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ABSTRACT

The low frequency scattering of electromagnetic and acoustic waves by

rotationally symmetric bodies is considered. By conoentrating on certain

quantities such as the normallsed component of the induced electric and mag-

netic dipole moments, it is shown how the first one or two terms in the far

zone scattered fields can be expressed in terms of quantities which are func-

tions only of the geometry of the body. Each of these is the weighted integral

of an elementary potential function which can be found by solving an integral

equation. A computer program has been written to solve the appropriate

equations by the moment method, and for calculating the dipole moments, the

electrostatic capacity, and a further quantity related to the capacity. The

program is described and related data arm presented.
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1. INTRODUCTION

When a plane electromagnetic wave is incident on a finite perfectly con-

T •ducting body, or a plane acoustic wave incident on a finite acoustically soft or

hard body, the scattered field in the far zone car- be expanded in a power

series in the wave number k if k Is sufficiently smill. The determination of

the first few terms in these series requires the solution of certain elementary

potential problems. We here consider the potential problems associated with

the first (Rayleigh) term in the electromagnetic expansion and the first two

terms in each of the acoustic expansions, and show how in the case of a singly

connected body of revolution all of these terms can be deduced from the solu-

tions of just five potential problems. LU the body is not singly connected, only

the axial component of the induced electrIc dipole moment is affected, and for

a body consisting of two sep•,rate parts, an expression for the modified compo-

nent is obtained.

Each potential satisfies a simple integral equation. Computer programs

are described for solving the equations by the moment method, and since most

of the equations are of first order type, the computational procedures are rather

similar to those of Mautz and rHarrington (1970). The appropriate elements of

the electric and magnetic polarisability tensors (Keller et al, 1972) are then

computed, along with the electrostatic capacity. and a quantity . related to this,

and theee are sufficient to specify the electromagnetic and acoustic scattering

for any direction of plane wave incidence and any direction of scattering. For

relatively simple geometries, the entire computation takes about 3 seconds on an

IBM 360 computer.

In our presentation we first examine (Section 2) the proble.a of a plane

- electromnagnetic wave of aibitý-ary polarisation and incidence direction, and!I
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isolate the potentials necessary for a complete description of the leading term

in the far zone scatteced field. Thir It followed (Section 3) by similar treat-

ments of the acoustic problems, but here we seek the fires two terms in the

expansions. In Section 4 the integral equations satisfied by the potentials are

cast into forms appropriate To digital solution, and the manner in which the

body is specified is also described. Section 5 is concerned with various aspects

of the computer program, a c=nvate listing of whicb is given in the Appendix,

and some of the numerical results obtained so far are presented in Section 6.

This work was supported in part by the National Science Foundation under

Grant GP-25321.

2
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2. PERFECTLY CONDUCTN BOD!ES

2. 1 FORMULATION

I Let B be a finite, closed, perfectly conducting body uo rt-voiution about

lht z axik_ of a rectangular Cartesian coordinate systein (x, y, z). In terms of

t;:. cylindrical polar ,oordinates (p,0. z) where

. + y 2 =arctan
x

the surface will be described by the equation

prp(z)

where p can be a multivalued function of z as, for example, in the case of

a disk or a re-entrant shape, but is never infinite and Is zero outside some

intervral in z. Let r be the radius vector to an arbitrary ),oint in the domain

V exterior to B and le.- n be a unit vector normal to the surface drawn into )

A linearly polarised electromagnetic wave is incident with electric and

magnetic vectors

A kK r
- ae -

A
- 1  

Aik k.r
H Ybe

where k, a and b are mutually perpendicular unit vectors such that b .kA n;

Y is the Intrinsic admittance oi the homogeneous isotropic medium (of permit-

tivity e1 exterior to B and a time factor e has been suppressed.

33
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For k small but kr largo, the resulting scattered field E S can be

written as (Klelinman, 1965)

ikr 1k- e r( p) + -

4-xr 'A ' Y FA

(2)

Ha iko k2 Y ^ ^H r r
- 4wr A iA J

where p and m are the electric and magnetic dipole momeats respectively.

As shown by Keller et al ( 1972),

(3)
SA A .AA

m a -Y + M 1-.) (b..-) z

whe -P 1 1 P 3 3 , M11 and M,33 are functions only of the geometry of the body.

For a given body, PII P 3 3' M1 and M3 3 are conctants whose values are

as !o1lows:

(i) P1 1  x n (x'.4) dS (4)

B
where is such that

I x on B (5)

4
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r -21 - O(r-) as r-4 .w

0 (i) P33 z •- (z-t3) dS (6)

where f3 is such that

-3
4 3 uz-yz• onEB; (7)

-y is a constant chosen to make

f - dS x 0, (8)!• • JJan

B

implying zero total Induced charge on B, and ensuring that

43 O(r -2 as r--*

-- i I! A A •

-iMI n n~x (x- * ) dS (9)

B

Swhert is such that

v 0 in
X

1* ax onB (10)
an an

5

-A
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-2 aB r--0D

(iv) M33 = ffnA (z-I 3 )dS (11k

B

whore 13 is such that

V2 + 3  inj,'

a + 3  3az

at on B (12)
an an

O(r') as r-.oo.

Although the vai'les assumed by the potential funotion *3 on B are quite distinct

from those of , - and -3, nevertheless, as shown by Karp
S an an

(1956) and Payne (1956),

M - (13)M33 l "

This obviates the need for solving the potential problem (lv) If the only purpose

for finding -3 is to oalculate M3 3 ,

There is one other electromagnetic quantity of interest and this is the

electrostatic capacity C of the body in isolation. If the body is rausee to the

pote-tial unity, the surftoe charge density Is

a4 0
Pan (14)9 n

6
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where is an exterior OtezMiu function Satisfying the boundary condition

S1M onB (15;

The electrostatic capacity is then equal to the total charge induced on the sur-

face and Is

C ff dS

an
B

Note, however, that if all portions of the surface are not in electricýl contact

with one another, charge can no longer flow freely over the entire surface, and

additional (mutual) capacitles can be detined. in particular, such electrical

separatiou has a profound effect on the calculation of P3 3, and the modifications

thst result when the surface is disjoint are discussed in Section 2.

The five quantities 13ted in eqs. (4), (6), (9), (II), and ( 16) can be

computed by sol-ing fivy Leparate potential problems of a rather standard nature,

and the manner in which this is done is as follows.

SLet V be some potential function satisy-ing IVV a 0 odtside and on B,

and let V be the regular part of V. V a is therefore an exterior potential

and we can regard

V - V Vi (X7)

P as an incident potential. Green's !heorem applied to the function V in the region

Vthen yields

; ~~V(.) vi + '•(r') , - (r.)IdsW " VLz) - R. as.
ý(18

7
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where Rajr-r' .

If the boundary condition on the potential V Is

V(r)a0 , r on B, (19)

eq. (18) reduces to

V(L) -v () - Rf n' Vlr.E dS , (20)

B

td since the integral exists for all !. including points on B, we can allow r

to lie on B and apply the boundary comudtion ( 19 ) to obtain

V 1(ff 1 -i- V(r') dS t  (21)4 - r) ff R an' -

B

whic-i is an integral equation of the first kind for a V

If, on the other hand, the boundary condition on the potential V is

an~V r 0 r n9 (22)

eq. (18) reduces to

V V IV(r)+ L f V(r') ( dS t  (23)- -V ffn' (R)
B

i because of the non-integrable singularity of() r

e%. (23) is valid as It stards only if r is not on B. To obtain an integral

equation for V, we allow r to approach a point on B In the direction of the

,3
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inward normal, in which case it can be sho.vn that

i " lir V(_r') a n dS t 2'rV(r) + (r') (nL)dS'

B B

where the bar across the integral signs denotes the Cauchy principal value. Hence

V(E)z 2V (K)+ ffV(r') L dSL (24)

B

for r on B, which is an integral equation of the second kind for V.

2.2 PROCEDURE FOR P1 1

The solution of problem (0) and, hence, the cornputation of P is a

straightforward application of the integril equation (21).

If

Viz " = -A1

then V x-4 1 x V (say) (25)

with V 10 on B. Since x=p co s and the equation of the surfý.ce is indepen-
1

dent of 0, the potential V1 must everywhere have the same 0 dependence

as V1, implying

V (r) a v (p, z) cos0 (26)
Sv 1

This ie true also Qf "-inI. and we can therefore write

Nn

4 A• __ ••
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V (rt a I•

- •, •1 coo

T (s') coo0' (27)

where s' is arc length along a profile ef the body. Moreover,

R a 1(PP)2+ (z-zZ)2+ 2pp'(1-cCos ;P) 1/ (28)

with

0€- 0'

and since

dS ' dp' J'ds'

the integral equation (21) now takes the form
21 s

- pCos08 1= (S') ea tdO'ds'

47 1 R

2w to
1 f Tl(s,) cos(CI-O ¢) d

I f2w J ' KT (s')ds' cos 0

where the kerrel Is

1 1=p, z; pR, 1 d(

10



013630-9-T

and the integrrtlon is along the prome of the body. The integrat equation

for T (a) is therefore

f p'K T (s)ds' 2rp (30)

which can be solved to dte,•Wine T (s). In terms of tis quatity
1

P • xaff - V(r) dS

BB

B
• 2z 6

P 2 Co p~o 2 OT1 (s)d~ds

which reduces to P 2

_• • P11  J Ti (s)d . (31I)

2.3 PROCEDURE FOR P AND C
P33'N

The solution of problem (IIt) leading to the cAicuiation c P invov!'es
33.

two successiva applicatlors of the intwgral equation ( 21).

In the first case we consider an incident potential

V1 *aVIa (32)
d Vi I

and seek the corresponding total potential V2 satisfying the boundsry condition

11

-_- • -
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i

V 0 a on B. Since V2 is everywhere independent of 0, it follows that
2 av2

V2 and T ara likewise 0 independent. We can therefore write

8V 2

Sa T (W') (33)

and the integral equation (21) now becomes

2x s
f f T, (s'4 dsZ • • ~2s') RIpde

• KO fK 0 T 2 (I') ds'

where the kernel is
I

K 0 ! K 0 P, zp', z') P Z) (34:

The integral equation from which to determine T (s) is therefor;
2

f8 P'K 0 T2 (s')ds' 2 2iz . (35)

12
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The aecond of the two basic problems is that in which the incident potential

is

V I x I (36)
3

We again seek the total potential V3 satisfying the boundary condition V 3 0

on B, and writing

a)V3- T(') 3 
(37)

8nt 3

the integral equation ( 21) takes the form

s0 P'KT3(s' )ds' 21r (38)

from which T3 ( s ) can be found.

In problem (II), however,

Vi~z+y and V 43

Thus.

i IV v 2  + 7V3  (39)

4

a Implying

V V + V 3  (40)

2i3

-X&~--~---- 0
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and if we write

a V TO(s) (41)

a n'

then

T(s) T T 2 (a) +-YT 3 (S) (42)

where T2 (s) and T3 (a) are the solutions of the Integral equations (35) and

(38 ) respectively. The costant - Is determined by the coalition (8) for zero

total induced charge on B, viz.*

it (vi-v) dS 30 (43)

But

BJ- dS (z+ 7) dSu 0 (44)

B B

as can be seen by applicatioa of the eivergence theorem; moreover

2w x
dS f T(s)pdddS

B0

S21 fo pT(s)ds

* We arn here assuming that the surface is not disjoint.

14
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S

21 •p PT 2(sds + 2 • p T 3ls8)ds

fYfand hence., by virtue of eqs. ( 43 ) and ( 44 )°

fB T 2(s) ds

"/a (45)
3(a)T3( of

Since T (a) and T (a) canbe found from the integral equations (35)2 3

and (38 ), the constant Y given in eq. (45) now completes the specificat'on

of the surface field T(s), and in terms of T(s)

3  ff -2- V(r)dSP33 ff an)-• -

B

Qa

2J ZPT(s)ds

Hence

P33  zT 9 S~d+2yf zp T (s) ds (46)

ifo

A valuable by-product of the above analysis ts the electrostatic capacity

1.5

f _

-- _ S -5
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C defined in eq. (16). This fact is apparent on recalling that the determination

of C requires us to find the exterior potential 1 0 satisfying the boundary

condition ( 15) on B, and this can be accomplished using the integral equation
(21) with

V I1, V = -40

so that

V a 1-to (-0 on B).

