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, This rerarch presents two initialization methods in the form of optimal filter equations suitable for

adiabatic and diabatic numerical weather prediction and an optimal system of equations for numerical
weather prrdiction involving four prognostic equations and onc diagnostic equation. The first method
commens sable with the hydrostatic assumption is a practical generalization of Fjortoft's fesults and does
not suffer {:om some weaknesses of the balance cquation—particularly in the anticycloniz case analyzed
¥ by Elsaesser. it also significantly improves the effective prediction time scale and can readily replace com-
E puter programmed models based on the balance equation with 2 resulting improvement of global weather
prediction. The second method consisting of three filter equations in the (x, y. z, t)-system does not
presuppose kiydrostatic equilibrium and does not encounter the problem of hyperbolicity, and is therefore
applicable to smaller scale.. The third filter equation may simultancously replace the hydrostatic one
within an optimal prognostic system containing the horizontal cquations of motion. the continuity, and
the thermodynamic equation in theirinvariant forms. The relaxation procedure for solving the nonhydro.
static filter differential equations is no more difficult than the numerical solution of the gene:.l balance
cquation ir conjus:ation with the w-equation. Finally, the study throws new light on problem: such as
crgodicity, long range predictability, gridscale diffusion, surface friction, and boundary conditions.
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SUMMARY

This rescarch presents two initialization methods in the form of optimal filter
equations suitable for adiabatic and diabatic numerical weather prediction and also an
optimal system of eguations for numerical weather prediction involving four prognostic
equations, the optional mixing-ratio continuity equation, and one dizgnostic equation.

The first initialization method commensurable with the hydrostatic assumption is
a practical generalizadon of Fjortoft's results and does not suffer from some weakness-
cs of the balance equation—particularly in the anticyclonic case analyzed by Elsaesser.
It also significantly improves the effective prediction time scale and can readily replace
computer programmed models based on the balance equation with a resulting improve-
ment of global weather prediction.

The sccond initialization method consisting of three filter equations in the
(x, y, z, t)-system does not presuppose hydrostatic equilibrium and does not encounter
the problem of hyperbolicity and is, therefore, applicable to smaller scales. The third
filter equation may simultaneously replace the hydrostatic one within an optimal prog-
nostic system containing the horizontal equations of motion, the continuity, and the
thermodynamic equation in their invariant forms. The relaxation procedure for solving
the nonhydrostatic filter differential equations is no more difficult than the numerical
solution of the general balance equation in conjunction with the w-cquation,

Finally, the study throws new light on problems such as ergodicity, lopg-range
predictability, gridscale diffusion, surface friction. and boundary conditions.




SRR SRt

s

PR LT

LI

PR

P T b

M

AT

&
S
A
*
-
£
g

.-vf——;%?;-—ﬂ AT T T T T e

FOREWORD

This research was started in 1965 und is a personal effort except for editing, typ-
ing, and printing. Some of its results were already available in 1966. In the meantime,
the uuthor tried to perfect the analysis and to put it in the right perspective. It is of
significance that the filter methods deveivped fur the hydrostatic and less restrieted
(x,y,z,t)-system associated with a new set of prognostic-diagnestic equations are not
only new and optimal but have a useful purpose and include operativeness as well. The
author would like to thank Colonel John R. Oswalt, Jr., who endorsed the preparation

and preliminary publication of this work in the form of a comprehensive USAETL Re-
search Note.
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THE DERIVATION AND POTENTIAL JF NEW FILTER

EQUATIONS FOR NUMERICAL WEATHER PREDICTION*
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1.  introduction. The Global Atmospheric Research Program (GARP) spon-
<wed by the Internati~nal Council of Scientific Unions and the World Meteorological
(*-zanization 15 aimed curing the next decade at gaining additional insight “bout the
» & of the atmosphere so that [ hecomes feasible to predict the weather
~ ' ide for periods r* at least 2 weeks.

The first requirement to meet this goal is the establishment of a worldwide
observation system involvin, advanced satellites providing for interrogating, recording,
and locating on a realtime basis and for measuring of cloud cover. The satellites will
carry passive microwave radiometer, occultation and refraction sensors for the
-etermination of vertical profiles of temperature, water vapor, and density from which
constant pressure heights could be determines !
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The second requircment is to acquire a better understanding of some physical
processes, such as the flow of heat and moisture near the tropical waters, which have
to be incorporated in a long-range atmospheric prediction scheme. The processes of
air-sea interaction and related research efforts are the subject of the Barbados
Oc~anographic and Meteorological Experiment (Bomex)? which is the first experiment
of tiie United States portion of GARP.

o

The third requirement is the development of computers capable of processing the
tremendous amount of data and simulating the extremely complicated atmospheric
E s generation process. The Bomex repc-t states that a computer now being designed is
3 expected to have 100 o 1000 times the capacity of present models.
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Finally, more sophisticated preaiction models, including nonadiabatic and
‘rictional effects, some of these at least in a parametric form, will have to be

bt Lo
A T P R

B *Parts of Paragraphs 4 and 7 of this research were presented at the 52nd Annual Meeting of the Ametican
Geophysical Union, Washington, D.C., April 13, 1971.

'H. E. Newell: “NASA: Space Science and Applications Program (Mcteorology),” National Acronautics and
Space Administration, “Vashington, D. C., April 1967.

2 .
“News from BOMEX, Barbados Oceanographic and Meteorological Experiment,” U.S. I *eragen Release,
y Washington, D.C., March 1969, ey
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developed. As Charncy stated in 19513 and since proved by others, condensation
phenomena are the simplest to introduce although much remains to be done in this
respect. The same is true for long-wave radiational effects which are prognostically
interrelated with humidity forecasts. Very difficult to incorporate is, of course, the
turbulent transfer of momentum and heat.

Within the context of BOMEX, a “Hemispheric Model Study” is to be conducted
by Pandolfo, while Charney acts as principal investigator of a “Theory of Large-Sxale
Atmospheric and Oceanic Processes.”

As to the utility of improved, short-range predictions including those of
precipitation and of useful long-range forecasting, it should be mentioned that the
National Academy of Sciences — National Research Council® estimated the potential
savings resulting therefrom as approaching 2! billion dollars annually for the Finited
States alone.

As Thompson® ¢ and Novikov? have pointed out, and recognized again in the
panel discussion on atmospheric predictability during the Golden Anniversary Meeting
of the American Geophysical Umon in April 1969, and also evident in Sections 4
through 7, herein, the initial state of the atmosphere is of considerable importance for
long-range and sometimes even for short-range predictions in cases of rapid
development. F.G. Shuman states: “We are aware of many weaknesses in our
initialization procedures, principally the lack of the full meteorological balance
between the winde and pressure field. This problem, however, is perhaps even more
difficult than thosc encountered in developing the prediction model. The halance
problem should properly be approacked as part of the analysis problem. At NMC
(National Meteorological Center) we are making a start on th * probiem, but it will be
some time before we have a general solution to it. We expect te gain a great deal from
other’s work on the problem.”®

After ~ critique of present initialization schemes, this report presents more
powerful iniiialization methods in the form of optimal filter cquations for numerical
weather prediction which do not suffer from some essential weaknesses of the

31.6. Chamney: “Dynamic Forecasting by Numerical Process,” Compendium of Meteorology, American
Meteoralogical Society, Boston, Massachusetts, 1951.

4National Academy of Sciences — National Research Council: **Usefui Applications of Earth-Oriented Satellites,”
Meteorology, National Academy of Sciences, Washington, D.C. 1969.
SP.D, Thompeon: Numerical Weather Analysis and Prediction. The MacMillan Company, New York, 1961,

Sp.p, Thompeon: Uncertainty of Initial State as a Factor in the Predictability of Large-Scale Atmospheric Flow
Pasterns, Tellus, 1957.

