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ABSTRACT

Forced-oscillation pitch-damping balances oscillate over a small angular amplitude
range about a nominal angle of attack and thus yield an effective value of the aerodynamnic
damping if the damping is a nonlinear function of angle of attack Because the local value
of the damping coefficient is generally required for Lomnputer-sinulated motion studieo
a procedure to ex~tract the local damping from the experimental effective damping output
of a forced-oscillation balance is derived. A derivation is given of the basic integral equation
relating Iocal and effective damping. Techniques for solving this integral equation are given
The method is applied to experimental nonlinear damping data for three preliminary
unmanned Mars reentry tViking) configurations, and the results are discussed.
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B; Balance damping tare, ft-lb-sec/rad
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C'. 3C. /b~zd/2V,), per rad

Cq 3C. /a(qd/2V.j, per cad

d Maximum model diameter. ft

EVENS Defined by EXI. (35)

I Model moment of inertia about pivot axis, ft-lb-sec/cad

ij,k General subscripts and indices

9 Model length, ft

Ma Total aerodynanic moment, Eq (20). ft-lb

M, Defined by Eq. (17), ft-lb

MD Mq + M_, ft-lb-sec/cad

M(t) Forcing moment of balance. ft-lb

Mh Hysteresis nmonment. ft-lb (Eq (28))

M Free-streami Mach nunmber

Ma Aerodynamic pitching-moment slope, qSd Cma ft-lb/cad

M;j [(q..5d2 )/(2V.jJ C.~ . ft-Ib-sccjrad

Mq[(q..Sd
2)/(2V,.)] Cmq. ft-lb-sec/cad

MT Sumn of aerodynamic, balance flexure. and forcing moiments acting on model.
ft-lb (Eqs (1) and (2))

N Indices for a where Cm. Cm u rf( (Fig 4)

ODDS D~efined by E 1 (36)

P1 -1`8 Defined by Eq~ (49) through (50). respectively

q lPitching rate, in general, and a. in particular, for the balance. cad/sec

c, Free-it.. mi dvnannR prc~sure. ltiftt0
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RRo-R8 Defined by Eqs. (40) through (48), respectively

Re4  Free-stream Reynolds number based on model maximum diameter

S Reference area, ffd2 /4, ft2

t Time, sec

Tk kth coefficient in series representation of M(t) ft-lb

V. Free-stream velocity, ft/sec

Wk kth weighting function relating Ak to ak, Eq. (33)

xCZ Model center of gravity location with respect to nose, in. (Fig. 9)

a Instantaneous angle of attack of model, rad

aE Defined in Fig. 8, rad

am... a Iiniit in Fourier series representation of C,,,D1, rad (Fig. 5)

aN a where C, n = Cm
1 
Deff (see Fig. 4), rad

a.o Nominal or equilibrium angle of attack, Eq. (4), rad

as7  Balance sting angle of attack, rad

4 fTime rate of change of angle of attack, tad/sec A

Integral limit defined by Eq (37), rad

"71 ,72,73, Integral limits defined by Fqs. (57), (58), and (59), respectively, rad (Fig. 8)

Aa Increment of a defined in Fig 4, rad

0 Instantaneous angular oscillation position, rad

"Time rate of change of 0, tad/sec

01 Maximum angular oscillation amplitude for a cycle of motion, rad

S00gO, Defined in Fig. 2. rad

9 Phase angle between forcing moment. M(t), and oscillslion amplitude. 0(t), rad
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Angular circular frequency of M(t) or 0(t), 7ad/sec

Wt Natural cir,:ular frequency of balance system / + B1)/I, rad/sec

SUBSCRIPTS

eff Effective value

ST Sting
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SECTION I
INTRODUCTION

Two general procedures are available for measuring pitch-damping dynamic stabinty
coefficients for a captive (sting-supported) midel in a wind tunnel (Ref I) These methods
are the forced-ocdilation and the free-oscillation techniques The free-oscillation balance
is usually somewhat simpler i dcsign and operation than a forned-oscillation balance, but
the forced-oscillation balance provides more precise control of the amplitude of the
oscillation, which can be particularly important if the model is dynamically unstable Dala
reduction for a forced-oscillation system is generally simpler than for a free-oscillation
balance. The free-oscillation balance yields tranmient angular motion data which must be
analyzed in terms of the decAy in the amptitude to yield the desired damping coefficients
As described below. the forced-oscillation balanme operate., at constant angular motton,
and the damping coefficients arc obtained directly Irom the torque input measurements

