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ABSTRACT

Consider a random vector (XI,X 2) distributed as a bivariate normal

with mean vector zero, and dispersion matrix Z = ((a..)). Suppose we
iJ

are given samples of sizes n1 and n 2 , respectively, from the marginals of

Xl, 29 and a sample of size n 3 from the bivariate population of (X 1 ,X).

Suppose the problem is to obtain a good estimator of Z based on the above

(incomplete) sample. In this paper, four estimators of Z are compared

using Monte Carlo methods, and it is found that a certain relatively

simple estimator of E is the "best" or close to the best in almost all

situations.
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1. Introduction. Consider the problem outlined in the summary. In the literature

there are proposed many methods for dealing with this situation, which is also

known as the case of missing observations in multivariate statistics. Four

such methods are compared in this study. The first was proposed originally by

Wilks (1932) for the case of two responses, and later generalized by Kleinbaum

(1970) to an arbitrary number p of responses, and to a more general design for

the location parameters. The second method is a variant of the first one. The

The third method is due to Hocking and Smith (1968). The fourth one corresponds

to the principle of maximum likelihood (m.l.). Tine tnleoreticai evaluation of th,

optimality,' properties of these estimators, partieularly the third and the fourth,

seems to be cumbersome, except for large sample properties, juch as consistency

and asymptotic efficiency. But our concern here is with the more relevant situa-

tions when the sample sizes are not necessarily of the order needed for invoking

asymptotic properties. For this reason we resorted to Monte Carlo simulation

techniques.



2. The Four Estimators of Z. The four estimators E.(i - 1,2,3,4) of F will now1

be spelled out in detail. Let S.(i = 1,2) denote the sanple of size n. available1 1

from the marginal distribution c- the ith response, and let S3 denote the (complete)

bivariate sample whose size is n3 . Also, slll and sll3 will symbolize the mean

square of the observations on the first response from S1 and S3, respectively.

Similar is the definition of s222 and s223' The mean cross-product of the first

and second response over the units of S., is denoted by s123* Finally, let r and

p be equal to s3 /Sl S and a1/ /-iia , respectively.
123 113 223 12 11 22

(i) Estimator E1 = ((6..)) is given by

(2.1)nS + n12s222 222 + n3s223
11 n1 + n 2  12 21 123' 22 n 2 + n 3

Note that E, is not necessarily nonnegative definite.

(ii) Estimator E2 = ((ai. )) is given by: a = 1 1 1i a2 2  = 622' and a12

r V'C 22 * This is positive definite with probability 1.

(iii) Estimator E3  ((aij)). This is given by

(2.2) °y* = i.. + 8i.(j2 - s2), where
1] 1] 13 22 222

(2.3) 0 ij=sij 3 + ij (l13 lll)

n, 2
1122 s123

(2.4) (a ill O 12a 22 ( n + n ( l3 1 113 s

and

2
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~2 2
12

n + n
1 3

r 2 + 2  2n1 3
(2.5) 2 22 22 _ 2n_ I a 12- 2n a

( n n n3(n +n) 3 2 n (n +n 12221a 3 13 1

26 2n a 122 _ 1 12
n3 n3(nI + n3) 2

(iv) Estimator E4 =((ij)). This is the maximum likelihood estimator. To

derive it, let L denote the likelihood function of the total sample. Then

(2.6) D log L n [ :J1 n [2 J
S2 22

-a -a S +013T-L~ 12 22 123 12221132 122 112 12 1211223

_3 12 11

+n2 0 0 +1 n1 3
2 2 IE12

-1 22S222.

T 1 S 22 3 -2 2S + S 02 S

22S113 12 11 123 12 213 2

- Set + ( + 0 - 2)S3 - a lS
1]21S2213- 2°12II 13 022SI23 12123

-i 2 = - i = -i -I a2 2-i

11 113= S ll 1 2  123012, e2 2  223 22' Ei Sll1 1Sl 3 , 2  S2 2 2 223•

Substituting these in the likelihood equation obtained by equating • log L/

aE to zero, and doing some simplification, we arrive at the following set of

3



three equations that are linear in the parameters 8..1)