7E.A. Novikov: “Toward a Formulation of the Problem of the Predistability of S»noptic Processes,” U.S. Joint
Publications Research Service, New York, August 1960.

$F.G. Shuman: “A *ulti-tevel Primitive Equation Model,” U.S. Departinent of Commerce, Environmentsl
Sciences Services Administration, Weather Bureau, National Metcorological Center, November 1965.
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so-called balance equation, i.c., they are more accurate, applicablc to relatively sraller
scaies, and suitable to include convection in case of the general nonhydrostatic filter
process. The new filter equations, one of which simultaneously provides a diagnostic
equation for an ultimate prognostic system, can also be profitably used for
re-initialization and we fundamental pertaining to the inclusion of nonadiabatic
processes through the use of statistical and parametric procedures. The general
nonhydrostatic filter equations also offer an interesting and more satisfying approach
as far as the use of numerical relaxation is concerned. Furthermore, the analysis
throws some new light on the significance of initialization for long-range pre-
dictability, aad the use of frictional terms and boundary conditions. Finally, the new
equations offer advantages with reference to the computation of winds from
worldwide data obtained through the use of advanced satcllites.

2.  T-ampeon’s Generalized Filter Approximations, the Balance Equation, and
Related I ion Methods. Thompson® showed that it is necessary and sufficient to
filter gravity waves out if the total time derivative of the divergence is omitted from

the “divergence” equation obtained by applying the horizontal divergence operator on
the equations of motion. This results in the diaguostic relationship

u«—a-—'*‘Vv--T--)-VXfV'i'Az‘l’:O (1)

>
where V i: the horizontal nabla operator; V, the horizontal velocity vector; k a

vector directed vertically upward; f , the Coriolis parameter; A?, the 2-dimensional
Laplace opcrator; and ¥, the isentropic stream function in the (x, y, 0; t) — system
where 0 is the potential temperature. Equation (1) is valid for adiabatic, nonviscous
flow and, of course, under the hydrostatic assumption.

Omission of %D- , with D as divergence in eq. (1), allows the establishment of
the diagnostic w-equation:

lgaw 34 90 3w\ _ 3 Rvil 2(3V
ov p'ﬁé‘apae>‘aa (WV V)‘V(ao vy

aR , 3B _ 2 (i 20 aV )
2% * W "a?(“s-p?e"vp
Here, it is w = (_ditE , p the density, and p the pressure, while K, R, and B are specific func-

tions free of time derivatives. In order to obtain eq. (2), use has to be made of the vorti-
city equation and the continuity equation in isentropic coordinates.

%P. D, Thompeon, “Numerical Weather Analysis. . . .




Since, according to lelmholtz’ theorem, the horizontal vector, V, may be
expressed us the sum of an irrotational and a nondivergent vector so that

>

V=Vx+kx Vy,

. ’-:.". 2 ' 1 = 2 = .a_g. _a_“_, -a-‘-l-
curl V= kA?Y and divV = A%y op (ao *ag Vp)

Under hyarostatically stable conditions, eq. (1) and (2) may thus be solved
for ¥ and x. For prognostic purposes, either the vorticity equation together with
eq. (1Y or (2) or the primitive equations together with the continuity equation

-(-l— .a_ll = -gﬂ {
dt 90 50 vV

might be used. In the latter case, instabilities might oceur under certain conditions.

A simplification of eq. (1) as well as the starting equation for an iterative process
involving eq. (1) and (2) is the so-called balance equation
A2 Y +2 (W Uy - ¥3y) + VY - VI =47W (3)

which, according to Rellich’s theorem'® and as demonstrated by Bolin}' is of the
“elliptic type if
2
_—Af"’--".-Vf.vw> -4 4)
This condition is, according to Bolin}' also nccessarv to solve eq. (2) as an elliptic
partinl differential equation under the assumplion of a hydrostatically stable
atmosphere.

Apart from the fact that eq. (4) may not be fulfilled in the case of strong
anticyclones, Bolin'''? has pointed out that the most serious approxiation in eq. (1)
is neglecting the lime-dependent ierm —(;ll—div V  through which all gravity-inertia

oscillations are climinated and that the filtering approximation is only valid
for divV < ¢ =A% y. As mentioned by Phillips,”® fast moving and nongeostrophic
gravily waves have large, horizontal divergences (div V ~ ¢), and, during conveetion,

104 Rellich: *“Zur ersten Randwertanfgabe bei Monge-Ampereschen Differentialgleichungen vom elliptischen Typus:
differentialgeometrische Anwendungen,Math, Ann., Vol, 107, 1933,

1, Bolin: “Numerleal Forecasting with the Rarotropic Model, " Tellus V11, 1955, 1,

1244, Bolin: *An Improved Barotroplc Model and Some Aspects of Using the Balance Equation for Three-dimetisional
Flow,” Tellus Vi1, 1050, 1,

1IN, A. Phillips: Numerical Weather Prediction, Advances in Computer Control (or Techniques), Vol. 1, Academic
Press, New York, 1960,



dv V> ¢,

Although Cressman'® and other suthors attributed a considerable improvement
in numerical foreeasts to the use of the halance eq. (3), Elsacsser'® has come to the
conclusion that its linearized version appcars to be the optimum, particularly in view
of recavery of the pressure height (it W isreplaced by ¢ in the (x, y, p) — version
vl eq. (3)), less compntation time and the necessity of elliptizing in case eq. (4) does
not hold. Flsacsser explains the differences with respect to previous investigations to
the near hemispheric scope of his study and the inclusion of large arcas of strong
anticyclonie shear equatorward of the polar jet stream.

Hinkelmann'® hag demonstrated that the stream function obtsined through eq.
(3) fails during strong anticyclonic activity, and a better result would be achieved by
applying the geostrophic stream function. Monin'? has emphasized that ¢q. (3) would
be equivalent to an equation in which the quadraiic terms would
N
Ve - 2 : v 1 v, 2y 1y 18
H'MITT(%‘ O,y -3y ) s far as the scale theory is concerned. Arnason' | who

negleets their vertical adveetion terms in the equation of motion, arrives at similar and
practically equivalent results,

A method of initialization using finite difference techniques and employing the
balunce condition '??T div V.= 0 has been developed by Miyakoda and Moyer®™ . 1t is

simpler from the computational point of views than the classical method of solving the
balance equation together with the w-equation, and numerical resu!ts obtained
through the use of a simplified model agree rather well exeept for a slight displacement
ol the vertieal velocity pattern. Moreover, this method would be refatively more
advantageous if the initial vertical veloeity had an insignificant influence on the
meleorological evolution, This is, however, only true in case of weak development and
also due Lo the use of the balanee equation (as will be shown later). Better filter
equations are indeed necessary for forecasts execeding 5 days after which, according to
the experience gained by Mintz and Krishnamurti, as quoted by the authors, rather
exacl initial conditions become important,

Y ;. P, Cressman: “A Study ~f Numerical Forecasting Errora,” Monthly Weather Review, July 1957,

B 1, W. Elsaesser: “Comparative Test of Wind Laws for Numerical Weather Prediction,” Monthly Weather
Review, Yol, 92, No, 5, 1968,

16 K. Hinkelmann: “Ucker die Einbezichung divergenter Windkomponenten in Yorhersagemodelle,” Berichte de
deutschon Wetterdionstes Nr, 38 (Band 5) Bad Kisingen, 1957, Y

17 A. S. Monin: “Izemenenila davleniia v baroklinnoi atmonfere 1zv. Akad. Nauk,” ser, guofiz., no. 4, 1958,

B, Amsson: “Higher-Order Geostrophic Wind Approximations, “Maonthly Weather Review, Vol. 90, No. §,
May 1902,

7K. Miyakoda and R. W, Moyer: “A Method of Initialization of Dynamical Weather Forecasting,” Gmphricnl
Pluid Dynamies Laboratory, Fnvironmental Sclences Services Administration, Washington, 1.(, Oclober 1966,



According tv Fhillips,® noise, through an initial divergence implied by the usual
geostrophic theory, is greatly suppressed if the initial data is used for the primitive
equations. However, the suppression of high-frequency, gravity-inertia waves will only
be very cffective if the motion is not strongly ageostrophic: “The extent to which the
method will prove useful in low latitudes, or in high latitudes when divV ap-
proaches 1 in magnitude, cen perhaps be answered only by experiment.”?°

A method (similar to the method of Miyakoda and Moyer) by Nitta and
Hovermale*! involves an actual iteration of forward and backward forecasts around
the initial time with the Euler-backward time difference and yields acceptable
rotational but uasatisfactory divergent wind components. According to Nitta and
Hovermale, “the question remains unenswered whether or not the technique in its
present design is accurate enough to be of practical value. ... Perhaps, further
diagnosis . . . will lend some insight in this direction.”

