., if x0 is the wavelength of the electromagnetic wa.ve

outside the partic-le then the wavelength inside the particle is

• X0

Sm 
(234)

where m is the index 6f refraction (m c/v) of the particle. If the

particle is- small compared to X0, the wavelength outside the particle

but is comparable to the wavelength, x, in the .pArtic;le--then.we will be

in the resonance scattering region. Resonance is associated with the

modes of vibration oi- the part-icle.

For a particle fulfill-ing the above requirements the .electric

field- induced in the particl:e can--be -assumed -constant throughout the

Sparticle and the induced dipole.moment is

p to (235)

where a is the polarizability of tLe particle and' •0 is the incid,'t,

plectric field. if

0 ei t (236)

t hen
p t PO eiWt (237)

The electric field components of an oscillating dipole are given

by [23]. (See Figure 16.)

Er

p E 6

y

Figure 16. Oscillating lpDle Field Components



S R 2 os eIp ew(t-R/v) (238)

E ( ! sin o Ip. e it-/)(239)

'For distances large compared t9 a wavelength (R>-,\) the rad'al component,

-.,:may be--neglected And E0 become,:-

k2 p sin e-ikR (240)
R

'where

p = IPI ei~t

Using (235-)', (240),becomes

-E sin 0 eikR _(241)

We now compare equation (241) with (175) and noting that for the perpen-

dicular component e = 900 and for the parallel component 0 90c - 0,

where 0 is the scattering angle, we obtain

:) ik3 ) (242)
.. S • , 0s1

or

/Es Q e- ikr+ k z
YE : k2 (2(243)

from which we note that

Is = 1 2 cos,2 o ei 2 (244)
S4r2
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r s 2 k4a 2 lEI12'• r lErl =~7 - E7 (245)

2  S s s Cos 6 eos 0s (246)
r2

2 -r sin 6 cos -e 2 Vcos o (247)
rr

Therefore, with I l IrI U V, the scattering matrix, for Rayleigh

scattering, becomes

2R 0 1 00(248)0 0 COS e 0

: We can now write the matrix relationbetween the incident and scattered

intensity

I = .k%2R I (249)
r-2

which clearly shows the X-4 dependence enccuntered with Rayleigh scatter-

ing (k = 2/X).

e. Mie Scattering

The exact solution to the diffraction of a lineorly polarized

plane wave by a sphere was first given by Gustav Mie in 1908 [2]. The

scattering of electromagnetic waves by a sphere has occupied a large

portion of the literature in the past. Several forms of the solution

have been given by various authors [7, 23]. The term Mie scattering has

f• been used for this problem in honor of Mle. in thts paper we will be

using the solution given by Van De Hulst [14]. The electric field
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components as a -result of scattering from a sphere are

-_- E8  S2(o) cos e ikr+iwt(250)

and

E,: Sl(.o) sin -ikr+iwt (251)
E kr

where Si(e) and S2 (0) are the scattering functions defined by equation

(175) and are given-by

Si(e) = 2n+--- . ITn. (co o)+ (cosnoCo (252)n=1 n(n+l ) L'~ - bntn
n=l hnl

and

CO

S2 (o) E 2n+l- [bn n (cos e) + an n (Cos o)] (253)
n=- n(n+l)

with

itn (COS 0) 1 PO) (Cos o)(254)sin o

))n Lcos e) de pl) (cos e) (255)

tpn(Y) in(X)- mpn(y) Wn(x)
an n n(Y) (256)
- m'n(Y) n(x) - Imn(y) n'(X)

n = n y)O'X (257)
mý n(Y) rn(X)- q'n(y) Cr,(X)
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In equations-"(254) and (255) Pl (cos e), is the associated Legendre

-polynomial. In equations (256) and (257) n(x) and n(x) are the Riccati-

(Bessel functions given by

--n Cn x) := x in (x) (258)

( 2x) = x ) (259)

where jn (x) and h(2)(x) are spherical Bessei functions. Alsoin equations

(256) and (257) m is the complex index of refraction of the sphere.

Equations 1,250) through (257) constitute a solution to the prob-

lem of the diffracticn of a-linearly dolarized plane wave by a sphere and

are valid for an arbitrary homogeneous sphere.

The scattering, matrix for Mie scattering can be obtained by sub-

stituting equations (252) and (253) into equation (198). Recall that

Sl(e) is the scattering function for perpendicular incident polarization

while S2(e) is the scattering function for parallel incident polarization.

f. Description of the Atmosphere

In this stud.> we assume that the atmosphere consists of scatter-

ing particles only. The particles are, as is customary, assumed to be

spherical. We use the Mie scattering theory to determine the particlP

scattering matrix. Absorption is assumed to be negligible since this

"phenomeron does not contribute to the depolarization of the incident wave.

The atmosphere is made up of many mie particles each randomly oriented
with respect to other Mie particles in the atmosphere. Therefore, all

scattering is assumed to be incoherent. The assumptirn of incoherent

scattering allows us to add the Stokes polarization parameters resulting

from the various scattering events. Since the atmosphere is made up of

many randomly oriented Mie particles, we can describe the size distribution
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of the Mie particles and determine the average scattering matrix for a

given size distribution and thus.characterize the atmosphere with thi's

average value. Deirmendjian [24] has generalized the size distribution

function first proposed by Khrgian and Mazin [25] in the form

a ebry
n(r) = a r e- (260)

where n(r) is the volume concentration at the radius r and a, a, b, and y

are positive constants. If N is the total number of particles per unit

volume, then

(
N : n(r) dr : b T (261)

0

where r is the gamma function.

Taking the derivaive of (2601 with respect to r, we obtain

d_ n(r) = a ra'I e bry (c - ybrY) (262)
dr

Setting (262) equal to zero we can solve for the critical or mode radius

which is

r m (263)

Figure 17 is a general plot of equation (260).
m r)•.cm'J3 P Fl

!" nmax(r)

-- '•r

S0 rc r

Flgure 17. Particle Size Distribution
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The generalized size distribution function given by Deirmendjian

(equation (260)) .-eproduces practical particle distributions as measured

by experimentors. For example, if a = 2.373, = 6,, b = 1.5, and y = V

we obtain

n(r) = 2.373 r6 el'r cm3 r - (264)-

which follows the size distribution measured by Durbin [26] for cumulus

clouds; for this reason the distribution (264) is called. "cumulus type I"

by Singleton and Smith [27], Another example of equation (260) is obtained

by setting a 5.33 x 104, 1, b = 8.944, and.y 1/2 and we have

n(r) = 5.33 x 104 r e"8.944r/ (265)

The distribution given by equation (265) may be taken to represent

* coastal conditions and is called the "haze M" model by Deirmendjian.

Equation (264) yields

N = 100 particles cm"3  (266)

while equation (265) also gives

N = 100 particles cm- 3  (267)

Equations (266) and (267) yield, on the average an interparticle distance

of approximately

(11 =0.215 cm
(1070

or 2150 microns. Therefore, for the Cumulus Cloud and "Haze M" models

the far field scattering approximation is certainly valid for wavelengths

up to, say, 200p.
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A size distribution which may be used to represent a continental

haze is

n(r) =0 r <rmin

n(r)- =.constant rmin < r < r2

- n(r) = Ar-V r 2 < r < rmax (268)

where rmin = Q.3•, r2 = 0.l, v = 4, and constant = l03 has been shown-by

Deirmendjian to be representative of typical continental hazes and is

called the "Haze C" model, i.e.,

n(r) = 0 r < 0.03V

n -(-r) = 10i3 O..03u. 5 r < 0.IP

n(r) = O.lr-' 0.l11 < r < (269)

for this distribution we also have

N - 100 particles cm" 3

and near field scattering will start to become important for

x > 2 00p

Therefore, it appears that for wavelengths into the infrared and vhorter

near field scattering may beignored for the three postulated models.