En 1(1-p 2  f n3]a i- 2n 3P2 61 n 22= 1P2 K1 I 2)+n3l 221n~~ ) fl+n3 1 1I_2n3 2e!+3p2822 = (1-p2)[nl(Ji-p2) + n3 ],

n3
28P 1 - 2n 3 p26 1 2 + En2 (1-p22  f2 + n3]622 (1-p2)[n2(1-p2 + n2 3

811 - (1 + P2)812 + 822 1 -p 2

Thccc give

(2.7) A-1 I -[nl1n 2(1 -P 4)f 2 + n2 n 3(1 -P 2)f 2 + n 2n 3 p2 t n 1n 3 + n3 2,

-1 4 2 22(2.8) 0822 = AEn n 2(1 - P4)f + n n 3(1 - P2)f + nI n 3 P + n2 3 + n3

12 2 23 2 2

(2.9) 812 = (-A fnln2 - )[(1 - P2)fIf2 - f1 - f)2 - n3n} 2 where

4n = nI + n 2 + n 3 , and A = n 1 n 2 (1 - p )flf2 + n n 3f + n n3f2 + n3

Thus, we obtain 6.. 5=i3 / 8.., (i,j = 1,2). Also, by invoking the inva-iance
13 i-3 13"

property of maximum likelihood (m.1.) estimation we find that the m.l. esi £mator
,2 2
Sof o must satisfy

(2.10) 2 (°1) (a112) (a1) (0 R)r

12 11 22 12 1 1122

The above implies that the m.l. estimator of Z is a positive definite matrix with

probability one. We also get

2 2 2P12 11 a22

3ubstituting the values of e a and 1 from (2.7-2.9), we obtain, after some
imfi8 22 1u2

simplification, the equation;
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( 2 1 ) 0 n 1 2 2f1 f 2 2 P 8 E n 1 2 22 2 ( - f .2 + f 2f 2 r 2 ) ] + P 2 2 n 2 2 6 2 2f _ f 1 2(2.11) ( 2 +2 2 1 f) + 2[nf f 2 (-f f +2f +2f -r )] + 2 [nf + n (1f f -f n2f

1 2 11 2 1 ~2 12 1 2 1 3 1 2 12 1 2-2 1-122 2 2-6flf2 + if2 + f2 + 2f f ) - 2nlni~fif2 nl 2(~ (nf f n f f - n fl-nlf2)]

-r nln2(-2n1 n2 - n 1n3 -n2n3 + n3 2)ff2 n3(-nl1  - 2 n 3 )f1 n3 (-n2 2n3)f2+n2

02 4n12n 2 2 (f122 2 2 2 - 2f 1 222 + 2fl2 -f 2 f + 2 2n 3n(f,: 2 - f1 - f)222

rn32 n [- r [n 1 n 2n -n -nn -2n1) + n 1 f n2 + n (n -+ n 2)f nln3 - n32 ) + n n3f2(n1212 ' 2 1323n 3 12 3r1(31 l32 n 3 n2n3 n2

+ n2n3 - n2n3 - n3 ) + 2f+ n2 + n3 (n1 + n22ff -2 + +

(n In 2 f 1 f -2 + nin 3 f 1 + n 2 n 3 f 2 + n 32) - -.

Let f(o2) denote the left hand side of (2.11). Then f(12 0, is a fifth

degree polynomial equation in p2 with stochastic coefficients, and every root it

has between zero and one can be ;ubstntuted in (2.7-2.1), leading to a set of

maximum likelihood estimators aill, a22 and c 12" Finding (closed) exact solutions

for the above polynomial does noc seem to be an easy task'. However, our -',gram

of the Monte Carlo study [.L_ e:alexplain later) is desi,-n-' to evaluate,

by a simple iterative method. the roots of this equation which lie in the interval

(0,1), to any pre-assigned deFree of precision. Nevertlheless, at this point we

can make the following ohs(-rvations. If we put p2a1 efndatrsm

slmplification that f(l) 7 n 32 n2 [l - r 2 > 0, with probability one. ýimilarlv,

we find that

2 2-

f(C" -r2(nl ,i " ÷1 +rill + n3 )nlk 1 +n )1I rrt n n n +t n n < ±n

1nn 2~n 1 3 2 21 2 3 3 2 12 13 23 3

From this we conclude that (2.11) has at l(ast o2 . root in tfv ',ntervai l (aif

with probability one.

