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“The low frequency scattering of electromagnetic and acoustic waves by rotstionally
symmeiric bodies is corsidered. By concentrating or certain quantities such as the
normalised component of the induced electric and magretic dipole moments, it is shown
how the first one or two terms in the far zone scattered fields can be expressed in terms
of guantities which are functions only of the geometry of the body. Each of these is the
weighted integral of an elementary potential function which can be found by solving an
integral equation. A computer program has been written to solve the appropriate equations
by the momeant method, and for calculating the dipole moments, the electrostatic capacity,

and a further quantity related tc the capacity. The program is described and related data
are presented.
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The low frequency scattering of electromagnetic and acoustic waves by
rotaticnally symmetric bodies is considered. By conoentrating on certain
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quantities such as the normalised component of the induced electric and mag-

netic dipole moments, itis shown how the first one or two terms ir the far ¢
zone scattered fields can be expressed in terms of cuantities which are func-

tions only of the geometry of the body. Each of these is the weighted integral

of an elementary potential function which can be found by solving an integral

equation, A computer program has been written to solve the appropriate
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P

equations by the moment method, and for calculating the dipole moments, the
electrostatic capacity, and a further quantity related to the capacity. The
program is described and related data are presented.
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1, INTRODUCTION

When a plane electromagnetic wave is incident on a finite perfectly con-
ducting body, or a plane acoustic wave incident on a finite acoustically soft or
hard body, the scattered field in the far zone car be expanded in a power
series in the wave number k if k is sufficiently smxll. The determination of
the first few terms in these series requires the solution of certain elementary
potential problems. We here consider the potential problems associated with
the first ( Rayleigh) term in the electromagnetic expansion and the first two
terms in each of the acoustic expansions, and show how in the case of a singly
connected body cf revolution all of these terms can be deduced from the solu-
tions of just five potential probiems. If the body is not singly connected, onlv
the axial component of the induced electric dipole moment is affected, and for
a body consisting of two separate parts, an expression for the modified compo-
nent is obtained.

Each potential satisfies a simple integral equation. Computer programs
are described for solving the eguaticus by the moment method, and since most
of the equations are of first order type, the computaticnal procedures are rather
similar to those of Mautz and darrington ( 1970). The appropriate elements of
the electric and magnetic polarisability tensors (Keller et al, 1272) are then
computed, along with the electrostatic capacity and a quantity + related to this,
and these are sufficient to specify the electromagpetic and acoustic scattering
for any direction of plane wxve incidence and any cirection of scattering. For
relatively simpie geometries, tbe entire computation takes about 3 seconds on an
IBM 360 computer.

In our preeentation we first examine (Section 2) the proble:a of a plane

electromagnetic wave of arbitrary polarisation and incidence direction, and
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isolate the potentiale necessary for a complete descrintion of the leading term
in the far zone scattsr-ad field. Thizs is followed (Section 3) by similar treat-
maents of the acoustic problems, but here we seek the firec two terms in the
expansions. In Section 4 the integral equations satisfled by the potentials are
cast into forms appropriate to digital eolution, and the manner in which the
body is specified is also described. Section 5 is concerned with various aspects
of the computer program, a comp'ate listing of which is given in the Appendix,
and some of the numerical results obtained sc far are presented in Section 6.

This work was supported ia part by the National Science Foundation under
Grant GP-25321,
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2. PERTFECTLY CONDUCTING BODIES

2.1 FORMULATION

l1et B be a finite, closed, perfectly conduceting body ui reveiution about
*he z axi. of a rectangular Cartesian coordinate systein (x,y,z). In terms of
t-2 eylindrical polur soordinates (p,9,z) where

p gty ¢=arctanf ,

the surface will be descrived by the equation
p=p(z)

where p can be a multivalued function of z as, for example, in the case of

a disk or a re-entrant shape, but is never infinite and is zero outside some

interval in z. Let r be the radius vector to an arbitrary noint in the domain

U esterior to B and let D be a unit vector normal to the surface drawn into V.
A linearly polarised eiectromagnetic wave 15 incident with electric and

magnetic vectors

"N A N A A A
where k, a and b are mutually perpendicular unit vectors such that bxk,a;
Y is the intrinsic admittance of the hiomogeneous isotropic medium ( of permit-
tivity €) exterior to B and a time factor o * 1as been suppressed.
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For k small but kr large, the resulting soattered field _b}s, _ljs can be
written as ( Kleinman, 1965)

.8 -__13 k2 2oA A 1, »
E~ - 31 - r,\(rAp,)+'§(rA_1_)
(2)
ikr
8 e 2 .¥. A ALA
B~ 47 r k {e (rAR)'rA(rA.“.‘)}
where p and m are the electric and magnetic dipole momeuts respectively.
As shown by Keller et al (1872),
A A AA
P=e {Pua + (P33-Pn) (a.z)z}
(3)

A AAN
m = -Y {Mllb + (M33-Mll)(b.z)z}

whe Pu, P33, M1 1 and M33 aro functions only of the geometry of the body.
For a given body, Pll’ P33, Mll and M33 are conctants whose values are

as follows:
9
(i} an fj X 3n (x-ql) das (4)
B
where Q 1 is such that
vig =0 in V/
1

qlax on B (5)

e
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Ql =0(r-2) as r—) @

(ii) Py, = jf z BQ;;(Z"%) ds (6)
= - B

where Qs is such that

v $,=0 in

$,=z+7 on B; (7)
4 is a constant chosen tc make

JJ
-a-n—° ds = 0, (8)

B
implying zero total induced charge on B, and ensuring that

, . ' = O(r 88 r—» o .

' (1) ff x(x-"l’)os (9)

where '11;" is such that

Vz'qul() in

9 'qu 9x

on an

*

oun B (10)
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¥, = Q(r“z) 88 r — .

(iv) M, = ffﬁ‘.‘z‘(z-'{rs) ds (11}
B

where ‘!'3 is such that

v, = 0 in U

2

;{;3 “ g: on B (12)
-2

‘1"3 = O(r ") a8 r—o.

Although the vaiues assumed by the potential funotion ‘Ifs on B are quite distinct
9 9

from those of '@‘l ) _2.!. and ._?;3_ , pevertheless, as shown by Karp
dn an

(1956) and Payne (1956),

1
M33 = 3 pu . (13)

This cbviates the need for solving the potential problem (iv) if the only purpcse
for finding 3}—3 is to calculate M, .

There is one other slectromagnetic quantity of interest and this is the
electrostatic capacity C of the body in isolation. If the body is raisec to the
pote-tial unity, the surfece charge density is

2,

p = -c (14)

8 on
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J

where §0 is an exterior potertixl function satisfying the boundary condition

. @03 1 onB . (15}

P e e e e s L T
e Lttt g Bt u[""f“‘;"";,” TR o o
R o MO TR T
,
.

The electrostatic capacity is then equal to the total charge induced on the sur-

3
C @ -¢ ff @0 das . (18)
on

Note, however, that if all porticns of the surface are not in electrical contact

face and {s

with one ancther, charge can nc longer flow {reely over the entire surface, and
additional { mutual ) capzcities can be cefined. In particular, such electrical

? separcation has a profound effect on the caiculation of P33, and the modifications
that resuit when the surface is disjoint are discussed in Section 2.

The five quastities listed in 2qs. (4), (8), {9), (11), and (16) can be
computed by solving fiv? separate potential problema of a rather standard nature,
and the manper in which this is done is as {cllows.

Let V be some potential function satisfying Vzv = 0 outside and on B,
and let Va be the regular part of V. Vs is therefore an exterior potential

. ara we can rugard

v-veayl

~—~
yost
~3
o

as an incident potentisi. Green's theorern applied to the functior V in the region
Y then yielde

f A
v 1 ) 1 1 9
tfyx UF —— ffv ! Y- il - e S 7t
Vig)= Viig)+ = E(,)an";\-) = 3o v
B \

s1&
J

{i8}

ot

<]

Yo aigal 8
.
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where Rt‘r-r'l .
If the boundary condition on the potential V is

vir) = 0 , r on B, £19)

eq. {18) reduces to

i 1 A 3 ' .
v(r) =vi{(r) - o IIR 30" v(r) 48" , (29)
B

aad since the integral exists for 211 r including points on B, we can allow r
to lie on B and apply the boundary conditiun (19) to obtain

t Ll 2 gy as
vir) = “.”“‘ = V(r') as' , (21)
B

whic.a 18 anintegral equation of the firat kind for —g%— .

If, on the other hand, the boundary condition on the potential V is

8
P vir)=0 , r on 8B, (22)

eq. (18) reduces to

\
v(_,-_).vi(!_)«» 21;- ]fv(;')-(,,—i—, (':i) dst , (23)
B

3ni because of the non-integrable singularity of -ﬁ"r (-lﬁ-) at r'=r ,
21, (23) i valid as it stands oaly if r is noct on B. To obtain an integral

eruaticn for ¥V, we allow r to approach & point on B in the direction of the

AT ot ¥ ket o M S Y e ot s Bt
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inward normal, in which case it can be shown that

7 3 ) lim \'(S_') "3 1 dst' .?FV(};)"F V(El} a' 1 ds'
E B gn R on't R

B

where the bar across the integral signs denotes the Cauchy principal value. Hence

s

T
T T

for r on B, which is an integral equation of the second kind for V.

r (e
o AL A B

iy

2.2 PROCEDURE FOR P11

The solution of problem (i) and, hence, the computation of Pll is a
straightforward application of the intagrel equation (21).
bid
Vi ® X Vs = - é
» ' 1
S then \ =x-§1 =V, (say} (25)
3 . with V. =0 on B. Since x=pcos§ and the equation of the surfzce is indepen-

dent of fi, the potential V. must everywhere have the same @ dependence

as Vi, implying

1

bt

Vl(g_) = Vl(p, z) cos § . (26)

» oV

This i= true also of -3;1- . and we can therefore write

bz s

Py

N
E
E
F
3
§
3
=
%‘i‘
z
3
7
g .
;
-
%

Lk R Rt

i
i

N
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Oy ity e Ry (') oo g
Fy Vl(_g) Yy Vl(p , 2 )cos§
= Tl(s')coa¢'

where s! is arc length along a profile cf the body. Moreover,

(27)

9 2 1/2
R = {(p-p") +{z~2") +2pp'(1-coe¢r)} [28)

with
v=9-§
and since
ds' = p'dp’ds’ ,

the integral equation (21 now takes the form
2% s

43

1 '
pcogd = [ '5‘1(8') cﬁ%-!— ptdp'as’
(1} 3

r I8

2

1 Yo S '

= '4—:] f ’rlh')c—“%wtz'dwds
0

0

8
t, ' t
s 1 P a:l'rl(c )ds cos §
2 o

where the karrel is

PR S

|
'
.
]
%n
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and the integrrtion is along the profile of the body. The integrai equation
for Tl( s) iz therefore

8
f p'xlrl(s')de’ x 2rp (30)
0

O Lt 8 et Lt L ek

which can be solved to datermine ’i‘l(s) . Interms of this quantity

d
P, = Ifx 3n v{r)ds
B
. 8[ I pzcoszﬁ'l‘l(s)dﬁds
H 0

which reduces to

IR

e U T el

i

2 .
Pn- tj o Tl(sts . (31)
0

2.3 PROCEDURE FOKR !’33 AND C

The solution of problem (ii), leading to the caicuiation cf P33, involves

two successiva applicatiors of the integral equation (21).
In the first case we consider 2n incident potential

v‘ -V,i =g (32)

and seek the corresponding total potential V2 satisfying the boundary condition

11
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V2 =0 on B. Since vl is everywhoere independent of @, it follows that

2
8V2

V2 and 3o e likewise § independent. We can therefore write

av2
= ]
e Tz(a ) (33)

and the integral equation (21 ) now becomes

g

g m =
4w

8
_1, t t t
] Tz(s') R P dg'ds
0

S

where the kernel is

L d

0
0

The integral equation from which to determine Tz( g) is therefor«:

0

12

K, = Ko(p,z;p'.z') =I -%L . (24

f p'KoTz(a')ds' = 27z . (35)
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The aecond of the two hasic problems is ithat in which the incident potential

is

Vv =V =1 (36)

We again seek the total potential V3 satisfying the boundary condition V 3 =0

on B, and writing

8V3
—ia t .
an( e T3(B ) ) (37}

the integral equation (21) takesa the form

8
f p'x0T3(a')da' =27 (38)
0

from which T3(8) can be fouad.

In problem (ii), however,

Vi'z+'y and Vel't -43

Thus,
vinv‘2 + vva‘ (39)
implying
VeV, + vV, , (40)
i3
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and if we write

-g-}, - T(s') , (41)
then

T(s) = T2(8) +7T3(a) (42)

where Tz(s) and Ts(s) are the solutions of the integral equations (35) and

(38) respectively. The constant ¥ is determined by the condition (8) for zero

total induced charge on B, viz.*

) i

ff‘é‘{ (v -v)ds=0 . (43) .
4 B

‘ But

ffavi ffa

a5 45 = Bn (2¥ Y)dS =0, (44)

: B o

as can be seen by application of the divergence theorem; moreover

2z 8
Ifg—f ds -I f T(s)pdé dS
0

B 0

= 2y pT(s)ds :
0

* We are here assuming that the surface is not disjoint.