The problem is therefore identical to the second of the two basic ones

considered above, and indeed

4 0 iU -V 3  (47)

implying

a - -a - T3 (s) 
(48)

where T3 (a) is the solution of the integral equation (38). Hence, when the

body is at unit potential, the surface charge density as a function of are length

is

p eT 3 (9) (4-3)

and the capacity C is
a

C 2wc pT 3 (s)ds . (50)

We observe that the denominator of the expression (45) for Y is simply

16
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C /A2 r 0, whibb ensures that 'Y can never be infinite.

Some simplifloation of the preceding results is possible. Since V aad

V 8are beth exterior potentials, Green's theorem can be applied to the region
3

V exterior to B to yield the reciprocity relation

iV2 - _' dS V3 s -" aS (51)
jJv 2  an f3a

B B

(Van Bladel, 1968). But

av8

"8n T 2(a) " . z

and
•aZ

a-n- T 3 (s)

and from the boundary cormfitions on V2 and V3

a 8V -z , V- -12 3

on B. Substituting these into eq. (51), we have

zT (s)dS u s)-n. z dS

B B

which reduces to

a s

pT 2 (slds f zpT 3 (sWds (52)

17
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With the aid of this result, the constant y of eq. (45) can be exprostsed

in terms of the surface field T' (M) alone:
3

zpT (s)d

S3=-Y (53)

pT 3 (s) ds

ie.
s

2w ircJY C zpT 3 (s)ds (54)

but w•iist this reduces from four to three the number of separate surface field

integrations involved in the calculation of P there is no way to avoid

entirely the determination of the surface field T (a). Indeed, the simplest
2

expression for P is
33 °2 C0w T2( 2 C (5

P33 2 zp T(a)ds (55)

2.4 PROCEDURE FOR M
S1

The solution of problem (iii) leads to the calculation of M and is a

straightforward application of the integral equation (24). If

VI x and V a

18Vj
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then

V X- x V 4  (say) (56)

ar.-z 8V4/an 0 on B as a consequnce of the boundary condition (10).

Since x x p cos 0 and the equation of the surface is independent of 0 , V4
i

must have the same 0 dependence as V, namely, cos 0. In particular,

on the surface

V (r) =v (s)cos0 (57)
4 4

which enables us to write eq. (24) as

2•r 5

V 4(s)cosO 2pcosO + f V(s )cose' p'dods

But

n cos a' Cos 0'+ ysin ')- z sin ' (58)

where

a'. tan- az (59)

so that

, r

M al= "-- o (pI -p cos;P )-sin& (z I z( 0
• " • 3
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with 0 - 0, as before. Hence

jCos ' )d cos, f C , d

fo 0
a 2coso COs' r 2 a [(zIz)s-CS] 1)

where

•I •(P. Z;0' z' "1O ZR d ,(1

M2- 2 (p,z;p,,z-) af d Vi (62)

The integral equation from whiCh to determine V (s) is now
4 nw

'4(e). 2p4+ , 2
4 It

(63)

and in terms of V s):

M 11 V4 ()dS
21

2w s

a J JcooeV42(a)Cos 0 pdods

20
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I

SI.e. M, JPV (a)CQ ,ds (64)

2.5 PROCEDURE FOR M 33

AMthough It is not necessary to compute M airectly because of die
33

relation ( 13 ), the integral equation which the corresponding potent•al satis-

fies must be solved if the second term in the low frequency expansion ior an

acoustically hard body is to be evaluated. It is therefore appropriate to des-

cribe the determination of this potential function here.

Once again we have a straightforward application of b.'- integr-il equation

(24). If

VI z and Vs

then

V z V (say/ (65)
3 5

-with V5/En 0 on B. Since V5 mustbe independent cf I, eq. (24)

impliee

( () a 2z+ V (a')
5 725 On

But

2de 2- (
f e ' R do f R

21.
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-2(coso' an+ z'-z)sin 'aP ,osoa O)

where lQ isa deflued in eq. (61 ) and

•0oa fl 0 (p,z;p',z') j,, de •;

I
The integral equation from which to detrmine V5 ( (s) is therefore

V(s)=2z+-f atu v (ad:•CO a's'2+• Vsj' eo• i+ [z'-z) sincý- ptcosa Q plds'-

- "(67)

azd we not In passing that

33 5ff Vs.,5a s
B

2v

2fPVsin-5  v(s )pdsds

i.e. M3 3  ((-2v fPv5(sinads8)

0

2.6 DISJOINT SURFACES

So far it has bzn assumed that all portione of the ourface are in electrical

contact with one another, and If this requirement Ss not met, the amnlysis is no

22
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longer vilid. Thus, for example, an application of the above procedures to n body

consisting of two separate spheres leads instead to the solution for the two spheres

joined by an infinitesimal wire along the axis of symmetry, and though the presence

of the wire (producing elsctrical contact) does not affect the values of M and

P (and hence M330 by virtue of eq. 13), it does have a profound effect on

P 33 This is not unnatural sincc. P33 is proportional to the longitudinal (z)

component of the inducee electric dipole moment.

The breakdown in our formulation when B has several distinct parts stems

from the impoattiou of the zer' induced charge criterion (8). If charge cannot

flow freely betveen the n parts BI, B2,. ... , B, eq. ( ) must be replaced
by the n equations

ff a dS u 0 il, 2., n. (69)

B.

Since this obviously alfects only the potential 13 and leaves the procedure

(and results) for P,1i M11 and M:3 unchanged, our efforts will be directed

at P33 alone with the objective of finding an approach which is apr..henble v.ien

B consists of just two electrically Isolated portions B1 and B So that we may

use to the fullesL extent tha work that we have already done, it is desirable to

have this new approach as similar as possible to that appropriate when the two

portions are electrically connected.

By anslogy with problem (ii) of Section 2. 1, the task is to find an e-xteriar

Potantial satisfying the equation V 13 0 in the domain , exterior

to B, together with the boundary conditions

"4, -z + 7, on B, (70)
31

n B (71)
13 +"2 2

23
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where the constants 1 and are such that

ff a43 dS 0 , (721
B an

Jf 4 3 dS 0 (73)B an
B2

The quantity P3 3 is then given by eq. (6 ) as before.

Because the boundary comditlocs on B 1 and B2 differ, it is no longer

convenient to think in terns of incident and total potentials, with the difference

representing the desired exterior potentlis. Let u9 therefore consider the basic

potential problem in which (31 ) is an exterior potential satisfying the boundary

condition

(1) 1 (74)

0 on B2

By application of Green's theorem to the domain V, we have

(1 ) 1 ( ) a .), ) 1 - , (1)

B

. rr- Ys. - -
B21  E

24
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and the first integral is identically zero since B it itself a closed surface.
1

If, now, r is allowed to approach B, application of the boundary condition

(74 ) gives

4 •R an--- [ r S 1 (7 5)

B 1 r on 2

which is an integral equation from which to determine 3 / It can
n (1)

be simplified somewhat by observing that § 1() and, hence, a are

are independent of the azimuthal coordinate 0. When the 0 integration is

performed, eq. (75) reduces to

f ' p)K T 3 (s')ds' 9 (76)

S0 ,r on B9

c.f. eq. (3U), whcere

T (s1 ) () (_r') (77)

and K0 is the kernel defined in eq. (34). It will be noted that the integration

in ( 76 ) is over the entire profile of the body B a BI - B2
(2)1

Similarly, if 43 is an exterior potential function satisfying the

boundary condition

(2) r.(n
13 (78)

on B2
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then

f PKoT (2) C, r on B1

0 3d 21 r on B 2

where

T(2)(s) - an (2) . (80)

Comparison of eqs. (76) and (79) with (38) shows 4hat

TO (1) + T (2)(s) T (a) (81)
.A 3 3

where T 3(s) is that surface field quantity which is appropriate when B and

B2 are electrically connected. If T3 ( s ) has already been computed, it is

clearly necessary to compute only one of T3(1) (a) Rad T3(2) (S).

Let us now return to the potential problem set forth in eqs. (70) through

(73). As regards the boundary conditions (70) and (71), an exterior

potential satisfying them is
(1)

43 z- V2 + 'Y1  3  + 72t (2) (82)

where V2 is the total potential considered in Section 2.3. Hence

8413 az _ TT s) 2 ))(

an 8n 2 ',1 (s)-y 2 T 3  s) (83)

and since T2 (a) is given as the solution of the integral equation (35), it only

.-emains to specify the conatante '1 aad 72 .

From the zero charge condition (72) and using the fact that
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:1ff
B or B

1 2

•- • ~~we havef T3ff
we71 h pT3 

1 )(s)ds + Y2 f pT 3(2)(s)ds- f pT (s) ds

S(1) '1) (1)

S(64)

where the ,ymbol ( 1 below the integral signs shows that the lntegrations are

carried out over the profile of the portion B1 alone. Similarly, from eq. (73),

7'1 f pT(3 (1)(s)d + -2 f pT 3(2) (sd " - p T 2(s)ds

(2) (2) (2)

(85)

where the integrations are over the profile of B2 alone, •'nd if we now define

C u~e ( 1) E(2)

S11 x 2vr oT3l(s)ds C12  2 pT 3  (s) ds

(1) (1)

(86)

21 fds C 2f pT3(2) (sC21 ''2 22 ((de C2

(2) (2)

eqs. (84) and (85) take on the more compact form

S1C Ci + Y2 C 12 a -2r f pT.2.a)ds (87 a)
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•1 lC21 +f2C22 -2re f pT 2 (s)ds (.7 t.)

(2)

It will be observed that the quantities C11 , etc. all have the dimensions of

capacity, and by virtue of eqs. (50) and (81),

C1 1 +C 12  C 2 1  C 2 2  (88)

where C is the capacity when electrical contact is maintained.

Rather than solve the eqs. (87) directly, it is more convenient to first

eliminate the surface field quantity T2 (s) irom the expressions. That this is

possible can be shown by application of reciprocity to the exterior potential

functions zV 2 # 3( and #3(2). From the pair z-V 2 and 3

we have

•n(z-V2)dS -(z-V2"n dS

B B

Hence

j T 2(s)dS = z 3}(s)dS

B1  B

implying s

(1)
f p2(s azT3 (a) ds (89)

Similarly, a

pT 2 (s) ds I zpT 2)(s) ds (90)

(2)

and we note that by addition of the last two equations we recover eq. (52).

28
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Finally, from the function pair nd

J T-12)s (a)dS JT( (s)(dS
SB. B2

A. 2

implying

f pT 3(2)(s)ds - f pT 3 1 ) (s)ds (91)

(1) (2)

i.e.

C12 = C21 (92)

at expected.

Using eqs. (89) and (90), T2 (s) can be eliminated from the eqs. (87)

and if we also el),ninaie T 2 )( (a) using eq. (81), we obtain

(Y 1 - 7 2) C1 1 +Y 2 21 v fPT 3(s)ds = -2vf zpT 3 (1)(s)ds

(1)

(-Y1 72)C 2 1 +Y 2 2wr f PT 3 (s)ds 2wTI zpT 3 (s)ds

(2)

S

-2rc zpT (s)ds
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These can be solved to give

" 2 zpT 3(S) do T3(slds -f zpT (s)ds pT 3 (s) d

in. (1) 0f

(93)

-Y zpT 3(s)ds p ds- zpT (s)ds pT(1)(s)d A

J 3T 3  (3 3..
"(1)

(94)
where

S8

Ap pT 3 (s)ds J pT 3 ( 1 )(s)ds pT (s)ds pT (s) ds

(1) (1)

(95)

We can now proceed to the calculation of P . If we write this quantity
'U 33

as P3 to distinguish it from the -P33 of eq. (55) for B1 and B2 in electriual

contact, we have, from eqs. (8) and (83),

B

(93)
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iBut

Butp -2wf0 ZPT2(sad T32(siY zP 3
1 (sd

P P33 2z 2r zP (T2() + -YT3 S ds

(see eq. 46 ) where T is given by eq. ( 53 ), and thus

P33= P33+ 2(' 2 -7r ) l zpT3(s)ds+2w(71"'2) zpT3( sds

u( +2

Moreover, from eqs. (53), (94) and (95 ) after some manipulation,

""fo 
pT 3(1)()d

fo p3(s) ds-::- (98)

which enablss up to write rq. ( 97) as

P33 P 33 + 2 w(y 1 -72) (z +y) pT 3  () ds (99)

The factor 1 -72 ) is defined in eq. (93) and invoking yet again the expression

(53) for Y together with the identity (91), we have

7Z p2 "a- ds PT 3 (()ds + zp 1)(s)d
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""A (z+I ,-pT (s)ds
27r EA J3

giving

33 33  E- A ( (z+Y)PT (s)ds (100)

where C and A are defined in eqs. (50) and (95) re-pectively.