Now that we have obtained the three particle size distribitions

we can now integrate the Mie functions over the applicable size distribu-

tion in order to obtain the Mie volume functions. Here we will follow

the same technique used by Deirmendjian [24].

In equatinn (227) we defined the scattering cross section as

1 LfF(e,ý) d. (227)
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where the integration "s carried out over all solid angles w. If~we

integrate the particle cross section-over ths size distribution we will

obtain the volume scattering function. Before carrying out the integra-

tion let us define the Mie size p@rmet@r

x r= r=kr (270)

where r is the Mie particlelradius, k = 2r/x, and x is the wavelength.

Making this substitution into (260) we obtain

n(x,k) a_(! )a e'b(1) (271)

The functior F(e,p) is also dependent on x and we can write

F(O,0) = F(O,2,x) (272)

Now we can write, for azimuthally symmetric F(e),

2Tr X2

k f2L F(e,x) n(x,k) dx (273)

The volume scattering cross section is obtained by integrating (273) over

all angles, i.e.,

vs(m,X) 24 --s(,X) sin e do (274)
0

where m is the index of refraction.

We can now normalize • ' i.e.,

£vsNs(6,N) -Is (275)
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which is proportional to the probability per-steradian of a photon of

wavelength A being scatteredw-into an angle 0.

For Mie scattering we have that

F(e) = IS 2 (276)

for incident perpendicularly polarized waves, and

F(e) = IS212 (277)

for incident parallel polarized waves where the polarization is referred

to the scattering plane, i.e., either perpendicular or parallel to it.

For exponential stratification of the atmosphere [15] we can

write the extinction coefficient as

Gext(h) = 00 e'h/H (278)

where c0 is the extinction coeffic-ient at h = 0 and H is the scale alti-

tude, e.g., H = 0.98 km for haze [15]. Usinq equation (230) we obtain

for the optical thickness

h

T(h) fO e-hH d h' (279)

0

Or upon solving equation (279) we have

H(l - e h/H) (280)

which gives the optical thickness as a function of altitude h.

g. A Monte Carlo Simulation

Monte Carlo techniques may be used in the simulation of a random

process [12, 13]. Monte Carlo techniques have been used for several years

to simulate problems in neutron diffusion. The Monte Carlo technique
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serves in modeling-a random process when the various probability distri-

butions are-known or can at least be approximated using physical reasoning.

Our problem of determining the depolarization effects due to scattering

in the atmosphere is certainly a random process since the distribution

of scatterers in the atmosphere is random. Here we assume that a plane,

polarized wave propagates through the atmosphere, the wave beinq made up ...

of a large number of photons whose average properties can be characterized

in terms of-wave theory. We, as originally stated, will also assume that

all scattering is incoherent so that the effects of all the scattered

photons may be added directly. The polarization properties of the wave

are associated with each photon history. The difficulty of assigninq

the Stokes polarization parameters to a single photon can be overcome by

-assuming that we are dealing with groups of photons rather than with a

single photon.

We now know that the probability of a photon being emitted into an

angle (e,€) is given by equation (223), that the number of mean-free-paths

traveled-between-cullisions is given by the distribution (233). Further-

more, if Rayleigh scattering occurs the Rayleigh scattering matrix given

by (250) can be used to operate on the Stokes vector as given by equation

(249). Similarly, if Mie scattering occ,jrs the Mie scattering matrix

given by equations (198), (252), and (253) can be used to operate on the

Stokes vector as in the case for Rayleigh, scatterirg. Since the Rayleigh

and Mie scattering matrixes are given in terms of the scattering angle,

the polarization components of the incidenc photon must be rotated as

dictated by equation (250) paralill and perpendicular to the scattering

plane. Similarly, after the sca~tering matrix is applied to the Stokes

vector, the Stokes components will be rotated back to a teference plane.

The reference plane to be used hera is the same as that used by Collins
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and ,ells [17] and is the vertical plane which also contains the propaga-

tion vector. Therefore, the paral.el component at a detector is that

component in the reference plane and is orthogonal to the propagatio;)

vector, while the perpendicular component will be perpendicular to both

the reference plane and the propagation vector.

Again following the same method as that used by Collins and Wells,

we determine the effect of multiple collisions by estimating the intensity

at the detector after each collision and comparing the intensity at the

detector due to single or multiple collisions. The estimate of the

intensity at the detector as a function of collision .number will be

obtained by calculating the scattering.angle, toward the detector and

weighting the Stokes-vector with the applicable scattering matrix for

that particular scattering angle. The particu-i-ar photon history ;s con-

tinued by selecting a scattering angle from a probability density given

by the normalized Rayleigh or Mie scattering functions. After selection

of the scattering angle the Stokes vector is then weighted by the applic-

able scattering matrix for that scattering angle,

Random ;iumbers are obtained by generatinq a pseudorandom sequence.

Several methods for generating pseudorandom numbers are available [12].

In this simulation we will use a pseudorandom sequence which is generated

by the recurrence relation

Yi = aYi - 1 (modulo n) (281)

The notation used in (281) means that yi is the reminder when ayi - 1 is

divided by n. In our case we use n = 248 and the period is n/4, hence we

are able to generate in the order of 1013 numbers before repeating the

sequence. We will never require more than, say, 104 photon histories

each requiring approximately 102 random numbers, therefo'e we will never
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need more than 106 random numbers per problem. The pseudorandom sequelce

given by (281) has been found to be uniformly distributed and therefore

a transformation from the uniform distribution to the desired distribution

is needed.

SA theorem by Barkovskii and Smirnov [1'3]),etates that if the

random variable E has a probability density function f(,/.), then the

distribution of the random v.riable

n = f(x) dx (282)

0

is uniform in the interval (0,1). Consider the arbitrary cumulative

*distribution function F(W) as given in figure 18.

Figure 18. Arbitrary Cumulative Distribution Function

Let n = F(E); we now want to find out how n is distributed. Since we

know that Lhe andom variables • and n are functionally related through

the function F" we can write

p(n) P--- (283)

But we know that

p(t) = F'(t) (284)

therefore

P(n) = 1 O< n <

p(n) = 0 otherwise, which oroves that n is uniformlv distributed. On thp
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ZI basis of equation (282) we-may therefore use the following rule. In order

to obtain a random number belonging to the ,sa.t of numbers Si with the

density function f{x) solve the following equation for Si

S.

f f(x) dx = Ri (285)

For example consider the distribution function given by equation (232)

p(p) dp = e'Pdp, 0 < p < 0 (232)

which gives the probability-of a photon traversing dp mean-free-paths

between collisions. Assume we generate a random number R-i from 'a rectan-

gular distribution in the interval (0,T), then

Pi

-R f e-P dp

0
-e- Plio

=1 - epi (286)

SSolving for pi, we obtain

- R ) (287)

In this manner we can very easily generate the random numbers pi for the

desired distribution from the random numbers Ri which are uniformly

distributed.

Let us now summarize the methods being used to model our problem.

Consider a plane-parallel atmosphere with exponential particle stratifica-

tion A source of electromagnetic energy is located at an arbitrary alti-

tude above the ground. The electromagnetic energy being radiated from
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{ need more than 106 random numbers per problem. The pseudorandom sequence

given by (281) has been found to be uniformly distributed and therefore

a transformation from the uniform distribution to the desired distribution

is needed.

- A theorem by Barkovskii and'Smirnov [13] states that if the

random variable 9 has a probability density function f(x), then the

distribution of the random variable

nff()dx (282),
0

is uniforin in the interval (0,1). Consider the arbitrary cumulative

distribution function F(9) as given in figure 18.

• • F(•)

0

Figure 18. Arbitrary Cumulative Distribution Function

Let n = F(g); we now wantto find out how n is distributed. 3ince we

know that the random variables t and n are functionally related through

the function F we can write

P(n) =(283)

S4
But we know that

Ip( r() (284)

therefore

P1n = 1 O<n <

p(n) =0 otherwise, which oroves that n is uniformlv distributed. On the
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the source will be,='deied by conside iis that the intensity is due to

the conglomerate effects of wav- packets made up of photons. Each wave

packet is assumed :to be characterized by the Stokes polarization vector.