14

e e B L —m_§r
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s 8

-21£ pTz(a)ds'f erwf pT3(s)ds
0

and hence. by virtue of eqs. (43) and (44),

f P'I‘z(s)da
0

TE - s y {45)

I PTs(s)ds
0

Since Tz( s) and T3( 8) ocan be found from the integral equations {25)

and (38), the constant ¥ given in oq. (45) now completes the specification

of the surface field T(s), and in tarms of T(s)
P =Ifz 2 v(r)ds
33 on -
B

s
= Zt]sz(S)ds .
0

8 8

P i ;
33" 2:] szz(s)os+2:-yf sz3(s)ds . (46)
0 0

A valuable by-product of the above anslysis 18 the electrostatic capacity

Hence

15

l, ‘
"v : M
W w
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C defined in eq. (16). This fact is appaent on recalling that the determination
of C requires us to find the exterior potential QO satisfying the boundary
condition ( 15) on B, and this can be accomplished using the integral equation
(21) with

so that

V=1-§, (=0 onB).

The problem is therefore identical to the socond of the two basic ones
considered above, and indeed

= 1-v, (47)
implying

2@ 3V

gl - B

0 a an T3(') (48)

where T3( 8) is the solution of the integral equation (38). Hence, when the
body is at unit potential, the surface charge density as a function of arc length

is

Py * e’l‘s(s) {(19)

and the capacity C is
8

C= 27xc f pTa(a)de . (50)
0

We observe that the denominator of the expression (45) for v is simply

16
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C /(2% ¢), which ensures that ¥ can never be infinite.
Some simplifioation of the preceding results is possible. Since V?s aad
Vv & are beth exterior potentials, Green's theorem can be applied to the region

3
U exterior to B to yield the reciprocity relation

t I* s BV f s 3V
JJ v = s Vs T 98
B B

{ Van Bladel, 1958), But

[SV IR/

av; N A
5 " Tz(e) - n.z

and
V.

on = Tyls) .

W »

and from the boundary ccrditions on V2 and V3

on B. Substituting these into eq. (51), we have
fsz3(s)dS= If {Tz(s)-ﬁ.'%}ds
B B

which reduces to

8 8

f pTZ(s)dau j sz3(s)ds
0 0
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gi
H
2
E
3
3
i
2
by
2
3
2

With the nid of this resuit, the constant ¥ of eq. (45) can be expressed

in terms of the surface field ’1‘3(0) alone:

8
: I ZPT3(B)ds
0 :
= 8 N
I PTs(a)ds
0
i.€. i
= . 8
: Y= - g—g—f-f zp'r3(s)ds . (54)
0

but wiiist this reduces from four to three the number of separate surface field

integrations involved in the calculation of P, ., there i8 no way to avoid

33
entively the determination of the surface field Tz( 8). Indeed, the simplest

expression for P33 is

8
2 C =
P33 x 27 f zp Tz(s)da -7 . (55)
0

2.4 PROCEDURE FOR M11

The solution of problem ({ii) leads to the calculation of M 1 and is a
straightforward application of the integral equation {24). If

viex ama  vie-%¥ :

18

!
i
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then

Vex-¥ =V, (say) (56)

and 9v 4/on = 0 on B as a coasequance of the boundary condition (10).

Since x=pcosf and the equation of the surface is independent of ¢, V 4
must have the same §#§ dependence as Vi , namely, cos §. In particular,

on the surface
V4(g)=V4(s)cos¢ (57)

which enables us to write eq. (24) as

27 8
V.,(8)cos P =2pcosf+ L V(s')coe¢'—a—' i ptdf'ds
4 2 ont \R :
0
But
A
B! xcosa' “cosf'+ ysin¢')-gama' (58)
where
- 1
a'= tan 1 _Q%_ , (59)
dz
so that
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with ¢ = ¢ - @§¢ asbefore. Hence

27 \ 2x , /

) 1
cos f* 0t ﬁ)dp‘tcosii cos ¥ T \-:-{ dy

= 2cos @ {p coB ¢! 522 + [(z'-z)eina'-p'c'gsa'] Ql}

where

T
Qltﬂl(p,z;p',z')t 9-%5'5& iy , (61}
0 R

2
Q =Q_(p,z;p',2%) = gos ¢ dy . (62)
2 2 3
R
0
The integral equation from which to determine V 4( 8) is now

1
. £ ' 1. tn ot - '
J4(s)' 29+, V4(s ) choea'nz-f Ez z) sira! p'cosa'lﬂl}p'ds
0 (63)

and in terms of V4(s):

20
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8
i.e. Mll = !j ﬁ"‘}{a)cesads . (e4)
0

2.5 PROCEDURE FOR M33

Although it is not necessary to compute M, girectly becaure of cie

relation (13), the integral equation which the c(:);x?responding potential satis~
fies must be solved if the second term in the low frequency expansion 1or an
acousticaliy hard body is to be eveluated. It is therefore apnropriate to des~
cribe the determination of this pctential function here.

Once again we hava a straightforward application of .2 integrnl equaticn

(24). ©f

v
then
V = z-'\P‘S = V5 {say; (65)
av, , .y
with 5/3an=0 on B. Since A must ba independent cf §, eq. {24)
implies
2z 8 l
V.(a) = 22+ L V() 22 ptdgtds!
5 2z 5 dn' { R
G ¥0
But

< r )
wim
[~
o b
o —
[« %
w
[ ]
o I“N
»
Dla
:!J g
- Lo
O e
()

P

L
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= 2&cosa'ﬂ1+[(z' —z)sin&'~p’eosaj QO}

where Q, is ar defived in eq. {(61) and

T
G, # Q4(p,z50',2') = f
0

The integral equation from which to dstermine V

. (66)

:uwlg

5( g) is therefore

o
) !
V5(3)82z+;f Vs(s')&coea' 91+Ez'-z) sind’ """c““j onp'ds!
G
L (67)
anc we nois in passicg that

A A .
M33= f[n.z Vs(s)us

B
2% 8
= -f fein,'vs(e)pd¢ds R
0 )
8
i.e. M33 = ~2:]9V5(s)sinads . {G8)
¢

2.8 DISJGINT SURFACES

30 far it has bucn assumed that all portione of the aurface are in electrical

contaci with one another, and if this requireinent s not rnet, the anclysis is no

22
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longer valid. Thus, for example, ar application of the above procedures to a body

consisting of two separate spheres leads instead to the solution for the two spheres
joined by an infinitesimal wire along the axis of symmetry, and though the presence
of the wire ( producing elsctrical contact; does not affect the values of M i and

P1 1 (and hence M by virtue of eq. 13), it does have a profound effect on

33’
P_.. This is not unnatural since P__

33 33
component of the inducec electric dipole moment.

is proportional to the longitudinal (z)

The breakdown in our formulation when B has several distinct parts stems
from the impoaition of the zer» induced charge crite:ion {(8). If charge cannot
flow freely between the n parts Bl, B ,...., Bn, eq. {5) must be replaced

?

by the n equations
. 24,
- ds = 0 , i=1,2, ...., n. (69)
on
B,

Since this obviously 2ifects only the potential Q 3 and leaves the procedure

(and results) for P, , M__ and M_,_ unchanged, our efforts will be directed

i1 11 33
at P33 alone with the cbjective of finding an approach which is apruaable vhen
B consists of just two electrically isolated portions B1 and 82 . So that we may

- use to the fullesi extent tha work that we have already done, it is Jesirable to

have this new approach as similar as possibie to that appropriate when the two

5 ’ portions are electrically connected.
By analogy with problem (ii) of Sectien 2.1, the task is to find an exterior
é; N 2 -~
x potential ¢ 5 satisfying the equation ¥ ¢ 3 = 0 in the domain V exterior
E to B, together with the boundary conditions
+ 77
. Q 3 . / 'Y1 on Bi (72)
. (}'3 * ozt o, on B2 (71)
23
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where the constants ‘71

If -3—‘1—3 ds = 0 (72
x R }

and -72 are such that

o . (73)

The quantity P33 is then given by eq. (6) as before.

Because the boundary conditions on B1 and 32 differ, 1t ie no longer
convenient to think in ter ns of incident and total poteatiais, with the difference
ropresenting the desired exterior potentis!, Let uc therefore consider the basic
poteatial problem in which § ;1) 18 an exterior potential satisfying the boundary
condition

1 on B
§ = {74)

0 on 332

(7N

By appiication of Green's theorem to the domaiu )/, we have

\ b
~ \ - ,
1
i 1
il [
E

24
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and the first integral is identically zero since B 1 ic itself a closed surface.

If, now, r is allowed to approach B, application of the boundary ccndition

(74) gives
-1 r on 3}
1 __a__ (1) t ] = ’ - 1 —-=
]fR s @4 (zh)as . . (73)
B . Lon B,
3 Q(l)
which is an integral equation from which to Jetermine </ gp - ltcan
(1) p Y
be simplified sumewhat by observing that § 5  and, hence, 3 ;. are
dn

are independent of the azimuthal coordinate @#. Whenthe § integration is
performed, eg. (75) reduces to

¥ (1) 2z, r on Bl
P K, T, (s")ds' = (76)
0 0, r on B2
c.f. eq. {3%), where
(1), +, _ (1) -
T3 (s’) = -~ an 3 (") (77)
aad K, {is the kernel defined in eq. (34). It will be noted that the integration
in (78‘13 over the entire profile of the body B = B + B
Similarly, if Q (2) is an exterior potentisl function satisfying the
boundary condition
(0 o B1
$.02) . ,
3 {78)
1 on 82 )

o= o

i il

e il
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then
: 8
4 C, ron B
I p'xo'rs(”(s')ds' -( ! (79)
3 0 L 2r , r on Bz
where
T3(2)(8') = - —g;' Q3(2)(g’) . (80)

Comparison of eqs. {76) and (79) with (38) shows :hat

2.y 4 7(2)

2 3 (8) = T3(3) (81)

where T3( 8} is that surface field quantity which is appropriate when B ) 2ad
: B, are electrically connected. If TS(B) hz:sl :)ﬂready been (ch;lputed, it is
clearly necessary to compute only one of T3 (s) aad T3 (s).

Let us now return to the potential problem set forth in eqs. (70) through
(73). As regards the boundary conditions (70) and (71), an exterior
potential satisfying them ia

A Wl
kg

L
E

(1) (2)
¢, = z-v,+ 7, +9, (82)

3 where V2 is the total potential considered in Sectior 2.3. Hence
¢ 3 oz

. 22 (1)
2n o0 - T2(8)- 7T,

(s)-’yz'rs(z)(s) (83)

and since Tz( 8) is giver as the solution of the integral equation (35), it only
b Semains to specify the constants ‘Yl aad Yy
2 Fram the zero charge condition (72) and using the fact that

26
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.

B orB
pT3 (s)ds +72pr3(2)(s)ds=- fp’rg(s)ds

1) (1) (1)

we have

o~

(84)

where the symbol (1} below the integral signs shows that the integrations are

carried out over the profile of the portion Bl tlorne, Similarly, from eq. (73),

v, fp'l‘a(l)(s)da*"vz pra(z)(s)ds- - ]pTz(s)ds

(2 {2) (2)
(85)
where the integrations are over the profile of B2 alone, 2nd if we now define
‘1) (2)
Cll = 27¢€ Ip 3 {s)ds , C,,*27c¢ Ist (s)ds ,
(1) (1)
(86)
- (1) - (2)
CZI 2v¢ !p'{‘3 (s)ds , Cyy 27¢ fp’[‘B (s)ds |,
(2) (2)
aqs. (84) and {85) take on the more compact form
7,C;1 % 756, = -27¢ pT e} ds , (87 a)

{1)

B LA W N K
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71021 .’.-72022 = ~2%x€ pTz(B)dB . (37b)
(2)

It will be observed that the quantities C1 1’ atc. ail have the dimensjons of

capacity, and by virtue of egs. {50) and (81),
CL*t Cp* Gyt Cy=C (88)
where C is the capacity when electrical contact is maintained.

Rather than solve the eqs. (87) directly, it is more convenient to first
eliminate the surface fieid quantity '1'2(3) from the expresgions. That this is
possible can be shown by application of reciprocity to the exterior potential
functions z - V,, ) 3(1) and Qs(z). From the pair z -V, and Qs(l),

we have

2

(1} 8 = 24 (1
IIQ:; s (z=V,}ds ff(z-vz) vl SRR
B B
Hence
]! Tz(s)ds = Isz3(1)(8)dS ,
B, B

implying s
f pTz(s)de =I sza(l)(s) ds . (89)
(:) )

Similarly, 8
I pTz(s)da = f szs(?')(s)ds (%0)
(2) 0

and we note that by addition of the last two squations we recover eg. (52).

28
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Finally, from the function pair Q () and Qs(z) ’

ff Pleyas = ff Ne)as ,

i

implying
I pT3(2)(8)d8 = f ( )(s)ds
(1) (2)
i.e.
C2 ™ S
an expected.

