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ABSTRACT

Consider a random vector (Xl,X2) distributed as a bivariate normal
with mean vector zero, and dispersion matrix £ = ((oij)). Suppose we

are given samples of sizes n. and ny» respectively, from the marginals of

1

xl,x2, and a sample of size n, from the bivariate population of (X

3 1250
Suppose the problem is to obtain a good estimator of I based on the above
(incomplete) sample. In this paper, four estimators of I are compared
using Monte Carlo methods, and it is found that a certain relatively

simple estimator of I is the '"best" or close to the best in almost all

situations.
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1. Introduction. Consider the problem outlined in the summary. In the literature
there are proposed many methods for dealing with this situation, which is also
known as the case of missing observations in multivariate statistics. Four

such methods are compared in this study. The first was proposed originally by
Wilks (1932) for the case of two responses, and later generalized by Kleinbaum
(1970) to an arbitrary number p of responses, and to a more general design for
the location parameters. The second method is a variant of the first one. The
The third method is due to Hocking and Smith (1968). The fourth one corresponds
to the principle of maximum likelihood (m.1.). 7ine theoretical evaluation of tle
optimality properties of these estimators, particularly the third and the fourth,
seems to be cumbersome, except for large sample properties, such as consistency
and asymptotic efficiency. But our concern here is with the more relevant situa-
tions when the sample sizes are not necessarily of the order needed for invoking
asymptotic properties. For this reason we resorted to Monte Carlo simulation

techniques.
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2. The Four Estimators of I. The four estimators Ei(i -1,2,3,4) of T will now

be spelled out in detail. Let Si(i = 1,2) denote the saaple of size n, available

from the marginal distribution ¢~ the ith response, and let 83 denote the (complete)

bivariate sample whose size is n,. Also, S111 and 5113 will symbolize the mean

square of the observations on the first response from S. and 83, respectively.

1

Similar is the definition of S50 and S5o3° The mean cross-product c¢f the first

and second response over the units of Sys is denoted by s Finally, let r and

123°

/"* .
p be equal to s_,../ and 012/ 911%9 respectively.

—
1237 "S113%223
(i) Estimator E, = ((Oij)) is given by

(2.1 8. = nS997 F D800, 6 =8 == 5 - DySo5n * NaSpnn
) 11 n, +n, *oT12 21 123° "22 n, + n, ’

Note that E, is not necessarily nonnegative definite.

(i) Estimator E, = ((oi;)) is given by: o t-s +

+-
11 11° g9 T 9pprand 0y, =

12

Vv 611622 . This is positive definite with probability 1.

% .
(iii) Estimator Ey = ((oij)). This is given by

(2.2 Oij = Gij + Bij(a22 - 5222), where

(2.3) aij = 5543 + Otij(s113 - Slll) s .

(2.4) (%119%190%99) = - EI";lH; l’ziij : :;23 ’
113

and
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(iv) Estimator Eu = ((Gij)). This is the maximum likelihood estimator. To
derive it, let L denote the likelihood function of the total sample. Then
-1
o 0 0 0
(2.6y 2logL M 1 M
. 3L - T 72 2 1
0 o0 0 o>
o -0 o "%s 0
n 22 %12 n 11°111
- .i__l_lT_ +._.1.
2 T 2
S, 9y 0 0
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2 2 32
-1
0 9225222
2 2
92251137 29129225123 * 9125203
x
2
T912%225113 * (%0 * 91199575103 7 915%115003
-0.,0,.,.5 + (02 + 0,038 -0.,0..S
12°22°113 12 T %11%27°123 7 %12%117223
2 2
9315223 T 2912%115%123 * %12%113
: -1 _ -1 ) -1 _ -1 ) -1
Let 8y, = 50139072 810 7 S123% 2 850 % S203%5° F1 7 511151130 §5 7 S5005005¢