The wave packets can be thought of as bullets which when shu' into-the

* atmosphere cd.'lide and are reflected by the scattering particles according

>1 to prescribed probabilities.

The probability tý ,t a photon,(wave packet) is emitted by the

source in the interval of solid angle (6 1 ,<O<o 2 ,0 1<1<ý 2 ) is

42 2

JJ G(O,4) sin e d od

P(6ýP.02 ýL(288)
27r iT

*-. •fjG(Oo) sin ode d d

0 0

where G(eo,) is the source intensity distribution. Therefore once a

specific function G(e,ý) is selected we can generate random numbers

representing a random angle over the prescribed distribution through the

use of equation (285).

The probability that the photon traverses the distance between

P, and P2 between collisions or from the source to the first collision is

given by

S~P2

Pe dp (289)

P1

where p is the number of mean-free-paths traveled. We will use (287) t's

generate the pi random numbers.

We can see from figure 19 that the exponential distribution for

optical pathslengths holds for the interval 0<p<_o.
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Spn. x P

Figure 19. Exponent.' Di•stribution

If we desire to limit the optical -tth to the, interval N<p<_max as in the

case of a very dense 61oud mwith- el ligible scattering outside the cloud

or for a fi?'Mte 'atmosphere, a trtn,.ated exponential dist.ibution, as

lepicted in figure 19 wo-ild" be secq. The truncated exponential random

numb~ers may be found from

Ri = f- -- dp (2-90)
0 1'j e Pmax

or, upon solving for pi

Pi = -Z Ri1 - e'Pmax) (29l,)

As we have mentioned previously, we will estimate the intensity

at a detector after each collision. We do this by calculating-the

scattering angle toward the detector, rotating the Stokes vector into the

scattering plane, multiplying the scattering matrix with the rotated

ýtokes vector, rotating the Stokes vector back to the reference plane,

ind attenuating the resultant Stokes vector by the attenuation function

e-PD

where pD is the optical distance from the collision point tu the detector

and D is the giomtric distance from the collision point to the detector.
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Figur.e-20 shows the geometry usedofor calculating the intensity

at a detector resulting from a collision, In figure 20i r is the hori-

zontal radial distance from the origin to the collision point, rD is the

horizontal radial distance from the origin to the detector, 0 is the

scattering angle toward the detector, *r is the Stokes-rotation angle,

hD is the height of the detector, and hc is the height of the collision

point. Using the spherical triangle a83,we can-compute the rotation

SI angle ýr from

c6s ýr co0sc - cos 0 cos 3 (292)

sin o sin a

sin @r sin a sin ' (293)

sin o

where y is the angle between the radial lines to the collision point and

to the detector as shown in figure 20.. The cosine of t'e scattering angle

may be computed by taking the inner product between the unit vector in the

direction of the photon prior to the collision with the unit vector in. the

direction from the coll-ision point to the detector. The unit vector in-

the di.rection of the photon prior to the scattering event is

4.
ap =sin, a cos 6 ax + sin 6 in 6 y+ cos s az (294)

where the angle 6 is shown in figure 20. The unit vector from the colli-

sion point to the detector'is

aD ( Cos y- r) x y +h-h az (295).

Taking the inrer product of equations (294) and (295) we obtain
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hc collision Photon Direction vPrior
Doint rto Collision

hD

Detector

Figure 20. Geometry for Calculation of Intensity at a Detector
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sin 0 cos 6 rcos y- r) rD

Cos DDsin Y sin 0t s 6
D_ D

+ - (296)
D

After having made an estimate of the intensity at the detector

after a collision, a randomi scattering angle is selected. The scattering

event may be either Rayleigh-scattering or Mie scattering. The specific

type of scattering which occurs for a particular collision is detiermined

by comparing a random number selected from a uniform distribution with

the ratio of Rayleigh to Rayleigh plus Mie scattering coefficients for

that altitude [28]. Tf the random number is less than or equal to the

ratio Rayleigh scattering is selected. Otherwise we select Mie scattering.

For Rayleigh scattering the scattering angle is selected from the

probability density function [9, 20]

P(cos 0) ( • ( + cos 2 o) c(297)
8

Collins and Wells have shown that (297) can be written as the sum of two

probability density functions

P(cos 0) = Pl(cos 0) + P2(cos o) (298)

with

P1 (cos o) . sin e d e (299)4 2

and

P2 (cos 0) :3 cos 2 0 sin e d e (300)
4 2

The density function P1(cos o) is chosen to represent P(cos o) half of the

time and P2 (cos 0) the remainder of the time. If P1 (cos o) is chosen,
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then cos 0 may be determined-by solving

Ri. f sine d e (301)
b 2

for cos 0i, or

cos Oi =1 -2 Ri (302)

If P2(cos o) is chosen, cos 0i is selected in the same manner as (302)

o�ut cos2 ii compared to a second random number and is accepted if it

is greater than the second random number, Collins and-.Wells have shown

that the determination of cos 0 compares very favorably with the actual

distribution for Rayleigh scattering.

If Mie scattering is selected, the cumulative probability of

scattering into ah angle less than or equal toO 3i is given by the norma2,-

ized differential scattering cross section of equation (273):

0.

-s (O,X) sin o d o

P(o~oo): 0 (303)

f Es (Ox) sin o d 0

0

The azimuthal scattering angle which determines the orientation

of the scattering plane is selected from the uniform distribution

p(ý)= L (O_<ý2) (304)

for both Rayleigh and Mie scattering.

Now that the scattering polar and azimuthal anqles are known we

nmiiy compute the direction of the photon after being scattered. The cosine
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of the angle between the photon's direction after scatter and the vertical

axis is

Al 
(3 5

cos ' = cos a' cos o + sin a' sin o cos r(305)

where the anRgles are defined as shown in figure 21.

The iitensity received at each detector simulated will be recorded

as a function of polar and azimuthal angles. The polar axis for each

i •detector is defined to be the axis joining the source and detector. The

x and y axes lie in a plane normal to the polar axis. The x axis is

contained in the vertical plane containing the source and. receiver points.

The positive x axis points toward the positive vertical dIrection but is

in general, inclined to the true vertical.

If reflections from the ground occur, we assume that the reflected

light i3 diffuse and therefore completely depolarized. The reflected

polarization parameters are given by

= a'\ r (306)

Ir =a r (307)

U' = 0 (308)

- V' = 0 (309)

where the prime denotes the reflected quantities and a is the ground

i ! -al8edo.
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direction after collision

Figure 21. Geometry for Determination of Scattering Angle
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SECTION V

DEPOLARIZATION BY CLOUDS: SOME 'EXAMPLES

L- INTRODUCTION

Ir the previous sections we have discussed the various facets of

the problem of determini ng the effect of citmospheric scattering on the

pýpularization properties of an electromagnetic wave. In section II we

derived the equation of radiative transfer for a plane-parallel atmos-

phere. There it was found. tl,: the intensity at any ponht may be

I ,'Found by solving a complex set of integral equations. The equation of

' 1radiative transfer has been solved only for the cases of isotropic

Sscattering and Rayleigh scattering [9]. The more general problem of

anisotropic scattering, has also been discussed by Evans, Chu, anda Churchill [£11]. The scattering function for single scattering may be

expanded in a series of Legendre polynomials of the form

N
f(cos o) E ai Pi (cos o) (310)

i=0

where the ai are the series coefficients. This expansion is of the

same form as the exact solution for a sphere (see equations (252) and

(253)). The scattering functions selected by Evans et al. are highly

peaked in the forward direction which indicates that for that particu-I lar case near field effects would be more pronounced in the forward

scattering direction. The shape of the scattering function will

depend on the size parameter x where r is the radius of the

spherical particle and X is the wavelength; it will also depend on the

sphere's complex index of refraction.
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-2. PARTICLE SCATTERING FUNCTIONS FOR THE CUMULUS CLOUD DISTRIBUTIOtN

In section V we. derived the normalized scattering function for a

given particle size distribution; in this subsection we will show some

results for the "Cumulus. Cloud" distribution. This distribution is

n(r) = 2.373 r0 e 1.5r cm-3 1-1 (-1)

as given by Deirmendjian. In equation (311) the particle density is

N = 100articles
cm3

and the mode radius 'is rm = 41,, Equation (311) is plotted in figure

22. In figures 23 through 27 are shown the scattering function for

individual particles taken from the Cuoulus Cloud distribution anid

perpendicular incident polarization, with X = O.5 p and ii(e) = ISi (6)2.

