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ABSTRACT

A posteriori forward ertru: analysis is anplied to the Crout algorithm
with inner product accumulation in solving system of linear algebraic
equations of the type Ax = b. By attributing the generated round-off
errors properly to the matrices A and b, it is shown, under certain reason-
able assumptions, that the computed x satisfies a new perturbed system
such that (A + 6A)x = b + &b and the upper bounds for SA and éb in infinite
norm are shown to be proportional to n, the system order. This is an

improvement over the results where the immer products are not accumulated.
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1. Introduction.

In solving system of linear equations of the type Ax = b where A is
a non-singular n-ta order matrix and b is an n-vector, the Gaussian
elimination method of decomposing A into a product LU of a lower trian-
gular matrix L and an upper triangular matrix U probably is the most
generally used algorithm because its economy in the number of arithmetic
operations required and the numerical stability of the solution. For
normalized floating-point computations with t-bits allocated to the

mantissa of a floating-point number, we have
(1+6) fi(xty) = xty, |§] <2 t=u (1.1)

where * is any of the operators +, -, x, /., Under the condition of (1.1),
it is shown [1] that the computed x using the Gaussian algorithm satisfies

a new perturbed system such that
(A+68A)x=Db+ 6b (1.2)
and

|16a]]_ < @% - oy,
(1.3)

[l6pll_< (¥ +n -1+ m)pu

where ¢ and p are some constants obtainable after the computation. Equation
(1.1) implies that for the given two numbers x and y with t-bits mantissae,
f1(x*y) is the correctly rounded result of the floating operation *. It

is shown that the operations + and - are ill-conditioned in the scnse of




Rice [2] if [x t y| is very small. In othe: words, there is a loss of

significance if |x £ y| is considerably smaller than |x| + |y|. However,
the relative condition of x x y or x #+ y is a constant 2. Hence for ill-
conditioned systems, the loss of significance due to additive operations
in the early s.ages of computation might lead to unacceptable final solu-
tions. Thus one remedy for such systems is the use of higher-precision
arithmetics at the expense of more computing time and memory space.
Another alternative is to add or subtract in double-precision whereas
multipiication and division could still be done in single-precision.
Furthermore, the result of a single-precision multiplication can easily
be retained in double-precision and used later. This is extremely helpful
in the computation of inner products. This type of computation can thus
be called "accumulated inner product' arithmetic.

The Crout variation of the Gaussian elimination methods is essentially
a sequence of imner product computations. Hence the use of accumulated
inner product should improve the accuracy in the final solutions. In this
paper we will carry out the a posteriori forward error analysis [3] of the
Crout algorithm with accumulated inner product. The results show that the
computed salution satisfies a perturbed system similar to (1.2) with bounds

for the perturbations proportional to n under certain practical assumptions.

2. Accunulated inner product.

We will assume that the given digital computer will be able to perform

the following operations.




(1) Addition and subtraction, The machine accents numbers in

double-precision mantissa and produces a result having a double-precision

mantissa.
(ii) Division. The machine accepts a double-precision dividend
and a single precision divisor, givine a single-precision quotient.
(iii) Multiplication. The machine accepts single-precision factors
and gives a double-precision product.
Furthermore, if a single-precision number has a t-bit mantissa, then
a double-precision number will have 2 t-bits for the mantissa. Extending
(1.1) to (i), (ii) and (iii), we have the following lemma:
Leyma 2.1. If a, b are single-precision numbers and x, y are double-

precision numbers, then we have

2 A+8) flx+y)=x+y, |6 <27 =uf 2.1)
‘ | (1+68) fllx-y) =x-y, |8 <272t =u? (2.2)
. f1(ab) =ab ; (2.3)

(L+2) flx/a) =x/a , |8} <2t =u (2.4)

We see that the results of the operations +, -, and / are the correctly
rounded results and the operation multiplication is exact.
We can now consider the computation of the following genevai inner

product by accumilation:

n
Lay|ry (2.5)

p-fl[
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The execution of (2.5) can be carried out by the fcllowing recursive

seouence:
sy = fl(albl)’
Spe1 = fl(sk + ak+lbk*1)’ 1<k <n-1, (2.6)
» = fl(sn/y).

