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ABSTRACT

One of the problems that has been of concern for a number of years is.
the following: Suppose that there exists a series system of m exponen-
tially lived components and we ask that the system be qualified for service
by demonstrating a reliability that equals, or exceeds, a specified value
1 - a, with a confidence level at least 1 -y (Here o and Yy are
small). This paper addresses the question of how this can be demonstrated

using only data on the reliability of the components, where the reliability

design goals for each component must be apportioned, as well as the confidence

levels at which the design goals must be met in order to satisfy the overall
system reliability requirement. Another question that is addressed is the
calculation of the probability that the system reliability exceeds its goal.
The purpose of the paper is to make a comparison between competing theories

for the above situation when the components have exponential life lengths.
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1.0 INTRODUCTION

One of the problems that has been of concern for a number of years
is the following: Suppose we have a series system of m exponentially
lived components and we ask that the system be qualified for service by
demonstrating a reliability that equals, or exceeds, a specified value
1 - a, with a confidence level at least 1 -y (Here o and y are
small.). How can this demonstration be accomplished using only data on

the reliability of the components? Since for all t >0
m
R(t) = JI R ()
i=1

where

Ri(t) =e Zelic for some Ai >0 ,
is the equation for the system reliability in terms of the reliability of
the components, the question becomes that of apportioning the reliability
design goals for each component, as well as the confidence levels at which
the design goals must be met, in order to satisfy the overall system
reliability requirement. This particular problem has been around in this

form for at least twenty-five years (since the days of the V1). See [2].

Another problem, which is related to the one preceeding, arises at a

somewhat later time during system development. If we have estimates R

i
based on the performance data of the 1th component such that for a fixed

t > 0

PR (t) > Ri(t)) = 1~ a, 1=1,e00m




then with what confidence, i.e., ag what function of the confidence levels

a can we say that

i’

m m
pIIT & (e) > IT R (&)
i=1 i=1
That is, we ask what is the probability that the system reliability exceeds

its goal?

An additional complication which arises is that the number of failures
of each component tested is usually quite small. This is endemic since a
large number of failures would not be tolerated during a short test period,
for if it were to occur, that component would be redesigned. Furthermore,
lengthy testing in realistically simulated usage for highly specialized and
complex systems is just too expensive. An archtypical example of this type

of situation is the components for the Saturm missile system.

For over a decade there have been '"solutions" presented to this prollem
in terms of approximate distr:butions for the true confidence level.
However, none of them have been completely accepted because of thelr
requiring either extensive tables or much computation for their {mplementa-
tion, But in addition, even if this were not the case, there would be the
nagging uncertainty, since the exact solutions are unknown, asx to how good

the approximation really is.

One suggestion that has arisen in this partial vacuum has been the
Ravesian method of obtaining confidence {ntervals wvhich postulates that the

cadlure rates L dTe Tandoe varTodties L, sm oot oLrLce Catr,t 0l




Such an assumption does yield an exact (Bayesian) confidence level, but
whether or not such a model is appropriate for all situations (or even any)
is a matter of some controversy. However, this procedure, which necessar-
ily assumes prior information summarized in a particular way, often may
yield tighter confidence bounds than those obtained as the inverse of a
statistical test (see [14]). Another concept utilizes a fiducial interpre-
tation of confidence bounds (see [4]). The catch is whether such

restrictive assumptions apply to the case at hand.

The applicability of the asymptotic distributions of certain statistics
(such as the maximum likelihood estimates or the log-likelihood ratio) to
this problem has been recently extended both by broadening the class of
structure functions and the type of data on performance which can be

considered. This was accomplished in a series of papers.

Approximate confidence intervals for the reliability of any system
(or structure) which can be represented by a monotone Boolean function of
Bernoulli variates were first obtained using the asymptotic distribution
of the likelihood ratio in [11]. 1In this study component failure data were
the outcomes of a number of Bernoulli trials of the success or nonsuccess
of the component. Later similar asymptotic results were obtained for all
coherent systems under the assumption that the components were exponen-
tially lived and failure data were available for each component (seel[9]).
Both of these papers were extensions of the results of Madansky [7] for
seriés, parallel and series-parallel systems with binomial data on the
reliability of each component and the use of the asymptotic distribution
of the log-likelihood ratio to compute the confidence bounds. Also, these

papers depended upon the precise definition of coherent systenm, plven, e.p.,
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in [3], and the theory of confidence regions involving constraints presented
in [8). A comparison between the results of [11] and the use of asymptotic
normality of maximum likelihood estimates was accomplished in [10] for the
case of vinomial data on the components' reliability., What we now under-
take is to make a comparison between competing theories for the situation

when the components have exponential life lengths.

