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; FOREWORD

The work reported herein was sponsored by the National Aeronautics and Space
Administration (NASA), Langley Research Center, Hampton, Virginia, under Program
Element 921E.

The results contained in this report were obtained by ARO, Inc. (a subsidiary of
Sverdrup & Parcel and Associates, Inc ), contract operator of the Arnold Engineering
Development Center (AEDC), A Force Systems Command (AFSC), Arnold Air Force
5 Station, Tennessce, under Contract No, F40600-72-C-0003. The work was performed under X
3 ARO Project No. VT1170 during the period of May 1 through November 1, 1971. The B
’ manuscript was submitted for publication on November 29, 1971.
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small angular amplitude range about a nominal angle of attack end—-thus &
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ABSTRACT

Forced-osaillation pitch-damping balances oscillate over a small angular amplitude
range about 4 nonunal angle of attack and thus yicld an effective value of the acrodynamic
damping 1f the damping is a nonlincar function of angle of attack Because the local value
of the damping coefficient 1s generally required for computer-simulated motion studic.
a procedure to extract the local damping from the expenimental effective damping output
of a forced-oscillation balance 1s denwved. A denvation 1s given of the basic integral equation
relating local and effective damping. Techniques for solving this integral equation are given
The method 15 applied to expenmentdl nonhinear damping data for three prehminary
unmanned Mars reentry (Viking) configurations, and the results are discussed.
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Py-Pg Defined by Eq= (49) through (56). respectively

q Prtching rate. 1n general, and 4. particular, for the balance. rad/sec

Free-st.. m dynamie pressure. tb/it?
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Ry-Rg Defined by Egs. (40) through (48), respectively
Reg Free-strcam Reynolds number based on model maximum diameter
S Reference area, nd2/4, ft2
t Time, sec
Ty kth coefficient 1n series representation of M(t) ft-lb
V. Free-stream velocity, ft/sec
Wy kt* weighting function relating Ax to ax, Eq. (33)
Xeg Model center of gravity location with respect to nose, . (Fig. 9)
a Instantaneous angle of attack of model, rad
ag Defined in Fig. 8, rad
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d Time rate of change of angle of attack, rad/sec
B Integral imit defined by Eq (37), rad
Y1,72573, Integral limits defined by Egs. (57), (58), and (59), respectively, rad (Fig. 8)
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é Time rate of change of 8, rad/sec
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Defined in Fig. 2, rad
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SECTION 1
INTRODUCTION

Two general precedures are avafable for measunng pitch-damping dynamic stabilsty
coefficients for a captive (sting-supported) model m a wind tunnel (Ref 1) These methods
are the forced-osciliation and the free-osoiflation techniques The free-oscillation balance
15 usually somewhat simpler 11 desipn and operation than a forced-oseillation balance, but
the forced-oscillation balunce provides more precise control of the amplitude of the
oscllation, winch can be particalarly mportant if the model 1s dynanucally unstable Data
reduction for a forced-osciliation systein 15 generally simpler than for a free-oscillation
balance. The free-osedistion balance yields transient angular motion data which must be
analyzed m tenas of the decay m the emplitude to yield the destred dampimg coefficients
As described below. the forced-oscillation balance operates at constant angular mot:on,
and the damping coefficients are obtaned directly trom the torque mput measurements

The von Kdirmdn Gas Dynamcs Facity (VKF) of the Arnold Lngmeenng
Development Center (ALDC) has developed a forced-oscitiation dynamte balance to measure
pitch (or yaw) damping. Tius balance s sting supported with a cross-flexure spring pivot
system which allows one degree of freedom mm angular motion The balance system 1s
descnibed 1 Refs, 1 and 2. Certan essential features of the system operation are also
described herein to provide the necessary background for the present analysis A schematic
representation of the VKF forced-oscillatron balance 1s depicted 1in Fig |

The balance 15 eqmpped with a magnetic shaker motor and feedback control (Fig
2} to provide oscillation amplitudes, 0y, from essentially zero to approximately 2 deg
However, to reduce effects of tunnel vibrations, 1t 1s gencrally necessary to make the
oscillation amphitude greater than about 1 deg The balance system output 1s a damping
cocfficient which s the mean value over a cydle of motion for that particular oscillation
amplitude, 0y . at the nominal angle of attack. a,. As the oscillation amplitude 1s lowered,
the "effective” damping determined by the system approaches the "local” value for that
particular a,. If the damping coefficient 1s a linear function of a within the region a,
+0) toa, - 0y, then the balance system gives the true local value of the damping cocfficient
on that particular a,.

