AFWL-TR.72-53 - ‘ AFWL-TR-
72-53
QD
e o
@ (]| POLARIZATION OF INFRARED WAVES
=~ (|||| ~CAUSED BY PROPAGATION THROUGH
<] THE ATMOSPHERE
Do
a
=
J. Philip Castilln

—

TECHNICAL REPORT NO. AFWL-TR-72-53

A C —
April 1972 MAY 9 1972
# GETU L
‘ C

AIR FORCE WEAPONS ZABORATORY
Air Force Systems Command

) Kirtland Air Force Base

/ Mew Muxico

) Roproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

Approved for public release; distribution unlimited.

a5

|

'
e i et e L




s OIS TR TR T i,

AFNL-TR-72-53

AIR FORCE WEAPONS LABORATORY
Alr Force Systems Command b
Kirtland Air Force Base
New Mexico 82&17

When US Government drawings, -specifications, of other data are used for
any purpose other than a definitely related Govermnment procurema2nt operation,
the Gevernment thereby incurs no responsibility nor any obligation whatsoever,
and the fact that the Government may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data, is not to be '
regarded by dmplication -ox otherwise, as in any manner licensing the holder
or any other person or corporation, ot conveying any rights or permiasion to
manufacture, use, or sell any patented invention that may in any way be
related thereto.

DO NOT RETURN THIS COPY. RETAIN QR DESTROY.

TR ),
crstl wae secion &2
006 sUfF SECTION O
UNAKHQUNCED o
A ——

............
............................
.....

8 . L e
pISTRIETTION ZAVATLABILITY £ODES

1} (L. ¢ W‘n
BIST. | AvAIL an|

Al

t

e VBt oA ek i i S 82




A«WW’) T '; 1

&3

R R L e ] mﬂ*"‘

* e £ W AT, B

;
;
13
d
;

4 . , . e s ,
. “HThi§ study presents an investigation of the polarization of infra-red waves

FY - N

T e e e

Ty T R S o ST e ¥ 0T,

gt <+ dcs

3 REPORT TITLE — = —

UNCLASSIFIED
L - Security Classification .- . . . h
a T = DOCUMENT CONTROL DATA-R&D ' n
. (Secur/ty classilication oi-title, body of abstract and indexing annotation must be-entered whan the overell roport Is classitied)
1.ORIGINATING ACTIVITY (Corporate author). - ) v ’ 2a, REPORT SECURITY CLASSIFICATION
§ Air Force Weapons Laboratory (SRA) UNCLASSIFIED
. Kirtland Air Force Base, New Mexico 87117 2b. GROUP

POLARIZATION.‘GF INFRARED WAVES CAUSED BY -PROPAGATION THROUGH THE ATMOSPHERE

4. DESCRIPTIVE NOTES (Type of report and inclusiva dates)

August 1971 ‘through March 1972

8. AUTHORIS) (Flrat name, middle initial, lust name)

J. Philip Castillo

. ni:po:n OATE 785 TOTAL NO. OF PAGES ‘ 7b. NO, OF REFS
April 1972 230

8. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S):

b PrOfEcT NO. 5791 AFWL-TR-72-53

e Task 36

ob. OTHER REPORT NO(S) (Any other numbera th PrEc
thia roport) (Any at may be assigned

d.

10. OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSOFRING MILITARY ACTIVITY -

AFWL (SRA) .
Kirtland AFB, NM 87117

[}

I
%
:

-

[5. ADSTRACT

(Dfét}ibdiion Limitation Statement A) .

|dué to
opropagatica through the atmosphere. Cumulus cloud and Haze M particle size distribu-

tions are considered for various optical depths at wavelengths of 4.0 and 10.Qy,

Results at these wavelengths are compared to results at a wavelength of 0.5u for the
same physical atmosphere,

Initially the radiative transfer integral equations are derived which include the
Stokes. polarization vector. From these integral equations a Monte Carlo simulation
techriique is used to photon histories through the atmosphere. The effects of multiple
sca’ztering-on the polarization state of the scattered intensity is includea. A dif-

fu.e scattering ground which causes crmniete depolarization cf the incidenc intensity
4§ included in the simulation model. -

Numerical results are obtained for cloudy and hazy atmo.pheres, It is shiwn that the

thereny leading to the concluéion that in a linear, homogeneous, isotropic scattering
medium, dJepolarization is a result of multiple scattering. Significant depolarization
at wavelengths of 0,5 and 4.0p is shown to occur for cumulus clouds and optical

depths of 3.0 when the cloud is 1 km in height. Polarization factors are obtained
with and without ground reflections, with ground albedos playing a significant part in
the polarization of the backscatter intensity. Detectors are Judiciously placed below
and above the cloud layer so that forward and bLackscatter are measured.

degree of depolar’zation is a function of atmospheric particle density and wavelength, §

DD 1473 UNCLASSIFIED

Security Classification




J

UNCLASSIEIED

e mma———— e ————

~ Security.Classification

KEY WIRGS

LINK & LINK ®

LINKYC

rRoLE® LAl

Polarization
Propagatioh
Infrare
Atmosphere
Scattering

- e =

ROLE |* wT¥ ROLE wT

UNCLASSIFIED

Security Classilicztion




i 4 - . .
s :1?-1 e Q\Wﬂmh‘ﬁua.nk‘ya% ?m,wrm* m P L Mvﬂ?’*‘“
- - - Fory -

<
RO wam.*;w Kadtvsss ¢ it T sy WHETTOT. S L]

e

-1

iy ot
»

P e
<

-

AFKL-TR-72-53

POLARIZATION OF INFRARED WAVES
CAUSED BY PROPAGATION THROUGH THE ATMOSPHERE

J. Bhilip Castillo

TTECHNICAL 'REPORT NO. AFWL-TR-72-53

Approved for public release; distribution unlimited.

R e




FOREWORD

This reséarch was performed under Program Element 62601F; Project
5791, Task 36.

Inclusive dates of research were:August 1971 through March: 1972,
The report was submitted 12 April 1972 ‘by the Air Force -Weapciis
Laboratory Project Officer, Mr. J "Philip -Castillo (SRA}.

The: author wishes to express his sincere appreciacion and gratitude
to Dr. Ahmed Erteza for suggesying the dissertation topic and for pro-
viding the encouragement and basic approach to the dissertation probiem:
Dr, Erteza also provided the guidance as chairman of thé Committee on
Studies and tiie :Dissertation Committee. Dr. Erteza spent much of ‘his
vajfuable time with the author iii solving, the many theoretical problems
encountered duriiag this research,

Many thanks are also due to Dr. Arnold Koschmann and Jr. Martin
Bradshaw who served on ‘the Committée on Studies and the Dissertation
CﬂTmitteg. Their comments and recommendations added to the clarity of'
this study. 4

The author also;thanks Dr. Henry Horak of the Los ‘Alamos Scientific
Laboratory who enthusiastically provided his time and energies during
two meetings ‘before the selection of the dissertation topic. Dr.
Horak's patience: in pointing out several problem areas to the author
contributed immeasureably to the completion of :this study.

This technical report has been reviewed and is approved.

Ig eASTILLG

l/Pxf‘o,]:ac:t ffice,

\J\) SN /v\g‘,{:& Q. /:4»6::«&“_ ///

WILLIAM J. MOULDS TORWARD D, £ , JR.
Acting Chief, Applications Lt Colonel/, USAF
Branch Chief, Radidtion Division

k!




N g G WIRT  AU R
i, v

- ve v 1
w -;mg:m:» L ARSI ST 2SS BT MY I, o TS R TR S T g < v ‘_w_A.,gw..,‘%?siw ey ,'iﬂ’“ﬂ,g‘_m P

L 2]

ABSTRACT

{Distribution Limitation Statement A)

This study presents a study of the polarization of infrared waves due to
propagation througnh the atmosphere. Cumulus cloud -and Haze M particle
size distributions are considered for various optical depths at wave-
lengths of 4,0 and 10.0u, Results at thase wavelengths are compared to
results at a wavelength of 0.5u for the same physical atmosphere.
Init1a11y the radiative transfer integral gquations are derijved which
{aciude the Stokes polarizatior vector. From these integral equations
a Monte Carlo simulation technique is used to Simulate photon: histories
through the atmosphere. The effects -of multiple scaitering on the
polarization state of the scattered intensity is included. A diffuse
scattering ground which causes complete depelarization of the incident
intensity is included in the simalation model. Numerical results are
obtained for cloudy and hazy atmospherés. It is shown that the degree
of depolarization is a function of atmospheric particle density and:
waveleng*h, thereby leading to the conclusion that in a linear; homo-
geneous, sotvopic scattering medium, depolarization is a result of
multiple scattering, Significant depolarization at wavelengtrs of
0.5 and 4.0u is shown to- occur for cumulus clouds -and optical depths.o?
3.0 whén the cioud is 1 km i height, Polarization factors are obtained
with and without greund refiections, with ground albedos playing a
significant part in the polarization of the backscatter intentity.
Detectors are judiciously placed :below: and above the cloud layer so that
forward and backscatter are measured.
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SECTION I
INTRODUCTION

Polarization is a fundamental characteristic of electromagnetic
waves. The polarization of a wave propagating in a media is defined
a§ the orientation and direction of the electric fie]d:vector. The
polarization :broperties of electromagnetic waves have been used spar-
ingly in, describing the prepérties of a'scatterer. In radar circular
polarization has been used to discriminate between desired targets .and
rain. Orthogonal polarization has been used in communication s_'stems
to prevent interference between two overlapping channels.

One of the obstacles in the greater use of polarization has been
the difficulty of controlling and measuring the polarization state
of a system. Interference between targets which causes depoiariza-
vion beyond that which was expected has been another problem. The
polarizatiun of television signals used in the United States is
differgnt from that used in Great Britain. In Great Britain the
polarization is vertical. Vertical polarization is used to reduce
ground reflections and interference frgm overhead wires. Horizontal
polarization is used in the United Statgs. Ignition and industrial
noise contains vertical components which are usually greater than the
horizontal components and therefore interfere with vertically polarized
signals.

Optimum discrimination can be achieved if the unwanted reflected
wave is completely depolarized with respect to the wave reflected from
the desired target. In practice this situation is never achieved. In

real life both the desired and unwanted signals will be partially

PV P




polarized with the exvent-of depoTlarization of one greater than the
other. If the difference in dgpg]grization»between the two signals is
sufficient some dégree of disc;imination can be achieved.

Recently, Manz [1]! has proposed a discrimination technique u$ing
polarization which will separate simultaneous returns frum cloudz and
terrain when using a laser. In his model of the cloud and thé terrain,
Manz has assumed that the cloud is composed‘o% Mie particles, i.e.,
spherical particles, and,thatnthe«te}rain is rough for all wavelengths
of interest. The backscattered  return from thé cloud coasisting of
Mie particles will be depolarized less than the backscattered return
from the terrain. Mie s work [2] shows that for incident linear
polarization, as Manz has proposed, perpendicular or parallel to the
plane of scatter, no depolarization wili occur. On the other hand,
for very rough ‘terrain one would expect, on the average, to receive
equal parallel and perpendicular components for an incident linearly
polarized wave. Recéent workers [3, 4, 5] have calculated the cross-

nolarization ratio for raugh terrain defined by

Oy ™ JFEFx
¢ Epfp)
where Ec is the cross polarized electric field component of the scat-

tered electromagnetic field and E_ is the component of the scattered

p
electromagnetic fieid which is colinear with the incident field. The
Jsterisk denotes the complex conjigate. Using random sampling from a

normal distribution to <‘.aulate the surface function, Beckmann [6] shows

1The numbers in brackets refer to the corresponding numbers in the
references.
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that the cross-polarization ratio Q depends on the: ang.é of fncidénce;

the rms slope of the terrain, and the dielectric const-nt. Miniwmum -

depolarization, according to Beckmann and others [3, 4, 5], occurs at a

zero angle of incidence. The ratio Q ircreases with angle of incidence.

It is therefore reasonable to assume that at optical frequencies, whare
the terrain is }élatively roughef than at microwave frequencies, the
ratio Q is equal to at least one-half. While ¥t is true that, at
optical frequencies, ‘the distance between jparticies in a cloud is large
compared to.a wavelength so that near field effects may be neglected,
tfar-field multiple scattering will probably cause some depolarization
of the backscattered wave. Therefore Manz's discrimination. technique
does not give a sure way of separating returns from clouds and rough
targets for all situations as borne out by his experimental results.
Fung has also shown that, for smooth reflecting plane surfaces, the
cross-polarized component will be zero for

{a) locally grazing incidence,

{b) incident polarization parallel with or perpendicular to the

local plane of incidence, and

(c) R+ + R =0, Khere R is the Fresnel reflection coefficient

for incident polarization in the plane of incidence and R™ is
the Fresrel reflection coefficient for incident polarization
perpenidicular to the plane of incidence,

Depolarization of electromagnetic waves can be caused by different
phenomena. #As implied abave, a wave can be depolarized by multiple
scattering, One has to take care when discussing multiple scattering
since it may be understood to cccur when two objects are within mutual

near-fields cr it may be understood to occur as a result of multiple

e WD T

prosow.
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reflections, i.e., the refiecting objects. may not be in mutual near-
fields. One example of depolarization due to near-field scattering is
that of two or more spheres in close proximity, where the individual
scattering functions can no longer be considered separately but must be
derived only by including the interdependence of the individual sphere's
field.. In this case the conglomeraté scattering fun¢tiop will give
rise, in general, to polarization in a particular direckion which is
different than if one had considered the individual scattering functions
separafe]y. When considering depolarization due to multiple reflection
or multiple bounce one assumes that the scatterers are in each other's
radiation or far-field zone. In this case one can consider the indi-
vidual scattering functions separately; and these will, in general,

lead to a different polarization state than had the scatterers been in
close proximity. The difference in polarization state.beiween the two
types of multiple scattering may be greater than or Tess than that

given by the other method, depending on the scattering angle being con-
sidered. There is one possible solution to this dilemma. If we approach
the problem of scattering from a photon-particie collision standpoint
and if we further select the particle-scattering function which was
determined for a single particle in the radiation zone to represent the
probability density for scattering in & certain direction, we can then
bring particles as close together as we wish without touching. This
approach will give some approximation to the multiple scattering prob-
lem since «f we run many photon-particle collision histories for the
conglomerate, we may now measure the probability scattering function

for the conglomerate, Tk2 new probability scattering function will not
in general be equal to the sum of individual particle scattering func-

tions because of the multiple collisions whiLh were allowed to take
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place. For example; consite ‘the scattering of an electromagnetic
wave by a sphere. A single sphere may have a scattering function which

is highly pedked in ‘the forward scattering .direction (figure 1).

Figure 1. Scattering Function for a Single Sphere

For this particular case, other sr“eres placed at 6 = + n/2 will inper-
fere negligibly with the original sphere since the probability of scat-
tering in the direction 6 = = #/2 is almost zero. If we place a sphere
along 6 = 0 we will certainly be faced with multiple scattering since
the probability of forward scattering is large. Thus by using this
simple model one can account for multiple scattering at least to the
first order. One thing we have not tiscussed is the phase dependence
on the position of the scatterers relative to each other. This mutual
dependence leads to the phenomenon of interference. If two beams of
light originate from the same source, the fluctuations in the two beams
are generally correlated and the beams are said to be either partially

or completely coherent [7]. If two beams originate from two independent
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sources, they are said to be mutually incoherent or uncorrelated. We
can therefore cpné]ude that for scattering by two spheres placed .t

6 = 0 in figure 1, the waves scattersd by the two spheres will be at
least partially coherent since the incident plane wave originated from
a single source. We can also consider that the two.spheres are two
different sources which are partially correlated. If we consider a
large number of spheres placed at random relative to each other, the
scattered waves due to each sphere in the random collection will be
uncorrelated and the scattering will thus be incoherent. This situa-
tion is similar ta the problem of scattering by two spheres that are
vibrating rundomly, i.e., the waves scattered from them will be uncor-
related. Thus, if we assume that the atmosphere, for example, is made
up of many randomly placed spheres, we can determine the scattered
intensity at any point incoherently, i.e., without regard to nhase.
This is the manner in which we will approach the problem of scattering
in the atmosphere.

