
ESD-TR-72-32

O o
UJ

ESD ACCESSION LIST
TRI Call No. ~1 4? \ S X
Copy No, / of / cys.

B> ESD RECORD COPY
RETURN TO

C'ENTIF,CS™r^L,NF0RMAT,0ND'V'S'ON MRI), Building 1210

Technical Report 491

Sequential Decoding
with a

Small Digital Computer

I. Richer

24 January 1972

Prepared for the Department of the Navy
under Electronic Systems Division Contract F19628-70-O0230 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY S

Lexington, Massachusetts

AD7M|^

Approved for public release; distribution unlimited.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

SEQUENTIAL DECODING
WITH A SMALL DIGITAL COMPUTER

/. RICHER

Group 66

TECHNICAL REPORT 491

24 JANUARY 1972

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
The work was sponsored by the Department of the Navy under Air Force

Contract F19628-70-C-0230.

This report may be reproduced to satisfy needs of U.S. Government agencies.

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

ABSTRACT

Extensive simulations of a sequential decoder using the Zigangirov-Jelinek

algorithm have been conducted on a small, general-purpose digital computer.

These simulations prove that this type of computer has sufficient memory,

sufficient speed, and sufficient flexibility to perform sequential decoding at

useful data rates.

In this report, the memory and computational requirements of the algorithm

are presented, and efficient methods for ensuring a very low probability of

error at any signal-to-noise ratio (at the expense of an increase in the failure-

to-decode probability) are discussed. The equations necessary to set up a de-

coder are given, and a number of possible computer implementations are

suggested.

Accepted for the Air Force
Joseph R. Waterman, Lt. Col., USAF
Chief, Lincoln Laboratory Project Office

CONTENTS

Abstract iii

I. INTRODUCTION 1

II. BACKGROUND 2

A. Qualitative Discussion 2

B. Quantitative Discussion 4

III. PERFORMANCE OF THE ZIGANGIROV-JELINEK ALGORITHM 9

A. Parameter Values 9

B. The Basic ,ZJ Algorithm with Finite Memory 10

C. Computation Cutoff 10

D. Computation Distribution and Quit Probability 11

E. The Effect of Decoder Parameters Upon Performance 13

IV. ERROR PERFORMANCE 15

A. The Effect of Finite Memory Upon PE 17

B. Threshold on Final Metric Value 19

C. Use of a Long Shift Register 21

D. Obtaining Data for Very Low P£; Decoding into the Tail 23

V. IMPLEMENTATION OF THE ZIGANGIROV-JELINEK
ALGORITHM 25

A. Details of a Practical ZJ Algorithm 25

B. Data Structures for the ZJ Algorithm 25

C. The Influence of Computer Hardware 32

D. Methods for Reducing the Time Spent Computing Parity
and Metrics 32

E. Some Design Consideration for a Real-Time Decoder 35

F. The Make-Up of a ZJ Table Entry 36

VI. CONCLUSIONS 38

APPENDIX A - Random Number Generation 41

APPENDIX B - Techniques for Reducing the Memory Requirements 43

APPENDIX C - Other Methods for Reducing the Error Probability 46

APPENDIX D - Remarks on Comparing the Fano and the ZJ Algorithm 48

References 49

IV

SEQUENTIAL DECODING WITH A SMALL DIGITAL COMPUTER

I. INTRODUCTION

Sequential decoding provides a highly reliable and efficient method for communicating at a
low signal-to-noise ratio (SNR). Generally, a sequential decoder is implemented either with
special-purpose hardware or on a large digital computer. Earlier work with sequential decoders

at Lincoln Laboratory in fact used special-purpose hardware in order to achieve data rates of
several kilobits/second. ' With the appearance over the past few years of a wide variety of
small, low-cost, general-purpose computers, however, it was hoped that sequential decoding
could be accomplished on such a machine at lower but still useful data rates. In this report we
treat the problem of decoding efficiently and very reliably and show that, indeed, typical small
(16-bit) computers possess sufficient memory, sufficient speed, and sufficient flexibility to
perform the decoding task.

For definiteness, we stipulate that:

(a) The nominal SNR - i.e., the SNR corresponding to the nominal operating point — must

be as low as possible, consistent with practical limitations on necessary computer
speed and storage.

(b) The number of information bits N per block is small, say N ~ 100 bits.

(c) The quit probability P~ - i. e., the probability that a block cannot be decoded - is
-3 y

low, say PQ ~ 10 , at the nominal operating point.
-7

(d) The probability PF of decoding a block incorrectly is very low, say P_-, < ~10 at

any SNR.

Note that because, in general, PF increases as the SNR decreases, some margin must be in-
corporated in the nominal operating point to allow for possible changes in the channel. However,
because of (a) this margin must be held to a minimum; the decoder itself should, to a large ex-
tent, adjust its performance to accommodate variations in the SNR, increasing P~ in order to
ensure that PE does not exceed the specification.

We shall show that a data rate on the order of one kilobit/sec is possible with a decoder that
meets the above requirements and that operates in real time on a present-day small computer;
for a binary antipodal additive Gaussian noise channel with continuous output, this data rate can
be realized with E, /N - that is, the ratio of the received energy per information bit to the single-
sided noise power density- less than 2.8 dB. Furthermore, even higher data rates are possible
if the requirements are relaxed slightly.

Currently, there are two algorithms for sequential decoding in general use: the Fano algo-
rithm, in which both forward and backward progress in the decoding tree is made one node at a

4 5 time, and the Zigangirov-Jelinek (henceforward referred to as ZJ) algorithm, ' which saves
information on paths that have been examined for possible use at a later time. In contrast with the

Fano algorithm, the ZJ algorithm never repeats a computation, so there is a trade-off between

the smaller number of computations of the ZJ and the smaller memory requirements of the Fano.

In light of the potential speed advantage of the ZJ algorithm and the relatively low (and continually
decreasing) cost of computer memory, the ZJ algorithm is of primary interest here. However,

when this study was initiated, no quantitative information was available on the performance of
the ZJ algorithm. Since quantitative results are difficult to obtain analytically, simulations

were performed. The results presented in this report are based entirely upon these simulations.

Although a binary, additive white Gaussian noise channel was used in the simulations, most of
the results are directly applicable to other channels. The following section gives some back-

ground material and the equations necessary for setting up a decoder. Section III describes the

ZJ algorithm and presents the computational and memory requirements. The error performance

of the decoder, and methods for limiting PE regardless of the SNR, are discussed in Section IV.
Section V describes in detail the implementation of the ZJ algorithm, and the final section pre-

sents conclusions and suggestions for possible implementations on a small computer. Because
the characteristics of the simulated noise source can have a profound effect upon the results,

considerable effort was devoted to developing and testing programs for producing computer-
generated random numbers. The algorithm employed in the simulations is detailed in Appendix A.

II. BACKGROUND

Detailed derivations of the theory and operations of convolutional encoders and sequential

decoders are available in the literature. ' In this section, therefore, we shall only summarize

the salient characteristics of the encoder/decoder, with emphasis on the equations pertinent to

implementing a decoder on a digital computer.

A. Qualitative Discussion

In general, a binary convolutional encoder is made up of a K-stage shift register and V par-

ity networks. Each parity network generates the modulo-2 sum of its binary inputs. An example
of an encoder with K = 4, V = 3 is shown in Fig. 1.

Initially the shift register is cleared to zero (or

set to any known state) and the first information
bit is fed in. The parity networks are then sam-
pled in succession, producing V output bits or

channel symbols. The rate R of a binary encoder

is defined as the ratio of the number of input and

output bits and is therefore given by R = l/V.

The next information bit is then fed into the shift
register, the previous contents being shifted one

place, and the next set of V channel symbols are
produced. This procedure continues for the dura-

tion of the information sequence. Each informa-

tion bit remains in the shift register for K shifts,
and hence K is referred to as the constraint

length of the code. The reliability of convolution-

ally encoded messages arises because KV channel symbols are affected by each information bit.

In order to provide the necessary redundancy on the final information bits, a tail of K - 1 zeros
(or any other known sequence) is appended to the information sequence and passed into the shift

register. Thus, for N information bits a total of (N + K - 1) V channel symbols is transmitted.

The penalty for providing this tail is an increase in the transmitter power (or in the message trans-

mission time) by the factor (N + K - 1)/N. For N = 100 and K = 30, the penalty is 1.1 dB.

18-00-5898-1
K-STAGE SHIFT REGISTER

__\ V MODULO-2
ADDERS

COMMUTATOR

Fig. 1. Binary convolutional encoder
with K = 4, V= 3.

Ill M-SMT(I)| ooo r

000

HO

HO r

000

001 r

HI

000

OH f

001

110

111

101 r

0

i 010 r

100 r

1
« 1 «y 011 r

OH

1
•

101 f

101 r

1 001

110

n 010 r

/—^L

010

000 _

1
1 | HI

I

100

HO r

% ---^ 001 p

1 d m

R
^'V.ED > HI 111 101 010

Fig. 2(a). Code tree for encoder of Fig. 1.

-8

-7

-12

118 6 14414 [

0

-2

e

-6

b

-1

-5 l-
L

-9

f -ii

c

-3

-8

d -8

Fig. 2(b). Metrics for the nodes along the paths
marked in (a). The metrics were computed from
the expression [1 -3X (no. disagreements)] for
the received signals shown in (a).

The encoder output is conveniently represented by a binary code tree, as shown in Fig. 2(a).

At each node in this tree, the upper branch is taken if the next information bit is a zero, and the
lower branch if it is a one. The input sequence 1010. . . thus produces the output sequence

110001101010... .
The decoder contains a replica of the convolutional encoder and using the received channel

symbols attempts to recover the transmitted message by finding the most likely path through the
N code tree. But there are 2 paths, so for N > 30 it is impossible for a decoder to examine them

all within a reasonable time. A sequential decoder avoids this problem by restricting its exam-
ination to those paths which appear most promising. The decoder starts at the beginning of the
tree and computes the expected received signals if the first information bit were a zero and if it

were a one. Then, based upon the actual received signals, the decoder makes a tentative deci-
sion on the first bit, and advances along the appropriate branch to the next node in the tree. The
tentative decision made at this and all subsequent nodes is determined from the a priori probabil-
ity that the sequence of received signals corresponds to the coded bits associated with the branches
stemming from the node; the numerical quantity based upon this probability is called the metric.
The metric associated with a given node in the tree is the sum of the branch metrics along the
path from the start of the tree to that node. On the average, the metric increases along the cor-
rect path and decreases along incorrect paths. During periods of high noise, however, the metric
along the correct path may decrease. If the metric for the path under investigation does decrease
sufficiently - either because the path is incorrect or because of noise on the correct path - the

decoder will reverse an earlier branch decision and attempt to find a better path through the tree.

As an illustration, assume that the received signals are quantized as zeros or ones (i.e.,

hard decisions) as shown in Fig. 2(a), and assume that the decoder parameters are such that the

metric increment for a branch be 1 - 3D, where D is the number of differences between the ex-

pected bits and the received bits. Initially, the dashed path indicated in Fig. 2(a) appears attrac-

tive because its metric takes on the successive values -2, -1, -3, as shown in Fig. 2(b). At

node d, however, the metrics for both branches decrease to -8. Because of the decreasing
metric along segment bed. . . , the decoder will backtrack, eventually returning to node b and
progressing forward with an increasing metric along segment bef. Some more realistic data are

illustrated by the curves in Fig. 3. These computer-generated curves show the metric as a func-
tion of depth (level) in the decoding tree for two simulated 100-bit messages.* The decoder had

«UK MO. » * »UN NO » 1S09J

tteTMJC FOR COMECT PATH MC^IC FOR C0MECT PATH

(a) (b)

Fig. 3. Computer-generated curves of the metric (along the correct path) for two simulated messages
using Gaussian noise, with N = 100, K = 30 (and R= Rcomp). The vertical line in each figure indi-
cates the start of the tail. Part (a) shows the metric for a message that was easily decoded, whereas
(b) is for a message that was relatively noisy and hence difficult to decode.

no difficulty decoding the message of Fig. 3(a) because the relatively noisy periods, manifested
by the shallow troughs in the metric curve, were spaced well apart and were of short duration.

The depth and width of the trough in Fig. 3(b), however, forced the decoder to search many more
incorrect paths before singling out the correct one.

B. Quantitative Discussion

The preceding qualitative description of the operation of a sequential decoder will now be
quantified by the presentation of some pertinent analytical results. A decoder computation is
defined as the process of moving from the node last examined to the node that will be next
examined. This process includes the operations required to calculate the two branch metrics

* The channel was represented by white Gaussian noise, and the metrics were based upon Eq.(8).

from a node and to execute the decisions based upon those metric values. If C, . is the total

number of computations needed to decode a message of N bits, then the average number of com-

putations per information bit for that block is C 5 C. ,/N, and the distribution of C is approx-

imately of the Pareto form

P[C^X]«AX"0' (1)

for large X, the quantities A and a depending primarily upon the channel. ' For a < 1, the

expected value of the number of computations per bit E(C) exists, but for a > 1, E(C) diverges.

The value of a is thus of importance in determining decoder operation, and the value a = 1 is

of critical importance.

In practice, of course, decoding is terminated (with the block undecoded) after some specified

time, so E(C) always remains finite; the practical implication of Eq. (1) is that the quit probability

increases sharply for a > 1. The decoder rate for which a. = 1 is called the computation cutoff

rate and for equally likely binary inputs is given by

Rcomp = i ~log2 I1 +y „ ^wTyTÖW(yll) dyj , (2)

where w(y |i) is the probability density of the received signal y, given that the symbol i is trans-

mitted (i = 0, 1). The channel is represented by additive white Gaussian noise having single-sided

noise power density N . Then, for binary antipodal modulation* the expected value of the re-

ceived signal at the output of the matched filter (i.e., at the input to the decoder) is + /2E for

a transmitted 1-bit and - /2E for a 0-bit, and

w(y|i) = t
1 exp[-(y ± J2E")2/2N] .

o

The integral in Eq. (2) now becomes

2
— ^ exp[-(t2 + a2)/2]dt = e"a '

yielding

in which

R - 1 - log,[l +e a /2] , (3) comp &2l J

a ■ V2VNo • (4>

Note that E the energy per information bit, is E, = VE (neglecting the tail), so that

— = V *- (5) N v 2 ^' o

* Binary antipodal signaling, together with coherent detection, yields a communications structure that is highly
efficient in terms of required SNR/

Q = 8

x~
N.747

yt.050

h

^0.500

I I

ls

0M6

^2 399

M.842

^1.436 **

^ 1.098 fa

^ 0 799 fa

^•0 522 fa

^0.258

1 1
h

Q=32

XT
^ 2.969

^ 2.497
r30

^ 2. «66
lZ9

^ 1.901 fa

^ 1.675 J27

^1476 fa
"^-1294 fa
^1.126 fa
^0968 123

^0818 I22

^ 0674 l*
^ 0 534 ho
^0.398 fa
^0 264 III
'V 0131

1 1 1(7

Fig. 4. Boundaries of the optimum quantization intervals as a function of a = /2E /N for several
values of Q. The intervals are chosen symmetrically about 0.

