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ABSTRACT 

One of the problems that has been of concern for a number of years Is • 

the following:     Suppose that  there exists  a series system of    m    exponen- 

tially lived components  and w ask  that  the  system be qualified for service 

by demonstrating a reliability that equals,  or exceeds, a specified value 

1 - a,    with a confidence  level at  least     1 - Y     (Here    a    and    y    are 

small).     This paper addresses  the question of how this can be demonstrated 

using only data on the reliability of the  components, where  the reliability 

design goals for each component must be apportioned, as well as the confidence 

levels at which the design goals must be met  in order to satisfy the overall 

system reliability requirement.     Another question that  is addressed is  the 

calculation of the probability that  the system reliability exceeds its goal. 

The purpose of the paper is to make a comparison between competing theories 

for the  above situation when the components have exponential  life lengths. 
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1.0     INTRODUCTION 

One of the problems that has been of concern for a number of years 

is the following: Suppose we have a series system of m exponentially 

lived components and we ask that the system be qualified for service by 

demonstrating a reliability that equals, or exceeds, a specified value 

1 - a, with a confidence level at least 1 - Y (Here a and y are 

small.). How can this demonstration be accomplished using only data on 

the  reliability of the components?    Since for all    t > 0 

m 
R(t) = n MO . 

i=i i 

where 

R (t) = e for some    X.  > 0    , 

is the equation for the system reliability in terms of the reliability of 

the components, the question becomes that of apportioning the reliability 

design goals for each component, as well as the confidence levels at which 

the design goals must be met, in order to satisfy the overall system 

reliability requirement. This particular problem has been around in this 

form for at least twenty-five years (since the days of the VI). See [2], 

Another problem, which is related to the one preceeding, arises at a 

somewhat later time during system development. If we have estimates R. 

t'Vi 
based on the performance data of the     i component such that for a fixed 

t    >    0 

P[R1(t) > Rj/t)]  * 1 - a. i = l,"«,m 
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then with what confidence,  i.e., as what  function of the confidence levels 

x, ,    can we say that 

m m 
n MOin KM 
i-l    * i=l    1 

That is, we  ask what is the probability that  the system reliability exceeds 

its goal? 

An additional complication which arises is that the number of failures 

of each component tested is usually quite small. This Is endemic since a 

large number of failures would not be tolerated during a short test period, 

for if it were to occur, that component would be redesigned. Furthermore, 

lengthy testing in realistically simulated usage for highly specialized end 

complex systems is Just too expensive. An archtyplcal example of chie type 

of situation is  the components  for the Saturn missile system. 

For over a decade there have been  "solutions" presented to this prollea 

in terms of  approximate dlstr:.butiont;  for the true ronfldence  level. 

However, none of  them have been completely accepted hfcnuHe of  their 

requiring either extensive tables or much  computation for their  iaplwaenta- 

tlon.    But  In addition, even If this were not   the cane,  there would be  the 

nagging uncertainty, since the exact solutions are unknown, a* tu how Rood 

the approximation really Is. 

One suggestion that has arUen In this partial vecuua has been the 

H.iveslan method of obtaining confidence  Interval« wttirh puntulate« t' 4t   ih« 

t'.iilure rate*      .     irt TAT.iir. :*:.»•',€*  •..•.-.  <--  .-   ;r.'f   i..tf,'. ,t:   ' ■. 
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in  [3], and the theory of confidence regions Involving constraints presented 

in  [8].    A comparison between the  results  of [11] and the use of asymptotic 

normality of maximum likelihood estimates was accomplished in [10] for the 

case of uinomial data    on the components'  reliability.    What we now under- 

take is  to make a comparison between competing theories for the situation 

when  the components  have exponential   life   lengths. 

Recent   publications of Sarkar [13] and  Lieberman and Ross   [6]  give 

solutions  to the problem of exact confidence bounds for series systems 

which have  Independent exponentially distributed component  lives.    The 

latter method appears  to be not only elegant but  the equal in computational 

simplicity to any method proposed hithertofore and superior in many cases 

because of  its high utilization of  the data and its consequent precision 

of the  resulting coruldence  interval.    We  shall   include this method,   a 

suitable generalization to arbitrary nvHtems,  in our comparisons. 
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2.0    THE ASYMPTOTIC RESULTS 

Suppose we have a coherent structure function «t of order m from 

which we obtain a system with components which have Independent exponen- 

tially distributed lines    T    •••, T .    The  reliability of the system is, 

at any time    t > 0, 

(2.1)    RA(t)  - E*({T1   >  t},."-,{T    >  t}) 
$ i m 

-V  Wj  ->«  r 
V     ....     V     *(y1.---.yin)   II   (1-e     i  )      V ^i 

y.-O y -0 i-1 

where     (TT)    is the  Indicator of  the  relation    n    being one If  true and 

zero otherwise, and    A,    Is the failure rate of    T.. 