Using egs. (89) and (90), Tz(a) can be eliminated from the egs.

and if we also eliminaie T3( 2 )( 8) using eq. (81), we obtain

8

(71—72)0114»72215 pr3(s)da = -Zref
0

(1)

s
(‘71"‘72)021+‘7'22xe Ist(s)da = 216[ z2pT,
(2) 0

s

(1)
T3 (s)ds

-2%¢ I sza(s) ds
0
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These can be solved to give

) s s
Y " = i{f szB(B)dB prs(s)ds-f szs(l)(s)dstTS(s)ds}
| Yo (1) 0 0

(93)
8 r ) 8 8 \
Y, * -lA fzp'l‘3(a)ds J st(l)(s)ds-I szg(l)(s)dsprs(l)(s)ds
0 (1) 0 0 j
(94)
where
<] 8
A-f st(B)ds fp'rs(“(a)ds -fp'r3(1)(s)ds IpTB(s)ds
0 (1) 0 (1)
(95)

We can now proceed to the calculation of P33 . I we write this quantity

as ¥33 to distinguish it from the _3533 of eq. (55) for B , and B, in electrival
contact, we have, from eqs. (8) and (83),

'533 = ffz {l‘z(s) + vlrs(l)(s) + 1‘2'1‘3(2)(5) ds
B

8
» 2:] zp{rz(a)-f 72T3(s)+(71-72)T3(1)(s) ds
0
(96)

30




013630-9~-T

But 8
P33 x 2y I zp {Tz(a) + 'YTB(S)} ds
0

(see eq, 46) where 7Y is given by eq. (53), and thus

E ’ 8 <]
~ \ (1)
] P33- P33+ 21(72-y;fsz3(s)ds+21r(‘yl vz)f 2p T, (s)ds
- 0 c
- (87)
Moreover, from egs. (53), (94) and (95}, after some manipulation,
A
’ f pTa(l)(s)ds
0
- v - -(y, - 9
: . T,= Y @ (71 72) S , (98}
pTa(s)ds
0
< which enables ue to write eq. {97) as

E - s
~nS

) - (1)
: Pya = Py *+ 27y, -v,) f (z+v)pT,
1 i 0

{s)ds . (99)

The factor (v 1Y 2) is defined in eq. (93) and invoking yet again the expressicn
{53) for 7 together with the identity (S1), we have

8 8

| 1 f - (1)
Ty< Yy = - Af pT3(s)ds Y I pTe(s)ds-kI 2pT, (s)ds
0 0

e - (1)
31
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8
a-—27rCeA f(z+‘7?p'l‘3(1)(s)ds .
0
- giving
_ s 2
'533 = Py, - _eCZ" I(Z+7)p'1‘3(1)(s)ds (100)
3 0

where C and A are defined in eqs. (50) and (95) respectively.

This is our final expresesion for ‘i" Compared to the situation when

33°

Bl and 132 are alectricaily connected, the only additional field quantity that
t

must now be found is T3‘ 1 )( s), which is given as the solutior of the integral

equation (76); and since C/e and A are both positive, electrical separation

decreases the longitudinal component of the induced electric dipole moment.
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3. ACOUSTICALLY SOFT OR HARD BODIES

3.1 GENERAL PROCEDURE

Let B now be a finite, closed acoustically soft or hard body of revolution

about the z axis of a Cartesian coordinate system (x, y, z). Iti: of no
concern whether B is disjoint or not. A plane acoustic wave is incident and
its velocity potential * is written as

i .
pl =« olkk-I (101)

A
where k is again a unit vector in the direction of propagation. If U ® is the
scattered field that is produced, then U® satisfies

(v2+ KBy ud = 0 nY , (102)
BUB 8
r 3 e -ikU |- 0 as r—w , (103)

and the boundary condition

U = ~U con B (104)

if B is soft, or

au® _ av! on B {105}
an on

if B is hard. Eqs. (104) and (105) are equivaient to

* To svoid any possible confusion, we shall henoeforth refer to U szs a field.

33
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U = 0 on B {106)
ay
o0 = 0 on B (107)

respectively, where U = u'+ Us is the total fisld.
A general expression for U(r) atan arbitrary point in )) is provided
by the Helmholtz representation:

i 1 f d eikR eikR 9

= ——— ? s A~ 1

u(r) = v+ 4 ‘ vl -2 | &5 — L v yas
B

(108"

where R = l r~-r " as before. For sufficiently small k, Ui, u® and,

hence, U can be expandec as power series in i1k of the form

(oo}
Ui(_r_)' z(ﬂ‘)m“;(-‘l) , (109)

ms=0

and when these are inserted intc eq. (108), the coefficients of like powers of
ik on both sides of the equation can be set equal to give

. 1 gy gel=2 aR
C_(x)=U (£)+ 5= z(m_,), ff{m £-1)R . U, (x")

m-{-1 9 ,
- R — Ylr )}dS' (110)
for m=0, 1, 2,... By illowing r tolie on B, an integral equation

is obtained from which UmQ) can be found; and as is seen by substituting

wow

34
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the power geries for U(r) intoeq. (102),

{111)

showing that UO( r) and Ul( r) are potential functions, but U2( r) isnot

unlese UO(E) = 0.

In tne far zone (r—» ) the low fraguency expaunsion of the scattered
field deduced from eq. (108) 18

3 ik ® m

5 . US(e)~ g____l_._ z Z (_1)n1«'£+1 (ik[m jf‘? r,)m-l
= = 4rxr (m-2) Tt =

: m=0 =0 B

( Kleinman, 1965, with the correction of a sign error), provided U 1( r')

is taken to be zero. Our objective is to calcuiate the first few terme in this

series.

3.2 SCxy BODIES

We now specialise the above results to the ceae of a soft rotationally

symmetric body illuminat-d by the plane wave ( 101), and seek the tirst two

tarms in the low frequeacy sxpansion of the far zone scattered field. By

[ R TR S PN




HHARAEE Ak O

AT

T
U, L

T T
m e s s

T o AT T P [ B e Vo IO R AT ,
k.
PO T T

013630-9-T

{nvoking the boundary conditiod

U () = 0 on B, (113)
m

m=0,1,2, ...., we hava

einr C A 3
v -2—'—( l) a -, U (r’)dS‘-ik L(f'._t_') -5;',150(5.')
B

2y (e | 2
-antnlg)_jaswo(k) , (114)

showing that only the potential functions UO(;_) and Ul(;;) are required.
From eqs. (101} and (107} it follows that

{(r)= 3 Ui(s_) = l'c‘.g_ (118)

’

i
U0

and by insarting the boundary condition {113) icto {110), the latter becomas

m
i 1 z 1 m-f-1 _3_ ,
U (x)= U,z - 35 ey jfa aa Uglr)as
B

i=0

which, for r on B, reduces 0

i = ‘—l—" m-‘-l “""" } ast )
Um(_r_") ry® (m~l)’ II U, (") . (116)

1=0

36
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When m=0, eq. (116) gives

l= ffa ™ ,U (rr)ds' . (117)

This is identical to the integral equation satisfied by the potentisl Va {rj of
Section 2.3, and henoe

j . N
- Uylz) = Volz) , 5o Uple) = T,(s) . (118)

g We note that

: 8

2 U,(r)ds = 2« pT (8)ds = Y (119)
E dn 0~ 3 € -

; B 0

3 (see eq. 50), where C is the electrostatic capacity.

From eq. (115) with m=1,

IIE;U (rr)as: =-— IR 5“;{} (r')ds’ (120)

and usirg eq. (11S), the left hard side can be written as

C
4w s

A A A
(?c. ;‘.)puoaﬁ + {k. ;)psinﬁ + (k. z)z -

Since the surface of the body is independeni of #, i: follows that Ul( ) must

have the form

b 37
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3
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A A A (1) A AL (2) C .. (3
Ul(g)- {(k.x)coo¢+(ﬁ.y)am¢}vl (_x;)+(k.z)U1 (g)-mdl {r)

(121)
where the individual Ulm(g), jm1, 2 3, satisfy
A 1 3 () vy e o
P 4y IIR o' Uy (£ 'dST ., (122)
B
z = 27 R 3 U {r'yds' , (123)
B
o 1 I’: 3 (3, ¢y o
1= = 2 30 U (r')ds' . {124)
B
Comparison of eqs. {124) and {(117) shows
(3), . - I t) PR . 125)
k U, () = Y,(0 V3(£) LA (r} = T (x: . {
Similarly, Ul(l) {r) cos § is identical to the potertial Vl {r ) of Section 2.2,
implying
3 (1)
A v, () = Vl(p, z) (126)
so that
2 . (1)
£ e = 7
3 3n Y1 (x) Tl(s) s (127)
38
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and UI(Z)( r) is idsntical to the potential V2 (r) of Section 2.3, so that
-_a_ 1 (2) = { DY
A Y @ Tz(s) . (128)

It is now 2 trivial matter to evaluate the right hand side of eq. (114).
The first integral is clearly C/e, and the second can be written as

ff&?._x_‘_‘) '1‘3{3')- {ﬁ.g)cosw+(£§)sin¢'}'r1(s')
B :

A A ] |4 - _9_ T t
+ (k.z) 12(5) Tac 'r3(s } ds

[
NN
*21] {E?.Q)z'+ 4(:’6]T:(s')--(k.z)T2(s') p'ds'
0

5 s
I p"l‘z(s')ds' = fz'p"r3(s')ds' (52)
0 0

and hence the second integral on the right hend side of (114) ie

But

8

'd
C
21[ t4:c -~
0

">
!

x>
>~
N>

!
)
-

(7]

—
w
-
o
w‘n

where + is 28 defined in eqs. (53) and (54).

39
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The low frequency expansion of the far field is therefore

8 eikr C C A AL A 2
U(x)r~ - (—:) 1-1k rrrdy ‘y(r-k).z]+ o(k™) ), (129)

N

showing that a knowledge of C and v alone is sufficient to specify the
first two terms. As demonstrated by Van Bladel ( 1958), a similar resuit
obtains even for a body wkich is not rotationally symmetric.

3.3 HARD BODIES

The final case to be conaidered is that in which B is a hard rotationally
symmetric body. The boundary condition on Um(L) , m=0,1,2,....,
is then

j:— U (r)= 0 cn B (130)
n m

and when this is inserted into eq. (112), the low frequency expansion of the
far zone scattered field bacomes

B~ e (1) k[j:""‘ s’ 2_“"‘ Nulr')
U(z)~ yrrgi e i n .r)UO(_r_ as' +k (r.r Ul
B

B

—Ul(_r_‘)] (a'.Dads' - 1k3ff %(?.5‘)2 Uo(g')
B

- -~

-(?.;')UI(L') + Uz(_l;') (2'.F)ds' + o(k4)

(131)
40
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As we shall see later, the f:vst term O(k) is identically zero, and we
theretore need Uo( r), U,(x) and U, (x) to compute two non-zero terms

in the expansion.
From eq. (110) and the boundary condition {130}, ap expression for

U (r) atanarbitrary point r in Uis

ul (r)'U (z) + 1 z (m_”,ffu-mﬂ)Rm IU( ')-u(-ﬁ) ds'

120
(132)

and in particular, when m =0,
U'r) = Ui(r) + -l—ff ! 2 \dm (133)
o= 0= 4x 0'= " 3n' \R) .
B

i
Clearly U: (r) = UO( z) - U (z ) is an exterior potential function

9 8 d i
ard 52 UO(_g)a 0 on B since 3o Yo (r) 0 . In addition,

Ug'(g) vapishes more rapidly than r"1 as r-—yo since there is no term

of ko) present in the expansion (131), and hence

Uy (x) =0 (131)
implying
Uylz) = Ué(g) = 1 . (135)
From eq. (132) with m =i, we have :
el o L 21 .
Ul(g‘r» = Ul(g) M U (z") 3o¢ \gr)d4S' L 138D
B
41
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which can be converted into an integral equation for U 1( r) by allowing

r toapproach B. Becaust of the non-integrable singularity of the kernel
for r on B, it is necessary to apply a limiting process, and if a bar
across an integral sign is again used to denote the Cauchy principal value,
we obtain

i S e p2ulie) + < H 09 f1) o .
U (x) = 20U, (x) + 57 U 3 hrwy (R) ds'  {137)
B

for r on B, where U;{_x;) is given by eq. (115). In terms of the
cylindrical polar coordinates (p, §, z),

U:(g) . {(ﬁ.?z)mﬁ + (ﬁ.f})am¢}p +(R.2)z

3 and since the surface of the body is independent of #, it follows that U (r)
E can be split up into three parts each of which has the # dependence of that
-3 part of U; (r) giving rise to it. In particular, on the .rface,

it ki

vl = {(ﬁ.?)coa;s + (ﬁ.’,’)m;&} Vis) + u’é.’z‘)vs(s) ,

(138)

T i U

where V 4( 8) and Vs( 8) are the potentials introduced in Sections 2. 4 and
2.5 respectively and satisfying the integra! equations (62) and (67). _
For the remaining function Uz( r) an expression at an arbitrary point
r in U isgivenbyeq. {132) with m=2 and is

llg(_x;) = Uzi (r) + -:Tfjl:z(g‘) 5—3—: (-:—1) ds'  (139)
B
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where (see eqs. 101 and 109)
uy () = 2 (B.pf . (140)

An integral equation for U (xr) can be obtained by allowing r to approach
B, but it proves unnecessary to determine U, (r) explicitly if the only pur-
pose is to calculate the term O(k ) inaq. ( 131).
To see this we first rote that since UO (£)= 0, theegs.(111) imply
2

ng-O,

showing that U,s is a potential function. Moreover, from eq. (139),

U2 = 02 - 02 is an exterior potential, being of double-layer type, and

since

9 i A n A
T (r) = (k.r)(k.n) , (141)

the boundary condition on U; (r) is

-59; U, (z) = - (k. £} (k. D) (142)

for r on B. U; clearly dopends on the direction of incidence as well as

that of the normal to the surface, and in principle nine separate but elementary
potential problems must be suived to find U; . In tarms of these potentials,

U(r)-zzkkc r) (143)

jul jul

where, for convenience, we have put

43
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X=X

and tho potential functions G . (r) are such that

i}
< G (r) = -(ﬁ.%‘)(;.:’?j) , i,§=1,2,3 (144}

for r on B. Inlike mannar we can write

3
8 .
U (x) -z k,F () (145)
i=1

where the functions F 1( r) are such that

3 A A
oL Fx(i) * -n.Xx (146)

on B, and comparison of (145) with (115} and (138) shows that on the

Fl(g) . {V4(8)-p} cos ¢ ,

F,(r) = {V4(s)~p} sinf , (147)

surface

Fo(z) = V.(s)-z

Following Van Bladel ( 1968) we now apply reciprocity to the exterior
potentials F, (x)and G, (1), 4,4, §=1, 2, 3, inthe region )} to get

LY
4 a s _ 1 ] 0 ? 1
IIG”(,I;) '5;'.5\:_ }ds' = ff‘f‘l(_z; )3%16”(5 }ds
B B
44
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which reduces to

ijg(y)(G"Ql)‘ds' =ijl(£')(3'.)’c‘i)(_x;'.Qj)dS‘ (148)

B B

when the boundary conditions (144) and (146) are employed. Hence

8 AL A ‘= TR IS '
IIUZ‘._I;')(A - X,)dS z z kikj fqu(g Mn'. x,)ds
B i § B

Y . ' /} '
3 z z kikjfffl’“ (g.xj)ds
- i J B
= IIFI(;_')(Q.?;')(Q.E_') as*
—_ B
implying
8, 1,, Ay A 1 z A A A A A
ijz(g_)(n.r)dS = ff Fylr "Mr.x,)k.n")(k.r')es’
B 1 B
and

ffuh(;')('ﬁ'.?)as' - Z ff F(x'Nf.2) (k.2 (k. £ty ase
B 1 B
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This integral is the only form in which U 2 (r) enters the far field expansion
through terms O (ks), and sinoe the Fl(_r_') are known by virtue of the
egs. (147), the integral ~an be computed without the explicit determination

of U2(_r_) itself.
We are now in & position to evaluate the individual terms shown ir eq. (131).

