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ABSTRACT

A posteriori forward ern ul fl-iS i n . ippid to the Crout algorithm

with inner product accumulation in solving system of linear algebraic

equations of the type Ax = b. By attributing the generated round-off

errors properly to the matrices A and b, it is shown, under certain reason-

able assumptions, that the computed x satisfies a new perturbed system

such that (A + 6A)x - b + 6b and the upper bounds for 6A and 6b in infinite

norm are shown to be proportional to n, the system order. This is an

improvement over the results where the inner products are not accumulated.
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1. Introduction.

In solving system of linear equations of the type Ax = b where A is

a non-singular n-ta order matrix and b is an n-vector, the Gaussian

elimination method of decomposing A into a product LU of a lower trian-

gular matrix L and an upper triangular matrix U probably is the most

generally used algorithm because its economy in the number of arithmetic

operations required and the numerical stability of the solution. For

normalized floating-point computat ions with t-bits allocated to the

mantissa of a floating-point number, we have

(1 + 6) fl(x*y) = x*y, 161 < 2-t = u (1.1)

where * is any of the operators +, -, x, /. Under the condition of (1.1),

it is shown [1] that the computed x using the Gaussian algorithm satisfies

a new perturbed system such that

(A + 6A)x = b + 6b (1.2)

and

II6AlI.,•< (n2 - 1)au,

(1.3)

Il6ptl. < (n + n - 1 + )u

where a and p are some constants obtainable after the computation. Equation

(1.1) implies that for the given two numbers x and y with t-bits mantissae,

fl(x*y) is the correctly rounded result of the floating operation *. It

is shown that the operations + and - are ill-conditioned in the sense of

1u l- }'H ' = " = " =:



Rice [2] if Ix - yl is very small. In othe- words, there is a loss of

significance if Ix ± yI is considerably smaller than jxi + 1yl. HoweV'wr,

the relative condition of x x y or x " y is a constant 2. Hence for ill-

conditioned systems, the loss of significance due to additive operations

in the early s Lages of computation might lead to unacceptable final solu-

tions. Thus one remedy for such systems is the use of higher-precision

arithmetics at the expense of more computing time and memory space.

knother alternative is to add or subtract in double-precision whereas

multiplication and divLsion could still be done in single-precision.

Furthermore, the result of a single-precision multiplication can easily

be retained in double-precision and used later. This is extremely helpful

in the computation of inner products. This type of ccmputation can thus

be called "accumulated inner product" arithmetic.

The Crout variation of the Gaussian elimination methods is essentially

a sequence of inner product ccmputations. Hence the use of accumulated

inner product should improve the accuracy in the final solutions. In this

paper we will carry out the a posteriori forward error analysis [3] of the

Crout algorithm with accumulated inner product. The results show that the

co•puted solution satisfies a perturbed system similar to (1.2) with bounds

for the perturbations proportional to n under certain practical assumptions.

2. Accumulated inner product.

We will assume that the given digital computer will be able to perform

the following operations.
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(i) Addition and subtraction. The machine accepts numbers in

double-precision mantissa and produces a result having a double-precision

mantissa.

(ii) Division. The machine accepts a double-precision dividend

and a single precision divisor, givinp a single-precision quotient.

(iii) Multiplication. The machine accepts single-precision factors

and gives a double-precision product.

Furthermore, if a single-precision number has a t-bit mantissa, then

a double-precision number will have 2 t-bits for the mantissa. Extending

(1.1) to (i), (ii) and (iii), we have the following lemma:

Lemma 2.1.. If a, b are single-precision numbers and x, y are double-

precision numbers, then we have

(1 + 6) fl(x + y) = x + y, 161 < 2 2t u 2 ; (2.1)

(I + 65') fl(x - y) = X - y, 161 :S 2-2t U 2; (2.2)

fl(ab) -ab ,(2.3)

(1 + A) fl(x/a) = x/a , A 2-t = u . (2.4)

We see that the results of the operations + ,and / are the correctly

rounded results and the operation multiplication is exact.

We can now consider the computation of the following gene-a, inner

product by accumlation:

n
p fl aibij/YJ 25

3



The execution of (2.5) can be carried out by the following recursive

seo•ience:

sI = fl(a1bj),

Sk+1 = fl(sk + ak.lbk, l), 1 < k < n-1, (2.6)

p = fl(sn/y).