In certain cases when we consider the reliability only at a fixed 

time.  It may be preferable to consider Equation  (2.1), which Is an expec- 

tation Involving exponential component  life  lengths, as Home function, 

say    h  (X),  of the vector of component   failure  rates    X  • (Xt,»»»«,A  ) 

with    X      the  failure  rate of the   i       component. 

Those asymptotic procedures which have been proposed depend upon Che 

•ample size  for data on each component being large and thus, for proper 

usage, required a determination of when the sample «ises are large enough 

for the asymptotic  result  to be applied.     AsHuming the condition 

(2.2) \    X 
1-1 nl 

where    n.     Is  the niaber •<(  fallurv» ubsrrved fur the    1        •.«punem 

during testing, we have the fulluwing (wo well-known r»«ul(»; 
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min T    >_ T 
i=i    i j 

a -¥it 
X.e    J dt     , 

J 

where    E      Indicates the summation from    i = l,*",m   with    i t i 

(4.2) f({j}) =~= Pi    for    j » l.-'-.m    . 

Thus  for a series system we have a multinomial probability distribution 

that any one of the    m    components will fail and be the one causing system 

failure.    The probability that the     j component will  fail  is    p.     for 

j ■ l,.««,m    as given in  (A.2). 

We recall that if the probability of success is    p    for each trial, 

then the probability that the     i-1-       success occurs at trial number    r + k 

is given by the negative Binomial distribution 

(4.3) 
\ k Va-P)1 

k = 0,1,2,- 

th This is the probability that exactly k failures preceed the r        success. 

Consider now the case for m = 2 as treated in [6]. 

Let p. be the probability of the occurrence of event E..  and 

p. ■ 1-p. be the probability of occurrence of event E« (Here E-UE« is 

the sure event). Then the probability that the  n1
St  occurrence of E. 

or the nd occurrence of    E»    occurs at the kth     trial Is 
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(4.4) g2(k)  -(n^)?!  P2 +(vl)P2Pl    2 

where mln  (n-.n.) 1 k < n    + n. - 1    . 

This  formula agrees with chat  given in  [6]. 

We now generalize  to an arbitrary    m.     The probability that  in     (k'l) 

trials     E.     occurs    k.     times,     £_     occurs    k-    times,  etc.,   is 

(k-1)!     A     ki . v    ,.        „      , 
   IIP. where    ^    k. » k - 1    . 

1,1 ii1 i~i    i 

n (k.): i-1 l-1 

i-i  1 

We specify that the     n st     occurrence of    E.    occurs at    k trial.     We 

let    k ■ n.  -  1    in the formula above and multiply by    p.,     the probability 

Chat    E,    occurs, to obtain 

/.    , v, n.   m     k m 

(n.-u: n (k,).' l 
1
       2    l 

Thus  the probability that on  the     k trial we have any one of the 

events  "the     n. occurrence of    E      for the first  time but  less  than    n. 

occurrences of    E1    for    i y j."    is 

(4.5) 

nl 
m (k-1):   P,  J „     k. 

J_(k) "   1    ^       7    n    v   ' H.  P2
i 

m 
where    FT   ■ 11and 

j      1-1 



_ mmv^^rmmmmm »»IPPHWWIWBUPW«^"'^^^"^^' 
»IWIIII   ii .liimwww»^^^^ 

•15- 

m 
min (n.,*'*  n )   < k <   ^   n.  - m + 1    . 

i m    —      —   "r     1 

Also 

(4.6)   A 
j.k 

(k 1,k2,,,*,km) :      ^    k^k,  k,-n  , kj 1 ni^l for ir'J 

with the convention that summing over the vacuous set gives zero.  We see 

that A^  =9    unless k > n, 
j.n - j 

We would like to use this distribution to obtain information about 

the size of the simulated system sample. We first consider the special 

case of the system sample when m = 2, the density of which has been 

previously given in Equation (4.4). Before we begin this study we set out 

several identities which we will use subsequently. 