This diagnosis is readily available since the method corresponds to the filter
conditions

3%u [ v) =0
at? at?, '
%=0 t,=0
Powever, this filtering leaves the factorial term %‘ti in the equations of motion
undetermined so that in addition -%‘tl = 0 has to be postulated which is essentially
equivalent to (-% %;i) =0 and, thus, slightly less satisfactory than the balance
t,=0

equation together with the corresponding w-equation.

The w-equation corresponding to the balance equation has been investigated by
many authors. Krishnamurti*? uses the vorticity equatioa including frictional terms
together with the balance equation and the w-equation in the (x, y, p, t)-system for
diagnostic studies of weather systems with a term for latent heat included. Vukovich
and Chow® employ the balance w-equation in order to estimaie the effect of
long-term diabatic heating. Considerable experience in this regard has also been gained
by Smagorinsky and collaborators. (Some of their results will be discussed in Section
5.)

N, A. Phillips: “On the Problem of Initial Data for the Primitive Equations,” Telius, Vol. 12, May 1960.

U7, Nitta, and J. B. Hovernmle: “On Analysis and Initialisation for the Primitive Forecast Fquations,”
Technicel Memorendum WBTM NMC- 42, National Meteorological Center, Suitland, Maryland, Gctober 1967,

BT, N. Krishnsmurti: *“Disgnostic Studies of Weather Systemo of Low and High Latitudes (Rosshy Number 1),”
Department of Metesology, Univenitv of Californis, 1 os Angeles, California, 30 Nov. 1964 — 30 Nov. 1966,

BF. M. Vukovich snd Chi F. Chow: “Research in Numerical, Dynamical, and Operational Weather Forecaat
Procedures,” Rescarch Triangle Institute, Rescarch Triangle Park, Notth Carolina, April 1968,
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In conclusion, it should be emphasized that the shortcomings of the balance
equation, i.e., (ia-div V) =0 and A? ¢+ ﬁ> 0 where ¢ denotes the
t ty=0 2
geopotential, are necessarily reflected in the more explicitly named balance
w-equation. Superior filter equations which do not suffer under these restrictions wili
simultaneously result in an overall improvement of the initialization process and, thus,
in better short- and long-range forecasts, as well as in the climination of high-frequency
meteorological noise and in stabilization.

3. Fjortoft's Filter Equations. The application of the filter conditions

& u) - (d’ v) -

TTR =33 =0 ]
(dt2 t,=0 de? 1,20 )

with reference to the equations of motion in the (x, y, p, t)-system by Fjortoft** leads

to two prognostic filter equations with the local time derivatives — = a" ard 3T -a—:; in

which ¢ designates the geopotential. Together with the adiabatic thermodynamic

equation involving -gt- -g—‘-)- and the continuity equation gl’: + % + %;—’ = 0 where
w = %ta’ these are four equations for the unknowns u, +, w, and %—?- As the ellip-

ticity criterion under which a solution with a suitable relaxation factor ¢ of the
same sign can be achieved, Fjortoft lists the ccnditions

(f‘ + ¢,,)(f’ +¢,,)- + (2f= +4? ¢) (qs,,, - F¢,) - (Ve>,,)2 >0 ()

—_ 1

where F = 1%3 %(r&)w and

2+ ¢, bry b0
¢xy 2+ ¢w ¢‘w >0, (7)
L 12 $op ~ Fd’v

roximately, the conditions may be stated as f2 + A2 ¢ > 0 which means a considerable
P y )

improvement in the anticyclonic case when compared with % + A > 0 applicable in

%R, Flortoft: “A Numerical Method of Solving Certain Partial Differential Equations of Second Order,” Fremlagt
1V pe-Motze, February 1962,

> —gé—jﬁ_. =
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connection with the balance equation, and op = F¢p > Qoro> 0 with ¢ as the static
stability.

Because Fjortoft has noi developed superior diagnostic filter equations based on
the same fiiter conditions, his method does rot appear to have been practically
utilized.

As to the appiication of a relaxation factor of changing sign in the hyperbolic
case, no uscful results may be obtained since the simple model of the continuity
equation does not, or not sufficiently, hold and should, therefore, not be adapted to
the relatively more sophisticated thermodynamic equation. Apart from the fact that
no accurate results can be expected, particularly in the case of pronounced
hyperbolicity, the convergence of the rclaxation process nas been extremely slow
according to Flsaesser.?®

4. Optimal Filter Equations in the (x, y, p, t)-System. For the szke of simpli-
city, we omit it the following paragraph the use of map scale factors as has been done
by Fjortoft. Inclusion of these factors docs not, however, present any fundamental
difficultics. Moist-adiabatic and frictional terms are also neglected at present. Thus,
we proceed from the following system of equations which is familiar to the reader:

du 0z
a- Bt ®)
d 2
dt = "85y - M 9)
on, 0y |, dw _
5x 3y Tap - 0 (10)
dT _RT = _
it ep® -0 (11)
2
or alternatively, with dz .1 _RT and o = 22 A oz
p g gp 2 Xp op
0 %z, .0 02 ., 0 3 =
51 ap+uax P +vay ap+aw 0. (12)

After applying the filter operations of eq. (5). we arrive at

d 9z d _
g“'ﬁ‘ 'a—x- - a—i'(fv) =0

BH, W, Ellsacsser.
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% and more expticitly at

éf

1 a2 8, 8, 00 vl ol

S 3t ax | Udx x+vay'x+wapx_g\ux+vay)

— f{ oz )

: +—{g—+ fu}l =0 13) .

: (g . )

: 3 oz 2 9z, d9z, 89z, ul of  of
" atay+u8x8y+vayay+wapay+g(uax+ ay)
% f 9z -
g +—-—<—ga—- + f) = (14)
x
: In order to make the two filter equations (13) and (14) consistent, we eliminate the
E time derivatives by applying the operator 'aa—y on eq.(13) and -5@; on eq. 14 and
; subtracting. This yields, after omitting irrelevant terms, the diagnostic filter equation

f2fov _odu) au 2z  (du av) @'z _ 3vd’z

: g \ax " 3y/ "3y 3x*¥ "\ax "3y axay = ax oy

w3z dw Pz

: ax 9ydp 3y o9xap

A (o, 2 ) L

% After we differentiate eq. (13) and eq. (14) pertaining to x and y respectively and add

E the results, we obtain as a corresponding dynamic filter equation

£

& K . 2 Vow [dw 9%z | dw 3%z

% thz-(g+A )ap (ax axap * ay ayap)+

% L@z ( av, du Pz, du 'z

E ay ax? dx  dy/3xdy = ox 3y

3 .._.. - ._—-

; * oy ay ax ) (16)
9 ;
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We arrive at a diagnostic w-equation by applying the 2-dimensional Laplace operator
on eq. (12), differentiating eq. (16) with respect to p, and eliminating a%. A? .g_;;

+ A’z Pw Pz Pw 3Pz Pw
oxdp dxap  dydp ayp

dc 3z dw do ¥z )\ dw 02a%z
c (5 so) 3 (235 - ) 3y < (o5 o
_ 0 [ oAz A%z 2 ( 9%z %z
_Eﬁ(u ax Y ay )'A Y axap ”ayap)

9 {av a%z av . Ju\ %z ou dz aM
—B?[WW '(ﬁ+—5_y-) 3x3y | ox ay’] “op 17)

where M represents the last term of eq. (16).