This is our final expression for P 3 3 . Compared to the situation when

B and B are alectrically connected, the only additional field quantity that
1 2 '1)

must now be found is T (s ) ( which is given as the solution of the integral

equation (76); and since C/O and A are both positive, electrical separation

decreases the longitudinal component of the induced electric dipole moment.
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i• . 3. ACOUSTICALLY SOFT OR HARD BODIES

3.1 GENERAL PROCEDURE

Let B now be a finite, closed acoustically soft or hard body of revolution

about the z axis of a Cartesian coordinate system (x, y, z). It i., of no

concern whether B is disjoint or not. A plane acoustic wave is incident and

its velocity potential * is written as

A
i ikk. r

"U e (101)

A S
where k is again a unit vector in the direction of propagation. If U is the

scattered field that is produced, then U satisfies

(V2 + k2) U 8 0 in n (102)

r(-- - ikUs) 0 as r-4o, (103)

and the boundary condition

U -U1  on B (104)

if B is soft, or

a U a i on B (105)
a)n an

if B is hard. Eqs. (104) and (105) are equlvalent to

* To s•void any possible confuulon, we shall henoeforth refer to U as a field.
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U o on B (106)

a 0 onB (107)
an

respectively, where U * U + U is the total field.

A general expreE sion for U(.) at an arbitrary point in Z is provided

by the Helmholtz representation:

u (0r) (r)+ W-r) U W n

4r JJf (U n, 1-R R 08-'
B (108,

where R * jr-)r as before. For sufficiently small k, U 0 U and,

hence, U can be expanded as power series in 1 k of the form

U1 ()* X ikm U~r 1 (109)
Mao

and when these are ineerted into eq. (108), the coefficients of like powers of

i k on both sides gf the equation =n be set equal to give

Um(r)•U (r)+- V L ! mrf(- 2 n U (r')_

M m_ R41- f 1' )

R U,(r' dS' (110)

for m 0, 1, 2,... By illowing r tolieon B, an integral equation

is obtained from which U m ) can be found; and as is seen by substituting
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the power series for U(r) into eq. (102),

9 V2UI

0 1

2VU U m- m>2

showing that U (r) and Ul(r) are potential functions, but U (r) is not
0 ~ 1-2

unlesE U (r)-- 0.

In the far zone (r -- cx) the low frequency expansion of the scattared

field deduced from eq. (108 ) is

eikr iD-.I+1 m ffUkUS(r)-• 4 ' (-1),-{+ •r) -
ir r I (( m -1)! f

ID=O I=O B

X •'. u 1(r) + an, uI(•') dS
(112)

(Kleinman, 1965, with the correction of a sign error), provided U (- 'W)

is taken to be zero. Our objective is to calculate the first few terme in this

series.

3.2 SOV' BODIES

We now speoialiso the above results to the care of a soft. rotationally

symmetric body illumina•.-. by the plane wave ( 101 ), and seek the first two

terms in the low frequency expansion of the far zone .4cattered field. By

S~35
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invoking the boundary conditio.)

Ur(r) 0 on B, (113)

m=0, 1, 2 . , we hav"

uS r(r'dS'-ik r r) U
U q) FW- 0f - n' 0-

B

-- U (r') dS'+ O(k2) (114)
1z 1- Jj

showing that only the potW" ftWAcUB UO(r) and U,(Z) are required.

From eqs. ( 101) and ( 107) it follows tht

0(r) U (rr (115)

and by inserting the boundary condition (113) into (110), the latter becomes

Xm ff(a U dSlrE(r) = U (.r) - (L 3nU:r'
t w o0 B

which, for r on B , reduCes tom f
i- A. ii Mn-11 a U Wr) dS' .(116)

Ut (r) 4 I (mL-I) an' -

1"0 B
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When mO0, eq. (116) gives

I U (rl)dS' (117)S~1r ff R an' o-
S~B

This is identical to the integral equwtion satisfied by the potential V3 (r) of

Section 2.3, and hence

-() -U0(r) = T (s) (118)U0l 3lrn 0 3

We note that

SC
ff%%U0(r)dS = 2rf PT3 (s)ds 1C9 (1)

B

(see eq. 50), where C is the electrostatic capacity.

Frm'r eq. (116) with m x 1,

A ff7 OrdS -1(j)S

k.r-r f (120)

3S B

and using eq. (Ii9) the left hand side can be written as

(kc x) p os~ k y~ )psin ~ +) z

Since the surface of the body Is independent of f tI follows that UI(r) must

have the form

37
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A(^ A~)0"0+ (A• A~~l + l1 (^.) U ^ U(2)(r •-C (3)(r kz

u(Hu i k.x)" x _.k.Yin j u k 4vc I

(121)

where the individual U (r), j - 1, 2 3, satisfy

P & ff n' U (r' •dS' , (122)
4 fR an' 1 (12

B

Zu ff a U(2)rtdS , (123)

B

1 - ff a Us)(-K')dS' (124)

B

Comparison of eqs. ( 124) and (117) shows

SU(3)( U( 3 a U(3) T(r

U. (3r) Ur) = D(r) -- U (r) -T (rl (125)
A 0 3- 3 14n --

Similarly, UI(1) (r) cos 0 is identical to the potential V (r ) of Section 2.2,

implying

U, M _1 Vl(P. z) (126)

so that

a u1)r) T (127)
an I - 1
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and U 1(2) uis identioal to the potential V (r) of Section 2.3, so that
andUl2)(r)) T 2-s (12Ui)

a ,(2)T
an (- 2

It is now a trivial matter to evaluate the right hand side of eq. ( 114).

The first integral is clearly C/c, and the second can be written as

J fk r') T23 (s ) [) -k.4v T1 (s ')

B

+ k. z) (of) C T (s' dS2 4 x 3 *~

""A 2A t+ T A (W)} ptds'

But

PI'T 2 (s'l)ds' f Z0'pT 3 (s')ds' (52)

and hence the second integral on the right hand side of (114) is

~~r rc (A)l2w4a j (- p T 3 (s')ds'

(,C- O\ - A)(r-kA).

where Is as defined in eqs. (53) and (54).
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The low frequency expansion of the far field is therefore

Ikr8 e I CA~
-r- r + (129)47 r 41TC-E

showing that a knowledge of C and -y alone is sufficient to specify the

first two terms. As demonstrated by Van Bladel ( 1968), a similar result

obtains even for a body which is not rotationally symmetric.

3.3 HARD BODIES

The final case to be considered is that in which B Is a hard rotationally

symmetric body. The boundary condition on U mr), m 0, 1, 2,.

is then

a U (r) 0 on B (130)
an m

and when this is inserted into eq. (112), the low frequency expansion of the

far zone scattered field becomes

ikr rr 1"A"
41r (-I) ik4(fn t )U^(r')dS'+k ff[( r )Urr0

BB

1 At A 3 trtlA 2
(n .r) dS rik L2(rr) 0 (.E)

B
A-Ulr) (A,.)dS4

-(rA.r) tr') + U2 (r') n(n'.)dS' + O(k4).

(131)
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As we shall see later, the f'rst term O(k) is identically zero, and we

therefore need U0(r), U1(r) and U2(r) to compute two non-zero terms

in the expansion.

From eq. (110) and the boundary condition (130), an. expression for

U (r) at an arbitrary point r in V is
mM

U - U- (E) + ( ) Rm'Iu(r') -n dSn ,
In In 41r I. zn

(132)

and in particular, when m= 0,

1  1 rf ... I..fdS, (133)Uo_) Uo (_r) + Uo-' 23)
0- 0- 0 an' R

B

Clearly Us (r) - U - U0 (r) is an exterior potential function
0 - 0- 0-

and 8a UoS()a 0 on B since U(r) 0 . In addition,
an J~) 0 on 8 n 0-

U (K) vanishes more rapidly than r as r-+ o since there is no term
0

O(k0) present in the expansion ( 131), and hence

US (134)
0 --

implying

U (r) U°(r) 1 (l•5)

Frow eq. (132) with mz=, we have

"U ar- (r) + dSI
(r))

B
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which can be converted Into an integral equation for U (r) by allowing

r to approach B. Because of the non-integrable singularity of the kernel

for r on B, it is necessary to apply a limiting process, and if a bar

across an integral sign is again used to denote the Cauchy principal value,

we obtain

U (r) - 2 U1 (r) + - Ul(r')- - dS' (13)
1-2 - offd 1 7 T ~R

B

for r on B. where U I(r) Isgivenbyeq. (115). In terms of the

cylindrical polar coordinates (p, ,").

U 1(l) -(( t^) cos 0 + S~. 9)sin 0} + zi) z

and since the surface of the body is independent of 0, It follows that U (_r)

can be split up into three parts each of which has the 0 dependence of that

partof (r) giving rise to it. In particular, on the irface,

Ul(r) f .)coe + (x.)sin V4(s) + (k. z)Vi(s)

(138)

where V ( ) and V (a ) are the potentials introduced in Sections 2. 4 and
4 5

2.5 respectively and satisfying the integral equations ( 63 ) and ( 67).

For the remaining funct~on U (r) an expression at an arbitrary point

r in V isgivenbyeq. (132) with n=2 and is

I I
U ff (r,) -- r (RI dS' (139)u;(), 2 41 ff 2 TnT
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where (see eqs. 101 and 109)

U2  _ r (140)
2 2

An integral equation for U 2(r) can be obtained by allowing r to approach

B, but it proves unnecessary to determine U2 (r) explicitly if the only pur-

pose is to calculate the term O(k3 ) in eq. ( 131 ).

To see this we first note that since U (r) E 0 , the eqs. (111) imply0-

V 2 U2aa
2s

showing that U, is a potential function. Moreover, from eq. ( 139),

U8 = U - U is an exterior potential, being of double-layer type, and2 2 2
since

u2  . •r)(kn) (141)

the boandary condition on Ua (r) is
2

_ 2 A AnA
SU (r) -(k.r)(k.n) (142)8 n 2

for r on B. U2 clearly depends on the direction of incidence as well as

that of the normal to the eurface, and in principle nine separate but elementary

potential problems must be solved to find U2 . In torma of these potentials,

3 3

2 (r) k k k G (r) (143)

jul J=1

where, for conven•ence, we have put
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iI

and tho potential functions Gij (_r) are such that

3 AA AGn G (lr)- = -(n:x.)(rx) , j-l, 2, 3 (1441

an Gii- i -i

for r on B. In like manner we can write

3

U 8(r) kiFl(r) (145)

where the functions FI(rW are such that

a_ A^

an (r) -n.xi (146)

on B, and comparison of (145) with (115) and (138) shown that on the

surface

F (V 4 ()x-P) 0o80

F 2 (r) - V4 (s)- P) sin, 0 (147)

F 3lr ) iV(s).-z

Following Van Bladel (1968) we now apply reciprocity to the extezior

potentials F, (K) and G (Lr). , I, j 1$ 2, 3, in the region 1) to get

• i(r.) a- Fl(rE)dS' Yri(')n-- GiJ(.' )dS'

B B

44
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which reducee to

,~f ll)ln. x).-dS' = tr)(. )(r x .x)dS'^

-- (A,-Af- J (148)

B B

when the boundary conditions (144) and ( 146) are employed. Hence

ff 41 1 ff -Aj
B i j B

ff (.) (A. Ar) '._ dS

-- B

implying

UA_ A( . _,(

B i B

and

B I B

+) A, dSS2 f (k r (nr, .