hasbeteenzer.an oneca be ;usited in N 2.g-2Jlia ieain to a sieaatl, ofI



3. The Simulation Technique. The Monte Carlo study conducted here involves,

as a first step, the generation of both univariate and bivariate normal random

samples. For this purpose, we first generate independent random variables UI,U
12

distributed uniformly over the interval (0,1). Let X1 = (-2 log UI) cos(27U
I e 2

(-2 loge U) sin(2rU ). Then it is well known that X and X areX -2 lge U1 )2 1 2

independent standard normal random variables. To generate a sample (Y,Y 2)'

from a normal population with dispersion matrix Z, we take (Y,Y)' = T(XI ,X2

where E = TT'. To examine how accurately the computer is approximating sampling

from a uniform population, 87 samples of 10,000 observations each, were generated

in a first run, and 44 samples of 10,000 observations each, were generated in a

second run. A chi square goodness of fit test, with 9 degrees of freedom, was

carried out for each of the samples, and the probabilities of the X2 were about

0.45 in both cases.

F . .. • - • " |mmm m~mm m~.,• mm~m m• mmw lnmmm mm 6



4. Description of Computer Input and Output. The set of input parameters

consists of n1 , n 2 , n3 , yll, a2 2 and p. As noted earlier, a1 1 was always taken

equal to 1, and interchanging the values of n1 and n2 , serves to avoid any loss

of generality that may stem from this choice of a l1* The following table shows

the different choices of the set of values of the sample sizes (n 1 , n 2 , n3 ) in

our Monte Cario study.

Table 1. a le size values.

Group Group
size 1 2 3 1 2 3 size

3 7 5 28 ].2 10

7 3 5 8 8 32

2C
2 2 8 32 32 81
8 8 2 40 0 20

10 0 5 42 18 30

0 10 5 1? 12 48
3C

, 14 10 48 48 12

14 6 10 60 0 30

4 4 6 56 24 40

C
16 16 4 16 16 64

4C
20 0 L0 64 64 16

0 20 10 80 0 40

70 30 50

20 20 80

80 s0 20

100 0 50

7



For each chosen set of values for the input parameters, 500 samples were drawn,

and at the end of each sample the estimators c.. (i,j = 1,2) are calculated

according to the formulas of each of the four methods under consideration. Then

a mean cross-product deviation matrix V was calculated and printed out for each

method over the 500 samples. Thus the (3 x 3) matrix V = ((vr Vr ,( j ,( , ' '

where (ij), (i',j') = (I,1), (2.2), and (1,2), and v = (500)

500 -

X f 6rij - G .*)(C ri', - ai .,) 1. We also print out VI and (1/3 trV,

for each V. In the beginning of the study and for values of (n 1 ,n 2 ,n 3 ) of the

order C and (1/2)C we chose four values of C22' namely 022 = 1,2,5 and 10,

and fine values of p, namely P = -. 7,-.3,+.l,+.5,+.9; which means that each fized

choice of (ni, n2 , n 3 ) was repeated twenty times. However, after careful

examination of the output matrix V, and in order to study the effect of the values

of 022' each V was transformed to DVD, where D =(1,02j, -1/2) The matrix

DVD corresponding to the estimator F 1,E2 and E4 clearly exhibited its stability

or invariance with respect to changes in the (scaling) parameter 022* However,

the deternminant and the trace of the matrix DVD for the estimator E3, tended to

increase monotonically with j2" It was decided then, that only the case q22 1,

should be considered in the input, and additional values of P were introduced as

follows: 022 and a11 were taken to equal 1 in all cases; and for values of

(n!,n 2 ,n 3 ) in the group sizes 1/2C and r, P took the values -. 7,-.3,.l,.5,.7 and

.9; and for values of (nl,n 2 ,n 3 ) in the group sizes 2C, 3C, 4C and 5C, the values

-. 7,-.3,-.i,.l,.3,.5 and .9 were assumed by P.

It may be useful to make a few remarks on the number of solutions of the

equation f(P 2) = 0. In most cases, we found only one root inside the interval

(0,I). In a few cases, we found that f(p 2) had exactly three roots in the unit

8J



i

interval. This indicated that the solution of the maximum likelihood equationc

was not unique (this situation occured only for very small values of n 3). In

this case we computed the logarithm of the likelihood function L, and took the

root that maximized log L.