The von K.rmnin Gas Dynamics Facility (VKF) of the Arnold Lngniecnng
Development Center kALt)C) has developed a forced-oscillation dynaiti balance to measure
pitch (or yaw) damping. This balance is sting supported with a cross-flexure spring pivot
system which allows one degree of freedom in angular motion The balance system is
described in Refs, I and 2. Certain essential features of the system operation are also
described herein to provide the necessary background for the present analysis A schematic
representation of the VKF forced-oscillation balance is depicted in Fig I

The balance is equipped with a magnetic shaker motor and feedback control (Fig
2) to provide oscillation amplitudes. 01. from essentially zero to approximately 2 deg
However, to reduce effects of tunnel vibrations, it is generally necessary to make the
oscillatian amplitude greater than about I deg [he balance system output is a damping
coefficient which is the miean value over a cycle of motion for that particular oscillation
amplitude. 01. at the nominal angle oh attack. a.. As the oscillation amuplitude is lowered.
the "effective" damping determined by the system approaclies the "local" value for that
particular ct. If the damping coefficient is a linear function of a within the region a.
+ 01 to o0 - 01, then the balance system eives the true local value of the damping coefficient
on that particular a..

The values of the damping coefficient obtained from the forced-oscillation technique
are easily interpreted if the variation of the local value of the damping coefficient with
angle of attack is smnall within the range covered during the oscillation from a. - 01
to a0 + 0. There exist cases for which the variation of damping coefficient over the
range of angle of attack is quite large. One such case was the unmanned Mars landing
vehicle (Viking), tested in the AEI)C Propulsion Wind Tunnels (Refs 3 and 4). which
was found to be dynamically unstable for small angles of attack (less than about 2 deg)
and dynamically stable at higher angles. The variation of the damping coefficient with
"angle of attack over the angle-of-attack range covered in the forced oscillation was quite
large. The purpose of thIs report is to describe the mathematical techniques by which
the value of the damping coeffitients for very small osillations (termed the local value.
C, ý (a,)) can be deteruincd from the effective value obtained 'vith the forced oscillation

-5
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balance by oscillating the system with an amplitude, 01. about the angle of attack a.,
Cm Deft (ao. 01) As the value of 0i goes to zero. the effective value and the local value

arc the same: i e..

Olhn. mCý (a"'01) C Cin(ao)

The local damping coefficients are of practical importance because they are required in
computer simulations of dynamic nmtions.

SECTION 11
ANALYSIS

2.1 FORCED.OSCILLATION BALANCE SYSTEM OUTPUT

A schematic of the VKF forced-oscillation balance is shown in Fig. I A magnetic
shake, motor is used to impose an approximately sinusoidal oscillation upon the model
The moments opposing the moment input by the motor are those attributable to inertia,
the aerodynamic restoring moment, and the flexure. Strain gages are attached to the input
toique beam and the flexure. The first of these gives the input momen) from tile shaker
motor, and the second is used to determine the angular position of the model. 0.

A feedback into the shaker motor control is used to maintain the amplitude of the
model oscillation, 01, at a preselected value (Fig. 2). It is this feedback that allows the
device to be used even with dynamically unstable systems since, for these. the shaker motor
extracts energy from the system being tested With a dynamically stable system. tle shaker
motor must add energy to the system to maintain a constait ampi~tude.

To determine the damping, the frequency is varied until a phise ,shift. 0. of
approximately 90 deg between the input torque and the displacement, 0, is obtained
"At this condition the moments attributable to inertia and stiffness are essentially in balance,
so the output of the shaker motor is basically compensating for the damping moment.
The amplitides of the moment, T, , and the displacement, 01. along with tile frequency,
w. allow t(le damping ternm to be evaluated

The control console is shown schematically in the lower portion of Fig. I. Internally,
there are low pass filters, phase shifters, and multipliers. •,lhch are used to give the
amplitudes of the in-phase and out-of-phase coimponents of the input torque From these
the aerodynamic damping anti stiffness may be determined,

The basic differential equition for a forced-oscillation pitch-damping balance is

lI',,tIi (!)