Substituting these in the likelihood equation obtained by equating 5 log L/

3L to zero, and doing some simplification, we arrive at the following set of

-l




three equations that are linear in the parameters eij

2
2 2 2. 2 2
[nl(l p7) Fl+n3]ell-2nap 8,500 622 = (1-p )[nl(l—p ) + n3] .
npl6 - 2n.0% 4 [n.(107) £ + 030, = (10D)n(1- )y + 0]
3 "n 3 F1p T IRt 2 T fg¥gp T RETP Iy LEe ) 4 ng s
2 2
5] - = -
11 (1 +p )e12 + 922 1 -p°.
Theoo give
: -1 Y 2 2 2
2.7 = - -
(2.7) 611 A [nlng(l 0 )f2 + n2n3(l 0 )f2 * mynge” + ning o+ ong ],
A | 4 2 2 2
(2.8) 2 = A [nln2(l -p )fl + nln3(1 o )fl + nngp” 4 nyng + ong IR
(2.9) g = (-A-l) {n;n (1 - 02)[(1 - OQ)f f. - f. - f.] - n.n} wheve
12 12 172 1 2 3 ? )
_ - _ . <
n=mn +n, 4o, and A = nan(l o) )flf2 + nln3fl + n2n3f2 +n,
Thus, we obtain 5ij = S:iq / eij, (i,3 = 1,2). Also, by invoking the invariance

property of maximum likelihood (m.l.) estimation we find that +he m.l. estimator

2 2
of p must satisfy

je23

»

22 2 2.2 & -1 _ A& 2 )
(2.10) p” = (o,,) (011022) = (8.,) (8,,0,,)r

The above implies that the m.l. estimator of I is a positive definite matrix with

probability one. We also get
222 2 & 2
p 612 - 611622 r = 0.

~ -

Substituting the values of 511’ 622 and 612 from (2.7-2.9), we obtain, after some

simplification, the equation:




(2.11)

10 2 2_2_72
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2
Let f(og) denote the left hand side cf (2.11). Then f(p") = 0, is a fifth

. . . 2 . . . .
degree polynomial equation in p~ with stochastic coefficien*s, and every root it

has between zerc and one can be substituted in (2.7-2.7), leading to a set of

. R S ati 8 8
maximum likelihood estimators 11° %52

for the above polynomial does nct seem to be an easy task,

and o Finding (closed) exact solutions

12°

However, our ™ .gram

of the Monte Carlo study (.... .c¢ chall explain later) is desirn~’ to evaluate,

by a simple iterative method. the roots of this equaticn which lie in the interval

(0,1), to any pre-asciegned degree of precision. HNevertleless, at this point we

can make the following observations. If we put 02 = 1, we find after some

simplification that f(1) = n 2n2[1 - r2] > 0, with probability one. Similarly,

3

we {ind that

~

2 2 _
ef~S - N Y
=23 ri(n,u 1 ¥ Tpiy * np a1 fy 4 nunat) ¢ nonaE, 4 ong ) < 0,

172

T h

From this we conclude that (2.11) has at least oue root in the interval (C,1)

with probability one.

o




3. The Simulation Technique. The Monte Carlo study conducted here involves,

as a first step, the generation of both univariate and bivariate normal random

samples. For this purpose, we first generate independent random varia?les Ul’UQ

distributed uniform%y over the interval (0,1). Let Xl = (-2 log o Ul)2 cos(2ﬂU2),
F R . ,

X, = (-2 log o Ul) Sln(2ﬂU2). Then it 1is well known that kl and X, are

independent standard normal random variables. To generate a sample (Yl’YQ)'
from a normal population with dispersion matrix £, we take (Yl,YQ)' = T(Xl,XQ),
where ¥ = TT'. To examine how accurately the computer is approximating sampling
from a uniform population, 87 samples of 10,000 observations each, were generated
in a first run, and 44 samples of 10,000 observations each, were generated in a
second run. A chl square goodness of fit test, with 9 depgrees of freedom, was
carried out for each of the samples, and the probabilities of the X2 were about

0.u45 in both cases.




4. Description of Computer Input and Qutput. The set of input parameters

consists of Nys Nys M and p. As noted earlier, o was always taken

a* %117 %99 11

equal to 1, and interchanging the values of n_, and n,, serves to avoid any loss

1

of generality that may stem from this choice of ¢ The following table shows

11°

the different choices of the set of values of the sample sizes (nl, n,» n3) in

our Monte Cario study.