Sines U, (r) = 1, we have

II(%'.?) Uo(z_')dS' = 0 , (150)

B

2
verifying that the leading texrm in the far fieid expansion ie © (.. ), and

ff(?.;')uo(g')(ﬁ'.?ms'- ’r‘ff . _'yas!
B

B

where V0 is the yolume of the body. Also, from eq. (138),

2xr 8
A A
fol(g')(ﬁ’- £)ds' = ?f f ced @' cos ' x + cos o sin f'y-sina'?
0 ¥Q

B
o
X Bﬁ.g)cosw-b(ﬁ.?)ainﬁ"] V4(s')+(’l?./z\)vs(s') p'dptds’

g
A
= 7. [Q(Q.Q)**?(k.?)}wf p’Vé(s')cosa'ds'
0
46
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AT ST
g0 P A B RREN
oo

8

A A
-(9.%)(11.2)21[ p'Vs(s‘)sina'ds'
0

3 “ where o' is the angle definad in eq. (59). Hence, from eqs. (64) and (68),

A A A A AN A
o . { t 1 AN -
= fol‘;;)(n .T)dS' = Xk, {rM11 z{k.z)(M_, M33)>

B (152)

where M,, and M., are the elements cf the magnetic polarisability tensor
= discussed in Sections 2.4 and 2,5 respectiveiy. As we have previousiy noted,

for a body of revolution M33 is related to P1 1 (see eq. 13).
When the results of eqs. {150) through (152) are substituted into eq.

(131), the low freg.ency expansion of the far zone scattered field is found to be

USR s { [ﬁ ‘r‘ - 8(k. 2)(MH-M33)} -v(} ouﬁ}

(153)

where the actual term involving k3 i

ik”ff[; B e u e - o e+ u ()] (31D as
2 0= 1 2
B

(154)

Unfortunately, the evaluation of this is rather a messy task.
Since Uo(.x;) = 1 (see eq. 135),

™ fre
o
">
-
<
i)
’1.
e
P~
[~ ]
-4
S’
Q.
o
[ ]
oD fr-
">
D>
o~
>
o]
e
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x %?‘. fffv {(?.5')%}174
Vo
r

= T jffr' drt . {155)
Yo

To simplify the treatment of the nex: two integrals in (154), write

I LAl

i ~s - A
| F(z) = Fy(z) + z.% (156)

so that { see eq. 145)

W M AT

Ul(g) s Z le!(g) . {157)
[}

o i

S Using eq. (149) we then heve

ff {-(?.y)ul(yn u2<y)} (n.T) ds'
B
. sz‘f,(y){(?.Qluﬁ.;-)(ﬁ'.ﬁ)-(ﬁ.:’c‘!)(?@(ﬁa?)} ¢3!
£ B

+II{§-(£.r‘><£".?)-(?.y><ﬁ'.ﬁ)} (k. r" as
B

A

o i .’,:,»'

ety e s R g

(158)

: But

ff-i— (k.2 Pase = <ﬁ.’1‘-)§.!ffydf=
B Vq

48
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K
B v
]

and
ff (?ﬁg_')(ﬁ‘.ﬁ)(l{c\.g')dS' = (;+(§.A)’l\<}‘fffg_’d7'

as may be shown by analyses similer to that peirformed sbove. Hencs

ff {';‘(f&.y)('ﬁ'. ?)-(?.L.H’a:.?{)} (h.rr)dst = _?.fffi,df,
B

which cancels the contribution (155) of the first teria in the intesrand of (154).
The completa integra: ( 154) is thecrefore

Ty 2!!’%}(;'){(?.Qz)u’é.y)(a'.i‘:)-(1’2..43(?.5')(3'.%} ds'  {16u)
' !t B

: and to simplify this we now invoke the rotational symmaetry of the bocy.
From egs. (147) and (156} we have

) t) = - 7 4 1) ¢ ' t T o = % ST
Fl(_x;) V4(s ) cos #' Fz(g) V4(s Ysin g, FS(_:_) Vo (s

When these are inserted into ( 160) and the azimuthal integ-ation performed,

the contribution of the first :erm in the integrand is

8
A A A A A
w(ﬁ.'z\) k.g-(k.z)(r.z)}f p(zcusa-psina)‘.’4(s)ds
0

49
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8
A "

+x(r.2) (X-Qk.g}zjf pz Vs(s)cosads

- 0
8
A A
-2 (g.g)(k.z)zf pzvs(s)smade.

0

The coutribution of the second term in the integrand of (160) differs only in
having T and K interchanged, and when the two are subtracted, the finol

expression for the term in k3 in the far field expression (153) is

~ 8
:k.sx(ﬁ-?).’é{_{ﬁ.?-(ﬁ.’:‘)(?.%)} rp(zcosa-paina)v4(s)ds
.

8

- {1+(ﬁ.;)(9.’z\):}f ;.‘\Vs(a)coaada
0

8
-Z(Q.g)(?,g) f pzvs(s)uinads‘l . {162)
o

Although tais is only the second non-zero term in the low frequency expansion,
it 18 much more complictied than the second term {n the expansion for a goft
body. The surface field quantities invclved are the same as those associated
with M1 ) and M33 , but there is now no simpie relationship analogous to (13)
which enables ua to dispense with Vs( s). If the direction »f Incidence or

50
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N A
A

L

X

A
observation is parallel to the axis of symmetry, i.e. k= + or ’1\'= +
the integral containing V 4( s) disappears, but there is no comperable situation
where the integrals containing V_(s) are absent except for iie special case

of forward scatter, T ﬁ , when the entire expression (162) vanishes.
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4. THE COMPUTATIONAL TASK

When this study was first undertzken the main objective was to develop

11+ Pgg 3nd M,

specifying the low frequency scattering bahavior of perfectly conducting rotation-

an effective program for computing the quantities P

ally symmetric bodies. The realisation that the calculation of P33 produces as
a by product the electrostatic capacity led us to add this to the list of quantities
considered, but it was only later that the question of acoustic scattering came
up. Since the first tw» werms in the low frequency expansion for a soft body

ara expressible in terms of C /€ and v, and vy is implicit in the P33
computation, it was only natural to add this to our iist, and for a harc body

the first ierm involves no additional work. But the second tern., (162), is
another matter. Iis particular, it requires the explicit calculation of the

surface field V 5( s8) that had nitherto been avoided by virtue of the relation
(13), and even if this were done, the nature of the k3 term i8 2lmost such

ae to praclude any physical understanding of the data. For these reasons it was
decided not to implement the computation of V 5( 8) and, hence, to ignore the
second term (162) in the hard body expansion. The quantities which we are now
left with are all ones which are needed for the electromagnetic problem.

4.1 INTEGRAL EQUATIONS

It is convenient to begin by listing the inte~ral equations which have to
be solved and the quantities to be computed irom their solutions.
Assuming that the profile p = p(z) of the finite, ciosed, rotationally

symmetric body has been specified jo some manner and its volume V_, computed

0
as a preliminary step, then:

52
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(i) solve

8

’ p'K_Tl(s’)ds' = 2gp (1863)
L
0

where the kernel K, is defined in eq. (29); comnute
i

P 8
2
.__vll - V"- p°T, (s)ds (164)
9 0
0
E (ii) solve
8
f p'KOTz(B')ds' = 2xz , (165)
0
8
\ 3
j p'Kol’a(a')ds' = 2y {166)
0

where the kerrel K 6 is defined in €q. (34); relain the option to print

out Ta(a) ; compute

8
£ . 22 pT, (8)ds (167)
€ 3 !
0
s
£ (168}
v = Czwfszs(s)ds s
0
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8

P 2
B . 2x zpT, (c)ds - cx (169)
A" Vv 2 €V
0 0 0
0
(iii) ifaad only if B consists of two separate closed parts B, and B,,
golve
8 2> r on B
(1) !
1 4 ! = . 170
f p'K, Ty (s')ds ; (170)
0 0 r on B2
compute

2

5P l’f_{f (z+ ’Y)PT()(S)ds (171)
33, __ Vo ,
v, 2
,:»T3 (s)ds - 27 pT, (s)ds$
(1)

(1) y

aijn

where the symbol (1) below the integral sign means that the integration

is carried out over the profile of B 1 alone
{iv) solve

f V4(s') {p cos a' 92 + [(z'-z)sina'-p'cosa‘]ﬂl}p'ds‘
0
= x {V4(s)-2p} (172)

-
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where Q., Q_ and o' are defined ineqs. (61), (62) and (59)

1 2
reepectively and the bar across the integral sign denotes the Cauchy

principal value; compute

8
Mll x
R f pV4(B)c08¢zd8 . (173)
0 0 0

We therefore have four (five) integral equations to be solved, three
(four ) being of the first kind and one of the second, and five (six) derived
quantities to be computed from their solutions: the numbers in parentheses
refer to the unusual situation where B is disjoint. Before attempting this

task, there are certain features of the equations to be examined.

4.2 THE KERNELS AND THEIR SINGULARITIES

The kernels KO and Kl of the integral aquations {163}, (155), {i6d),
(170) can be expressed in terms of complete slliptic integrals of the first and
second kinds.

From the definition of R given in eq. (28), we have

2 2 \ V2 I
R={{(p+tp"}" + {(z-2'") J‘ (1 ~msin” 8) (174)
where
t
(p’lwo‘)2 + (z~z‘)2
and

o s ne -




e

i Fdes 10 8
iy .ﬁl.

013630-9-T

Hence

o i+

11/2 -1/2
P fm - 2 7
* 3 pp') (1-=esin” 6) (177)

and when this is substituted into the definition (34) for K 0 W8 immediately
chtain

n |2
Ky * ';‘p";} K(m) (178)
where 7/[2
K(m) = f (l»msinz Gfl/z de {179)
0

is tha com.lete elliptic integral of the first kind (ses, for example, Ahramowitz
and Stegun, 1984, p. 599).
By a trivial manipulation, we also have

cos ¥ " 1
ot wacncvere MR -'f"' - l —-— - ’180
implying
Cos U ) o 1/e
= (mppt) /2 {x--’g“—) (1-m sin? ) 2 - (1t sin® )2
-
(181)
and hence, from the definition (22) of K L’
K, (1~—’9) K(m) - E(m) (182)
(mpp" 2 )
where '/2
2
E(m) = f (1 ~msin 6)1/2 30 (183)
0
56
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.

is the complete elliptic integral of the second kind (loc. cit. ).

The above representations of K 0 and K.  are exact. Since p, z, p', z'

are all real with p, p* > 0, it canbe verifiedthat ¢ < m < 1. Over {his
range E(m) is a finite slowly-varying function, having the values #/2 for

m =0 and unity for m=1. A finite polynomial approximation sufficient {or
computing E(m) with an error of iess than 2 x 10 -8 is given in Secticn 17. 3. 36
of the above reference. Through the first three terins the precise expansion is

3 ’ { Jahak~ nd Emde, 1945):

: 1 1 2 2

- = + = + Y

E{(m) = 1 3 ) 2m1|" O(m],m1 F) (184)
with

. m1='l 1-m , (185}

3 2 2
= - t + - H
. i.e. m, (p-p )r (z-2z )7 (186)
(p+p") " +(z-2")"

and
r- L8 (187)
2 m
= 1
' We observe that m =0 ifand only if p"=p, 2 7=z, that is, when the integration

1
and observation points coincide. Fcr an integration point in the immediate

vicinity of the observation point,

e 2
3 I .
m, ( 2p ) (188)
E where s is to a first order the arc length between the points.
_: The elliptic intagral K{m) also tas the value #/2 for m =Q but beccmes
E ) logarithmically infirdte a8 m—»1. A finite polynomial approximation sufficient
-
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to compute K(rn) with an error of less than 2 x J.O‘-8 is given in Section
17. 3. 34 of Abramowitz and Stegun (1954), and a precise expansion through
the first three terms is ( Jaknke and Emde, 1945);

K(m)'r'i*:i;mlr‘ --%ml+o(mlz,ml2 v . (189)

Because of the infinity of K{m) asm— 1 (ml—} 0), KO and Kl
are also infinite in this limit, but their behavior in the vicinity of the singularity

is easy to determine. Using (184) and (189) we have

1 2
Ko: mik {r+0(ml, ml r)} (190)

and

3 K, = -+ 0(m ,m ) . (191)
1 (pp,)l,’z 1 1["

showing that the singularity at p'=p, z'=z is an integrable one in each
case. The contributions of the singular (or self ) cells to the integrals in
'3 egs. (163), (165), (166), and (170) are therefore finite and can be
analytically approximated as foliows.