The values of the dampang coefficicnt obtamned from the forced-osaillation technigue
are casily interpreted if the vanation of the local value of the damping coefficient with
angle of attack 1s small within the range covered dunng the oscillation from a, - 8,
to @y + 0;. There exist cases for which the vanation of damping coefficient over the
range of angle of attack s quite large. Once such case was the unmanned Mars landing
vehicle (Viking), tested tn the AEDC Propulsion Wind Tunnels (Refs 3 and 4), which
was found to be dynamically unstable for small angles of attack (less than about 2 deg)
and dynamucally stabic at higher angles. The vanation of the damping coefficient with
angle of attack over the angle-of-attack range covered 1 the forced oscallation was quite
large. The purpose of tlss report is to describe the mathematical techmques by which
the value of the damping coefficients for very small osullations (termed the local value,
Cm p (@)} can be deterruned from the effective value obtamed with the forced oscillation

IS0 S R e o
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balance by oscillating the system with an amphtude, 8. about the angle of attack a,,
Cn Dot (as. 0)) As the value of 8, goes to zero, the cffective value and the local value

are the same; ie.,

O (Co (2 0) = €, fa)

m
el

The tocal damping cocfficients are of practical importance because they are required n
computer simulations of dynamic motions.

SECTION 1
ANALYSIS

2,1 FORCED-OSCILLATION BALANCE SYSTEM OUTPUT

A schematic of the VKF forced-oscillatton balance 1s shown m Fig. 1 A magnetic
shake. motor s used to impose an approximately sinusoidal oscillation upon the model
The moments opposing the moment input by the motor are those attnbutable to ertia,
the acrodynamic restoring moment, and the flexure. Strain gages are attached to the input
toique beam and the flexure. The first of these gives the input momeny from the shaker
motor, and the sccond is used to determine the angular position of the model, 0.

A fecdback into the shaker motor control 1s used to maintain the amphitude of the
model oscillation, 8, at a preselected value (Fig. 2). 1t is this feedback that allows the
device to be used even with dynamically unstable systems since, for these, the shaker motor
extracts cnergy from the system being tested With a dynamically stable system, the shaker
motor must add energy to the system to maintain a constant ampi.tude.

To detenmine the damping, the frequency s vanied until o phase shift, ¢, of
approximately 90 deg between the mput torque aad the displacement, 0, s obtamed
At this condition the moments attnbutable to incrtia and stiffness are essentially an balance,
so the output of the shaker motor 1s basically compensating for the damping moment.
The amphtudes of the moment, Ty, and the displacement, 0. along with the frequency,

w, allow the daomping term to be cvaluated

The control console 1s shown schematically i the lower portion of Fig. 1. Internally,
there are fow pass filters, phase shifters, and multipliers. which are used to gve the
amplitudes of the in-phase and out-of-phase components of the input torque From these
the acrodynamic damping and stiffness may be determined.

The basic differential equation for a foreed-oscillation pitchi-damping balance is

i~ W, M

= Mpa . \Iﬂq . “‘;«l - B“(d—a\l) R W)
e

- — ——
Aerodvnamic Balance Hevure § orcing Moment )
Rewtonng Moment Moment of Shaler

: L ponte e «
SR et e 2 ¢
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in which
Model moment of inertia about pivot axis

= Sum of aercdynamic, balance flexure, and forcing
moments acting on model about pivot axis

Acrodynamic damping moment per angular velocity
(Cm; + Cmg) a.Sd2/2V,

Aetodynamic pitching moment per unit angle {stiffness)
Crg q.5d

Balance flexure structural damping moment per
angular velocity

Balance flexure moment per unit angle (stiffness)
Forced oscillatory moment impressed on model
Stationary angle of attack of sting

Insiantaneous angle of attack of the model

attack may be written as

a = a, + 0t)

= Instantancous oscillation amplitude about a,
a, = Equilibrium angle of attack of model

The relation between the sting angle and the cquilibnum angle is given by

“a

a ™ — as
o T BN, CST
The relationships among the vanous angles are shown in Fig. 3.