Table 1. Sample size values.

Group n n n n n n Group
size 1 2 3 1 2 3 size
3 7 5 28 12 10
7 3 5 8 8 32
2C
1 2 2 8 32 32 8
EC
8 8 2 40 0 20
10 0 5 y?2 18 30
0 10 5 12 12 L8
3C
6 14 10 48 48 12
14 6 10 60 o 30
i y 6 56 24 40
C
16 16 4 16 16 64
"y
20 0 20 oL 6u 16
0 20 10 80 0 40
70 30 50
20 20 80
5C
80 80 20
100 0 50




For each chosen set of values for the input parameters, 500 samples were drawn,
and at the end of each sample the estimators éij (i,j = 1,2) are calculated
according to the formulas of each of the four methods under consideration. Then
a mean cross-product deviation matrix V was calculated and printed out for each

method over the 500 samples. Thus the (3 x 3) matrix v, = ((v ,))),

ry(i,3),(i,]
. iy s -1
tosty = 2 . . . =
:ggre (i,3), (i',3") (1,1), (2.2), and (1,2), and Vr,(l,]),(l',]') (500)
= M . 1/3
uzl { (or,i,j Gij)(cr,i',j’ ci',j') }. We also print out |V] and (1/3 trv,

for each V. In the beginning of the study and for values of (nl,n2,n3) of the

order C and (1/2)C we chose four values of 022, namely @ = 1,2,5 and 10,

22

and fine values of p, namely ¢ = -.7,-.3,+.1,+.5,+.9; which means that each fied

choice of (nl, N, n3) was repeated twenty times. However, after careful

2
examination of the cutput matrix V, and in order to study the effect of the values

-1, -1/2

20 %99 ). The matrix

of Tpos each V was transformed to DVD, where D = (1,0

DVD corresponding to the estimator E and Eu clearly exhibited its stability

l’E2

or invariance with respect to changes in the (scaling) parameter © However,

22°

the determinant and the trace of the matrix DVD for the estimator E3’ tended to

increase monotonicallyw;iﬂdfﬁg. It was decided then, that only the case 002 =1,

should be considered in the input, and additional values of 0 were introduced as

follows: 955 and Oll were taken to equal 1 in all cases; and for values of

(n,,n ,n3) in the group sizes 1/2C and ©, p took the values -.7,-.3,.1,.5,.7 and

2

.9; and for values of (nl ,n3) in the group sizes 2C, 3C, u4C and 5C, the values

sn2
-.7,-.3,-.1,.1,.3,.5 and .9 were assumed by p.

It may be useful to make a few remarks on the number of solutions of the
equation f(oQ) = 0. In most cases, we found only one root inside the interval

(0,1). 1In a few cases, we found that f(pQ) had exactly three roots in the unit




interval. This indicated that the solution of the maximum likelihood equations
was not unique (this situation occured only for very small values of n3). In
this case we computed the logarithm of the likelihood function L, and took the
root that maximized log L.

We also carried out an (indirect) overall test for the normality assumption
concerning the samples obtained in this study. This consisted of looking at
the first and the second diagonal elements (say, Vs v2) of Vl. Using the
assumption of normality of the variouc samples, one can easily calculate the
mean and variance of both A and v, was computed. Next, we note that v, (i=1,2)
is the average of 500 independent random variables, and hence using v? =
[v:.L - E(vi)]/ /;5;_;;, may be considered as an obscrvation from a standard
normal population. The values of v, considered in this test arose from all choices

1

of (nl,nQ,ns). Using the cases 011 50, = land p - -.7, -.3, +.1, +.5, +.9,

o’
1 and v2. These 240 observations were then

»

v

we got 120 observations on each of v
tested for normality using a X2; the probability of the X2 exceeding its
observed value was less than 0.45.