3 Consider for example the integral equation (165). If the self ceil in
'3 the sampling procedure is centered on s =s o (where p =pn) and ig of arc
length As, then

1
3 sn+2 As
t XY 1 t !
f ) K012(8 )ds af . p’KOTz(s Yds!
self 8 - = AS
n 2
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1
+—-
sn 2 AB
= Pn'l,,,(sn) f K, ds'
s == AS
n
"I“A
5 s
Spn
~ C I t
.._Tz\sn) f\ n X ds
-—-é As
and hence
f len
X t 1 o ( L + il
J K0T2(° )ds szsn) D TR ilas

self

(192)

1t is desirable to retain the first correction, unity, to the logarithmic term to
epsure the necessary accuracy when the sampling is relatively coarse and/ or
Py is small. For the integral equations (166 ) and (170) the results differ
from the above only in having T, (s n) and Tsu) (sn) respectively in place
of 'I‘2 (sn); and for the integral equation (163):

1
f sn*"é' A8
p'%_ T (a'dds' = »p T. (s ) f K, ds'
11 n 1 n 1 i
self g8 -7 A8
n 2
1 As

e E‘<
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16p
As

L d

In

-1] As

f p' Kl 'I‘1 (') ds’

self

Tl('n)
(193)

For the integral equation (172 ) the computaticn of the kernel i3 a more

complicated task due partly to the presence of the functions £ . and Qz .

1
However, these also can be expressed in terms of complete elliptic integrals,
and the resuiting method of computation is much less time consuming than a

1 and 2 9
The definition of Q 1 is given in eq. (61), and using eqs. (177) and

(181), the integrand can be written as

direct numerical evaluation of the integral expreassions for 2

3/2

-3/2 -1/2
__Sk°°% .—--41m —p—%;- {(1-%‘-)(1-msm29) ~(1~m sin” ) }
R

from which we have

3/2 2
Q ._1_(*’"— / (1-2) [ (1 2
0

(194)

To avaluate tho remaining integral, differentiate the expression (179) for K(m)
with respect to m to get

x/2
s.‘nze

K'(m) /2 de

o0 Jr—
[N

- <o)
0 (1~ asin" o
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x/? ~
1 1 1
X ——— — 32 -~ T S de
2m 0 (1-msin26) (1~msin29)l/?‘)

x/2
-3/ ]
. f (1-maine) "2 46 - 2= k(m)
0

Hence
r/2

f (1-main29)"3/2 dd = K(m) +2mK(m) (195)
0

apd when thie is substituted into eq. (194 ), the result is

/ 3/2
- an ' ,,l
o, = (pp, {(1- 2 ) K'(m) -+ K(m) } (196)

The procedire for 92 is similar. From eqs. (177} snd (181),

!
cos’y 1 m 3/2”1 m 2 p 3/2
. Ay &(..-—-2—) (1-m sin” 0)
R 2m“ |
, -1/2 1/2)
-{2-m)(1-msin”6) +(1-msin” §) )
3/2 o /2 -3/2
1 m m . . 2
Q = — |— - (1 ~msin  8) d6
2 2 {pp' 2
m \ 0

— “-(2-m)K(m)+ E(m)$,

§
’
Iy
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and when the expression {195) for the integral is substituted into this, we have

1 _&\3/2 ( 2 ( m"

m \
R E Pl izmu—-z-) K'(m) = | 1= = | K(m!+ E(m)
m ! (197)

The finite polynomial approximations to E (m) and K(m} wece mentioned

aarlier, and in particular, for the latter,

+o...+bm ) tn -
m

4
: +
K(m)-(ao+a m,_+,,..4a m, )+(b0 blm1 4™

11 4

1
A

5 5 1
In —— ‘“
L™ n ml) {(1°8)

+ O(m

where values for the coefficients ai and b i’ i=0,,...,4 are given in Section
17.3.34 of Abramowitz and Stegun (1964). Since d/dm = -d/-.m Lo it

follows that

b

0 9 3
v — - - . - -4
K'(m)= m1+(b1 al)+(b2 282)m1't (b3 3a3)m1 +(b4 4'14)ml
2 3 4 4 1
- 3 l It 2 ) »
(b1+2b2m1 + b3m1 +4b4ml ) in ) +O(I‘"l > my £n “'-'ml
(106}

which can be used to compute K*'{m). We nota the pole-iika behavior of
K'(m) when m )
singulacity of the kernel of eq. (172) at p'=p, z' = z,

= ] ~m = 0, and this is reflected in the non~integrable

4.3 THE BODY AND ITS VOLUME

One of the many factors motivating the present ctudy was the need to

62




o
<5
24

013630-9-T

compute the low frequency scattering behavior of missile-like targets. These
are generally rotationally symmetric bodies (or can be approximnated as such
to an accuracy which is adequare at low frequencies ), and are ofien made up
of several distinct parts, e.g. a core mated tv a cylinder which is terminated
in a spherical cap. Although the complete profile of such 3 body is certainly
not an analytic curve, each individual segment has a relatively simple equation
whose form can be used to advantage in the numerical nrocess.

1t is therefore assumed that the profile is a finite piecewise smaoth
curve composed of etraight line and circular arc s»>gments. For definitensss,
the number of segments is limited tc 15 or less. At the end points of the

votfile where it intersects the z axis of rotation of the body, ¢ = 0 {of course),

and the na-ure of the program is such that segments which are perpendicular
to the z axis can be handied, as c2n a 'disjoint' bedy having two separate
parts provided each portion of the completa profile terminates on the axis.

Every segment contributes to the total volume V_ which ¢an be found

§]
by adding the individual contributions 6 Vg. In certain case , a volume
contribution ;an be negative and subtract from the volume attributable to the
other segments. Where this occurs, it must be nored as part of the input
specification for the segment !n question.

In the following we list the input specifications of circular arc ( Typez 1
and 2) and linear { Type 3) semments, and give exnrcseions for the cor-
respoading volume contriiutions { asaumed posiiive ). The segments must
be described se—-uentially starting at the intersection of the left hand segnient
with the axis, and the ordered eequence of segments defines the nrofile of

we body. o some cases it may be desirable to: regard a single itnear or

curved portion of the profiie as two or more segments to permit a non-uniform
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spacing of the sampling points o-9r the whole.

Type 1 Segment ( C<rcular Arc, Concave Down)

Specification:
v /(22‘ p“’)
<A
plz,), b, =plz,) 28
Pl p 1/ Pz p 2 (2 é \\
1° P N \
A(degrees), 0 < & < 180 AN \
\\\ A
volume sen»9 \<5\
N
(2, Py}

If 8 is the angle subtendad by the arc at the centes of curvature, then

the radius a is

1 , 2 o Y\ V2
a = ‘pz""l) + (zg—zl) ) ) {200)
2sin =

2

Since we permit the specification of re-entrant circular arc segments we do
not require z, > z,- In orde: to obtain correct results for both standard

{ z, > zl) and re-entrant segments define the quantity

-~

-2

~N

|-

2z
dw = ) (201)
ke,
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Then, the coordinates (zO, po) of the center curvature are

r ~
1 : (4 }
25 % 3 {zl*zz d(pl p2) cot2
(202}
1 )
00" 5 {pl'i"p?"d( 2"7'1) oot ) .
< t.)
'The voiume of rotation is given by
29
2 i
S5V, = w% p (z)dz; ,
3|
and since the equation of the circular arc segment is
2 2 2
(p=py¥ +(z-2 )" =a" |
the incremental volume §V o is
i 2.2 1,2 2
6V0= ri(zz-—zl) pgta =3 {uz-ru et u’) ?
1 S /
+ ( y-a( s aala )] 203)
"ol“z Py~ Pg! m 910y "0'*“3;; ‘ (
7
where u, * oz, -2,
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Type 2 Segment (Circular Arc, Concave Up)

Specification:
(zy, p 0) x:x
AN
~
same as for Type 1 \ N
\\ AN
)
\ ( 22 » p 2 .
\
\
\
(zl, pl)

Eq. (200} gives the radius a of the type 2 segment, but the coordinates

(zo, pO) of the center of curvature are now

1 e\
25 * 3 {zl+z2+d(p1-p2)cot2/(
1 77 6 (2()4)
59 * 3 {p1+p2+d(22-zl)cot§} .
The incrémental volume of the type 2 segment is
i 2,2 1,2 2
- - +
6VQ=wl(zz zl){p0+a 3(uz+ulu2 ul)}
(205)

2
P {“2("2"’0) -4y (p;-pgy)+da 9}

Note that only simple sign changes distinguish (202) from (204) and
{203) from {205). Relationships that hold for both type 1 and type 2 segments
may o3 dsrived by uaing a constant § defined as follows:

36
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-1 type 1 segment

£ =

1 type 2 segment

The center of curvature (zo, po) and the incremental volume § VO for circular

arc segments of types 1 and 2 are then

0
1 'd
= = + -z =
Py Stpl p2+§d(22 zl)cot2
2
6V, = 7 z—z)p +a-—(u Fu,u,+u
0 (0

2
"UI(PI“PO)'*’da 6}\ ]

where, as before,

u "‘22-7.

u, * z . -2
1

Type 3 Segment ( Linear)

Specification:
Zy» z,
p =olz)),  p,= plz,)

172

1 8
= - > + - -~
z > {zli-zz Ed(pl pz)cotz}

@
—/ \

/

(207

N

)
)j £p, Luz(pz pO)

(208)

.
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The equatiocu of the segment is clearly

Py =P

2%

p=pt

and the volume contribution is

6V, = 1p2dz

1(z-z)

T 2 2
§Vy = 3{zy =300, +pp, %p))

which i8 positive or negative according as z2

68
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5. NUMERICAL {. .JTION OF THE INTEGRAL EQUATIONS

M
The numerical procedures involved in finding P?.B / Vg 11/v 0
~nJ

P
and where appropriate, ~ 33/ V,, are quite similar to these required for

P
11 /v and it is therefore sufficient to give full details only for pll FAY

(U 0

5.1 T1l JAY o COMPUTATION

The primary task is the sofution of the integral equation ( 163) for the

function T, (s) and this entails the determination of 2 sequence of values

1
Tlm, i=1, 2,...., N, approximating ’I‘l(s) at the sampling peints

s=s. on the profile p =p{z). For this purpose the profile is diviled into

N cells Ci of arc lepgth As, and midpoints si corresponding to the

i

coordinates (pi, z, ). Within each cell we also define the points s (- and

si+ whe:se

s‘_ = s1 - QO Asi
(211)
§l+ x s{. - ao As
with the restriction
1
05923

[-
By assuming that 'I‘1 138) has the constant value Tl‘X) over the ith cell,

£9




013630-3-T

the integral on the left hand side of {163) can be evalusted as a linecr com-
bination of the Tlm whose coefficients depend on the position (p, z) of the

£ field poiat, leading to a linear syatem of N equations in N unknowns, viz.

Tl(l)fpnxldst+T1(2)Ip'xlds'+....+Tl(N)f D'Klds'* Qﬂpi

ol
= (212)
E i=1,2,...., N
Hence, the system to be solve- is
] At = b (213)
where t1 is a column vector with elemeuts
. o @ .
ty T . i=1,2, ...., N, (214)

A ig a square matrix with elements

1 1 ; e {215
3 aij = f p Klds s 1ri=l1, 2, » N, 5)
. C.

J

and b i» 2 row vector with elements

b, = 2xp

i i=1, 2, ..., N. (218)

j ’

Increasing the complexity of the quadrature technique used to = aluste
the integrals will generally improve the accuracy but will ahinost

J 70
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certainly increase the computational cost. What is therefore desired is the
least expensive procedure capable of giving the required accuracy. The two
simplest approaches are to integrate first and second order approximations
togive (i ¥ §):
aij < ijl(i,j)Asj (217)
-

(218)

respectively. where the subscripts j- and j+ correspond to the poiuts
sj_ and s of eqs. (211), and Kl(i, j) is the kernel defined i1 eq. (2¢)
3 i

and evaluated at the points (pi’ zi), { pj’ zj). By requiring a 0 < 5. we

ensure that the sampling points sj _ and sj+ do not coincide with the end

) Poin - of the cell C;, and thereby avoid any difficulty in the computations
of Q i and QZ (8ee eqs. 196 a. . 1S7). When

;\/E a
@™ 3Vs ¢ (219)

. eq. (218) reduces to the three-point Gausslan formula for which

£

4 )
x XN~ D]
w A T (220)

: With this choice of L and w the advantages of eq. (21i8) vis~-a-vis

eq. (217) wers now determined by computing Pli/ VO {or a sphere using

various values of N. Fig. 1 shows percent accuracy and C. P. U'. time versus

N for each jntegration scheme. It is apparent that fou a given expenditure of

C. P. U. time the Gaussian three-point techaique is much more accurate than

= =ik sk k¥

3 .
- : s EPITY c s i) Pae
243 Evl(ao) {Jj_Kl(i,J )+ pj+hl(1,11zj*r“O(oo)pjhl(x.J)J.A..sj

-

|



C.P.U. time ‘
{sec.}

b2 ]
Fig. 1: Peroent error and C. 7. U. time of 11 /Vﬁ cal-
culation for & spharm: T denctss trepesoidal rule computa-
tion and G denotss three—peiat Gaussian.
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the trapezoidal method, though the accuracies of both are severely degraded
if N istoosmall (N <5). Since the Gaussian scheme with N = 10 produces
aa accuracy of beiter than 99.8 percent for a sphere, there is nc point in
going to a more cownplicated procedure, and the computsr program was
therefore written using three-point Gaussian quadrature o determinse the
matrix elements u TR

In summary, the intsgral equation_ (163) is solved by conversion to
the matrix systerm {213) in which

2 ( . 4 o
= —— (. s + -3 .
aij [18 koj__Kl_x,; ) pj+l(l(i.1+)} 3 pjhl(l,J)Jl As;

i,j=1,2 ....,N; ikj (221)

lfipi
= —— - s i=1,2,....,N.
aii f{n A5 1 Asi 1 N

i

(1

Having determined the sampled values T, = Tl(si)' P11 /V0 is

computed from eq. (164) by integration over each segment of the profile

using & second order integration precedure ( subroutine INTEG, described
in the Appendix ).