S\i •\n tla . Ba(a(m-a,,l) . Mitt

• rrodsaamsc I~aI,.rie I l.-xure I .}rcmng \lomwnt (2)
R¢lteursrg \h~m,eni \hmlrrt t ot "•~,e

(2)r

,,II-
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inwhich

I = Model moment of inertia about pivot axis

MT = Sum of aerodynamic, balance flexure, and forcing
moments acting on model about pivot axis

MD = Aerodynamic damping moment per angular velocity
= (C.. + Cnq) qSd

2
/2V.

M. = Aerodynamic pitching moment per unit angle (stiffness)
= Cm., q.Sd

B, = Balance flexure structural damping moment per
angular velocity

B,. = Balance flexure moment per unit angle (stiffness)

M(t) = Forced oscillatory moment impressed on model

aST = Stationary angle of attack of sting

a = Instantaneous angle of attack of the model

The angle of attack may be written as

a - a. . 00) (3)

where

0(t) = Instantaneous oscillation amplitude about ao

a. = Equilibrium angle of attack of model

The relation between the sting angle and the equilibrium angle is given by

.•.-• IIa

+ • "S T (4)

The relationships among the various angles are shown in Fig. 3.

After substituting Eqs. (2), (3), and (4) into Eq (I), the basic balance equation
becomes

cm D.... + . .). - 0. + Ba)o. -l(t (5)

%4
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Sting Centerline

Model-Balance Centerline for Static
Air-on-Equilibrium Conditions

\ \ 91

SST maximum

I0

Vo ax• 
Osclltitune

Relative Wind Direction

Balance Flexure Apparent Center of
Rotation and Model Center of Gravity

Fig. 3 Geometry of Pitch-Damping Balance-Sting Combination

The stiffness of the flexure, B., is generally selected to be much greater than the
aerodynamic stiffness, M_. since the latter varies widely with tunnel conditions. This also
decreases the effects of nonlineanties in the static restoring moment In addition, the
system is designed so that B. is constant over the range of deflections encountered This,
in conjunction with the feedback control system, permits the oscillation amplitude to
be accurately represented by a pure cosine wave

0(i) = 0, c,,.1 (6)

The output of the torque beam will, in general, contain higher harmonics, since by
Eq. (5) all the damping and nonlinear terms will be included in M(t). Thus, the input
moment can be expressed in a Fourier series

" Tk. ,c , (k•, * 6) (7)

If all of the coefficients in the basic differential equation are constants, then only
the fiast term (k = I) is present in M(t). Using Eq (6) and collecting the coefficients
of cos wt (in phase) and sin wit (out of phase) give for this particular case

1. - (01 -o T, c- 6
(8)

• - (\'*~ 
1
Bd)• l' " T!•n 6
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Thus

-,I,- Cos. (9)

equals total static moment slope, and

Di + T(10)

equals total system damping coefficient.

Normally the frequency is selected (CO = WN) to give a phase shift of 90 deg in orderto maximize the ac.curacy with which the damping coefficient may be determined.

The measured values of Ti, -ý, w. and 01, and values of B, and B, from pretestcalibrations then allow the aerodynamic coefficients, M., and MD, to be determined fromEqs. (9) and (10). Normally, the aerodynamic stiffness, M., may be determined moreaccurately with a static balance. The aerodynamic damping, MD, is the sum of M, and Mq.The individual contributions of M, and Mq cannot be distinguished by the balance, since"= q for the balance.

2.2 EQUIVALENT DAMPING FOR NONLINEAR SYSTEMS

If there are nonlinearities in the system, either or both of the coefficients MD andM. may vary. In general, each may be a function of a and a. To avoid certain pitfalls,it is preferable to begin with the expression for the total aerodynamic moment, M, as
a function of a and ,

-- a,'1 * M(a,') (1 I)

The circutry of the console contains low-pass filters so that the higher harmonicsof M(t) aie fitered out. Therefore, the system gives the fundamental harmonic; i.e., thein-phase (Tt cos ,) and the out-of-phase (Tt sin 4) fundamental components of the input
torque. In general

Bab 0 td - l3~0 - %1.(.o O- 0,)

- L Tk cos (kot + ;5)•- k. I

and

Ti Cos 6 - 2. f%1lti Cos Wat d(6at) (3

_$ 
271

-,sin 6 - . 'l(t) sin Wi d(Cat) (14)

6
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With 0 = 01 cos wt these become