Thesize parameters 13.86, 35.87, 72.31', 123.19, and 188.50 correspond

to spheres of radius 1.1, 2.9, 5.8, 9.8, and 15.O, respectively.

Notice the increase in the forward peak with size parameters.

We can normalize equation (311) as follows:

p(r) = n(r) n=r (312)

n(r) dr

0

or upon s.ubstituting for n(r) from equation (311) and using the value

of N we have

p(r) = 0.02373 r6 e-1.sr (313)

which is the probability of finding a particle in the radius interval

(r, r + dr). The expected value of r can be found from
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'1 Err] = f r p(r) dr. (314)

S-or

E[r] = f 0.02373 r?. e-l.5r dr

= 0.02373 (1.b)-8 r(8)

: 4.66P (315)

* The variance is

•, , or VarI[r] =+E (r - E[r])2]

Var[r] E[r 2] - (E[r]) 2  (316)

A.e can obtain the second term on the RHS from (315) and the first term

from

E[r 2] = f r2 p(r) dr (317)

0

or
00

E[r 2 ] J 0.02373 r8 e 1 .sr dr

0

= 0.02373 (1.5)-9 r (9)

= 24.9u2  (318)I!.

so that upon using the result (315), we obtain
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Var[r] = 24.9 - (4.66)2

= 3.212 (319)

We can now obtain the standard deviation

ac = \Va-r] = 1.78P (320)

Comparing the expected value .of r, E[r], with the mode radius, rm, we

find that since these values do not coincide and the distribution is

not symmetrical the particles of radius greater than E[r] will affect

the averaging of the scattering function over the size distribution to

a greater extent than those below E[r]. Comparing figures 23 through

27 we can see that the scattering functions given by figures 24 through

26 will affect the averaging of the scattering function over the size

distribution to a greater extent than the scattering functions given

by figure 23 or figure 27. The scattering function given by figure 25

will enter into the averaging, quite heavily since it is within lc of

E[r]. The fact that particles of radius greater than rm will greatly

* affect the normalized scattering function can be seen by comparing

figures 25 and 26 with figure 28. Figure 28 is the normalized scat-

tering function for perpendicular incident polarization obtained from

equation (275). The amplitudes of the normalized function and indi-

vidual scattering function cannot be compared since the individual

particle scatteri'ng functions have not been normalized. The normalized

scattering function for parallel incident polarization is shown in

figure 29. There is not much difference between the normalized scat-

tering functions for perpendicular and parallel polarization except in

"the scattering interval from 900 to 1700. The end points at scattering
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angles of 0° and 1800 of the normalized scattering functions for

parallel and perpendicular incident poiari-zation are equal as required,

i.e., the energy scattered in the forward or back directions are not

sensitive to pVoarization.

If-we average the normalized scattering functions for perpendicular

and parallel incident polarization as follows:

1-1(e)I2 + IS2(o)12  Il(e) + I2(0)
S+ : (,,321I)

2 2'

we will have ,a relation which is proportional to the ,probabili-ty of

scattering in any direction and~we can derive the cumulative scatter-

ing distribution. This vividly shows ,(figure 30) the preference to

forward scattering for the cumulus cloud distribution at a wavelength

of 0.511.

If we now reduce the frequency (increase the wavelength) and con-

tinue to use the same size distribution given for cumulus clouds and

consider particles of the same radius as before we can get a "feel"

for the effect of wavelength on the scattering function. Figures 31

through 36 give the scattering functions for particle radii of 1.1,

2.9, 5.8, 9.8, and 15.0p as before. These are given for perpendicular

incident polarization and a wavelength of 4.01. Figures 36 and 37

give the normalized scattering functions for perpendicular and parallel

incident polarizations, respectiveiy. Figure 38 is the cumulative

scattering function. Again we see, upon comparing figures 33 and 3-0

with figure 36, that radii greater than rm affect the normalized scat-

tering function to a great extent. We can also compare figures 30 and

~ 4 38 and see that the probability of scattering in the forward direction

when compared to side and back scattering has been reduced somewhat.
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We continue to increase the wavelength to 6.Op and then to 10.0p.

Figures 39 through 43 and figures 47 through 51 are the scattering

functions for perpendicular incident polarization for wavejengths of

6.0 and lO.Op, respectively and given at the same radii as in figures

23 through 27 and figures 31 through 35. The widening of the scat•

tering functions with increasing wavelength can be seen by compdring

figure 30, the cumulative probability function for x = 0.5p with

figure 46, the cumulative probability function for X = 6 .0p and fig-
ure 54, the cumulative probability function for x 1 I0.0p. For

example, in figure 30, the probabil.ity of scattering-I.t-h-r.ugh an angle

between 00 and 210 is 0.5, the same probability as obtained for the

scattering interval from 40 to 210 in figure 54. This dependence of

scattering angle on wavelength implies that fut, a given particle size

distribution that multiple scattering will increase with -avelength,

i.e., the probability of scattering over a greater range of angles is

greater for large wavelength. Figures 44 and 45 are the ,normalized

scattering functions at X = 6.Op while figures 52 and 53 are the

normalized scattering functions for X 1 I0.0p.

The extinction coefficient for Mie scattering for the cumulus cloud

distribution is given in table 1 for each wavelength under considera-

tion. The extinction coefficient for Mie scattering is given by [14]

(X rext = X'+ bn (322)

ext ,r,m) 2r (2n + T) Re (an n)
n= l

where the coefficients an and bn are given by equations (256) and (257).

We can define the extinction efficiency factor by

a (X,r,m)
Qext(xm) ext (323)
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Figure 23. Particle Scattering Function for X = 0.5v and X = 13.96,
Cumulus Cloud Distribution
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Figure 25. Particle Scattering Function for X : 0.5p and X 72.31,
Cumulus Cloud Pistribution
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Figure 26. Farticle Scattering Function for X = 0.51p and X 123.19,
Cumulus, Cloud Distribution
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Figure 27. Particle Scattering Function for X = 0.5p and X = 188.50,
Cumulus Cloud Distribution
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Figure 31. Particle Scattering Function for x 4.0k and X 1.73,
Cumulus Cloud Distribution
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Figure 32. Particle Scattering Function for x = 4COu and X = 4.48,
Cumulus Cloud Distribution
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Figure 33. Particle Scattering Function for A 4 .Op
and x = 9.04, Cumulus Cloud Distribution

102



• w F--0
0O4 WAVELENGTH 4.00 MICRONS

SIZE PARAMETER = 15.40

:11
II 3

10

~~0,i

10-1 I I q I J. I, I I - j -
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE (DEG)

Figure 34. Particle Scattering Function for X 4.Op and X 15.40,
Cumulus Cloud Distribution

1

•' 103



i o

, -105

WAVELENGTH 4.00 MICRONS
SIZE PARAMETER = 23.56

-Ij

103

102

101

100

10-1

10-2 I r I I I a a a , a
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE (DEG)

Figure 35. Particle Scattering Function for x =4.0
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- and x = 15.71, Cumulus Cloud Distribution
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Figure 48. Particle Scattering Function forX= 10.Oi and X = 1.79,
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Figure 49. Particle Scattering Function for X = lO.O0 and X = 3.62,
Cumulus Cloud Distribution
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Figure 50. Particle Scattering FLiction for X = lO.Op and X = 6.16,
Cumulus Cloud Distribution
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Figure 51, Particle Scattering Function for x = I.0u
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Table 1

EXTINCTI'ON COEFFICIENTS FOR THE CUMULUS CLOUD DISTRIBUTION

,( Flext

0.5 1.657 x 1O"4

1.0 1.712 x 1O"4

2.0 1.812 x lO"4

4.0 2.179 x lO"-

6.0 2.537 x lO4

8.0 2.303 x lO"4

10.0 1.865 x lO"4

where r is the particle radius. Then by integrating over the size

distribution [24] we obtain the volume extinction cross section as

r 2

Eext (A ,m) f irr2 Qext ( ,m) n~r) dr (324)

Since weare not considering complex indexes of refraction in this

study the extinction cross section is equal to the scattering cross

"section. We also notice on comparing the extinction coefficients in

table 1 for each wavelength that they are almost constant as a function

of wavelength.