5.2 P33 /v o COMPUTATION

Th ; point sampling method of solution of the integral equations ( 165)

w0, T (s ;and T (i)xT,(f,.),
2 i 3771

3
i
i=1,2,...., N, from these squations. To determine the '1‘9( ), choose

ani (18-, requires us to find the sequences T

©o+ W,and w, inacoordance with (218) and {220) and thence solve the




i

013630-9~T

matrix system At~2 x b where

(i)
toy ¥ Ty

i=1,2,....,N (222)

bi = 2arzi

and
\ . 4 . ,
137 [18 {pj-xo(i'j"“ pﬁxo(i'3+)}+ 8 pjxo(l'”] 5

i,§j=1,2,....,N; i4j ,{223)

a = rln {16"1 + 1| as, , i=1,2,...., N,
ii \Z_s_ i
i
The T3(i) are similarly determined by solving the matrix system At3 =b
where the elements a 13 are again given by (223), but
(1)
t3; * T3
i=1,2,...., N . (224)
b ®x 2%

The quantiiies b/e, v and 1)33/V0' defined in eqs. (167), (168) and {169)
]

respectively are computed using the same second order integration procedure

employed in caleulating Pl / Vo -

If the body profile nonsists of two discrete parts, it is also necessary to
solve the integral equation {170). The corresponding matrix system is

74
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almost identica} to that in (224 ), and from the sampled values TS( D (s.)

13
ns

and T3(si), 8 p33/V0 (see eq, 171) is computed and, hence, P33/v0 .

5.3 My /V, COMPUTATION

The basic approach is similar to the above in spite of the more compiicated

integral equation ( 172) that must now be solved. The matrix equation for the

sampled values V4(si) = V4(i) is Av4 = b where
(i)
Vg T Vg
i=1,2....,N (225)
b = 2
i TPy
and
5 [ 4 B
2 = |2 j-) + i, j+) )+ & e
i T pJ_f(i,J pj+f(1.1 )} 5 f(l,J)J, As,
.
i,j=1,2,....,N; i4,j, (226)
+
si 5 Asi
a,, w5 - i ptf(st)ds’ i=1,2,....,N
it 1
8,7 2 88y
in which
Vo)
i(i, ) = cose, S (i,j) + [(z_—-z )sine . -p.cose.) Q. (i,j)
j[pilsziillljljj
(227)

i,j=1,2,....,N; i¥j.

=
e
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We ohserve that the computation of each diagonal element of A requires
the numerical evaluation of a Cauchv principal value (denoted by the bar across

the integral sign in the above exp: ession for ai i)' As an approximation to
this principal value, we remove from the cell C
1 1
- - + -—
(s;-35 Bas;, s +5 Bas,
exciusion; =1 implies no exclusions, i.e. that the principal value is not

§ a slice defined by the interval

8 ; where B, 0 < B < 1, is the fractional

taken.

We now have

g Y
si 5 A.si siT 2 Asi
a, = -f ptf(s?)ds' - f p'f(s’)ds’
1 g
- - +
si 2 Asi si Asi

(228)

and theso integrals 2re also computed using three-point Gaussian quadrature.

Defining

i2 i

il i2

1
+ = - R a
813 * %2 2"'0(1 ")A:
(229)

L ,
i5 i 4 1

1
-3 - - - )
: 5 4 * 85 5 ao(l 8) as,

8 = 8

1
16 5 T 3o (1-8) as

i

76
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v 3 obtain

p

1 . 5 . .
a ™M og-=(1- + i + i
a 2(l B) l18 tp x,il) pi3f(x,13) pi4f(x,14)
4

Equations (223) through {230) completely describe a svatem of N linear

aquations in N unkncwns V‘“, i=1,2,...., N. Their solution and sub~-

" gceording to eq. (173) yield M

sejuent integration of the V 11/ VO

Experiments were performad to find an appropriate value for the

M
fractiona! exclusion 3. 43 aun example, for 2 ephere( 11/v 0" 1.5

with N =20, the data in Table 1 were computed. If we exclude the fortuitous (7)

Table 1
B My JAY 0 percent
errov
1.0 1.486 -1.33
1 1.016 1.07
0.01 1.503 9.18 |
0.06i 1,501 0.08
error ze:c oceurring for 8 somewhere in the range .1 < B < i, these

data Indicate that the choice 3= vu.001 is sufficient to keep the error less

than 0.1 percent.
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5.4 SAMPLING RATE

Increasing the number N of points at wiaich the surfacse is sampled

will generally increase the accuracy of computation, but since the number
of matrix elements iicveases as N2 and the cost of a linear svstem
solution increases roughly as Ns , thus improvement is obtsined at ihe
expense of an increase in coLiputatior cost. Unfortuvately, there is no
rule for specifying the minimum vaiue of N sufficient for a yiven accuracy,
and the information which foliows is bazed orly on our experisnce in uging
the program.

The resuits {n Fig. 1 acd Tablc 1 show that for a aphere pl /v 9 and
11/v o e accu ataly determined with N as amcll as 20, and this is dlso

true of p33 / VO . On the other hand, if the hody has a discegtinuity in

M

3 dp/dz lving off the axis, it appears necessary to incresse N to 5C or
3 more to maintain the same accuracy {error £ 0.5 percent) in the pll /v 0

and 1:’33 / V, vomputations. Thie i ‘lUustratad by the results ir Yahle 2 for

Table 2
g , . . 12
- N N, ¥, 11/ Vo
11 7 4 2,752
20 15 5 2.801

40 30 10 2.872

70 50 20 2.888

Note: L tg the number of sampling peiats ca the
5 generacor of the cae (linear segmeni) and N, is

the numberx on the (half) base {circular arc segment).

78
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a rounded cone with halt angle 15%. The small but not negligilile (0,58

P ) " .
percent) change in 11/ V) ag N increases from 40 to 70 suggests that

(
such large values &f N may be essential for bodies such as tius for which
TI(S)' Tz( g) and TB( 8) have infinities a. one or more points on the
profile.

For the same rounded cone, the results {or Mil / v” are given in

Tahle 3. Since an increase ir N from: i7 to 35 produces only an insignifi-

Table 3

. . M
N N, N, 11 /vo
17 10 7 1,580
35 25 10 1 878

M . .
cant change is = 11/V,, the choice N =20 is now adequate. Observe

0 ?
M

that the surface field V 4(5) associated with = 11 - V,, does noi become

infinite at a discontinuity in dp /dz, and this is undoubtedly the reason

why in many cases a small value of X now produces the same accuracy as

; P, p . -
does a much larger value in the i1/ V. and " 337V computations.
{

0
Nc attempt has been made to expleit this finding in the general program.
Whern treating bodies composed of several segments, a strategy which
has proved successful is to divide all segmenis into cells of approximuaielv
equs! length. This serves to {ix the allonation of any given nu Dber N of
sampiing points ameng the varicus segments. Tests s¢ {ar per rmed have
aot conclusively shown the advantages of dividing a single segment into two

or more smaller segments so ag {0 efect & non-uniform sampling. 1t is,

however, beiiaved thet such a sub-division many, for a given N, improve

T g T v T - o R r o mm | e i g -
VY L IR LAY et o N PN 0 A5 sl a4

-

[N - |
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accuraey in the Pll / VO and P33/ v 0 computations for bodies like the
rounged cone having infinities in the surfaca field guantities.
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6. CONCLUDING REMARKS

e

We have here considered the low frequency scattering of electiomagnetic
and acoust’ ; waves by axially symmetric bodies. By concentrating on certain
quaniities such as the normalised ceinponents of the induced electric and
magnetic dipole moments, we have shown how it is possible to arrive at
rather elegant expressions for the far zone scattered field in terms of
quantities which are functions only of the geomotry of the body Each such
quantity is expressible as a weighted integral of an elementary potential
function which can be found by solving an integral equation.

A computer program has been written to solve H.ese equations by the
3 moment method and to calculate the dipoie moments, the electrostatic
capacity, and a further parameter vy related to the capacity. Any body

can be treated whose profile is made up of straight line and circular arc

segments and it is eveu possible to have two distinct bodies with or without
= an elecirical connection between them. Although no serious attempt has
been made to optimise th¢ program, only a few secends are required to

compute all of the apove quantities to an accuracy of bettzr than one half

percent.

3 : We have already used the program to compute the secattering from a
variety of shapes, and it may be helpful to list soms ¢i the results obtained
2 ) so far. Data for a reuanded cone cons, z of the intersection of a cone

of half angle 8§ with a sphere centered on the apex are given in Table 4.

t/w is the length -to-width ratio of the body. For 2 < 90°, the values

P
of 11/ Vv, and a3 / V. are quite similar to those previvusly com-

& puted by Senior (1971) using & mode matching method, but since My, JAY 0
) showead significant discrepancies, this qaantity was deternined for a variety

of 6. Detuiled checking has confirmed that tne present data ure accurate

81
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Table 4: Rounded Cones

oldeg.) t/w Vg, Tu/v, P33/v, Mu/vO Cle fEw)
3 9.554  0.002870 1.884
7.5  3.837  0.01792 1.813
15 1,932 0.07137 2.865 €147 1.678
30 1,000 C.2806  3.864  3.494 1.484 5. 406
45 6.7071 0.6134 1.366
60 0.5774 1.047  4.520  1.931 1.212 6.386
80 0.5321 1.731 1.334

20 0.5000 2.094 4,428 2.184 1.373
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to three significant figures., Whan 6 = 90° the body is 4 hu 1isphere

for which precise values of p11 /v 0 and p33 /v g Are avzilable:

P11 /V0 = 3,430...., p33,’ VO = 2,139.... (Schiffer and Szego,
1949, p. 152). The corresponding values in Table 4 are within 0. 2 per--
cent of these. For 8 > 90° the cone is a re~entrant one, i.c. a sphere
with a conical region removed, &nd when 0= 180° the b~dy is a sphere
for which exact data are also known.

Results for ogives and symmetrical ienses whose arcs subtend an
angle 8 at their centers of curvature are shown in Table 5. The trans-
itional shape is a sphere for which 6 = 180° .

To illustrate the computations when two bodies are preseat, Table
6 gives data for two identical spheres saparated by a distance ¢ d where
d is the sphere diameter. "When the two ¢pheres are touching (e = Q)
it is known that P33 / Pll = 8/, (Schiffer and Szegd, 1949, p. 154);
the ratio deduced from Table 6 is 2. 678, which is within 0, 4 p~rcent of
the exact value. As € increases, pll /VU. Mll /V0 and P33 / v,
rapidly approach the values appropriate to a single sphere in isolation. ‘

P33 IAY on the other hand, is proporticaal to the axial cc mponent of

O 3
the induced electric dipole noment for two spheres which sre electrically
coanecteu by an infinitesimal wire, and with increasing ¢ this increases
indefinitely, as expected (Kleinman and Senior, 1972). The same is true

of C/ The parameter v has also been included in Table 6, and

(ev )}
since ite exact value can be shown tobe —-{(1+€/2), the accuracy of

computation can be judged.




Shape  6{deg. )

22,2

36

ogive 56

88

132

v 150

sphere 180
A 64.4
43.6

lens 28
17.2

013630-9-T

Tabje 5: Ogives and Lenses

w A
10.C> 0.004146
6.314 0.01053
4,011 0. 02650
2.4%5 0.07148
1.540 0.1966
1,303 0.2847
1 0. 5236
0.6297 1.212
0.4000 2.586
0.2493 6.448

0.1512 17.30

0.09681 39.55

P
11/v0

2.085

2.100

2.189

2.363

2.647

2.775

W

3.7179

5.182

7,649

11.88

17.49

33/v0

49.88

(9>}

2.161

1.674

1.390

M
11/ ¢ /(edtw)

1,943

1.910

1.843

1.739

1,611

Pt

.564

1.5

1,368

1,252

1. 098

1. 061

6.128

. 696

(S}

5.451

w5

.424

3. 696

5.880

.283

(]

7.37%

8.758

10,759

pos
™o
4]
o]
S

e e geEa
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0.005

0.01

0.02

1.0

5.0

10.0

P, P P M
n/v0 33/v0 33/v0 11/v0

[SV]

LT02

. 706

.709

.115

.391

.950

.994

. 002

7.2317

7.280

1,319

7.402

7.655

8.026

12,02

18,19

120.6

383.1
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Tabla 6:

Two Spheres

3.