The additional signal power needed to transmit L tail bits is given by the factor (1 + L/N). At

R = R , Eqs. (3), (4), and (5) may be combined to yield the expression

^ = -Vln(21_(l/V)-l) , R = l/V =R (5a) N • ' comp o r

which relates the required input signal strength to the number of parity networks.

Equations (2) and (3) assume that the decoder has available the received signals to full pre-

cision, whereas on a digital computer these signals are quantized. Since the decoder cannot

distinguish between signals that fall in the same quantization interval, performance will be de-

graded, the degradation evinced by a decrease in R . If q.. is the probability that the re-

ceived signal falls in the j quantization interval (j =1,2,..., Q), given that the symbol i is

transmitted (i = 0, 1), then the integral in Eq. (2) is replaced by a sum, and R becomes

j=l J

R = 1 - log. comp 62

For a particular value of a, R can be maximized by choosing the quantization intervals

optimally. Because of the symmetry (about 0) of the received signals, symmetric quantization

intervals are used. If we denote the upper endpoints of the j quantization interval by I., then

the symmetry implies that

I~ . = -1. , I = - w I = +0O i , = o
Q-J J * o " Q Q/2

and the transition probabilities are

3

XJ N/2i Jl.
e-(Ua)2/2 dt

i =0, 1

j = 1, 2 Q
(7)

In this equation the plus sign is used for i = 0 and the minus sign for i = 1. Figure 4 plots for

Q = 4, 8, 46, and 32 the {I.}, (j = Q/2 + 1, . . . , Q - i), that maximize Rcom . It is evident that

the optimum {I.} are only weakly dependent upon a and hence upon the SNR. Further, the opti-

mum intervals provide only a slight improvement in R over uniformly spaced intervals.

The latter data are given in Fig. 5, which also gives R for no quantization (Q = °°). (However,

since total decoding time differs only negligibly if the optimum rather than the uniform intervals

are employed, and since a small fraction of a dB can have a significant effect on decoder per-

formance when operation is at a rate near R , the optimum {I.} were used in the simulations.) comp r y
The practical limitation on the size of Q is the amount of memory that can be devoted to storing

incoming quantized signals.

The decoder metrics are computed from the likelihood ratio according to the formula

m1 = log» [+i |-U .
2q«

(8)

Thus, m!. is the metric contribution if channel symbol j is received, given that i is transmitted.

In this equation the term U, called the bias, permits a meaningful comparison between metrics

at different depths in the decoding tree. The choice of U is important for efficient decoder op-

eration: if it is too small, then metrics for some incorrect paths will increase, causing a

^8-6-14417 |

NUMBER OF
QUANTIZATION

INTERVALS
(Q)

R
comp

OPTIMUM
INTERVALS

UNIFORM
INTERVALS*

a= /2E/N
V s o

0.2 4 0.0127 -

8 0.0139 0.0138

16 0.0142 0.0141

32 0.0143 0.0143

oo 0.0144 -

0.5 4 0.0773 —

8 0.0844 0.0841

16 0.0865 0.0861

32 0.0871 0.0870
oo 0.0874 -

1.0 4 0.283 —

8 0.306 0.305

16 0.313 0.312

32 0.315 0.315
oo 0.316 -

* For uniform intervals the spacing used was

0.5. Q = 8

I.-I. . -«
J J-l

0.25. Q=16
J

0.15. Q = 32
1 J J

' , j = 2,...,Q -1

Fig. 5. Values of RcorT1p for optimally spaced and for uniformly spaced intervals for several
values of Q and a. Q = °o corresponds to no quantization.

decoder error; if it is too large, all metrics, including the correct one, will decrease, and too
many computations will be performed. The optimum bias is close to the decoder rate R (Ref. 6).

As with the received signals, the metric values must also be quantized. For convenience,
we allow only integral values, and for practical reasons we must restrict their range. Thus,
the metric values are scaled to

m.. = INT(Xm!. +1/2) , (9)

in which INT(x) is the integer part of x, and the (l/2) is included so that the values are properly

rounded. The multiplicative factor X is chosen according to the formula

_ (desired range of metrics)
|largest m!. - smallest m'.. | (9a)

More specific details on the choice of A (and of U) are given in the next section, where simula-

tion results are presented.

Equations (4) through (9) provide the information necessary to calculate the parameters for
a sequential decoder. A typical design might begin with the selection of a value for V. Since

the required SNR decreases as V increases, a large V is desirable fcf. Eq. (5a)], but the actual
choice of V is often limited by outside constraints such as the available bandwidth or the per-
formance of a phase tracker. With regard to implementation on a 16-bit computer, we note that

the decoder complexity increases somewhat if V > 16. However, Eq. (5a) reveals, for example,
that V = 12 and V = 6 degrade E, /N by only 0.1 3 dB and 0.27 dB, respectively, from the limiting
value of 1.42 dB as V -* °° for unquantized signals. (Quantized signals yield similar degradation.)
For operation at the computation cutoff rate, Eqs. (6) and (7) are solved for a, in order that
R = R = l/V. To minimize the degradation caused by quantization we choose Q ^ 8 and use
the optimum {I.}. After a (and hence the SNR) is determined, the metric increments can be
computed from Eqs. (8) and (9). With V = 12 and Q = 8, for example, the required E,/N is
1.7 dB plus an additional 1.1 dB for the tail if N = 100, L = K- 1 =29.

in. PERFORMANCE OF THE ZIGANGIROV-JELINEK ALGORITHM
4

The ZJ algorithm for sequential decoding, proposed independently by Zigangirov and by

Jelinek, utilizes the memory available on a digital computer to save results that may be re-

quired at a later time by the decoder. The algorithm thereby avoids repeating earlier computa-
tions but, as with many digital computer programs, the time saved is at the expense of increased

memory requirements. Because of the steadily decreasing cost and increasing capacity of

digital computer memories, this trade-off appears worthwhile. In this section we present simu-
lation results showing that the memory requirements of the ZJ algorithm are in fact quite reason-

able. We also give the computational requirements of the algorithm and the effect of various

parameters upon decoder performance.

A. Parameter Values

In all the simulations discussed in this report, the following parameter values were used,

unless there is a specific statement to the contrary:

N = number of information bits per block =100 bits,

K = constraint length = 30 bits,

V = number of parity networks = 12,

O = number of quantization intervals = 8 (chosen optimally),

U = metric bias = R = l/V.

The experimental results given in this report are valid for any implementation of the ZJ

algorithm that uses the same parameter values. Moreover, many of the results can be applied

directly or with minor modifications to decoders with different parameter values (cf. Section III-E).
In order to obviate the need for a convolution encoder, the all-zero message was assumed. Be-
cause of the group properties of the code, no loss of generality results from this assumption.
However, in order to avoid a possible favorable bias in the decoder, the 1-branch is chosen if
the two branches from a node have equal metrics. The channel was simulated by generating inde-
pendent Gaussian noise samples to represent the output of the matched filter. The algorithm
that was used to generate the samples is described in Appendix A.

B. The Basic ZJ Algorithm with Finite Memory

In contrast with the Fano algorithm, the ZJ algorithm is conceptually quite straightforward.

A table is maintained in memory, with each entry on the table containing information on nodes

in the decoding tree that have been examined. As outlined in the previous section, the metric

associated with each node is a measure of the likelihood that the node is on the correct path;

therefore, of all the nodes in the table, the decoder extends the path from the one having the

largest metric, until the end of the tree is reached. More formally, the steps that comprise the

ZJ algorithm are:

(1) Initialize by clearing the memory table and creating one entry corresponding to

the start of the decoding tree.

(2) Retrieve the entry with the largest metric. If this entry is at the end of the tree,

decoding is finished.

(3) Compute the two branch metrics stemming from the node found in Step (2) and cre-
ate two entries in place of the original. Store these two entries on the table.

(4) If the table is full, discard the entry with the worst metric.

(5) Go to Step (2).

In principle, Step (4) is not part of the ZJ algorithm, but in practice it is required because only
a limited amount of memory can be devoted to the memory table. If the table can accommodate
T entries, then when the table first becomes filled (assuming that decoding has not been com-
pleted), the entries correspond to the first T nodes that were examined. Once the table is full,
however, one entry must be eliminated for each node examined (unless the node extended in
Step (3) is in the tail, in which case no new entry is generated). Since there is a finite number

of nodes in the decoding tree, the process described by the above steps will eventually terminate.

C. Computation Cutoff

When a path is extended from depth d in the decoding tree to depth d + 1, the table entry

corresponding to the node at depth d is eliminated [Step (3) above]. Thus, each node that is

represented on the table is the one that is at the greatest depth on a path into the tree. In par-

ticular, there can be only one entry corresponding to the correct path. With a finite table size

10

there exists the possibility that during a period of high noise the correct-path entry will have

the worst metric and will therefore be discarded. If this occurs, the decoder will experience

difficulty in decoding, but if allowed sufficient time, it will eventually reach the end of the tree,

and the decoded block will necessarily contain an error. In order to preclude this possibility,

a cutoff must be imposed upon the amount of time spent decoding each block. Actually, such a

cutoff is also necessary because incoming signals are continually being received, and (1) there

is a limit on the amount of buffer storage that can be allocated for these signals while they wait

to be processed, and (2) there may be a limit on the time delay that can be tolerated between
the receipt and the decoding of a block. The cutoff that is used will be the minimum dictated
by all these constraints.

The time consumed by the decoder is approximately proportional to the number of decoder

computations that are performed, where a single decoder computation comprises all the opera-
tions required by Steps (2) to (5) of the algorithm. A cutoff expressed in terms of the number

of computations is therefore equivalent to one expressed in terms of the real decoding time. The
data presented in Section V on the time per computation can be used to relate the two cutoffs.
Quantitative information on the computation cutoff is given in Section IV-A in connection with the
error probability associated with a finite-memory ZJ decoder.

D. Computation Distribution and Quit Probability

The distribution of the average number of computations C per information bit is shown in
Fig. 6(a). This curve is based upon 2X10 simulated messages* with the decoder operating at
rate R = 0.99 R . The distribution is Pareto, with the data fitting the equation comp ° ^

P(C >X) «(0.135) X"1*05 .

The exponent is close to -1, consistent with theoretical predictions for operation at R = R .
The distribution as drawn applies to a ZJ decoder with unlimited memory. This was accom-
plished by using a table that was large enough so that, for the range of computations shown, the
computation cutoff did not come into play. As the table size decreases, the distribution shifts

upward because there is an increase in the probability of discarding the correct path, and hence

an increase in the probability of reaching computation cutoff.
Figure 6(b) shows the quit probability P~ as a function of table size T for the same simulated

messages used in Fig. 6(a). This curve also exhibits Pareto behavior, obeying the empirical

expression

P (T) «(3.10) T"1-03 .

It seems remarkable that a decoder with a table having only 200 entries is able to decode 99 per-

cent of the blocks. On the other hand, the -1 exponent in the expression for PQ(T) implies that
extremely low PQ cannot practicably be realized at R = R . Several methods for reducing

PQ(T) were investigated in order to permit a reduction in the required memory at R ~ R .

Some of the methods proved quite successful, but they all have the undesirable effect of increas-
ing the error probability, and therefore they are not immediately applicable to the decoder under
consideration. Appendix B gives a description of the techniques along with the results obtained.

* For convenience in terminology, the terms "block" and "message" will be used interchangeably.

11

18-6-14418 |

SLOPE = -1.05'

X

(a)

TABLE SIZE (T)

(b)

- 1

Fig. 6. Decoder performance at R = 0.99 Rcomp based upon 2 X 105 simulated messages with N = 100,
K = 30, V = 12. (a) Distribution of decoder computations, (b) Decoder quit probability vs table size.

Implicit in each data point of PQ(T) is a computation cutoff, as outlined in the previous sec-

tion; the value of the cutoff was chosen to prevent decoder errors that might otherwise be intro-

duced because of the finite memory size (see Section IV-A). Since the computation distribution
is for unlimited memory, however, corresponding data from the two curves must be interpreted
carefully. Thus, although a failure-to-decode probability of 10 is associated with C « 100
and T « 2000, these two conditions are minimum requirements and are interrelated. If, for
example, T is set at 2000 entries, then C « 150 comp/bit must be permitted to ensure P~ < 10 m
This is because some of the messages that can be decoded in fewer than 100 comp/bit require a

table with more than 2000 entries. Conversely, if T < ~2000, then PQ < 10~ cannot be achieved,
regardless of C, because with high enough probability the correct path has been purged from
the table.

The effect of changes in the decoder rate upon the computation distribution and upon P0(T)
W

is shown in the curves of Fig. 7. The correspondence between R/R and relative SNR for r comp
V = 12 and Q = 8 is given in the table accompanying the figure. Each curve (except for R/R

-0.05 dB which is reproduced from Fig. (6) is based upon 10 simulated blocks and is described

by a Pareto relationship of the form BX ^. It should be noted that although the behavior of each

curve is eventually dominated by the factor (X~p) as X increases, for the range of probabilities
of interest, the multiplicative factor B is of equal importance. As expected, for operation

near R ___, decoder performance is very sensitive to the exact value of the rate. If R de- comp r J

creases by 1 dB, then both the number of computations and the table size required to achieve
PQ = 10 decreases by approximately an order of magnitude. On the other hand, a slight in-
crease in R above R degrades performance to an even greater degree. Operation at
R = RoomD is therefore the practical choice for the decoder under consideration.

12

R/RMm„ (dB) - -100

comp SNR
(dB) (dB)

+025 -0.26
-0.05 -0.05
-0.25 +0.26

-0.50 +0.52

-1.00 +1.04

I III J L

x
(o)

TABLE SIZE (T)

(b)

Fig. 7. Decoder performance for several values of R/Rcomp« The—0.05 dB curves are reproduced

from Fig. 6; the other curves are based upon 10 simulated messages with parameters as in Fig. 6.

The accompanying table gives the relative SNR that corresponds to each value of R/Rcomp f°r V = 12,

Q = 8. (a) Distribution of decoder computations, (b) Decoder quit probability vs table size.