3. PARTICLE SCATTERING FUNCTIONS FOR HAZE M DISTRIBUTION

We nuw consider the particle size distribjtion (figure 55)

(w8 -8944hF

n(r) = 5.33 x lO" r e (325)
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which is typical of a Maritime Haze [24]. As before we normalize the

distribution

!Np(r) nN (326)-

where again N 100 particles, and
ancm 3

and

p(r) = 533 r e- (327)

The expected value is

00

E[r] = 533 r 2 e'8'944Fdr

0

= 533 (8.944)-6 r(6)

= 0.125p (328)

The mode radius is

rm = 0.05P

The variance is

Var[r] = E[r 2 ] - (E [r]) 2  (329)

with,

CO

E[r 2 ] =f 533 r 3 e"8'944F• dr

0

= 533 (8.944)-8 r(8)

= 0.07p2  (330)

and

Var[r] = 0.07 - (0.125)2

S.o5P 2  (331)
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The standard deviation is then

aH = Var[r] = 0.22k (332)

Comparing the mode radius with the expected value we can see that

particles with radii greater than the mode radius will again contribute

heavily to the normalized scattering function.

We can compare the ratios of the standard deviation to the expected

value for the Cumulus Cloud distribution and for the Haze M distribu-

tion. We have for the cumulus distribution

_c _ 1.78

Ei7r 4.66 = 0. (333)

while for the Haze M distribution

- ' = 0.22 = 1.76 (334)

El rJ 0.125

from which we can see that the relative spread is larger for the Haze

M distribution and we conclude that a wider range of pa-ticle sizes

will contribute to a greater extent for the Haze M model than for the

Cumulus model.

Figures 56 through 60 show the scattering functions for perpendicu-

lar polarization and A = 0.5p for individual particles of radius 0.09,

0.33, 0.73, 1.29, and 2 .00u with size parameters of 1.06, 4.09, 9.12,

16.13, and 25.13, respectively. Here again we see an increase in for-

ward scattering with increasing size parameter. Figures 61 and 62 are

the normalized scattering functions for perpendicular and parallel

incident polarizations, respectively. In comparing figures 55 through

60 with figure 61 we can see that the larger particles contribute to

the normalized scattering function more than do the smaller particles.

The cumulative probability distribution is shown in figure 63.
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Comparing figures 30.and 63 we see that the scattering angles are

distributed over a slightly wider range for the Haze M model than for

Sthe Cumulus model, i.e., the probability of scattering between the

angles 00 to 170 is 0.5 for Haze M while for Cumulus for the same

probability the interval is between. 00 and 40. Therefore, for a given

wavelength and density we would expect more multiple scattering for

Haze M than.for Cumulus.

As we increase the wavelength to 2.Oj the particle scattering

functfons increase significantly as shown in figures 64 through 68

which results in a fairly wide normalized scattering function as shown

in figuros 69 and 70. The cr:mulative probability function is shown,.in

figure 71.

*- The particle scattering function continues to widen (figures 72

through 76) for X = 6.0p, with figure 72 showing an almost isotropic

scattering function for x = 0.09 and a radius of 0.0 9u. The normalized

scatterhg functions in figures 77 and 78 show this increase in width

as does the cumulative probability function in figure 79.

At a wavelength of l0.0p the normalized scattering function for

perpendicular incident polarization (figure 85) is almost isotropic

and the normalized scattering function for parallel incident polariza-

tion is almost equal in the forward and back directions with a null

at 900. This type of scattering function is typical of Rayleigh scat-

tering, i.e., the particles in a Haze M distribution may just as well

be considered as Rayleigh scatterers for wavelengths greater than lO1.

It is only for thŽ larger particles, cf. figures 80 through 84, which

occur with small probability, that we see any appreciable peakedness

in the forward direction. The cumulative probability function also

indicates the near isotropy at X 10.0. Here the probability of
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Figure 74. Particle Scattering Function for A - 6.O0
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scattering through an angle between 0' and 710 is the same as that

f sor angles between 0* and 210 for the cumulus distribution and

0 = lO.Op. One can see from figures 85 and 86 that the normalized

scattering function at X = lO.Op resc.Jý,le scattering functions for

Rayleigh scattering. Figure 87 shows the almost uniform cumulative

probability functions. Table 2 contains the extinction coefficients

for the Haze M distribution as defined by equation (324). We-o-ote

that the extinction coefficient decreases with an increase in w,"',e-

length, i.e., red is attenuated less thaii the shorter wavelengths as

was first shown by Rayleigh.

Table 2

EXTINCTION COEFFICIENTS FOR THE HAZE M-DISTRIBUTION

Eext

0.5 l1OOl x I-6

1.0 9.083 x 10-7

2.0 4.297 x lO-7

4.0 1.222 x 10-7

6.0 4.040 x 10-8

8.0 1.677 x 10-8

10.0 7.931 x 10-9

4. DEPOLARIZATION BY A CLOUDY ATMOSPHERE Ar 0.5, 4.0, and lO.Op

In this subsection we consider the propagation of an electromag-

netic wave through an ,tmosphere containing cumulus clouds. The photon

source will be pointed in the downward diroction (see figure 82) from

a fixed altitude of 13 km. We assume that the source is linearly

parallel polarized and that the source beamwidth is 20 x 20. The
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altitude of the cloud bottom is 10 km while the altitude of the cloud,

top is 11 km. We first assume that only, Rayleigh scattering exists

, * above and below the cloud, then only Mie scattering, and finally we

assume that no scattering occurs outside the cloud. Inside the cloud

we consi'der only Mie scattering. We determine the depolarization Of

the linearly polarized wave at wavelengths of 0.5, 4.0, and 10.0p.

The ground is assumed to be a diffuse scatterer so that the incident

wave is completely depolarized, i.e., equal -parallel and perpendicular

components are scattered. We initially assume a ground albedo of 1.0,

i.e., all incident energy is scattered back into the atmosphere, then

we assume that nc ground scattering occurs. The source is placed at

an altitude of 13 km. Two isotropic detectors are placedt.at altitudes

of 9 km (Dl) and 13 km (D2) with D2 displaced horizontally by O3m

•o from the source.

In simulating the problem described above using the Monte Carlo

technique we use 5,000 and 10,000 histories. Experience gained in

running several problems has lead to the selection of 10 collisions

(see figure 109). Actually, as we can see from figure 109, at 6

collisions the received intensity has dropped by 3 orders of magnitude

and we could probably carry the number of collisions out to only 6

with acceptable results.

Fiqure 89 shows the assumed stratification for the atmosphere.

The optical depth increases linearly with altitude in steps as follows

10-5 h 0 < h < 10 km

r(h) = 103h - 9.9 10 km < h <11 km (335)

6.1 x 10-7 h + .1 11. km < h < 500 km
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The optical depth of the cloud is 1.0 as can be seen from figure 89.