B
(149)
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This integral is the only form in which U (r) enters the far field expansion

throughterms O(k 3), and sinos the F (r.') are known by virtue of the

eqs. ( 147 ), the integral ,%n be computed without the explicit determination

of U 2(r) itself.

We are now in a position to evaluate the individual terms shown in eq. (131).

Since U0 (r) x 1, we have

ff(W .r) U 0 (r') dS' = 0 , (150)

B

verifying that the leading term in the far field expansion is - ( j, and

A 1•.r) Uol' ' A ) dS. A A. ff_ S

B B

A I(r Jff r'(. rl)d'rt

V 0

" V 0  (151)

where V0 is the volume of the body. Also, from eq. ( 138),

ffui )rh. r)dS' a ( erb Cos tx+cos& sin fy-sin • z

B

X L, k. x)coa' + (k. y) sin 0k )+(5•.^ 'd~d

"3a r X(s') y k. yzivs st)Pw:dsd
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0
-(r (k. Az) 2,x P'VWs) sin a, d s

where c' is the angle defined in eq. (59 ). Henoa, from eqs. ( 64) and ( 68),

A A A (A ^AAU (rJ)(n .r)dS, . rM zkk.z)(M

B (152)

where Mi and M3 3 are the elements cf the magnetic polarisabflity tensor

discussed in Sections 2.4 and 2.5 respectively. As we have previously noted,

for a body of revolution M3 3 is related to Pl1 (see eq. 13 ).

When the results of eqs. ( 150) through ( 152) are substituted into eq.

(131 ), the low freq.uency expanilon of the far zone scattered field is found to beIk 2 ^ .A) 3))
(~r)"O Z, k2 r MIzlk. Az)l(M - M3 -V + O(k3

(153)

where the actual term involving k3 is

ik f r.•r) U0(r -(_r') + U 2nr)dS'.

B (154)

Unfortunately, the evaluatain of this is rather a messy task.

Since UO(r) I I (seeeq. 135),

ff i (P.'.•) 2 Uo(r')(•,.•) dS' 1 ff " ^ )2d~
ff• 2 r . )U0t n )d r . ffnt(r.r') dS'

B B
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A Jf (r. ryt) -.. 7•. v 0-)

Ar. fffr. d" (155)

V0

To simpllfy the treatment of the next two integrals In (154), write

F( F,(Z) + r. (156)

so that (see eq. 145)

U 1r k IF (r) (1~57)

Using eq. (149) we then heve

A A
+fr . r t ( K . ._) + • , U) ( • 2 (n' 0 d )S^ _'r s

SB 

( 158 )

But

f (k. r ( '. rr)ds9 (k) rfff ' d'

B V0

48



013630-9-T

and

ff (r r') ,•(k._r') dS' Off rr +dT^

B V0

as may be shown by analyses similar to that peformed above. Hence

(.•r'(•.•-(A~')•'•) (k.r')dS'= -rfffr'd 7 '

A AA A

which cancels the contribution ( 155 ) of the first terni in the integrand of ( 154}.

The complete integra, (. 154 ) is therefore

Fromeqs. (147) and (156) we have

S(k(r')- V (slcos" : (r') - Vls) t Fk It) k - V_'s)

(161)

When these are inserted Into (160) and the azimuthal lnteg.-a~tion perfo~rmed,

the contribution of the first term in the integrand io ,

S

. -r. x (r .(z i-pnA)V4(s 16

494
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iA A
A A) -Ak. ) 2 j p ( coo a do

-2T (r. z)(k. z) pzV 5 (a) sinads.K0
The coritribution of the second term in the integrand of (160) differs only in

A A
having r and k Interchanged, and when the two are subtzacted, the final

expression for the term in k 3 in the far field expression ( 153 ) is

3 AA A

+- { Z. z)(r z. f) j4V ( s-coos a 4d s

S3

A'A .A~-2 (k. z)(r, z) PzV 5 (s)sinads] (162)

Although tais is only the second non-zero term in the low frequency expansion,

it is much more comppUcated than the second term in the expansion for a soft

body. The surfaoe field quantities involved are the same as those associated

wVith M and M 33 but there is now no simple relationship analogous to (13)

which enables us to dispws with v5 (a). If the direction )f Incidence or
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I
A A A A

observation is parallel to the axis of symmetry, i.e. k + z or r + z

the integral containing V4 (s) disappaars, but there is no compp'rable situation

wherts the integrals containing V (s) are absent except for Cie special case
Aof forward scatter, r x when the entire expression (162) vanishes.
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4. THE COMPUTATIONAL TASK

When this study was first undertaken the main objective was to develop
an effective program for computing the quantities Pll P33 and Ml1

specifying the low frequency scattering behavior of perfectly conducting rotation-

ally s•mmetric bodies. The realisation that the calculation of P33 produces as

a by product the electrostatic capacity led us to add this to the list of quantities

considered, but it was only later that the question of acoustic scattering came

up. Since the first tw.- Lerms in the low frequency expansion for a soft body

ar3 expressible in terms of C / c and -y, and y Is implicit in the P33
computation, it was only natural to add this to our lRst, and for a harm body

the first term involves no additional work. But the second tern., ( 162), is

another matter. Ii, particular, it requires the explicit calculation of the

surface field V5 ( s ) that had hitherto been avoided by virtue of the relation

( 13), and even if this were done, the nature of the k3 term is lhnost such

as to precludc any physical understanding of the data. Fox these reasons it was

decided not to implement the computation of V5 ( s) and, hence, to ignore the

second term ( 162 ) in the hard body expansion. The quantities which we are now

left with are all ones which are needed for the electromagnetic problem.

4.1 INTEGRAL EQUATIONS

It is convenient to begin by listing the inte.vral equations which have to

be solved and the quantities to be computed fr'om their solutions.

Assuming that the profile p - p ( z ) of the finite, closed, rotationally

symmetric body has been specified in some manner and its volume V0 computed

as a preliminary step, then:
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(i) solve

f P'KiTl(S')ds' z 21rp (163)

where the kernel K, is defined in eq. (29); commute

p 1  p 2 T(s)ds (164)

(ii) solve

8

f P'K 0 T 2 (s')ds' • 2wz (165)

Jo PIK 0 r 3 (s')ds' - 21 r (166)

where the kernel Ko is defined in eq. (34); retain the option to print

out T3 (a); compute

c 2x pT 3 (s)ds , (167)

S fo 3ir8

y 27r zpT3(s)ds (168)
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S

V0  V0 J0 2  V(0

(ilf) if and only if B consists of two separate closed parts B 1 and B 2'

solve

s f21r r on BI
0= 

; (170)

70 ron B

compute

S2

2w (z+ -Y) pT3( (s)ds (171)
6 P33 V0

0p T(s)()ds-- 2 jr p T3(s) ds(1) }2(11

where the symbol ( 1) below the integral sign means that the integration

is carried out over the profile of B 1 alone

(iv) solve

8

fo V4 (s t ) (PCos C' 1 2 + [(zI-z)sinat-p'cosaI 2l)P dSI

r V 4  (a) 2p} (172)
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where Ql 1 2 and a' are definedineqs. (61), (62) and (59)

respectively and the bar across the integral sign denotes the Cauchy

prencipal value; compute

11 - 70 PV 4 (s) cosads (173)

We therefore have four (five) integral equations to be solved, three

(four ) being of the first kind and one of the second. and five ( six ) derived

quantities to be computed from their solutions: the numbers in parentheses

refer to the unusual situation where B is disjoint. Before attempting this

task, there are certain features of the equations to be examined.

4.2 THE KERNELS AND THEIR SINGULARITIES

The kernels K0 and K I of the integral equations ( 163), (165), ( 166 ),

(170) can be expressed in terms of complete elliptic Integrals of the first and

second kinds.

From the definition of R given in eq. (28), we have

R (+p'2 + (z )2 11/2 2 1/2

S= + (1-m sin 8) (174)

where

m 3  (175)

(p+p,)2 + (z -z,) 2

and

•: 'e -0 .- ¢ (176 ,.
2
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Hence

1 112 2 -1/2R (I -P ( -M sin 2 0) (177)

and when this is substituted into the definition (34) for K 0 , we immediately

ebtain

(: -n 1/2 K(m) (178)

where r2

K(m) f (10-msin2O 1/2 dO (179)

is tha con,,Aete elliptic integral of the first kind (see, for example, Abramowitz

and Stegun, 1964, p. 590).

By a trlivaA manipulation, we also have

1- ,, (180)

R R 2pp'

implying

--os (mp)-1I/2 M ( 1 ,2 O)"i/2-(1-m sin-2

(181)

and hence, from. the definition (29) of KI,

K1  2 t'1/2 2 K(m) - E(m) (182)

where r/2

E(m) 2 0 -1osin20)1/2 so (183)
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is the complete elliptic integral of the second kind (loc. cit. ).

The above representations of K0 and K , are exact. Since p, z, p', z'

are all realwith p, p' > 0, it can be verified that 0 < m < 1. Overtiis

range E (m) is a finite slowly-varying function, having the values 7T /2 for

m x 0 and unity for m a 1. A finite polynomial approximation sufficient Lor-8
computing E(im) with an error of less than 2 x 10 is given in Section i7. 3.336

of the above reference. Through the first three terms the precise expansion is

(Jahnkr nd Emde, 1945):

E(m) 12- + 1- [ + Q(i 2 1 (184)
4 1 21 1 Om

with

m 1-r , (185)
S,2 2

i.e. m (P-Pl +(z-z') (182)(P + p )+(z -z'

and

2 in (I?

We observe that mi1 0 if and only if p ' p, z - z, that is, when the integration

and observation points coincide. Fc- an integration point in the immediate

vicinity of the observation point,

ml =( s )2 (188)

where s is to a first order the arc length between the points.

The elliptic integral K( mn) also 1-as the value 4/2 for m - 0 but becomes

logarithmically inftrdte as m -+ 1. A finite polynomial approximation suffil:ent
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-8
to compute K(m) with an error of less than 2 x 10 is given in Section

17. 3. 34 of Abramowitz and Stegun ( 1964), and a precise expansion through

the first three terms is (Jas-nke and Emde, 1945):

K(n,) -"+ mr - m + O(m ,m 2 ) 2 (189)

Because of the infinity of K(m) as m-+ 1 (m 1-+ 0), K0 and KI

are also infinite in this limit, but their behavior in the vicinity of the singularity

is easy to determine. Using (184) and ( 189 ) we have1 2
0 i F +o(m 1 . n 1

and

11 pp, 1/2

showing that the singularity at p' p, z' z is an integrable one in each

case. The contributions of the singular (or self ) cells to the integrals in

eqs. (163), (165), (166), and (170) are therefore finite and can be

analytically approximated as follows.

Consider for example the integral equation (165). If the self cell in

the sampling procedure is centered on s = s (where p ) and is of arcSn = n

length As, then

1
s + i As

n 2

P 0 s')dst  f p K T s')ds'f 00
self s-As
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s+

',- Tff( 2 Kds
n:- P 1Jan n K

S
n 2

1

... T2 ) / sn )s1 As

2

and hence

:,~ In ()is--,I &

self

It is desirable to retain the first correctionl, unity, to the logarithmic term to

ensure the necessary accuracy when the sampling is relatively coarse and!/ or

is smnall. For the integral equations (1866) and (170) the results differ

from the above only in having T3 ( s n) and T ( s ) respectively in place

3 11

ofeTlf );- (163)

2

an hencA

I K'i' T (st)ds' 1:- p T . Is 1 P + K as

( 2 d

59 2-- AS
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giving 
Oa r 6P

f 1 T ds

giig~p'K 1 T 1 (s')ds' " Tlin) n A 1)

self
self (193)

For the integral equation (172) the computation of the kernel is a more

complicated task due partly to the presence of the functions n 1 and 02"
However, these also can be- expressed in terms of complete elliptic integ:als,

and the resulting method of computation is much less time consuming than a

direct numerical evaluation of the integral expressions for S1 1 and 0 2"

The definition of 1 1 is given in eq. (61), and using eqs. (177 ) and

(181), the integrand can be written as

cosok 1m m (1- -1)(-m in2) -3/2_2 -Msin 1/2

R3 4 m ( p J 2-(-isn )

from which we have

Q1 P m \3/2 (1 -) o m1 -m sIn2 -, d0-K(m)}.