Depolarization of electromagnetic waves is also caused hy aniso-
tropic media where one or more of the characteristics of the medium
devends on direction. In anisotropic media, depoiarization takes place
chausenﬁf the reradiation of secondary waves with characteristic
polarizations depending on direction. Crystals are a good example 6f
anisotrupic medium in which the preferred directic: is determined by
the direction of the magnetic field. Due to the anisotropy of the
medium charges can move only in a specific direction and are not free
to move in the direction 9f an incident fie:d with general polarization.
Only if the incident field is parallel to these characteristic direc-
tions will the polarization of the reradiated field be the same as

the incident field.
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Faraday rotation is another phenomenon which causes. thwe ‘depolariza-
tion of an e]ectromagneti; wave. Michael Faraday in 1845 and rresnel
in 1837 found that when light propagates through a medium in ‘the direc-
tion of magnetic field the plane of pclarization rotates with the angle
of rotation proportional to the path Tength between two points. The
exact derivation of this phenomenon can .bei.accomplished only through
the use of quantum mechanics. This form of depolarizatich occurs in
thg earth's ionosphere [8] and can cause problems for radar—tracking
systems. B

In this study we wish to investigate the depolarization of electro-

magnetic waves in the atmosphere. We will Lonsider wavelengths small:

.compared to interparticle distances. We will begin. in section II by

discussing the radiative transfer of energy in the atmosphere and
derive the appropriate intégral equations. Section II follows the work
of Chandrasekhar [9] and Kourganoff [10] closely. The class of integral
equations which describe the problem of radiative transfer are the

nonhomogenecus Fredholm equations
7
yp(g) = F(g) + 2 J RK{g3x) wix) dx (2)
a

which has been solved by Chandrasekhar {9] for the isotropic scattering
function. Evans et al. [11] have produced solutions for this eguation
for anisotropic scattering functions. Botn Chandrasekhar and Chu have
used Causs quadrature in solviny the resulting integral equations. The

scattering function is expanded in the form

K(Q,Q') f(ﬂ)

N
]
e §, 2 Py(r) (3)
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where

u=C0s 6

angle of scatter

9

angle between Q and @~

Pi(") are the Legendre polynomials
and. a; are the coetficients of the expansion. Equation:(3) has the
'same form as the exact expression for spheres,

Solutions of equation (2) by Gauss quadrature are very complicatéd
and difficult to obtain. In this study we obtain numerical resuits to
the problem of depolarization of electromagnetic waves by the atmos-
here through the use of Monte Carlo techniques [12, 13]. We assume that
the atmosphere is composed of spherical scattering particles such as
water droplets in clouds -or fogs. An excellent summary of various
forms of atmospheric conditions. is contained in [1].

In section III we discuss the polarization and depalarization of
electromagnetic waves by scattering. We also present the Siokes
parameters in describing the polarization of an electromagnetic wave.
Sectior IIT follows Van De Hulst [14] closely in obtaining an analyti-
cal description of the polarization parameters. Two basic foms of
scattering by-;articfes wi1l be used in this study, One is Rayleigh
scattering.where the scatterer is small compared to a wavelength and
the other is Mie scattering where we consider scattering by arbitrary
spheres.

Also in section III we present a general method, as was obtained
by Deirmendjian [15], for describing the size distribucion of particles
in the atmospnere. The exact solution of scattering by spheres origin-

ally derived by Gustav Mie [2] as a function of the size parameter
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will be used. In equation (4) r is the sphere's radius and A is the

wavelength of the incident wave, The Mie scattering function is aver-
aged over the size distribution, which results in a volume scattering

function. If f(e,r/a) is the scattering function as a function of e,

i the scattering angle and the ratio r/x is as defined above; and n(r)

is the size distribu?ion, then

?}1%@ 2 - r

B F(o) = ". f(6sr/a) n(r) dr (5)

. rl

ey e

is the volume scattering function for particles of radius between r
and r,.
In section IV we describe the computer program used: for simulating

the depolarization. of polarized electromagnetic waves in the atmosphere.

M g gy | P S s W AT

The computer program is based on previous work by Kattawar and Plass [16i

- gy

and by Collins and Wells [17]. The program was used on the Air Force
Weapons Laboratory CDC-6600 computers.

In section V we present the results of some sample problems. He
will present the microscopic scattering functions for Mie Scattering: by
“Cumulus Clouds" and "Haze M" size distributions. By microscopic we
mean that several representative size particles from each type distri-
bution are obtained. We will also obtain and present the volume scat-

tering functions for each size distribution. The microscopic and volume

i Yt Wl s S eI A e " S o g Mt £

scattering functions will be presented for several different wavelengths

varying from 0.5 micron to 10.0 microns. The volume scattering functiens

are then used to analyse different atmospheric problems containing either

74
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the "Cumulus Cloud" or the "Hage M" size distribution or combinations
of both., The computer~pr5§ram ﬁa; been wrié}en to accomodate linear
or circular polarization. In general, the distances Being considered
here are small, i.e;,4in the order of 16 km to 20 km maxi, .m. Scat-
tering from the ground.is inchded‘and°we will therefore include the »
ground albedo in each pfob]em. The albedo is defined as the ratio of
scattered to incident energy.
Tne result of all these problems is the determination of the
degree of depolarization of the initial source electromagnetic wave.
Depolarization for the viricus geometries being considered is pre-

sented for different wavilengths, The polarization factor defined -vy

I;r "I
D= e (6)
Ir + I2 .
is given as a function of polar angle; where Ir is the perpendicular -

intensity component and Iz is the parallel intensity component. In

e

eguation (6) both Ir and I2 are referred to a vertical plane which

contains the propagation vector (figure 2).

X
Figure 2. Vertical Polarization Reference Plane

10
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SECTION II
ELECTROMAGNETIC SCATTERING IN THE ATMOSPHERE

1. INTRODUCTION

For the past seventy years, astrophysicists have been concerned
with the transfer of radiation in the atmospheres of planets and
stars. Physicists have been concerned with similar problems in the
diffusion of neutrons in various materials. We should also mention
that radar .has been used extensively in the study of certain atmos-
pheric properties.

Recently, with the invention of the laser, problems of light
transfer in the atmosphere have become of interest to a greater
number of scientists and engineers. In this section we are concerned
with the formulation of the problem of the transfer of polarized
light in the atmosphere. We are particularily interested in the
depolarization effects of scattering on the propagating light beam.
The notation used in this study is. for the most nart, that used by
astrophysicists and follows along the same lines as in the books by
Chandrasekhar and Kourganoff [9, 10].

Basically, the problem of radiative transfer must deal with a
spherical geometry (if we can assume a spherical earth); but the
problem is simplified somewhat if the atmosphere is plane parallel.
In this study we are concerned with problems with short range trans-
mission of highly directive, monochromatic 1ight, i.e., the distances
involved are short compared to the curvature of the earth. It is also

assumed that, at the frequencies considered, absorption is negligible,

n




2, DERIVATION OF BASIC QUANTITIES

In this subsection v:e are concerned with the derivation of the
essential quantities. necessary for ‘the solution of the problem as
defined. Since all quantities defined in this study are for mono-

- chromatic 1ight no special notation is used to denote frequency

dependence, although the -reader should keep <in mind that all quan-
‘tities are highly dependent functions of frequency.

Let dE be the energy transported across an element of area dA,
in time dt, and in a direction.confined to an element of solid

angle dw and. making an angle 6 with the normal N to dA (figure 3).

Figure 3. Energy Across dA in the Direction duw.

Then,. dE can be expressed in terms of the specific intensity or

more b.iefly the intensity by
dE = I cos 6 dA dw dt (7)

If the intensity I is independent of the direction at a point the radia-

tion field is said to be isotropic. The radiation field is said to be

homogeneous if the intensity is the same at all points and in all

directions.

12
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Radiation:which is propagating through a-medium may be partially

bl L M

PR TN 7 49

scattoered or absorbed by the material in the medium which in éssence
weakens or attenuates the incident intensity I. The incident inten-
i sity I becomes I + dI after traversing a thickness ds (figure 4) in

the direction of propagation. Therefore,

TS
e~
»

-

dl = -kp I ds (8)

¥

where: x is the mass absorption or scattering coefficient and p is the
density of the material. In-what follows x will be assumed to be a

scattering coefficient exclusively.

dA

’ I - > 4]

> 2 T L 3 R
i L i o el Sesnis st

& ds

Figure 4. Intensity Through: Element ds.

Consider a pencil beam-of radiation incident on an element of mass
with cross-section dA and thickness ds. The scattered intensity in

a direction dw is given by

- 1

dES = (cp Ids) dA dw dt Y (9)
. The mass of the element is
.. dmn = p dA ds (10)
{
g Now we can write
! :
L dES = g [ dm dw dt "i'; ('H)

13
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Obviously, in the most ‘general case the scatterad energy will be
dependent on direction; therefore, a scattering function P(cos 0) is
introduced to ascount for this dependence., The -energy scattered
into an.élement of :wolid angle dw” making an -angle o with the direc-

tion of incidence is then

- dEs, = ¢ [ P(cos o) %— dm dw dt (12)

and. the total scattered energy is

- \ 1 -
ES =g 1 dm dt de W'[P(COS 0) dw | (13)

where the integration is carried out over all solid -angles. In

general, for perfect scattering (no absorpt1on)

fP(C04 0 dw”

in general, where hoth scattering and absorption occur

50 = -}E/P(gqs 0) dw” <1 (15)

where w is the fraction cf intensity lost due to scattering and

1 (14)

1 - 66 is the fraction absorbed; wO is referred toas the albedo for

single scattering, If

constant = P(cos 0) (16)

the scattered intensity is isotropic.

An important quantity is the emission coefficient j. The emission
coefficient indicates the amount of energy emitted by an element of
mass dm in a direction of solid angle dw. The emitted energy includes
scattered energy both from the element being considered and any other

scattered energy originating at some other source contained in the

} 14
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solid :angle dw being considered. Thus thé energy emitted by mass dm

in the direction dw. is given by
Ee = j dn dw dt (17)

The scattering.of energy. incident from a direction (6”,4°) “into a

i . direction [(6,4) results in

l...m

Eg = « dm dw P(6,4507,6°) I(0,4°) sin 6” do”d¢* dt  (18)

£

T

Thus, comparing (17) and (18)

T T

4
j= ﬁ—,;[ f P(6,656°,¢7) I(0”,4”) sin-6” do~ .d¢~ (19)
0 0

, for a scattering medium. In this study we consider scattering only.

Dk | CNREE et WS AT W

The ratio.of the emission %o the absorption coefficient is called

the source function and is written as
=4
J = (20)

or from equation (19)

T T

oo
Je,8) = %—;f] P(0,:6°,¢°) I(6°,4%) sin 6°d 6°d ¢~ (21)
0 0

R AT R L TV L T b it S S K o G S

3. THE EQUATION OF TRANSFER

.

Consider a cylinderical element (figure 5) of cross-section dA and

T e TS

: length ds. The amount of energy absorbed by the element is

E. = (kpl ds) dA dwdt (22)

oY
o3

the amount emitted i3

15
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dA

Figure 5. Cylindrical EVement for Derivation of
the Equation of Transfer

Ee=jpdsdAdwdt (23)

The difference between the absorbed and the -emitted energy results in

the net energy crossing the two faces of the element in the normal

direction,. and

dl dA dudt = Ee - Ea

or using (22) and (23)

(=1

I
S

= -xp I + Jjp (24)

o

Using equation (20) and rearranging we-obtain the equation of transfer

dI

= KpdS = I - J (25)

The equation of transfer (25) can be solved easily through the use
of the niethod of variation of parameters. We can rewrite equation

(25) as

it kpl = kp J (26)
Then
S
In(s) = exp -f kpd §°° (27)
0

16
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is @& solution f ithe .corresponding homogeneous iinear equation. We

" wgst find a function f(s) such that
I,(s) = £(s) Iy(s) (28)
s is the general solution of (26). Substituting (28) into (26) we obtain
Vlh+06+m1”f=KpJ (29)
where
.o df
fr= ds
and |
' d1
P}
Ih =3

Since Ih is the solution to the homogeneous equation

' S Itk I =0 (30)

and we are left wigh

n

or

df _ . _Jd(s
.(Té_-Kp.T\.,‘S

S
= xp J(s) exp [ kp ds”* . (32)
[ Integrating .equs ron (32) yields
: S s”
! - f(s) = Kp[ J(s”) exp f kp d s°°| ds” + C (33)
& i
LAY 0

17
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where § is a constant of integration. -Combining (27) and (33) accord-

ing to (28), we have
S

I, = I(s) = ¢C e~7(s:0) +/ ko J(s”) & t(8587) 4o (34)
0

where
S

7(5,57) =[ kp ds (35)

is the optical thickness of the material between s and s*. At s =0
we find that )
I(0) = C

therefore

is the solution to the equation of transfer (25).
For the case of scattering in a plane-parallel atmosphere we
measure linear distancés normal to the plane of stratification, then

the equation of transfer becomes (figure 6)

Figure 6. Plane-Parallel Atmosphere

18 .




dI(z,e,

“3 - cos g Smasl = Hz,6 ¢) ~ 3(2,6,9) (37)
< :
2 were the angle 6 is measured from the z axis and ¢ is the azimuthal
' angle. We can set
4= o (38)

& D

and substitute into (37) to obtain

w QEa0) = p(c,) - Irom00) (39)

where u = cos 6. For an atmosphere with finite optical thickness the

solution (36) reduces to (figure 5)

!

!

]

g I\(T,"I"J’d’) = I(Tﬂh‘b) e-(Tl-T)/u

é 9|

L +f Atom,g) e (ETIm & (40)
} T

i and

i

4 I(Ts‘U3¢) = I(Oa'lhq’) e"f/ll

i

’ ¢ dt

| +f It ,muyp) e"(Tt)/u L (41)
K 0

where 1 > u > 0 for both equations (40) and (41). Equation (40)

represents the intensity in the positive z or outward direction,

B L E Yy AP

while equation (41) represents the intensity in the negative z or

-

downward direction. The inteénsities emerging from the atmosphere at

t=0and 1 = T, are given by

{ 19
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I(~0,+u,q'>) = I(T,U9¢) e—Tl/u

T

1
+f otwng) & HH 4 (42)
0
and

I(Tl"'Us‘b) = I(0,-u,¢) e-Tl/u
T

1 N
‘~jf It,-n,0) e (Tl"t)/" -S-E (43)
0

The first term on the right tand side of equations (40) through (43)

may be interpreted as the direct intensity attenuated exponentially;

o

the second term is the sum of the intensities due to all orders of

-~

scattering within the atmosphere. v

The source function (equation. (21)) may now be written as

2n  +1
J (t,u,9) = ‘]4';;/ f P(usosu”s9”)
0 =1
"(T,u",‘i") du-d¢” (44)
Writing T
1 - -
IS(T,+N’¢) =f J (t,ua¢) e (t T)/H 'S't-;' (45)
T
and
; - dt
loommod) = [ A O (46)
0 ¥

for the scat!ar contributions in equations (40) and (41) and substi-

tuting eouation (44) into (45) and (46), we obtain

20
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1
IS’ (CT—3+119¢) = Z]ﬁ;f [ [ P(UNP?U""?’)