After substituting Eqs. (2), (3), and (4) into Eq (1), the basic balance equation
becomes

16 = (Mp+BO - 01, + BYO « M) ®)
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Ya Sting Centerline

Model-Batance Centerline for Static
Air-on-Equilibrium Conditions

\\ 8

Maximum
Osciilation
\ Ampiitudes

asy

Relative Wind Direction -/

Balance Flexure Apparent Center of
Rotation and Model Center of Gravity

Fig. 3 Geometry of Pitch-Damping Balance-Sting Combination

The stiffness of the flexure, B,, is generally selected to be much greater than the
aerodynamic stffress, Mg, since the latter varies widely with tunnei cenditions. This also
decreases the effects of nonlincanties in the static restoring moment  In addition, the
system is designed so that B, is constant over the range of deflections encountered This,
n conjunction with the feedback control system, permits the oscillation araplitude to
3 be accurately represented by a pure cosine wave

0 = 0) emman )

o,

The output of the torque beam will, in general, contain higher harmonics, since by
Eq. (5) ail the damping and nonlincar terms will be included in M(t). Thus, the input
moment can be expressed in a Fourier serics

B
N
7

s

AR
0 X
Sy piuS Uy ode

M = 18 - O a B =L )0

o~

L T cosBured
ial

gt gan
Rkt oy

)

g3

If all of the coefficients n the basic differential equation are constants, then only
the first term (k = 1) is present in M(t). Using Eq (6) and collecting the coefficients
of cos wt (in phase) and sin wt (out of phase) give for this particular casc

N
2
X
3

M

1]

}

~lo%y = M, B0, - T cond
®
- (\Mps Bawdy » Tysme

BT s = o e \

P R N,
Sk ST Sk e 22 = 5%

SRR b2 S e S
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Thus

2 Tl
hla + Ba = =l - 0—3 cos ¢

equals total static moment slope, and

Tlmn @

\|D+B&u- 5
w

1

equals total system damping coefficient.

Normally the frequency 1s selected (w = wy) to give a phase shift of 90 deg in order
to maximize the accuracy with which the damping coefficient may be determined.

The measured values of Ty, 4, w, and 01, and values of B, and B; from pretest
calibrations then allow the aerodvnamic coefficients, M, and Mp, to be determined from
Egs. (9) and {10). Normally, the acrodynamic stiffness, M,, may be determined more
accurately with a static balance. The aerodynamic damping, Mp, is the sum of Mg and M,.
The individual contnbutions of M; and M, cannot be distinguished by the balance, smice ¢
= q for the balance.

22 EQUIVALENT DAMPING FOR NONLINEAR SYSTEMS

If there are nonlinearities in the system, either or both of the coefficients Mp and
M, may vary. In general, each may be a function of a and &. To avoid certain pitfalls,
it is preferable to begin with the expression for the total acrodynamic moment, M,, as
a function of a and a

M, = Ma,&) (b

The circwtry of the console contains low-pass filters so that the higher harmonics
of M(t) ate filtered out. Therefore, the system gives the fundamental harmonic; i.e., the
i-phase (T; cos ¢) and the out-of-phase (T; sin ¢) fundamental components of the input
torque. In general

MO = 16 - B - B0 - M (a, +6,0)

- z Ty cos (hat + ¢)
kel

an
Ty cosd = = [0 cos ot dod

°

b d

~T) sind = —",f\l(t) sin wt dwt)

S e s
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With 0 = 6, cos wt these become

27
Ticos o = -"'f[-lufo, coswt + Bl simwt - B8, coswt - M cos wt dlwt) (15)
o

i
~Tysmnd - ,—i“’{- lwgol coswt + B0 sin o =B,0, cosut=M_] sm ot dwt) (16)
o

with
M, = M (a, + 0, con Wl - wl) sin w) an

Certain of the integrals may be evaluated, with the result

. r
Ticosd - —lw20| - Ba”l - —;I\Id(ao + 9, cos wiy, ~wl, s w1 cos et Hwt) (18)
o

27
~T;and - Ba"“ol - —;!\la(ao +0) cos @t =0l s5in ot sin ot Ket) 19)
0

These results are vahid for arbitrary aerodynamic moments.