(194)

To evaluate tho remaining integral, differentiate the expression (179) for K( m )

with respect to m to get

KI~ ) z/2 Sn2 0d1 fK'(in) U •" .1• d3/2 dO

0 (1- Isin"
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1. ( 3/2 d d

2m 0 (-msin2 0) ( -in- sin20 )1/2•

x/2

1 f I m n2- 3/2 2 K(m )= (1-msin 0) dO - Km

0

Hence

r,/2

f (2-msln20)-3/2 d,3 K(m) +2mK-(m) (195)

and when thie is substituted into eq. (194), the result is

S 3/2-( ) K'(m) -- L K(m) (19c)

The proced ire for l2 is similar. From eqs. (177) 9nd (181),2

2 /2 r 2COL L m 0- .- ) (1-m sin2 0)
R3 2 m2

-1/2 t2
-(32-m)(-msin2) A(1 -msin20)

32 p/2 -3/2
S2 In (I - (lmsin 2 ) d 0

•m 2\

"(2 - m) K(m) + E (m)
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and when the expression (195) for the integral is substituted into this, we have

=2 1 32- 2m (I - " ) 2K' (m) - I - M2KW •+ E(m).

2 2  pp * 2 K'r4
i )(197)

The finite polynomial approximations to E (im) and K (im) wece mentioned

earlier, and in particular, for the latter,
44

K(ni)-(a 0 +amI + .... +a 4 m 1 4)+(b 0+b Im + +bm ) •n -4

1 n

+ O(m5 ni n m) (I98n~1 1 in1

where values for the coefficients aI and b, iu0,... 4 are given in Section

17.3.34 of Abramowitz and Stegun (1964). Since d/dn - -d/.'ml, it

follows that

K '(m) 0 + (b -a )+(b2 - 2a2) mi - (b - 3a3)m m +(b - 4a4) 1
m1 2 2 1 3 3 1 4 4

2 3 1 4n 1_.

-(b +2b nl3b mn +4b m ) In-I- +O((m , m m'i
1 2 1 3 1 4 1 mn I1 1 mn

which can be used to compute K' ( mi). We note the pole-1lhIq behavior of

K'(m) when in 1 1 - m a 0, and this is reflected in the non-integrable

singularity of the kernel of eq. (172) at p' xp, z' I z.

4.3 rHE BODIY AND ITS VOLUME

One of the many factors motivating the present rtudy was the need to
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compute the low frequency scattering behavior of missile-like targets. These

are generally rotationally symmetric bodies (or can be approximated as such

to an accuracy which is adequa.e at low frequencies), and are often made up

of several distinct parts, e. g. a cope mated to a cylinder which is terdinated

in a spherical cap. Although the c.mplete profile of such J body is certainly

not an analytic curve, each individual segment has a relatively simple equation

whose form can be used to advantage in Zhe numerical process.

It is therefore assumed that the profile is a finite piecewise smooth

curve composed of straight line and circular arc sýgmente. For definiteness,

the number of segments is limited to 15 or less. At &.e end polnts of the

roflle where it intersects the z axis of rotation of the body, p = 0 (of coarse),

and the na-ure of the program is such that segments which are perpendicular

to the z axis can be handled, as can a :disjoint' body having two separate

parts provided each portion of dhe complete profile terminates on the axis.

Every segment contributes to the total volume V which can be found

by adding the individual contributions 6 V0. In certain case , a volume

contribution ;an be negative and subtract from the volamre attributable to the

other segments. Where this occurs, it must. be noted as part of the input

specification for the segment in question.

hi the following we list the input specifications of circualar arc (TyVes I

and 2) and linear (Type 3) segments, and give exnrzcosions for the cor-

responding volume contrutions (assumed positive). The segments must

be described se':tientially starting at the intersection of the left hand segmcn.t.

• with the axis, and the ordered sequence of segments defines the orofile of

me body. .a some cases it may be desirable t,. regard a single linear or

curved portion of the proflie as two or more segments to permit a non-uniforin

G 3
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spacing of the sampling points o,.-r the whole.

Tvye I Segment (C :rcular Arc, Concave Down)

Specification:

z1 P(z ), p p(z.)1lOz) 1 P2 2Plz2) (o/

q(degrees), 0 < 0_< 180 I \

volume senbe

'~(z 0 OPPO

If 0 is the angle subtended by the arc at the center of curvature, then

the radius a is

02--l 2-

2sin 2 ((

Since we permit the specification of re-entrint circular arc segments we do

not require z2 > z I. In order to obtain corrmct results for both standard

( z 2 > z ) and re-entrant segments define the quantity

z 2- z1I
d _ 2 1 (201)
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Then, the coordinates (z 0 , p 0 ) of the center curvature are

ýzo + z (l-d P2 cot-2
0 2,}

P0  + 2", i - d 2-z,) cot--2 2)

The volime of rotation is given by

z2

2
6V p (z)dzi

zi

and since the equation of the circular grc segment is

•-(P po2 ( 2 2
( -p) +(z-z 0 =a

the incremental volume 6 V0 is

(2 ' "/)

2 "

- wuere-u)-a (p ( 4-)

where U z- z2

U Z

-6 5
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Tvye 2 Segment (Circular Arc, Conoave UP)

Specification:

(zO, pO0 ) •,,

same as for Type 1 \

(zI, p1 )...(I P
Eq. (200) gives the radius a of the. type 2 segment, but the coordinates

(zoo PO ) of the center of curvature are now

z (z,+ z.+d(P - pOcot-21
0 2 1 2'

1 ) (204)PO " P I { + P2 +d(z 2- zl1)cot 2

The incremental volume of the type 2 segment is

6V 7 z- 2+a2 I (u 2 +UlU2 + U)

( 205 )
-PQ n2(P2-Po) -Ul(Pl-Po )+da 2 0)

Note that only simple sign changes distinguish ( 202 ) from ( 204 ) and

i ( 203 ) from ( 205 ). Relationships that hold for both type I and type 2 segments

rosy be dsrivld by using a constant g defined as follows:
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-I type 1 segment
= ( ~206';)

1 type 2 segment

The center of curvature ( z0 , p0 ) and the incremental volume 6 V for circular

arc segments of types 1 and 2 are then

1 Z1 +Z 2 +z d(pI p 2 )cot'

( - (207)

P _P1 +p 2++d(z 2-Z 1 )COt•j

2_r 21 2. 2~ r O
6V 0 in = z (z 2-zq) a -'(u +u u2 +u -)0Ou 2 (P 2 Po)

ui(p po) + da26j)j (208)

where, as before,

u 2 z z2- z 0

1 1 0

Type 3 Segment (Linear)

Specification:
(Z9 P.))

(z 1i. 1

p 1 p(zl), 02 zP(Z 2 ) 67

S~67

I,



013630-9-T

The equstio• of the segment is clearly

i 0 =01 + 2 -Pl

p1  -+(z- z1 ) (209)

and the volume contribution is

z6 V0 x xpr dz

z1

1. e.

= z (02 +(P+0 2 (210)0V 3 z2 - ý1 2 l 1

which is pos.tive or negative according as z2 > z , z2 < z, respectively.
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5. NUMERICAL Z ,. tITION OF THE INTEGRAL EQUATIONS

p M
The numerical procedures involved in finding P33 / V 11/V 0tv

and where nppropriate, "33/V 0 are quite similar to those required for

P 11P/V0 , and it is therefore sufficient to give full details only for Pill /V0

5.1 ll/V 0 COMPUTATION

The primary task is the solution of the integral equation ( 163) for the

function TI ( s) and this entails the determination of a sequence of values

T 1, i = 1, 2, N, approximating T (s) at the sampling points

s =s. on the profile p - p( z ). For this purpose the profile is dvi -led into

N cells C of arc length As and midpoints s. corresponding to the

coordinates (pi. zi)" Within each cell we also define the points si - and

si+ where

s = s. - a As

(211)

i+ z si - a0 As.

,,ith the restriction

0( <1

By assuming that T (s) has the constant value T over the i th cell,
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the integral on the left hand side of (163) can be evaluated as a linecr corn-

bination of the T whose coefficients depend on the position (p, z) of the
field point, leading to a linear syatem of N equations in N unknowns, viz.

1 f PIJ s +T 2 PtK~dsl+.... +T I(N J PIK 1ds' x 2arp
I C2 C N

(212)
i.1, 2,...., N.

Hence, the system to be solve-' is

At1 a b (213)

11where 1is a column vector with elements

t T , I= , 2....., N, (214)

A is a square matrix with elements

ai. = pIK Ids' , i-j=1, 2,...., N, (215)

C
j

and b it, a r•w vector with elements

b ,x 2xpj J. j=1, 2,...., N. (216)

Increasing the complexity of the quadrature technique used to z;oluate

the iDtegrals f will generally improve the accuracy but will ahnost
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certainly increase the computational cost. What is there'ore desired is the

least expensive procedure capable of givding the required accuracy. The two

simplest approaches are to integrate first and second order approximations

to give (i j):

a £ pjK 1 (1, j) As. (217)

a " 1(CO) -Kl(ii]-).? Pw+K(0J+ +W(o) j ) KAs"
~ j-l J+ 0 '

(218)

respectively, where the subscripts j- and j+ correspond to the poiuts

s. and s. of eqs. (211), and K (i, is the kernel defined ,i• eq. (2-)

and evaluated atthe points (p.. zi), (p,, z.). By requiring a < L-, we
1 1 3 03

ensure that the sampling points s. and s do not coincide with the end3- j
poin - of the cell C., and thereby avoid any difficulty in the computations

of Q and P. (see eqs. 196 a-'197). When1 2

(219)0 2 VII

eq. (218) reduces to the three-point Gaussian formula for which

w 4 1 (220)w0 "9 Wl 18(2)

With this choice of w0 and w 1 the advantages of eq. (218) vis - a -vris

eq. (217) were now determined by computing Ii/V for a sphere ,uing

various values of N. Fig. 1 shows percent accuracy and C. P. U. tzne versus

N for each integration scheme. It is apparent that foi a given expenditure of

0. P. U. time the Gaussian three-point technique is much more accurate than
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clatioc for a spbnr: T duoie trapmsidal rule computa-

tiom an G doste three-e" GAiaah.
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the trapezoi-dal method, though the accuracies of both are severely degraded

if N is too small (N < 5). Since the Gaussian scheme with N - 10 produces

an accuracy of better than 99.8 percent for a sphere, there is nc point in

going to a more comnplicated procedure, and the computer program was

therefore written using three-point Gaussian quadrature 'o determine the

matrix elements a
ij

In summary, the tategral equation- (163) is solved by conversion to

the matrix system (213) in which

S-K(i..-) +p K (i, j+ + P PK (ij)] As.

S pI... I j+ 1 9 ii 1 A

i,j 1, 2,...., N; ij (221)

ai [i n (] s , 11,2 , N.