T
(t- dt
I(t,u’,¢') d e d $° e (t T)/U r (47)
and
T 21 +]
N .! f P ’
IS(T"'U3¢) = "'n," i f f P("U’¢:U N )
0Y0 =1
(1= dt
H(tsuss7) durd o 7T EE (gq)

If we now compare equations (47) and (48) with equations {40) and (41)
we can see that we now have a set of integral equations to solve in

order to acquire the intensity at any point. We can also write

ID(T”"U"#’)\ = I(’H:Usd’) e (TI-T)/H (49)
and
ID(T9'U:¢) = I(O"U»¢) e"T/U (50)

as the direct contributions of the incident intensity. Therefore,
using equations (47) through (50), we can now write equations (40) and

(41) as

I(t,+u,0) = ID(‘1’+“'¢) + I (to%u8) (51)
and

I(T,-uvb) = ID(Ts"ua¢) + IS(T:"U:¢) (52)

i.e., the intensities propagating in positive and negative directions

can be considered as being made up of a direct contribution attenuated

21
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exponentially and a contribution consisting -of the intensity from all
orders of scattering. '
4. RADIATIVE TRANSFER:.FOR POLARIZED LIGHT

Polarized 1light can be described in terms of the Stoker jaraseters
(section III). There are four Stokes .parameters which describe the
total intensity, the polarization ellipse, and the orientation of the

polarization ellipse: The four Stokes parameters are written as

I= (I,,Q,U,V) (53)

where the boldface letters will indicate a matrix representation.
Proceding with matrix notation, we can now represent the scattering
function by a scattering transformation matrix. The transformation

matrix will be a 4 X 4 matrix and is. of the form (see Section III) [18]

Furthermore, if we write the polarization parameters as
I=(1,1.0.Y) (55)

then the matrix transformation will be denoted by F'. We will find,
in section [II, that, for a spherical scattering particle, the scat-

tering matrix will be of the form

22

POk




o a, 0 0 O
b * |0 a; O 0
3 F= (56)
B! 0 0 ¢ 3
s § where b; = -c; and a; = a;.
% Using matrix notation we can now write equations (51) and (52) as
o .
2
‘(NE I (T9+U9¢) = ID(T’+U,¢) + IS(T9+U9¢) (57)
b and
i I(T"‘an)) = ID(T9’N9¢) + IS(Ts'U’¢) (58)
_ z where
. ID(Ta+U’¢) = I(T]_ ’u,d)) e-(TI-T>/u (59)
i ID(T,"N9.¢) =I(O,‘Us¢) e"T/u (60)
% ' T, 2r +]
[
; I (tytusg) = zlgf f [F ST HUN 3
; Tt 0 -Fh
)
1;
% T(t67) d u d ¢ e (BT &L (61)
{
d v 2n  +1
i
§; IS(T,"U,’b) = %‘Eff f F (‘H:%U'a‘b')
i 0 0 -1
|
3 I(t,u"y¢°) dud¢- e'(r't)/u gg (62)
4
% . Equations (57) through (62) describe the intensity of radiation at any
3
£ point in a semi-infinite, plane parallel scattering atmosphere.

The solutions (57) and (58) are nonhomogeneous Fredholm integral

RPN S

equations. The difficulty in solving this type of integral equation

23




is that the function being solved for also appears under the integral
eguation. Generalized physically realizable kernals may be solved
numerically through the judicious use of series expansions.

5. MODELING THE TRANSFER PROBLEM

A study of equations (57) and (58) will help in envisioning the
physical events which take place during the propagation of energy
through a scattering atmosphere. First, as already indicated, the
intensity at any point can: be thought of consisting of the direct
intensity attenuated exponentially and of the snattered intensity from
all scatterers surrounding the observation point. The polarization
properties of the -direct beam do not change, while the scattered
intensity will in general have its polarization properties modified by
the scattering function matrix of each individual scatterer.

The intensity of electromagnetic. radiation is defined [19] as the
energy per unit time, passing through a unit area at right angles to
the direction of propagation. In terms of a beam of monochromatic
photons the intensity is given by

I = Ep (Photon Fiux) (63)

where Ep = hv. h is Planck's constant and v is the photon frequency.
Equation (63) suggests that a beam of monochromatic photons is the
proper representation for directed electromagnetic radiation, Suppose
we approximate equations (61) and (62) by the triple summation of a

large number of terms

n om 2
ZZT}U F(“""“{"{-}) I(tk-u§.¢j) e (Tt engeat  (68)
321 3=1 k=1

24




this triple summation is equal to (61) in the limit as ap-,4¢”, and
At go to zero and n, m, £ go to infinity. Furthermore, the beam: may
be thought of as being composed of many photons according to equation
(63). We may therefore simulate a beam.of radiation by individual
photons or individual photons individually propagating and scattered
randomly about throughout the medium. Since we are only considering
noncoherent scattering, the results may be added arithmetically at
some point of observation. It will further be assumad that near
field effects are negligible.

The essence of the moael is. this: Consider a photon or group of
photons with a defined set of Stokes polarization parameters, launched
from an isotropic source; these photons will be attenuated exponen-
tially as they propagate ‘through the medium, and upon .colliding with
a particle the photons' polarization parameters wiil be modified
according to the scattering matrix and scattered in.a new direction,
The history of this group of photons may be followed to all orders of
scattrring. In this.way many histories may be followed and estimates
of the intensities at. a detector (observation point) may be made.
This technique has been used by other investigators [16, 17, 20] with
excellent agreement with experimental results for natural, i.e.,
unpolarized electromagretic radiation. In this study we use this
approach for the case of a polarized 1ight source and determine the
effect of scattering on the initial polarization state of the beam
of light.

In the next section we discuss the Stokes parameters and deter-

mine the effect of scattering on these parameters.
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SECTION TII
POLARIZATION AND DEPOLARIZATION OF EM WAVES

1. INTRODUCTION

Electromagnetic waves have several properties which can be used
to convey information from one point to another. The most commonly
used properties are the frequency, phase, and amplitude. The
electromagnetic wave propagating in a medium whether it be a wire,
a waveguide, or the atmosphere can be used to carry information hy
modulating the frequency, the phase, or the amplitude according to
some prescribed code. The information can be recovered at the
receiving end through demodulation.

Another property of electromagnetic waves which has not been
used to .a great extent is the polarization of the wave propagating
through-a medium. It is known that the electric and magnetic field
vectors are transverse to the direction of propagation in. an isotropic,

homogeneous medium. The orientation of the electric field vector

-defines the polarization of the electromagnetic wave. By convention,

if the direction of the electric vector is constant in time the wave
is said to be linearly polarized, if electric vector rotates then the
wave is said to be elliptically polarized.

The nolarization of an electromagnetic wave propagating through
a continuum remains unchanged if the medium is homogeneous and iso-
tropic. On the other hand, if scattering occurs the polarization
characteristics will, in general, change. Therefore, if the polari-

zation characteristics of a wave prior to and after scattering are

.
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known, it is possible, at least in principle, to categorize the
particular type of scatterer causing the depolarization. In this
study, we are primarily interested in the depolarization of a com-
pletely polarized wave by a scattering atmosphere. By depolariza-
tion we mean the degree to which an arbitrarily polarized transmitted
wave is transformed to somie other polarization state,

2. -POLARIZATION AND THE STOKES PARAMETERS

The most general type of polarized wave can be written as

> -
E = 2E +rE, (65)
where .
E is the total electric field vector
E, is the parallel component

L
E.. is the perpendicular component

P
7 and ; are unit vectors

In writing equation (65) we used the vame notation used by
Chandrasekhar [9] and Van De Hulst [14], where the subscripts 2
and r refei to the last letters in the words parallel and per-
pendicular, respectively. The parallel and perpendicular
components are referenced to some arbitrary plane, usually the
plane of scattering. In general, we can write each component as

E =a, e

-] ~ikz + iut
g =, e (66)

and

m
1

L

whare
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a, and a, are the positive real amplitudes

%
g; and e, are the phase angles
k = 2n/x» is the propagation constant

w = 2nf is the monochromatic angular frequency

Equations (66) and (67) represent .a plane wave propagating in
the positive z direction. These equations also représent a general
elliptically polarized wave. In this study we are using the Stokes
parameters to characterize the polarization. The Stokes -parameters

(1, Q, U, V) are defined as

I=E, E; +E E:, (68)
Q=E E -E E. (69)
Us=E, Ex +Ep E, (70)
v=1@£q-szg) (71)
from (66) and (67) we have
E, By = 3,7 (72)
E, El=a? (73)
Eg, E: = a, a, e.{i (el ) €2> (74)
E: E. =2, a, ei(el ) 62) (75)

applying equations (72) throngh (75) to equation: (68) through (71)

we obtain
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i= a£2\+ ar2

0= azz - afz

Us= Zaz a,, osé

V= 2a2 a, sing
where

6=e1~52

From equations (76) through (79) we see ‘that for parallel polariza-

tion (ap = 0)
I= az2
Q=a)’
U=0
V=0

I= arz
qQ=-a?l
U=9
V=20
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(77)

(78)

(79)

(84)
(85)
(86)

(87)
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For circular polarization, we must define a convention for describ-
ing the sense of rotation. For this we use the standard convention
which defines right handed polarization with a wave that is viewed '
traveling away from the observer and whose electric vector rotates
in the same direction as a right handed screw. Similarly, left
handed polarization is defined with a wave viewed traveling away
from the observer and whose electric vector rotates in the opposite
direction to that of a right handed screw. Figures 7a and 7b ;show

typical right hand and left hand polarizationh, respectively.

Now, let us write

E, = @i,gos(wt - 8) (88)
E. = a, cos ut (89)
If we let § = + /2, we obtain
Ez = a, Cos (vt - 7/2) = a, sin wt (90)
But, since
+> -+ > >
E=2E +rE = ta sinut+ra, cos ut (91)

this is a general right hand elliptically polarized wave (figure 8).
From figure 8 we can also see that if 3, = a, right nand circular

(RHC) polarization is obtained. 'If § = - /2, equation (88) becomes

E, = a

g = @, 60s (ot + n/2) = - a, sin ot (92)

and

> -+ >
E=-19 a, sinwt + r a,. cos ut (93)
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Figure 8. Right Hand Elliptical Rolarization

Equation (93) is the general -representation of a left hand ellipti-

cally polarized wave. Figure 9 shows equation (93) for a, = a, = ag.

r

130/2
:::::> |

ap/2

Figure 9, Circular Polarization for a, =a, =,

Therefore, letting ¢ = + /2 and a, = a,= 3y the Stokes parameters

for right hand circular polarization are

= 2} (94)
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Q=0 (95)
U=10 (96)
s 232 {
v 2a0 197)
Similarly, if 6 = - n/2 and 3, = a, = a5 the Stokes parameters for
left hand circular polarization (LHC) are
= 2
I = 2a} (98)
Q=0 (99)
U=10 (100)
2 - Da2
v 2a0 (101)
If we Tet
I, =3/’
and
= 2
Ir ag
where I2 and Ir are the intensities for the paralle] and perpendic-
- ular intensities, respectively, we can rewrite equations (76)
) "~ through (79) as - -
) o R I2 + Ir - (102)
Q= Iz - Ir (103)
U=24I, Ir c0sé (104)
V= 2‘/12 Ir sins (108)

33




4 more intuitive representation of the polarization would be to use
the set (Ig, I, U, V) rather than (1, 0, U, V). This new set of
parameters <s more pleasing in that the relative silze of parallel
and perperidicular components can be quickly determined.

Up to.this point we have discussad the Stokes polarization
parameters for the case where the major and minor axis of tha
polarization: ellipse are along the ¢ and r axes. In general, this
may not be true although a simple rotation of axis would realign
he axes in 'the proper orientation. Suppose the axis of ‘the polari-

zation ellipse were rotated by an angle x (figure 10)

£

ipse

Figure 10. Rotation of Polarization Axis

along the new axas p and q. The electric vector can be written as

-> -> ->
E=ap coss sin(wt-kz) + a q sing cos{wt-kz) (106)

where
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a cosg is ‘the amplitude along the p axis
a sing dis the amplitude along the g, axis

-> -+
p and q -are unit vectons
If'we let 8= 0 in (106), then
-+ >
E=2ap sin(ut - kz) (107)

which is.a linearly polarized plane wave. Similarly if g = n/4
we thave .RHC polarization and if B = - n/4 we have LHC polarization.
In general, the é1lipticity is given by tans, if it is 0 we have
Tinear polarization, if it is -1 we have LHC polarization and ‘if
it is +1 we have RHC polarization. The orientation of the ellipse

is given by the angle x. From figure 10 we have

p sin x + q cos x {108)

-3
]

2 =pcosy-qsingy (109)

Rewriting equations (66) and (67)

-ie ‘
1 e-ikz + fut

E,=a, e (66)
e e f2 mikz + dat (67)
r °r

< we have that

E=Re(E 2+E r (110)

| Substituting (¢ and (67) into (110) results in

‘ > >
E = 2a, cos (wt - kz - €,) + 7 a,. cos (wt - kz - €,) (11)
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Upon equating equations (106). and (111),. introducing equations

(108) and (109), and equating like terms we have

a, cos (wt-kz-e,) = a cos B cos x sin (wt-kz)

2

a sin 8 sin x cos (wt-kz)

a cos g sin x sin (wt-kz)

a, cos (wt-kz-e,)

+

a sin B cos x cos (wt-kz)

We can now apply the relations

A cos 6 + B sin e

VA2+B82 c,os(e-'ca"‘l %—)
VA2tB2  cos (6+tan"l %)

to the righ# hand side of ‘equations (112) and (113) as follows

and

A sine -Bcos e

a, cos (wt-kz-¢,) = a Vcos2 8 cos? x + sin? g 5in? x

L

sin 8 sin x

oS (%t-kz + tan-1 S90S B _cos x)‘

2, €oS (wt-kz-¢,) = a Veos? g sin2 x + sin? g cos? x

cos (;t-kz - tan-! S90S 8 sin x)

sin g cos x
so that
ag = 3 (cos? 8 cos? x + sin2 B sin? )
,ag = a2 (cos? g sin2 x + sin? 8 cos? x)
and
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(114)

(115)

(116)

(17)
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tan e, = - cot g cot (120)
tan e, = cot 8 tan x (121)
‘ or since
. €,-€, = § = -tan"1(cot g cot x)-tan-1(cot 8 tan y) (122)

we have that

tan [tan"l(cot B cot x)] + tan,,[li;’ar'i'l(cot R tan x)]
1:tan[%an'1(cot 8 cot x)]}an[}an'l(cot g tan x;T

tan'§ = -

cot B cot X + cot B tan X
cot2.g - 1

; 1, tan? x +1
cot 2 B8 2 tan y

. tan 2 8 (123)

Using equations (118), (119), and (123), the Stokes parameters

become
= a2 2 = 4¢ {
I ag +af=a (124)
Q= aﬁ - ar,2 = a2 cos 2 B cos 2 ¥ (125)
. . /2
U=2a a,cosé= 2a2(cos? B cos2 x + sin2 B sin? y)

(cos? B sin2 x + sin? B cos2 yx)cos 6

To obtain cos & we use equation (123) and figure 11,
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tan 28

Figure. 11. Triangle for Deriving Cos §

Therefore, we have

sin‘2x

Vtan? 28 + sin? 2x

cos § =

and using straichtforward algebra

U= a2 sin 2y cos 28 (126)
Again. from figure 11 we obtain

tan 28
Vtan2 28 + sin? 2y

sin § =

and
V = a2 sin 28 (127)

Equations (124) through (127) lead us to another way of describing
the polarization state of an electromagnetic wave, namely through
the use of the Poincaré Sphere.

For convenience we now rewrite equations (124) through (127)

I=a? (128)
Q = a2 cos 28 cos 2y (129)
U= a2 cos 28 sin 2y (130)
V= a2 sin 28 (131)
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If P is any point on a sphere (see figure 12) it -can be described

by the parameters (I, Q, U, V).

RHC

Figure 12. Representation of the Polarization Parameters.
with the Poincaré Sphere

Comparing equations (124) through (127) with equations (94) through
(97) we can see that if 28 = n/2 we obtain right hand circular
polarization; this is the north pole of the sphere. Comparing
equations (128) through (131) with equations (98) through (101) and
letting 28 = - n/2 we obtain left hand circular polarization; this
is the south pole of the sphere. If 28 = 2y = 0, we get parallel
polarization; for 28 = 0 and 2x = =, we get perpendicular polariza-
tion. In general, the upper hemisphere yields right handed
elliptical polarization, the lower hemisphere yields left handed
elliptical polarization, and the equator yields linear polarization.
The total intensity is given by the magnitude of the radius vector.
Shurclift [21] discusses the graphical mapping of one polarization

state to another through the use of the Poincaré Sphere.
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3. RESOLUTION OF A:-GENERAL ELLIPTICALLY POLARIZED WAVE INTO RHC
AND LHC COMPONENTS i

According to the previous subsection, ani 1liptically polar%zed
wave may always be resolved into a perpendicuilar polarization
component and a parallel polarization component with a phase dif-
ference between them. In like manner, an. elliptically polarized
wave can be resolved into an RHC component and an LHC component,
This latter representation yields more information than the former
because the phase difference is automatically included. In this
subsection, a general elliptically polarized-wave will -be resolved

into its RHC and LHC components.