We also carried out an (indirect) overall test for the normality assumption

concerning the samples obtained in this study. This consisted of looking at

the first and the second diagonal elements (say, v1 , v2 ) of V1 . Using the

assumption of normality of the various samples, one can easily calculate the

mean and variance of both v1 and v 2 was computed. Next, we note that v. (i=1,2)

is the average of 500 independent random variables, and hence using v. =

[v. - E(v.)]/ /var v., may be considered as an observation from a standard1 i3 -

normal population. The values of vI considered in this test arose from all choices

of (n,nn3). Using the cases a1 a and p -.- 7. ,

we got 120 observations on each of v1 and v2 . These 240 observations were then

tested for normality using a X 2; the probability of the X2 exceeding its

observed value was less than 0.45.

In the above test, we could have similarly used various other elements of

the matrix V.(i=l,2,3,4), but we felt that the two elements actually used would1

be sufficient. Although the above is not a conclusive proof of the normality

of the data, it seems to be one of the best procedures that could be used under

the present circumstances. A direct check of the normality of all the samples

would clearly have been too expensive. Furthermore, even if each sample were

tested individually, we could not meaningfully conclude the presence of

normality in general.

S. .... ... . - m m m m m mmm lm i i - L . ... ,,i



5. The Results of the Study and the Associated Plots. The main results of

this study are depicted in a series of plots. Plots 1 through 4 are constructed

as follows.

The different valuns of the correlation coefficient p are indicated on the

horizontal axis. The vertical axis exhibits the values of the determinant of

the matrix V( 3 x3) corresponding to the four different estimators and the

different input values of nl,n 2 ,n 3 and p, with a11 022 1. The horizontal

axis for plot 5 corresponds to the total number of observations (n + n2 + 2n3

taken for size orders (1/2)C, C, 2C, 3C, 4C and 5C. The points on the vertical

axis represent the value of IVI (averaged over the different values of p) for

the various E.(i=1,2,3,4) and the different designs D., where (DI,D 2,D ,D4 )

correspond to the values of n = (nl,n 2 ,n 3 ) being (7,3,5), (10,0,5), (RA,2) an,!

(2,2,8), respectively. These values are for n of the ord-r (1/2)C. Values of

n of the form, say, (7,3,5) and 3,7,5), belong to the same design and lvi

was averaged over them.

By analyzing the computer output directly and examining the preceding plots,

one can make the following observations.

(1) The comparative efficiency of the estimators is thle same under both the

determinant and the trace criterion for V. Thus we restricted attention in

drawing the plots to the determinant criterion. However, the determinant

criterion is also more meaningful here, since the parameters being estimated

may not necessarily be in the same scale.

(2) All estimators possessed a maximum in the neighborhood of the point p = .1

(one expects this pcint to be n = 0), except for the designs (Sk,8k,2k);

k=1,2,4,6,8,10) for which E1 had a minimum there. However, under trV, V1

always possessed a minimum at that point, while E,,E and E4 still had a maxi-

mum there.

10



(3) Far theI HM desig,,n, tF3 and 1-,4 coincidedd, as expected theoroticall\,.

(4) For almost all cases, El and 1"' coincided at o .1.

(5) E 3 behaved extremely badly for small valuCs of n 3 , 9and tlhus should not

be considered in the designs (8k,8k,2k). This estimator was never the lest,

,and it was always the worst, except for, very large values of n 3 and P - .7,

where it, sometimes, became the second best behind 1,4 .

(c6) E, is the best for .3 < p < .5, for o < .8 in the case of samples of

order l/lC, and for o < .85 in (16,16,4).

(7) F 4 is the best for very large values of n3 and large values of 0.

(P) )P1 performs its best for small values of p.

(L ) Aside from E 3 ,: 4 had the largest range, being larger than F I and F.

for small p, and having the smallest value for 0 = .9.

(10) 1 is the most stable as a function of p, followed by F2).

(11) Differences amonýý the estimators are nec liriil,le for sample s in ses of order

SC, except 1 3 in (80,80,20), where it ;oins the others only for• o ' .(. I

In the final analysis, one may conclude that for s-,amples of sizes 1/?(

and C, F,• is highly recommended for all vhlues of O < .8. For sample s i zes

of order kC(k=2,3,4,4,) E, K is to be used except for - wher,- 4

becomes the mos;t efficient. However, the simplicity of E should count heavily

in its favor, )articularlv when a small gain in efficiencv by using F4 is not

very crucial.

11
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