E. The Effect of Decoder Parameters Upon Performance

Since the performance of a sequential decoder depends primarily upon the ratio R/R
(Ref. 7), the data presented in Figs. 6 and 7 to a large extent characterize a decoder using the
ZJ algorithm. In order to determine the effect of changes in the various decoder parameters
upon decoder performance, it is sufficient to determine their effect upon R (since R = l/V
is known). Now, parameters such as the message length N and the constraint length K do not
affect R and so do not greatly influence decoder memory or computation requirements.*
The effect of some other parameters, namely, the number of parity networks V, and the num-
ber of quantization intervals Q, can be readily determined analytically (cf. Eqs. (4) to (7) and
Ref. 8). As a check, a set of simulations with V = 6 and a set with Q = 32 were conducted, with

a adjusted in each case to maintain the same R/Roorrm ratio; in agreement with the prediction,
the decoder performance did not change. Finally, the code generator, the metric quantization,

and the metric bias are factors which are not amenable to analysis; simulations were necessary
in order to ascertain their quantitative effect on decoder performance.

* The constraint length determines the error performance, which is discussed in the next section. It is possible

that, because N is on the order of three constraint lengths, the results obtained with this decoder are somewhat

atypical; however, a limited number of simulations with N = 1000 gave results roughly comparable to those

with N= 100.

1 5

The code generator is a KV-bit vector that specifies the parity network connections between

the V modulo-2 adders and the K-stage shift register. Let c. denote the K-bit connection vector

for the i parity network (i =1,2,..., V). The {c.} used in the simulations of Figs. 6 and 7 were
(in octal notation):

cd = 7630633135 c? = 5517570324

c2 = 7255122155 cg = 5216661277

c3 = 7543155131 C<? = 5742601204

c. =6044024066 c,n =4516110527 4 10
cc =6422351171 c .,= 4753030345
5 11

c, =6231240635 c._ =4162000625 6 12

The first 5 bits of each c. were chosen (manually) to maximize the minimum Hamming distance
1 9 between transmitted codewords; the remaining 25 bits of each c. were chosen at random. Now,

because we are dealing with a message length only a few times greater than the constraint length,

and because of symmetry in the encoding process, it was conjectured that performance would

improve if the final bits of each c. were selected by a procedure similar to that used in selecting
the initial bits. For example, the first bit of each c. is 1 (each parity network is connected to
the first shift register position), so that the V encoded bits on the two branches stemming from

any tree node are logical complements (and the associated Hamming distance is thus V, the max-
imum possible). In particular, the first information bit generates either V 0-bits or V 1-bits

since the shift register is initially filled with 0's. But by the same token, when the final tail bit

is shifted in, the shift register contains all 0's except for the last information bit, which occupies
the K shift register position. It therefore seems desirable to set the K bit of each c. to 1.

Simulations were performed with the last 5 bits of each c. selected to maximize the minimum
Hamming distance of the codewords that would be generated if the information sequence were fed
into the K position rather than the first position. The performance of the decoder with these

{c.} was comparable to that of the original, indicating that the original conjecture was incorrect.
The fact that metric values cannot be kept to full precision also influences decoder perform-

ance. The degree of this quantization is determined by the range of the metric increments, as

specified in Eq. (9a). Maximum precision is achieved, of course, by allowing a large range. But
3

if the range is too large, the metric along a complete path (viz., the sum ofV(N + K-l)~10
increments) may be greater than 2 and consequently more than one word would be required to

hold the metric value on a 16-bit computer. This would increase the memory requirements and

the computation time and is therefore undesirable. On the other hand, if the range is too small,

many nodes will have similar metric values, and decoder performance will degrade because the
correct node will be indistinguishable from numerous incorrect nodes. For purposes of com-

parison, let us deal with the number of bits required to specify the range of metric increments,
k-bit quantization meaning that the difference between the largest and the smallest increments
is (2 - 1). The data of Figs. 6 and 7 are based upon 8-bit increments. Simulations were per-
formed with 10-bit increments but no improvement in decoder performance was realized, and
7-bit increments did not cause any degradation. When 4-bit increments were used, however,

there was a marked increase in P~. The conclusion is that 7- or 8-bit increments provide

performance equivalent to that without metric quantization, and that the use of this range of

1-1

increments ensures that, with very high probability, each node metric occupies a single 16-bit

word; 8-bit increments were used for all other simulations discussed in this report.

As mentioned in the previous section, the metric bias U also affects the operation of the

decoder. For each curve of Fig. 7, the bias was set equal to the rate U = R = l/V = 0.083. A

number of these simulations were repeated with U ^ R, but the choice U = R gave the best re-

sults. Values of U very close to R did not alter performance significantly, but values that

differed from R by more than ~10 percent caused noticeable degradation in the computation

distribution and in PQ(T).

IV. ERROR PERFORMANCE

One of the features of sequential decoding is the low probability of error that can be econom-

ically achieved at low SNR's. Furthermore, the reliability of decoded data can be substantially

increased with only a small increase in decoder complexity. In this section we discuss the error
performance of the ZJ algorithm and consider several innovations for improving this performance.

The probability that a bit is incorrectly decoded is bounded above by an expression of the
-ßK form (Ref. 6) B2 , where K is the constraint length and where B and ß depend primarily upon

the channel. With N information bits in a block, the probability Pp of one or more errors in
the block is then certainly less than the union bound

PE<NB2-^K . (10)

Thus, an increase in K reduces PE by an exponential factor; moreover, an increase in K (within
certain ranges) does not add to decoder complexity at all, when implementation is on a digital
computer. However, since K - 1 tail bits are transmitted with each message, and since the
message blocks are short, any increase in K entails a material increase in transmitter power
(or in transmission time). For example, with N = 100, if K changes from 30 to 33, the trans-
mitter power necessary to maintain the same SNR increases by 0.1 dB. The tail must therefore

be kept as small as possible. In Eq. (10), ß = 1 for operation at R = R . For convenience in

terminology, let us henceforth define an SNR of 0 dB to correspond to this operating point.* For
SNR's greater than this nominal OdB, PF decreases, but if SNR < OdB, ß decreases and PF in-

creases. Now, if an accurate measurement of the SNR over a block could be obtained, then those

blocks with SNR < 0 could be ignored. That is, rather than increase the likelihood of a decoding
error, no output would be provided if SNR < 0. This procedure would meet the requirements
given in Section I because there is a specification on PQ only at (or above) OdB. The procedure

is, of course, impractical because the SNR cannot always be determined to sufficient precision,

and it is also objectionable because there would be no chance of decoding a message if the SNR
decreased slightly. Thus, it is both necessary and desirable to have a scheme that (a) provides
the specified high reliability regardless of SNR, (b) gives a reasonable probability of decoding
if the SNR is slightly below nominal, and (c) does not cost much in terms of transmitter power (or,
equivalently, number of transmitted bits) or in terms of decoder performance under normal con-
ditions. The scheme developed in this section provides all these features.

* In other words, the SNR used here is not numerically equal to the ratio E^/NQ (or ES/NQ), but differs from that
ratio by a constant factor. For example, an SNR of —1 dB means that E^/NQ (or ES/NQ) is 1 dB below the value
that is necessary to achieve R/R =1.0. The equations of Section ll-B can be used to calculate E, /N .

' comp n bo

IS

18-6-MW I

P(correct|C)

1I-J-U4M

P(C>X)

P(error|C)

Fig. 8. Qualitative behavior of the error performance of the ZJ algorithm operating with a finite
memory, (a) Increase in the likelihood of an error as the number of decoder computations in-
creases, (b) Shallow slope of the computation distribution as the number of computations increases
(log-log coordinates).

Fig. 9. The maximum number of computations
observed during the simulations for Fig. 6(b)
(all messages decoded correctly) as a function
of table size at R/Rcomp = 0.99. This curve
may be used as a guide in selecting C

' max

TABLE SIZE (T)

16

A. The Effect of Finite Memory Upon PE

The bound in Eq. (10) was originally developed for a sequential decoder using the Fano

algorithm, but it also applies to one using the ZJ algorithm provided that unlimited memory is

available. As mentioned in Section III-C, however, the ZJ algorithm operating with limited
memory possesses an additional source of error because, if the correct path is ever purged

from the memory table, it can never be recovered, and an error will occur if decoding is per-
mitted to continue until the end of the decoding tree is reached. We now demonstrate that the
errors caused by the finite memory can be eliminated with a computation cutoff that restricts
the number of computations performed by the decoder.

Let C denote the average number of computations per bit allowed for decoding; i.e., the
decoder quits at C = C or, equivalently, when the total number of computations equals NC max max
Consider the extreme case of ZJ algorithm operating with a table size of T = 2 entries, so that
at any time only the two largest metrics can be saved. Clearly, if such a decoder ever recalls
a metric from memory (i.e., if it ever has to back up in the decoding tree), there is a high
probability that an error will be made. With T = 2, then, the proper choice is C = 1.00, and
a message is decoded only if the minimum possible number of computations is required. Now

as T increases, the allowed number of computations increases, but corresponding to each value

of T there is a C beyond which the error probability of a decoding message increases greatly, max
This principle is illustrated qualitatively in Fig. 8(a). For a fixed T, the figure shows that if a
message is decoded, then the probability that there is an error in the message increases signif-

icantly for C greater than some value, say C.. Quantitative information on this phenomenon
may be extracted from the computation distribution P(C ^ X), as sketched in Fig. 8(b). The dis-

tribution exhibits the expected Pareto behavior for C < C., but for C > C, tends to decrease at
a slower rate.* The computation limit C „ is chosen somewhat before the knee of the curve. ^ max
Because of the Pareto nature of the curve, the exact choice of C affects neither P~ nor P-rp
critically. Figure 9 shows the maximum number of computations as a function of T that were
observed during the simulations used to obtain Fig. 6(b). These data can be used as a guide in
selecting C for a particular T. In order to obtain more specific data, simulations were per-
formed at R = R with K small enough that decoding errors could be observed. Figure 10
shows the results for K = 15, 17, and 19 with T = 2048. The curve of PQ is equivalent to the
computation distribution function; i.e., if the decoding is stopped after C computations, then

the quit probability is PQ | p = P(C > C). As expected, the error probability P^ increases w ^max max ^
as more computations are allowed. The sum (P~ + P„) is, however, flat beyond C ~ 180,

i<^ Hd max
indicating that beyond this value the decoded message is likely to be in error. In other words,
nothing is lost if decoding is terminated when C = 180. Note also that, regardless of the value
of K, the curves have roughly the same shape and that the break points occur at about the same

value of C . The fourth curve in each set, P' is an empirical lower bound on the error max E
probability that would obtain with infinite memory. The points on this curve were generated by

noting those error messages which satisfied either (or both) of the following conditions:

For still larger values of C, the distribution drops sharply if P^. ~ P_ because of the sharp rise in P_.

17

Cmox

18-6-14425

J I I I L_L

K* 19 [18-6-14426 1

/

: ^

/

•^ -A--A-A P'

J I L

Fig. 10. Empirical curves showing the quit probability and the error probability as a function of the computation
cutoff for several values of K at R/R =1.00, T= 2048. See text for a description of P'

comp r E

(1) The correct path was not purged from memory. In this case, the correct path was

available throughout the decoding process, but the incorrect path was preferred.

(2) At any point in the decoding process, the largest metric - namely, the one to be
pursued by the decoder - was equal to or greater than the largest metric that had
been discarded. In this case, the decoder would never have examined any of the
discarded entries, even if they had been retained in memory.

Any error that occurs when either of these conditions is satisfied would also occur if unlimited

memory were available. However, since a message that could not be decoded with limited mem-
ory might become an error message if memory were infinite, P' represents a bound and not an

equality. The data of Fig. 10 show that if C < ~180, then the errors due to the finite memory
size are eliminated.

Thus, in addition to limiting the time spent decoding a message, the restriction C ^ C
limits errors to those that would be made with the ZJ algorithm operating with infinite memory.
Henceforward, the use of a computational cutoff is implicitly assumed.

|<8-6-13617 1

Fig. 11. Qualitative behavior of the quit
probability and the error probability for
SNR's lower than the design value of 0 dB.

The computational cutoff, in fact, serves a third purpose: it helps reduce Pp as the SNR

decreases because it causes the decoder to quit on an increasing fraction of the messages.
Figure 11 illustrates this effect. If the SNR is very low, then P(C > C) = P~ — 1, and a for- max v^
tiori Pp •* 0. (Pp is computed over all transmitted messages, not just over decoded messages.)
We find empirically, however, that as the SNR decreases from 0 dB, the initial increase in PQ

is not sufficient to compensate for the increase in PE described by Eq. (10). The problem, then,
is to ensure that the peak Pp does not exceed specifications.

B. Threshold on Final Metric Value

As mentioned earlier, the simple expedient of increasing K sufficiently is not satisfactory
because of the associated penalty in transmitter power needed for the tail. The peak Pp can

be reduced to some extent, without incurring any penalty, by applying a threshold 0 on the final
decoder metric, rejecting a message if the final value of its metric, M, falls below 0. Since a

message that fails the threshold becomes a quit, the threshold must be chosen to have a negligible

effect on PQ at 0 dB. Figure 12 depicts the probability density function p for the final metrics
of all correct paths at SNR = 0 dB and the corresponding densities for all correct and incorrect

paths at some SNR < 0. When conditioned by C^ C each of the density functions shifts to
the right. Because 0 must be far out on the tail of p , the fraction of errors eliminated by the
threshold, while useful, will not be very close to unity. Figure 13 shows experimental results

|9

DENSITY OF METRIC
OF CORRECT PATH,

SNR o QdB (p)

CORRECT PATH,
SNR<OdB Fig. 12. Probability density functions of several

metric values. The threshold 9 must be chosen
far on the tail of the 0-dB correct-metric density,
and therefore a significant fraction of incorrect
paths will exceed the threshold at lower SNR's.

Fig. 13. Quantitative curves of the quit probability
and the error probability (with K = 15, T = 2048,
Cmax = 150) as a function of SNR both before and
after applying a metric threshold (cf. Fig. 11). The
use of the threshold reduces the peak Pp.

|<»-6-M4?«|

20

for PQ and Pp as a function of SNR both before and after applying a threshold.* The data are

for a decoder with K = 15 and C =150. The density p is Gaussian, and 6 was chosen at max J_ .Tco
the (-3.29a)-point, i.e., such that P(M < 9) = 0.5 x 10 , where M denotes the correct path

metric. Actually, the probability of a threshold failure at OdB is significantly less than this

value because, as noted above, a large fraction of those messages with M < 9 require exces-

sive computations and become decoder quits. As seen from Fig. 13, the threshold does indeed

have a negligible effect on PQ at 0 dB, but the threshold lowers the peak Pp by a factor of 4.