It is well known that diagnostic filter equations are superior to their prognostic
counterparts, i.c., conditions such as

In accordance with predominantly horizontal flow and required separability, we obtain
a first approximative determination of ¥, and thusof u, and v, from

2 ., 'y 9%z 20y %z Aty a’z
i *#Ey_f " axay axdy | 0y o

of 126 8y 3z | _ ¢42
+ 12 2 ay] fay . (18)

The condition that eq. (18) and eq. (15) are clliptic, the latter within an iteration
scheme, is

10
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(s +W)(g +'5§T) '(my) >0 (19)

or approximately -g-*- A%z > 0 which is considerably less restrictive than--g—2 + Aé—z-> 0

of the balance eq. (1).

The ellipticity condition for the new w-equation (17) is that the guadratic form

1 2%z

o 0 ~2 Bxdp

1 ¥z
0 ¢ ~2 dydp (20)

1 3%z 1 3%z 2. ..
"2 axadp “Z3yp g 4%z
be positive definite which results in the inequalities
2 2
£ i/ a’z) ( 2z \]
—_+ A? - +

¢z>0ando(g Az) 7| oxop ayap}j>0’ 21

In order to insure ellipticity in the cyclonic case if ¢ > 0 and the inequality (21)
does not hold a priori, o has to be adjusted to a slightly positive value o, so that
the relation ’

2 3
f2 2 _l_._ B’Z a’z -
oc(-g + A z) -3 [(axap) + (ayap)] =g >0 (22)
with e, as a small quantity, is fulfilled which is essentially in agreement with proce-
dures applied by Smagorinsky?® and Krishnamurti?” In anticyclonic conditions,

% + Az < 0, the height field has to be smoothed so that

_‘gf-+ Mz, =e >0 (23)

with e, asasmall quantity. The smoothing results simultaneously in more favorable

%5, Smagorinsky: “On the Indveion of Mokt Adiabatic Processes in Numernical Prediction Models,” Berichte des
Deutschen Watterdienstes Nr. 38 (sand §) Bad Kimingen, 1957,

7, N, Krishnamurti.
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values o, , 3%0p and 3y3p so that

2 2
2 3z
-— A"'z ) ( ) (—_A.)] > 0 24
aA(g )~ 4 dxap dyap % " (%)

reasonably holds. Alternatively, in the anticyclonic case, terms involving products of
second-order derivatives in eq. (17) and (18) are to be neglected in a numerical
integration by over-relaxation for all points for which the inequalities (21) and (19),
respectively, are not valid. It should be pointed out again that the inequalities (22)
through (24) are necessary in case of initial hyperbolicity in order to adapt «w ineq.
(12) to be the greater scale of the horizontal divergence of the f{ilter equation (16)
which is rather a smoothed 2 -5— . Hyperbolicity can only be eliminated or is not

present, respectively, if the hydrostatic filter condition is not utilized for the
derivation of a continuity equation such as (10), ie., if w and -al’- are
maintained.

Lateral boundary conditions for eq. (18) are y, = -?-z,_ both for a physical

boundary and that of a hemispheric grid. For the w-equation, approximate lateral
boundary values w, may be determined by applying the regression eq.
A'w, = - A(x,y,p)w,_ toeq.(17)so that an ordinary differential equation results
{mentioned by Reuter?®as well as by Eliassen and Kleinschmidt®® and generally
preferable to Charney’s advective model®®). In this respect, eq. (17) may be further
simplified to be consistent with geostrophic approximations. As usual, w, = 0 at
the top of the atmosphere, and W, = -p V . ¥, ¢, with ¢ (x,y) asthe geopo-
tential of the ground.

It is characteristic of the (x, y, p, t)-system that, initally, u and v are

required only at the lower boundary for the computation of w_ ~ and that

w, and v, can be easily determined from the Poisson eq. A% x = - %‘g— ,to be

soived at each p-level. Due to the present insufficiency of observations and restriction
to relatively few levels, the emphasis has been essentially on a rather accurate

solution Y{1)10f eq. (18) which may be followed by a determinaticn of w(!) from eq.

(17) by numerical relaxation.

2. Reuter: “Zum gegenwacrtigen Stand der numerischen Wettervorhermage.” Osterreichisches Ingenicur-Archiv,
Band X, Heft 2.3, Springer-Verlage Wien, 1956,

B A, Elisssen and E, Kleinachmidt: “Dynamic Metearology,” Handbuch der Physik, Bd. XLVIIL, Springer Verlag,
Berlin, Goettingen. Heidelberg, 1957,

0y G. Chamney.
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Alternatively, ¢y and w may be determined in conjunction, and the problem
of finding a suitable over-relaxation coefficient along the lines of Stuart and O°Neill®!
and O'Brien®? would practically be confined to the w-equation. This numerical
process is somewhat complicated by the necessity of finding the divergent wind
components intermediately. Fortunately, the ¢- and w-equations are both essentially
linear so that initial guess and convergence are not critical.

The inclusion of linear frictional terms in the filter equations does not present
difficulties. Nonlinear terms would, however, cause computational instability and
would also be incompatible with the requirement of strong smoothing in case of
convection since the isobaric divergence equation cannot cope with situations
involving effective static stabilities H, < 0. In these situations, a convective tempera-
ture adjustment such as that developed by S. Manabe®? has to be made. All these diffi-
culties and/or adjustments can be avoided by a general nonhydrostatic system of filter
equations developed in Sections 6 and 7.

(sl b Bl G

i

o o
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5. Ramifications of Optimal Hydrostatic Filter Equations. The advantages of
egs. (15) and /17) in relation to Thompson’s equations (1) and (2) are their greater
versatility in case of strong anticyclonic movements, a better determination of winds
including the elimination of the weakness of the balance equation with respect to
anticyclonic winds ascertained by Elsaesser,** and the agreement with Hollman’s
analysis® regarding the failure of the balance equation in strong anticyclonic
situations and the use of the geostrophic instead of the gradient wind. Fjortoft’s filter
conditions (5), as well as ours, involve. of course, the second total time derivative so
that standing gravity-inertia waves of the form {"=A sin kxe™? sin » t and ¢ =

G Y
e e R e St et el i D et A s M

it

iy

i e

- A sinkxsin mz sinvt are preserved and (d—dt-div V) # 0. Scale inconsistencies and ad-
= ‘o =0

justment difficulties inherent in Fjortoft’s method are, however, avoided through the

cstablishment of diagnostic cquations and the corresponding imposition of Helmholtz’
theorem.

Apart from a better determination of the stream function ¥ in the cyclonic
casc as well, the w-equation (17) also permits the computation of stronger
divergences/convergences and vertical velocities because -%-Az z > Ay so that the

, vertical influence increases relatively to the horizontal influence in a solution involving

3D, . Stuart and T. H. R. O'Neill: “The Over-Relaxation Factor in the Numerical Solution of the Omega
Faquation,” Monthly Weather Review, Vol 95, No. 5, May 1967.

ny J. O'Brien: “The Over-Relaxation Factor in the Numerical Solution of the Omega Equation,” Monthly
Westher Review, Vol 96, No. 2, February 1968,

B'S. Manabe: “Simulated Climatology of a General Circulation Model with a Hydrologic Cycle,” Monthly Weather
Review, Yol 93, No. 12, December 1965,

¥ H. W. El_caser.
3 % G, Hollmann: “Ucber die Grenzen der geostrophischen Approximation und die Einfuchrung nichtgeostrovhischer
3 Methoden,” Berichte des Deutschen Wetterdienstes, Nr. 38 (Band 5), B-d Kissingen, 1957,
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a Green’s function. A practical demonstration of this has been given by Smagorinsky %
2

who utilized the geostrophic vorticity equation including the full term (—fé— + Aty %%

and, thus, subconsciously an expression approaching equation (16), with resulting ver-

tical velocities on the order of 30 em sec™.