Applying Lemma 2.1 to (2.6), we have

°1 = 3y

= 2
(I Spep)Sper = Sy * 21D |6k+1| u, 1<k<n-l, (2.7)
(1+ 8)p =s./Y, la] < u

Cambining (2.7) for k = 1, 2, *++, n-1, we have

/y (2.8)

n
ptes= izl aibi

where

n-1

) 1

We note that if y = 1 the last step in (2.6) is actually a double-precision

to single-precision conversion, hence the last equation in (2.7 is still

valid. To bound the error in (2.8), let us denote by o the magnitude of




the absolute maximum of the camputed numbers in (2.6), namely,

o = max (|p[, [s]).
2<k<n

Then the upper bound for e in (2.8) is
le] < [1+ Bl’T(n - Dujou

For |y| = 1, then we have a simplified equation
le] < [1+ (n - Duou

Thus we have established the following lemma:

Lemma 2.2. The accumulated inner product cf (2.9) satisfies

1 ‘Z‘ b
pte=— a.b.
where
le] < [1+ T%T{n - Dulou

and o is defined in (2.10).

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

From (2.14) we see the round-off error in the accumulated inner pro-

duct is very small if n is not too large and |y| is not too small. This

is of course what we have expected in using double-precision additive

operations.

s




3. The Crout algorithm with accumulated inner product,

The usual Gaussian elimination method allows us to obtain the elements
of the matrices L and U by a sequence of eliminations of the variables.
On the other hand, the Crout algorithm determines the L and U directly
from the matrix equation LU = A, Specifically, if L is a unit-diagonal

lower triangular matrix, then we have

r- 7 [ ] . [ =
1 Y1 Y12 Y3 Un
ill 1 u u e o .+ y
22 Y23 n
bg) G5 1 Uz * 0t gy
Lﬁn! 2n2 JLnS e E _ U‘nn_
{—311 312 %13 9y
a1 8 %3 ° " " A
d3) dzp 233 ° 70 Az
- » . . . . (3.1)

If we write out (3.1) in full, we see that the first row of U is given
by the equation Upp = 8qps Upp = 8390 *0% Uy = 3y and the first colum
of L may then be obtained from the equations 22191 = 2570 231U17 = 3375

ety 2qUpp = A We can then solve for the second row of U and the




second colum of L and so on. The camputational equations which give Uy 4

and Qij in terms of previously computed quantities are

i-1

ug5 = f1 [aij - kzl Qikukj]/l j>i>1 (3.2)
i-1 ] _

jS = f1 aj5 - kzl ijuki /ujj j>i>1 (3.3)

Thus the determination of Uj 5 and jS can be carried out by computing

a corresponding accumulated inner product. The partial pivoting strategy

can still be employed here if the sequence of (3.2) and (3.3) are slightly

altered to allow a search for the largest element in a column as pivot.
This is described in Wilkinson [4]. We will assume that the row inter-
changes has been done in advance so that no pivoting is necessary and the
elements of L are all of magnitudes less than or equal to one.

Applying Lemma 2.2 to (3.2) and (3.3), we have

i-1
U5+ ey = Agy - kzl Ly I >i>1, (3.4)
1 iil 1 (3.5)
L.. + €., == l8.: - L.k s j>1i> .
ji jioouy 11 g Jkukl '
where
Ieij| <1+ (G- l)u]oiju, j>i>1 (3.6)




and

1 R . .
| < 1+ i - Dujo..u, >1i> 1.
lEJll <[ Tﬁ;;r( Ju] ji J 2
Now equations (3.4) and (3.5) can also be written as

1
L i>2i>1,

i-
Yij kZ iK% i T 345

=1

i-1
st L M T St T e T il

Combining (3.8) and (3.9) in matrix notation, we have
W+F=A
where F = (fij) and

£, .
1)

|

[eijl <[1+ (- 1)u]oiju, j>i>1,

|f' [e..u. ' < [Iuiil + (1 -

Ji| ji%i l)u]ojiu, 3>1i>1,

Now let us define

IF| = (£,

Then we have

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)




0 o 0 S . 0
1+tu  1+u « . . 1+y
ptu  1+2u - . . 1+2u
|Fl <ou |s - - . . (3.14) ‘3

pt(n-2)u  1+(n-1)uj

P ptu  pt2u

The upper bound of the infinite norm of F can thus be estimated as

~
[n + %‘:—llu]ou, for p < 1;

[FI, < | (3.15)

| [(n-1)p + 1 + 2(n-z'—l)-u]ou, for p > 1.

Note that in (3.15) p and o are not necessarily equal unless column inter-

changes are done in advance to assure that o = p.

Thus we have established the following lemma:

Lemma 3.1. The Crout algorithm of directly decomposing A into a pro-
duct LU by using accumulated inner product gives us triangular matrices
L and U such that

LU+ F=A (3.16)

where the upper bound for F can be estimated using (3.15).

From (3.15) we see that the dominating factor in the error bounds is
nou or (n-1)pou since usually we have _rirzx—_ll u << 1 for most of the existing
general purpose machines. For example, for the IBM 360 series, we have




t = 24 and hence 2 2724 55 gyproximately equal to 1 if n T 2900
which is far more than the system order we encounter in practice. Thus we
could ignore this small term and the actual upper bounds for F is approxi-
mately proportional to the system order n.