We now quote two identities: Equations 26.5.26, 26.5 p.945, Referancr 

[l].  For integers 0 £ a £ n, and 0 £ p ^ 1 

(4.8) ! (ny<ra  = I (a.n-a+l) 
j=a J p 

(4.9) ^ ClW-v..-) 
j-a M 

where q » 1 - p and I (n,m) is the Incomplete Bwta function defined by 

(4.10) /_ -x _ r(n-hn)  fp n-l,. vin-l. 
>(n'm) ' r(n)r(m) J x  (1-x) * 
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2 U giv»n,  for    I  •  k •  n, + n2 -  1.    by 

(4.15) (;2(k) 1    I    (n..k-n.+l) 
1-1    pl    l        i 

itvra we ua«  the convention from  (4.13)   that    I   (n,a) ■ 0    for integers 

« '  1   •  n.     letting    n. ■ nj + n,,   the expected value is 

(4.16) 
2    n 

i-1 Pi    pi    1 1 

Proof:  From (4.4) we have that 

ü2(k) N g2(j) 
J-l 

Now we apply Equation (4.14)  to obtain  (4.15).     But also 

n.-l n.-l 

EK, 
2 /, \   n- k-n. 

1     kg (k) -   \    n       V     r  P/U-PJ      ' 
k-l      ^ 1=1    l   k*i   \ni/ i 1 

to which we also apply (4.14) to obtain (4.16). I | 

We now obtain a generalization of this result for the case of a series 

structvirn of order m.  We express a certain probability which is given in 

tem« of the multinomial density as an integral over a certain set of the 

Ulrichlet density.  In this regard, see Wilks [15], pp. 177-178. 

Let S  denote the simplex of dimension m defined by 
m 

m 

^xl,",,xm^:  0 1 xi 1 1  for i = 1. "'.m. V xf 1 * 
1 = 1 



r 
Lemina 2:    Kor all    m j*. 2    and all    ) •  1, •' * ,ra 

n,-l n.  ,-1 n..,-! n -1 "1/ "J-1—J.1 m     r^...+k     *n*k     *..<km]    n kl 

\ (m) ■    >      •••       x s       •••    J. SiH Pi    ' «i Pi 
J k^O k.^-O k^-O k -0 rCn.)")14!' '        J 

r(n.)    f . /" "r1 v1    vr1,, 

nr(ni) T (J i.l     1     ^C1") 

dx •••dx    , 1 m-1 

where    T  (m)     for j   < m    is  the subset  of the    m -  1     dimensional  simplex 

S    -    whose    m    vertices are the points     iPt,'",p    ,)   (O,'"^)  and 
m-l i m-i 

^4   i.,,,.<S.  m ,)     for    i = l.'-'.m - 1    but    i ^ j.    Here    5        is the 
1,1 i,m"i m-l ij 

Kronecker delta and    T (m) = S    .  -   U    !_, (m). 
m     m-i  , ,  1 

j=l 

Proof: We shall give a proof by induction but in fact supply only the 

induction step from o ■ 3 to m = 4. The general proof may be obtained 

merely by writing out the expression for arbitrary m and following the 

steps in the same order. We have proved in Lemma 1 that for m » 2, 

1      = k\0 \ n1-i  /
pi (1-pi)    = Ti^WT^ i   x      (1'x)      dx   ' 

We now assume the  truth of our assertion for    m = 3,    namely 

n2-l n3-l  r(k2+k3+ni)    ni ^ k^ 

k «0 k -0  1vn1;ic2.K3.    J.    /    j 

q2Xt 
r(n1+n2+n3) /«Pi    /* 1 m1-l m2-l m3-l 

" r(n1)r(n2)r(n3)   /        /      Pl   ^      X2      (1"VX2)  '    dX2dXl 
0 ^L 

Pl 
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k-n, k-n. 

'l.k 
v l^i] i k"nrJ      v  /k"ni\ J  

k'ni"j 

1    \   i   /P21P31 -        1     \   i   /P2lP31 
j"v j18",+1 

Using the identity  (4.8) we can write 

Hi   b " ^    (v. ,   k - n.  - v.  + 1) - I      (u    + 1,  k - n.  - uk) 
l,k       P21    k Ik P21    k IK 

Using the synmetry of  the  Incomplete  Beta function and the notation 

x    = max  (x.O)    allows  us  to obtain 

"l.k "  ^ '(k - "I " "3 + 1)+'  n3)   + Ip31 (
(k " nl - n2 + V*' n2)   " 1 

where we recall the Equation (4.13).    Thus by symmetry we see that 

H      - 1    if    k < min    n.  - ^ -  1:     for    i I1 j I     • 
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5.0    THE LIKELIHOOD RATIO AND THK SKRIKS SYSTt» 

For any coherent «truccurc    t   with «•«uclated r«ll«blllty funtiliMi 

h,    there exists a series system,  the reliebllUy of whlth bound» the 

system reliability    h    from below,   i.e.. 