The importance of the new filter equations becomes particularly evident if we
develop the absolute vorticity in isentropic coordinates in a Taylor series which yields,
in view of

% (;0 + r) = - (go + f) divy V (25)

<§0 + I')t = (&'0 + f)t I - div V‘o At + 7',[(4“\' V) -'l!-dw V] AT+, ...
(26)

Since ﬁ]l—div\’ = 0, within the context of the balance equation and of the

order (div V)" , the quadratic term of eq. (26) approaches the linear term in
moderate latitudes and under average conditions in about 7 days. The replacement of
the balance ecquation as an initialization method which requires a moderate
reprogramming  effort bccoqu thus imperative in multi-level numerical weather
prediction,

According to Miyakoda et al,>” the movement of cyclones and the tendency for
deepening or filling arc the major problems in short-range forecasts, i.c., for 1 to 2
days. In a 2-week forecast, the life histories of eyclones are also important features of
the prediction. This is particularly reflected in eq. (26) although, for medium. to
long-range forecasts, therc is a partial adjustment for the lack of an initial
dit divV = 0 because of the interaction of the primitive equations, the conti;\uity,
and the thermodynamic equation. It is significant and in correspondence with the
above-stated conclusions that in the experimental predictions deseribed by Miyakoda
el al the intensities of the highs and lows weakened apprecinbly after 6 or 8 days
reflecting the fact that the forecast of eddy kinctic energy was less than the observed.
The wiggling in the pattern of geopotential height becomes more pronounced with
increasing compultation time, and the lack oy development of a certain eyclone on the

¥ J. Smagorinsky: “On the Inclusion of Moist Adlabatic Processes in Numerleal Prediction Models,"

K. Miyakoda ot 2} “Experimental Extended Predictions with a Nuie-Level Hemispheric Model,” Monthly
Woather Revinw, Vol 97, No. 1, Jan 1969,
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2d and 3d days along the middle Pacific polar frontal zone may also be due to
inadequacies of initial data or initialization by the balance and associated balance
w-equation. The quasi-stationary modes, or long waves, are more dominant; vshile the
eastward-moving components, the relatively shorter waves, are too small in amplitude
which is in agreement with Elsaesser’s findings. Significantly, the vertical velocities
calculated by the balance w-equation are weaker than those taken from the prediction
cemputation pased on the time-dependent primitive equations.

In Sections 6 and 7, it becomes apparent that the filter conditions expressed by
eq. (5) are cc pletely adequate in the hydrostatic system, i.e., that more refined
smoothing techniques utilizing measured winds are not required or are inconsistent
with the hydrostatic system respectively. Employing the hydrostatic continuity
equation amounts indeed implicitly io a smoothing process and a restriction of scale
several times the height of a homogeneous ztmosphere so that the magnitude of the
horizontal divergence does not exceed that of the vertical vorticity. Diffusion terms,
such as described by Smagorinsky et al,3® are thus not due to a lack of resolution
inherent in the f{ilter equations. They are rather, as stated by the authors, a
consequence of the grid size used which, if it exceeds 30 km significantly, amounts to
an additional smoothin; f “signal” functicis obtainable by our filter equations.

Finally, it should be mentioned that the inequalities (19) and (21), which are
consistent with the existence of the continuity equation (10), are a generalization of
and in basic agreement with the results obtained by Van Mieghem,® that our filter
equations are sufficient as far as the process of adaptation described by Yeh Tu-Cheng
and Li Mai-Tsun*® is concerned, and that the sigma-coordinate <ystem developed by
Phillips*! is also subject to the restrictions of the hydrostatic system as soon as the
effective static stability H, becomes negative.

6. On the Modification of and Initial Conditions for the Differential Equations of
Meteorology and Related Problems. The fundamental problem is to determine
commensurable smooth fields of u, v and w under consideration of the faci that w
cannot be measured, generally speaking. Since the filtering process must be both
consistent for all three wind components and not arbitrarily independent of T. p, and
p, it must be adaptive in nature. Necessary and sufficient conditions for an optimal
filtering process are, therefore, a wind vector filter operation, complete adapatability
with respect to the continuity and thermodynamic equation, and computability, i.e.,
existence of a unique solution. The quasi-ergodic filter equation

bl | Smagorinsk A i
. y et al: “Numerical Results from a Nine-Levei General Circulation Model of the At here,”
Monthly Weather Review, Vol 93, No, 12, Dzcember 1965, 1 ©F He Almoephere

»
J. M. Van Mieghem: “Hydrodynamic Instability,” Compendium of Meteorology, American Meteorological
Society, Boston, Massachusetts, 1951,

©y. Tu-Cheng and L. Mai-Tsun: “Adaptation Between the Preasure and the Wind Field in Meso- and Small-Seale
Motions,” AFCRL-68-0275, Air Force Cambridge Rescarch Laboratories, Bedford, Massachusetts, May 1968.

“
N. A, Phillips: “A Coordinate System Having Some Special Advantages for Numerical Forecasting,” Journal of
Meteorology, Vol 14, Oct., 1956,
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which yields three filter conditions involving smooth variables {, ¥, and # fulfills the
requirements mentioned above which is shov'n in detail in Section 7. It has te be kept

in mind that a? is to be expected to be conserved for an infinitesimal part of the
K pe P

trajectory orly. In other words: The resulting three diagnostic filter equations are
more accurate than eq. (27) implies.

Inspection of the filter conditions and diagnostic filter equations reveals that
transitory sound and shear gravity waves are effectively smoothed out. Typical values
for the wavelength of pressure waves are 100 m to 1500 m, and shear gravity wave
lengths are of the order 1000 m. The existence of these waves accounts for the
quasi-isoti vpic spectra of atmospheric turbulence. According to Charles*?, turbulence
due to shear in the vicinity of the ground exhibits frequencies above 2! cycles/second
and is termed “mechanical turbulence™ in contrast to “convection turbulence” which
is due to hydrostatic instability and typically occurs at frequencies of about %
cycle/minute. Since the analysis of shear gravity or Helmholtz waves presupposes the
existence of wind discontinuities which are filtered out through the use of pressure
and temperature fields. a wavelength of 5 km may be considered as the lower limit
pertaining to the applicability of the uew filter equations. In view of the fact that
Anderson*® selected a 300 m height interval because it was found to be the minimum
interval over whick meaningful values of both vertical wind shear and lapse rate coula
ke derived from rawinsonde data, minimum grid distances for numerical forecasts
would amount to 300 m — 400 m in the vertical and about 2000 m in the horizontal.
Isolated pressure and temperature discontinuities incompatible with such three-
dimensional grid would have to be smoothed out initially. Indeed. application of the
second-order filter condition

2
£h_,

ar? @)

and, therefore, abandonment of the hydrostatic assumption is a priori to be expected
to reduce the approximate minimum hydrostatic wave length of 40 km (five times the
height of a homogeneous atmosphere) by one order of magnitude. In agreement with
Pai** we can thus conclude that the new filter equations include essentially the
vorticity and entropy modes of the hydrodynamic equations, but not the transitory

428, N. Charles: “A Summary of Available Information on the Vertical Motions of Air in the Troposphere,” Sandia
Corporation Working Paper TID-4500, Office of Technical Services, Department of Commerce, Washington,
D. C,, July, 1959.