Recent publications of Sarkar [13] and Lieberman and Koss [6] give
solutions to the problem of exact confidence bounds for series systems
which have independent exponentially distributed component lives., The
latter method appears to be not only elegant but the equal in computational
simplicity to any method proposed hithertofore and superior in many cases
because of its high utilization of the data and its consequent precision
of the resulting coni{idence interval. We shall include this method K a

suitable generalization to arbitrarv svsitems, {n our comparisons.

g



2.0 THE ASYMPTOTIC RESULTS

Suppose we have a coherent structure function ¢ of order m from
which we obtain a system with components which have independent exponen-
tially distributed lines Tl,-°-, Tm. The reliability of the system is,
at any time t > 0,

(2.1) RQ(t) = EQ?({TI > t},-"',{Tm >t)])

1 m “A bt ley,
; i i y,t
s \ @(yl.cun.ym) ll (l-e ) e 1 ‘

0 i 0 i=1

]

y

where {n} 1is the indicator of the relation n being one {f true and

zero otherwise, and )\1 is the failure rate of Ti'

In certain cases when we consider the reliability only at a fixed
time, it may be preferable to consider Equation (2.1), which i{s an expec-
tation involving exponential component 1ife lengths, as some function,
say ho(l). of the vector of component failure rates ) = (\l.“".l-)

th

with Al the failure rate of the | component .

Those asymptotic procedures which have been proposed depend upon the
sample size for data on each component being large and thus, for proper
usage, required a determination of when the sample sizes are large enough

for the asymptotic result to be applied. Assuming the condition

S
(2.2) A
-1 ™

P

vhere n‘ s the number of fallurea vbeicrved for the t"‘ component

during testing, wve have the folluwing tvo well-known resulte:
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If ) denotes the vector of maximum likelihood estimates of A,
then asymptotically, in law, we have

h(A)-h()) "
(2.3) ¥ v n (0,1)

If 7(8) 1is the vector solution of the maximization of the log-
likelihood subject to the restraint 1n h()) = § and we define
§

W) =01, A@) = [ xdiieo

o

then asymptotically, in law,
~-1 2
(2.4) =2A(H "[h(M)]) ~ Xy e

It follows from Wilks' theorem (see [15] p. 419), that (2.3 is

equivalent with (2.4) under assumption (2.2) because

2
(2.5) -2 () o [M]
EROF
A question of practical interst is whether either one converges rapidly
enough to be usable for the sample sizes which are available. To explore
sufficient conditions for convergence requires not only some mathematical
analysis but some Monte Carlo simulation as well. We also note that both
of the proceeding results are stated for a fixed time which is omitted

from the notation. Presumably the conditions for convergence could be

altered by the choice of a different time constant.



3.0 SYSTEM FAILURES GENERATED FROM COMPONENT FAILURE DATA

Suppose we have n, > 1 independent observations of T say

i i*

(3.1) .t for i = 1,s+*m .

ti1°%120° "o %4q

i

We wish to use this data on the components to "simulate" the systems
behavior and either to construct an estimate of the structural reliability
R as a function of time t or to estimate the reliability h at a fixed
time. To do so we utilize a straightforward extension of the procedure

given by Lieberman and Ross for series systems in [6].

Take the first observation t11 for i = 1,+++ m from each sample

and let
(3.2) X, = max {t: o( t1p > T ettt ty > T ) =1}

be the longest time the system lives with the specified life lengths for
each component. We ma’ write this more conveniently. Let Pl,--',kr denote
the r minimal paths of the structure ¢. Then for components with random
life lengths T1,°-°.Tm, it is known that we can write (see [3]) the
system life as

r

(3.3) X = r(Tl,---,Tm) = max min T

j=1 1ch A

and

R(t) = P[T(Tl,---,Tm) >t] fort>0 .



Thus in terms of system life and the observations t for i = 1,***.m

il

we may rewrite (3.2) as

r
Xy = max min ¢t

3=l 1eP 1

On the basis of the data on the components a system failure x, has been

generated which clearly has the survival distribution R.

We now generate for { = 1l,+++.m

“1.2 11 =%
@ .
81 (
b "X ift, > x,
and for § > 2
ti.j+1 if ti.l-—-'l andjf_ni-l
L@
1,9
ti.J if t1’1>x1 am!j:ni .

We have for i=1,***.m a new sample of mutually independent observationms,

each with the same distribution as T name ly

1.
(2) 2 ... .
e WO I L
,n
2
where ni(_z) is defined by
‘ni-l if t11 <%y
2 .



We proceed to utilize this data to obtain

r
x, = max min tu:
j=1 tu ®

which again has survival distribution R. Let

(2) (2)
tl.Z if tl.l < xz
3) _
i (2) ()
S0 X2 1%
and for j§ > 2
(2) (2) (2) _
ti.jﬂ if ‘1.11"2 andj:nl 1
t(3) =
1.3
(2) (2) (2)
tt.j if ti.l > % and § < n,
Combining the equations, we find explicitly that
t1.3 if ti.l < Xy ‘1.2 < ‘2
s ] 617 % » G0 +5
t =
0 |
%2 % e 158 » a5

B 1" B % My 2% R R

These cases correspond, respectively, to the situation when after

two system simulator trials the 1th component had failed twice, had not
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failed the first time but did fail the second, had failed the first time

but not the second and lastly had not failed either time.