Normal-ly the atmosphere is stratified exponentially [15] but for small

distances as. we have assumed for this problem linear stratification is

a good assumption for the type of atmosphere selected. This basic

stratification will be scaled up for simulation of greater densities.

As we have stated the polarization assumed for this problem is

parallel. This means that the electric field vector, according to the

convention adopted in section Ill, is in the vertical plane tirough the

propagation vector and the vertical axis referred to the source. Figure

90 portrays our polarization convention. The source is located at the

origin. In this example a photon is being emitted from the source in

the direction (e,ý), the electric field vector E is in a vertical

plane containing the pronagation vector k and the vertical axis.

Figure 91 shows the results of the Monte Carlo simulation for this

problem. The ordinate is the polarization factor and is defined as

I -I
D r (336)

I r +
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Figure 90. Polarization Reference Plane for Emitted Intensity

where Ir and I• are the perpendicular and parallel intensity components,

respectively. The abscissa is the cosine of the polar angle for each

detector. Recall that the polar angle is measured from the line join-

ing the detector and the source with 0' toward the source and 1800 away

from the source behind the detector. Therefore in figure 91 both detec-

tors are "looking" directly at the source when the polar cosine is

euqal to +1.0 and directly away when the polar cosine is -1.0. Detector

2 is only 0.3 meters from the source and the magnitude of the intensity

from all directions is such that the variance of the samples is less than

two orders of magnitude from the mean. Detector 1 is 4 kilometers from

the source and due to the ncrrowness of the source beam (20 x 20) the

variation of the intensity and therefore also of the polarization fac-

tor is large between values of the polar cosine equal to -0.7 and +0.7,

i.e., Lhe data are meaningful only for forward scattering angles from

00 to 450 and for back scattering angles from 1350 to 1800.
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In figure 92 we show the depolarization factor for the same problem

4 except at A = 0.5p. In comparing figures 91 and 92 we can see that for

detector 1 the depolarization is not quite as great as it its for detec-

tor.2 at 0.5p. The intensity scattered directly back from the cloud

_a and the ground to detector 2 remains depolarized at 0.5p and at l0.Ou.

Figures 93 and 94 show the same data as shown in figure 92 except

expanded. Figure 93 gives the polarization factor for de~ector 1 for

polar angles from 0 to 20, i.e., forward scattering through the cloud,

and figure 94ýgives the polarization factor for polar angles from 890

"to 910, i.e., backscattering from the cloud.

Figure 91 shows that for detector I located below the cloud (see

figure 68) that the forward scattered energy (polar cosine equal to

+1.0) is only partially depolarized and at that point

D =,0.8 (337)

while for backscattering (polar cosine equal to -1.0) from the ground

with an albedo equal to 1.0 the wave is completely depolarized, i.e.,

Ir = IZ (338)

or

D = 0 (339)

This is as expected since we are assuming that the ground is a diffuse

scatterer and completely depolarizes the incident wave.

For detector 2 we can see, if we ignore the small variations, that

the received intensity is almost completely depolarized for all direc-

tions. The cloud and ground are in the direction where the polar cosine

is equal to 0. For figure 91 and subsequent data the received intensity

is integrated over all azimuth angles, but the magnitude of the inten-

sity received from dngles other than forward and backscatter can be

K. considered to be neqligible; for example, for detector 2 the intensity
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received from an azimuthal interval of 45' while pointing directly at

the cloud Js four orders of magnitude greater than the intensity

received from an interval of 450 but pointed 1800 from the cloud, I.e.,

in the positive vertical. direction.

The data just presented in figures 91, 92, 93, and 94 include, as

pointed out, reflections from the ground as well as from the cloud. In

order to• determine the effecpt of the ground on the depolarization of the

incident wave the ground was assumed to be highly absoroent and an albedo

of 0.001 was selected compared to an albedo-of 1.0 for the previous fig-

ure5. Figures 95 and 96 show the results of this modification for 5,000

histories and x = lO.Op. In figure 95 we can see that the average,

depolarization factor for detector 1 is approximately 0.9 compared to

'0.8 for forward scatter in figure 91. The approximate average polariza-

tion factor for detector 2 for intensity backscattered from the cloud

in figure 96 is approximately 0.7 while if ground reflections are

included as in figure 91 the backscattered intensity is completely

depolarized. One can thercfore conclude that at x lO.Op, for the prob-

lem defivod', the diffuse scattering ground will cause a major portion

of the 4polarization of the incident wave. It should be pointed out

that the data obtained for figures 95 and 96 was obtained while allowing

up to 10:photon collisions. A separate problem was run using 10,000

histories while allowing only 1 collision; the scattered intensity was

not depolarized at all which agrees with theory. Therefore we can see

that for - fairly thin cloud with an optical depth of 1.0, depolariza-

tion due to multiple scattering is significant.

In pursuing this problem further we determined the degree of

depolarization for thicker cumulus clouds at X = 0.5p and 4.0p. The

wavelength 4.O0 was selected to coincide with the mode radius for thp
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size distribution of the cumulus cloud (figure 22). The--optical depth

for A =,.5M was selected to be 3.0 while at A = 4COp we selec'4- T =

.4.0. The values of the optical depth at O.AV and 4.0p were z•,ld

-according to the ratio of the individual extinction coefficie,,"ii which

are

Sext (4.00) 4 (340)
drext (0. 51)

roThe scaling in the-optical depth t follows from equationE ;-i3) and

(274) where we see that the volume seattering functions a,,e :proportional

to x2 . Any difference' in r due to frequency change foe ayparticular

'size distribution must therefore be scaled according, to ije change in

-extinction coefficient. THs scaling allows us to maintain the same

physical atmospheric model. Again we assume ahighly absorbent ground.

Figures 97 and 98 show the backscattered and forward scattered polariza-

tion factors at x = 0.5p, respectively. Figiures 99 ,nd 100 show the

backscattered.and forward scattered polarization factors at X 4.0p,

respectively. We can see that at X = 0.5p

D -0.65 (341)

while tt X =CO

D 4 .045 (342)

We therefore conclude that for the -umulus cloud distribution that a

greater amount of depolarization occurs at • = 4.Op than at A = 0.5p.

This can be explained by ,noting that the scattering functions for

cumulus cloud distributions are not as highly peaked in the forward

and backward directions at larger wavelengths (figures 36 and 37) as

they are at the smaller wavelengths (figures 28 and 29). This change
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in scattering function results in a greater degree of multiple scat-

tering for longer wavelengths and thus causes a smaller polarization.

factor at that wavelength compared to that of 0.5p.

The forward-scattered polarization factors at X = 0.5m and x = 4.0p

,are shown in figures 98 and 100 and we can see that the average value

for both wavelengths is approximately

D, -, -0. 6 (343)

and we ;therefore conclude that the forward scattered polarization is

not as sensitive to frequency as is the backscattered intensity.

We continue to isolate the cause of depolarization by not allowing

either ground or Rayleigh scattering at X) 4.01., Figure 101 is the

po-larization factor for-backscatter from the cloud; we note that now

D im z -0.65 versus D -0.58 in figure 99when we include Rayleigh scatn

tering. Figure 102 shows the polarization factor for forward scatter

from the cloud for no ground or Rayleigh scattering. Comparing figure

102 with figure 100 we note that at 00 D s -0.88 in figure 102 versus

D s -0.68 in figure 100. We now conclude that Rayleigh scattering causes

an increase in depolarization. We should note that although we have,

eliminated Rayleigh scattering, we have replaced it with M~e scattering

particles outside the cloud taken from the cumulus distribution.

Now we completely eliminate any form of scattering outside the clodd.

Figure 103 shows the backscatter polarization factor from the cloud and

figure 104 the forward scatter polarization factor. On comparing fig-

ures 101 and 102 with figures 103 and 104 we note that the change is

0 small.