Ha,.ing determined the sampled values T ) T ( s i I / 0 is

computed from eq. (164) by integration over each segment of the profile

using a second order integration procedure (subroutine INTEG, described

in the Appendix).

p5.2 33/V 0 COMPUTATION

Th point sampling method of solution of the integral equations (165)

an•i ( 16o, requires us to find the sequences T2 T2 (s i , and T3 T ( Fi
1, 2. , N, from these equationa. To detemine the (i),

determin th 9  ,choose

00P w- and w, in acoordance with ( 219) and (K20) and thence solve the

7v3
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matrix system A t.2 = b where

t 2 1  T 2

iul, 2 . ,N (222)

bi 2xrz

and

a = F3 ( _K0(i,j-) + p+K 0 (1,j+) + K pA] s.J

i, J 1, 2p .... .N; i 4 j , (223)

a, Fin 16p i + , 1,2,....
(AI)

The T3 are similarly determined by solving the matrix system At 3 b

where the elements a are again given by (223), butIi

31 3t~3

1 1, 2, N (224)

b 27r

The quantCies /E, y and 33/V 0 defined lneqs. (167), (168) and (169)

respectively are computed using the same second order integration procedure
pemployed in cal.mlating 11/V

0

If the body profile nonsists of two discrete parts, it is also necessary to

solve the integral eqaatIon (170). The corresponding matrix system is

74
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almost identical to that in (224), and from the sampled values T ( s1)
:3

6 P P
andT(S), 6 33V (see eq. 171) is computed and, hence, 33/V

3 3/ 0  03V(

M _ _

5.3 11/V0 COMPUTATION

The basic approach is similar to the above in spite of the more compticated

integral equation (172) that must now be solved. The matrix equation for the

sampled values V 4s ) V v44 M is Av 4  b where

(I)
V V 0

41 4
1, 2, ..... N (225)

b 2 7rp.

i 1

and

ai.."= - •-f(ij-) + pj. 9 f+ ,ij) As.s

i,j 1 i, 2...... N; i A j , (22(6)

2 1

a ' - 1 p:f(st) ds i 1,2, . N

in which

f(i, j) p ICosaj 2 (ij) + z.-zi)sin.P) 1cos0 j(ij) J

S(227)
i,j 1, 2,...... N; i (227)

7 .J
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We observe that the computation of each diagonal element of A requires

the numerical evaluation of a Cauchv principal value (denoted by the bar across

the integral sign in the above exp: ession for ai t ). As an approximation to

this principal value, we remove from the cell C a slice defined by the interval
(si- Asi, Si + as 1 where P, 0 <(3< 1, is the fractional

1 2 1 1 2 1

exclusion; x3 1 implies no exclusions, i. e. that the principal value is not

taken.

We now have

is 8 S sis
1 2 1 1 2 1

a " f p'f(s')ds' -f P f(s )IS

s--AsA+

(228)

and theso integrals are also computed using three-point Gaussian quadrature.

Defining

I

1i2 i - 4 (1+ As

-s -- 0 (1-83) As 1Sl• 12 2 0

a ai + ( C - PQ A
s13 12 2 20 A

(229)8 S + IS
si5 i s • + (i÷•)Asi

15 1 4

1
8 a s1 5 2 0 i
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v s obtain

F
ai I-- - (I-P) -1 •Pifi H'i )+,1 P3 fQi'l )+P4 f (i, i

4 f(i, i + f (i P )+ P f (i, i f

+P' 6 f(i'i6) + P "2 2 15

230,

Equations (225) through (230) completely describe a cyatem of N linen r-

equations in N ,=kncwns V4 1 i' i = 1, 2 ...... N. Their solution and sub-

sequent integration of the V4 1 according to eq. ( 173 ) yield M1 1 / V0

Experiments were performed to find an appropriate value for the

fractional exclusion P. As an example,. for a Ephere( i/V0 V 135)

with N x 20, the data in Table i were computed. If we exclude the fortuitous (?)

Table I

M 11 / V0  percent
erro•i'

1.0 1.480 -1.33

C 1 . Z516 . 07

0.01 1.503 0.18

0.00i 1.501 0.08

error zerc occurring for 0 somewheie In the range 01. < 3 < K1, these

data indicate that the choice ;I - j. 001 is suifficient to keep the errw, le •s

than 0. 1 percent.
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5.4 SAMPALiG jATE

Increasing the number N of points at which the surface is sampled

will Lenerally Increase the accuracy of computation, but since the number
2

of matrix elements i icreases as N and the cost of a linear system

solution increases rougt!v as N 3, th.s improvement is obtained at the

expense of an increase in coLmputation cost. Unfortunately, there is no

rule for specifying the minimum value of N sufficient for a Ejven accuracy,

and the information which follows is based only on our axnerience in using

the program.

The results in Fig. 1 and Tabl 1. show that for a sphere PII/V_ and

11 /V 0 are acu,o:ately determined with N as saw.ll as 20, and this Is also

true oi P33 / V0 . On the other hand, if the body has a disr.ratinulty In

dp/dz ]yIng off the axis, it appears necessary to Increr,,e N to 50 or

more to maintain the same accuracy (error <• 0.5 percent) in the Pli/V 0

and P 33/ V0 computations. This i Illustrated by the results ir 'fahle 2 for

Table 2

N N1 N2 P 1/V0

11 7 4 2,752

20 15 5 2.801

40 30 10 2.872

70 50 20 2.888

Note: 1i is the zuinber of sampling poAits on the

generator oi the core (Dlnear segment) and NI Is

the number on the (half 1 base (circul r arc segment).
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a rounded cone with halt angle 150. The small but not negligible (0. 58

percent) change in P11/V 0 ac N increases from 40 to 70 suggests that

such large values ":f N may be essential for bodies such as tlhs for which

T (s), T,(-) and T¾(s) have infinities a, one or more points on the

profile.

For the same rounded cone, the results for Mi / V are given in

Table 3. Since an increase in N from i7 to 35 produces only an iisignifi-

Tab:e 3

N I/V 0

147 10 7 1i 1f30

35 25 10 1 i,78

cant change in M11 /V 0 P the choice N = 20 is now adequate. Observe

that the surface field V 4(s) associated with IT 11 V does not become

infinite at a discontinuity in dp /d z, and this is undoubtedly the reason

why in many cases a small v-alue of N now produces the same accuracy as

does a much larger value in the P /.V. and P31 V computntions.
Q "10

Nc attempt has been made to exploit this finding in the general program.

-When treating bcdies composed of several segments, a strantegy which

has proved successful is to divide all segmenns into cells of approximateiv

equal length. This serves to fix the allorcation of any given nu ,ber N of

sampijng points among &te varic,us segments. Tests sc far per ,trmed have

not conclusively shown. the advantages of dividing . single segment into two

or more smaller segments so as to eff&-ct a non-,niform sampling. It is,

however, boiieved thst such a sub-division may, fnr a given N, improve

- - -~ ~ - Ai
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accuracy in the P11 /V0 and P33/ V0 computations for bodies like the

rounded cone having infinities ir, the surfacq field quantities.

80 -A
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6. CONCLUDING REMARKS

We have here considered the low frequency scattering of electiomagnetic

-rnd acoust*. waves by axially symmetric bodies. By concentrating on certain

quantities such as the normalised components of the induced electric and

magnetic dipole moments, we have shown how it is possible to arrive at

rather elegant expressions for the far zone scattered field in terms of

quantities which are functions only of the geomotry of the body Each swch

quantity is expressible as a weighted integral of an elementary potential

function which can be found by solving an integral equation.

A computer program has been written to solve %tese equations by the

moment method and to calculate the dipose moments, the electrostatic

capacity, and a further parameter y related to the capacity. Any body

can be treated whose profile is made up of straight line and circular arc

segments and it is evei, possible to have two distinct bodies with or without

'n electrical connection between them. Although no serious attempt has

been made to optlnise thb program, only a few seconds are required to

compute. all of the aoove quantities to an accuracy of bett-,r than one half

percent.

We have already used the program to compute the scattering from a

variety of shapes, and it may be helpful to list some 6i the results obtained

so far. Data for a rcrmded cone cons, A of the intersection of a cone

of half angle 8 with a sphere centered on the apex are given in Table 4.

1/w is the length-to-width ratio of the body. For 0 <: 90°, the values

of P l/V0 and P33/V. are quite similar to those previvusly com-

puted by Senior ( 1971 ) using a mode matching method, but since M 11 /V I

showed significant discrepancies, this quantity was determine, for a variety

of 0. Detailed checking has confirmed that tWe present data ;r-, accurate

81



01 3630-9-T

Table 4: Rounded Cones

0 (dog.) I/w V0  PiI/V 0  P33/V 0  MC,(E i-)

3 9.554 0.002870 1.884

7.5 3.837 0.01792 1.813

15 1.932 0.07137 2.865 8.147 1.678

30 1.000 C. 2806 3.664 3.494 1.484 5.406

45 0.7071 0.6134 1.366

60 0.5774 1.047 4.520 1.931 1.312 6.386

80 0.5321 1.731 1.334

90 0.5000 2.094 4.428 2.184 1.373

93 0. 5262 2.204 '. 368 2.242 1.386 7.428

99.2 0.5799 2.429 -4.261 2.372 1.416 7.303

108 0.6545 2.742 4,071 2.553 1.458 7.123

120 0.7500 3.1'2 3.789 2.769 1. 507 6. 889

140 0.8830 3.699 3.370 3. 006 1. 547 6. 58f;

151.7 0.9402 3.938 3.187 3.042 1,540 t;.441

180 1.0 4.189 3.0 3.0 i. 5 .283
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to three significant figures. When 0 a 90 the body is a hk iisphere

for which precise values of Pl1/V0 and P33 / V0 are available:

Pli/V0 3 4.430...., 33/V0 a 2. 139.... ( chifferandSzego,

1949, p. 152). The corresponding values in Table 4 are within 0. 2 per.-

cent of these. For 0 > 900 che cone is a re-entrant one, i.e. a sphere

with a conical region removed, and when 0 a 1800 the bldy is a sphere

for which exact data are also known.

Results for ogives and symmetrical lenses whose arcs subtend an

angle 0 at their centers of curvature are shown in Table 5. The trans-

itional shape is a sphere for which 0 x 1800.

To illustrate the computations when two bodies are present, Table

6 gives data for two identical spheres separated by a distance c d where

d is the sphere diameter. When the two cpheres are touchi-Bg (E - 0)

it is known that P33 / P1 1 a 8/3 (Schiffer and Szeg6, 1949, p. 154);

the ratio deduced from Table 6 is 2. 678, which is within 0. 4 p,'rcent of

the exact value. As c Increases, P 11 /V, 11/V 0 and P33 / V

rapidly approach the values appropriate to a single sphere in isolation.
P33/V0 , on the other hand, is proportional to the axial cc nponent of
the induced electric dipole moment for two spheres which a,.'e electrically

connecteu by an infinitesimal wire, and with increasing E this increases

indefinitely, as expected (Kleinman and Senior, 1972). The same is true

of C/( (fV 1,. The parameter -y has also been included in Table 6, andV0)
since ite exact value can be shown to be -(1 + c /2), the accuracy of

computation can be judged.
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Table 5: Ogives and Lenses

P 0 P 3V /ei
Shape O(dg.) 1/w V0  11/V 33/V I/Vo

22. 10.C? 0.004146 2.089 49.88 1.943 6.128

36 6.314 0.01053 2.100 24.15 1.910 5.696

ogive 56 4.011 0.02650 2.189 12.57 1.843 5.451

88 2.475 0.07148 2.363 6.778 1.739 5.424

132 1.540 0.1966 2.647 4.136 1.611 5. 696

150 1,303 0.2847 2.775 3. 595 1.564 5.880

sphere 180 1 0.5236 3 3 1.5 3.283

64.4 0.6297 1.212 3.779 2.161 1.368 6.5370

43.6 0.4000 2.586 5.182 1.674 1.252 7.375

lens 28 0.2493 6.448 7.649 1.390 8.758

I17.2 0.1512 17.30 11.88 1.225 1.098 10.759

11.4 0.09981 39.55 17.49 1.144 1.061 12.982
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Table 6: Two Spheres

p p m
11/V0 33/V 0  33/V 0  iM/v0 C

0 2.702 7.237 7.237 1.605 6.153 -1. 0004

0.005 2.706 7.280 5.021 1.586 6.151 -1.0029

0.01 2.709 7.319 4.800 6.150 -1. 00-4

0.02 2.715 7.402 4.557 1.607 6.148 -1.0100

0.05 2.732 7.655 4.210 1.592 6.141 -1.0250

0.1 2.759 8.026 3.92? 1.579 6.130 -1.0503

0.5 2.891 12.02 .. 299 1.528 6.015 -1.2502

.1.0 2.950 18.19 3.142 1.511 5.822 -1. 5001

5.0 2.994 120.6 3.045 1.500 Ax. 334 -3.5001

10.0 3.002 383.1 3.046 1.501 3.470 -6.0000

85



013630-9-T

REFERENCES

Abramowitz, M. and I. A. Stegur. (Eds. ) ( IC4), Handbook ol Mathe-
matical Functions, NBS Appl. Math. Series No. bb.

Forsythe, G. and C. B. Mo!er (1967), Computer Solution of Linear
Algebraic Systems, Prentice Hall, Englewood Cliffs.

Jahnk2, E. and F. Finde (1945), Tables of Functions, Dover, New York.