“A. D. Anderson: “Frec Air Turbulence,” Journ. of Meteorology, Vol. 14, No. 6, 1957,
“Shih.I Pai: “Viscous Flow Theory,” Vol. I, D. Van Nostrand Company, Princeton, N.J., 1957,
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sound and associated shear gravity modes. In fact, in the new filter equations the
Coriolis terms are not to be neglected which makes them amenable to meso-scale

phenomena. Only small scale phenomena such as individual clouds and tornadoes
cannct be incorporated.

There are two possibilities as to the use of filtered wind components G, ¥, % and
corresponding smooth pressure and temperature fields: Either thesc fields are used as
quasi-exact initial values together with a very small grid size, horizontally and
vertically, or they would be considered as approximate initial values in conjunction
with a greater grid size. In the first case, the available input information would be
utilized to its maximum extent, and commensurable smaller scale “‘noise” would be
generated. In the second case, scale-preserving operators would be required, either
external ones such as a two-dimensional one mentioned by Shuman*$, or internal ones
of the diffusion type. Whether a small-scale integration can be achieved, depends, of
course, also on the timely availability of boundary values. We do not adhere to
equations involving the familiar Reynolds stresses such as

o, W, a3l adu LOu 10p, c»
—— —— — —— '_— e e = ‘)(
st tar Pyt tuget £ ax TV (29)

since the bars lose their meaning in the absence o an ergodic theorem which has been
en.phasized by Kampé de Férict.* The statistical operation shown abgye leads, of
course, rot to a new prognostic equation. For example, the time average -a—;‘ in gen-
eral does not vanish sufficiently for staall intervals. Stable statistical averages cannot
even be obtained over longer time intervals since, as is well-known, the meteorological

generation process is not a statirnary one. In fact, only a “potential vorticity” of the
form

d A
f+ Aztpg foTﬁ [P(p)TpB—

with P as a measure of standard static stability and Yg as the stream function
obtained through the classical balance equation would be sufficiently conserved. For
this reason, it would be more profitable in linear statistical forccasting to employ -
instead of ¢-siatistics. The use of bars is evidently only strictly possible in the case of
homogeneous and isotropic turbulence whence the wind-pressure correlation function
vanishes. In addition, incompressibility is assumed. Under these conditions, the
Karman-Howarth equation

45F. G. Shuman: “Numerical Mcthods in Weather Prediction: Ii Smoothingand Filtering,” Monthly Weather Review,
Yol. 85, No. 11.

“].Klmpé de Férict: Atmospheric Diffusion and Air Pollution, Academic Preas, New York, London, 1959
(Discussion, p. 439),
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involves only wind correlations. In view of the above it must be stated that
fundamental statistical assumptions associated with the derivation of Reynolds stresses
do not hold for the differential equations of meteorology. The stresses indicate only
that the generation model is not invariant under a smoothing operation and are only of
use in connection with structural and analogy considerations. As soon as the link
between the smoothed and perturbation fields is assumed to be negligible, i.e., the
generation of subgrid noise is to be prevented, diffusion terms have to be added or
filters have to be applied for specified time intervals.

In view of an adaptive, i.e., coherent smoothing process for all variables, the
horizontal exchange coefficient, or rather function K, should be the same for d, 9, and
R. The diagnostic filter equation for % climinates the need of diffusion terms for this
variable and identically fuifills the equation of continuity so that diffusion of mass
does not occur. According to Obuchow*? this leads to

3
K=k D" &P (31)

with k, asa dimensionless factor of the order of one. 2, as an observation measure,

and D, as proportional to the squared deformation of the velocity field
ot = o [(2u) 4 (2 4 2w\, (2w, av)' fov , owY
2 |&) &) @GR G
2

Equation (32) is only an approximation sinee it has been derived under the assumption
of homogeneous turbulence and incompressibility, whence div V = 0. It holds,
however, well in its two-dimensional form in the hydrostatic systems, whence K
=k, D;’z 2: . In this form it has been utilized by Smagorinsky et al*® The
¢*? relation first established by Richardson has, therefore, to be considered
questionable for regions of convective activity. This has been ascertained by Lettau*®
and is due to strong concurring vertical divergence. Again, only because of the
availability of the diagnostic and simultaneously optimal @-filter equation (63) of
Section 7, eqs (31) and (32) in their two-dimensional form can be expecled te hold

4°A. M. Obuchow: “Ueber die Encrgicverteilung im Spek*=m ciner turbulenten Stroemung,” 1941, published in
Statistiche Theorie der Turbulenz, Akademie-Verlag, Berlin 1958.

8, Smagorinsky, et al: “Nine-Level General Circulation Model of the Atmosphere.”

“H. Lettau: Atmospheric Diffusion and Air Pollution, Academic Press, New York, London, 1959 (Discusdon, p.
116).
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% reasonably. In case of grid-scale diffusion involving frequencies which are small in
[ig . . o e .
comparison with the upper limit of the spectrum, D =~ const. According to
¥ Obuchow?®® and Richardson eq. (31) reduces then to k, f(2). This simple expression
1 9 2 pic exp

H appears to apply satisfactorily to geostrophic conditions only. As to the formulatic n
* of suitable vertical diffusion terms, no attempt will be made here.

§ The effects of ground friction are not considered in the derivation of the filtering
% equations carried out in Section 7. Introduction of surface stresses of the form

| v
: 1. =Cypu / u? +V 7, = Cppv Ju? + ¢ (33)
£ lead, however, to endogeneous nonlinearities with associated non-convergence of the
§ numerical relaxation process. Apparently, quadratic friction terms include small-scale

phenomena, such as external sound and shear gravity waves, and are also not strictly
compatible with a vanishing vertical velocity at a horizontal surface. In fact, since the
variable velocity vectors O(t) at the upper and lower boundaries ar * nt available and
the vertical velocity at the lower boundary is a function of an approximate horizontal
velocity ¢losc to the carih’s surface and the geopotential of the ground, scales below
about 6 km have to be excluded a priori. With a linear frictional term introduced by

Gulidberg and Mohn and proposed as suitable by Phillips *' the first cquation of motion
’ wordd read as

e

W g

d l a €
d—;‘=-7,- .g + fv - ku (34)
More explicitly, k = a(x, y) k,(z) though k, might be considered constant in a
2 sufficiently deep layer adjacent to the ground. Application of terms (33) in connection
1 with a grid of smal! length would only lead to the generation of undesirable noise.

Bl

Terms of the form ku and kv can be fully absorbed in the filtering equations derived in
Section 7 although they have been omitted for the purpose of simplicitv. Sin~e motion
in the friction layer is such that there is horizontal convergence of mass in areas of

cyclonic activity and vice versa. as stressed by Eliassen and Kleinschmidt,~ these terms
ought to be included in practical computations.

s
a ‘,M 'r““v“4
-

i
W

A

The incorporation of suitable lower and upper boundaries in our initialization
schenic is discussed in Section 7. Pertaining to the svhole globe, the problem of lateral
boundary conditions does, of course, not present itself. In a quasi-hemispheric grid
3 i system, the horizontal wind components have to be assumed to be geostrophic, and an

R R R T TP

% A, M. Obuchow* “Ueber die Energieverteilung im Spektrum einer turbulenten Stroemung.”
SIN. A. Phillips: Numerical Weather Prediction,
3 S5 Eliassen and E. Kleinschmidt: “Dynamic Meteorclogy.”
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approximate vertical velocity has to be computed along the lines described in Section
5. Lateral winds at sizable mountainous shapes have in general to be assumed as
geostrophic winds also, at least initially.

The Coriolis parameter has been treated as f = f(x.y) in Section 7. For the
purpose of simplicity we have, however, considered g = const. In a more exact form,
eq. (43) in Section 7 would read as

dop ldo op _dg .
— - —— . + D =
dtsz 7 mtPac? (35)
. F) 2g, .. , .
with «:;%= 35 w = -—=>w. This linear correction as well as the nonlinear terms

associated with —g—{ and %{Q may be initially neglected in the relaxation process,
i.e., prior to obtaining stable numerical results from the simplified as well as linear
filtering equations.