(5.1) h(X)  > exp 
m 

J-l    J J 

where u. is a known weighting factor determined fron h (or i)  for k.. 

Because of this fact, we will in this section consider only the case 

£n h(X) - -Eu.A  and obtain a lower confidence bound. We think this Is 

the most Important case. 

We will follow the general results which have been presented In an 

earlier publication [9].  However, as a convenience, we reparamctrlce by 

imposing the restriction in the form that the ?n h(A)  Is constant, and 

equate 

~  [L*(X) - 6 An h(X)] - 0  . 

Thus we obtain, instead of the general equation (1.3), as given in (9J. 

(5.2) !i_tj=_6Wj 

where t,  is the total list time for the j   component and n.  is the 

total number of failures 
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(5.4) 
m 
N m 
- 1 
1-1 l T1-X 

- An 
(*) 

m 
- > m, 

T i h x'd) 

Th« solution of f(x) "0 must be unique since 

m   Sj 

f'Cx) - x V > 0 
i-1 (T^X)' 

whenever 0 < x «■ mln ^i»*'*»"! ) - T/INI which is  a more stringent 

condition than that given in [9]. But note that 

m 
fix)   -  ^  8i 

T.+X 
> 0 

i-1   (^-x) 

for 0 < x < T 
(1) ' 

Thu« we see that both f'.f", which are continuous, do not vanish 

for 0 < x < TQ«. These are sufficient conditions that the Newton 

Iteration procedure, namely 

x, ■ x 
k k-l " f'Cx^)   k=1.2,.... 

will converge to the value    6   . 

We now state  the 

Theorem    :    Let the data    (t.,m.)     i =!,•••,m   be given, where    t. 

represents  the total test time  for the    i        component and    n    > 1, 

represents  the number of failures of that component during that  time.     If 

u).     Is  the multiplicity of the    i        component  in any structure and 

Tl * 'l^l'    then 
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(5.5) 

exp 
m            s± 
\              $ for    0 < t  < T.-./fi 

(1)    y j-l (tj/tM* 

0 for    t>T(1)/6; 

is a lower confidence bound of level 1+7 where    0 < y '^ 1    is 

preselected,  tor Che system reliability for all time    t > 0.    The quantity 

6      is the solution of the equation    f(x)  «0    and    f   was defined in 

equation  (5.4). 

Proof.    We have only to remark that  the selection of a time scale in 

terms of mission length was arbitrary so that the bound derived previously 

can be used for the reliability at all times.|| 
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6.0 A NUMERICAL ILLUSTRATION 

As a numerical Illustration of the behavior of the prwluwaly mil lined 

procedure, we shall study Its performance on a specified ««rles •yste« with 

ten components. Take m - 10. We shall asstaie that *. * I '"' 

J - !,•••,10. Thus the true reliability of the «ystea Is, by *>' 

t > 0. We also assume that n .■ u - 1  and thuit ' • • *•  '••' 

j = l,««',m. 

IOI for 

We will now generate 10 exponential varlatvs, I.,•••,I . each with 

unit mean and solve the equation f(x) ■ 0 where 

(6.1) f(x) 
m 
\ 
1-1 ^ - '"(^) 

and    C      is a constant determined by the numl ial  level of the ronfldance 

bound. 

We find that  for    Y ■ .95,    C 95 -  11.353.    Call  the «olutlon of   (6.1) 

the value    6   .     The  lower bound for the  reliability  Is by  (2.5) 

(6.2) exp 
i-l  \t,/t-6 + / 

for    0  <  t  '  ^t(l)     . 

and the confidence level is 97.5. 

Generating forty independent observations of an exponential varlate 

with unit mean resulted in the following four samples: 
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As a further Illustration of the stochastic behavior of this method, 

vre «hall repeat the entire procedure two thousand times, but Instead of 

calculating the entire lower bound function we shall only compute (3.2) 

at    t ■  .01.    Then we shall make a frequency histogram of the values of 

Che reliability bounds for the specified value    t - .01.    The twenty 

percentlle points, successive differences being .05, of the empiric 

distribution are: 

Percentlle Percentlle P 

.05 0.106621 

.10 0.297174 

.15 0.417770 

.20 0.492659 

.25 0.552798 

.30 0.596595 

.35 0.632835 

.40 0.665383 

.45 0.689521 

.50 0.707729 

.55 0.730936 

.60 0.750021 

.65 0.767430 

.70 0.782541 

.75 0.798792 

.80 0.815686 

.85 0.833291 

.90 0.851064 

.95 0.877483 
1.00 0.940218 

A graph of the empiric distribution is given in Figure 2.    Note that 

-.1 
the true reliability of e .904837 slightly exceeded the nominal 

97.5 percentlle.  In fact, the actual count was 1979 values less than 

e"*  out of the 2,000 observations sampled.  This was approximately the 

99th percentlle. 
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Figure 2.    Eaplric distribution of the 97.5 percent lower confidence bound 
using 2,000 observations when the true reliability is 

e**1 - .905. 
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Thus we see the stated confidence level of 97.5 percent appears to be, 