Consider a polarized wave of the form

s >
E=2E +FE (65)
as before, with
E2 = a, cos wt (132)
Er = a, cos (ot - 6) (133)

Each component, E2 and Er’ may be individually resolved into RHC and

LHC components, i.e.,

> xS -+
LBy = Evpnc * EqLne (134)
with
-+ az - N
Eopie = 7~ (2 cos wt - r sin wt) (135)
-> _ az > >
Eolhe = 7 (2 cos wt + r sin wt) (136)
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While for the perpendicular component

where

Y
rE, = E

e

->
rRic * E

rLHC

od

->
% sin (wt-6) + ¥ cos (wtf6ﬂ

o~

-E sin (wt-8) + ¥ cos (mt~6ﬂ

Therefore, from equations (65), (134), and (137)

or

letting

and

we arrive at

Substituting equations (135), (136), (138), and (139) into (144)

and writing the RHC and LHC components separately we have

->

E =

->

E =

> > > o
Eortic * Eorric) ¥ \Erric * ErLue

e
E

-+

E

> > > >
Esric * Erruc) * \Eathe * Evlie

+ >

RHC = =arHc * EvLhe

> >

wic = Eaunc * ErLhe

->

-b_-)-

RHC

4

(137)

(138)

(139),

(140)

(141)

(142)

(143)

(144)




po

>
% cos wt - ¥ sin wt]

iy
]
N] g
©

"RHC

3T

2 sin (ut - &) £ ¥ cos (wt - 6)]

<4
s

r

1/2 }f [az cos wt + a_ sin (wt - 6)]

+ 172'?‘ [-qz sin wt + a,, Cos (wt - 6‘)]‘ (145)

and

- a - R
ELHC = -2£ [35 cos ot + rt sin mtJ‘

o 1]

+ -2—'1 [-Z sin (ut - §) + ¥ cos (ut = 6)]

. -
=1/2 2 @, €S wt - a-rsin (wt - &)

3

+102 7 raz sin wt + a,,Cos (ot - 6)- (146)
o

L

For (145) and- (146) we can write

sin {wt - &) = sin wt cos § - cos wt sin & (147)

and

cos (wt - 8) = cos wt cos & + sin wt sin & (148)

Substituting (147) and (148) into (145) and (146) we obtain

-
ERHC = 1/23{ [(a2 - a_ sin 8) cos wt + a_ cos & sin wtil

r r

+1/2 7 [— (a, - a, sin &) sin ot + a, Cos & cos wt] (149)

)
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and
> Sy > ;
E.!‘.HC« =1/2 ¢ [(az ta, sin §) cos wt - a,, ¢os ¢ sin wt]
+1/2 7 [(a2 + ar‘sin«s) sin ot + a,, €os § cos wt] (150)

Now, equations (149) and (150) are of the form

A cos wt + B sin .ut = ‘/A2 + B2 cos (wt - tan~! %) (151)

and may: be written in this form as follows:
s

> ' 2
Epne = 172 i E/{ak'- a,, sin §)” + (a, cos §)°

ar cos ¢

- a, sin 6

cos {wt - tan! -
)

+ . 2 2
+1/2 r"/Qaz -, sin §)° + (ar cos §)

a, - a, siné
cos fwt + tan-! 2t (152)

ar cos §

-+ ,
ELne = 1/2 'E«‘/(az ta, sin §)2 + (ar cos 6)2

ar cos ¢

ar sin &

cos fuwt + tan~!

a

-
. 2
+1/2 r"/(a2 +a,sin¢§) + (a, cos ¢)

a, + a,, sin §

(153)

cos [ wt ~ tan-!

ar cos ¢

Furthermore we may write from equation (152)
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.y 3 Cos ¢ (150) %’
bupc = A v * i
N a, - a, sin § ?
- %
a, -a, sin s -
-1 %2 7 % a
$.oup = tan~} (155) '
FRHE a, cos §
r
with
Sarc = ™2 7 Oppue (156)
(see figure 13).
apcoss PrRHC ;
b RHC .
ag - ap siné
Figure 13. Triangle for Deriving rRHC and $9RHC
Similarly, from equation (153)
., 3 cos 8 (137)
boLig = AN ——— E
a% + ar 3in 6
a, +a_ siné
g “r
s = tan-! (158)
rLHC a_ cos &
r
with
boLHe = ™2 = dppne (159)
(see figure 14).
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apcoss )
PoLHC

ag + a, sing

Figure 14, Triangle for Deriving dpLHC and S oLHC

Using equations (154) through (159) and carrying out the squaring

of the terms under the radicals equations (152) and (153) become

T 2 — 2
ERHC = 1/2 ‘/a2 2a2 a, sin s+ ay

<&

cos (wt - bgpue * n/z)}

=¥

(7 con (st - aypyc) +

->
= 2 2
ELHC 1/2 ag + 2a2 a,, sin 6 + s

[E €0s (wt + ¢zLHC) + ¥ cos (wt + SoLHC " n/2i]

but i
cos (ut= dypuc + n/2) = - sin (ut - ¢2RHC)
and ,
cos (wt; ¢2LHC - 7/2) = + sin (ut + ¢zLHc)
therefore,

4 2 2
ERHC = 1/2 ‘/a2 + 2a2 a, sin 6§ + ag

[; cos (wt - ¢2RHC) - ¥ sin (wt - ¢zRHCj]
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E : 2 3 st 2
ELHC = ]/Z'VGQ + Zaz a, sin § + ag

[E cos (wt + ¢2LHC) + 7 sin (wt + ¢2LHCX] (161)

The phase difference ‘s

a_cos § a_ cos §
r + tan-1 —L '

. .+ .
a -ar sin 6 a ar sin §

= N = -1
® = doruc * PeLnc < tan
2 2

which, when using the identity

tan=! x + tan~ly = tan"1<3<-—+—x-)
' 1 - xy

becomes

2a, a, CoOs

2 _ .2
g - 3

¢ = tan~! (162)
Equations (160) through (162) constitute the RHC and LHC components
of a general elliptically polarized wave. Note that ¢ is defined
only when the wavé is not circularly polarized. When the wave is
circularly polarized, either the RHC or LHC component will be zero
aﬁd ¢ will not be defined., That this is true car. be seen by letting
ag = a, and § = * /2 simultaneously as is required for circular
polarization,
4. DEPQLARIZATION AND PULARIZATION FACTORS

In this study, depolarization will be defined as the change in
polarization state which includes the completely depolarized state as

natural light. The definition -f natural or unpolarized 1ight is

taken from Chandrasekhar [9]:
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NaturaT light is esquivalent to any two independent
oppositely -polarized streams of .half the intensity;
and ac w0 independent polarized streams can to-
'gether be -equivalent to natural Tight unless they
be oppositely polarized and: of equal intensity. .
Experimentally, if natural light is resolved in any direction in the
. transverse plané,. the measured intensity is the same. The necessary

and sufficient condition fir light to be natura: is that

@=U=V=29 (163)

A theorm-due to Stokes [22] states that the most general mixture
of light can be regarded as a mixture:of an .elliptically polarized

wave and an independent wave of natural light.

From equations (68) through (71) we can show that
12 = Q2 + U2 + V2 (164)

‘But, for the most general representation we can write

I2>Q2+ U2 + V2 (165)

since Stokes theorem says we can write the Stokes parameters as

i~
e e e, e A} ol

I= Iz + Ir + Fn (166)
Q= I2 - Ir (167)
Uu=2 Iz Ir cos & (168)

V=2 \]Iz Ir sin § (169)

where I, is the intensity for natural lignt. The degree of polariza-

tion of a wave is defined as [9]
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(02 © 12 + v2
p-NQ ¥ ‘I’ + \ (170)

and from equation (165) it follows that
0<P < (any

When P = 1 the wave is said to be completely polarizecs when P = 0
the wave is said to be completely unpolarized (natural light). In

general . -
0 <P <1 (172)

and the wave is partially polarized.

In this study, we will be dealing with fihe transmission of com-
pletely polarized (P = 1) or completely unpolarized 1ight through
model atmospheres. We will be interested in the affect of scattering
on the polarization properties of the transmitted wave. Comparisons
with natural or unpolarized light will be made, It will further be
assumed that due t the randomness of the particle distribution in !
the atmosphere, the intensities of the individual scattering events
can be summed at the detector, the transmitted energy will be
monochromatic, and the individual scattering particles are located
far enough from each other such that the far zone approxir .tion may
be used.

Since we are interested in the degree of depolarization, i.e.,
the amount of cross-polarized component produced by scattering of
a polarized wave in the atmosphere, therefore, in an effort to
provide qualitative results and for comparison of various cases, we
will introduce the polarization factors., For linearly polarized and

unpolarized transmitted waves, we will use
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: I sl -
D, = L+ (173)
I + Iz
) while for circularly polarized transmitted waves we will use
¥ b I ,\_I
D. = RHC LHC (174)
C o+
RHC LHC

The sign of either DL or DC will indicate ‘the amount of each component

contained Tn the detécted: wave. The only problem which may arise will

o+ ot ot s s e oo T A

be for DL = 0; this will mean that Ir = Iz which may happen for unpolar-
ized or for circularly polarized waves., For the type of problem being
studied here, the U and V parameters are always small and circular
potarization will not result for a transmitted unpolarized wave.

5. MIE AND RAYLEIGH SCATTERING

In general, the scattered components of the eiectric field are

given by [14]

Ei

e-ikr + ikz 2

= e (175)
ikr .

o
[N)
w

rm
S w»w
.Sﬂ
w
p—
™
-

/
where the incident field is a monochromatic plane wave propagating in

! the positive z direction with components

AW
AL ke + et (176)
i

Ey Er0

and the Si elements are scatteiing functions which depend on the

material properties and orientation of the scatterer,
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A transformation matrix can also be defined [9] for the Stokes

parameters,
{ 1 . I0
Ry
. Q Q.
=f| 9 (177)
D U Y
§
L v/ Yo
o or
H
7 Iz\\ I
i I.d 1
: Pl=F| "0 (178)
{u e Yo
V Vo
where F and F aré 4 x 4 matrixes and are given by (see appendix):
1/2(My + Mp),  1/2(-My + Mp), c, 0
1/2(-Mp + Mp), 1/2(M; + My), 0, 0
F = 1 ()
0 , 0 , Sa1s =Dy
- 0 Y 0 [ Dzl’ 521/
and
M, O, 0, 0
- 0, M. 0, 0
F = (180)

0 ’ Q ’ 521’ '021

0, 0, Da, Syny

The derivation of (178) and {179) in the appendix used the fact

that for a spherical scatterer A3 = A, = 0. This is equivalent to
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setting S3 =Sy = 0 in equation (175). Therefcre, we can write

3 S i
B - By S2 0 o= Tkr + ikz ) ‘
; - N S = —-7——— i (]8])
| Er o S ikr | Er
L
3. - Furthermore, from (180), we know that
4
1 * ..
' Ml = Al Al = |A1|2 , (182)
1:%‘
! My = Az A3 = [Ag|?2 (183)
| Sa1 = 1/2(A1 A3 + AT Ay) (184)
i
j [
: Doy = - 5 (A A7 - AT A) (185)
é . Also, comparinig (1757 with (2) from the appendix, we obtain
e-ikl" + :'ikZ
Ay =S & (186)
§ ikr
! . .
. pikr + ikz
Ay = Sy : (187)
. ikr
I ]
% so that
L ]
g A2 = 5112 188
§ M2 = =L 1sa) (128)
]
Ay|2 = — S,|2 189
|Az] = |S2] (189)
Sy = —— (S, S% + S1'S,) (190)
2k2 r2
Dap = - ! . (S Sg - S’f S2) (191)
2k2 r?
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In general S; and S, will be complex:

2

Sy =5y et (192)

Sy = 59 e!%2 (193)

where s; and s, are real amplitudes and o, and o, are real phases,

therefore
o, S
I\All = k2 r2 (]94)
2 = —2 1
Rp|% = YTy (195)
S, S,
Sz = g cos (o) - 03) (196)
Sy Sy
021 = kZ 2 sin (01 - 02) (197)
Substituting equations (188) through (191) into equation (180)
results in the phase matrix
IS,]2 0 0 0
F=l_ . (198)
k2 p2 0 0 Re(S5;Sa)  -Im(S,S%)
0 0 Im(S,55)  Re(S;S3)

with S; = S; (o) and S, = S, (8) functions of the polar angle. Note
that, according to (198), if the incident wave is linear:iy polarized
in the plane uf scatter the scattered wave will also be linearly

polarized; this agrees with the Mie theory [7].
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A1l scatterers treated in this study are spherical and (198)
will play an important role in the results. From the theory of

Mie, we have that

2n + 1

S1 () = Eg% TR ETT

. [an . (cos o) + bn T, (ess e)] (199)

and

-]

:E: 2n + 1 o

& R S

1

_So. (8).

[bn . (cos. 8) + a, T, (cos Q)] (200)

The detailed dafinition of Tps s 3o and bn is postponed until the
next section,

The phase matrix for Rayleigh scattering is

cos2 @ 0 0 ‘0
0 1 0 0
R=3/2 | (201)
0 0 ‘'cos # 0
0 0 0 cos 6

Equations (198) and (201) apply only when the Stokes parameters
are referred to the plane of scatter. In general, the incident
wave's Stokes parameters will not be referred to the plane of scatter,
therefore it wi'1 be necessary to rotate the incident Stokes parameters
into the plane of scatter [9]. Referring to equations (128) through
(131), it is clear that the I and V parameters are invarient to a

rotation of axes. If we rotate the axes by an angle ¢ in the
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clockwise direction (figure 10) then

Q” =a%2 cos 2 B cos 2 (X - ¢) (202)

and

Us = a2 cos 2 g sin 2 (X - ¢) (203)

Expanding (202) and (203) we obtain

Q”=Qcos 24+Usin2s (204)
and
U- = -Qsin2 ¢+ Ucos 2 ¢  (205)
But, we also have that
I-:= 15 + I; = 12 + Ir (206)
Ve =y (207)
G* = I: - I; s (Ié - Ir) cos 2 ¢+ Usin2 ¢ (208)
Us = - (I2 - Ir) sin2 ¢+ Ucos 2 ¢ (-209)

and solving for Ié and,I; we have

I; =172 I, (14+cos 2 ¢) + 1/2 Ir>(1-cos 2 ¢) +1/2 U sin 2 ¢

=1, cos? ¢ + I sin2 ¢ + 1/2 U sin 2 ¢ (210)
Ip=1/21, (1-cos 2 ¢) + 1/2 Ir (1+cos 2 ¢) - 1/2 sin 2 ¢

=1, §in2 ¢ + I, cos? ¢ -~ 1/2 sin 2 ¢ (211)

The transformation law for a rotation of axes is therefore
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fcos?¢ sin%y 1/2 sin2¢ 0O\

sin2¢ cos2y -1/2sin2¢p O
(212)

-sin 2¢ sin 2¢ cOs 2¢ 0

0 0 0 1

Prior to applying thé Scattering matrix, (198) or (201), the incident
Stokes parameters must bé rotated into the plane of scatter according
to (212) and rotated back into a referencé plane if desired after

application of (198} or (207). Let us write

cos?¢  sin?¢ 1/28in2s O
: sin?y  cos?¢ -1/Z2sin?2s O )
L (¢) = (213)
-sin 2¢ sin 24, cos 2¢ 0
0 0 0 ]

as the transformation matrix for 'rotation in the clockwise direction
then L {=¢) is the transformation matrix for rotation in the counter-
clockwise direction,

The contribution tc the source function due to scattering of a

pencil beam of radiation of solid angle dw” in the direction (8%, ¢~)

is
dw”
Il (214)
for Rayleigh scattering and
dw”
Fl 5. (215)
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for Mie scattering if I (e-, ¢~) is referred to the directions parallel
and perpendicular to the plane of scattering. In general, I (67, ¢*) .
is not reférred to the Scattering plane and we must therefore rotate

the incidert polarization compdnents into the plane of scatter. Sup-

pose that I (8%, ¢°) is referred to directions along the meridian

plane OBA in figure 15 and at right angles tg it. We use equation (213)
to transform I+{(6%, ¢°) into the piane of scatter, and therefore, the

contribution to the source function is

R (cos o)mbolory)-T (a7, ) S (216)

e N

Figewa 16  Polarization Reference Planes
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We can then transform the Stokes parameters back into the reference

plane by once again applying the transformation matrix such that

L (v - 82) Rlcos 0) L(-81) I(e”, ¢-) $ (217) .

is the scattered contribution except that now the Stukes. parameters
are referred to the plane-OCA.
If we now assume the several scattering events occur successively,

that contribution due to.scattering would be
L, {m = Bapdese Ly (7 = 82) R(cosi0) Ly (-8y)eee

L, (=&) I(e", o) §2 (218)

where n such scattering avents occur. If Mie scattering were taking

place rather than Rayleigh scattering one would simply use: the

scattering function F rather than R .