"JL- 01 CnSwt s - iI•1 es ciot d(Wt) (15)

--T, in - -•2 01. ,l l, .o s. n , - lw s..i.i
f -T, ,a t sin ... B 0 .,) (16)

with

%It (a. + O! c-.. , - C'
0  

sin wt) (17)

Certain of the integrals may be evaluated, with the result

*,•, I COs 6 - -h620! - il0! - fMta 0  COS cisi, ,-
0 1 

qn (at) COS,,t d(ot) (18)

-T ,I n•m6 ltj 0 -}x O - f' \l (a 0  o O! s cos<t, - coO
1  s tun ot) stun cot d(cot)

0- 
9)

These results are valid for arbitrary aerodynamic moments.

It is of interest to simplify these results for certain specific cases If the aerodynamicmoment is a continuous function of the angular velocity, then an expansion can be made
about an angular velocity of zero.

a%1 a2,,'\l.a(a,A) - I,+(a,0) + - (a, 0)0 + Si (d, 0)02 (20)

_ •In terms of these quantities

'iIa- •l(a,OS.a (2;)

(5'(a. ) j- t(a.o)I
'ill

0a! a2'l (22)
" (a.) I - (a,O)b

7, •

-! - -
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The parameter M. is therefore independent of velocity. This is a direct consequence of
the assumption that Ma is continuous, since any dependence upon velocity appears in
MD. The moment can now be written as

Mjta,A) - Ma(a)a + ,lD(aa)a (23)

With this representation, the integrals may be simplified

T!ooa• _[
2 B - •_f Ma(a)a .... t d(co t)

- - l,2 - 1 f - f s ;u 0  cos wt) cos 2  •i d(cot) (24)

o

- . Ba + 0(ao +01 cos wot. - oo sin wt) sn
2 wot d(wt) (25)

wojo

According to this, nonlinearities in the static moment do not affect the damping as
determined by the forced-oscillation balance. This is valid if M, is a single valued function
of a.

If the damping coefficient is expanded in terms of h, i.e.

la = (a,) . N(a,O) + a, + (a, 0,h (26)

Equation (25) becomes

0 ,O B A -f '%jý (. . ÷ O co s w ot, O) 31q 2 w t d ~ ct)

W202, 2,7 a2%D

a= - (aO +01 cos. 0t, ) sin
4 

wot d(wt) (27)

.•+ r fo -4 (a,+01 Cos ot, 0) 4n60o(t d(cwt) +

The left-hand side of this equation is the value determined by the forced-oscillation
techniq'ie. If the aerodynamic damping coefficient MD is constant or is a linear function 3
of a, then the result reverts to that given by Eq. (10). If the aerodynamic coefficient
is nonlinear with angular velocity, i.e.

4 0

8
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according to Eq. (27) the apparent effective damping detLrmined by the forced-oscillition
technique will depend upon the frequency, w. For this reason it is advisable to obtain
data at two or more frequencies, which requires using more than one set of flexures
If there is no dependence upon frequency noted, then it may be concluded that

-=02n

One class of nonlineanties that does not fall within the above framework is hysteresis,
because the moment is not a continuous analytic function of velocity. If Mh is the hysteresis
moment, and assuming for simplicity that the variation of M. with a is linear

M .,- Nl.a . > 0
(28)S~~- Me~ - %1h <0 •

Sr Then

T, - 0  (29)1I' .•0 1 , (29)

In this case the apparent damping varies inversely with w0i0. Since the balances operate
at constant w0],the quantity (4M%./iw0 )would appear to the balance system as a constant
value of effective aerodynamic damping, MDeff. for that particular test condition. As with
"the case of a nonlinear damping coefficient, testing at different frequencies would reveii
the existence of the effect.

In the remaining development it is assumed that there is no hysteresis. and the
nonlinearities with respect to angular velocity in the damping coefficient are negligibleS~Under these conditions •

T ~ 2fr T.n.0,n = a . -IfN 1n(ao + 01 C... wt, o0) •.n, t d(,6,) (30)

If now the local value of damping derivative. Cm . (a), is related to MD and the effective

value. Cm ocff (a, 01i). is that determined from the forced-oscillation technique. i e. fromi

i q. (30), then

C\In (Dto'
0

l) " ca"ci)is
2

.,tdi (31)

Equation (31) is an integral equation which relates the effective experimental damping
obtained from the present balance system to the local damping This integral relationship
can also be obtained directly, without considering the balance output, by equating the
amount of energy dissipated per cycle by the local and effective damping (Refs 5. 6.
and 7).