We now define the induction step: Given k > 1 and a set of data

L () (k) a(®)

1,1'.'.‘t1,n1(k) for { = 1,***,m where

> 1, we set

(k)1
2,1

»

x |
= max min t
‘k j=1 1€Pj !

and generate a new set of data for k + 1 by

(k+1) _ (k) (k) (k) _ (k)
1.1 ke 2”? (‘1,1 - 4,2 Xk) 6,10 %
and for j§ = 2,"’.n§k*1) where nfk+1) = nik) - tfk; > X
(k+1) (k) (k) (k) (k)
‘1,9 " i,50 * (ti.j g ti.j+l) B %

We begin the induction by setting

=t i=1,"",m

P PR

Thus we calculate from the data a sample, label it, X,,,se¢s,x
11 l,k1
where each X 4 is independent with survival distribution k and
»

kl = max :j: min(nij),ngj),'“.n:‘j)) = 0:

and we note that



1)<

m
N =
m"(“l,---,nm) Sk = 2 n, -m+1

Thus as an unbiased estimate of R(t) consider

k,

1 .
(3.4) Ry(e) = == 3t <x,)
1 ky 4=1 1j
However, the sample values x

depend upon the first

see. X

1,1° 1,k,
arrangement of the data (ti 107ty ) for i =1,""",m. There are
m * oy
all together - (n,!) possible permutations of these sample values.
P i

i=1
Since each arrangement of the values is equally likely, in order to

utilize more of the information available in the sample we consider the
estimate obtained by averaging over all of these equally likely

permutations, namely
1 &~
(3.5) U(t) = = N R,(t) for t >0

where j = 1,'"' p denotes one indexing of the p permutations and the

resulting estimate of R(t) defined similarly to E&(t).

As a matter of practical interest, this estimate cannot be usable
unless the number of failures n, for i = 1,***,m are all rather small.
Fortunately for the applications intended in the estimation of high

reliability, this is usually the case.
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4.0 THE DISTRIBUTION OF THE SIMULATED SAMPLE SIZE

We now wish to evaluate the probability of a given subset of m
components having failed by the time the system has failed. Let
AC{1,2,***,m} be a set of indices. The probability that exactly this
set of components indexed by A will be failed when the system fails is

given by

r
(4.1) fQ(A) = Plmax min T, < Xl
]

3=1 icP A i-

where X 1is the system life defined in Equation (3.3). To see this note
that all, and only, the components indexed by A must have failed and
these failures must have effected the failure of each minimal path, i.e.,

min T, <min T

ieP A T ieP
h| h|

i

The reverse inequality is always true, and a moment's reflection verifies

(4.1).

This discrete distribution on the set of subsets of {1,2,***,m} is
rather complicated to express in general. We now consider the special
case of a series system.

In the case of a series system there is only one minimal path, namely

m
the entire set of components. It then follows that X = min Ti' Elemen-
i-1

tary calculation shows that f(A) = 0 unless A equals a singleton set,

in which case
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(g

£({j})) =Plmin T, > T
L=1 1=

=A,t

wof =L A, t
T

e}

where I  indicates the summation from i = 1,"*',m with 1 # j,

]

(4.2) £(4D = 2= p, for §=1,"".m
24

—

Thus for a series system we have a multinomial probability distribution

that any one of the m components will fail and be the one causing system

falilure, The probability that the jth component will fail is pj for

j=1,e0e,m as given in (4.2).

We recall that if the probability of success is p for each trial,

then the probability that the ~th guccess occurs at trial number r + k

is given by the negative Binomial distribution

(4.3) (M Yeta-mE k= 0,120,

This is the probability that exactly k failures preceed the rth success.,

Consider now the case for m = 2 as treated in [6].

Let P be the probability of the occurrence of event El and

P, = l-p1 be the probability of occurrence of event E2 (Here EllJE2 is

the sure event), Then the probability that the nISt occurrence of E1

nznd ﬁh trial is

or the occurrence of Ez occurs at the
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n, k-n n
o [k-1 1 1, k-1, 2 k-n
(4.’0) gz(k) (n -l)pl P2 + \n _l)pz Pl 2
1 2
where min (nl,nz) K s n + n, - 1

This formula agrees with that given in [6].