It is possible to derive the filtering equations for spherical coordinates or under
consideration of map scale factors. For the purpose of simplicity, we have also omitted
diffusion terms in the continuity equation for water vapor and terms involving
differences between atmospheric and water or snow temperatures in the thermo-
dynamic equation. These complications would not change the basic character of the
filtering equations.

The discussion in the preceding paragraphs appears to be relevant for an
understanding of the ramifications of the new fillering equations. We have not only
succeeded in deriving optimal filter equations, but also constructed a powerful system
of four prognostic equations and one diagnostic equation for numerical weather
prediction together with initial conditions the details of which are exhibited in Section
7. This system would sufficiently cope with fronts, hurricanes, and instabilitics
associated with the jet stream. Were it not for the inaccuracy and lack of observations
and the restriction of an upper boundary with w = 0, this system, together with
well-digestible non-adiabatic inputs, would conceivably make it possible to extend the
limit of predictability associated with the (x,y, p, t)-system considerably beyond 2
wecks. This may be comforting to scientists involved in extended forecasting and
general circulation simulations such as Miyakoda®? and Smagorinsky** who considered
a potential limitation of 2 weeks as rather pescimistic.

DK, Miyakoda, et al.
% 1. Smagorinsky, et al: “Nine-Level General Circulation Model of the Atmosphere,”
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7. Generalized Optimal Filter Equations Free of Hydrostatic Limitations. In
Section 6, we havc shown that it is necessary to consider pressure, p, a priori as a
continuous variable and that pressure kinks have to be smoothed out in order to avoid
quasi-infinite pressure gradients in agreement with Haltiner and Martin.** Discontinu-
ities of zeruth order involving temperature, or rather virtual temperature, require even
stronger smecothing. The application of the differential equations of meteorology is
only possible with smoothed variables including consistently filtered winds. For
simplicity, we omit the filter symbol A in the following derivations.

Since the filter condition
d2
= V) =0 (36)

implicitly includes a term —g{-div V, a system of non-linear partial differential

equations would result which does not permit ar equilibrium solution and,
consequently, could riot be solved by relaxation methods.

As already mentioned (Section 6), the filter condition is

ds
Tt¥ =0 (37)

which has already been applied in Section 4 except for the vertical wind component. If
eq. (36) were valid, it would imply a strong identification of p with reference
to V and, thus, make the differential equations more deterministic, i.e., all invariant
under a filter operation, which is not possible.

We now apply eq. (37) with reference to the equations of motion

du _ 13
3 —'p3¥+fv (38)
dv _ 13
at = -5 e - fu (39)
dw _ 19
i (40)

55.G. J. Haltiner and F. L. Martin: Dynamical and Physical Meteo: ology, McGraw-Hill Book Company, New York,
Toronto, London, 1957,
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with the intermediate result

g WWWW"MMWMWWMWMWMWWM

d3p 1d » d =
T Fd e @=0 (41)
d 2 1 9 d =
o ‘T% e RORK (42)
dop ldo  pp _
bl ..o @
i
With F = dt » under consideration of eq. /38) and (39) with regard
to -d%(fv) in eq. (41) and BdT(f V) in eq. (42), tespectively, and in view of the
continuity equation
1do .
2 L= divy (44)
we arrive at
aF _3p .. du 3 v 3p . aw d
EeRavy- (. ay+a—x‘7§>
19 of of
vl o) v (v g) <o @
F L 9p gy _(2udp, avap, aw ap
3y * ay div V “(ay ax ay dy * ay 82)
12 af f
+fp (--Esg'i-fv)-{-up(us;‘- +v.g_).;) =9 (46)
oF 2o . du 9 av 3 ow 9 -
H+ﬁdxvv-(3;§£+-ﬁ-5£+-%§£)—0 (47)
In the next step, we have to express F asa time-independent function which
linearly involves the divergence -g% + g—‘-; + %1:- The thermodynamic cquation reads
in a very general form
r,L cldr , 9. _ 1 a
d(cpT) +(l-k+r,-c—p-)—.r-k-—L --(;,]S- (48)
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where 1, designates the saturation mixing ratio, L ~ 600 cal g',c, = .2405calg’ !
«(degC)™ the specific heat of dry air at constant pressure, ¢ = 1.0 cal g, the specific

Cy

heat of water, k=-2 = .2848 where c, is the specific heat of dry air for constant

P
volume, p, the density of dry air, and g non-precipitative heat added to a unit

mass of air. With a = {—'—T— , €q. (48) may also be written in its time-dependent form
P

dinr, dinT dinp, 1
e T r Tl T %% “

di
Elimination of the term :tr, in eq. (49) by means of Smagorinsky’s and Col-
lin’s relation®

din: dinT dinp
ik VOV R e e (50)

with v = —l—m which involves I  as the latent heat of condensation and
A! as the mechanical equivalent of heat leads to

dinT dinp,
[1-k+uty-2)+425] LEL_ (ko) —t= oF & 1)

From eq. (50) and (51) follows

dinr,  yk+a-1-4.2r, dinp,
dt ~ 1~ k+a(y-2)+4.2r, dt

7-1 1 @& A dinp, A dinp
*TTRTaG D AT, ST & B a B at (52)

Under consideration of

=g [(1+0.6r)%§—+ (1+0.6r)p 9T+ 067 40 (53)
which follows from the equation of state, in view of
dinr,
dg:r =% & (54)

% 1. Smagorineky and G. O. Collins: “On the Numerical Prediction of Precipitation,” Monthly Weather Review 83,
1955,
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with

0ifdivy < 0 orr < 5,
5 = (55)
lifdivV > 0 andr = 1,
and because of
ﬂﬂ 0.6 dr (56)

PL
eq. (53) can be formulated as

5 p
F=P=_R (1 +kB“) (l+0.6r+%8 .r) T divV +%‘c—%"t~
P

= - M[rp] TdivV+NAL

=-MT( i‘i z) NHEI (57)

Substitution of eq. (57) inegs. (45) through (47) results in the linear diagnostic
filter equations

?u , v 3w 3(MT) du _ 3v 0w
MT(ax axay+axaz) [ax ax]( Tyt az)

du 9P v dp  3wdp 190 ¢
bxax+ax5—' ax 3z (‘5'5? !

af af d dq\ _ p
+\p( =4 ay) - (Na%) =0 (58)

+

o*u v Pw 3(MT) _ du , av , 3w
MT(axay Yoy T ayaz')+ [ r (T 3y +'5?)

+ ar;+avap+gﬁap+f (.l_a_p—fv)

T3y ox ~ dydy  dy oz p ox
of af 3 &
-up(u—a—x- + va—);) "3y (Na%) =0 (59)
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?u . v . atw aMT) 2 (au v . aw
MT(a*az;&ayaz* azT) [ " o) \ox T T

+udp  3vap  aw ap 3 [ _
T % 3 oz 3y T T 9z \N'dﬂ) =0 (60)

Equation (60) provides an excellent diagnostic equation and reduces the numeri-
cal relaxation work considerably which is only required in eq. (58) and (59). In the
form of an ordinary linear differential, eq. (60) appear's as

+ 3MT) 2 'y a(MT) 3
MT 5 az’ az)a:+MT( ¥ )+ : )'—Bl(ax v)

dxdz  dyoz L ay

+dudp  dvap 9 dq\ _

Taox " 3y oz (NH%) =0 (61)
With
% _ d%u v 1 (MT) _ av
¥ = 3xez © dyoz +—MT{[ az (ax ay)

ou dp , av 3p _ 0 (14
* 0z 5'[; * 9z 3y oz (N a%)} (62)

the solution of eq. (61)is

w = (MT) [f WTT F(z)dz+C]dz+C (63)

At the lower boundary, w, = Up, -3% * v, —5% with ¢ (x, y) as the geopo-
1
tential of the ground. Accerdingly,

= a¢ )
o e, g @

Since, at the upper boundary Wp, = 0, the other integration constant yields the
2
’ (MT) (MT)z (MT),
“(MT) " M), _[ D), Fz)dz] dz + C,} (65)
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We have to remember that the saturation mixingratio r, = r, (p, T) and y =y (T)
and that it is necessary to obtain first a solution of egs. (58). (59) and (63) withs = 0
whereupon the criterion (55) is applied. One or two iterations will then yield satisfac-
tory results Unless & has some variability along the lines suggested by Smagorinsky,*’
the variable & should be aboui 0.8 instead of 1.0 in agreement with numerical
simulations.