Karp, S. N. ( 1956 ), Relation of Electric and Magnetic Dipole Moments
(abstrazt only), Quart. Status Report No. 1, Contract AF 19 (604) 17i'7,
Institute of Mathematical Sciences, New York University.

Keller, J. B., R. E. lGeinman and T. B. A. Senior ( 1972 ), Dipole Moments
in Rayleigh Scattering, J. Ins t. Math. and Applics. (to be published).

Klelanian, R. E. (1965), The Rayleigh Regioa, Proc. IEEE 53, No. 8,
848-856.

Kleinn ýn, It. E. and T. B. A. Senior ( 1972 ), Rayleigh Scattering Cross
jectlons (to be published).

Mautz, J. R. and R. F. Harrington ( 1970), Computation of Rotationally
Symmetric Laplacian Potentials, Proc. IEE (London) 11L 850-852.

Payne, L. E. ( 1956), New Isoperimetric Inequalities for Eigenvalues
and Other Physical Quantities, Comm. Pure Appl. Math. 9, 531-542.

Schiffer, M. and G. Szego (1949), Virtual Mass and Polarization,
Trans. Amer. Math. Soc. 67, 130-205.

Senior, T. B. A. ( 1971 ), Low Frcquency Scattering by a Finite Cone,
Appl. Sci. Res. 23, 459--474.

Van Bladel, J. ( 1968), On Low Frequency Scattering by Hard and Soft
Bedies, J. Acoust. Soc. Amer. 44, 1069-1073.

86



013630-9-T

APPENDIX THE COMPUTER PROGRAM

The program computes P l/V 0 C/1E 1) 33/Vo

M 11/V 0 and, where appropriate, P33 / V0 * and consists of a main

* program and six subroutines.

* A. 1 DATA SET

A data set is made up of one control card and a number of segment

specification cards, one for each segment (or sub-segment) of the profile.

The segment specifications conform to the convention stated in Section 4.3.

Control Card

Columns Description

1 The number (1 or 2) of bodies.

3-4 Two digit integer (right justified): the

number of segments on the first body

(the body to the left). When there is

only oLe body, use these columns.

C-7 Same as columns 3- 4, but for body to

the right.

9A printing key:

1: print T 3 from P33/V 0 corn-

puta.ion.

0 or blank: do not print T 3 .
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1 I A computation key (0, blank or 1)

1 : suppresses comnutation of 11 /V

C/ y, P33/V0 .

13 A computation key (0,o blank or 1)

1: suppresses computation of MI / V0

21-30 A real number: the fractional exclusion P3.

If these columns are blank, 0 defacits to

0.001.

Segment Speeification Card

Column.4 Description

1-2 Two digit integer (right justified) : the

numoer of sampling points or cells on the

segment.

4 Segment type key:

1: circular arc, concave down

2: circular arc, concave up

3: linear.

Volume sense:

+ or blank: additive volume

- : subtractive volume.

11-20, 21-30 Two real numbers: respectively, the end

coordinates z and z2 of the scgment.
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31-40, 41-50 Two real numbers: resyactively, the end

coordinates p1 and p2 of the segment.

51-60 A real number: for circular arc., the

included angle in degrees.

There are the following restrictions:

( i ) the total numLi?. of segments must not exceed 15,

and (ii) the total number of cells over all segments must not exceedt 80.

The profile is specified i.U tl.e directio.i of increasing profile-length, teginning

at its left-hand intersection with the z-axis and ending at its right-hand intersec-

tion with the z-axi. Re-entrant segments are perm'tted, allowing z 1> z2
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A. 2 MINN PROGRAM

The main program reads and prints data and supervises all coi,,putations.

A rough flow chart showing the interaction of the subroutines is given below

"Read control card 'DO TD AT.A

For each L ... ment ------

I 1) read specifica- -DATA

tion z2&rd
2) comrite eample

Construct lineal SETUP 1
systems SETUP

DECOMP Solve linear

Lsystemsj

Print Integrate weighted

results sequences T T [
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UF!OAP)~ (0,~0 Ali',3(WMvfio) ,AmI I (t08), il

Crflmmfl'\J RHo180,9 ) q ;( 80 9 ), ARC ( PC),vC18 0,q9) , S ( 8()/qSUL 1) (401
DATA -ANTnlpgnl (A23.Q,.4544.4444-.71//

347 kFA0)(5,34,FN0=999)wiqnrJ,NSI,NS?, IPk1NT,KFYPI1,KPYM1I,f-N

WR I 1FfI A, 4)NAOR(,,N-t
&POMA T ( I I***RF iCI NN I G 'IF DAT A cFT i/$0 1 9 X ,',A(IDID ts, .X,:I

'5 1 ,5, * rfMENTS :1 / ' , 5x,,i8nnY h

!1-~~) LF. 0 flk4. "RIU) .,T. 2) G00I 10 )9f)

IF(hikiOO F(). 2) W14iT1-fý,fl)NS
HIRJMAT~ if ',r ,IKIl)DY 021? 3W= I9I 2)

I 1(Nr 1 .11- I. 0 ) .11P. NS-14 .( 4. 1s 1; ln q

F-OPMA TI '*,5 X.I5(N '1:.4)1
1F IK YP I I ,N- ANNI). KFYm1I *NF, (0) (4) TO

vO 0.

!00f 11 1=1,NSF(GS

1 -ll'AO("12) NUMFTl.f I ,AITY,4X,5F jZFP4NIPT

5F(NWVIPTS(I) .1--. n .014. !T'fP .l.F. (I .fIR. ITYI' C'. 'A) I.- If- Qo9

FOIMA~ 'St(;MFNT ,I,:'* ,x (- *7 = i''*,
f% ITYP"- KFYf,4X.'=l,II' *, 5 xX,o'JniIlmF S.FWSF= S./ 2.-P
A 37-0.1: 1RI)1NATF P-1ND POINTS = ( 1 ,1-12.*7,',",11

&i~ -pHfl-r.OORnNATi- FNI) PnINTS,=f 1.1' 12&7,1 'tI'.. '
IF-( ITYP WNI. 34) wRITt-(6,14) TNfwIA

14 1 ()kMAIf) I I5X, 9THFTA (I)F(;) 'Il.)

ii 3d~Tlit- 1A=P1.*THt-1 A/jP0'.

r- vN I MW NlIMP T I I
TIý-f .1 F. NS1 I r=r1~h~~fI
fl-WM Gl,. RA) (ol T11 490

If-f ITVP NF 3 ANDl. IrAGN 1-0,. 'MN) VIN:V1~..

11 RAT lV PUI141SIILTS: 1/1'',5X,*vfl' l.mF'.#,'',, 1=
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I Nnx( 1) =N
AN=ARC(N)

TN-Rnm( g, )

!F(L .FQ. 1) C-lTO

AI.=ARC((

TL=RHO( i.,#R)

10AMI I(N,L )=0.()

AMA I ( JN)z0CO

in4 IP(FPIIlII I 12, 1 1O.

AP33(L,N)=O0.0

112 INDX(2)=L
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S.||A=,| + 11,

1,0l 1 -f LI =1,?

I I = I-N)X( L L
"1I I= NI)X ( I)

T 1 2 =NI')X ( 1) 1lt2=R~rl( I2,Pb)q-

'•" C.\iL S~~~FTV P (K YJI1 ' 1O, I Y lo I ] ,.PA I 1, p ',,.;, ;l

r1(. APi I- ]I , Y2I=AP1 I(1 ,I7)+API II 1 ?2

f, 3(I T A3 (11,1?) +1W! 33*T I?,j0

7I Atm.)] II, 12)=AM I I (I I , 12 , AM II IT 12
f" 4 • CU'T I NII F

CALL SI- TIIP(k FYPI I KFYMP I ,vN,,•,-kAPI I ,API 3•Mii AtAl I I I I
T i- ( KFYP 11-1 ) 1OR , 209,209

,0 t II= W 0I AP I 1 I

I ,' L ( N) .)=AM W - 1:ýAP I ( ,I- N)+IJ4TI)
il=140ý'AP 131'

AP43( N,L )=At.* W 1%AP 33(Niti ) +ti4Tl
AP31(I ,N)=Afv*Wl*AP33(L,N)*1P*TN~)

209 10F(KFYMjtl-I 1)213,3
21oI AM 11 1 ,, L I= AL. I W I •A MI I •, N , L ) At M I I I l Wh 0 .

C.ALL SF TIIPU %,OI.,N,,API l IAPI 3,A MI 1 ,0)
A'• M I L , N):A N W I A M I (iL.,N)-A MI 11 IWO(j;-T, m

G.0 Tn 3

: ,=IALnr-1lA.*TN/AiNj
API I (1.,N ) = li•-I .0 )* N

AP34-I,,N) = Ml+1 .0) *AtJ

P lz F(KfKFYM1I-i)h 3,1
TF(F, *Fo. I.0) (,O TI) A

A A C .AtI '- ,T-IP( I i,0,N,N.], I,ST ( ] ,)
1;=:. 5,,l' ( I . 0•-F P ):;:AN
Am, I I ( , N) =P 1 -114 (WD* (RHI(l U ,2 ? -S I 1 2 ) RHI,( N, )•.I'('

"I +W I -f RHr' N, I)'*STT I P Hf'(N,'.3) ST3C 1)+kH, I(N,4I -I *. I4)+
" A~~~ PhIiOl•N,A):'.T3(i.) I)

47 Pt;ic)1 I , IIF
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20 tA(I=I wflp IRHI)(1IHI
!F(KFYP1I-1 )2?1,4,?4

21 1741.1 DFCOiMP(APIlqtw)
CAL" sflLVF(AP11,X,4,MA)
no 2? 1=l9M

?? X(1I)=RHn( i,p);ý;?;ýx(
CAI.L. INTFr,(X,N.;FiS,N1IMP1-,,tl I
P1 1=PI I'-P1/VO

25 S C.Ai.I. nDFcfmp(Aivlj,r)

r.A,', SrJlLVF(A~l 'l,YivtA)

76 l ?h I =,

Ml( I =p~Ht I *Ml (. 1 /HV:X

3? A I f 2 9 F 1 -1 3 9 4 -, 4
'29

rAl I LOFCOMP (AP133,M)
C ,ALI SOLVF(AP33.,X,RA,--)
1)n 114 11I,M
X (I )= (I ,8);Phfi( MI H):,X (1

13J4 k( I)=Twflpi
C.Al-l INTU(;(XNsF()s,,NIIMPT1ý,u3a)I
F.LILL 'SOIAF( AP33,1-,ps,Ir)
Oil 735 1=1,14

35 fA( I )7( I,8)*-X(

CA)= TW(IPI*C.AP
CALL T( ,MF.,Ip1..)

Gm- Twnp I (4AM/C APj
Pl3=1 TWO'P I 4133-CAI.t~l;CA~fr:=c;AM) %-/Vo

g4 If !'PFI -4 1) M 93

IF I -Nr 1 105, 30S, VI 6
Pd)TWlP I

'A0 A'A (I ) =0.0
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SAl I 1ýI1I VF{(AP31,1.1. trt4
hf! li "n7 I=],M

C Al L IWi T.i"G( x , rSF(;r, "'JMIMPT , ft.
-A!I I ]NITF(-,{X NciltNtIPIPI',,TN)

i-,(1 309 1=1 OM

JOM X( 1 )7= 1FA)X( )
CA I I. I GI ' ( X , N i N, NiI MPT S ,I I

)I- TAP=-( -i' fI /V O)I(I +(;AM -T .): ,:?/ 1 N-TWi'Pi oTl ; Ix /L P

II=P33+t)FLTAP

"v, k I TFI ((,40)C AP.GAIM,PI 1 ,P33

40 FNR1IMAT(' ') X,'CAPACITAPJCA. =',FI T.'AN' E,5,SX 1; A M ,IXMtIXF).c/
q I a 5X~tIIIP Vt, ,X9 1=1 FIO.5/1 0 vSX,'P'3IVt,7X, 1=1 FI o }

IF( NiR0O .FD. 2)'.JRITE( t,309 )OF. LATAP,IJ

f. F- 0 .go
45 1 f- Kr-YM I. I-I ) 4?,317,337

4t? .IR T ( 4,,3 ) M I
1'A• F- IR t A1 (I 1 5X, l I /IV ,7 X F 1= r N 5

3'V7 IHIPPI;"T ,bL-. A .ANI). KFYPI1 . E0. 0) WRITFA,,44)
•. (7 ( I , A) , RHO ,R) T4 ( I , ,I=1 --4)

44 FOUR1A AT( ,0 ,0 X , l7 1 r, 'RH(I' 1 .X ,'T3'/ Ct ,3 (FI1.2, X

(,$) TO -A7
1., q ,R I T;- ' -. q9 1

im1 F(IOPMAT! IOn-:..:; F PR-f I, 1 I)ATA )
909 CALL CY;TEI4

FM,,9
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A, 3 SUBROUTINE DATA (IN, MX, MY, ZEP, RHOEP, THETA, B, VOL)

This subroutine is called once for each segment of the profile. Frcm

the input specification for the segment, DATA computes the (z, p) coordi-

nates of the necessary sampling points on the profile, the quantities cos a

and sin a at these points and the incremental volume of the segment.