We now generalize to an arbitrary m. The probability that in (k-1)

trials E1 occurs kl times, EZ occurs k2 times, etc., is

k m
k-1)! A
&npi where N k, =k -1
m el 1 =1 !
n (k!
i=1
We specify that the nlSt occurrence of E1 occurs at k th trial, We

let k = n - 1 in the formula above and multiply by Pys the probability

that El occurs, to obtain

1y n, m k m
(k -1)! Pl[lpi ere. 'S & B - n
m 1 2 i 3 i 1
(nl-l)! nm (k)
i
2
Thus the probability that on the kth trial we have any one of the
events ''the njth occurrence of Ej for the first time but less than n,
occurrences of E1 for 1 ¢ j." |is
™
m (k-1): p kg
(4.5) gy (k) = N N r—(—n—{(—rnj Py
a] A “(n i’
m
where [] - I1 and
j 1=l
i1¢]

e |
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min (nl,"',n )

m ni-m+10

i A
~

| A
=[-8

Also

%.8) g o= eyl k)

=3

kizk’ kj-nj’ ki f_ m{-l for 1*5

with the convention that summing over the vacuous sct gives zero, We see

that A = unless k > n
jan a -

3

We would like to use this distribution to obtain information about
the size of the simulated system sample. We first consider the special
case of the system sample when m = 2, the density of which has been

previously given in Equation (4.4). Before we begin this study we set out

several identities which we will use subsequently.

We now quote two identities: Equations 26.5.26, 26.5 p.945, Reference

[1]. For integers 0 <a <n, and 0 < p < 1

3 n } m-a
(4.8) j}a (j)p q - Ip(a,n-u+1)
(4.9) 3 <n+j-1)nj_l( y
' EES A

where q =1 -~ p and Ip(n,m) is the Incomplete Beta function defined by

- _[(n+m) P n-1 m-1
(4.10) 1 (n,m) —L——r(n)r(m) Lx 1-)" ' .
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From this it is easily checked that
4, I + I (myn) =1
(4.11) p(n.m) q( )

We now prove

Lemna 1: For integers m,n > 0

+j-1\ n j

4.12 v (" =1 (n,

(4.12) ( )P q p(Be®)

Proof: It follows from (4.8) by setting a = 0 that

(4.13) 1= Ip(O,n+1) for any n > 0

Thus by setting a = 0 in (4.9) we realize that for 1 <m <n

m-1 n
AN - (a1 0y
e e e e

The last equality is from (4.11). We subtract the identity in (4.9), with

a =m, ‘rom both sides to obtain (4.12).]|

Corollary: For integers m > n > 0

m
- (k=1\ n k=-n
(4.14) }_ (n_1>p q = Ip(n,m-n+1)
k=n

Proof: In (4.12) make the change of index R = j + n and let m change

to --n+1.||

We now make use of these preliminary results to obtain theorem: The

distribution of Kz. the series system sample size for structures of order
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2t glven, for | - k - n o+ o= 1, by
$
(4.19) Gy(k) = > I (n ,k-n +1)
2 (\1 Py U

Here we use the convention from (4.13) that Ip(n,a) = 0 for integers

a1l +n, letting n, = ny +n,, the expected value is

2 n

(4.16) EK, = O

i
2 I (ni+l ,n.-ni)

{=1 Pi Py

Proof: From (4.4) we have that

k k n, j-n n, j-n

: = S SRR 5 T A Wi W s | (Y2 2

G = N gy(p) = N (,,, -1)P1 Pt D a-lP2 Py
1= =\ J=np V2

Now we apply Equation (4.14) to obtain (4.15). But also

nO-l n--l
8 AL ISy
EKy = 1 kgy(k) = N o 3 ( )pi (1-p)
k=1 =1 k=1 \"i

to which we also apply (4.14) to obtain (4.16).!]

We now obtain a generalization of this result for the case of a series
structure of order m. We express a certain probability which is given in
terms of the multinomial density as an integral over a certain set of the

birichlet density. In this regard, see Wilks [15], pp. 177-178.

Let Sm denote the simplex of dimension m defined by

m
Sm- (xlo“.'xm): Oixif_l f0r1=1,"',m, \: Y = 1
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Lemma 2: For all m=>2 and all § = 1,""".m

n,-1 n, -1 n,,,-
1 §-1 j+l " F{k,+o ¢k, . +n, +k *"4k n k
Aj(m) - l so e ‘\‘ : ) 1 -L'—————-—J°-'l——ﬁj——4 ''''' p’j llj pl‘
kl-O kj-l-o kj+1-° km- r(nj) §o1
-1 n -1 n_ .- n -1
- P(n ) L.. m-1 m Ve
/ / *m-1 (1 i T ) dxl dxm-l
HF(ni) T, (m)
where Tj(m) for j <m 1is the subset of the m - 1 dimensional simplex
Sm_1 whose m vertices are the points (pl,"',pm_l) ,*++,0) and
(61’1,“',61’“‘_1) for i=1,""",m ;-]]: but 1 # j. Here 61:] is the
Kronecker delta and Tm(m) =S 1 ;:1 Tj(m).