C. Use of a Long Shift Register

In order to achieve a further reduction in Pp, several other approaches were considered.

The first two approaches that were tried - viz. (1) a running metric threshold, and (2) forward

and backward decoding - yielded some improvement in Pp. However, they both possess signif-
icant drawbacks (primarily, an increase in the required table size), and therefore they are not
suitable for the decoder under consideration. An explanation of these techniques is given in
Appendix C.

10 A superior approach, proposed by M. Hellman uses a long shift register and achieves a
substantial reduction in Pp with no increase in PQ and with negligible increase in decoding time.
Consider a convolutional encoder/sequential decoder having a shift register of length S equal to
the total number of bits transmitted. Thus, if there are N information bits and L tail bits,
S = N + L. Since the i information bit remains in the shift register for S + 1 - i shifts, the
error probability associated with this bit is B2 for operation at 0 dB, and Pp is therefore
bounded by

N N

PE
<B I 2"(S+1"i) =B2"L I 2-J (11)

i=l j=l

<B2"L .

This is significantly lower than the corresponding union bound given by Eq. (10) for a conventional

decoder with K = L + 1, and the improvement will also prevail at lower SNR's. In practice, the

shift register length need not be N + L because the same Pp results if merely S » L; for L ~ 30,

S = 64 (four words on a 16-bit computer) or even S = 48 suffices. An interesting and useful feature

of this type of decoder is that, with N = 100, the first ~60 bits are very reliable since the error

probability associated with this part of the message is

< -60 B2_/3S = 60 B2"64/3 (if S = 64) .

Therefore, the first part of any decoded message, regardless of the value of its final metric,
can be accepted with confidence.

*The actual signal and noise levels that were used to obtain a given SNR were equivalent to those that would
result if an AGC preceded the decoder, where the AGC maintained the total energy (signal + noise) constant.
For SNR's near 0 dB, a change in the SNR is reflected primarily in a change in signal level.

21

OdB, SHORT
SHIFT REGISTER

NUMBER OF BITS IN TAIL (U NUMBER OF BITS IN TAIL (L)

Fig. 14. Error probability as a function of the number of tail bits for several SNR's with a long shift
register, and at 0 dB with a short (i.e., length L + 1) shift register (T = 2048, Cmax = 150). The
SNR's do not include the penalty associated with the tail, (a) Before applying metric threshold,
(b) After applying metric threshold.

Some quantitative results for a decoder with a long shift register are shown in Fig. 14. The
first set of curves [Fig. 14(a)] gives Pp as a function of L for several SNR's. Each curve dis-
plays the predicted exponential behavior. For clarity, a curve at -4 dB has been omitted from
the figure, but this curve would lie below the - 3 dB curve. Thus, for a particular value of L in
the range shown, a plot of Pp as a function of SNR exhibits the behavior depicted in Fig. 11, with
the peak Pp occurring near -3 dB. (The curves of Fig. 13 are not for a decoder with a long shift

register.) The dashed curve of Fig. 14(a) is Pp vs L for a conventional sequential decoder (with
S = K = L + 1) at OdB. At this SNR, it is seen that the long-shift-register decoder yields more
than a factor of 15 improvement in Pp over the conventional decoder. It is important to note

that the SNR used here does not take into account the additional power associated with the tail;
this power, which of course increases with increasing L, can be computed after the required
number of tail bits is determined.

Figure 14(b) gives curves corresponding to those of Fig. 14(a) after the metric threshold 0 is
applied. A comparison of the two sets of curves shows that at OdB the effect of the threshold

is negligible, but as the SNR decreases, an increasing fraction of the errors is eliminated. In
fact, the -3 dB curve now lies below the OdB curve. Again, curves at -1 dB and -2 dB have

been omitted, but both would lie below the -1.5 dB curve, indicating that the post-threshold peak

of Pp occurs near -1.5 dB.

22

The dotted curve shown in Fig. 14(b) is the result of applying a threshold (at -1.5 dB) on

the metric accumulated from bit 80 rather than from bit 0. This procedure becomes advantageous
as the number of tail bits increases because of the high reliability of the initial decoded bits with
a long shift register. Thus, if there is a decoding error, the branch metrics from depth N

through depth N + L are "error metrics" (with a mean value that is large and negative), whereas
the metrics from depth 0 through depth ~60 are almost certainly "correct metrics." If the

change in metric only over the tail bits is measured, the small number of samples contributing

to the measurement result in a relatively large variance. Since the threshold must be chosen

to have only a small effect on PQ at OdB, this large variance would dictate a threshold that would

be too low to reject an appreciable fraction of the error messages at low SNR's. It was found

empirically that at -1.5 dB (corresponding to the peak PE) with L ~14, best results are obtained

by using the change in metric between depth ~80 and depth N + L ~114. The threshold applied

over the entire message may be considered a test of the SNR, whereas the threshold applied over
the final bits may be considered a measure of the error probability.*

It is interesting to note that, for the long-shift-register decoder, the data for an entire PE

vs L curve can be obtained easily by the following technique. For each simulated message,
the decoder is initially set for L = 5, the smallest value of interest. If decoding is completed
before the computation cutoff, a record is made of whether or not there was an error in the mes-
sage. Then L is incremented by one, and decoding is allowed to continue. This procedure is
valid because the state of the decoder is identical to that of a decoder with total tree depth 106
that has just examined the best path at depth 105. The process continues until L attains the
maximum value of interest. If for L = L1 the decoder reaches computation cutoff, then a quit is
entered for all L > L'. Thus, for each simulated message, information on all values of L is
obtained with minimal extra effort. (With a conventional decoder each message must be re-run
for each value of constraint length K. At first it was assumed that if a message was decoded
correctly for K = K., then for K > K. the message would again be decoded correctly. However,

the assumption proved false when in fact it was observed that many correctly decoded messages
at K = K, became errors at K. +1, even though the first K bits of the parity network connection

vectors were unchanged. Thus, each point of the short-shift-register data required as much
effort as an entire curve with the long shift register.)

D. Obtaining Data for Very Low PE; Decoding into the Tail
-4 -7 If the exponential curves of Fig. 14(b) are extrapolated to PE =10 and to Pp = 10 , the

values of L shown in Fig. 15 are obtained. (The short shift register, -1.5 dB curve is not given
in Fig. 14.) The extrapolated values at -1.5 dB dictate the requirements on L, since this SNR

corresponds to the worst-case P™ Actually, the values in the figure are conservative because
the threshold test becomes more effective as the total number of tail bits increases; that is, the
fraction of error messages that passes the threshold decreases as L increases. The data indi-

-4 cate that, to obtain P£ < 10 , the long-shift-register decoder required about three less tail

* This fact suggests the use of two thresholds -one on the metric from depth 0 and one on the metric from depth
~80 —with the requirement that both thresholds be exceeded in order for a message to be accepted. An exper-
iment was conducted with each threshold set so that 0.3 X 10"^ of all correct metrics at 0 dB would be discarded.
(With a single threshold, the value of 0.5 X 10" 3 was used.) The error rejection improved slightly, but conclusive
results could not be obtained with the relatively small values of L that were necessary in order to observe a
statistically significant number of errors.

23

18-6-14429

LONG SHIFT REGISTER

SNR
(dB)

NUMBER OF
TAIL BITS REQUIRED

PE< io"4
PE < io"7

0 14 25

-1.5
(metric from

bitO)
17 30

-1.5
(metric from

bit 80)
16 25

0. 17 27

-1.5 20 31
SHORT SHIFT REGISTER

Fig. 15. Number of tail bits required to achieve indicated error probabilities at 0 dB
and at — 1. 5 dB (which corresponds to the peak of the Pp vs SNR curve). The values were
obtained by extrapolating the data of Fig. 14(b).

bits than the conventional decoder. However, since the long-shift-register curves have a some-

what shallower slope, only one less tail bit is needed for Pp < 10 . However, if a threshold on

the metric from bit 80 is used, only 25 tail bits are needed - fewer than would be required with

a short shift register operating at 0 dBi
Unfortunately, however, there is no convenient way to determine the accuracy of these ex-

trapolated data. Analysis is formidable because of the conditional probabilities involving com-

putation cutoff and metric threshold, and simulations are impossible because of the inordinate

computer time necessary to obtain data on such low probability events.* A margin of safety can
be inserted into the extrapolated data by augmenting several bits to the indicated values of L but,
as mentioned earlier, three tail bits represent an additional 0.1 dB transmitter power, so this
solution is to be avoided. Fortunately, with the long-shift-register decoder there is a simple way
to overcome this problem. The decoder treats the first L. tail bits as if they were information

bits (i.e., the decoding tree has two branches per node up to depth N + L.), but after decoding is
complete, a check is made to see that these known bits are indeed correct. It can be shown that
if an error is made on any of the information bits (N - S + L^ +1), (N - S + L^ + 2),..., (N + L^) -
viz., those bits that are still in the shift register when bit N + L^ is shifted in - then the prob-
ability that the L, tail bits are decoded correctly is 2~ *. Furthermore, the initial information
bits 1, 2, . . . , N - S + L. are known to be reliable because a long shift register is being used. The

technique achieves good results because it halves P„ for each bit in L,, whereas each extra
-ß -i -4 tail bit reduces P^ by only 2 H > 2 if SNR < 0. As an example, L = 17 gives P„ = 10 (cf.

,-L1/-4 -7
E = 2 (10) < 10 , and a total of 17 +10 =27 tail bits is

-3, rn „ _-4,
Fig. 15), so L, = 10 ensures that P
needed. Alternatively, with L1 = 13 and 13 additional tail bits, PE< [(l/8) x 10_:>] [8 xio"4] :
10~ , with no extrapolation of the data. According to the curves of Fig. 14(b), this value of

* For example, a data point at Pp = IO-** requires ~20 X 10^ simulated messages so even if the average time to
process a message were 1 second, approximately 500 hours of computer time would be required. Moreover, at
— 1.5 dB, where PQ > 0.1 and where the expected number of computations for a decoded message is high, the
average decoding time is considerably more than 1 second.

24

_7
26 total tail bits is the minimum necessary to ensure P^ < 10 . Note that L. should be signif-

icantly less than L so that the quit probability at the nominal 0 dB is not appreciably affected.

Since the probability of an error occurring in one or more of the first L. tail bits (at 0 dB) is on

the order of z~{L~L^ + 2~(L~L1 +1) +. . . + 2~L « 2~(L~Ll -1), (L - 1^) must be chosen such that
2-(L-L1-l) <K 10-3^ namely (L _ L j > 13

V. IMPLEMENTATION OF THE ZIGANGIROV-JELINEK ALGORITHM

The results presented in Section III show that a small, general-purpose digital computer

has adequate memory to perform sequential decoding using the ZJ algorithm: a table containing

on the order of 2000 entries achieves P~ = 10 at R = R .In this section we compare Q comp ^
several techniques for efficient implementation of the algorithm. The principal conclusion is

that a typical computer has adequate speed for the decoding task.

A. Details of a Practical ZJ Algorithm

A flow chart for the ZJ algorithm is given in Fig. 16. The flow chart differs from the basic

five-step algorithm given in Section III because some time-saving features are included. Most

of the steps are self-explanatory, but the following points deserve elucidation:

(1) Initialization involves setting up the memory tables and setting the CURRENT

entry to correspond to the start of the decoding tree.

(2) Whenever Step A of Fig. 16 is performed, CURRENT represents the node having

the largest metric, i.e., the node on the path that will be extended next; BEST

represents the node having the second-largest metric, i.e., the table entry that has

the largest metric; and WORST represents the node having the smallest metric,

i.e., the table entry that, if necessary, will be discarded.*

(3) When the current node is extended, two metrics, M. and M_, are produced (unless

the current node is in the tail), with M. designating the larger of the two. If M. is

greater than the best metric, then M. need never actually be placed on the table

since it corresponds to the path that will be extended (Step B).

(4) No bookkeeping need be done on WORST until the table becomes full (Step E).

(5) Once the table is filled, one entry must be discarded for each computation (unless

the current node is in the tail). However, if the table is full and if M? is less than

the worst metric, then M_ is discarded immediately (Step F). This test saves con-

siderable time when a noisy message is processed.

(6) Step J represents the test for computation cutoff.

B. Data Structures for the ZJ Algorithm

When the ZJ algorithm was initially considered for implementation, no information was

available on the quantitative effect of the table size T on the quit probability PQ. It was thus

* It is not obvious that the smallest metric is necessarily the "worst" metric —that is, the metric least likely to be
on the correct path. A number of simulations were conducted in which the discarded node was the one with the
smallest value of the quantity (M + dA), where M is the metric, d is the depth, and A is a parameter. The
value A = 0 thus corresponds to eliminating the smallest metric; A < 0 implies that nodes farther along in the
tree are preferred; A > 0 implies that nodes farther in the tree tend to be discarded. The conclusion from these
experiments was that at R = Rcomp there is no particular advantage in considering the worst node to be other than
the one with the smallest metric.

25

f Start J 18-6-14430

Initialize

Compute metrics

M , M stemming

from current node; ^ M(> BEST ~^) n° ft

Jyes C

Insert entry
M on table

CURRENT—M(

D

Find new BEST

yes- / Decoding
completed

(count comps)

(°"") If table is full,
find WORST Discard WORST

BEST —M, Insert entry

Fig. 16. Detailed flow chart of the ZJ algorithm.

26

difficult to determine the most efficient data structure, and it was impossible to predict which

of the operations of Fig. 16 would consume the most time. The most expeditious approach, there-

fore, was to employ the simplest implementation, then establish what value of T is required,

and finally determine an implementation for this value of T that would reduce the decoding time.