ArguiAents:

IN Type key for segment.

MX Total number of cells in segments tW the left.

MY MX + (number of cells in this segment).

ZEP z-coordlrate end points of segment: ZEP (l)z z

ZEP(2) u zS~2

RHOEP p -coordinate end points of segment:

RHOEP(1) a P1  . RHOEP(2) x P2

THETA Angle (in radians) subtended by a circular

arc at its center.

B Fractional exclusion, •.

VOL Incremental volume of segment.

Comments:

Stored in COMMON are the arrays RHO (80, 9), Z(80, 9), ARC (80),

C (80, 9) and S (80. 9) which contain the numbers computed by DATA.

For the Ith cell, the subscripts (I, J) correspond to the points sIj

of (229) when 1 < J < 6. For J a7, 8, 9, the subscripts (I, J)

refer to th6 points s_ , sI and si+ respectively of (211).
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SUiRROUTINE DATA(INMXgMYZEPRI-OEP,THETA,1i,VOL)
fl!MFNSION ZEP(2),RHOFP(?)
cO;MMON kH0U(8*9) ,Z(80,9) ,ARC(8O) ,C(RO,9),S(80,9)
D)ATA SýTFP/.397?98P./

FN~f-LnA IC MV-MX)

IF(4IN-? )l.23
CC=-l.0
GO TO 10o

10 S,1?=S!N(THFTA/?.n)
A=/FP(2)-7FP( 1
RA1'=0 .5%SORT I(iHnFP Ii) -iRMlF.P(2)) **2+A*A)/ ST?
Dr)=A/APS; (A)

T=CC.(fi~~cOns C THFTA/2 / ST?
?CNT=0.5-.:(ZbPf t1 )+ZEP( 2)+T*(RI-IFP( I )-RfH1)FP (2 1
RH0C('NT=0.5::(RH(JEP(1)+RH0)EP(2)+T*A)
Ii?=ZFP 2 )-ZCNT
tll=ZFP ( 1 )-ZCNT

I -rC*RHflCNT,;(II?4(RHOFP(2)-RHflCNT)-111*(RHOFP(l)-RH~tCNT) + PA ).R AI1)
I tDr0*THFTA))
KF TACA'1.*)(OTHFTA/FN
i1-41-1I=ATAN2(RtIf)FPf1)-RHOC.NTZFP(l)-?CNT)

RKA3=. STFP*~K UT A
Oh 90? T=MXPI.MY

IFO, *F0. 100) GO, T(O 19C5
On0 1902 J=1,2

nn 1903 L=1,3
PSI =AG+ L? S~i~STP*fRF TA

CII ,Mh=-CC*SIN(PSI)
s(1 ,m)=cf.~cns(P,;i
7(1 ,M)=7C.NT+RAP#CC*S( I M)

190? .IN T I M F
19 0)' DF, 903 .J=7,19

7(1 ,.)=7?CNT+ O4!C*-C1,( 1 ,(,J)
9WA RHMI I1J)=RtaO.NT-CC*tRt-r*C( Ili)
00? APC( I ) =0

P I- T1 IR h
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3 I)X=L:P (2 )-Z FP( I) 1/1-N
f)Y=(RHOFP(2 )-RHOtEH 11)/EN
if =S0R1(DX40X+OYDY)
S I =DY Ill
C I =Dx/t
D0 917 I=MXP1*MY

PHI=FLOAT( 1-MX)-.5
IF( 8 EFO. 1.0) cm TO 1800
00 1802 J=192

f~n 1803 L=103
M=L+3*iJ-l)
PSI =ANG+(L-? )*SIJHSTP

z (I,m)=ZEP(l1)+Psi*nx
RHO I ,M)=RH(OFP( 1)+PSI*DY
S(ItM)=SI

1803 C(I,M)=CI
1802 CON TI NlJ
1800 nn 913 J=709

ANG=PHI+( J-8 )*STEP
Z (I ,J)=ZFP( 1)+ANG*D)X
RHO(I ,J)=RHOFP(1)+ANG*DY
C( IJh=CI

913 S%41,Jh:-Si
917 ARC( I)=UJ

VOL=1 .O4719R: ( ZEP (2 1-ZEP (1)) *( RHOEP (1)**2+RHOEP( 1) *RHO-(J:?)+
A RHIJE-P(2)**2)

R E TU R N
FND
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A. 4 SUBRO..TINL INTEG (V, NSEG, NUMPTS, SUM)

IhrL'• iumerically integrates quadratic interpolating polynomials

approximating the data on each segment of the profl... When the profile

is composed of several segments, no interpolation is performed across seg-

ment boundaries. Hence, the integration is accurp*• even for disconnected

segments, e.g. the circular arcs of two spheres.

V Real vector of function values, ordered as

the cells.

NSEG Total number of segments in the profile.

NUMPTS Integer array containing in NUMPTS (1) the

number of cells on the Ith segment: I I,

NSEG.

SUM Tntegral of V across the profile.

Comments:

Stored in COMMON are the arc lengths ARC (I), I , 1...., N required

to compute the integral.

1 •99
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[ WRRO11TINE TNT*FG(VrCIMTIM

c n~ft-in PHfl49A,9),7(40,9 ),ARr($ic),c($go,q,sUR~0,Q)
DIMFNSIhI n;V(80:,NlIMPTs,(15)
SIJM=0. 0

nn 3000 Icl,NSFG
T= ARC ( .1A',-.
I =NtJIMPTI.('M

'\tjwSl%,T ( . ? w( (I~ )+JACC-1C(.+ )V 1.-

IF( L/2 NrF. (1 +1 )i2 ) GO) Til 3001
SUMf=SIJM+T*(0.b hnF66i:ýV(f-1 )-n.0'933313i3zV(t4-?) +O.41()6";,i- VI

34001 1 Ml N- I
m1 0= .IACC 4-I
iln 300? -i=,Ifl-,i Ml 1?

3000 lIAr.C=.JArC.4-L
PF TIIR-N,
FNI)
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A.5 SUBROUTINES DECOY.-P (A. N) AND SOLVE (A. X, B, N)

Used together, DECOMP and SOLVE solve the linear system AX zB.

DECOMP performs a L - U decomposition of the N x N matrix A and

SOLVE performs back -substitution. These routines are adapted from

Forsythe and Moler ( 1967, pp. 68 -69)

S'IH1RnIITINE PFrnmp (II[- N)

IMFNSION IJL(ROF40)
cOMMON /SflL/IPS(ROi

0 i) S =1 *N
5 TPS(I)=1

NMI=N-1
DO 16 K1I,NMI
RIjF=0.0
On 11 I=K9N
I P= I P"; (T )
!F(APS;((IL(IPK)) eLF. RIF) GO To 11
RIF=ARS((UL( IP,K))
I OXPI V= I

11 cnNTINU)F
]!HIO)XPIV .EQ, K) GO TO 15
.I= IPS(fK)
IPS(K)=IPS(IDXPIVI
IPS( IDXPIV)=.I

15 KP=IPS(K)
P 1vflT=(IL (KP,K I
KPl=K+l
oni 16 I=KPI,N
Ip=IPS( I
f-M=-tj1 ( IPK )/PIvnT
M; ( IP,K )=FM
mO 16 ,=KPI,N
III ( TPI P.1) =(JL I P,J 14.FM*IIL (K PJ I
RE TUIRN
FNP
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S~IIRROgT INEsnLVE (IJl ,XtR*N)

DIMENSION li(80,8O0)vBR(0),X (80)
(TfmmnN /SD)L/IPS(SO)
NPI=N+l

(P=IPS( 1)
X(i )=R! IP)
nn 2 I=2,N
!P=IPS( I)

SIJM=StUM+UL (I PJ)*LX J)

IP=IPS (N)
X(N)=XIN)/(JL!IP,M)
M0 4 IBACK=2,N
I =kP1-lRACK
I P= IPS( I)

SU)M= 0.0
n0 I J=IPl,N

3 SUIM=S(UM+IUL( I PJ)*X(J)
4 X( I)=(XC I)-SIJM)/)L ( IP. )

R F TURN
E-Nn
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A. 6 SUBROUTM!E ELLI (M 1, K, E. KPR, KEY)

'"his computes the elliptic lnt 3grals K mx and E mn and the

derivative Kt (in) from their power series approximations (srse Section

4.2).

Arguments:

V. Real, the quantity (I - m

K Real, K (M).

E Real, IE(mn).

KPR Real, lC'(m).

KEY Integr: 0 Compute K, E and KPR;

1 Compute K, E but omit KPR.

YIRRnI'TTNEF~ j(fM1,KEKPR9KEV)
PEAL Ml,K(,KPR
T=-*ALOG*,( MI )
K= 8?4.-*+ *( #%64E2.29~*+ = .409,-

5 +68,29-*+l(.454-+3385E2Tm*1411A-
5 +4.41797E-3*111))

1!F(KFY .F0. 1) RFTIIRN
KP=./M + .1249A5q-"I + MI*(-2?q')932F-3-.1'Al(hO54T

h MlI*-7.ARQ133f&F-? - 9.9R5066F-2x:T + Ml*(-5.3A2q98E-?

Si 1.7&~7149F-2 *1 1))
RF TIIRN
FND)
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A.7 SUBROUTINE SETUP (KEYPI1, KEYMi, I, J, L, APIl1,

AP133, AMII, IJ)

This is essential in computing the linear systams. Specifically

SETUP, aftr calling ELLI, computes the quantities API 11 (K I of

eq. 182), AP133 (K 0 ofeq. 178), Q1 (eq. 196) and Q (eq. 197).

The quantities 9 1 and "q2 are used to compute f(i, j) (AMIil) of

eq. (227).

Arguments:

KEYPI1 0 when computing API i and API33,

else 1.

KEYM 11 0 when computing AMI 11, else 1.

I Subscript of observer (unprimed) cell.

J Subscript of remote (pruned) cell.

L Index of the point within remote cell for

which the kernels are to be computed

(see DATA, Cnmmei~s).

API11, AP133 Described above
AMI11

IJ 0: use last value of M1 In kernel

computations;

1: crnpute new M1.
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COmmO.N RHO(so, ) ,i(PO,9),ARC48O),C(RO,9) ,S(80,9)

70)=Z(JgL)-Z(IR)

RP=RHnt J ,L)
IF(IJ .FQ, 0) GO TO 115

R RP =R 4R P
41=RRP+RRP
A2=R*cR.RP*RP+Zfl*Zlr
Ml=(A?-Al)/(A2+Al)
M= 1 .-Ml
C.ALL FLLI(MIeK,E,KPRKEYMII)
AO=M/RRP
Al=SOR T( AO)
A =M+M
AI=2.-M
IF(KEYPII-1 )I13,1149114

113 API11=Al*(A3*K(-E-E)/M
AP T 43= Al *K

A4= . r)sA i

I IS A)=C (.1L)
flml=-Al*( .25*K-A?*KPR)
nK?=Al*(F-A3*((A3+m)*'( - A2*A3*KPR))/(M*M)

AMlil=R*A0)*nm2+iZD*S(J,L )-*Ri'$AO) *0m1
114 RETUR~N

F ND
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