Proof: We shall give a proof by induction but in fact supply only the
induction step from m =3 to m =4, The general proof may be obtained
merely by writing out the expression for arbitrary m and following the

steps in the same order. We have proved in Lemma 1 that for m = 2,

My~ k2+n -1 k2 T(n,+n,) P} n,-1 n,-1
\ 1 - 12 1 ol 12
AL ( n,-1 )"1 (15p;) Faprg J * (0 dx .
k2=0 1 1 2 o

We now assume the truth of our assertion for m = 3, namely

nz -1n .1 F(k +n ) n k k3

e R0 K OF(n)k'k'pIPZPB

I(n,+n,+n,) Py 1--——---m ;"1 my-1 my-1
r(nl)r(nzmn)/ S N S U R

g P2

31
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We now undertake the case for m = 4

n,-1 n_-1 n, -1 F(k

) 2\ % 2tkstietny) By k) kg Kk,
A (4) = ) 2 py; Py P, P
1 k=ok=ok=or(n)“ 1 P2 P3Py
g k™t By U n k!
fm2 1

By altering the order of summation we obtain

n, k
m,-1 r 174 -lm,-1T
: i (n,+k, )PP, 2\ 3\ (k2+k3+k4+nl) ny+k, ky kg
Al(a) T e T 3 n:+k e ; (1'P2‘P3) Pz P3
4=0 (nl)k4.(p1+p4) 1 %4 kz-O k3—0 (n1+k4)k2.k3

Applying the identity given by A1(3) with ng =0y +k, Py = 1 - pp = P3»

we obtain
2*1
+p 1-
n,-1 T n) k 1774 P1*P,
4 (n,+n,+n 3tk ) P, P n,+k,-1 n,-1 n, -1
=S 12 4 ko d PRRE e T St
(n ) (n ) (n )k [ nl+k4 x.l. 2 l x2 1 x2
o P2 ¥
PP,
)
Make the change of variable Y, = EI:EZ s Yo = X resulting in
1- ny n,-1
q2y1 P Q; (n +k4 n, -1 n, -1 n3-l
dy < y ) v, [1-y (py+p,)-y,]
1 k=0 (k) ! (byyy 2 : e
pzyl ( ) ):

Using the identity for A1(2) in the angular brackets, we have

l1-p,y
471 n_4n_4n. -1 n,-1
< = o) L / t123(1-t)4dt
3O

T(n,) (1-p,y,)



-20-

Make the transformation from (yl,yz,t) into (xl,xz,x3) by
Pyt ty, t{1-y, (py+p,)-y,]
X, = e y Xo = - Xq = —
1 lp['y1 2 lpayl 3 lpﬂl
which has inverse
X P X
1 172
V= omm— Yy =T , t = xyhxyx
1 p1t+p4x1 2 p1t+-p4x1 17273

and Jacobian

2
J<y1,)'2 »t > plt
X X, x| 3
12723 (p1t+p4x1)

Substituting into the integral we obtain as the new integrand

n,-1
xnl—lan-lxn3—1(l-xl-xz-x3) 4
1 2 3

The original and transformed regions of integration can be pictured:
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*
Each edge € is transformed into the edge € for i = 4,°**,9

with €19€2963 being transformed into the origin (0,0,0). An elementary

calculation verifies this. It can be seen that the tetrahedron pictured

is T1(4) as claimed.

From (4.5) and (4.6) we have

] k
n n _ p v ;
G = 335 reotapr I
k-lj-ll\j i B
sk
By examining (4.6) we see that for fixed j the Aj K are disjoint
b
for different k. As a consequence we define
n m
X{,n = U Aj'k' (kl’"'"‘n): 2 kj <n, kj = nj’ kif_ni-l for i # j
k=1 L §
and then we write
“! r‘( +"‘+k_+‘ﬂ+"'k) k. n
Gm(n) = Z l kl T (n )‘} ]ik ';- i Hj Pzinj .
1%l 4.9 x ol e

If we alter our notation to indicate explicitly the dependence upon

parameters, in accord with precedence, we define for any TCZSm
m-1 n -1 n_-1
L] --——r‘in—.L . 1 - - - m ..
Lp(ay,cecomy) = 5 Il «a 1) 9%rdny

Then in this notation we have
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Aj(n) = ITj(-)(nl,-'-,nn) .

We may now check that we have a bona fide distribution function since

m
G.(n.-m*l) N jél ITj(n)(nl"“'nm) i IUTj(n)(nl‘."'nn) -1 .

since UT,(m) = Sn_1 and by the corresponding property of the Dirjchlet

3

distribution we have unity.

We now evaluate the expected sample size

n.-m+l n.-mtl m = p“ "
* ik S : |
EK- = z ka-(k) = z z z r(n )H (k ) nj Py .
R=1 k=l  j=1 A

3k

By comparison with Lemma 2, we see after rearranging summations,

+1’ooo.n') p

m n
o= Y g

o By Ty 1Rty

The above result, while interesting, has the disadvantage of not being
directly computable since tables of the Dirichelet distribution are not
available like those of the Incomplete Beta function. However, an

approximation can be found.