In this Instance,  slightly conservative.    To check this we repeated this 

entire experiment a second time and we observed 1,990 out of 2,000 observa- 

tions of the reliability bound were less than    e   '   ,    which increases our 

suspicion of a slightly conservative tendency for the level of confidence 

In this case. 



•3*. 

Thi dtetralnadon of • confidence bound ualng • procedure which le velld 

when • large nunber of life length obeervatlona havt been Bad« for each com- 

ponent when, In fact, only one obaervatlon haa been taken of each coaponent 

life length is about aa far from the condltlona of known validity aa poaelble, 

and It leaves the exact confidence level open to question. 

As a comparison, we also construct the lower 97.5Z confidence bound for 

the system reliability of a 10 component series system, each component of 

which has the same reliability using ten observations of each component life 

length. The much improved result is presented in the graph of Figure 3. A 

table of the values of the lower 97.5% confidence bound on the same system 

reliability but with twenty observations on each component is given below: 

True Lower 
Time Reliability Confidence Bound 

0 1.000 1.000 
.2 .819 .815 
.4 .670 .663 
.6 .549 .538 
.8 .449 .435 

1.0 .368 .351 
1.2 .301 .283 
1.4 .247 .227 
1.6 .202 .182 
1.8 .165 .146 
2.0 .135 .116 

The improvement is obvious. 

While such examples as these can never prove anything in general about 

the adequacy of this approximation, they do not indicate that it cannot be 

used, with suitable caution, in those cases where the exact distribution is 

unknown. 
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Thls less restrictive estimate    U*    Is constructed by picking   v    such 
m 

permutations Independently,  from the    p a   II   (n  I)    distinct permutations 
1-1 

which are possible, with Identically uniform chances. 

Obtaining the estimate    U*    Is computationally feasible for    v    of 

moderate size, while the computation time necessary to obtain all    p 

permutations for   U   may not be realistic If the sample sizes    n ,    or the 

system order   m,    are large.    Of course    Ü*    Is unbiased,  as  In    U.    However, 

we Indicate one other reason that    U*   may be preferable. 

Consider the covarlance of    U.    Since 

EU(t)U(t+8) - —    > ER.(t)R.(t+s) 
P^   ^—i  i   j 

i.J-l 

we see that this computation reduces to 

Eyt^t+s) - E ^ ^ ^i{t<xlk}{t + 0 <x;jÄ}  . 

But now not only do the sample sizes u. depend upon the particular J 

permutation chosen, but so do the actual system failure times x . Thus 

the evaluation would depend upon a functional relationship being determined 

between these random variables and the Index of the permutation enumeration. 

Whether or not the substitution of U* for U will eliminate this 

difficulty is not known at the present time, but it is under investigation. 

As an illustration of the type of estimates that this method gives, we 

exhibit the graphs in Figure 4 of two estimates of the system reliability of 
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Figure 4.  Two different reliability estimates L'^t)  and L^U), each 
based on 96 permutations of three sets of sample data of sizes 
2, 4 and 2, respectively, for each component, for the "2 out of 
3" three component system with reliability Riven by R(t) 
- e-2t(3-2e-t). 
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a simple two-out-of-three system, each estimate based on the generation of 

data from the Independent exponential observations of the reliability of 

each component.    The data for these two estimates are as follows: 

Observations Used In U. 

Component 1 2.45413, 1.71585 

Component 2 .49114,  1.52854,  .52064, 1.06873 

Component 3 .31766,  2.13006 

Observations Used  In U„ 

Component 1 1.54401,   .39385 

Component 2 .13779,   .89004,   .07049,  1.62566 

Component 3 .75851,   .12614 

All component data were machine generated with a true exponential 

distribution with unit mean.    The set of 96 possible permutations were 

listed by the machine and each empirical distribution combined in the 

manner indicated in the equations. 

In conclusion, it is clear  that this method certainly improves the 

system reliability estimated with a small amount of data.    That we cannot 

yet determine the covarlance in order to apply the asymptotic normal theory 

and obtain confidence bounds is regrettable, but doubtless this defect will 

be overcome soon. 
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