In this section we have shown how scattering affects the polari-
zation properties of the incident intensity and have derived the
scattering matrixes for Mie and Rayleigh scattering. These ideas
will be used in the modeling of scattering of electromagnetic

radiation in the atmosphere.
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SECTION IV
COMPUTER SIMULATION

1. INTRODUCTION

A Monte Carlo computer simulation of electromagnetic scattering in
the. dtmosphere, similar to those proposed by Kattawar and Plass [16] anu
Collins and Wells [20], is used to predict the degree of depolarization
of an incidert polarized electromagnetic wave., Basically, the computer
program is a simulation of the equation of radiativé propagation in the |
atmosphere as derived in section II. The atmosphere is composed of a ran-
dom distribution of particles of different sizes; thcse which are much
smaller tﬁan one wavelength are called Rayleith particles since they
follow the A™* scattering law originally derived by Lord Rayleigh in 1871;
while those particles whose size is comparable to One waveﬁength or larger
are called Mie particles after Gustav Mie who first derived a rigorous
solution for the diffraction of a linearly polarized plane wave by a
sphere, Since we are :principally concerned about polarization effects,
absorption is neglected.

The atmospheric densities considered here are selected such that near-
field effects may be neglected. Also, since the particles which make up
the atmosphere are randomly distributed, all scattering will be assumed
to be incoherent, and therefore, the Stokes parameters can be summed with-
out regard to phase.

2. THE SIMULATION MODEL

Consider the integral equation which governs the radiative transfer

of electromagnetic energy in the atmosphere

I(T’u’¢‘) = ID(T:uo¢) + IS(T9U’¢’) (219)
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where

Ip(rause) = 1(0,u,4) /¥

and
+]

T
ff F(u"b’u 34’
-10

I(t,u'se') gl - t)/u dt du' de!

I (T9U»¢ ;%'

The direct intensity, ID(r,u,¢), can be calculated easiiy. The scattered
intensity is'much more difficult to calculate since the unknown intensity
also occurs under the integral. Equations of the type -(219) are known as
nonhomogeneous Fredholm integral equations. In an isotropic and homogenous
medium the polarization parameters of the direct intensity are only atten-
uated and thé polarization state remains the same. The polarization
parameters of the écattered wave are, in general, modified during the
scattering process by the scattering matrix F(u,¢;u’,¢') (see equation
(179)), where p and ¢ give the direction of the incident wave while: '
and ¢' give the direction of the scattered wave.
a. Source Distribution

Assume a source which emits photons either isotropically or aniso-
tropically. The probability that a photon is emitted in the directiun
(6,4) is proportioral to the magnitude of the source intensity pattern in.

the direction (6,¢). Let the intensity pattern be denoted by the function

G(6,¢) (220)

If we normalize the intensity function
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KffG(-e,¢) sineded¢ =1 (221)
00

where K is the normalizing constant, then the probability that a photon is

enitted in the interval (o + de, ¢ + d¢) is

P(6,8) sine d o d¢ =00l sindodoe (222)
E IJG(é,tp) sinedodé
00
! or upon integrating between fixed iimits
% $2 02
Y Jf./”(; (6,0) sinededyg
$1 6y
P(812020,,015242) = 5= (223)

[
ffG 0,6) sinedod¢
0

0

Equation (223) gives the probability of emitting a photon between the
angles (8),85) and (¢1,¢5).
Suppose the distribution is isotropic, then
G(6,0) =1 (224)
and

(42 - ¢;) (cos 6, - cos 67)
P(0120202,61505¢2) = - (225)

Using equation (223) any intensity pattern may be used.
b. The Extinction Coefficient
A1 scatterers can be characterized by their scattering function,
which describes the scattered intensity as a function of aspect angle. If

I0 is the intensity incident on the scatterer, then the scattered intensity
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is given by

- Ip Flo,¢)

k2yp2

(226)

where F(6,¢) is a dimensionless function which describes the intensity
distribution for all directions (8,¢) and k = 2n/A.

We now define thé scattering cross section, oss by

5 = l-z-fr(:e,w du (227)
w

where dow = sin e d v d ¢ is an element of solid angle, o

area such that thé energy falling on o, is equal to the energy removed

s
from the incident wave. Nor.ially there is also an absorption cross
section, O which describes the amount of energy removed from the
incident wave through absorption. The total -extinction of the incident
wave is defined by the sum of the scattering cross section and abserption

cross section.

Ooxt = Os * Ty (228)

In this paper we ignore 04 and let

¢. Path Lengths
Radiation intensity is attenuated expcnentially through a medium

according te

I(s) = 1 e/ %%ext(s) (229)

where IO is the incident intensity, s is the distaice traveled, and o is
the extinction coefficient of the medium. The optical path length is
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defined as
. h
«(n) = { oy (') an (230)
0

where t(fi) is also the number of mean-free-paths between 0 and h. In
equation (229) the ratio s/o(s) is the fractional number of mean-free-paths
traveled with s = oext(s) being equal to one mean-firee-path., If we know.
the optical depth of the atmosphiere as a function of distance in mean-
free-paths, then the number of mean-free-paths traveled between col1isiéns
is. distributed exponentially, i.e., the probabiiiity of a collision between

p and dp, where p = S/°ext(s)’ is

plo) do = e dp (231)
or
o2
P(o12p<p2) = j{ e™® dp (232)
P2

Equations (231) and (232) hold for O<p<o  For O<ps<p .. We use

max
n2
-p
1{; e’ dp )
Ppy<p<p2) = — (233)
max
j 2 do
0

Equations (231) end (232) hold for an atmosphere infinite in extent while
equation {233) holds for a finite atmosphere
d. Rayleigh Scatterirg
The term Ray:ieigh scattering i5 used for scai.>ring of electro-
magnetic waves from particles which are small compared to a wavelength or

more precisely, particles which are small compared to the waveleng.h in
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the particle, i.e., if Ay is the wavelength of the electromagnetic wave

outside the particle then the wavelength inside the particle is

(234)

Elcgw

where m is the index ¢if refraction (m = c/v) of the particle. If the
particle is small compared to Ags the wavelength ocutside the particle
but is comparable to the wavelength, A, in the,ggrticﬂewfheque.will be
in the resonance scattering region. Resonance is associated with the
modes of vibration ot the particle.

For a particle fulfilling the above requirements the electric
field induced in the particle can be assumed -constant -throughout the

particle and the induced dipocie moment is
P =k, (235)

where o is the polarizability of tl.e particle and‘n"0 is the incidunt

\-l‘.vtl I‘. |1eldo lﬂl

then -
3 = BO e1w (237)

The electric field components of an oscillating dipole are given

by [23]. (See Figure 16.)

Figure 16. Oscillating Dipole Field Component:
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EP,=<]——- -%)2 cos o |p| efe(t-R/v (238) _

E, = <l-- ik . : ) sin ¢ |p] e (t R/V) (239)

‘For distances large compared to a wavelength (R>.1) the rad.al component,

E', mmay be neglected and E becomes:

2 . -
E, = kep sin 6 -ikR (240)

where

- Using (235), (240) becomes

k2 « E, sin 0
Ee = 0 e-"ikR (241)
F

We now compare equation (241) with (175) and noting that for the perpen-

dicular component & = 90° and for the parallel component 6 = 50° - 0,

where @ is the scattering angle, we obtain

‘ ; , 5, s .
e = 1k 1242)
S S (N
S \ 1
iz . or
. ] 1
. E cos @ 0 ke + ik E)
. Tk — (243)
- s - i
Er 0 1 (!
from which we note that
S 2 - kl’O.z 2 'i 2

s
(R
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ba2 32

2 g
Ip = [E " = == [E,| (245)
r

4.2

24/15 I3 cos 6 cos o = k'a US cos @ (245)
L r Y‘Z

= _ b2 -

24/15 IS sin § cos 6 = K92 yS cos 0 (247)

2‘ r r2

Therefore,. with Ii =_(IZ, I;, Ui, vi>, the scattering matrix, for Rayleigh

scattering, becomes

foso 0 0 AN -
R=f 0 1 ¢C 0 (248)
0 0 cos 0O 0
0 0 0 cos ©

We can now write the matrix relation between the incident and scattered

intensity

b2 4
1S = Klo% p o (249)

which clearly shows the A-% dependence enccuntered with Rayleigh scatter-
ing (k = 2n/1).
e. Mie Scattering
The exact solution to the diffraction of a linecrly polarized
plane wave by a sphere was first given by Gustav Mie in 1908 [2]. The
scattering of electromagnetic waves by a sphere has occupied a large

portion of the literature in the past. Several forms of the solutien

have beepr given by various authors [7, 23]. The term Mie scattering has
been used for this predlem in honor of Mre. 1n this paper we will be

using the solution given by Van De Hulst [14]. The electric field
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components as a result of scattering from a sphere are

L 5,(0) cos ¢ e Trtiut (250)

'\r'_'?_‘ T

Eg = -

3

<
——
¥

and

=1 5,(6) sin ¢ e-krtiot (251)
- ¢ kr

m
n

where S)(6) and S,(6) are the scattering functions defined by equation

(175) and are given by

v 2n+l :
Sy(e) = Yy, entl , 0) + b 0s 8 ] 252
1(6) ny;;mm[a""-" (cs. 8) + bz, (cos o) (252)
and
Sa(0) = 3 H [ o (cos 0) + 3, (cos o)] (253)
n=t n(n+])
with
T (cos o) = - Pé]) (cos 8) (254)
sin @
T \COS 8) = 9—-P£]) (cos o) (255)
de

L. (¥) (%) = me, (7) vy (x) (256)
v (¥) g () - my (y) (x)

- moy (¥) vy (x) = v, (y) ¥ (x) (257)
my {y) 2, () = (y) &l (x)
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In equations. «(254) and (255) Pé]) (cos 8), is the associated Legendre
polynomial. In equations (256) and (257) wn(x) and ¢ (x) are the Riccati-

Bessel functions given by

bo(x) = x 3, (x) (258)
6y (x) = x 1) (x) (259)

where jn(x) and hgz)(x) are spherical Bessel functions. Also. in equations

(256) and (257) m is the complex index of refraction of the sphere.

Equations {250) through (257) constitute a solution to the prob-
lem of the diffracticn of a linearly jolarized plane wave by a sphere and
are valid for an arbitrary homogeneous sphere.

The scattering.-matrix for Mie scattering can be obtained by sub-
stituting equations (252) and (253) into equation (198). Recall that
S1(8) is the scattering function for perpendicular incident polarization
while S,(6) is the scattering function for parallel incident polarization.

f. Description of the Atmosphere

In this study we assume that the atmosphere consists of scatter-
ing particles only. The particles are, as is customary, assumed to be
spherical. We use the Mie scattering theory to determine the particle
scattering matrix. Absorption is assumed to be negligible since this
phenomer.on does not contribute to the depolarization of the incident wave,
The atmosphere is made up of many mie particles each randomly oriented
with respect to other Mie particles in the atmosphere, Therefore, all
scattering is assumed to be incoherent. The assumptirn of incoherent
scattering allows us to add the Stokes polarization parameters resulting
from the various scattering avents. Since the atmosphere is made up of

many randomly oriented Mie particles, we can describe the size distribution
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of the Mie particles and determine ‘the average scattering matrix for a
given size distribution and thus. characterize the atmosphere with this
average value. Deirmendjian [24] has generalized the size distribution

function first proposed by Khrgian and Mazin [25] in the form

Y i
n(r) = ar® ebr (260)

where n(r) is the volume concentration at the radius r and a, a, b, and y
are positive constants. If N is the total number of particles per unit

volume, then

-]

a+]
N=fn(r) dr=-$-b"rr(9‘il)

: (261)
0

where T is the gamma function,

Taking the derivative of (260) with respect to r, we obtain

1 obeY
%— n(r) = a r® 1 gmbr (a - ybrY) (262)
r

Setting (262) equal to zero we can solve for the critical or mode radius

which is
1/y ‘
r == (262)
by
Figure 17 is a general plot of equation (260).
a(r)
cm'3u'] [

nax(r)

0
e r
Figure 17. Particle Size Distribution
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The generalized size distribution function given by Deirmendjian
(equation (260)) reproduces practical particle distributions as measured
by experimentors. For example, if a=2.373, a =6, b=1.5,andy=7T

we obtain
n(r) = 2.373 6 & " epr3 1 (264)

which follows the size distribution measured by Durbin [26] for cumulus

clouds; for this reason the distribution (264) is called. "cumulus type I"

by Singleton and Smith [27]. Another example of equation (260) is obtained

by setting a = 5.33 x 10%, o = 1, b = 8,944, and-y = 1/2 and we have

. 1/2
n(r) = 56.33 x 104 p ¢~5-944r (265)
The distribution given by equation (265) may be taken to represent
coastal conditions and is called the "haze M" model by Deirmendjian.

Equation (264) yields

N = 100 particles cm™3 (266)
while equation (265) also gives

N = 100 particles cm=3 (267)

Equations (266) and (267) yield, on the average an interparticle distance

1/3
L = 0.215 cm
100

or 2150 microns. Therefore, for the Cumulus Cloud and "Haze M" models

of approximately

the far field scattering approximation is certainly valid for wavelengths

up to, say, 200u.
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A size distri?ution which may be used to represent a continental

haze is
n(r) =0 P<r
n(rd = constant r.. <r<ry
- Y
n(r) = Ar ra <P <hey (268)
where v .. = 0.3u, vy = 0.1y, v = 4, and constant = 103 has been shown. by

Deirmendjian to be representative of typical continental hazes and is

called the "Haze C" model, i.e.,

n(r) =0 r < 0.03y
n(ey = 103 0.03u < r < 0.1y
n(r) = 0.1r* 0lu<ir<ew (269)

for this distribution we also have
N = 100 particles cm™3
and near field scattering will start to become 1mportént for
A > 200u

Therefore, it appears that for wavelengths into the infrared and shorter
near field scattering may be ignored for the three postulated models.

Now that we have obtained the three particle size distribntions
we can now integrate the Mie functions over the applicable size distribu-
tion in order to obtain the Mie volume functions. Here we will follow

the same technique used by Deirmendjian [24].

In equation (227) we defined the scattering cross section as
o Lfr(e,¢) du (227)
k2
w

70




gy

i 79 gkl
’ ;

; wrg

kY
P

o

]

where the integration <is carried out over all solid angles w. If we

integrate the partiglg cross section-over ths size distribution we will

obtain the volume scattering function. Before carrying out the integra-

tion let us define the Mie size parameter

2qr

X = T = kr (270)

where r is the Mie particle:vadius, k = 2n/x, and » is the wavelength.

Making this substitution into (260) we obtain

n(x,k) = a (k> ‘b(k>a (271)

The functior F(6,¢) is also dependent on X and we can write
F(e,0) = F(0,45X) (272)

Now we can write, for azimuthally symmetric F(e),

lN

(8,1) =

Xa
f ) n(x,k) dx (273)
X

~ The volume scattering cross section is obtained by integrating (273) over

all angles, i.e.,
(m, Zﬁf':E: (6,0) sin o de (274)

where m is the index of refraction.

We can now normalize 2:5, i.e.,

Ng(8,1) = = (275)

n

] T

PPN -

zx /
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which is proportional to the probability per -steradian of a photon of
wavelength A being scattered- into an angle o.

For Mie scatteiring we have that
2
Fle) = [s,] (276)
for incident perpendicularly polarized waves, and
2
F(e) = [S2] (277)

for incident parallel polarized waves where the polarization is referred
to the scattering plane, i.e., either perpendicular or parallel to it.

For exponential stratification of the atmosphere [15] we can

write the extinction coefficient as —
"'h H .
00y (h) = og &7 (278)
where % is the extinction coefficient at h = 0 and H is the scale alti- .