9



AEOC-TR.72.25fEquation (31) is valid for a nonlinear pitching moment (Cm versus a) so long as

the pitching moment is single valued for a given a. That is, pitching-moment hysteresis
t jor time lags (because of viscous effects) can also add or dissipate system energy, which

will then appear as nonlinear damping (Eq (29)).

Z3 SOLUTION OF INTEGRAL EQUATION

Equation (31) is a Fredholm integral equation of the first kind (Ref. 8). The known
quantity is C. Deff which is a function of ao. and 01 and usually is known for various
values of ao at a fixed value of 01. The unknown quantity is Cmo, which is a function
of a. Three ways of solving this equation were tried, with the first two being unsuccessful.

For the first approach, Eqs. (3) and (6) were used in Eq (31) to give

Ia-\
CM1D, (a.,O)= -no 0CI 1)(a) I -(a 0, 2,1,i (32)

Equation (32) was written in finite difference form involving the known values of Cm Defr
and the unknown values of C. D (Fig. 4) The procedure was very similar to that mentioned
in Ref. 9. This formulation led to a set of linear simultaneous equations for the unknown
quantities which could be solved by standard techniques. The answers, however, were
extremely sensitive to the input values of the effective damping. The results, in general,
were very erratic, even for simple test cases, and the method was abandoned.

The second approach to obtain a practical relationship between the local and effective
damping consisted of a series solution for Eq. (32) (Ref. 8) The known effective damping
and the unknown local damping were represented by Fourier cosine series. The kernel
was represented by various types of power series in a. This allowed the analytic evaluation
of the integral for a general term, and a relation between the known (effective) and
unknown (local) Fourier coefficients could be established. This relation for the kth
coefficient is of the form

A I -• (33)

The weighting coefficient, Wk, is shown schematically in Fig. S as a function of k. Note
that for large values of k, Wk is very small and oscillates about zero. It was this oscillatory
behavior of Wk that led to the abandonment of this method, since Eq. (33) could become
singular unless ak was determined from "mathematically perfect" data for Cm Deff. This
basic procedure has been proposed (but not applied) recently in Ref i3, where Wk Is
evaluated by Bessel functions. Unfortunately, the method places such a premium on the
quality of the input data and the Fourier series representation of this data that it is not
practical for this particular case.

10
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This provides N linear equations which may be solved for N unknown values of C mD

Fig. 4 Schematic Illustration of the Damping in Discrete Variable Form
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0
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0.5
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S4 \_/ ý2' 16 2o0f:4 
k
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Fig. 5 Typical Variation of W1, versus k
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Both of the above techniques failed because of a very strong sensitivity of thi local
damping coefficient to the effective damping coefficient. Many physically unrealstic values
of the local damping coefficient were obtained, such as values that were alternately large
positive and large negative. The reason for this behavior can be seen in Fig 5, which
essentially states that there are certain specific values of higher frequency contribution
which should not be present in the effective damping. Because of noise and other
inaccuracies, such frequencies will be present, and, in the inversion process, effects of

the noise will dominate.

To overcome this undesirable effect, smoothing of the input data is net.essary In
the second approach smoothing by Fourier series was found to be unacceptable The hird
appro,',ch made use of polynomial smoothing. The manner in which thus was accomplihhld
is scmcwhat similar to the procedure given in Ref. 6 for free-oscillation pitch-damping
data. Hlowever, certain features of the present analysis for forced oscillation were not
necessary in Ref. 6 and, as such, ment inclusion here. To provide continuity, the pror e-ure
is outlined in detail

It v', ass;umed that Cm D can be represented by a powei series in a of the formn

(:,In = CO + Cll . C.2 a2 + C3[al 3 
+ C4 .