Applying Lenma 2.1 to (2.6), we have

s1 ) = a a 1bi2

(1 + 6k+l)Sk+l = sk + akbk1 bk11 6k+ll _ u 2, 1 < k _< n-i, (2.7)

(1 + A)p = Sn/y, IJAI < u

Combining (2.7) for k = 1, 2, "", n-1, we have

p + e = ( aibi /Y (2.8)

where

e = p + 1 (2.9)Y k•=1 •~ ~~29

We note that if y : 1 the last step in (2.6) is actually a double-precision

to single-precision conversion, hence the last equation in (2.7' is still

valid. To bound the error in (2.8), let us denote by a the magnitude of

4



the absolute maximum of the computed numbers in (2.6), namely,

a = max (Ipi, Iskl). (2.10)
2<k<n

Then the upper bound for e in (2.8) is

lel < [1 + 1 (n - 1)u]au (2.11)

For Iyj = 1, then we have a simplified equation

jej < [1 + (n - l)u]au (2.12)

Thus we have established the following leirna:

Lemma 2.2. The accumulated inner product of (2.9) satisfies

n ab
p + e = b (2.13)

y i

wherc

jeI < [I + ,-,(n - 1)u]ou (2.14)171

and a is defined in (2.10).

From (2.14) we see the round-off error in the accumulated inner pro-

duct is very small if n is not too large and Jyj Is not too small. This

is of course what we have expected in using double-precision additive

operations.

5



3. The Crout algorithm with accumulated inner product.

The usual Gaussian elimination method allows us to obtain the elements

of the matrices L and U by a sequence of eliminations of the variables.

On the other hand, the Crout algorithm determines the L and U directly

from the matrix equation LU = A. Specifically, if L is a unit-diagonal

lower triangular matrix, then we have

-1 ll U1 2 u1 3  Uln

u 21 UZ2 u2 3  • 2n

31 '32 1 u3 3  U3n

a,, a12 a13 * * * aln

a 2 1 a22 a23 ' * . a2n

a3 1 a32 a33  * . . a3n

(3.1)

Lani an2 an3 n n ann

If we write out (3.1) in full, we see that the first row of U is given

by the equation ull = aill u 12 = a1 2, 0., UIn = aln and the first column

of L may then be obtained from the equations 1 21 ull = a2 1, z31u1 1 = a31 ,

**-., inlUll anl. We can then solve for the second row of U and the

6



1

second column of L and so on. The computational equations which give uij

and Zg.. in terms of previously computed quantities are

u fij =fl[aij z ikukj]/l j2 > 1 (3.2)

k=1

= fl aji z jkukiI/U ij > i > 1 (3.3)

Thus the determination of u.j and .ji can be carried out by computing

a corresponding accumulated inner product. The partial pivoting strategy

can still be employed here if the sequence of (3.2) and (3.3) are slightly

altered to allow a search for the largest element in a column as pivot.

This is described in Wilkinson [4]. We will assume that the row inter-

changes has been done in advance so that no pivoting is necessary and the

elements of L are all of magnitudes less than or equal to one.

Applying Lemma 2.2 to (3.2) and (3.3), we have

i-I
u.. + eij = aij - Z 2ikUkj, i > i > 1, (3.4)

(. 1-
2I _. a.ji _ jkUki P > i > (3.5)

£j i + ;ji ku 1 -

,where

leijI < [I + (i - l)u]aj.u, j > i > 1 (3.6)

7



and

£[1+- (i - 1)uc.jiu, j > i > 1. (3.7)

Now equations (3.4) and (3.5) can also be written as

i-I
Uij + I zikUkj + eij aij, j > 1, (3.8)

i-i
Jiui + k jkUki + Ejiuii = aji, j > i >1. (3.9)

Combining (3.8) and (3.9) in matrix notation, we have

LU + F -A (3.10)

where F = (fij) and

if ij[ I [eijj. ( I + (i - Ulau~iju, j L i > 1, (3.11)

Ifj = ikjiuii < [Ilu.ii + (i - 1)u]ajiu, j > i > 1. (3.12)

Now let us define

IFI = (Ifij1),

p = maxluiii, (3.13)
i

a = maxl..ijl.
,,J

Then we have

8



0 0 0 * *0

p 1+u 1+u • " l+u

p p+u 1+2u 1 • •+2u

IFI< ou . .. (3.14)

P+u p+2u P+ (n- 2)u 1+ (n-1)Uj

The upper bound of the infinite norm of F can thus be estimated as

[n + n u]au, for p < 1;

I1F1=<_ (3.15)

[(n-l)p + 1 + !i:22 u]iu, for p > I.

Note that in (3.15) p and a are not necessarily equal unless column inter-

changes are done in advance to assure that a = p.

Thus we have established the following lemma:

Lerma 3.1. The Crout algorithm of directly decomposing A into a pro-

duct LU by using accumulated inner product gives us triangular matrices

L and U such that

LU + F - A (3.16)

where the upper bound for F can be estimated using (3.15).

From (3.15) we see that the dominating factor in the error bounds is

nau or (n-l)pau since usually we have 2 u << 1 for most of the existing

general purpose machines. For example, for the IEM 360 series, we have

9



t = 24 and hence 2 2-24 is approximately equal to 1 if n Z 2900

which is far more than the system order we encounter in practice. Thus we

could ignore this small term and the actual upper bounds for F is approxi-

mately proportional to the system order n.