3.

. 237

.021

.800

.210

.92°

142

. 045

046

1.605

1.586

1.592

1.528

1.511

1.501

6.

6.

133

FiS

.07

150

.148

141

.13G

~i.

-6

T

. 0064

. 0024

.00~4

. 5001

. 5001

. 0000
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APPENDIX: THE COMPUTER PROGRAM

]
The program computes Pll /VO » Clos 7, y 33/V_,
o € 0

Mll/V0 and, where appropriate, p33/’\7
program and six subroutines.

0° and consisis of a main

A.1 DATA SET

A data set i8 made up of one control card and a rumber of segment
specification cards, one for each segment ( or sub-segment) of the profile.

The segment specifications conform to the convention stated in Section 4.3.

Control Card

Columuns Description
1 The number (1 or 2) of bodies.

3-4 Two digit intezer ( right justified): the
number of segments on the first hody
(the body to the left). When there is
only ore body, use these columns,

€-7 Same as columns 3 -4, but for body to
the right.

9

A printing key:

1: print T3 from P33/\1’0 com-
putaiion,

0 or blank: do not print T3.
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A computation key {0, blark or 1 )
D
1: suppresses comnutation of 11 / vV,

P
Cles s 33/v0.

A computation key {0, blank or 1}

N
1: suppresses computation of ‘11 / Vo -

A real number: the fractional exciusion f3.
If these columns are blank, 3 defavlts to

0.001.

Description

Two digit integer ( right justified): the
aumper of sampling points or cells on the

gsegment.

Segment type key:
1: circular arc, concave down
2: cirecular arc, concave up

3: linear.

Volume sense:
+ or blank: additive volum.e

- : subtractive volume.

Two real numbers: respectively, the end

coordinates %y and Zy of the scgment,

88
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31-40, 41-50 Two real numbers: resgactively, the end

coordinates Py and Py of the segment.

51-60 A real number: f{or circular arcs, the

included angle in degrees.
There are the following restrictions:

(i) the total numte~ of segments must not exceed 15,
and (il) the total number of cells over all segments must not exceed 80.
The profile is specified i.i tl.e directioa of increasing profile-leagth, vegnning
at its left-hand intersection with the z-axis and ending at its right-hand intersec-

tion with the z-axis. Re-eptrant segmenis are permitted, 2llowing 7‘1 > Zg

4
v
BTt athgte o iy O - Vﬁ!




A.2 MAIN PROGRAM

The main program reads and prints data and supervises all coi.putations.

013630~9~T

A rough flow chart showing the interaction of the subroutines is given below

v

DECCMP

Read control card

ZND OF

5'1'03

+

For aach .- ment

1) read specifica-

tion card

2) comr.ute eample ;

Y

DATA

r’ \(:--—:

l

Consatruct lineai

systems

SETUP

YA

SOLVE

s vt

v A

Print

restilts

Solve linear

gystemns

ELLY

A

Integrate weighted

eequances

' 4

INTEG

n
;
3
q?
p
3
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REAL APIY(RBOGHD) ¢AP23(RO B0 gAML T{HO RO o X{RO) o4 (15U ) &

A TEPI?2) o RENEPI2)1STIIA) 4 T3{ARND) ML ,T1(KND)

INTEGFR NUMPTS (IS PLUS/ Y4 /B 4Y 17 INDX(F)

COMMNN RHO(RD 49 ) 07 {8049 ) yARC(BGIyCH{RD,9) ¢ S{RD,Q)/SLL/ToS M)
DATA MINGTWOPT P ¢WND WY /8= 3R 2H31R85,3,141593, 464408404 2T 1111 (]
READ(5 934 FND=99G JNBODsNST yMS?2 3 IPRINT W KFYPI1,KFYM] ] 4FNR
FORMATUTIL 41X 3200172 41X o311 41X, 9ohX4F12,7}

WRITE( Ay &) NRANDGGNG L

FORMAT(V1%%% BEGIMNING 1IF DATA SET24/000 .55 4 1R0DJESY yaX, 020,12/
B Y VP O5XISEGMENTS /0 1 ,5X, TRONY #]V,5X,i=8,12)

TRINRDD (i F, O SR, “RIH 46T, 2} GO I0 99n

NSEGS=RNS T +RNID

TFINKDN FQ. 2) WRITF(A,1INSY

FORMAT(Y P 6X,PRODY 42t ,5X,%=1,12)

TFINSNOD LFQ, 1) 60030010

TFINSY J1LFe 0 Ok, RS2 JLFe 0) 60 TH 490

TRINSFRS 1 F, O L0k, NSFGS 6T, 15%) G0N TN 990

VRTTE( &e 352V IPRINTWKEFYPYI 1 KFYMT ]

FIIRMATEY 8 ,6X g tPRINT KEY 43X 0=8,[7/0 Y AY ,CONP npY BOUIG 0 | Dy
AV T LSX,'COMP KFY MEISz [2)

Th{ tF ke Do IR, FR OG1. 14) FR=,0u01

TH(KFYMYT Fle O) WRITF(AWHIFP

FORMATIS ¢, BY ,$FXTILISTON =hetloh)

TRIKEYRYT REL 0 JAND. KEYMIT JNEL 0) GO T Yys,
%z 0

HCi=0

VO=0,0

90 11 [=14NSEGS

FEAD(S,17)Y NOMETS(T)Y o ITYP LW ISIGNZFP,RHNEP, THFTA
FORMATIT?, 1%y 11 91XeALyaX4S5F1IN,T1

TEINMIMPTS(T) o152, 0 R, IT'P 1 Fe 0O R, TTYF Gi. 3} (o 100 QQeG
FTROTISTON JFg L) TSIGN=PLUIS

WRITE (ARG I13V T oNIMBTS LTI o ITYP ¢ ISIGNGTFP s0{IF

FORMAT{YOSEGMENT o g I240238/ ¢ 8V OX o0 FLI St TXy =8, 05/ t, i,

A~ .TYD‘; KFY'Q‘OXQ.='QI?/' "‘)X"‘/ni,llMF C,Ff\jk,Fz ‘Q“\‘../' 'Q“‘Q
R I7-COORNDINATE END POINTS  =(0 sF12eT by tob 12040078 ¥V ohx,
S SRHNA-COORDINATE FMD POINTS= (Y 4 F 12,76 9t ab 12,7, ) 1)

TRCTTYP JNEFE, 3) WRITH{AL16)Y THEFETA

FORMAT(Y 1V ,5Xa P THETA (DFGY =t ,FIN.5)

TRIKFYMT] (Ele 1) FR=1.0

fi=t

THik TA=ZP{STHETAZYRD,

M=MIMUIMPTS( )

TH{T o1 be NST) NOT=NCYSNURPTIS(])

FREr oGT1. ROY GO T 990

CALL HATALTTYP G NNy /FP REDIFP yThRETAGFR gV ENE)
TECTTIVP (NF. 3 JAND, TSIGN oFQe MINY) VO [N ==V Tiv
YOS VOL VL INT

WRITHIR,S2IVO

FNRMAT(COCNMPUTED REQULTSIY/Y 1 X g Gl iIME S JhX g T2t gt-1..  w)

g1
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111

112
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NN 7 Nzl M

INNX(1)=N

AN=ARC (N}

TN=RHO(M,B)

PO 3 L=RyM

[F(L oFQ. N} GN TH A2
AL=ARC (L)

TL=RHN(1 ,8)
]F(KFYMII-I)l}ﬂqiﬂquOQ
AM11 (N, 1=0.0
AMYT(L4N)S00
IF(KFYP11-1}111'11?'117
BPL1IIN,L)I=0L.0
ANEL{L.N)I=0.0

b 43{NsL)=0.0
AP33(LoMI=0.0

INDX(2)=L

92




013630-9-T

iy 103 4=144.2
RIZCERER,
il 10 Li=le?
F=3-1_1
TY=INDXCLL)
F2=INDXL{T])
TIZ7=RHO{ ]2 40P F)
CAL SETUPIKEYPLL+¥PYMI10l10l2 4 JPAAPTIY AP T A3 A1)
TEIKEYPI1I=-1)105,1006,106
10+ APTI(IL G I2)=APIY (1Y 12)+AP 111212
AP 14,02)=AP33(11,12)+APIR3I%T1?
CUKAYMIL=17107,104,104
AIlI(T) s I2)=AMITLIL,I2)-AMT YY) ==T 12
CONTINUF
CoanNTImur
CALL SETUP(KFYPL] JKFYMI] ohgl oRyAPT T APTSR3,AM 11,1
TE(KFYPITI=~1)1108,209,204
,UR tH=vnNxAP]Y Y
ARPTI (Mg L Y= AL (W TAPYY (ML ) +iisTYL )
APYLUL oNY AN (WY RAPT Y (1 yNY+UXTN)
H=wOTAPT 33
APIZANGSLI=ALF(WIAPII (N Y +1iTL )
APII(1 JNY=ANZ(WLI=AP3I (L JNY+UXTM)
709 THIKEYMI1I~1)1210,43,3
210 ARTI MMy UY=AL- (MISAMLITINGL)~AMTITI*WO=] )
CALL SETUPIY 0401 oNeReaPI11,AP133,AM{11,0)
AMITEL W NY=ANS{WI=AMLY (i JNI=AMILLIZWORTH)

P~

onoTN 3
R [F(KFYP11-1)F3,84,84
a3 AL (YA L=TN/Z AN

APTI(MyNMY={l=1,0)=AN
AP3I2{t )= (4] . 0)=AN

Hd TF{KEYMILI~1)R”RH,3,3
£S JRIFS FO), 1.0) GO T 3
NN 4 T=l,6
RA CALL SETUPTL w0 e gNeT o11ei13ST3I(1 Y1)

H=,5:0{ 1. 0-F&)=AN
AMIT{N G NY=P Tz (WO (RHNIN,2 ) 2ST3{2 1 4RHLING BT T3( %))
B eWIH{RANING P IESTI( T I 4RHANINGRISSTI () +RHIN (M 610N 2( &)+
4 DROINGAYSESTI{AYY)
3 Clme TINGIE
? CONT11M0F

93

a2 o

.




013630-9-T

o

D 20 1= )M
20 R{I)=TWOPTI=RHN(] ,H)
TF(KEYP1I1-11721.24,24
21 ALl DFCGMPLAPLY o&)
CALL SOLVE(AP1IT 4 XyHeM)
Ny 22 J=1,M
2? X{D)Y=RHD(T 4RV %%2%X (1)
CALL INTFGUIXNSEGSGNUMPTISPT)
P11=Pl1%PI/VO
74 TF{KFYM11-1)25,72K,7R
?5 CALL NFCOAMP(AMY] M)
CALL ODLVF{AMIY oY, M)
N 76 1=1,M
?h XET)=RHIM T 8)=C (T 4RYEX(T)
CALL INTEGUX G NSEOLS G NIIMPIS, MY )
Mi=PIFM1I1/VO
2R 1t (KEYPIL1-1132,4%,4,45
37 NN 29 =1 ,M
79 B{T)1=Tw. 21271 ],8)
CALL DFCOMPLAP3I M)
CALL SOLVF(APRR (X R eM)
BN 134 J=1,M
X{I)=2 0T 48)%RRO(T RI=X(]) .
134 K{T)=TulP1
CALL INTEGIX¢NSFGS NUMPTS,L33)
CoLl SNDLYF{APII TR M)
1Y 35 [=1,4M
X{(T1=RHN{T,R)I=T3(]) |
35 RiT)=7(T.8)%X(]) !
CALL INTRFOIX JNSERS JMUMPTS 4O AP
CAP=TWNP %= AP
CALL INTFGLRGMSFOGS GNUMPTS JGAMN)
CAM=~TWOPI®GAM/CAPR
F33={ TWOP I=PII-CAPGAMXGAMY/VO
TEINROD - 1) 39,39,8¢4
54 NN 3R/ Ja] WM
TFLI=NCTI)305,305,30A
05 HW{Ti=TwWwiiP]
(0 1 38
A0 A H{IY=0.0
EYa CONTINUGE

L i A A RN

il

ittt

i g i

b R e

i

I

i
i

R e U B

AT PR

Ll

e
i

Sy i

A

A R

LA

i

94

il

=
<AL




AT

o iy

i, LA

"
i

N i 4

il

30/

3INR

39
0

309

45
4>
4L
337

44
oo hn

ey
9a%

013630-9-T

CALY SIHVEF(AP3IZ T gnet)

Ny 307 1=14M
A(PY=nHi{ I ,R12T1(])

CALL INTREGIX MSFLS,NUNMPTS, TL)
At INTEGIX ¢NSY JMIMPTS,TN)
1) 30R J=i4M

x(Iy=7(1,R)I2X(1)

CAT L INTREGIX G NSFGSoNHMPTS o11)

DEL TARP==(IRNPT/VOY# (U+GAMETL 1222 /(IN-TwOP T =11 /0aP)

1=P33+DELTAP
wRITE( £40)CAPGAM,P11,P33

FARMATIY ' ,HX,YCAPACITANCE ='4Fi0e5/?
18 X IPTTI/VY gTX 8=V 4F10e58/% 1,5%3'P33/V TXyt=8,F10,51)
[FINRAN JF0, 2)HRITE(6,309 INELTAP,1)
FORMAT(T 9 ,8X,¢NELT PRIF/VI 42X =, F10.,5/1
~ F10 .5

TRIKFY®I1=1)42,337,337
WRITH Ay 431M]Y
FORMAT(!T 1 ,5X,tM11/V!,TX,3=1,F10,5)
TF(IPEIAT oGbive 1 LJAND, KEYPL1 (E0.
(70148 RHN(T,R)4T3(1)s1=1,M)

FORMAT(Y0Y ySX 4071 10X IRH(IY 412X, 0 T30/ (1

anoTn 37

WRTTH(A,6G1)

FOARMATI V0225 FRREOGR TN DATAY)
CALL SYSTEM

N

95

P LOX G VIAMMAL ,IX G2k ] 0B/

bassfy=1t,

WRITE(A,44)

Ve3(F17eheceX)))




AT

g

b
Fl R

T

G R

R A R

i ) e

e ""‘

2N

SR s geeto g camen oL -

012630-8-T

A.3 SUBROUTINE DATA (IN, MX, MY, ZEP, RHOEP, THETA, B, VOL)

This subroutine is called once for each segment of the profile., Frocm
the input specification for the segment, DATA computes the (z, p) coordi-
nates of the necessary sampling points on the profile, the quantities cos o
and sin o at these points and the incrementsal volume of the segment.