We now compare the polarization factors for no scattering outside

the cloud at X = 0.5p and X = 4.0g. Figure 105 shows the backscattur

polarization factor at A = 13.5), and we note that at 900 D s -0.78 versus
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D -0.65 at X 4.0p in figure 101. Figure 106 shows the forward scat-

ter polarization factor at A = O.5p and at 00 D % -0.8 versus D ; -0.78

at A = 4.0w in figure 102. We therefore conclude that the degree-of

depolarizatibon is greater at X = 4.,Op than,,at x = 0.5v for a Cumulus
Cloud distribution. Ther percentage change in polarization factor from

A = 0.5p to X = 4.0w is approximately 9 percent for- a cloud of medium

thickness (T = 4.0).

5. DEPOLARIZATION BY A HAZY-CLOUDY ATMOSPHERE AT 6.866P

Consider now the geometry shown in figure 107. Again as in the last

- problem we have a source and two detectors. Here detect6r, 1 is iucated

just 10 meters off the ground. The source and detector 2 are located

at an altitude of 5 km with detector 2 located 0.5 meter horizontally

from the source.' The source t~eamwidth is 20 x 20 and emits photons at

A = 0.866P. The atmosphere is composed of Haze M with e, cumulus cloud

between 1 km and 3 km from the ground. For this problem the ground

albedo is assumed to be 0.8.

Here we assumed that the atmosphere is exponentially stratified and

the optical depth is given by (see section V) [24)

T(h) = O H(l - e h/H) t344)

where

(IOM = 1.02 x 106 for Haze M

'1OC = 1.70 x 10-4 for cumulus clouds

- HM = 0.98 km for Haze M, and

HC = 2.00 km for cumulus clouds
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-" - The-value H- = 2.00km-was- assumed while aOM, OC, and HM are measured

values, [15.. Figure 108 is a plot of equation (344) for the.,geometry

I shown in figure-107. For this model the optical depth of the atmosphere

is .1.1. Tfhe.-size -particle distributions for Cumulus Clouds and Haze M

i_ - are given by equations (311)' and (325), respectively. We assume that

IRayleigh scattering is negligible everywhere so that only Mie scatter-

ing occurs. Up to-three reflections from the ground were allowed.

In figure 109 we have shown the relative intensity at detector 1

as- a function of the-number of collisions during a single history for

S_10,000"historits. In the simulation we consider up to 10 collisions

and we can see 'tht the intensity becomes negligible for collisions

j= greater than, say, 5 collisions.

Figures 110 and 111 represent the depolarization factor as a func-

tion-of the polar cosine where the polar angle is defined as in sub-

section 4. From figure 110 we can see that for detector 1 which is
I located directly below the source and 10 meters above the ground (see

figure 107) the received intensity is only slightly depolarized when

"looking" directly at the source, i.e.,

D = -0.8 (345)
for polar cosine equaf to +1.0. On the other hand the intensity is

completely depolarized for scattering from the ground at a polar

cosine of -1.0. Depolari'zati •n increases gradually reaching a value

of zero at approxihiately 90° or polar cosine equal to 0.

For detector 2 which is located next to the source the received

, Iintensity is almost completely depolarized, I.e., D z O. The problem

was then rerun with no ground reflections to influence the polarization

188



• I
4 4-

-4-

4-)

C6•

a)

5-

L.-

CD•

o cc

Q 0 CD

1 89

II

S0

__ I

189



10 0 k

1--

10-

I-

.- 10-3.-

510-4

F 10"3

92 3 4 5 6
NUMBER O' COLLISIONS

Figure 109. Relative Intensity versus Number of Collisions

Ii• 190



ii 1 
1 .0-r

.8I DETECTOR 1
GROUNDA!b'b = 0.8

.6

.4

.2

-.4

-. 6

.8

-1.0 -. 8 -. 6 -. 4 -. • .0 .2 .4 .6 .8 1.0

POLAR COMINE

Figure 110. Polarization Factor for Cumulus/Haze M for DI

191



.1.0

.8 DETECTOR 2
GROUND ALBEDO 0.-8

- .6

.4

.2

• o.0

-.2

-. 4

-.6

-.8

-1.0 I , I I I I .--" .0 -. 8 -. 6 -. 4 -. 2 .0 .2 .4 .6 .8 1.0

POLAR COSINE

Figure 111. Polarization Factor for Cumulus/Haze M for D2

192



factor.- For this case +he backscattered intensity from the cloud at D2
was found to remain parallel polarized, i.e.,

D = -1 ('346)

6. DEPOLARIZATION WITHIN A CUMULUS CLOUDAT 0.5: and lO.Op

* Letus now investigate the problem of depolarization of a parallel

polarized wave when both the source and detectors.,are within a cumulus

cloud (figure 112). The cumulus cloud size distribution as given by

equation (311). Here again we will assume that the source emits photons

in a 2* x 20 beam which is pointed<horizontally in line with two i'ýo-

-,' I tropic detectors. The source and detectors are located at an altitude

of 10 km. The cloud extends from the ,ground up to a•-,'altitude of 20 km

above which no scatterers exist. The ground albedo was selected to'be

small' '(0.1) in order to simulate a highly absorbent ground. We again

allowed up to three reflections from the ground. Detector Dl is 0.3

* meters from the source while detector D2 is 1 km from the source. With

Dl we will measure the backscattered perpendicular and pirallel polariza-

tioh components 'while with D2 we will measure the,perpendicular and

'parallel forward;'scattered comr-aents. The optical thickness of the

cloud is assured to be uniformly increasing with altitude as shown in

figure 113. This variation of optical depth with altitude can be

represented by equation

T(h) = 5 X 10-4 h1 (347)

Fipure 114 sh.ow tOe result at 10l.0; we can see that the back-

scattered intensity at detect(,- Dl is slightly more than half depolar-

- ized and we-have

D= -0.4 (348)
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At detector D2 the received intensity is completely depolarized.

The complete depolarization at D2 was later found to be caused by

ground scatter. We can see that for D2 the polarization factor begins

to vary con:•iderably for polar cosines less than 0.9 (s26o). Here,

again, we haveý.allowed 10 collisions per history and the photon inten-

sity is attenuated quite rapidly as it propagates toward D2 from the

source. Rayleigh scattering was not allowed for this problem.

Figure 115 shows the polarization factor for detector 1 for the

backscattered intensity at lO.Op. Notice that the polar angle covers

the interval from 1770 to 1800, therefore for direct and quasi-direct

backscatter the intensity is not completely depolarized and-agrees with

the larger angle interval shown in figure 11M.

Fiyu;fe 116 is an expanded version of figure 114 for detector 2 in

the interval from 0' to 20; here one can see, if one neglects the small

statistical fluctuations, that the wave is completely depolarized.

To determine the degree of depolarization caused by ground reflec-

=tions and scattering within the cloud, we eliminated all ground reflec-

tions and found that for 1 = 10.0 the received intensity was, for all

practical purposes, still parallel polarized, i.e., D = -l for parallel

polarization. We thus conciudi that, for this specific problem, the

depolarization is caused by ground scatter.
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SECTION VI

DISCUSSION AND CONCLUSIONS

In this study we have set out to determine the effect of scattering

on waves propagating throvgh the atmosphere. We have centered our atten-

tion in the infrared part of ,the spectrum although we have compared our

results to X O.51 which it in the visible portion of the spectrum.

In section I, we presented a brief discussion- df the various mech-

anisms which may -cause the depolarization of electromagnetic waves

including nonlinear effects. We stated that although polarization has

been used in ektracting information concerning scattering tragets, prob-

lems in controlling the polarization state of an electromagnetft wave

are usually encountered especially at the microwave frequencies. We

also pointed out that in separating the intensity scattered back from

multiple targets the effects of multiple scattering must be taken into

account for dense media.

In sections II and III we derived, the transfer equation for polar-

ized waves and showed how one might treat a polarized wave of arbitrary

polari, tion. In sc-'.ion II we gave an indication on how we would

approach the modeling of scattering of polarized waves in the atmosphere.