In the above test, we could have similarly used various other elements of
the matrix Vi(i=l,2,3,u), but we felt that the two elements actually used would
be sufficient. Although the above is not a conclusive proof of the normality
of the data, it seems to be one of the best procedures that could be used under
the present circumstances. A direct check of the normality of all the samples
would clearly have been too expensive. Furthermore, even if each sample were
tested individually, we could not meaningfully conclude the presence of

normality in general.

O
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5. The Results of the Study and the Associated Plots. The main results of

this study are depicted in a series of plots. Plots 1 through 4 are constructed
as follows.

The different valu~s of the correlation coefficient p are indicated on the
horizontal axis. The vertical axis exhibits the values of the determinant of
the matrix V(3 x3 corresponding to the four different estimators and the

and p, with o, = o,, = 1. The horizontal

11 22

different input values of 50,50,

axis for plot 5 corresponds to the total number of observations (nl +n, + 2n3)
taken for size orders (1/2)C, C, 2C, 3C, 4C and 5C. The points on the vertical
axis represent the value of |V| (averaged over the different values of p) for
the various Ei(i=l,2,3,u) and the different designs Di’ where (Dl’DQ’D3’Du)
correspond to the values of n = (nl,nz,ns) being (7,3,5), (10,0,5), (8.2,2) anl
(2,2,8), respectively. These values are for n of the order (./2)C. Values of
n of the form, say, (7,3,5) and 3,7,5), belong to the same design and [V[
was averaged over them.

By analyzing the computer output directly and examining the preceding plots,
one can make the following observations.
(1) The comparative efficiency of the estimators is the same under both the
determinant and the trace criterion for V. Thus we restricted attention in
drawing the plots to the determinant criterion. However, the determinant
criterion is also more meaningful here, since the parameters being estimated
may not necessarily be in the same scale.
(2) All estimators possessed a maximum in the neighborhood of the point p = .1
(one expects this pcint to be 5 = 0}, except for the designs (8k,8k,2k);
k=1,2,4,6,8,10) for which El had a minimum there. However, under trv, El
always possessed a minimum at that point, while EQ’ES and | still had a maxi-
mum there.

10

Y



(3) Vtor the HM design, I, and Fu coincided, as expected theoretically.

3

(4) For almost all cases, [, and T, coincilded at » = .1.

1

(5) K3 behaved extremely badly for small values of n_, and thus should not

3°
be considered in the designs (8k,8k,2k). This estimator was never the best,
and it was aiways the worst, except for very large values of n, and o > .7,
where it, sometimes, became the second best behind Ru.

() E? is the best for .3 < p < .5, for p < .8 in the case of samples of
order 1/2C, and for p < .85 in (16,16,u4).

(7 Fu is the best for very large values of ny and large values of 0.

(" “l performs its hest for small values of ¢,

(%) Aside from I had the largest range, being larger than I, and I,

3’I'u 1

for small p, and having the smallest value for ¢ = .9,

(10) ﬁl is the most stable as a function of o, followed by .

(11) Differences amony the estimators are neyligible for sample sizes of order
5C, eoxcept Hq in (80,80,20), where it joins the others only for p > 6.
In the final analvsis, one may ceonclude that tor samples of sizes 1/0¢C

and ¢, I'j is highly recommended for all values of o < 8., Yor sample sites

of order RC(k=2,3,4,5), LI, it to be used except for lpl ~> .5, where Eu

becomes the most efficient. However, the simplicity of T, should count heavily
in its favor, narticularly when a4 small pain in efficiency by using Ru is not

verv crucial.

11

i
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13 ABSTRACY

Consfder a random vector (XI'XZ) distributed as a bivariate normal with mean
vector zero, and disnersion matrix & = ((oij)). Suppose we are given samples of
sizes " and Nos respectively, from the marainals of X].Xz. and a sample of size n
from the bivariate population of (X],Xz). Suppose the problem is to obtain a aood
estimator of I based on the above (incomplete) sample. In this ,aper, four esti-
mators of I are compared using 'lonte Carlo methods, and it is found that a certain

relatively simple estimator of T is the “best" or close to the best in almost all
situations.
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