Now we can solve the decomposed system

LUx

b (3.17)

in the sequence

Iy = b (3.18)

and

Ux

Y. (3.19)

Again accumulated inner product is used to solve for y and x by the com-

putational equations

Y1 =05
i-1
y; = £l %-jgzﬁg/l, 2<i<n (3.20)
and
k-1
x = f1l 1y - jzl UyY; fogg l1<k<mn (3.21)

10




We can similarly apply Lemma 2.2 to (3.20) and (3.21). The results
are sumarized in the following lemma:
Lemma 3.2. The computed solutions y and x of the triangular systems

(3.18) and (3.19) by the use of accumilated inner product satisfy
Ly +e=b (3.22)
Ux + ¢ = y (3.23)

where the absolute vectors of e and € satisfy

1w
1+2u
le| < opu . (3.24)

1+ (n-1)u]

o+ (n-1)1)
p+(n-2)u

le] < oyu . (3.25)

| o+ (0)u

and 0y OT O y are the magnitude of the absolute maximm value generated
during the computation of x or y respectively. Combining Lemma 3.1 and
Lemma 3.2, we have the following theorem:

Theorem 3.1, The solution x camputed by the Crout algorithm with

11




accumulated imner product satisfies
(A+ 8A)x=Db + 6b (3.26)

where 6A = -F and &b = -e - Le. Furthermore,

|18Al], = HFll, (3.27)

[18bll, < Ilell, + |lLel], (3.28)
where

lell, < ouull + ( - 1)u] (3.29)

|ILel],, < ogulmo + nl) (3.30)

Thus we see if the assumption that %ﬁﬁ u << 1 is true, then the
camputed solution satisfied a perturbed system of (3.26) with upper bounds
for the perturbations 6A and éb proportional to n. Hence in solving higher
order system of linear algebraic equations, the Crout algorithm with
accumulated inner product should be used to avoid loss of significance at
all stages of camputation, This is especially important for ill-conditioned

systems where rows or colums are usually more or less dependent.

4. Numerical experiment.

To see how the accumulation of inner product affects the solution
accuracy, we have solved a 5 by 5 matrix problem of the type Ax = b where
A is a 5-th order inverse Hilbert matrix and b = (1, 0, 0, 0, 0)T. Hence

the exact solution is x = (1, 1/2, 1/3, 1/4, 1/5). \n arbitrary precision

12
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arithmetic unit [5] is used to simulate a 24-digits mantissa chopped
floating-point arithmetic system. The results with and without accumula-

tion of inner products are listed in the following table:

Without Accumulation

X, = 0.1000 0000 0000 0000 0000 8947 (10')
X, = 0.5000 0000 0000 0000 0006 6930 (10°)
Xz = 0.3333 3333 3333 3333 3338 6805 (10°)
X, = 0.2500 0000 0000 0000 0004 4524 (10°)
Xg = 0.2000 0000 0000 0000 0003 8143 (10°)
With Accumlation
x| = 0.1000 0000 0000 0000 0000 0020 (10")
X, = 0.5000 0000 0000 0000 0000 0177 (10°)
Xz = 0.3333 3333 3333 3333 3333 3488 (10°)
X, = 0.2500 0000 0000 0000 0000 0135 (10°)
Xg = 0.2000 0000 0000 0000 0000 0117 (10°)

Table 4.1. Numerical Results of Solving Ax = b,

We see from Table 4.1 that two more significant digits are obtained in
all of the solution camponents when accumulation of inner products is used
in the Crout algorithm. The absolute error in each component is decreased

by a factor of 300 to 400 with accumulation.

5. Conclusions.
We have shown, by the a posteriori error analysis, that the computed
results of the Crout algorithm with inner product accumulation satisfy a

perturbed system and the upper bounds for the perturbations are proportional

13




to the system order n under certain practical assumptions. The improve-
ment in accuracy is basically due to the effort to avoid loss of signifi-

cance in additive operations. This is confirmed by the results of our

numerical experiment. Indeed the inner product accumulation should be
done in every computation whenever it is possible.

We should also note that the Crout algorithm is no more than an
"analytic" process where first the matrix A is decomposed into factors L
and U and later on the vector b is decomposed into L and y and subsequently
y is decomposed into U and the desired x. Hence our a posteriori analysis
can only give us bounds of the difference between the computed decomposi-
tion LU and the exact decomposition A or the difference between the computed
decomposition LUx and the exact decomposition b. In order to find the
difference between the computed x and the exact solution A’lb we need the

information of AL which is of course unavailable unless the decomposition

is also used to obtain an approximate inverse of A.
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