1. Unordered Table with Linear Search

For the reasons described above, the initial implementation kept the temporarily discarded

nodes on an unordered table. This data structure requires the least extra memory, is easiest to

program, and is conceptually the simplest. In fact, this data structure would be satisfactory if

the required T were small (~300 entries). When it was determined that T ~ 2000 is necessary,

however, it became clear that the time spent searching the unordered table for the best and

worst metrics (Steps D and I) was excessive. This is shown by the data in the first column of

Fig. 17, which gives the average number of memory cycles per decoder computation, as imple-
mented on a Varian 620/i computer.* A decoder computation includes all the operations in the

|18—6 — 14431|

LINEAR
TABLE

QUADRATIC
TABLE

CUBIC
TABLE

TABLE-LIST
STRUCTURE
(estimate)

PARITY & METRIC
920 920 920 920

DATA STRUCTURE
14400 1040 520 150

MISCELLANEOUS

('MISC*
100 100 100 100

TOTAL
(tCOMp) 15420 2060 1540 1170

Fig. 17. Average number of memory cycles per computation for several implementations
for a message that cannot be decoded within the computational cutoff. The first three
columns of data were obtained from actual implementations, whereas the last column is an
estimate. All values are for a Varian 620/i and are for T = 2048.

loop that returns to Step A of Fig. 16. Since the branches taken within this loop vary from com-

putation to computation, only the average time is meaningful. The values shown are an average
for a number of messages that, because of excessive noise, could not be decoded after 15,000

computations (N = 100, and C = 150), with operation at R = R = l/l2, and with T = 2048, K * max ^ comp
the shift-register length S = 64 bits, and the tail L = 29 bits. (Computations in the tail are not

included in the total number of computations.) Note that it is the messages that cannot be de-
coded that limit the real-time decoder performance, and therefore it is these messages which
must be considered when speed and memory requirements are determined. The total time
trOMP *s broken into three categories:

tcOMP = tPM + tDS + ^ISC

* The Varian 620/i is a 16-bit computer having one accumulator, two index registers, and a memory cycle time
of 1. 8 microseconds.

27

in which tp,. is the time required to compute the V parity bits and the metric for both of the
branches from a node; t^q is the time required to process the metrics and to insert them into

the data structure; and t^y^p is the time spent performing other operations such as updating

the shift register and counting computations. For the original implementation, then, tnc. occupies
more than 90 percent of the decoding time, whereas less than 7 percent of the time is spent per-
forming the basic decoder functions included in tpM.*

Since the time tRn depends heavily upon the data structure, an implementation more efficient
than the unordered table must be found. Now, the unordered table requires excessive time be-
cause a linear search of the entire table must be initiated each time the largest or smallest metric
must be found. The time associated with this type of search is given by

t(linear search) ~ (T) (t)

where t is the time required for the instruction loop which compares two metric values and in-
dexes down the table. The overhead instructions associated with setting up the loop are ignored

for the present calculations. Depending upon the instruction repertoire available, t will gener-

ally lie in the approximate range 5 >$ t -$10 computer cycles; for the Varian 620/i, which has no

compare instructions, t ~ 9 cycles. Since T ~ 2000, the linear search requires on the order

of 18,000 cycles, and this search must be carried out each time Step D or Step I is performed.

The data in Fig. 17 reflect the fact that these operations are not performed for each decoder

computation. In fact, a limited number of simulations indicated that for worst-case messages

(i.e., those that could not be decoded before computation cutoff), the probability of having to find

a new BEST is ~0.65, and, when the table is full, the probability of having to discard the worst
table entry (rather than M-) is only ~0.20. These data show that during a noisy message, with
the decoder spending most of its time examining incorrect nodes, (a) an incorrect path is pur-
sued, on the average, for ~(l/0.65) » 1.5 nodes, and (b) the range of metric values in memory
is so small that the lesser of the two metrics generated at a node is, with probability ~0.80, less
than all other table metrics. Even though a table search is executed only ~0.85 = 0.65 + 0.20
times for each computation, the computing time associated with a linear search of an unordered
table is too great.

2. Ordered List and Ordered Table

In order to reduce the search time, alternative data structures were considered. An ordered
11 list appeared advantageous because it was expected that, when the largest metric was incre-

mented during a decoder computation, the two resulting metrics would also be relatively large,
i.e., they would have positions near the head of the list. The search time associated with an
ordered list is given by

t(list search) ~ (P) (tQ) ,

where P -^ T is the position of the desired entry. If the entry to be added is near the head of the

list, then P « T, and the search time would be very small. A few simulations revealed, however,

* The data in column 1 of Fig. 17 reflect a slight modification of the original implementation and of the flow chart
of Fig. 16: to speed up decoder operation when the table is full, more than one entry was discarded at Step G.
The procedure was to find a metric value such that a fraction between f and f/2 of the entries on the table had
metrics less than M, with f a specified small number. Although several searches of the table were usually re-
quired to find an M satisfying the criterion, on the average (3/4) (f) (T) entries were discarded each time Step G
was performed, so that the time per discarded entry was low. This procedure, however, effectively reduces T by
the factor 1 - (3/4) f. For the data in column 1 of Fig. 17 [and Figs. 6(b) and 7(b)], f = 0.1 was used.

28

that for noisy messages, P/T ~ (2/3), and therefore an ordered list offers little improvement.

This result merely confirms the above-mentioned fact that during noisy messages the decoder
spends most of its time investigating incorrect nodes which have M ^ M < BEST.

Another data structure that was considered was an ordered table. With this implementation,
negligible time is spent performing Steps D and I of Fig. 16; most of the time is spent rearrang-

ing parts of the table each time an entry must be inserted (Steps C and H). As with a list, such
an implementation is advantageous if the new entries are near the beginning (or near the end)

of the table. Since this is not the case for noisy messages, the ordered table was abandoned.

3. Unordered Table with Higher-Order Searches

Finally, the structure shown schematically in Fig. 18 was chosen. The table of metrics is

unordered but is divided into T_ subtables of length T. each. The address of the largest metric
on each subtable is recorded on a secondary table of length T^. Thus, the i entry on the
secondary table is the address of the largest metric on the i* subtable. A corresponding sec-
ondary table is also needed for the addresses of the smallest subtable metrics. Finding the

largest metric and replacing it with a new metric requires scanning the secondary table and

[Ts - 6 - 13? 18-l|

UNORDERED TABLE
OF METRICS

SECONDARY

TABLE

^SUBTABLE

Fig. 18. Schematic representation of the second-
order table data structure.

scanning one subtable. The search time is proportional to (T, + T?), and since T,T_ = T, it is

clear that the time is minimized if T. = T_ = N/T"; the procedure is therefore termed a quadratic

search with time given by

t(quadratic search) « (2T 1/2)(tc)

This concept may be carried farther with cubic, quartic, and higher-order searches possible.
A cubic search, for example, would be used with a three-level structure: a metric table with

T entries and T 2/3 subtables of length T • a secondary table with T entries and T '
subtables of length T ' ; and a tertiary table with T ' entries, one for each secondary subtable.
The time required for a k order search is given by

t(kth order search) « (kT1^) (t) ,

and the extra memory needed for the auxiliary tables is

2'»

extra memory = 2 rT<k-l>A + T
(k"2)/k +. . .+ T1 A]

= 2
T - T1

Tl/k_1
words

The factor of 2 included in this equation accounts for two sets of auxiliary tables for both the best
and the worst metrics. Figure 19 shows the time and memory requirements for several values
of k with T = 2048. Although the values do not include the additional operations that are neces-
sary with larger k, the values are indicative of the enormous savings in time for k = 2, 3, or 4;

| 18-6—14432 |

ORDER OF RELATIVE EXTRA
STRUCTURE SEARCH TIME MEMORY REQUIRED

W (0C) (words)

1 2048 0

2 91 92

3 38 348

4 27 714

5 23 1138

Fig. 19. Time and memory requirements for k order structures with T = 2048.

The memory requirements include space for auxiliary tables with addresses

of both the best and the worst metrics.

for example, k = 3 reduces the search time by a factor of more than 50. Furthermore, the extra
memory required is small in comparison with the space occupied by the main table since, as
discussed below, each entry in this table will have ~8 words. The second and third columns of
Fig. 17 show the improvement in t^ achieved by decoders using a quadratic and a cubic search,
respectively; the data are derived from actual implementations on the Varian 620/i. The meas-
ured improvement is not as great as that predicted by the idealized data of Fig. 19 because
(a) instructions other than those involved in t are associated with each data structure, (b) the
percentage of these instructions increases as the total search time itself decreases, and - to a
much lesser degree - (c) all subtable lengths are integral powers of two rather than the optimum

l/k
value T . On the other hand, the value of tDg in Fig. 17 is not quite the minimum because for
k ^3 the subtable lengths become small enough to justify "opening" some of the search loops.
That is, instead of looping through the same instruction sequence n times, the sequence is re-

peated n times and the instructions executed in succession. If this technique were incorporated
in the cubic search decoder reported on in Fig. 17, a 10 to 15 percent improvement in tnc would
accrue. Furthermore, with T = 2048 a quartic search might yield a further reduction in tne

4. Table-List Structure

The final data structure to be considered here is the one Jelinek used in his implementation

and is illustrated schematically in Fig. 20. This structure, which is a type of hash table, will be

referred to as the table-list data structure. The node metrics are grouped into bins such that if
a metric M falls in the range kA ^ M < (k + 1) A, then the entry with this metric is assigned to

30

|lS-6-l4433l

Fig. 20. Schematic representation of the table-list
structure used by Jelinek. The data for the nodes
are contained in the (unordered) lists pointed to by
the BIN TABLE entries.

L.
POINTER TO LIST OF ENTRIES
WITH kA < Metric < (k + 1)A

0

DATA

DATA

bin k. For speed of operation, A is chosen to be a power of 2. A table, denoted the BIN TABLE
in Fig. 20, is used to store the addresses of the first entry in each bin, and all entries in the same
bin are linked together to form a list structure, i.e., each entry, in addition to containing the
information pertinent to the decoding tree, also contains the address of the next entry in the bin.
A zero address, for example, denotes the end of a list as well as an empty bin. The bin for a

new entry is easily found by using the quantity (M/A) as an index. The best entry is taken from
the highest non-empty bin, but this entry is not necessarily the one with the largest metric be-
cause the entries in a bin are not ordered. Similarly, the worst metric is taken from the lowest
non-empty bin. Thus, the structure has many of the advantages of an ordered table, but also has

a convenient means for inserting entries without rearranging large blocks of memory. There
are, however, a number of drawbacks associated with this data structure. Additional memory

is required for the BIN TABLE and for the address word contained in each list entry. Also, the

parameter A must be chosen properly.* The ideal choice is A = 1 in order to have exact ordering.
But BIN TABLE must have [M - M .]/A entries, where M and M are the maximum 1 max minJ/ ' max min
and minimum possible decoder metrics, so that A = 1 (or any small A) results in excessive mem-
ory devoted to BIN TABLE. On the other hand, if A is large, the size of BIN TABLE decreases,
but the metric ordering becomes inexact and decoder performance will deteriorate. Furthermore,
the required size of BIN TABLE increases as the number of channel symbols increases because

the possible range of metric values increases. However, by grouping all large negative metrics
in one bin, the size of BIN TABLE can be reduced without affecting decoder performance.

In order to determine whether intermediate values of A degrade decoder performance, an
elegant method of "simulating" the table-list structure with the already implemented data structure

*The table-list structure also lacks the flexibility that was needed in this study. For example, it is difficult to
incorporate a procedure for discarding other than the entry with the smallest metric. Again, for purposes of
this study, an implementation that employs exact ordering of metrics was necessary since such a decoder provides
a performance standard for implementations using inexact ordering. Neither of these weaknesses is pertinent to
a working version of the decoder.

a

was conceived. The method is to ignore (i.e., mask out) the log?(A) least significant bits when

comparing metrics. Metrics that fall in the same width-A bin are thus treated as equal when the

best or the worst metric is needed but, as in the actual table-list structure, the metrics retain

their full precision when placed on the main memory table. This method therefore gives a very
close approximation to the degradation in computation and in PQ produced by the table-list struc-
ture. Simulations of this type were conducted with the effective A chosen so that the required
size of BIN TABLE in an actual implementation would be ~500 words. The results show that at
R = R and T = 2048, the table-list structure has performance comparable to a decoder with comp r r

exact ordering in terms of (a) the average number of computations required, (b) the number of
computations to achieve P^ = 10 , and (c) the Pp. It was noted, however, that doubling A from
the above value, i.e., halving the length of BIN TABLE, did increase P~ appreciably. An esti-

mate of the operations necessary with a table-list structure indicates that this implementation
might reduce t^« to ~150 cycles. The computation time based upon this estimate is shown in
the final column of Fig. 17.

C. The Influence of Computer Hardware

As shown by the data of Fig. 17, the third-order table structure (and also the table-list

structure) reduces the fraction tr^s^rOMP sufficiently so that, in the implementations refer-
enced by the figure, tpM constitutes the largest portion of tCQMp, and effort must now be
directed at reducing this quantity. Before this subject is pursued, however, it must be noted

that the value of trOMp is strongly dependent upon the instruction set and the hardware config-

uration of the computer being used. Although the times given in Fig. 17 are for the Varian 620/i,

the relative magnitudes are probably typical for many small, general-purpose computers. On

the other hand, the presence of certain features can make a computer much better suited to

sequential decoding and can result in a significant reduction in decoding time.* As discussed

in more detail below, an instruction that can determine the parity of a word will clearly reduce
tpM. A compare instruction might reduce tnc, by 5 to 10 percent, and a "decrement and jump"
instruction (that decrements an index register and jumps if non-zero) would result in an addi-
tional reduction. Also, the presence of more than one accumulator would reduce trOMp signif-
icantly. Because the 620/i has none of the above features, the times given in Fig. 17 can be
reduced appreciably either by selecting (or designing) a computer better matched to the decoding
problem, or by adding the desired features to an existing computer. Moreover, the hardware
that is available will determine, to a large extent, the actual implementation that will be used.

D. Methods for Reducing the Time Spent Computing Parity and Metrics

In this section we shall show how tpM can be significantly reduced, either with readily
available hardware or with programming techniques. However, we first note that tpM is roughly
proportional to V, the number of parity networks. The first row of Fig. 21 (a) shows the ef-

fect of halving V, from 12 to 6. The ~50 percent reduction in tpM would reduce trOMp by ap-
proximately 30 percent with the cubic table structure. It is important to realize, however, that

*The ultimate hardware option for the ZJ algorithm is an associative memory that enables the largest and the
smallest metrics to be determined essentially by hardware rather than software. At the present time, however,
such memories are not generally available and therefore they have not been considered.