4 
. C11,0  C

6
6 C. ( - (Ca8 (34)

Thec odd powers are included to enhance the curve fitting capability. but they must be
considered as absolute quantities because of the requirenlent that Cm., be sYymiletrical
about an angle of attack of 7ero. This is valid for a body of revolution

Equations (3) and (6) are substituted into Eq (34). The resulting expressiun for
Cm D may be substituted into Eq (30) and integrated analytically. It is convenient to
work with the even and odd terims separately The even terms of Eq (34) arre

2 -

-4% ENS ý C(, 0 C c 'i . CO , , ' 01 ,

The odd terms of Eq. (34) are

OI)D)S - Cl(ao . 01 ("01 i C 3(ao .0 01 (36)

)l(, 0 .())) (.4.(. Cm1")0
$ , C-,(0 .01 cosotl) .(t+0 o<t7(6

[Ifa. is less than 01, then a will be nc ,ative over a portion of the half cycle (Figs

6 and 7). Again refemng to Figs. 6 and 7 and using Eqs. (3) and (6)., can be deternmned

0 0a,, 01 (.-r-.j3)

13 ...- s - ° < 01 (37)

13 0 a., O1

13
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C CmmDD00 -- ao + -
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T1 0

w t

Fig. 6 Schematic Depiction of Integral Limits for PolynomWal Representation
of Damping
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Fig. 7 Typical Cyclic Variation of a nd C.d.
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The odd terms are made positive (or absolute) in the cyclic region from r - 3 to sr by
changing sign. With rcfeience to Fig. 7 and Eq. (31), the same amounts of energy are
dissipated over each half cycle Consequently, Eqs. (35), (36), and the results of Eq. (37)
can be combined with Eq. (31) to give

if

ni.~f (EVENSI san
2 (Gat) d(roi)

fODDS) s,2 :: ) , (38)

•+~~~ f(lD~m(wt) dw)

if-
The evaluation of Eq. '38) yields

ý C ro .I , CO RO CI R! C , lb ÷ C3  R3  + C4  R401"1"(39)

+ CSR 5 + C6 R6 + C7 IR + C8 a 8

where

-o - 1.0 (40)

R Pin P201 (41)

R3 - p1 aoi + 2p•oa I p-. ,O2 + 03 (43)

It4 , .o a 202 + - 1 (44)

It5s Pla5 +• P24.01 22 P3aO0[ o-0 
3

.0 P~a0
4  2P6015 

(45)

H i iS a o0
2 + "0 +a

2  .- o (46)
R I ," + Lo pe• Pi % (03 P.-. + 6 4,
It. = Pl ii p60! 'i -- P3a

3
OI + 7Op4a~oO + -rP'b. i

+ 42P 6a,0" 6  I • Ps0i (47)4

.... 6  
91 o2O6 . O0 (48)

R8i in, T2 12

and

'- (49)
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P2 Si (50

P3 "'- " (50)- ¶
p4  i(3 sin- ' (52)

t 2 4Pb/ 2s~S9*(4 (53)PS- 2 ý 4 4 122

1 -. n t3 a o n S f i 3 _ 0 7

P6 (54)

P. - 2~ (L6 sin 3 #COS5~ p (55)

2 /P8 •" ' P6  (56)

If a. = 0, the above results also apply to the type of free oscil.ltion about zero
a which was considered in Ref. 6 In particular, if the odd terms are neglected for this
condition, Eq. (39) reduces to Eq. (13) of Ref. 6. The polynomial method may 'Iso
be applied to free-oscillatioi test data for a, not equal to zero if the free-oscillation
damping is determined for the same value of 02 from oscillation envelopes at different
values of ao.

Equation (34) (CrD) and Eq. (39) (Cm0 ef) are related in that both contain the
coefficients Co...C 8 as unknown quantities Practical use is made of this relationship by
curve-fitting the experimental values of C,ýDeft as functions of a" and 01 with l~q (39)
and determining the coefficients Co ... C8 by a least-squares procedure. This immediately
yields the corresponding values of C., since they can now be computed from IEq (34)
for a given a = a0.

This analysis was made for an eighth-order polyncmial curve (nine unknowns), but
it is easily reduced to a sixth-order (seven unknowns) or a fourth-order (five unknowns)
curve by merely deleting the higher-order terms. A program has been written for the VKF

t CDC-1604B computer which incorporates the above analysis relating the local and effective
damping coefficients. The coefficients are determined for a minimum square-error fit to
the experimental data points.