P m
-——.i—— \ =
Define Pij l'pj for 1 # j and note & p1j 1. Then

”
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- k-n . (kn,)!
5

“1n g0 = D (“j 1)J (1-p,) 2 W) 91 Py
j=1 Ay on i=j

is another formula for the density. In this form we see the second
summation is unity for k sufficiently small. Thus we have an approxima-

tion and upper bound.

m j k=-n
g, (K < > (n 1) P (l-pj) J minn <R<n.=-m+1
- b

=1 .

and proceeding exactly as in the case m = 2 we find

n
X o< 1 (a4, n.-m42-n) .

m
ja1 Py Py 3
We now examine the accuracy of this approximation for the case m = 3. Let

3 n k-n
. ; k-1 , P 3
84(k) j}: (n -1)"3 (-py)  7H

1 \0y ok

where the definition of H may be inferred from Equation (4.17) above.

ik
We shall calculate Hl K only and obtain the others by symmetry. Assume
’
that k > n, then by definition
(k-n,)! k s JF
z e 2 %3 z i _k-n -]
F;'.E3' P21P3 *© j le"n
j'Vk

where u, = min (n2 -1, k - nl). v, = max (k - n, - ng+ 1,0), and we

k

note v, < uk for n, <k<n +n, +n,- 2. Since M = k - D, ve have
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lrnl k-nl
-~ {kn k-n.-] < k-n k-n,-}
_ N 174 N 1
B x 2 ( ] >p21931 Z ( j )P21P31
I=v j=u_+1
k K

Using the identity (4.8) we can write

. =B = Al D S +1, k-n, -
Hl,k Ip21(vk) k nl Vk ) P21(uk [ k nl uk)

Using the symetry of the Incomplete Beta function and the notation

i+ = max (x,0) allows us to obtain

H = I «k -0 -

+
+ 17, % I
Lk " “py, ) “3)

+
n (k-=n, -n,+1) , n -1
3 P31 ( 1 2 2) .

where we recall the Equation (4.13). Thus by symmetry we see that

H =1 1if k < min In. -n

e - 1: for i#jl .

i
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5.0 THE LIKELIHOOD RATIO AND THE SERIEKS SYSTIM
For any coherent structure ¢ with assoclated roliability function
h, there exists a series system, the relfability of vhich bounds the

system reliability h from below, {.e,,

m
(5.1) h(}) > exp ={ ¥ w
where wj is a known weighting factor determined from h (or %) for ll.

Because of this fact, we will in this section consider only the case
gn h()) = -ijkj and obtain a lower confidence bound. We think thia {s

the most important case.

We will follow the general results which have been presented in an
earlier publication (9]. However, as a convenience, we reparametrize by
imposing the restriction in the form that the fn h(A) {s constant, and

equate

i)
ax
3

[L*(X) - 6 ¢an h(A)]} =0 .

Thus we obtain, instead of the general equation (1.3), as given in [9]).

n
(5.2) 71 - t, = -bu
|

where t, 1is the total list time for the jth component and n, 1is the

] 3

total number of failures
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Thus in this particular case it is unnecessary to use the general
contractive map theorems in order to calculate i(é) = (il(d),--°, m(6).

For this special case we find, using the definition of A given in [9]

m T T
}: s [l - 2 + Zn( 2 )]
=1 3 Tj § Tj 8

where Tj =t,/w, for j =1,+++,m. In accord with finding only a lower

33

confidence bound, we want to solve for x > 0 such that

A(S)

(5.3) Ax) = -3 xﬁ(l) ,

where x:(l) is the 100yth percentile of the Chi-square distribution with

one degree of freedom. Call the solution of (5.3) the value 6:. Then

n

m

h[k(6+)| = exp{ - 5_ 1+
Y j=1 t,-8
J Yy

is an (approximate) lower bound for h(}) of level l%l, rather than of

level y, since we are obtaining only a one-sided confidence bound.

+
We now exhibit a practical method for the determination of & . For

a given y, 0 <y <1 there exists an x > 0 such that f(x) = 0 where

£(x) = -AG) - % xi(l)
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(5.4)

m h
-\ m 1 _
fa] H"7X

The solution of f(x) = 0 must be

m
£'(x) = x O

vhenever 0 < x < min (11,"',Tm) = T(l)’ which 1s a more stringent

conditfon than that given in (9].

n
f'"(x) = l 8y
i=1

for 0 < x < t(l) 0

Thus we see that both f',f",

for 0 <« x < 1

(N’

fteration procedure, namely

f(x )

X = X L el

k 1 f(xk_l

+
will converge to the value dy.