32

l<B-6-l4434~|
VM(cydes)

V= 12 V = 6

ORIGINAL IMPLEMENTATION 920 480

WITH PARITY INSTRUCTION 720 380

WITH 2 ADDITIONAL ACCUMULATORS 620 320

WITH BOTH OF ABOVE FEATURES 480 260

(o)

V= 12 V = 6

fPM
(cycles)

EXTRA
MEMORY

(words)
VM

(cycles)

EXTRA
MEMORY

(words)

ORIGINAL IMPLEMENTATION 920 0 480 0

TABLE OF PAIRED METRICS 780 250 410 650

TABLE OF PRE-COMPUTED PARITY 460 2000 280 1000

BOTH OF ABOVE TABLES 310 2250 220 1650

(b)

Fig. 21. Estimates of the time required to compute parity and metrics if various improvements
are incorporated, (a) Hardware improvements, (b) Programming improvements (including the
additional memory that is needed).

this comparison was made with R/R
comp

and n°l Et/No held fixed- In fact' if Et/No is fixed at

the value necessary to achieve R = R with V = 6, then doubling V yields R/R„rtwv,„ = -0.14dB. ^ comp comp
Interpolating the data of Fig. 6(a), we find that this reduction in R/R

comp reduces by approximately
25 percent the number of computations necessary to realize a failure-to-decode probability of
10 . In this case, then, the total decoding time of a noisy block would be roughly the same for
V = 12 as for V = 6, since the product (total number of computations) x (time/computation) is al-

most unchanged. However, other numerical values of the times tpM, tDS, and tMISC could yield

decoding times that for fixed E./N differed markedly for different values of V.
The most obvious instruction that would reduce tpM is a parity instruction. On the 620/i,

the parity of a word can be determined in 18 cycles, but a parity instruction might require only
2 cycles, and tpM would be lowered by 20 percent. Similarly, if three accumulators were avail-

able instead of one, and if there were register-to-register arithmetic, tpM would decrease by
more than 30 percent. The presence of both of these features would result in an almost 50 per-
cent time saving. (There is some overlap in the two calculated savings.) The above data are
tabulated in Fig. 21(a). Note that the presence of extra accumulators will certainly reduce com-

puting time in other parts of the program, although perhaps not to such a degree.
It is also possible to reduce tpM by devising special programming techniques. A particular

technique may eliminate the need for some hardware features or it may be used in conjunction
with them to achieve even greater savings. Two especially profitable programming techniques

will now be described; in each case, the decrease in tpM is accomplished at the expense of an

33

increase in memory requirements. The values in the first row of Fig. 21(b) freproduced from

Fig. 21(a)] correspond to a set of instructions which does some initialization and then performs

the following operations V times:

(1) Assume that a 0-bit was transmitted, and logically AND the (64-bit) shift register

with the (64-bit) connection vector of one of the parity networks.

(2) Determine the parity of the result of (1).

(3) Look up the metric increment, using the result of (2) together with the quantized

input signals to the decoder that correspond to this channel symbol. Also, look up

the metric increment for a transmitted 1-bit. (The latter operation is simple since

it depends only upon the result of (2) and upon the first bit of the connection vector.)

The first programming technique reduces tpM by obtaining two metric increments simul-

taneously, so that Step (3) is performed only V/2 times per computation. The idea is to store

the quantized signals by pairs rather than singly. Assume that there are 16 quantization inter-
2

vals, so that 16 = 256 interval pairs are possible, with each pair of quantized decoder inputs

assigned a number between 1 and 256. The binary branch symbols (in the code tree) that corre-

spond to a pair of received signals can take on one of the four values 00, 01, 10, or 11. A table

containing 4 x 256 = 1024 entries is constructed, with one entry for each possible combination
of transmitted and received signals; each entry in this table is the sum of two of the 16 metric
increments. A 10-bit index built up from the two quantization interval numbers (2X4 bits) and
the two branch symbols (2 bits) is then used to access the table. As an example, assume that

the particular pair of received signals falls into quantization intervals 9 = 1001- and 7 = 01112.
Then, if the corresponding branch symbols (for one of the two branches stemming from the cur-
rent node) were 01, the index would be (1001) (0111) (01)2 = 605. _, and the 605th table entry

would contain the sum of the metric increments for a hypothesized 0-bit lying in interval 9 and a
hypothesized 1-bit lying in interval 7. Thus, the original 16-entry table of metric increments
is replaced by a much larger table, but the time spent performing Step (3) is now halved. Ac-

tually, the memory requirements do not increase by 1024 words because only half the storage is
needed for the quantized input signals.* The net extra memory is thus 1024 - (l/2) (N + L) V
words. The second row of Fig. 2Kb) gives tpM and the net memory requirements if this method
is used with N + L = 1 30. The times can be decreased if some of the hardware features described

above are also available. In fact, since Steps (1) and (2) are unchanged with this method, a

parity instruction yields the same absolute saving and hence a larger percentage saving.

The second programming technique involves combining Steps (1) and (2) and using a large
12 table to obtain all V parity bits at once. Consider the proposed 64-bit decoder shift register

to be made up of b-bit segments. Each of these segments can assume 2 possible values, and

for the set of V connection vectors, we can compute and tabulate, in advance, the V parity bits

* Actually, each quantized input occupies only log2 Q ~4 bits (i.e., the quantization interval number), and
therefore several inputs could be stored in one 16-bit word. With the instruction set of the Varian 620/i, however,
many operations are needed in order to recover a particular input if it shares a memory word with other inputs.
Because these operations must be performed V times (or V/2 times with the above technique) for each decoder
computation, and because the possible savings in memory were small [< V(N + L) words] in comparison to the
memory occupied by the other tables, one word was allotted to each input. On a computer with byte-oriented
instructions, for example, the quantized inputs could be stored more efficiently.

34

that would result from each of these 2 possibilities. During decoding, then, each of the (64/b)

segments is used as an index into this table and the V parity bits corresponding to each segment
are recalled with one indexed instruction. The V parity bits for a node are therefore obtained
with (64/b) table look-ups together with a like number of exclusive-OR's - a considerably shorter
process than performing Steps (1) and (2) V times. Now, the table corresponding to each seg-
ment requires V2 bits, so the entire table occupies (64/b) (V) (2) bits. On a 16-bit machine
a convenient choice is b = 8, and a total of (2048) (V) bits is required. The third row of Fig. 21(b)

shows that this procedure reduces tpM by approximately 50 percent. For V - 42, one word is re-
quired for each entry, but for V = 6 two entries can share one word. At the expense of increased

memory requirements, then, this technique not only obviates the need for a parity instruction but,

because of the magnitude of V, actually yields a smaller tpM than is possible with a parity
instruction.

Finally, as indicated in the final row of the figure, the two techniques operating together

yield further time reductions, but the memory requirements increase.

E. Some Design Considerations for a Real-Time Decoder

The data presented in the previous sections will now be used in a sample computation of the
data rate and buffer storage requirements for a decoder operating in real time. Numerical re-

sults for some other examples are tabulated in Section VI.
Let us assume that some combination of the methods described above is used to reduce tpM

by 50 percent, and that a late-model computer with a cycle time of, say, 0.75u.sec is used.*
Then a decoder using the table-list structure with V = 12 would require approximately 0.53 x 10

seconds for a computation during a noisy block. Now the decoder must perform an average of
2.4 computations per information bit (this figure is based upon a set of simulations with T = 2048
and C =150 comp/bit), and thus the average data rate possible with the decoder is max Yi i* & v

[(0.53 x 10_3sec/comp) (2.4 comp/bit)]"1 « 800 bits/sec .

Actually, this value is somewhat conservative since a computation performed during an average
block requires less time than one performed during a noisy block because the decoder spends
less time backtracking, and hence tDS is smaller. At the above data rate, the decoder on the
average keeps pace with the incoming signals, but when a noisy block is encountered, the decoder
falls behind, and a buffer must be provided for storing the input signals until the decoder is ready
to process them. (It is not necessary for this buffer to occupy high-speed memory.) In the worst

case, a block will require 150 comp/bit, so that

(150 comp/bit) (100 bits) (0.53 x 10~3 sec/comp) « 8 sec

of decoder time will be needed. If 4 bits are used for each quantized signal (Q = 16), four signals

can be packed in one 16-bit word.t and if a tail of 28 bits is used, then at 800 bits/sec the buffer
must contain a minimum of

(800 bits/sec) x (8 sees) x (12 x 128/100 branch symbols/bit)

x (0.25 words/branch symbol) * 2.5 x 104 words.

* This is the cycle time currently available on the Varian 620/f, a computer very similar to the 620/i in all other
respects.

t If more expedient for the decoder, the signals that comprise a message can be unpacked and stored one to a word
when the message is to be decoded.

35

The above calculations are, of course, idealized because they do not allow for the statistical

nature of the channel - in particular, the occurrence of a succession of noisier-than-average
blocks. In order to allow for this possibility, tlit- data rate must be less than the maximum pos-

sible and, if necessary, the buffer size must be increased. At a data rate significantly less

than the maximum, the above buffer size will be adequate, but if the data rate is of prime im-

portance, the buffer must be enlarged in order to reduce the probability of overflow (i.e., the

probability that the allotted storage is inadequate). In general, the buffer size and the memory

table for the ZJ algorithm would be adjusted so that the over-all failure-to-decode probability,

viz., the buffer overflow probability plus the quit probability associated with finite T, is equal

to 10 . The buffer size can be reduced by decreasing the values of V and Q, but such a reduc-

tion comes at the expanse of an increase in the required signal strength.

It is worthwhile to note, however, that a ZJ decoder operating in real-time need never be
idle. If the most recent received signals correspond to depth d in the decoding tree, and if the

current node is at depth d, then, while waiting for more received signals, the decoder can ex-
tend the table entry which has the largest metric and which is at depth less than d. This advance
work costs nothing and, since it may be required at a later time, it permits operation at data
rates closer to the maximum possible.

F. The Make-Up of a ZJ Table Entry

One final subject pertinent to the implementation is the make-up of an entry on the main

table in memory. Since an entry corresponds to a temporarily discarded node, it must contain
the information required by the decoder to resume decoding from that node. The essential in-

formation is the contents of the decoder shift register, the depth of the node, and the metric.
In addition, a means must be provided for recovering the decoded information bits when the

end of the tree is reached. For a decoder operating on long message blocks, the shift register
length S is much less than the block length, and considerable storage can be saved if a separate
list is maintained of the information bits that have passed through the shift register. The infor-

mation sequence is then reconstructed from this list when decoding is complete. (One such
scheme, although certainly not the only one possible, is described in Ref. 5.) For the decoder

under consideration, however, N is relatively short and is of the same order as S, and the

most straightforward scheme is also the most efficient in terms of storage: namely, keep the
entire node name in an entry. (The node name for a node at depth d in the code tree is defined

as the d-bit information sequence that leads from the start of the tree to the node.) The shift-
register contents can be obtained from knowledge of the depth and the node name.

Now with the table-list data structure the most practical approach is to have all entries the
same length, i.e., to reserve the maximum number of bits (N) for the node name in each entry.
Entries of different lengths are difficult to handle with a list structure because of the problems
that can arise when the allotted memory space becomes fully occupied. If the worst entry - the
one that is discarded to make room for a new entry - is not of sufficient length to accommodate
the new entry, then more than one entry must be discarded. But discarded entries are not
generally located in contiguous core, so one long entry cannot be created from two short ones.
The computation time needed to overcome this problem is unacceptably long.

With the k order table structure, however, entries of different lengths can be utilized to
achieve worthwhile savings in storage. We shall consider one specific design on a 16-bit com-

puter for a decoder with N = 100 bits. Eight words are sufficient for an entry: 1 word for the

J6

SHORT ENTRIES SHORT

SHORT,

DEMARCATION (Ad)
SHORT

LONGL

metric, \ word for the depth (since d < 256) and 6| words for the node name. The first 8 hits
of the node name share one word with d. For the main table, W words are allotted, and

entries of either 4 or 8 words are permitted. A 4-word entry (referred to as a short entry) is
used if 4 ^ d ^ 40, and a long, or 8-word, entry is used if d > 40. Short entries are allocated
from the top of the table, and long entries from the bot-
tom. When decoding begins, the required entries will

be short and will occupy positions at the top of the table
but, as decoding proceeds, both short and long entries
will be required, depending upon the depth of the entry.

Eventually, if the message is noisy, all W words be-

come occupied. This situation is illustrated in Fig. 22,

in which j short entries and k long entries are indi-
cated, with the demarcation between short and long en-

tries denoted by A .. Assume now that space must be
found for a new entry, NEW. If NEW is of the same

length as the worst entry, WORST, then NEW merely re-

places WORST; if NEW is short and WORST is long,

then WORST is discarded, LONG, is moved into the
space previously occupied by WORST, NEW becomes
SHORT. ., and A , is incremented accordingly (and note

that room is available for an additional short entry); fi-
nally, if NEW is long and WORST is short, then two en-
tries are discarded (assuming the next-worst is also
short), SHORT, and SHORT. +1 are moved into the va-
cated space, NEW is inserted as LONG, ., and A, is
decremented accordingly.

As exemplified by the metric of Fig. 3(b), a message that is difficult to decode generally has

one bad noise sequence. This sequence, and hence the associated sharp dip in the correct metric,

is equally likely to occur at any point in the message. If it occurs near the beginning of the mes-
sage, most entries will be short when the decoding difficulty is encountered. Similarly, if it

occurs near the end of the message, most entries will be long. The effective quit probability is
determined by the number of entries that can be retained, and is thus roughly given by

LONG ENTRIES

LONG,

LONG,

Fig. 22. Illustrating the use of different-
length entries in order to achieve more
efficient memory utilization (with ktn order
table structure).

Q'eff P [metric dip at d £ 40] P (W/4) + P [metric dip at d > 40] PQ(W/8)

in which P~(T) is Pareto with exponent -1 at R = R . Since there are few nodes near the Q r comp
start of the tree, entries with d ^ 10 will be ignored in the following computation, and since a
path can be extended through the tail when d = N, the range of interest is 11 < d -$ 100. With

these substitutions, the above estimate becomes

P
QU ~ I I PQ,W/8) + U PQ(W/8) '- I PQ(W/8)

which is 87 percent of the space required if all entries occupied 8 words. Actually, this factor
can be reduced to 81 percent by using 5 words for the short entries (and there is no increase in

^7

the complexity of the program).* Since P„(2000) « 10~3, a total of 0.81(2000) (8) = 13 x 103

W th words is required for the node entries with a k order table structure. This compares with

(2000) (9) = 18 X 10 words for the entries with table-list structure, in which an extra address

word is required in each entry.

VI. CONCLUSIONS

It has been shown that sequential decoding can be performed in real time at useful data
rates on a small general-purpose digital computer. Techniques have been described lor main-
taining a very low error probability as the SNR decreases (at the expense of an increase in the
quit probability). Suggested design features for a sequential decoder that operates efficiently
(with respect to E, /N) and that achieves high reliability arc:

(a) Rate = R at the nominal operating point. comp l 6 '
(b) A long shift register (^64 bits) in order to reduce the error probability. The length

of the tail is much less than that of the shift register.

(c) A computation cutoff, both to limit the decoding time for a message and (with the

ZJ algorithm) to eliminate the possibility of an error occurring because of the

finite memory.

(d) A threshold on the final metric value. A message is discarded if its metric falls

below the threshold, thereby reducing the error probability at low SNR's. (Note,
however, that with a long shift register, the first part of any decoded message,

regardless of its metric, is very reliable.) The threshold is chosen to have a neg-

ligible effect on the quit probability at the nominal SNR.