Argunients :
N Type key for segment.
MX Total number of cells in segments to the leit.
MY MX + (number of cells in this segmeat ).
ZEP z - coordirate end points of segment: ZEP (1)=z 1-
ZEP(2) = 2 9 -

RHOEP p -coordinate end points of segment :
RHOEP (1) = ey » RHOEP (2) = p2

THETA Angle (in radians) subtended by a circular
erc at its center,

B Fractional exciusion, S .
vOL Incremental volume of segment.
Comments :

Stored in COMMON are the arrays RHO (80, 9), Z(80,9), ARC(80),
C(80,9) and S(80,9) which contain the numbers computed by DATA .

For the Ith cell, the subscripts (I, J) correepond to the points 51
of (229) when 1 < J < 6. For J =7, 8,9, the subscripts ‘I, J)

refer to the points 8.+ 8 and LI respectively of (211j.

96
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ey O S I

TR

an

SURROUTINE DATA(INJMX,MY,ZEP,RHOEP,THETA,HB,VOL)
DIMENSTION ZEP(2) 4RHDEFL(2)

COMMAN RHO{B80,9),2(8G+9),ARC(R0O)-C(R0,9?},5(80,9)
NATA STFP/,387298E/

MXP;:M,(+1

FMzFLOATIMY-MX)

TFIR NF, 1) SURSTP=.5%(1,0-R}1=STt¥
IF(IN-211,2,3

T T R TG AT

) 1 (C=-1.0
- . GET0 10
; ? CC=1.0
10 SIP=SIN({THFTA/2.0)

A=/7FP(2)=7FP(1)
RAD=N ,5+SORTHIRHNFP({ 1) -RHBEP (2) ) *%2+A%A)/ST2
DN=A/ARS {A)
T=0CEDNRCOS{THETA/2.) /572
ZUNT=0,5%(ZEP(1Y+2EP L2V + T {RHOFP (1) ~KHOFP(2)))
RHOCNT=0,5=({RHOEP{1)+RHOEP(2)+T=A)
t2=7EP{2)-ZCNT
Ul=ZFP(1)=-ZCNT
VOL=3.141593%ARS (A= (RHOCNT®%24+RADFRAND-(12F22+130U2+ U1 =%2) /3,01
- 3 =CCERHNCNT = (U2 (RHOFP(2)=RHOCNTI=UL* (RHOFP (1 )-RHUCNT) +RAD=RAD
3 «NNF=THETA))
RETA=CO=DN=THFTA/FN
THET1I=ATANZ(RHOEP (1) -RHOCNT L ZEP(1)-7CNT)
=z AMS {HETAZRAD)
H3=STFP=RETA
= D 902 T=MXP1.MY
= PEI=THETI+(1-MX-_5)=F:TA
[F(2 _FQ, 1.0) GO TO 19CS
= BO 1902 J=1,42
hs ANG=PH]+,5%{ J=1,5)=RETA®{1.0+R)
= NN 1903 L=1,3
. POI=ANGH+IL-2)%SURSTP=RFTA
vz 43 (J-1)
ClloMy==CC=SIN(PST)
. S{T M)=rC=COSIPST)
7IToMIZZONTHRADECCFS (] o M)
196G RHO{I M)=RHOCNT-CC*RANDFCL] 4 M)
1907 CONTINUF
1908 Dt 903 4=7,9
ANG=2PHI+(J-R)*r3
ClioeJV==C(=SIN(ANG)
S{Ted)=CLECNSTANG)
7 143 =7CNT+RADECTxSTIT )
- 933 RE(GI{T ¢ J)=RUDOCNT-CCERAN®C (T4 0)
: o672 AR (1)Y=
: PETURMN

> 97
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DX={LeP(2)-ZEP(L)}/EN
NDY=(RHNEP (2 )-RHOEF {11} /EN
U =SQRT (DX DX+DY*DY)
S1=DY /4

C1=DX/U

NO 917 I=MXP1,MY
PHEI=FLOAT(1-MX)=¢,5

IFL 8 ,E0, 1.,0) GO T 1800
D0 1802 J=1,2
ANGszI+05*(J-l 05,*‘ l.o"l’)
DO 1803 L=1,3

M=t +3%(J4~-1)
PSI=ANG+(L=2)3SURSTP

(I 4MY=ZEP{1)+PSI*DNX
RHO(I ¢ M)=RHDEP(1)+PSI=DY
S(I,M)=S1

C{isM)=C1

CANTINUE

DN 913 J=7,9
ANG=PHI+(J-B)%=STEP
Z(14J)=ZEP(1)+ANG%DX
REO(I o JI=RHOEP (1) +ANG*DY
C(r1.4)=C1

S{l,J)¥=S1

ARC(T)=U

VOL=1.047198=({ZEP{2)-2EP (11} *(RHOEP (1) **2+RHOEP{ 1) #RHOEP (2} +
8 RHNEP(21%*%2)

RETURN
END
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A.4 SUBROZLTINL INTEG (V, NSEG, NUMPTS, SUM)

INTY" umerically integrates quadratic interpolating polynomiais
approximating the dats on each segment of the profi... When the profile
is composed of several segments, no interpolation is performed across seg-
ment boundaries. Hence, the integration is accura+» even for disconnected

segments, e.r, the circular arcs of two spheres.

Real vector of function values, orderer? as
the cells.

Total number of segments in the profile.

Integer array containing in NUMPTS (1) the
number of cells on the Ith segment: 1= 1,
NSEG.

Tntegral of V across the profile.

Stored in COMMON are the arc lengths ARC(I), I=1,...., N required

99
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SUHRROUITINE INTEG({VoNSEG NUMPTS 4 StiM)

COMMON PHOIBN,9),7({R80,9)ARC(8GYC(RO,Q9),S(RN,Q)
NDIMENSTIAON V(80 JNUIMPTS(15)

SHM=0,0

JACC=1

NN 3000 I<clNSFG

T=ARC ( 3A7C)

| =NUMPTS(])

N=| +JACC-1Y

SUM=SUM+TH(0e 6255 VIIJACCI+V(N) )= 1255 (VIJACC+I )+ {1i-1) 1)
TRIL/?2 JNF, {(t+1)/2) GO TN 3001

SUHM=SUM+TH( Qb2 AETHY(N=1)=0,08333323%Y (N2} +0,Ll0haA7- VI 1)
i 41 =N-1

JIN=JACC+1

PO 3002 d=JiNyLML,?
SHK=SUM+N,3333333%Tx(V(J=-1)+4.05xVIN)+V{,i-1))

JACC=JACC+L,

PFTUHRN

END

100
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A.5 SUBROUTINES DECOMP (A, N) AND SCLVE (A, X, B; N)

Used together, DECOM P and SOLVE solve the linear system AX = B,
DECOMP performs a L~U decomposition of the N x N matrix A and
SOLVE performs back -substitution. These routines are adapted from
Forsythe and Moler (1567, pp. 68~63).

SHARRNUTINE NECNMP (UL 4N
IMENSION UL (BO,80)
COMMON /SOQL/T1PS(8R0;
NN & I=1N
5 1PS(I)=1
NM] =N~}
DN 16 K=1,NM]
RIF=0.0
DO 11 I=KeN
IP=IPS(I)
IF(ABS(UL{IP,K)Y) LLE, RIF) GO TO 11
RIF=ARS{UL({IF,K))
IDXPiv=1l
11 CONTINUF
1-(IDXPIV .EQ. K) GD TO 15
d=IPS({K)
1PS(KI=IPS(IDXPIV)
1PS{IOXPIVI=J
. 1% KP=1PS(K)
E PIVOT=0L (KP4K)
: KPl=K+1}
NN 1& I=KPI,N
1P=1IPS(1}
2 FM=—tiL{TIP,K)/PIVOT
: UL (1P K 1=FEM
DO 16 U=KP1l,.N
I AIP ¢ Y=UL (TP JVY+EMRUL (KP4 J)
1A CONTINUE
RE TURN
END

L A 000 R0
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SURROUTINESOLVE (UL 4 X4B¢N)
NDIMENSION UL(80,80)+8B(80),X{(RO)

COMMON /SOL/1PS(80)
NP1=N+1

[P=1PS(1)

X(1)=R{1P)

DO 2 1=2.N

IP=1PS(I)

IMl=1-1

S“M=0.

N1 J=1,.1M1
SUM=SUM+UL (TP, J)=X({J)
X{1)=R(IP)-SUM

1P=1PS (N}
XKINI=XINI/ULLTIP M)

NO 4 [BACK=2,N
1=NP1-1RACK

Ip=1PS(I)

IPi=1+1

SUmM=0,0

no 3 J=1P1,N
SUM=SUM+UL (TP, 11X {J)
X{D)I={(X(D)=-SuMmy7uL{1P. 1)
RETURN

END

102
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A.6 SUBROUTINE ELLI (M1, K, E, KPR, KEY)

This computes the elliptic int2grals K{(m) and E(m; and the
derivative K'(m) from their power series approximations (sece Section

4.2).
, Axrguments :
M1 Real, the quantity (1 -m).
» 2 K fesl, K(m).
3 E Real, E (m).
N KPR Real, K'(m).

‘ KEY Integer: 0 Compute K, E and KPR;
S 1 Compute X, E but omit KPR.
\4‘,, :

t 5 SURRNUTINE FLLT(MLoKyE KPRKEY)
. PEAL M1.K, KPR
9 T=-ALAG (M)

K=1.3R6204+ ,55T+M]I % (9 ,AAH3LHE-2+,1249R50%T+M1=(3,5900097E~7
5 46,880P69F-28T+MI=x(3,762564F-243,32R355E-2%xT+MI=(1,451196F-2
5 +4,41TRTE-3%2T 1Y)
FzleQ4MIE(,04375144,24699837%74M13(£,260601E-2+49,2001Rt-2%i+M1x{
R 6,7573045-244 ,N069AFRE~22TaMI%(1,730506E-2+5,264096E~-35T11))
) FE(KEY LFQ. 1) RFYHRN
: KPR=SIMY + 7 RIDP29F =7 = J1249R65F:2T + M1 %(=2,999362F-3~.137A05=T
: £ +M]121=7,RIYIIAF-2 ~ G, 9RG0ARF-2%T + MI¥(-5,362998E-? -
5 1. TATIGRE-? = T 1))
RE TURN
FND
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A.7 SUBROUTINE SETUP (KEYP1ll, KEKYMI11, I, J, L, APIll,
API33, AMI11, 1J)

This is essential in computing the linear systems, Specifically
SETUP, saftor calling ELLI, computes the quantities API1]l (K 1 of
eq. 182), APIs3 (K0 of eq. 178), Ql (eq. 196) and Qz {eq. 197).

The quantities . and 22_ are used to compute f{i, j) (AMIil) of

1 2
eq. (227).
Arguments :
KEYP11 0 when computing APIli and API33,
elge 1.
KEYM11 0 when computing AMI1l, elss 1.
I Subscript of observer (unprimed) cell.
J Subscript of remote ( prumed) cell.
L Index of the point within remote cell for

which the kernels are to be computed

( see DATA, Commer:s}.

API1ll, API33 Described above
AMI11

1J 0: use last value of M1 in kernel
computations ;

1: compute new Ml.
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SURBRGUTINE SFTUP(KEYPI1KEYMIL1W14JsLsAPI11,API33,amITT,10)

COMMON RHD(B0+9)4Z(R0,9)V,ARC{B0),C(RO,2),5(8N,9)
PEAL M M] (K KPR

7D=2(J.L)=2(1,8)

R=RHO(1,8}

RP=RHO(J4L}

IF(IY FQ. 0) GO TO 115

RRP=R=*RP

A1=RRP+RRP

LA2=R¥R4+RPERP+ZIN=IN
Mi=(A2~-A1)/(A2+A1)

M=} ,-M]

CALL FLLT(M] yK,EJKPRJKEYMLL
AD=M/RRP

Al=SORT(AD)

AZ2=M+M

A3=2,-M

TF(KEYP11-11113,114,114
API11=A1%(A3%K-E~F)/M

AP133=A1%K

H1=A1%A0

A3=,5%A3

IF(KEYMIT-11115,116,116A

A0=C{J,L)

NP1==A1%*{,25%K~-A3=KPR)
NM2=A1%(E=A3x((A3+M)Z¥ = AQ&A3XKPR) )/ (M3XM)
AMI11=R=ADXOM2+{ZD2S{J,LI~-RPZA0D) 2OM]
RETURN
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