It is of interest to simplify these results for certain specific cases If the acrodynamic
moment is a continuous function of the angular velocity, then an expansion can be made
about an angular veleaity of zero,

3%m,

oM
Vfad) » M@0 + —t(a, 006+ Y —2(d, 0067 o .. 20)
aa 3%

In terms of thesc quantitics

My ~ M@, 00a

M, @.a) =¥ (@.0)]
Mp =~
a
oM I
e« —(a,0) + 1
da

2 ‘a ,0)& +

2
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The parameter M, is therefore independent of velocity. This is a direct consequence of
the assumption that M, is continuous, since any dependence upon velocity appears in
Mp. The moment can rnow be written as

M, = M + Mpa,ad 23

With this representation, the integrals may be simphfied
T, cos ¢

1 b2 4
] a-lw? - B, - WlfMa(a)a cos wt dwt)
(-3

1

2
R P B, -g ‘ M lag + 8y cos wt) cos? @t dwt)
o

T “sin &
-_‘ET = By + —I \l pla, + 0y coswt, — wf) sin 0 s ot Kot 25

According to this, nonlinearities in the static moment do not affect the damping as
determined by the forced-oscillation balance. This is valid if M; is a single valued function
of a.

If the damping coefficient is expanded in terms of a, i..

M, . v, 2
Mpla,a) = Mpla,00 + —(a,00a + ' == (a,00d
da da

Equation (25) becomies

T, sin ¢ )
_— . By + = ’sln(a «0, cns wt, 0) an® ot dwt)
wl,

wzﬂf 22 92 My

—{

® 8&

(ag + 8y coswt, &) sin? wt dlwt)

w9 Lam d%w
+ lf —-—D(a“o coswt, 0) sinf wt dewt) + .
L4
L

The left-hand side of this equation is the value determined by the forced-oscillation
technique. If the aerodynamic damping coefficient Mp is constant or is a linear function
of @, then the resuit reverts to tha® given by Eq. (10). If the acrodynamic coefficient
is nonlincar with angular velocity, ie.

My,
»0
3

"
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according to Eq. (27) the apparent effective damping determined by the forced-oscillation
technique will depend upon the frequency, w. For this reason 1t 1s advisable to obiatn
data at two or more frequencies, which requires using more than one set of flexures
If there is no dependence upon frequency noted. then it may be concluded that

2n
9 Mp
20
da

One class of nonlineanties that does not fall within the above framework is hysterests,
because the moment 1s not a continuous analytic function of velocity. If My, 1s the hysteresis
moment, and assuming for simplicity that the variation of M, with a 1s lincar

M, = Maa + My a>o0

= Mga - My

29

In this case the apparent damping varies inversely with w8,. Since the balances operate
at constant wd), the quantity (4My, /nw8, Ywould appear to the balance system as a constant
value of effective acrodynamic damping, Mp ¢, for that particular test condition. As with
the case of a nonlincar damping coefficient, testing at different frequencies would reveai
the existence of the effect.

In thc remaining development it 1s assumed that there is no hystercsis, and the
nonlineanties with respect to angular velocity in the damping coefficient are neghgible
Under these conditions

n
- .TT:;.‘LSS_ = “z'x + —,l,f“ﬂ(ao + 0] cos wt, 0) sinwt dlw) (30)
o

If now the local value of damping dervative, Cmp (a), 1s related to Mp and the effective
value, Cp, Degt (ao, 8)), is that determined from the forced-oscillation technique, 1 e , from
tq. (30), then

. 1 p2”
('“D "(“o'oi) - ;Ic“n(ao +0, cos @) an? wt dt 3N

Equation (31) 1s an integral equation which relates the effective expenimentat damping
obtaincd from the present balance system to the local damping This integral relationship
can also be obtained directly, without considening the balance output, by equating the
amount of cnergy dissipated per cycle by the local and effective damping (Refs S, 6,
and 7).

B i o N O
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Eguation (31) is valid for a nonlinear pitching moment (C,, versus a) so long as

the pitching moment is single valued for a given a. That is, pitching-moment hysteresis

or time lags (because of viscous effects) can also add or dissipate system energy, which
will then appear as nonlinear damping (Eq (29)). E: .