For example, in order to meet the requirements P~ < 10 (at the nominal SNR) and Pp < 10

(at any SNR) with the ZJ algorithm, the required table size is ~2000 entries, the computation
cutoff is approximately 150 comp/bit, and the tail is approximately 28 bits. With binary antipodal

signaling and a white Gaussian noise channel, the required E,/N at R - R for a decoder & te M b o comp
with N = 100, L = 28, and Q = 16 is 2. 7 dB if V =12 and 2. 8 dB if V = 6 (including the penalty asso-
ciated with the tail).

The exact time and memory requirements of the decoder depend upon the method of imple-
mentation which in turn depends intimately upon the computer used. In order to present some
quantitative estimates, let us assume that a Varian 620/f, having a memory cycle time of 0.75u.sec,
is used; this computer is otherwise almost identical to the 620/i, upon which the data of Section V
are based. Figure 2 3 gives pertinent information for three possible designs. The first design,

which uses the table-list structure, is for maximum speed without regard to memory requirements,

* These estimates were partially confirmed by the following experiment with simulated messages that could not be
decoded at R = Rcomp with T = 2048 entries. For each message, decoding was stopped at the instant when the"
correct path was about to be discarded. This is the critical moment, for if there were room for more entries at
this stage, then decoding might be successful. The*depth of each node in the memory table was recorded, and a
probability distribution obtained, with the results

P(d^40)~0. 19 and P(d<56)«0.41 .

The latter value is of interest if a short entry is 5 words long. The values imply factors of 0.90 and 0.84, re-
spectively, in comparison with 0.87 and 0.81 predicted by the heuristic arguments above.

J18-6-H436]

DESIGN FEATURE
REMARKS ON

IMPLEMENTATION V

DATA
RATE POSSIBLE

(bits/sec)

WORST-CASE
DECODING

TIME
(sec)

MEMORY
REQUIREMENTS

(words X 103)

1 MAXIMUM
SPEED

ZJ ALGORITHM;
TABLE-LIST
STRUCTURE

12 1000 6.3 21

6 1100 5.5 20

II
INTERMEDIATE
SPEED AND
MEMORY

ZJ ALGORITHM;
CUBIC TABLE
STRUCTURE

12 600 10.5 16

6 660 9.5 15

III
MINIMUM
MEMORY

FANO
ALGORITHM

12 300 21. 3

6 370 17. 2

Fig. 23. Performance and memory requirements for three suggested designs. Values are for operation
on a Varian 620/f, with R = R , P^ = 10"3, and (for designs I and II) T = 2048.

comp vj

the second design is an "intermediate" approach that uses a cubic table structure, and the final
design minimizes the memory requirements by using the Fano algorithm. For the Fano decoder,
a factor of 4 increase in the total number of computations (in comparison with the ZJ algorithm)
has been assumed to meet the required P~ < 10 . This value is an estimate gleaned from a
number of published results on simulations with the Fano algorithm; Appendix D gives some
justification for this estimate and an observation regarding an efficient implementation of the Fano
algorithm on a general-purpose computer. With the Fano algorithm, then, the ~2000 entry table
is not required, but the computation cutoff must be increased to approximately 600 comp/bit.
All numerical values in the figure are for operation at R = R .As noted in Section V-D, a ö r comp
small change in the ratio R/R , produced, for example, by a small change in E, /N or by

a change in V with E, /N fixed, can magnify into a substantial change in decoder performance.
In each of the three designs it is assumed that both the paired metric and the pre-computed

parity programming techniques discussed in Section V-D are employed in order to reduce the
time spent calculating the parity and metrics during each decoder computation. The data rates
shown are the average that can be achieved for the particular implementation; they are valid for

real-time operation only if all computer time is devoted to sequential decoding and only if suffi-
cient buffer storage is provided for the incoming signals for messages that follow the one being
decoded. In practice, the rate used would be somewhat less than the value shown. Also, it

should be noted that if the time between receiving a message and decoding the message is critical,

then the maximum data rate is dictated by the worst-case decoding time and is in fact equal to

the reciprocal of that quantity. The worst-case decoding time is based upon the maximum allowed
number of computations (i.e., the computation cutoff) and occurs with probability 10~ . This
time, together with the actual data rate and the values of V and Q, is used to calculate the re-
quired buffer size. The memory requirements that are given do not include this buffer because
it need not be in high-speed memory. However, the requirements do include the storage needed
for the paired metric and the pre-computed parity techniques and for the received signals (one
per word) for the message being decoded. If either of the programming techniques is not used,
the memory requirements will be reduced, but decoding speed will decrease, as detailed in

3Q

Fig. 21 of Section V-D. The space for the program itself (for any implementation) is less than

500 words and has therefore been neglected.
We see from the figure that approximately 20,000 words of memory are required with de-

sign I of Fig. 23, but a data rate on the order of one kilobit/sec can be achieved. Design II re-

alizes ~60 percent of the data rate of design I but requires only ~70 percent of the memory. The

data rate for this design can be increased perhaps by 15 percent by using a 4th-order (instead

of cubic) table structure and by opening the code of some of the search loops, but the value for

an actual implemented version is shown in order to provide a benchmark. With the Fano algo-

rithm of design III, the memory requirements are minimal, and a data rate approximately one-

third that of design I can be achieved. It should be noted that the data rates and decoding times
for designs I and III are estimates although, as mentioned above, the values given for design II
are accurate.

Each of the designs of Fig. 23 may be modified for operation at rates below or even slightly
above R by adjusting the time and (for the ZJ algorithm) the memory requirements accord-

ingly. If, for example, R/R = — 1 dB (or, equivalently, if the nominal SNR is increased by
approximately 1 dB), then the average data rate will approximately double, and the worst-case
decoding time and the ZJ table size will decrease by an order of magnitude.

40

APPENDIX A
RANDOM NUMBER GENERATOR

Each noise sample used in the simulations was generated by mapping a uniformly distributed
integer into a unique zero-mean normally distributed, or Gaussian, number. The algorithm

is fast and is very accurate, so that the quality of the Gaussian random numbers is limited only

by the quality of the uniform numbers.
Considerable effort was expended in developing a satisfactory source of uniform random

numbers. It was estimated that ~10 messages might be simulated, and since ~10 random
9 30 numbers are needed per message, the period of the generator must be »10 »2 .A simple

14 linear congruential sequence — the type most commonly used to generate uniform random
numbers — can be conveniently generated on a 16-bit computer with a period of at most 2
Congruential generators are fast and easy to implement, and it was hoped that a combination of
several of these generators would produce a satisfactory sequence with a long period. However,
numerous types of combinations of congruential generators were tested, and none passed all
criteria for randomness, so other generators were sought.

The algorithm that was finally developed generates a sequence (u }, 0 ^ u < 2 , of

numbers according to the following relations:

x = x e + x .- mod 2 n n-5 n-47

y = 12589 y . + 7187 mod 215 J n J n- 1

A O 15 u = x + y mod 2
n n ;n

Since x + x + 1 is a primitive polynomial modulo-2, the least significant bit of (x } is equiv-

alent to the output of a maximum-length shift register sequence15 and has period 247 — 1. The

period of {u } is therefore greater than 2 — 1. The congruential sequence (y } is employed
to overcome the possible occurrence of locally nonrandom subsequences in {x }. The sequence
(u } successfully passes the tests usually applied to uniform random number generators
(e.g., frequency test, serial correlation test), and in addition it passes a test that was found to
be effective in weeding out unsatisfactory sequences: a chi-square test on the frequency dis-
tribution, applied to a long sequence of numbers (>4 0) and applied also to the x -values of suc-
cessive subsequences of the over-all sequence.

The additive sequence (x } must be primed with a table of 47 -integers. These integers

were produced from the auxiliary pair of congruential generators

v = 22637 v ,+5801 mod 215
n n-1

w = 15625 w , + 3 mod 245

n n-1

combined according to the following algorithm. The sequence (v } is first used to fill a table

with 32 entries. The 5 most significant bits of the next integer in (w } are then used as an

index into this table. The indexed entry is the output (i.e., it is stored in the table used to

initialize the additive generator), and the entry is replaced with the next number from (v }.
Although this appears to be an involved procedure for merely priming the table, the algorithm

41

is quickly executed on a computer and, more important, it was found that simpler initialization
procedures led to unsatisfactory sequences {x }.

Three numbers — v , w and y — are thus needed in order to start the sequence (x }. If
some set of x.'s starting from x are to be used again (e.g., those that correspond to a message

that is to be simulated with different parameter values), then either the entire sequence of m

numbers starting from x. must first be re-generated, or 48 numbers— x_ ._, x .,,..., x ., 1 m-47 m-46 m-1
and y . — must be available for initialization. To avoid this problem, a secondary sequence

|u' } of uniform numbers was used to periodically generate a triplet (v , w , y). The generator

that produced (u1 } was of similar form to that used to generate {u }, but different multipliers

and adders were used in the congruential generators, and the additive generator obeyed the
15 equation x' = x' .. + x' -mod 2 . Thus, three numbers (v1 , w', y') were used to specify M n n-41 n-3 o' o' Jo r J

the beginning of a set of simulated messages, and (u' } was used to initialize the sequence (u)

at the start of each message. In order to reproduce the numbers for a particular message,

the sequence {u') must be re-generated, but since there are ~10 random numbers per message,

this operation is much faster than re-generating the sequence {x }.

42

APPENDIX B

TECHNIQUES FOR REDUCING THE MEMORY REQUIREMENTS

In order to reduce the table size required by the ZJ algorithm, a number of techniques were

investigated. Three of the techniques yielded promising results, and they are described below.

However, each of the techniques increases PF — an effect that cannot be overcome without an
appreciable increase in the required SNR when N ~ 100. However, the techniques may be of

value in decoders with larger N, since then L can be increased without incurring much penalty.

The first technique is to decode messages in the backward direction as well as in the for-
ward direction. This method is applicable because the encoding process is symmetric' (Back-
ward decoding is accomplished by reversing the connection vectors and reversing the decoded

4
information sequence.) To test this procedure, 22 x 10 messages were simulated with R =
R , T = 2048, and C = 150. There were 312 quits in the forward direction, so that comp ., max n

P~ = 1.4X10" . The decoder then attempted to decode these 312 messages in the backward
direction and failed on 126, for an over-all PQ of 0.57 x 10 . Thus, 60 percent of the forward

quits can be successfully decoded in the backward direction. In fact, backward decoding is often
accomplished with relatively few computations, so that this procedure can be used with the Fano
algorithm (in preference to increasing the number of computations by 60 percent to reduce P~
by 60 percent). Since there may be two decoding attempts on a message, PF approximately
doubles with this technique.

The second technique is an extension of the first, but is only applicable to the ZJ algorithm.
The idea is to use some of the information obtained from unsuccessful forward decoding when
decoding in the backward direction, as specified by the following procedure. Forward decoding
is attempted, and if successful, produces a message as output. If, however, the decoder fails

to reach the end of the decoding tree after C computation, forward decoding stops and the

entries remaining in the table are examined. If all paths on the table agree in, say, the first

Af , bits (0 ^ Af , < N), then backward decoding is initiated with an effective message length
of (N — A» ,) bits. Again, if backward decoding proves unsuccessful after C computations,

but if the first A, , bits of each path on the table are in agreement, forward decoding is re-

attempted. In this case, the first A , bits are assumed correct and the effective message
length is (N — A, , — A- ,) bits. Clearly, this procedure may result in an increase in Pp. In

order to minimize this increase, a "safety factor" can be incorporated by disregarding B of the
A bits when information is passed between decoder attempts. For example, the backward

decoding attempt would use only MAX(0, Af ,— B) bits from the first forward decoding attempt.
Although no measurements of PE were conducted, it is conjectured that the additional P£ intro-
duced by this procedure will decrease exponentially with increasing B. Some empirical results
obtained with this technique are shown in Fig. 24. The first row, for B = N = 100, is the quit
probability when no information from forward decoding is used in backward decoding; these data
correspond to the first technique described above. The remaining data show how PQ decreases
with decreasing B with the forward-backward-forward scheme. The significant reductions in
PQ imply an equivalent reduction in the required table size.

* Because all three techniques depend upon this symmetry, they are not applicable to the proposed long-shift-
register decoder.

41

| 18—6—14437 |

OVER-ALL PQ(X 10"3)

B AFTER DECODING

(bits) BACKWARD FORWARD AGAIN

100 0.57 0.57

20 0.49 0.43

15 0.46 0.37

10 0.37 0.28

5 0.30 0.22

2 0.25 0.18

0 0.24 0.18

Fig.24. Reduction in decoder quit probability
obtained by using the forward-backward-
forward decoding scheme, with information
passed between successive decoder attempts.
As described in the text, B represents a "safety
factor."

o
o
b

0
0

Fig. 25. Illustrating how a parity network can be shifted to obtain different
combinations of received signals.

44

The final method requires the use of connection vectors c. of different lengths so that if for-

ward decoding fails, then the Cj and the corresponding received signals are appropriately shifted,

and decoding is re-attempted.17 As a simple example, consider the structure of Fig. 25, which

has K = 3, but effectively has Kj = 3 and K2 = 1, where K^ denotes the constraint length of the

ith parity network. The sequence (ij represents the information bits, the two 0-bits the tail,
and {a,} and {b^} the received signals corresponding to the encoder output. The second part of

J J
the figure shows how the received signals become realigned when c~ is shifted so as to be right-
justified in the shift register. Thus, the advantage of this technique is that a different combina-
tion of received signals is created along each branch in the decoding tree, and decoding may be
possible if some of the noisy combinations are broken up. The procedure yields even better
results if the second decoder attempt is in the backward direction, because the reversed direc-
tion together with the shifted signals provides a trial that is highly independent of the original

trial.
In order to determine the merits of this technique, a decoder was set up having V = 12 and

having effective constraint lengths roughly uniformly spaced between the values 1 and 59. The
V _

average constraint length, defined by K = 2 K./V, had the value K = 30, so that the number of

transmitted bits, V(N + K — 1), is identical to that of a decoder having all K. = 30. The decoder
3 x

attempted to decode 58 X 10 simulated messages at R = R , T = 2 048, C =150, and r to , comp max
failed on 67 messages, for a quit probability of 1.2 x 10" , which is comparable to that with

equal K.'s. The {c.} were then shifted, and the decoder re-tried the 67 quits in the backward
direction, with the result that 64 of the 67 forward quits were successfully decoded. In light
of this striking improvement in P~, the simulated signal level was lowered so that operation
was at R/R = +0.5 dB. The forward quit probability was then 8.5 X 10" (based upon 68 x
10 messages), but backward decoding with shifted {c.} reduced PQ by an order of magnitude.