Now we can solve the decomposed system

LWx = b (3.17)

in the sequence

Ly = b (3.18)

and

Ux = y. (3.19)

Again accumulated inner product is used to solve for y and x by the com-

putational equations

Yl = blI

Yi = fl bi - Ik / 1 2 < i < n (3.20)
1 Lii j=l iiilj

and

xk = fl Yk - ji ukjYj /ukk 1 <k <n (3.21)

10
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We can similarly apply Lemma 2.2 to (3.20) and (3.21). The results

are summarized in the following lemma:

Lemma 3.2. The computed solutions y and x of the triangular systems

(3.18) and (3.19) by the use of accumulated inner product satisfy

Ly + e = b (3.22)

Ux + C = y (3.23)

where the absolute vectors of e and c satisfy

i

l+u

1+2u

lel _<bu (3.24)

1+ (n-1) i

p+(n-l)u

p+(n-2)u

Id1 <_ OyU (3.25)

•÷ (O)u

and ob or o¥ are the magnitude of the absolute maximum value generated

during the computation of x or y respectively. Combining Lemma 3.1 and

Lemma 3.2, we have the following theorem:

Theorem 3.1. The solution x cumputed by the Crout algorithm with

11



accumulated inner product satisfies

(A + 6A)x = b + 6b (3.26)

where SA = -F and 6b = -e - Le. Furthermore,

116AII. = JFIIW (3.27)

IJ6bI 1. i < I ej,, + IILc!J1 (3.28)

where

Ie Ie <_ abu[1 + (n - 1)u] (3.29)

I LE: I• 1,< :SyU [np + u] (3.30)

Thus we see if the assumption that n u << 1 is true, then the

computed solution satisfied a perturbed system of (3.26) with upper bounds

for the perturbations 6A and 6b proportional to n. Hence in solving higher

order system of linear algebraic equations, the Crout algorithm with

accumulated inner product should be used to avoid loss of significance at

all stages of conputation. This is especially important for ill-conditioned

systems where rows or columns are usually more or less dependent.

4. Numerical experiment.

To see how the accumulation of inner product affects the solution

accuracy, we have solved a 5 by 5 matrix problem of the type Ax = b where

A is a 5-th order inverse Hilbert matrix and b = (1, 0, 0, 0, 0 )T. Hence

the exact solution is x = (1, 1/2, 1/3, 1/4, 1/5). \n arbitrary precision

12



arithmetic unit [5) is used to simulate a 24-digits mantissa chopped

floating-point arithmetic system. The results with and without accumula-

tion of inner products are listed in the following table:

Without Accumulation

xI = 0.1000 0000 0000 0000 0000 8947 (10')

x2 = 0.5000 0000 0000 0000 0006 6930 (100)
Ix3 = 0.3333 3333 3333 3333 3338 6805 (100)

x4 = 0.2500 0000 0000 0000 0004 4524 (100)
x5 = 0.2000 0000 0000 0000 0003 8143 (100)

With Accumulation

xI -= 0.1000 0000 0000 0000 0000 0020 (10')
x2 = 0.5000 0000 0000 0000 0000 0177 (100)

x.. = 0.3333 3333 3333 3333 3333 3488 (100)
4

x = 0.2500 0000 0000 0000 0000 0135 (100)
x5= 0.2000 0000 0000 0000 0000 0117 (100°)

Table 4.1. Numerical Results of Solving Ax = b.

We see from Table 4.1 that two more significant digits are obtained in

all of the solution components when accumulation of inner products is used

in the Crout algorithm. The absolute error in each component is decreased

by a factor of 300 to 400 with accumulation.

5. Conclusions.

We have shown, by the a posteriori error analysis, that the computed

results of the Crout algorithm with inner product accumulation satisfy a

perturbed system and the upper bounds for the perturbations are proportional

13



to the system order n under certain practical assumptions. The improve-

ment in accuracy is basically due to the effort to avoid loss of signifi-

cance in additive operations. This is confirmed by the results of our

numerical experiment. Indeed the inner product accumulation should be

done in every computation whenever it is possible.

We should also note that the Crout algorithm is no more than an

"analytic" process where first the matrix A is decomposed into factors L

and U and later on the vector b is decomposed into L and y and subsequently

y is decomposed into U and the desired x. Hence our a posteriori analysis

can only give us bounds of the difference between the computed decomposi-

tion LU and the exact decomposition A or the difference between the computed

decomposition LUx and the exact decomposition b. In order to find the

difference between the computed x and the exact solution A-1 b we need the

information of A-1 which is of course unavailable unless the decomposition

is also used to obtain an approximate inverse of A.
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