7tude, e.g., H =0.98 km for haze [15]. Using equation (230) we obtain

for the optical thickness
h [
«(h) =.f.00 e P /M g (279)
0

Or upon solving equation (279) we have
' t(h) = o H(l - e'h/”) (280)

which gives the optical thickness as a function of altitude h.
g. A Monte Carlo Simulation
Monte Carlo techniques may be used in the simulation of a random
process [12, 13]. Monte Carlo techniques have been used for several years

to simulate problems in neutron diffusion. The Monte Carlo technique
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serves in modeling a random process when the various probability distri-
butions are known or can at least be approximated using physical reasoning.
Our problem of determining the depoiarization effects due to scattering

in the atmosphere is certainly a random process since the distribution

of scatterer§ ﬁn the atmosphere is random., Here we assume tkat a plane,
polarized wave propagates through the atmosphere, the wave being made up
of a large number of photons whose average properties can be characterized
in teérms of -wave theory. We, as originally stated, will also assume that
all scattering is incoherent so that the .effects of all the scattered
photons may be added directly. The polarization properties of the wave
are associated - with each photon history. The difficulty of assigning

the Stokes ﬁo]arization parameters to a single photon can be overcome by

“assuming that we are dealing with groups of photons rather than with a

single photon.

We now know that the probability of a photon being emitted into an
angle (6,¢) is givén by eqdation (223), that the number of mean-free-paths
trave1ed-betwéen;co11isions is given by the distribution (233), Further-
more, if Rayleigh scattering occurs the Rayleigh scattering matrix given
by (250) can be used to operate on the Stokes vector as given by equation
(249). Similarly, if Mie scattering occurs the Mie scattering matrix
given by equations (198), (252), and (253) can be used to operate on the
Stokes vector as in the case for Rayleigi. scatteriig., Since the Rayleigh
and Mie scattering matrixes are given in terms of the scattering angle,
the polarization components of the incident photon must be rotated as
dictated by equation (250) paraliel and perpendicular to the scattering
plane. Similarly, after the sca.tering matrix is applied to the Stokes
vector, the Stokes components will be rotated back to a reference plane.

The reference plane to be used here is the same as that used by Collins
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and %ells [17] and is the vertical plane which also contains the proysga-
tion vector. Therafore, the paral’el component at a detector is that
component in the reference plane and is orthogonal to the propagation
vector, while the perpendicular -component will be perpendicular to both
the reference plane and the propagation vector.

" “Again following the same method a; that used by Collins and Wells,
we determine the effect of multiple collisions by estimating the intensity
at the detector after each collision and comparing the intensity at the
detector due to single or multiple collisions. The estimate of the
intensity at the detector as a function of collision .number will be
obtained by calculating the scattéring. angle toward the detector and
weighting the Stokes vector with the applicable scattering matrix fov
that particular scattering angle. The particuvar photon history s con-
tinued by selecting a scattering angle from a probability density given
by the normalized Rayleigh or Mie scattering functions. After selection
of the scattering angle the Stokes vector is. then weighted by the applic-
able scattering matrix for that scattering angle,

Random aumbers are obtained by generating a pseudorandom sequence.
Several methods for generating pseudorandom numbers are available [12].
In this simulation we will use a pseudorandom sequence wivich is generated

by the recurrence relation
y; 2 ay; -1 (moduto n) (281)

The notation used in (281) means that ¥ is the reminder when ay; - 1 is
divided by n. In our case we use n = 2“8 and the period is n/4, hence we’
are able tc generate in the order of 10!3 numbers before repeating the
sequence. We will never require more than, say, 10* photon histories

each requiring approximately 10? random numbers, therefo e we will never
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need more than 106 random numbers per problem., The pseudorandom sequence
given by (281) has been found to be uniformly distributed and therefore
a transformation from the uniform distribution to the desired distribution
is needed. |

A theorem by Barkovskii and Smirnov [13]) states that if the
random variable ¢ has a probability density function f(x), then the

distribution of the random v.riable

£
n =ff(x) dx (282)
O §
is uniform in the interval (0,1). Consider the arbitrary cumulative
distribution function F(£) as given i figure 18. :
] po
F(g)
0 :

Figure 18, Arb{trary Cumulative Distribution Function
Let n = F(g); we now want to find out how n is distributed. Since we
know that the .andom variables ¢ and n are functionally related through

-

the function F we can write

p(n) = i’(i)- {283)
F'(g)
But we know that
p(e) = F'(¢) (284)

therefore
pn) =1 O <n<l

p(n) = 0 otherwise, which proves that n is uniformlv distributed., On the
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basis of equation (282) we may @héréfore use ihe following rule. In order
to obtain a random number b2longing to theset of numbers {Si} with_the

density function f(x) solve théhfo1lowing equation for S,
f £(x) dx = R, (285)

For example consider the diStribution function given by equation (232)
p(p) do = €Pdp, 0<p < w (232)

which gives the probability.of a photén traversing do mean-free-paths
between collisions. Assume we generate a :rancom number R; from a rectan-

gular distribution in the interval (0,1), then
P4

“p
4 J. e Vdp

0

=
n

P
-e P

1 - ePi (286)

Solving for pys WE obtain

Py = -ﬁn(l - R'i> (287)

In this manner we can very easily generate the random numbers P for the
desired distribution from the random numbers Ri which are uniformly
distributed.

Let us now summarize the methods being used to model our problem.
Consider a plane-parallel atmosphere with exponential particle stratifica-
tion A source of electromagnetic energy is located at an arbitrary alti-

tude above the ground. The electromagnetic energy being radiated from
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need more than 106 random numbers per problem. The pseudorandom sequence
given by (281) has been found to be uniformly:distributed and therefore
a transformation from the uniform distribution to the desired distribution
is neaded. 7

" A theorem by Barkovskii and Smirnov [13] states that if the
random variable £ has a probability density function f(x), then the

distribution of the random variable

g
n =ff(x) dx (282):
0

is uniforin in the interval (0,1). Consider the arbitrary cumulative

distribution function F(&) as given in figure 18,

b

] pu—

F(g)

0

3

Figure 18. Arbitrary Cumulative Distribution Function
Let n = F(g); we now want to find out how n is distributed. 3ince we
know that the random variables ¢ and n are functionally related through

the function F we can write

p(n) = RLE) (283)
F' (&)
But we know that
plg) = F' (k) ‘ (284)

therefore
p(n) =1 0<nzl

p(n) = 0 otherwise, which proves that n is uniformlv distributed, On the
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the source will be mcdeied by conside: i7ig that the intensity is due to
) the conglomerate effects of wave packets made up of photons. Each wave
packet is assumed 'to be characterized by the Stokes polarization vector.
The wave packets can be thought of as bullets which when shu’ into the
. 7 atmosphere coilide and are reflected by the scattering particles according
to prescribeid probabilities.

The probability t+ t a photon. (wave packet) is emitied by the

source in the interval of solid angle (83<5<6,,01<6<45) is

8

-©-
N
N

G(6,¢) sinedod¢

o—

o‘

1
P(01<0<05, $1<¢<¢,) = i (288)

G(6,4) sinedod ¢

O\
O'h—\-‘-!

where G(039) is the source intensity distribution. Therefore once a
specific function G(6,¢) is selected we can generate random numbers
representing a random angle over the prescribed distribution through the
use of equation (285),

The probability that the photon traverses the distance between
p1 and p, between collisions or from the source to the first collision is
given by

P2

P1<p<p2) f e do (289)
P1

where p is the number of mean-free-paths traveled. We will use {287) ts

genarate the 0y random numbers.

We can see from figure 19 that the exponential distribution for

optical pathslengths holds for the interval 0<p<w,
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Figure 19. Exponent .- P Distribution
If we desire to limit the optical -ath to the interval O<p<pny @S in the
case of a very dense cioud with ¢'Tigible scattering outside the cloud
or for a finite atmosphere, a trun.ated exponential distwibution, as
{epicted in figure 19 would be . s€d. The truncated exponentiaf random
numbers may be found frem 7

Py

’{l o pmax (250)

er, upon solying for oy
py = -2 [1 - Ri(l - e'pmax)] {291)

As we have mentioned previously, we will estimate the intensity
at a detector after each collision, We do this by calculating the
scattering angle toward the detector, rotating the Stokes vector into Yhe
scattering plane, multiplying the scattering matrix with the rotated
“tokes vector, rotating the Stokes vector back to the reference plane,

and attenuating the resultant Stokes vector by the attenuation function

)
DZ

where p, is the optical distance from the collision point tu the detector
D

and D is the geomtric distance from the collisicn point to the detector,
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Figure 20 shows the georietry used for calciilating the intensity
at a detector resuiting from a collision, In figure 20; r is the hori-
zontaT radial distance from the origifi to the collision point, o is the
horizontal radial distance from the origin to the detector, © is the
scattering angle toward the detector, ¢ is the Stqke§.rotation angle,
hD is the height of the detector, and hc is the height of the collision
point. Using the spherical triangle ogo we can.compute the rotation

angle Op from

cos b, = COS o = COS O CcOS B (292)
- - - - sin 9 sin 8
sin ¢Y‘ 2 3INa SNy (293)
sin o

where v is the angle between the radial lines to the collision point and
to the detector as shown in figure 20.. The cosine of the scattering angle
may be computed by taking the idrer product between the unit vector in the
direction of the photon prior to the collision with the unit vector in. the
direction from the collision point to the detector. The unit veéctor in

the direction of the photon prior to the scattering event is

> -> > ->
Ay = sin g cos 6 a, + sin 6 3in § ay+ cos 8 a, (294)
where the angle & is shown in figure 20, The unit vector from the colli-

sion point to the detector is

gD = J[.)- (rD cos y - r) -a).x + Y‘D sin vy 3}' + (hD - h) gz (295).

Taking the inrer product of equations (294) and (295) we obtain
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Figure 20, Geometry for Calculation of Intensity at a Detector
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v g2

sin B cos § (rb oS y = f) ) sin y sin B sin §
+

D D

: . KhD;-‘h)cqs‘B
D

€08 0 =’

(296)

After having made an estimate of the intensity at the detector
after a collision, a random scattering angle is selected. The scattering
event may be 2ither Rayleigh scattering or Mie scattering. The specific
type of scattering which occurs for a particular collision is determined
by comparing @ random number selected from a uniform distribution with
the ratio of Rayleigh to Rayleigh nlus Mie scattering coefficients for
that altitudeAEZBJ. Tf the random .number is less than or equal to the:
ratio Rayleign scattering is selected. Otherwise we select Mie scattering.

Fo§ Rayleigh scattering the scattering angle is selected {rom the

’ probability density function [9, 20]

P(cos 0) = g-(1 + cos2 0). (297)

Collins and Wells have shown that (297) can be written as the sum of two

probability density functions

P(cos 0) = Py(cos @) + Py(cos o) (298)
with
Py(cos o) = 28inode (299)
) 4 2
and
. P,{(cos 0) = %cos2 AL (300)
2

The density function Py(cos 0) is chosen to represent P(cos o) half of the

time and P,(cos o) the remainder of the time. If Py(cos @) is chosen,
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then cos © may bé determined by solving

%
Ry - J' sin 6 d ¢ (301) -
0 2
for cos Gi’ or

If P,{cos 0) is chosen, cos 0; is selected in the same manner as (302)
but cos? 0, is compared to a second random number and is accepted if it
is greater than the second random number. Collins and Wells havé shown
that the determination of .cos © compares very favorably with the actual
distribution for Rayleigh scattering.

If Mie scattering is selected, the cumulative probability of
scattering into ah angle less ithan or equal to:9; is given by the normai-

i )
ized differential scattering cross section of equation (273):

i

ji: (0,2) sinod o

S

O S,

P(0_<_0_<_01-) = (303)

m
st (0,A) sin o d o
0

The azimuthal scattering angle which determines the orientation
of the scattering plane is selected from the uniform distribution
p(e) = 1- (0cp<2n) (304)
2n
for both Rayleigh and Mie scattering.
Now that the scattering polar and azimuthal angles are known we

msy compute the direction of the photon after being scattired. The cosine
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of the angle between the photon's direction after scatter and the vertical

: D axis 1is
- cos o' = cos B' cos 0 + sin 8' sin 0 cos ¢; (305)

. where the angles are defined as shown in figure 21.
The intensity received at each detector simulated will be recorded

as a function of polar and azimuthal angles. The polar axis for each

PN .

detector is defined to be the axis joining the source and detector. The
x and y axes lie in a plane normal to the polar axis. The x axis is
contained in the vertical plane containing the source and receiver points.
The positive x axis points toward the positive vertical directicn but is
in general, inclined to the true vertical.

If reflections from the ground occur, we assume that the reflected
light i3 diffuse and therefore completely depolarized. The reflected

polarization parameters are given by

Tt P el £ A s b B o A 5 it SR Kbt W S T b 4
L ] *

/ir +1,
I; =y - (306)
. "z )
I.+1
I' = | L—2 (307)
2
u' = 0 (308)
V' =0 | (309)

where the prime denotes the reflected quantities and a is the ground

albedo.

S
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i SECTION V
Y
A DEPOLARIZATION BY CLOUDS: SOME "EXAMPLES
¥
v 1. INTRODUCTION
i Ir the previous sections we have discussed the various facets of
% the precolem of determining tne effect of .atmospheric scattering on the
% pularization properties of an electromagnetic wave. In section II we
( derived the equation of radiative transfer for a plane-parallel atmos-
% phere., There it was found. that the intensity at any point may be ,
? Found by solving a complex set of integral equations. The equation of
]
! radiative transfer has been solved only for the cases of isotropic

. scattering and Rayleigh scattering [9]. The more general problem of

anisotropic scattering has also been discussed by Evans, Chu, and

- Churchill [11]. The scattering function for single scattering may be

expanded in a series of Legendre polynomials of the form

S <

N
f(cos 0) = yirs :E: a, Pi cos 0) (310)
i=0

where the a; are the series coefficients. This expansion is of the

same form as the exact solution for a sphere (see equations (252) and
(253)). The scattering functions selected by Evans et al. are highly
peaked in the forward direction which indicates that for that particu-

lar case near field effects would be more pronounced in the forward

-

scattering direction. The shape of the scattering function will

anr
X

: spherical particle and A is the wavelength; it will also depend on the

depend on the size parameter X = » where r is the radius of the

sphere's complex index of refraction.
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2. PARTICLE SCATTERING FUNCTIONS FOR THE CUMULUS CLOUD DISTRIBUTIOM
In section V we derived the normalized scattering function for a
given particle size distribution{ in this subsection we will show some

results for the "Cumulus. Cloud" distribution. This distribution is
n(r) = 2.373 r% e 1.5" g3 y-1 (1)

as given by Deirmendjian, In equation (311) the particle density is

N = 100 Rarticles
' Coomd

and the mode radius ‘s ty = 4 , Equatidﬁ (311) is plotted in figure
22, In figures 23 through 27 are shown the scattering function for
individual particles taken from the Cumulus Cloud distribution arnd
perpendicular incident nolarization, with A = 0.5s and il(e) = |Sl(e)|2.
The size parameters 13.86, 35.87, 72.31, 123.19, and 188.50 correspond
to spheres of radius 1.1, 2.9, 5.8, 9.8, and 15.0u, respectively.
Notice the increase in the forward peak with size parameters.
We can normalize equation (311) as follows:
o(r) = °°n(r‘) - nér)
}~ n(r) dr
0

(312)

or upon substituting for n(r) from equation (311) and using the value

of N we have
p(r) = 0.02373 r6 g=1.5" (313)

which is the probability of finding a particle in the radius interval

(r, r+ dr). The expected value of r can be found from
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Efr] = .l’ r p(r) dr. ) (314)
0

* E[r] [ 0.02373 r™ g~1.5" dp
o

0

1]

0.02373 (1.5)-8 r(8)

4.66y (315)

The variance is

Van[r] =[E (r - E[I”])ZJ

or
Var[r] = E[r2] - (E[r])? (316)

Je can obtain the second term o the RHS from (315) and the first term

from
E[r] = f w2 p(r) dr (317)
0

or

. hms Ao o

E[r?] J~ 0.02373 r8 e~1.5r dp
0

0.02373 (1.5)=9 r (9)
24,92 (318)

so that upon using the result (315), we obtain
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Var(r] = 24.9 - (4.66)2

3.2u2 (319)

We can now obtain the standard deviation

o. =« Var[r] = 1.78 (320)

c

Comparing the expected value .of r, E[r], with the mode rad%us, rae We

find that since these values do not coincide and the distribution is

i not symmetrical the particles of radius greater than E[r] will affect

the averaging of the scettering function over the size distribution to

a gréater extent than those below E[r]. Comparing figures 23 through

27 we can see that the scattering functions given by figures 24 through

26 will affect the averaging of the scattering function over the size

distribution to a greater evtent than the scattering functions given

‘ by figuré 23 or figure 27. The scattering function given by figure 25
will enter into the averaging quite heavily since it is within To_ of

c
"E[r]. The fact that particles of radius greater than r_ will greatly

m

affect the normalized scattering function can be seen by comparing
fiaures.25 and 26 with figure 28. Figure 28 is the normalized scat-
tering function for perpendicular incident polarization obtained from
equation (275). The amplitudes of the normalized function and indi-
vidual scattering function cannot be compared since the individual
particle scattering functions have not been normalized. The normalized
scattering function for parallel incident polarization is shown in

figure 29, There is not much difference between the normalized scat-

tering functions for perpendicular and parallel polarization except in

the scattering interval from 90° to 170°, The end points at scattering
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angles of 0° and 180° of the normalized scattering functions for

parallel and perpendicular incident poiarization are equal as required,
i.e., the energy scattered in the forward or back directions are not
sensitive to polarization.