Although this procedure appears very attractive, it has a serious drawback: the error
— K probability is drastically increased. Initially, it was presumed that Pp ~ 2~ at R = R

Further investigation revealed, however, that the presence of unequal K. introduces a different
18 1

type of error mechanism, namely, an increased probability that an incorrect path will re-
merge with the correct path after a specified number of nodes. Because of this, the error
exponent for the {K.} used in the above experiment is not 30, but is 14 (Ref. 19). Also, the over-
all PE increases by an additional factor of 2 because decoding may be performed in both direc-
tions. (If the {K.} were uniformly spaced between 10 and 60, maintaining K = 30, then the
exponent increases to 18 (Ref. 19), but the reduction in PQ would then not be as great since the
{c.} cannot be shifted as much.) This technique can also be combined with the preceding tech-

nique of passing information between forward and backward decoding attempts. In fact, many

alternatives are possible: forwarded decoding with shifted {c.}, backward decoding without

shifting, etc. However, the method is not applicable unless K is substantially increased.

4S

APPENDIX C

OTHER METHODS FOR REDUCING THE ERROR PROBABILITY

As mentioned in Section IV-C, two other methods for reducing the peak Pp were investigated

and found to be less satisfactory than the long-shift-register technique. These methods are

described below.

The first method was based upon the idea of detecting errors where their effect on the de-

coder metric is most pronounced. The curve sketched in Fig. 26 represents a threshold that

Fig.26. Sketch of theoretical threshold curve
T (d;e). The probability that the path metric
for the correct path falls below T (d;e) is less
than e at any depth d.

METRIC

--0

b

118-6-14438 |

r(d;t) /

0 K /

\ / DEPTH (d)

could be applied to a metric at any depth in the decoding tree. If the node at depth d = 0 is cor-
rect, then the probability that the correct metric M (d) falls below the threshold at depth d is
less than €. Thus, the threshold T(d; €) is defined by

P[Mc(d) < r(d; <r)] < e

and a path is immediately discarded if it ever falls below T(d; e). Theoretical values for T(d; c)

which provide a good bound can be obtained. Now a path that is correct at d = 0 but in error
only at d = 4 will have a metric that on the average decreases for 1 <: d ^ K and increases there-
after. If there is more than one error bit, the metric will tend to decrease for a longer span,

but most incorrect paths fall below T(d; <r) near d = K. Thus, rather than use the actual curve

if we use the tangent to T at d = K, many error paths should be eliminated, but the likelihood of
eliminating the correct path is considerably reduced. (Also, the implementation is simplified.)

Furthermore, this linear threshold, denoted
T*(d), is raised, as necessary, as progress is
made in the decoding tree. Consider, for

example, a path having the metric M(d) pic-

tured in Fig. 27. The threshold is initially set
at T *(d) which corresponds to M(0) = 0. Since

M(l) < M(0), the threshold remains unchanged

at this node, but M(2) is enough greater than

M(0)that if this is the correct path- i.e., if the

node corresponding to M(2) is correct — then

the threshold should be raised to r2*(d). The
threshold T * remains in effect for this path
until d = 5, at which point the metric has in-
creased sufficiently to warrant the higher

METRIC (M)
M 5] 148-6-144391

M(2)X

M(0) /
\J) v(d)

M(l) ,
^*.—""^ DEPTH (d)

b

;
^Md)

Fig.27. Example of the use of a running (linear)
threshold. A path is rejected if its metric ever
falls below the most recent T* associated with the
path.

46

threshold T *(d). Thus, associated with each path investigated is a threshold curve whose level

is monotonically increasing, and a path is discarded if it ever falls below its current threshold.
One parameter, the intercept (b in Figs. 26 and 27), is sufficient to specify the running thresh-
old curve.

The above scheme was tried with the threshold chosen to roughly double P.- at OdB. This

strict threshold eliminated only about l/3 of the errors at the worst-case SNR of—1.5 dB (cf.

Fig. 13). Simulations were repeated with r*(d) obtained from different tangent points to T(d; e),

but the results were similar, indicating that this scheme is of limited value.

In the second technique, each message was decoded both forward and backward. A mes-

sage was accepted only if decoding was successful in both directions and if the decoded messages
agreed (and if the final threshold 9 was exceeded). This scheme reduced the peak PF of Fig. 13
by approximately 2/3. In fact, all errors eliminated by the running threshold T*(d) were also

eliminated by this forward-backward decoding. There is, however, an adverse effect on P0

since a message must be decodable (viz., with C ^ C) in both directions; simulations indi- ° max
cate that this requirement increases P^ by about 60 percent at OdB (cf. Appendix B), and

^ -3
therefore T must be increased by the same factor to maintain P^ < 10 . Thus, the forward-
backward scheme is preferable to the running threshold scheme since it has a greater effect on
Pp and a smaller effect on PQ, but there are still significant drawbacks, namely, the neces-
sary increase in T and the increase in computation time because each message must be de-
coded twice.

47

APPENDIX D

REMARKS ON COMPARING THE FANO AND THE ZJ ALGORITHM

Since the literature contains experimental results from a number of studies with the Fano

algorithm, it was hoped that a good estimate could easily be established of the comparative per-

formance of the ZJ and Fano algorithms for the decoder parameters of interest here. Unfor-

tunately, even though decoder performance depends primarily upon the ratio R/R , most

of the published results are for rate l/2 decoders and for a binary symmetric channel, and
hence there is enough of a difference between the parameters of the Fano decoders and the

parameters of interest here that the accuracy of a detailed comparison would be questionable.

Furthermore, from an examination only of rate l/2 decoders with a binary symmetric channel,
there emerges a wide range of values for the number of computations required. For example,

the data given in Refs. 1, 21, and 22 show, respectively, that 300, 450, and 1000comp/bit are
necessary to achieve P~ =10" at R = R^^ • (Part of this discrepancy may perhaps be at-

iqj c omp
tributed to the use of different code generators.) When compared with the ZJ requirement of
150eomp/bit, these values represent computation ratios of 2, 3, and 6.7, respectively. Also,

23 the comparative data given by Geist of the relative computing time required by the Z J and the
Fano algorithms can be roughly converted to yield a decoder computation ratio of ~4, but the

5
data of Jelinek indicate a factor of 7 in the average number of computations.

Because of the above uncertainties, and because a Fano decoder offers an attractive reduc-
tion in the memory requirements, the Fano algorithm has been implemented with the same
parameters used in the ZJ simulation. Preliminary results indicate that the computation ratio
is approximately 4, both for an average block and for a worst-case (probability 10") block, but

further simulations are needed in order to accurately determine the performance of the algorithm.

In the course of implementing the Fano algorithm, it was noted that the decoding time could

be reduced almost by half by the simple technique of storing in a table the two metrics that were
computed at each node in the path from the start of the decoding tree to the current node. Since
the net forward motion of the decoder is at most 100 levels into the decoding tree, if several

hundred decoder computations are performed, roughly half the computations are performed
when the decoder moves forward, and half when the decoder moves backward. With the above

mentioned table, which occupies only 2 00 words, the relatively slow parity and metric calcula-
tion of each backward move is replaced by a fast table look-up operation, and the speed of the
decoder is doubled. Since the preceding argument is valid for all but the quietest blocks, the
effective computation ratio between the Fano and the ZJ algorithms can approximately be halved,
making the Fano algorithm more competitive.

* This requirement is based upon a table size of ~2000 entries; as the table size increases, the computation re-
quirement decreases, approaching ~100comp/bit (cf. Section lll-D).

48

ACKNOWLEDGMENT

Numerous informative discussions with I. Stiglitz
are gratefully acknowledged.

REFERENCES

1. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering
(Wiley, New York, 1965).

2. K. E. Perry and J.M. Wozencraft, "SECO: A Self-Regulating Error Correct-
ing Coder-Decoder," IRE Trans. Inform. Theory IT-8, S128 (1962).

3. I. L. Lebow and P. G. McHugh, "A Sequential Decoding Technique and Its
Realization in the Lincoln Experimental Terminal," IEEE Trans. Commun.
Tech. COM-15, 477 (1967).

4. K.Sh. Zigangirov, "Some Sequential Decoding Procedures," Probl. Peredach.
Inform. 2, No. 4, 13 (1966).

5. F. Jelinek, "A Fast Sequential Decoding Algorithm Using a Stack," IBM
J. Res. Dev. 13, 675 (1969).

6. R.G. Gallagher, Information Theory and Reliable Communication (Wiley,
New York, 1968).

7. K. L. Jordan, Jr., "The Performance of Sequential Decoding in Conjunction
with Efficient Modulation," IEEE Trans. Commun. Tech. COM-14, 283 (1966).

8. I. M. Jacobs, "Sequential Decoding for Efficient Communication from Deep
Space," IEEE Trans. Commun. Tech. COM-15, 492 (1967).

9. J.M. Wozencraft and B. Reiffen, Sequential Decoding (Wiley, New York,
1961).

10. M. Hellman, private communication.

11. D.E. Knuth, Fundamental Algorithms, Vol. 1 of The Art of Computer Pro-
gramming (Addison-Wesley, Reading, Massachusetts, 1968), Chap. 2.2.3.

12. C.W. Niessen, "An Experimental Facility for Sequential Decoding," Technical
Report 396, Lincoln Laboratory, M.I.T. (13 September 1965), DDC AD-631240.

13. I. Richer, "An Ideal Gaussian Random Number Generator for a Small Computer,"
to be published.

14. D.E. Knuth, Seminumerical Algorithms, Vol. 2 of The Art of Computer Pro-
gramming (Addison-Wesley, Reading, Massachusetts, 1969).

15. W.W. Peterson, Error-Correcting Codes (M.I.T. Press, Cambridge, Massa-
chusetts, 1961).

16. M. D. MacLaren and G. Marsaglia, "Uniform Random Number Generators,"
J. ACM 12, 83 (1965).

17. J. L. Massey, private communication.

18. E.A. Bücher, "Error Mechanisms for Convolutional Codes," Technical Report 471,
Research Laboratory of Electronics, M.I.T. (August 1969).

19. E.A. Bücher, private communication.

20. I. Stiglitz, private communication.

21. C.R. Cahn and C.R. Moore, "DSCS Advanced Modulation System Study," Part II,
Vol. IV, "Technical Support Data," MRL Report R-3003, Magnavox Research
Laboratories, Torrance, California (June 1970).

22. J. L. Massey and D. J. Costello, Jr., "Nonsystematic Convolutional Codes for
Sequential Decoding in Space Applications," IEEE Trans. Commun. Tech. COM-19,
806 (1971).

23. J. M. Geist, "An Empirical Comparison of Two Sequential Decoding Algorithms,"
IEEE Trans. Commun. Tech. COM-19, 415 (1971).

■I"

DISTRIBUTION

Chief of Naval Operations
Attn: Capt. R. Wunderlich (OP-941 P)
Department of the Navy-
Washington, D. C. 20350

Chief of Naval Research (Code 418)
Attn: Dr. T. P. Quinn
800 North Quincy Street
Arlington, Virginia 22217

Computer Sciences Corporation
Systems Division
Attn: D. Blumberg
6565 Arlington Boulevard
Falls Church, Virginia 22046
(3 copies)

IIT Research Institute
Attn: Dr. D. A. Miller, Div E
10 West 35th Street
Chicago, Illinois 60616

Institute for Defense Analyses
Attn: Mr. N. Christofilos
400 Army-Navy Drive
Arlington, Virginia 22202

Naval Civil Engineering Laboratory
Attn: Mr. J. R. Allgood
Port Hueneme, California 93043

Naval Electronics Laboratory Center
Attn: Mr. R. O. Eastman
San Diego, California 92152

Naval Electronic Systems Command
Attn: Capt. F. L. Brand, PME 117
Department of the Navy
Washington, D. C. 20 360

Naval Electronic Systems Command
Attn: Mr. J. E. Don Carlos, PME 117T
Department of the Navy
Washington, D. C. 20360
(2 copies)

Naval Electronic Systems Command
Attn: Cdr W. K. Harteil, PME 117-21
Department of the Navy
Washington, D. C. 20360
(10 copies)

Naval Electronic Systems Command
Attn: Dr. B. Kruger, PME 117-21A
Department of the Navy
Washington, D. C. 20360

Naval Electronic Systems Command
Attn: Capt. J. V. Peters, PME 117-21
Department of the Navy
Washington, D. C. 20360
(2 copies)

Naval Electronic Systems Command
Attn: Mr. E. Weinberger, PME 117-23
Department of the Navy
Washington, D. C. 20360
(2 copies)

Naval Facilities Engineering Command
Attn: Mr. G. Hall (Code 054B)
Washington, D. C. 20390

New London Laboratory
Naval Underwater Systems Center
Attn: Mr. J. Merrill
New London, Connecticut 06320
(4 copies)

The Defense Documentation Center
Attn: DDC-TCA
Cameron Station, Building 5
Alexandria, Virginia 22314

50

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M. I. T.

2a. REPORT SECURITY CLASSIFICATION
Unclassified

2b. GROUP
None

3. REPORT TITLE

Sequential Decoding with a Small Digital Computer

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report

5. AUTHOR(S) (Last name, first name, initial)

Richer, Ira

6. REPORT DATE

24 January 1972
la. TOTAL NO. OF PAGES

56

7b. NO. OF REFS

23

8a. CONTRACT OR GRANT NO. F19628"70-C"0230

b. PROJECT NO. 1508A

9a. ORIGINATOR'S REPORT NUMBER(S)

Technical Report 491

9b. OTHER REPORT NO(S) (Any other numbers that may be
assigned this report)

ESD-TR-72-32

10. AVAILABILITY/LIMITATION NOTICES

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Department of the Navy

13. ABSTRACT

Extensive simulations of a sequential decoder using the Zigangirov-Jelinek algorithm
have been conducted on a small, general-purpose digital computer. These simulations
prove that this type of computer has sufficient memory, sufficient speed, and sufficient
flexibility to perform sequential decoding at useful data rates.

In this report, the memory and computational requirements of the algorithm are pre-
sented, and efficient methods for ensuring a very low probability of error at any signal-
to-noise ratio (at the expense of an increase in the failure-to-decode probability) are dis-
cussed. The equations necessary to set up a decoder are given, and a number of possible
computer implementations are suggested.

14. KEY WORDS

decoding
sequential decoding
Zigangirov-Jelinek algorithm

communications
simulation
small computer application

51 UNCLASSIFIED
Security Classification