In section III we derived the scattering matrixes for Mie and Rayleigh

scattering which we subsequently used in modeling the scattering pro-

cess in the atmosphere. All scattering particles in the atmosphere were

assumed to be either Rayleigh or Mie particles, Rayleigh particles

being those less than a wavelength in size while Mie particles being

spheres of arbitrary size.
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In section IV we presented the simula:.1on model. We derived the

± i probability functions which characterize the path of a photon in the

atmosphere. We showed that through the Monte-Carlo simulation of a
large number of photon-histories we could obtain approximate numerical

results to the scattering of electromagnetic waves in the atmosphere

including the effects of multiple scattering.

In section V we obtained some results for specific problems. We

used the Cumu'us Cloud and Haze M 'size distributions to obta,'4 the

volume sd2ttering functions for incident perpendicular andl paralle,

polarization. Using the volume scattering functions we modeled cloudy

and hazy atmospheres for different optical depths and wavelengths. In

subsection 4 of section V we saw that under the assumption of a diffuse

scattering ground which caused complete depolarization, Li.e., equal

parallel and perpendicular components, the backscatteredtintensity was

completely depolarized while the forward scattered intensity was only

slightly depolarized. We showed this to be true at wavelengths of 0.5,

4.0, and l0.Op. We then saw that if we considered only the intensity

scattered from the cloud that there was no depolarization for single

scattering and a Aignificant amount of depolarization for multiple

scattering. By comparing the backscattered polarization factor at
wavelengths of 0.5 and 4 .O0 for the same physical cloud, we saw that

the depolarization was greater at 4.Op than at 0.5p. A comparison of

the volume scattering functions at these two frequencies (figure- '8

and 44) reveals that this result is to be expected since the fu O4.on

width increases with wavelength.

In subsection 5 of section V we modeled a low lyir. cumulus cloud

in a hazy atmosphere. The depolarization for this model is comparable

to that discussed above. In addition we showed how the relative
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scattered intensity varies as ,a function of collision number. The

j results shown in figure 109 compare favorably to those obtained by

1 Bruning and Lo [29] for multiple scattering of electromagnetic waves

by spheres.

Thus, based on the results of this study we are lead to the con-

clusion that the degree of depolarization of electromagnetic waves by

scattering *;n the atmosphere can be obtained through a Monte Carlo

simulation similar to the one used in this study. We have shown that

the polarization state of an electromagnetic wave could be used to

discriminate between a diffuse scattering ground and a cloud or haze

if the cloud or haze is not "too dense." By "too dense" we mean -

9ptical distances of approximately 3.0 per-km or greater, i.e., it

appears that these 3 collisions per kilometer are sufficient to cause

significant depolarization of the incident wave for the wavelengths

considered here.

Much work remnains to be accomplished in• order t- fully characterize

the scattering' phenomena in the atmosphere. Measurements of polariza-

tion factors at vairious frequencies under controlled conditions must

be made to verify the results presented in this paper. The value of

a computer simulation lies in the ability in obtaining accurate results

under prescribed conditions. Once a simulation model provides accurate

results the economic benefits through the reduction of the required

experimental measurements are obvious.
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APPENDIX

DERIVATION OF THE TRANSFORMATION MATRIX

The purpose of this appendix is to derive the transformation matrixes

of F end F. -,Here, we will use the same notation used by Van De Hulst in

his- excellent book [14].

Let the transformation matrix F be defined by

I vo0

V V

Where (I, Q, U,, V) are the scattered Stokes parameters, and (IO, Q0

UO$ VO) are the incident Stokes parameters.

In general the scattered electric field components are given by

where the Ai constitute a transformation matrix of (E,, Er) into (Es,

E S).'

The Stokes parameters are defined by

I E Ek Ez + Er E r

Q E z E• E r E r (3)

U= E E + E Er
k r rk

SV= i(Ez Er -•E Er)
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F: -Using (2) we can find each term of (-3) as follows:

I = (A2 Ek + A3 EirIA2 Ek + A3 Ei) *

+(A = A + A A ) (A4* E +A* El)-

(IA212+ JA412)Ei E i*

+ (A3 1z + IArI2)E Er
•*i

(A3 A + A1 A4 ).E E

+ (A2 A3 + AQ A4 E' Er
A 411A4IN, A212 + AA 4 2 2I A112 + IA3l2

2 2 - 2

-•IJA•I12 +. IAý121

-+ IE Ei2 J
4. [1A1Il2 + IA31 2 + A IA 2 + IA312  IA212 + IA412

+ 2 + 2 + 2

IA212 + JA 4I 2 i E*
2 JErEr

" rA * * + *

+ 3 A2 + A A4 + A3 A2 + A1 A4
2 2

-L* ** *
+ [A2 A3 + Al A4  A2 A3 + A A4  i* i+o Eg E

22
•,!* * * * k

A A* + A1 A A A A + A AA
+ 3 22 4 3 2 1 4 EA E

2 0
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where the last two terms withiin each bracket werýa added, and subtracted.

o •We can now write

I 1/2 fIA1 12 + JA212 + JA312 + 1AI'2j• FE E'* +-ErEi*

1+ '/2 1A 1A1 2 + JA1 2 - JA32 1 + JA4 A41 E P Er E" E'

1L 1 4 2 3 2 ~ 31r

Ii r* * **

1/2 '+I AI A4 + A A4 +A2 A3 - A2A Er - E E4]

or (cf. 3)

rI,-.1/ 2 + lA212 + 1A3 12  IA41-] 1

1+ /2 -IA12 IA2 - A31V + 1A412] Q
(4)

+ 1/2 A A +A AA4 +A2 A* +A * A3J.U0

1/2 -Al A4+ Al A4 + A2 A,3 - A2 Ad Vc

- Using the same procedure for Q, U, and V, we obtainT

Q = 1/2 [- IA112 + JA212 + IA3 12 - IA412] Ioj

S+ 1/2 [IA112 + JA212 - IA312 - IA42] Q0
(5)

+ +1/2 [- A1 A4- Al A4 + A2 A;3 + A 2 A 3] %O

- 1/2 [Al A*4 - A, A4 + A2 A3 - A2 A] v0
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U 1/2 [A A3 +A A3 +A2 A4 +A, ' 0

F. * * * •'* 1
+ 1/2 1A 1 A3 -A1 A3 + A2 A4 + A2 A4] Q0
+1/2 [A A +A* A2 +A3 'A* +A* -jA U0

1/2 A1 A2 + A1 A2 - A3, A4 + A3 A4 ]V

1/2 A• A3 + Al A3 + A2 A4 * 2 Aj I0

i+1/2[AIA 3 ".A1 A +A A* 'A* 2A11QO (7)

i+1/2 [- A1 A * A + A2 A A- A3 A4]

+ 1/2 [A1 A2 + A1 A2  A3 A4 -A 3 A4] V0

We now make the following definitions

S -k = Sk'A,( AA + A. Ak (8)

Djk -D 1/2 (Aj Ak- AAk)

for j = 1, 2, 3, 4 and~k = 1 , 3, 4. Substituting (8) into (4)

through (7) results in
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I while

M2 $ M3 , s23, - D23

M , M ,S, D(10)
I 2S24, 2S 3 1 , S21 + S34 -D21 + D34

2D24 9 2 D2 1 + D3 4 , S2 1 - S34

Equations (9) and (10) are the most genera, transformations. For

$ spherical particles A3 = A4 = 0; then (9) and (10) simplify to

1/2 (M 1 + M,), 1/2( M, + 0 ) , 0 0

1/F M + Ml): 1/2 ( + 0 0
0 ,0 ,S21 D2

0 0 ,D 2 1, S21

and

M2 ,0 0 , 0

S 0 ,MI9, 0 0
F(12)

0 , 0 , - D21

0 s 0 D , S 21

Equations (11) and (12) are the desired transformation matrixes.
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