-" 2.4 THE V-WELL AND SQUARE WELL

One of the earlier approaches to acquire insight concerning the local-effective damping
relationship expressed by Eq. (31) was to assume simple variat.ons for the local damping
and compute the resulting effective damping. One such variation was the V-well
representation of the local damping as depicted in Fig. 8. This simple variation is compoed

17
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Fig. 8 V-Well and Square Well Representation of Local Damping
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of straight-line (linear) segments so that Eq. (31) is easy to evaluate once the proper
integral lmits have been established, These limits are shown schematicall> in Fig. 8a and
are computed as follows:

. cos a[- --- ; JaE-( 1 7

(at -- Oa

0r-o> 1 (57
(a.8

0°,l

LO --, J 
(58)ao

(59)

The V-well shape can be represented mathematically as follows

C.a) C 1 n(a I con-i 0 A , Yl (60a)

C C (0) Wt . )2 (60b)

"Z ý (0) - hn y. _ - (60c)

- C (a ) cn- rant (A < - (60d)

in which
S( ( a .) -( ( 0,a 5  nn n (61)

(6

Equations (3), (6), (60), and (61) are combined with Eq (31) to yield the following
results for the effective damping of the V-well local damping.

19
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C,.4  (at.) C.,,(a,:) + b 2 2u)( '"I 2. I)]

D. D I• Ia" - L2
+ f. 1R2 4 2) ~ L...4 Y (62)

(' .:i + 1. [2 sin 3 3~ - sin4 Y3

The final result for the square well is:

r ,,,,2 2.
. (a) C (aF) + C (at) -C. (.1[ (L' (63)

Di '" ITl flCmOD 0  .L\72 4 1\ 7414

In a like manner, other variations of the local damping composed of straight-line (linear)
segments can be handled. However, the above results are sufficient to represent large
gradients or discontinuities in the local damping near zero angle of attack and predict
the balance output under such conditions. For example, Fig. 8b illustrates the rather largc
effect of oscillation amplitude on the effective damping for an assumed V-well
representation of the local damping.

SECTION III
RESULTS AND DISCUSSION

The polynomial curve fit analysis described in Section 11 has been applied to
experimental nonlinear pitch-damping data from the VKF forced-oscillation balance. These
data and the acquisition of these data are described in Refs 3 and 4. Table I lists the
configurations and associated test conditions that were considered in the present report.
The configurations were 60- and 70-deg half angle, blunted, cones with various afterbody
arrangements (Fig. 9).

Preliminary investigation revealed that the sixth-order polynomial representation gave
better results for the fitted effective damping and computed local damping than either
the fourth- or eighth-order polynomials. All the results presented herein are from a
sixth-order polynomial curve fit unless stated otherwise. The polynomial analysis gave
reasonable results for the majority of the test conditions considered for these
configurations.

A certain amount of discretion is necessary when applying this technique and
evaluating results. A good polynomial curve fit to the expenmental effective damping data
does not guarantee that the computed local damping will be realistic. That is, for all
practical purposes, the method does not yield a unique solution for the local damping.
A slightly different fit to the experimental effective damping may change the computed
local damping considerably. The requirement was imposed that the computed local damping
must exhibit realistic behavior before the results can be considered satisfactory.

20
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F _TABLE I

VIKING PITCH-DAMPING TEST CONDITIONS*

Configuration M. Red x 10.6 Figure Number

61ON 0.70 0.570 I0a
1.00 0.440 lOb
1.30 0390 loc
1.50 0580 10d

721 070 0,873 la
0.80 0,790 1Ib
0.90 0,732 tIc
1.00 0,689 Id
1.10 0.655 Ile
1.20 0.624 I f
1.40 0.594 Ig
1.55 0581 31h
1.60 0579 I11
1.90 0.578 lij
2.30 0624 Ilk
"265 1 299 IIQ
3.00 0.730 IIm

720 0.70 0876 12a
0.80 0.791 12b
090 0.729 I.
1.00 0686 12d
1.110 0648 ;2c
"1 20 0625 12f
1.40 0596 I g
1.53 0582 12)'
1.90 0587 12i
2.30 0616 i
3.00 0732 12k

ftrom Rcfs 3 and 4
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The results are presented in Fig. 10 (Configuration 61ON), Fig. I1 (Configuration

721), and Fig. 12 (Configuration 720) as a function of angle of attack. Shown are the

spread in the experimental data (vertical lines), the sixth-order fit to the experimental

data of equivalent damping (dashed line), and the computed local value. I-or all cases
the damping is stabilizing at higher angles and varies from mildly stabilizing to violently
destabilizing at zero angle of attack.