. If-we average the normalizeu scattering functions for perpendicular

and parallel incident polarization as foilows:

|5,(8)}2 + [Sy(0)]2 Iy(e) + I,(e)

7 = 3 (:321)

o AL R M Mk 2D N e e

we will have a relation which is proportional to the probability of
scattering in any direction and-we can derive the cumulative scatter-

ing distribution. This vividly shows (figure 30) the preference to

o e et dh e

forward scattering for the cumulus cloud distribution at a wavelength
of 0.5y,

If we now reduce the frequency (increase the wavelength) and con-
tinue to use the same size distribution given for cumulus clouds and
¢ons;der particles of the same radius as before we can get a “"feel"
for the effect of waveiength on the scattering function. Figures 31
through 35 give the scattering functions for particle radii of 1.1,
2.9, 5.8, 9.8, and 15.0u as before. These are given for perpendicular
incident polarization and a wavelength of 4.0p. Figures 36 and 37
give the normalized scattering functions for perpendicular and parallel
incident polarizations, respectiveiy. Figure 38 is the cumulative
scattering function. Again we see, upon comparing figures 33 and 34
. with figure 36, that radii greater than ' affect the normalized scat-
tering function to a great extent. We can also compare figures 30 and
38 and see ‘that the probability of scattering in the forward direction
when compared to side and back scattering has been reduced somewhat.
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We continue to increase the wavelength to 6.0p and then to 10.0u.
Figures 39 through 43 and figures 47 through 51 are the scattering
functions for perpendicular incident polarization for waveiengths of
6.0 and: 10.0u, respectively and given at thé same radii as in figures
23 through 2% and figures 31 through 35. The widening of the scat-

tering functions with increasing wavelength can be seen by comparing

figure 30, the cumulative probabi#lity function for A = 0.5u with

figure 46, the cumulative probability function for A = 6.0u and fig~

ure 54, the cumulative probability function for A = ﬁ0.0u. For
example, in figﬁéé 30, the probability of scattering-‘thi-Gugh an angle
between 0° and 21° is 0.5, the same probability as obtained for the
scattering interval from 4° to 21° in figure 54. This dependence of
scattering angle on wavelength implies that fur~ a given particle size
distribution that multiple scattering will increase with .vdvelength,
i.e., the probability of scattering over a greater range of angles is
greater for large wavelength. Figures 44 and 45 are the .normalized
scattering functions at X = 6.0u while figures 52 and 53 are the
normalized scattering functions for x = 10.0u.

The extinction coefficient for Mie scattering for the cumuius cioud
distribution is given in table 1 for each wavelength under considera-
tion. The extinction coefficient for Mie scattering is given by [14]

-]

2
Syt (Mram) = 3= D5 (2n + 1) Re (a, + by) (322)
n=1

where the coefficients a, and bn are given by equations (256) and {257).

n
We can define the extinction efficiency factor by

°ext ()\ ,r',m)

— (323)

Qext(x’m) -
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Figure 27. Particle Scattering Function for A = 0.5u and X = 188.50,
Cumulus Cloud Distribution
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_ Table 1
EXTINCTION COEFFICIENTS FOR' THE CUMULUS CLOUD DISTRIBUTION

Au) | E:ext

0.5 1.657 x 107"
1.0 1.712 x 10™*
2.0 1.812 x 10~
4.0 2.179 x 1074
6.0 2.537 x 107"
8.0 2.303 x 107
10.0 1.865 x 10~

where r is the particle radius. Then by integrating over the size
distribution [24] we obtain the volume extinction cross section as

r

z

2
oxt (Aom) = .’. 2 Quyy, (fam) n(r) dr (324)

"

Since we are not considering complex indexes of refraction in this
study the extinction cross section is equal to the scattering cross
section. We also notice on comparing the extinction coefficients in
table 1 for cech wavelength that they are almost constant as a function
of wavelength.
3. PARTICLE SCATTERING FUNCTIONS FOR HAZE M DISTRIBUTION

We now consider the particle size distribation (figure 55)

—
8. 34LUYY
n(r) =5.33x10%re (325)
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which is typical of a Maritime Haze [24]. As before we normalize the

distribution

. plr) = %(,ﬁ (326)-

where again N = 100 Qéffi%lﬂi, and

and
p(r) = 533 r e-8-ouu/t (327)

The expected value is

0

j 533 2 e~8- 94w/l g4n

E[r] =
0
= 533 (8.944)76 r(6)
. = 0.1254 (328)
The mode radius is
Yy = 0.05u
The variance is
Var[r] = E[r2] - (E [r])2 (329)
with
E[r2] =f 533 13 8. 9uW/F gy
0
= 533 (8.944)78 (8}
= 0,07u2 (330)
and
Var[r] = 0.07 - (0.125)2

1]

0.05u2 (331)
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The standard deviation is then

oy = 4 Var[r] = 0.22u (332)

Comparing the mode radius with the expected value we can see that
partié1es with /fadii greater than the mode radius will again contribute
heavily to the normalized scattering function.

We can compare the ratios of the standard deviation to the expected
value for the Cumulus Cloud distribution and for the Haze M distribu-

tion. We have for the cumulus distribution

(o]
E[T(i]‘: 1—:—2—2—= 0.38 (333)

while for the Haze M distribution

g
EI%T g_%_ 1.76 (334)

from which ‘e can see that the relative spread is larger for the Haze
M distribution and we conclude that a wider range of pa-ticie sizes
will contribute to a greater extent for the Haze M model than for the
Cumulus model.

Figures 56 through 6C show the scattering functions for perpendicu-
lar polarization and A = 0.5y for individual particles of radius 0.09,
0.33, 0.73, 1.29, and 2.00u with size parameters of 1.06, 4.09, 9.12,
16.13, and 25.13, respectively. Here again we see an increase in for-
ward scattering with increasing size parameter. Figures 61 and 62 are
the normalized scattering functions for perpendicular and parallel
incident polarizations, respectively. In comparing figures 55 through
60 with figure 61 we can see that the larger particles contribute to
the normalized scattering function more than do the smaller particles.

The cumulative probability distribution is shown in figure 63.
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Comparing figﬁres 30 .and 63 we see that the scattering angles are
distributed over a siightly wider range for the Haze M model than for
the Cumulus model, i.e., the probability of scattering between the
angles 0° to 17° is 0.5 for Haze M while for Cumulds for the same
probability the interval is between. 0° and 4°. Thgrefore, for a given
wavelength and density we would evpect more multiple scattering for
Haze M than. for Cumulus.

As we increase the wavelength to 2.0u the particle scattering
functions increase significantly as shown in figures 64 through 68
which results in a fairly wide normalized scattering function as shown
in figures 69 and 70. The c:mulative probability function is shown. in
figure 71.

The particle scattering function continues to widen (figures 72

through 76) for X = 6.0u, with figure 72 showing an almost isotropic

scattering function for x = 0.09 and a radius of 0.09u. The normalized

scattering functions in figures 77 and 78 show this increase in width
as does the cumulative probability function in figure 79.

At a wavelength of 10.0u the normalized scattering function for
perpendicular incident polarization (figure 85) is almost isotropic
and the normalized scattering function for parallel incident polariza-
tion is almost equal in the forward and back directions with a null
at 90°. This type of scattering function is typical of Rayleigh scat-
tering, i.e., the particles in a Haze M distritution may just as well
be considered as Rayleigh scatterers for wavelengths greater than 10u.
It is only for thz larger particles, cf. figures 80 through 84, which
cccur with small probability, that we see any appreciable peakedness
in the forward dirertion. The cumulative probability function also

indicates the near isotropy at A = 10.0u. Here the probabitity of
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scattering through an angle between 0° and 71° is the same as that

For angles between 0° and 21° for the cumulus distribution and

A= i0.0u. One can see from figures 85 and 86 that the normalized
scattering function at A = 10.0u rese.dle scattering functions for
Rayleigh scattering. Figure 87 shows the almost uniform cumulative
prabability functions. Table 2 contains the extincticen coefficients
for the Haze M distribution as defined by equation (324). Wemote -
that the extinction coefficient decreases with an increase in w ve-
length, i.e., red is attenuated less thain the shorter wavelengths as

was first snown by Rayleigh.

Table 2
EXTINCTION COEFFICIENTS FOR THE HAZE M-DISTRIBUTION
A(n) 2iext
0.5 1.001 x 1076
1.0 9.083 x 1077
2.0 4.297 x 1077
4.0 1.222 x 1077
6.0 4.040 x 1078
8.0 1.677 x 1078
10.0 7.931 x 1979

4. DEPOLARIZATION BY A CLOUDY ATMOSPHERE AT 0.5, 4.0, and 10.0u

In this subsection we consider the propagation of an electromag-
netic wave through an utmosphere containing cumulus clouds. The photon
source will be pointed in the downward dircection (see figure 88) from
a fixed altitude of 13 km. We assume that the source is linearly

parallel polarized and that the source beamwidth s 2° x 2°. Thz
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altitude of the cloud bottom is 10 km while the altitude of the cloud
top is 11 km, We first assume that only Rayleigh scattering exists
above and below the cloud, then only Mie scattering, and finally we
assume that no scattering occurs outside the cloud. Inside ‘the cloud
we consider only Mie scattering. We determine the depolarization of
the linearly polarized wave at wavelengths of 0.5, 4.0, and 10.0u.

The ground 1is assumed to be a diffuse scatterer so that the incident
wave is completely depolarized, i.e., equal -parallel and perpendicular
components are scattered. We initially assume a ground albedo of 1.0,
i.e., all incident energy is scattered back into the atmosphere, then
we assume that nc ground scattering occurs. The source is placed at
an altitude of 13 km. Two isotropic detectors are placed:at altitudes
of 9 km (D1) and 13 km (D2) with D2 displaced horizontally by 0.3m
from the source.

In simulating the problem described above using the Monte Carlo
technique we use 5,000 and 10,000 histories. Experience gained in
running several problems has lead to the selection of 10 collisions
(see figure 109). Actually, as we can see from figure 109, at 6
collisions the received intensity has dropped by 3 orders of magnitude
and we could probably carry the number of collisions out to only 6
with acceptable results.

Fiqure 89 shows the assumed stratification for the atmosphere.

The optical depth increases linearly with altitude in steps as follows

10°5h 0 <h <10 km
t(h) = { 16°3h - 9.9 10 km <h <11 km (335)
6.1 x 1077h + 1.1 11 km < h < 500 km
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F ure 89. Atmospheric Stratification

The optical depth of the cloud is 1.0 as can be seen from figure 89.

Normally the atmosphere is stratified exponentially [15] but for small .
distances as we have assumed for this problem linear stratification is

a good assumption for the type of atmosphere selected. This basic
stratification will be scaled .up for simulation of greater densities.

As we have stated the polarization assumed for this problem is
parallel. This means‘that the electric field vector, accqrding to the
convention adopted in section III, is in the vertical plane tarough the
propagation vector and the vertical axis referred to the source. Figure
90 portrays our polarization convention. The source is iocated at the
origin. In this example a photon is being emitted from the source in
the direction (6,4), the electric field vector Ez is in a vertical
plane containing the pronagation vector E and the vertical axis.

Figure 91 shows the results of the Monte Carlo simulation for this
problem. The ordinate is the polarization factor and is defined as
I.- 1,

D=t (336)
IY‘ ¥ 19.
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Figure 90. Polarization Reference Plane for Emitted Intensity

where Ir and ;z are the perpendicular and paraliel intensity Components,
. respectively. The abscissa is the cosine of the polar angle for each
detector. Recall that the polar angle is measured from the line join-
ing the detector and the source with 0° toward the source and 180° away
from the source behind the detector. Therefore in figure 91 both detec-
tors are "Tooking" directly at the source when the polar cosine is
euqal to +1.0 and directly away when the polar cosine is -1.0. Detector
2 is only 0.3 meters from the source and the magnitude of the intensity
from all directions is such that the variance of the samples is less than
two orders of magnitude from the mean. Detector 1 is 4 kilometers from
. the source and due to the ncrrowness of the source beam (2° x 2°) the
variation of the intensity and therefore also of the polarization fac-
tor is large between values of the polar cosine equal to -0.7 and +C.7,
i.e., ihe data are meaningful only for forward scattering angles from

0° to 45° and for back scattering angles from 135° to 180°.
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In figure 92 we show tﬁe:depo]arﬁzation factor for the same problem
except at A = 0.5u. In comparing figures 91 and 92 we can see that for
detector 1 the depolarization is not quite as great as it is for detec-
tor 2 at 0.5u. The intensity scattered directly back from the cloud
and the ground to detector 2 remains depolarized at 0.5u and at 10.0u.

Figures 93 and 94 show the same data as shown in figure 92 except
expanded. Figure 93 gives the polarization factor for decector 1 for
polar angles from 0° to 2°, i.e., forward scattering through the cloud
and figure 94-gives the polarization factor for polar angles from 89°
to 91°, i.e., backscattering from the cloud.

Figure 91 shows that for detector 1 Tocated below the cloud (see
figure 68) that the forward scattered energy (prolar cosine equal to
+1.0) 1is only partially depolarized and a£ that point

D=:0.8 (337)
while for backscattering (polar cosine equal to -1.0) from the ground
with an albedo equal to 1.0 the wave is completely depolarized, i.e.,

I =1 (338)

r 2
or

D=0 {339)
This is as expected since we are assuming that the ground is a diffuse
scatterer and compietely depolarizes the incident wave.

For detector 2 we can see, if we ignore the small variations, that
the received intensity is almost completely depolarized for all direc-
tions. The cloud and ground are in the direction where the polar cosine
is equal to 0. For figure 91 and subsequent data the received intensity
is integrated over all azimuth angles, but the magnitude of the inten-
sity received from e¢ngles other than forward and backscatter can be

considered to be negligible; for example, for detector 2 the intensity
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received from an aziéﬁthal interval of 45° while pointing directly at-
the cloud is four orders of magnhitude greater than the intensity
received from an ihfénva].of 45° but pointed 180° from the cioud, i.e.,
in the positive vertical direction.

The data ;just presented in figures 91, 92, 93, and ¥4 include, as
pointed out, reflections from the ground as well as from the cloud. In
order to: determine the effgct of the ground on the depolarization of the
incident wave the ground was assumed to be highly absoroent and an albedo
of 0.001 was selected compared to an albado of 1.0 for the previous fig-
ures. Figures 95 and 96 show the results of this modification for 5,000
‘histories and A = 10.0u. In figure 95 we can see that the average,
depolarization factor for detector 1 is approximately 0.9 compared to
0.8 for forward scatter in figure 91. The approximate average polariza-
tion factor for detector 2 for intens{ty backscattered from the cloud
in figure 96 is approximately 0.7 while if ground reflections are
jncluded as in figure 91 the backscattered intensity is completely
depolarizéd. One can thercfore conclude that at A = 10.0y, for the prob-
Tem défired; the diffuse scattering ground will cause a major portion
of the dupolarization of the inciden? wave. Tt should be pointed out
that the data obtained for figures 95 and 96 was obtained while allowing
up to 10: photon collisions. A separate problem was run using 10,000
nistories while allowing only 1 collision; the scattered intensity was
not depolarized at all which agrees with theory. Therefore we can see
that for ~ fairly thin cloud with an optical depth of 1.0, depolariza-
tion due to multiple scattering is significant.