It is to be expected that the over-relaxation factors ¢ in the iteration scheme

ule+d

um) 4+ 9 Gl [u(n) v(n)’w(n)}

vOrD = v 4 9 G [u(“),v("),w(‘"] (66)

with u® = - T%_gjyz,vm = ?1;%_’2‘ W =0

in which G, and G, represent residuals of eq. (58) and eq. (59), respectively, have
to be quite small in small-scale solutions involving strong divergence (convergence) and
vertical wind velocities. Since u® and v® become singular at the equator and
convergence is slow in very low latitudes, fine grid solutions are not possible in the
vicinity of the equator. Due to the fact that the mass field cannot be accurately
determined in the equatorial region, horizontal winds, obtained through the tracking
of floating balloons, and additional temperature measurements would facilitate the
computation of all desired quantities. The use of diagnostic filtering equations for this
purpose has been mentioned by several authors including Mintz*? though in
connection with the more restrictive hydrostatic prediction system.

Utilization of the hydrostatic approximation with respect to height determina-

tions weakens the application of the filtering and associated prognostic equations as

far as smaller scales are concerned but still allows the computation of divergences

P exceeding the vorticity on a constant pressure surface. This is of importance pertaining
to the immediate applicability of the new prediction system.

As to the upper boundary condition, the assumption w = 0, of course, has to
E be made for a finite height. In this . cspect, the condition var w = Min. would provide a

good separation criterion. This has to coincide with the criteria var Y = Min.,

2 dz
var —. = Min., var T . Min., var p . Min., as far as interpolation from a
3 0z 0z Jz

lower to a higher level is concerned, i.e., to an average equilibrium boundary which

Y. Mintz; “The Four Basic Requirerents for Numerical Weather Prediction in Global Weather Prediction,” ed. by
Bruce and Kiely, Holt, Rinehart and Winston, New York, 1970,

s:{ew “On the Dynamicul Prediction of Large-Scale Condensation by Numerical Methods,”
Monograph No, 5, American Geophysical Union, 1960.

™
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exists al about 20km height. In addition, linear correlation based on considerable
prior work would permit the extrapolation of u, v, p, and T and thus facilitate a
w-caleulation in virtue of eq. (63).

8. Concluding Remarks. 1t is important 10 emphasize that initialization and the
structure of prognostic equations are intimately related. Furthermore, the determina-
tion of the w-field must be consistent with that of the u- and v-fields. If the
differential equations of meteorology were to be applied in a completely unmodified
form, including all equations of motion, the initial ficlds would have to be found
simultancously in a grid with very small lengths Ax, Ay, Az which is impossible. The
optimal filter equations are also conditional equations with reference to the wind
ficlds once sufficiently smooth pressure, temperature and humidity fields are given,
Since these equations imply a very delicate “*balance,” mdependently given ficlds of all
variables excluding the generally not available w-field would lead to the generation of
artificially large gravity oscillations as stressed by Phillips.® Because of the existence
of thermal convection, the hydrostatic differential equations cannot adequately
describe the physical processes in sufficient detail and appear to be unsuitable as a
basis for parameterization processes including cumulus convection which have been
emphasized by Leith.® In view of the above-mentioned facts, the non-availability of
timely boundary values and stability problems, a practical forecast system of highest
predictability is, consequently, one which contains only one diagnostic equation, The
existence of such an equation is equivalent with the existence of consistent initial
fields of variables. The initialization and prognostic model developed here has a
considerably greater predictive ability and versatility than the equations presently in
use. Long-range, non-adiabatic effects other than precipitation would also be of greater
significance in context with the new system of equations, These equations are also
indispensable with respeet to the dynamical prediction of medium to large-seale
condensation and many research efforts including general cirenlation simulations. As
can be ascertained from a number of statements made by the Commitlee on
Atmospheric Sciences, National Research Council, and listed in the appendix, this
rescarch has made contributions to a variety of outstanding problems, Finally, this
study also has implications regarding kind, methods, density, and frequency of
measurements and indicates the necessity for a greater effort of and cooperation
between the National Oceanic and Atmospheric Administration and the Acronautics
and Space Administration and beyond that, internationally.

N, A. Phillips: “Numerical Weather Prediction,”

¢, 1eith: “A Six Level Model of the Atmosphere” In “Global Weather Prediction,” ed, by Bruee and Kiely, Hol,
I{#whm‘l wnd Wingtlon, New York, 1970
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APPENDIX
j RELEVANT STATEMENTS OF THE COMMITTEE ON
ATMOSPHERIC SCIENCES, NATIONAL RESEARC: COUNCIL
The following statements on outstanding problems in weather prediction pertain- e
2 ing to which contributions have been made in this research have been published in
2 “The Atmospheric Sciences and Man’s Needs,” National Academy of Sciences, Wash-
ington, D. C., 1971.
4 1. Synoptic and Planetary Scales, p. 18, 19. ... Progress has been limited due to

the computational requirements and to the fact that vertical convection and condensa-
tion play such important parts in mesoscale phenomena. Although numerical models
have successfully simulated convection cells, the dynamics and statistics of convection
have not been incorporated in the models of the large-scale circulation; this constitutes
one of the most serious limizations on progress in atmouspheric prediction. ..

it
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2.  Changes of Microscale and Mesoscale, p. 19-21. . .. There are severe mathemati-
cal and theoretical difficulties in developing general prediction models for these smaller
scales. The time scales are, of course, so short that the quasi-geostrophic relation be-
tween wind velocity and pressure is not valid. Furthermore, many of the weather sys-
tems are fully three dimensional, so that the hydrostatic approximation which is essen-
tial to general circulation theory cannot be applied to the smaller scales. . ..

.+ . Other phenomena of the mesoscale and microscale, e.g., vertical convection,
clear-air turbulence, and secondary features of the planetary boundary layer, have not
been incorporated into the numerical models. The physics of these weather features,
especially their interaction with phenomena of other scales, remains largely unknown,
and promising ideas are needed. ...

3. Recommendations, p. 23-28. . . . Scientific plans for the U. 8. contribution to
GARP were outlined in the report of the U. S. Committec for GARP referred to earlier.
Bhat report emphasized the following requirements: . . . (¢) the conduct of regional
field programs and computer modeling experiments to improve the physical and mathe.

matical pasis of long-range prediction. ...

. . . There are, however, teveral specific problems that have been identified by
USC-GARP and that require prompt attention in order that the GARP can be success-
fully carried out. These are . . . (b) A strong numerical modeling cffort is nceded to

28




= =T g = ¥ e e e

O w  a

carry out simulation experimets aimed at design of the global observing system. ...

... Improvements in prediction models and the associated increased understand-
ing of atmospheric processes will also contribute to the necessary basis for virtually
every other application considered in this report. ...

.+ Recemmendation I-4. In order to advance understanding of mesoscale phe-
nomena and to improve ability to forecast these phenomena, emphasis should be
placed on research on fronts, jet streams, organized convection, and other phenomena
of mesoscale.

(b T

WP A

: Increased support should be given to the development of numerical medels
‘ capable of predicting such features as the wezther associated with fronts and organized
convection. The largest available computer in the hands of a competent numerical
modeling group is needed for this purpose. ...
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