We now state the
Theorem Let the data (ti’mi)

represents the total test time for the

represents the number of failures of that component during that time.

is the multiplicity of the ith

|

1, = tilwi' then

{

{=1 ('ri-x)2

(1;%)°

' )

unique since

s
i > 0

But note that

T,+X
i > 0

These are sufficient conditions that the Newton

k= 1,2,000’

i1 =1,+++,m be given, where

ith component and n, > 1,

i

component in any structure and

which are continuous, do not vanish

S

1f



-28-
m s %
exp l- :_ ____.;L_1: for 0 <t < 1(1)/6
j=1 (1,/t)-8 u
4 Y
(5.5)
+
Q for t > 1(1)/6Y

is a lower confidence bound of level 1%13 where 0 <y <1 |{is
preselected, for the system reliability for all time ¢t > 0. The quantity
6: is the solution of the equation f(x) = 0 and f was defined in

equation (5.4).

Proof. We have only to remark that the selection of a time scale in
terms of mission length was arbitrary so that the bound derived previously

can be used for the reliability at all times.]|]
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6.0 A NUMERICAL ILLUSTRATION

As a numerical 1llustration of the behavior of the previovualy out lined
procedure, we shall study its performance on a specifiod serice system with
ten components, Take m = 10. We shall assume that " =1l for
j = 1,++¢,10. Thus the true reliability of the swystem fu, by o"°' for
t >0, We also assume that nj - iy = ] and thus 1’ - t’ fur

j = l’coo’m.

We will now generate 10 exponential variates, !l'..."-’ cach with

unit mean and solve the equation f(x) = 0 where

m t t
i 1
6.1) £(x) = [ti-x - m(t -x)] iy

{=1 {

and CY is a constant determined by the nomiaal level of the confidence

bound,

We find that for y = .95, C 95 * 11.353. Call the solution of (6.1)

+
the value Gy. The lower bound for the reliability {s by (2.9)

(6.2) exp {-

L % -]

1 ) +
—— o for 0 <t - é t .
1=1 (t Je-6F v (1)
i Y

and the confidence level is 97.5.

Generating forty independent observations of an exponential varifate

with unit mean resulted in the following four samples:



(1) ) (3) %)
1.305 1.889 .2331 3.258
1.346 3.864 .8881 .1848
1.483 .7789 .04059 L7594

.2931 .4825 .8329 2.420

.2282 1.171 .1948 .8638

. 3489 .5642 1.332 .5307
1.342 .3525 2,105 .06695

L7171 .9037 1.144 .8239

.3397 .5590 1.203 .2452
1.126 . 5445 .07427 .2306

Solving (6.1) by machine program and calculating (6.2) for each set

of observations yielded the confidence bounds which are summarized visually

in Figure 1.
l.OF\\'\"" I —_—— & e 1
0.8 V. D
\A ’;\\ -
> \ :
S 0.6k \ ~
s \ e S N())
Eal . ~ . < -~ ;
| o0.4b W >~ Q) i
- & N = . . “e—
3 ‘\ ‘\(“)(1) -~ - !
0.2 N T S
b - W B =
A T O T T e Pt el wer e RO

.01 .02 .03 .04 .05 .06 .07 .08 .09 0.10

Figure 1. 97.5% lower confidence bounds on the reliability of a 10
component system based on independent samples.

(0) 1is the true reliability e-IOt for t >0

(1) 1is the confidence bound based on sample (i) for
i=1,2,3,4.
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As a further illustration of the stochastic behavior of this method,
we shall repeat the entire procedure two thousand times, but instead of
calculating the entire lower bound function we shall only compute (3.2)
at t = ,0l. Then we shall make a frequency histogram of the values of
the reliability bounds for the specified value t = ,01. The twenty
percentile points, successive differences being .05, of the empiric

distribution are:

Percentile Percentile Point
.05 0.106621
.10 0.297174
.15 0.417770
.20 0.492659
.25 0.552798
.30 0.596595
.35 0.632835
.40 0.665383
45 0.689521
.50 0.707729
.55 0.730936
.60 0.750021
.65 0.767430
.70 0.782541
.75 0.798792
.80 0.815686
.85 0.833291
.90 0.851064
.95 0.877483

1.00 0.940218

A graph of the empiric distribution is given in Figure 2. Note that
the true reliability of e-'1 = ,904837 slightly exceeded the nominal
97.5 percentile. In fact, the actual count was 1979 values less than

e-'l out of the 2,000 observations sampled. This was approximately the

99th percentile,
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Figure 2. Empiric distribution of the 97.5 percent lower confidence bound
using 2,000 observations when the true reliability is

e !« .90s.
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Thus we see the stated confidence level of 97.5 percent appears to be,
in this instance, slightly conservative. To check this we repeated this
entire experiment a second time and we observed 1,990 out of 2,000 observa-
tions of the reliability bound were less than e-°1, which increases our

suspicion of a slightly conservative tendency for the level of confidence

in this case.



The determination of s confidence bound using a procedure vhich is valtd
when & large number of life length observations have been made for each com-
ponent when, in fact, only one observation has been taken of each component
life length is about as far from the conditions of known validity as possible,

and it leaves the exact confidence level open to question.