Figure 13 presents a summary of the damping coefficient at zero angle of attack
versus Mach number. The basic character of the curve is the same for each configuration,
i.e., near-neutral st. "ility at a Mach number of 0.7. becoming significantly unstable in
the Mach number range from 1 0 to 2.2, and stable at higher Mach numbers

Satisfactory results for polynomial representation could not be obtained for
Configurations 720 and 721 at M_, = 1.40 to 1.90 The balance output for these conditions
(Figs. llg, h, i, j, and 12g, h, i) reveals that thL experimental effective damping has an
extremely strong (almost discontinuous) variation between a of zero and 1 deg. Also shown
in these figures are the results of the effective damping computed from an assumed V-well
variation of the local damping. Other variations of the V-well and square well
representations, as well as polynomial curves, were also investigated, but the computedeffective damping did not change substantially fronm that shown in these figures This

computed effective damping and the experimental effective damping differ considerably
at a = I deg, but compare favorably at a = 0 and 2 deg

For M. = 1.20 to 2.0, it is possible that the highly nonlinear behavior observed
in the experimental effective damping could be attributed to a destabilizing hysteresis
effect in the static pitching moment and that these effects are greatest at a. = 0 (Lq
(29)). The mathematical nature of the curve suggests this possibility, but there is no relevant
aerodynamic theory upon which to base this speculation Free-oscillation data (for various
amplitudes and frequencies) will shed some light on this.

SECTION IV
SUMMARY AND CONCLUSIONS

A procedure to extract the local damping from the experimental effective damlping
output of a forced-oscillation balance has been derived because the local instantaneous,
pitch damping is required for motion simulation of certain prelininary Mars unimanncd
reentry (Viking) configurations. The VKF forced-oscillation pitch-daniping balance system
has been briefly reviewed and a relationship has been establihed between the effective
damping output of the balance and the local aerodynamic damping. This relationship is
an integral equation which was solved to yield a practical connection between the local
and effective damping. This connection involves a high-order polynomial (tip to eighth
order in a and 01) representation of the damping coefficients. Practical use of this technique
requires a polynomial curve fit to the experimental effective damping which results in
coefficients for the polynomial representation of the local damping. This procedure has
been applied to experimental data obtained by the VKF forced-oscillation balance for
preliminary Viking configurations.
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The following characteristics of the procedure and conclusions concerning its practical
usage are noteworthy:

I Initial attempts to obtain a practical solution for the integral equation (Eq.
(31)) utilized a Fourier series representation of the local damping and also
a discrete variable approach. Both of these methods were unsatisfactory
and were abandoned in favor of a polynomial representation which proved
successful.

2. Discretion is necessary when applying the polynomial curve-fitting technique
and interpreting the results. A good polynomial curve-fit to the experimental
effective data does not automatically yield reasonable results for the
computed local damping. The computed local damping also has to exhibit
realistic behavior before the overall results can be considered satisfactory.

3. The sixth-order polynomial representation gave better overall results for the
fitted effective damping and the computed local damping than either the
fourth- or eighth-order polynomials.

4. The present polynomial technique may be applied to free-oscillation
damping data acquired by oscillating about a = 0, if a. is set equal to
zero in Eq (39).

S. The polynomial method may also be applied to free-oscillation data obtained
by small oscillation about a nonzero a.,. In this case, the free-oscillation
damping must be determined for the same value of 01 from the oscillation
envelopes obtained by testing at different values of ao.

6. If the static moment is a multivalued function of a for an oscillation cycle
(hysteresis), this will create additional damping (or undamping) which will
add to any conventional aerodynamic damping already present The balance
output will contain the sum of both the hysteresis damping and conventional
damping. Forced- or free-oscillation test data for different amplitudes and
frequencies will aid in interpreting this phenomenon.

7. The apparent damping effects of a multivalued static aerodynamic pitching
moment are not included in the integral eqiation (Eq. (31)) relating local
and effective aerodynamic damping. This also applies to the polynomial
solution of the integral equation (Eqs. (34) and (39)).

8. The polynomial method gave reasonable results for the Mars unmanned
reentry configurations at tl isonic, transonic, and supersonic Mach
numbers above M.. = 2.)s. .Ncvcr. reasonable results could not be
obtained for Configurations 720 and 721 at Mach numbers from 1.40 to
1.90.
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