In pursuing this probiem further we determined the degree of
depolarization for thicker cumulus clouds at A = 0.5u and 4.0u. The

wavelength 4.0y was selected to coincide with the mode radius for the
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size distribution of the cumulus cloud {figure 22). The -optical depth
for A =-0.5u was selected to be 3.0 while at A = 4.0p we selectay 1 =
4.0. The values of the optical depth at 0.5y and 4.0y were Iitid

-according to the ratio of‘the individual extinction coefficie ™ whiéh

are
% (340)
Dot (0.54) © 3

The scaling in the .optical depth t follows from equations «:/3) and
(274) where we see that the volume sgattering functions a.e :proportional
to A2. Any differences n t due to frequency changé for a particular
size distribution must therefore be scaled according. to.i.:.e change in
-extinction coefficient., This scaling allows us to maintain the same
physical atmospheric model. Again we assume a.highly absorbent ground.
Figures 97 and 98 show the backscattered and forward scattered polariza-
tion: factors at A = 0.5u, respectively. Figures 99 «nd 100 show the
backscattered. and forward scattered polarization factors at A = 4.0y,
respectively. We can see that at A = 0.5u

D~ -0.65 (347)
while 7/t A = 4.0p

D ~ -0.45 (342)
We therefore conclude that for the cumulus cloud distribution that a
greater amount of depolarization occurs at » = 4.0u than at A = 0.5u.
This can be explained by woting that the scattering functions for
cumulus cloud distributions are not as highly peaked in the forward
and backward directions at larger wavelengths (figures 36 and 37) as

they are at the smaller wavelengths (figures 28 and 29). This change
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in scattering function results in a greater degree of multiple scat-
tering for longer wavelengths and thus causes a smaller polarization.

factor at that wavelength compared to that of 0.5u.

Tiie forward-scattered polarization factors at A = 0.5u and A = 4.0y
.are shown in figures 98 and 100 and we can see that the average value
for both wavelengihs is approximately

D= -0.6 (343)
and we therefore conclude that the forward scattered polarization is -
not as sensitive to frequency as is the backscattered intensity.

We continue to isolate the cause of depolarization by not allowing
either ground or Rayleigh scattering at A = 4.0u.. Figure 101 is the
polarization factor for-backscatter from the cloud; we note that now
D =~ -0.65 versus D = ~0.58 in figure 99'when we include Rayleigh scat-
tering. Figure 102 shows the polarization factor for forward scatter
from the cloud for no ground or Rayleigh scattering. Comparing figure
102 with figure 100 we note that at 0° D = -0.88 in figure 102 versus
D~ -0.68 in figure 100. We now conclude that Rayleigh scattering causes
an increase in depolarization. We should note that although we have:
eliminated Rayleigh scattering, we have replaced it with Mie scattering
particles outside the cloud taken from the cumulus distribution.

Now we completely eliminate any form of scattering outside the cloud.

Figure 103 shows the backscatter polarization factor from the cloud and

figure 104 the forward scatter polarization factor. On comparing fig-

i ures 101 and 102 with figures 103 and 104 we note that the change is
;! small,
d We now compare the polarization factors for no scattering outside
‘ the cloud at A = 0.5u and A = 4.0p. Figure 105 shows the backscatter
‘ ) polarization factor at A = J.5u and we note that at 90° D~ -0.78 versus
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Figure 103. Backscatter Polarization Factor for Cumulus Cloud
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D~ -0.65 at A = 4.0p in figure 101. rigure 106 shows the forward scat-

ter polarization factor at A = 0.5y and at 0° D = -0.8 versus D~ <0.78
at A = 4.0y in figure 102. We therefore conclude that the degree -of
depolarization is greater at A = 4.0u than-at A = 0.5 for a Cumulus
Cloud distribution. Ther percent&ge change in polarization. factor from
A =0.510 to A = 4.0u is approximately 9 percent for a cloud of medium
thickness (1 = 4.0).
5. DEPOLARIZATION BY A HAZY-CLOUDY ATMOSPAERE AT 0.866y

Consider now. the geometry shown in figure 107. Again as in the last
problem we have a source and two detectors. Here detector 1 i3 located
just 10 meters off the ground. The source and detector 2 are locatad
at an altitude of 5 km with detector 2 located 0.5 mater horizontally
from the source.” The source Leamwidth is 2° x 2° and emits photens at
A = 0.866u. The atmosphere is composed of ‘Haze M with &« cumulus cloud
between 1 km and 3 km from the ground. For this problem the ground
albedo is assumed to be 0.8.

Here we assumed that the atmosphere is exponentially stratified and

the optical depth is given by (see section V) [24]

- _ o=h/H (
x(h) = og (1 - e ) (344)
where

oM = 1.02 x 1076 for Haze M

9oc = 1.70 x 10”% for cumulus clouds

HM = 0.98 km for Haze M, and

HC = 2,00 km for cumulus clouds
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~ The -value HE»='2.001im-wa§'assumed while SoM* %0c° and Hy are measured
vaiues. [15].. Figure 108_%5 a b]ot of equation (344) for the geometry
éhown in fi;uyé'107. For this model the optical depth of the atmosphere
is Jf7. -Tﬁensfze~partic1e distributions for Cumulus Clouds and Haze M
are given by edbations’(311) and (325), respectively. We assume that
éayleigh scattering is negligiblé everywhere so that only Mie scatter-
ing occurs. Up to_three reflections from the ground were allowed.

In figure 109 we have shown the relative intensity at detector 1

as-.a function of the -number of collisions diring a single history for
10,000 histories. In the simulation we consider up to 10 collisions

and we can see trit the intensity becomes negligible for collisions

greater than, say, 5 collisions.

Figures 110 and 111 represent the depolarization factor as a func-
tion of the polar cosine where the polar anglie is defined as in sub-
section 4. From figure 110 we can see that for detector l_which is
located directly below the source and 10 meters above the ground (see
figure 107) the received intensity is only siightly depolakized when
"Tooking" directly at the source, i;e.,

D= -0.8 (345)
for polar cosine equa: to +1.0. On the other hand the intensity is
complietely depolarized for scattering from the ground at a polar
cosine of -1.0. Depolarizati.n 1ngréases gradually reaching a value
of zero at approximately 90° or polar cosine equal to 0.

For detector 2 which is located next to the source the received
intensity is almost completely depolarized, i.e., D 0. The problem

was then rerun with no ground reflections to influence the polarization
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factor. For this case *he backscattered intensity from the cloud at D2
was found to remain parallel polarized, i.e.,
i = -1 (346)
6. DEPOLARIZATION WITHIN A CUMULUS CLOUD AT 0.5 and 10.0u
Let us now investigate the problem of depolarization of a parallel
polarized wave when both the source and detectors. are within a cumulus
cloud (figure 112). The éumu]us cloud size distribution as given by
equation (311). Here again we will assume that the source emits photons
in a 2° x 2° beam which is pointed horizontally in line with two iso-
tropic detectors. The source and detectors are located at an altitude
of 10 km. The cloud extends from the ground up to s+ .altitude of 20 km
above which no scatterers exist. The ground albedo was selected to be
small (0.1) in order to simulate a highly absorbent ground. We again
aliowed up to three reflections from the ground. Detector D1 is 0.3
meters from the source while detector D2 is 1 km from the source. With
D1 we will measure the backscattered perpendicular and parallel polariza-
tion components while with D2 we will measﬁre the yerpendicular and
-parallel forward scattered comp.qsents. The optical thickness of the
cloud is assumed to be uniformly increasing with altitude as shown in
figure 113. This variation of optical depth with altitude can be

represented by equation

t(h) = 5 x 107% h (347)

Fiqure 114 shows the result at 10.0u; we can see that the back-

scattered intensity at detectur D1 is slightly more than half depolar-

jzed and we have

- = -0.4 (348)
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At detector D2 the received intensity is completely depolarized.

The compiete depolarization at D2 was later found to be caused by
. ground scatter. We can see that for D2 the polarization factor begins
to vary considerably for polar cosines less than 0.9 (%26°). Here,
' again, we Have:.allowed 10 collisions per history and the photon inten-
5ity is attenuated quite rapidly as it propagates toward D2 from the
source. Rayleigh scattering was not allowed for this problem.

Figure 115 shows the polarization factor for detector 1 for the
backscattered intensity at 10.0u. Notice that the polar angle covers
the interval from 177° to 180°, therefore for direct and quasi-direct
backscatter the intensity is not cdﬁp]etely depolarized and agrees with
the larger angle interval shown in figure 114.

Figuire 116 is an expanded version of figure 114 for detector 2 in
the interval from 0° to 2°; here one can see, if one neglects the small
statistical fluctuations, that the wave is completely depolarized.

To determine the degree of depolarization caused by ground reflec-
tions and scattering within the cloud, we eliminated all ground reflec-
tions and found that for v = 10.0 the received intensity was, for all
practical purposes, still parallel polarized, i.e., D = -1 for parallel
p51arization. We thus conciud~ that, for this specific prbblem, the

depolarization is caused by greund scatter.
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Figure 115. Backscatter Polarization Factor for Cumulus Cloud
at A = 10.0u and T = 10.0
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SECTION VI
DISCUSSION AND CONCZUSIONS

In this study we have set out to determine the effect of scattering
on waves propagating through ithe atmosphere. We have centered our atten-
tion in the infrared part of ‘the spectrum although we have compared our
results to A = 0.5u which 3 in the visible portion of the spectrum.

In section I, we presented a brief discussion 6f the various mech-
anisms which may -cause the depolarization of electromagnetic waves
including nonl{near effects. We stated that although polarization has
been used in extracting information concerning scattering tragets, prob-
lems in controlling the polarization state of an electromagnetic wave
are usually encounteved especially at the microwave frequencies. We
also pointed out that in separating the intensity scattered back from

miltiple targets the effects of multiple scattering must be taken into

7?5: \ account for dense media.

| 2 In sections II and IIl we derived the transfer equation for polar-
ized waves and showed how one might treat a polarized wave of arbitrary
polari. .tion. In sc=%ion II ve gave an indication on how we would
approach the modeling of scattering of polarized waves in the atmosphere.
In section III we derived the scattering matrixes for Mie and Rayleigh
scattering which we subsequently used in modeling the scattering pro-

cess in the atmosphere. A1l scattering particles in the atmosphere were

assumed to be either Rayleigh or Mie particles, Rayleigh particles
being those less than a wavelength in size while Mie particles being

spheres of arbitrary size.
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In section IV we presented the simula:fon model. We derived the
probability functions which characterize the path of a‘photon in the
atmosphere. We showed that through the Monte Carlo simulation of a
large number of photon histories we could obtain approximate numerical
results to the scattering of electromagnetic waves in the atmosphere
including the effects .of multiple scattering.

In secticn V we obtained some results for specific problems. We
used the Fumuius Cloud and Haze M size distributions :to obtass the
volume scxttering functions for incident perpendicular and' paralle
polarization. Using the volume scattering functions we modeled c]pu&y
and hazy atmospheres for different optical depths and wavelengths. In
subsection 4 of section V we saw that under the assumptidn of a diffuse
scattering ground which caused complete depolarization, /i.e., equal
parallel and perpendicular components, ‘the backscattered intensity was
completely depolarized while the forward scattered intensity was only
slightly depolarized. We showed this to be true at wavelengths of 0.5,
4.0, and 10.0p. We then saw that if we considered only the intensity
scattered from the cloud that there was no depolarization for single
scattering and a cignificant amount of depolarization for multiple
scattering. By comparing the backscattered polarization factor at
wavelengths of 0.5 and 4.0u for the same physical cloud, we saw. that
the :depolarization was greater at 4.0u than at 0.5u. A comparison of
the volume scattering functions at these two frequencies (figure- '8
and 44) reveals that this result is to be expected since the fu «+ion
width increases ‘with wavelength.

In subsection 5 of section V we modeled a Tow lyir,_ cumulus cloud
in a hazy atmosphere. The depolarization for this model is crmparable

to that discussed above. In addition we showed how the relative
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scattered intensity varies as a functiop d? collision nhumber. The
results shown in figure 109 compare favorably to those obtained by
Bruning and Lo [29] for multiple sca?tering of electromagnetic waves
b;' spheres. ‘ |

Thus, based on the results of this study we are Tead to the con-
clusion that théAdegree of depolarization of e]ectromagnetic waves by
scattering +n the atmosphere can be obtained through a Monte Carlo
simulation similar to the one dsed in this study. We have shown that
the polarization state of an electromagnetic wave could be used to
discriminate between a diffuse scattering ground and a cloud or haze
if the cloud or haze is not "too dense." By "tco dense" we mean -
optical distances of approximately 3.0 per km or greater, i.e., it
appears that *hese 3 collisions per kilometer are sufficient to cause

significant depolarization of the incident wave for the wavelengths

considered here.

Much work reinains to be accomplished in:order t~ fully characterize
the scattering phenomena in the atmosphere. Measurements of polariza-
tion factors at various frequencies under controlled conditions must
be made to verify the results presented in this paper. The value of
a computer simulation lies in the ability in obtaining accurate results
under prescribed conditions. Once a simulation model provides accurate
results the economic benefits through the reduction of the required

experimental measurements are obvious.
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APPENDIX
DERIVATION OF THE TRANSFORMATION MATRIX

The purpose of this appendix is to derive the transformation matrixes
of F and‘?l ‘Here, we will use the same notation used by Van De Hulst in
his: excellent book [14].

Let the transformation matrix F be defined by

-t
3

Where (I, Q, U, V) are the scattered Stokes parameters, and (IO’ Q>
UO’ VO) are the incident Stokes parameters.

In general the scattered electric field components are given by

2 2 3 2
s/ = i (2)
Eﬂ A‘f Al E

E:) into (ES

where the Ai constitute a transformation matrix of (E 0

1
2”
2)

The Stokes parameters are defined by

_ * % )
1= E E +EE
Q= E £ -E E
- 252 Frr
3
e [ )
U= E E +E E,
. * k%
V= 1(52 E. - £, Er)J
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‘Using (2) we can find each term of {3) as- follows:

_ i i * * 1\
T=(n, By + A ELL(R; £y + A, E))
i i i * 4
A B A A,,.) (Au By + A Er) -
i .i¥
= {Iao]2 + 1a2) €l €]
- + ( 1 v

1 %* i i%
% + (A2 A3 + A1 A“ Ez Er
g T
- _|1Agl% + [A 12 X |A, 2 + IAqlf_+ [A,[% + |A,]2
; = 3 7 %
! 2 e 2 N
: A2 + [R3]2 5 se
! - (3
j 2 e "
L IhP*I%P+1MP+I%P+IMP+IMP
‘ * 2 ? 2
s
) |A,12 + |A,|2 i
‘ 2 ror
‘ * * w ok
! [A3 Ayt A Ay Ay By 4R A
: * 2 t—

* * * *
LS At A A AR A, pi* g
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3 * 2
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+

* * * *
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where the last two terms witivin each bracket were added and subtracted.

We can ncw write

—
|

=12 [IA12 + [A12 + [ ]2 + INDEE

B 3
y - 2. 2
P Y2 | (A 12 A2 - (A2 + (a1 [E
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+ ! Ay + A A+ 2 M3 7 My Ny ‘[ L E;, Ep
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or {cf.

K2)
S

~

—t
u

]
172 (12 + (A2 4 [A ]2 + l“\u'“?‘] Iy

F1/2 [+ 812+ (B2 - [ag]2 + (A1) g
L @
B * * * * ]U
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[ * * * *
S 12 [ A AR A A= ]
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Using the same procedure for Q. U, and V, we obta?n

- )
=12 |- [A12 + |A,]2 + [A,]2 - |A,,|2]10

-
12 (1812 % 1812 - [Rg]2 - [A,]2] g
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We' now make the following definitions

for 3=1, 2, 3, 4 and.k =

through (7) results in

|A‘ )

* * .
Y,

+ 3, 4, Substituting (8) into (4)
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~ MQ s Ml ’ Sil’ = DQI
F= (10) |
22ys 28315 b1 + Szys - Dy + Dy ¢

2yys 20315 Dy; + Dyys Sy, - Sy

Equations (9) and (10) are the most general transformations. For
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spherical particles A; = A, = 0; then (9) and (10) simplify to

3 ,
! V2 (Mo M), vz(-Moem) 0, 0
!
: 2 (- M, +HM,}), 1/2 M, +M,),0 , 0
j VR ) v () (1)
: o, 0 5 S, - Dy
i 0, 0 5Dy Sy r
. and ’ y
£
i MZ’O’O 9 O
| ~ [0,M,0 , 0 ,
; F= {12)
% 0 ’ 0 y 521’ - DZI
0,0,Dm, ‘321./
) Equations (11) and (12) are the desired transformation matrixes.
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