As a comparison, we also construct the lower 97.52 confidence bound for
the system reliability of a 10 component series system, each component of
which has the same reliability using ten observations of each component life
length. The much improved result is presented in the graph of Figure 3. A
table of the values of the lower 97.57 confidence bound on the same system

reliability but with twenty observations on each component is given below:

True Lower

Time Reliability Confidence Bound
0 1.000 1.000
2 .819 .815
.4 .670 .663
.6 .549 .538
.8 449 .435
1.0 .368 .351
1.2 .301 .283
1.4 .247 .227
1.6 .202 .182
1.8 .165 .146
2.0 .135 .116

The improvement is obvious.

While such examples as these can never prove anything in general about
the adequacy of this approximation, they do not indicate that it cannot be
used, with suitable caution, in those cases where the exact distribution is

unknown.
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A lower 97.5% Confidence Bound on the Reliability

of a 10 Component Series System With 10 Observations
on Each Component.
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7.0 SOME PROBLEMS IN DETERMINING THE ASYMPTOTIC DISTRIBUTION

It is clear that for each fixed t, the stochastic variable U(t), as
defined in (3.5), is a U-statistic in the sense of Haeffding [5]. In a way
we are returning to a suggestion made by Joan Rosenblatt in [12] concerning
the use of a U-statistic to compute reliability bounds. However, we are now
combining such statistics with special properties of the exponentially
distributed component data and more recent results concerning the structure

function.

Clearly, U(t) 4is unbiased for R(t) for each t > 0. Moreover, U
is asymptotically a Gaussian Random element (in the appropriate Banach space),

since for every element V the inner product

K

= y 2 31 &
v(e)du(e) = - = Y = 5 v(x )
,[o P 5 K =1 ij

is asymptotically a normal random variable under mild conditions as p -+ =.

Let us consider the case where we have been given the vectors of failure

data as defined in (3.1). Call it 51. We can define an estimate

U*(t) -% SR

where the index j = 1,***,v is a number arbitrarily chosen and may be less
than p and thereby not cover all possible promulations of the elements in

each component of

5 o= (El.o.o’gm) -
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This less restrictive estimate U* 18 constructed by picking y such
permutations independently, from the p = ;1 (ni!) distinct permutations
which are possible, with identically unifoi;lchances.

Obtaining the estimate U* 18 computationally feasible for v of
moderate size, while the computation time necessary to obtain all p
permutations for U may not be realistic if the sample sizes ni, or the

system order m, are large. Of course U* {is unbiased, as in U. However,

we Indicate one other reason that U* may be preferable.

Consider the covariance of U. Since

1 ~ ~
EU(t)U(t+g) = Y] f; ERi(t)Rj(t+s)
i,j=1

we see that this computation reduces to

) L
ER (6)R (t+s8) = E =—=— S S {t Ht + 0
Rubeity rel B e i j>;1 CXpltE O <Xy

} .
But now not only do the sample sizes uj depend upon the particular jth

permutation chosen, but so do the actual system failure times x Thus

i
the evaluation would depend upon a functional relationship being determined
between these random variables and the index of the permutation enumeration.

Whether or not the substitution of U* for U will eliminate this

difficulty is not known at the present time, but it i1s under investigation.

As an illustration of the type of estimates that this method gives, we

exhibit the graphs in Figure 4 of two estimates of the system reliability of



Figure 4.

-38-
\
\"Ul(t)
\
\
it 4 R(t)
\ -
~ =31 - T e o~ - -
Uz(t) N .
. X
: !
N\
.\ .
: v
\ -
2 3
- \. _
: . o

L B e i [ ! ! t 1 ! 1 e % IR
2 3 .4 6 8 1.0 1.2 1.4 1.6

Two different reliability estimates U;(t) and Up(t), each
based on 96 permutations of three sets of sample data of sizes
2, 4 and 2, respectively, for each component, for the "2 out of
3" three component system with reliability given by R(t)

= e~2t(3-2e-t),
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a simple two-out-of-three system, each estimate based on the generation of
data from the independent exponential observations of the reliability of

each component. The data for these two estimates are as follows:

Observations Used in U1

Component 1 2.45413, 1,71585
Component 2 .49114, 1.52854, ,52064, 1.06873

Component 3 .31766, 2.13006

Observations Used 1in 02

Component 1 1.54401, .39385
Component 2 .13779, .89004, .07049, 1.62566

Component 3 .75851, .12614

All component data were machine generated with a true exponential
distribution with unit mean. The set of 96 possible permutations were
listed by the machine and each empirical distribution combined in the

manner indicated in the equations.

In conclusion, it is clear that this method certainly improves the
system reliability estimated with a small amount of data. That we cannot
yet determine the covariance in order to apply the asymptotic normal theory
and obtain confidence bounds is regrettable, but doubtless this defect will

be overcome soon,
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