23 SOLUTION OF INTEGRAL EQUATION

Equation (31) is a Fredholm integra! equation of the first kind (Ref. 8). The known
quantity is C,,,Q= which is a function of a, and 6, and usually is known for various
values of a, at a fixed value of 6;. The unknown quantity is C, p,, which is a function '~ :
of a. Three ways of soiving this equation were tnied, with the first two being unsuccessful. 2

¥ AR R

For the first approack, Eqs. (3) and (6) were used in Eq (31) to give

a0, -
c ) = = j' (2% & 3z
! “”.u(ao'Oi Ty —O,C“D(a) \6 ¢

. Equation (32) was written 1n finite difference form involving the known values of C,, Dert

7 and the unknown values of Cp, , (Fig. 4) The procedure was very similar to that mentioned
in Ref. 9. This formulation led to a set of linear simultaneous equations for the unknown
quantities which could be solved by standard techniques. The answers, however, were
extremely sensitive to the input values of the effective damping. The results, 1n general,
were very erratic, even for simple test cases, and the method was abandoned.

KA

T

SRR

The second approach to obtain a practical relationship between the local and effective
3 damping consisted of 2 serics solution for Eq. (32) (Ref. 8) The known effective damping
£ and the unknown local damping were represented by Fourier cosine senes. The kernel
was represented by various types of power series in a. This allowed the analytic evaluation
of the integral for a general term, and a relation between the known (effective) and
unknown (local) Fourier coefficients could be established. This relation for the kb :

coefficient 1s of the form

a

Ak = EE 33)

The weighting coefficient, Wy, is shown schematically in Fig. § as a function of k. Note
. that for large values of k, Wy is very small and oscillates about zero, It was this osciliatory
: behavior of Wy that led to the abandonment of this method, since Eq. (33) could become
singular unless a; was determined from "mathematically perfect” data for Cryp - This
basic procedure has been proposcd (but not apphed) recently in Ref 1J, where Wy 1s
evaluated by Bessel functions. Unfortunately, the method places such a premium on the
quality of the input data and the Fourier senies representation of this data that it 1s not #

practical for this particular case.
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e A Q

a, G u°+el ay  ay+6 a

° b 8—~

Kernel
{Weighting
| Function)

e, o 004-91

iej+k

2 Cnpla 1-('

isj-k

jel--N, ag=jAa, 6 « kaa

This provides N linear equations which may be solved for N unknown values of C"‘D .

Fig. 4 Schematic lllustration of the Damping in Discrete Variable Form

st N
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a kna
c « 204 a, cos (rPU) 4da
™ Degt 7 E k ( )

Ao kK7 a
CmD 5 + : Ay cos (u_._\ da

Fig. 5 Typical Variation of W, versus k
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el

. Both of the above techniques failed becauss of a very strong sensitivity of the local
P | damping coefficient to the effective damping coefficient. Many physically unreahstic vafues
' R of the local damping coefficient were obtained, such as values that were alternately large
BE & positive and large negative. The reason for this behavior can be seen m Fig 5, which
g essentially states that there are certain specific values of higher frequency contribution
3 which should not be present in the effective damping. Because of noisc and other
23 maccuracies, such frequencies will be present, and, in the mversion process, effects of

P the noise will dominate,

2 To overcome this undesirable effect, smoothing of the input data is necessary In
N the second approach smoothing by Fourier senies was found to be unacceptable The hird
: approach made usc of polynomial smoothing. The manner in which this was accomph-had
5; 1s scmewhat similar to the procedure given mn Ref. 6 for free-oscillation pitch-damping

data, However, certain features of the present analysis for forced oscillation were not

necessary 1 Ref. 6 and, as such, ment inclusion here. To provide continuty, the proc ecure
1s outhned 16 detail

s It s assumed that Cp [, can be represented by a power senes in a of the form

5 Cu, = Co + Cylal + Coa® + Cylal® + Cyat v Cilal® + Coa®+ Co'w™ + Cga® (38) 3
The odd powers are mcluded to enhance the curve fitting capabihty, but they must be &
considered as absolute quantities because of the requirement that Cpypy be symmetneal

about an angle of attack of zero. This 1s valid for a body of revolution

B Equations (3) and (6) are substituted into Eq (34). The resulting expressivn for
. v Cmp may be substituted mto Eq (30) and integrated analytically. Ii 1s convement to
g work with the even and odd terms sepurately The even terms of Eq (34) are

k]
EVENS = € + Cyla, o8y conot) + Chta, 0y comer? (3" i
3 i

+ Cla, + 0y comwd® o Cyla, + ) coswt)® 2

The odd terms of Eq. (34) are

ODDS = Cla, + 0y coswtd - Cyla, + 0 onwd)’ 36)

+ Csla, + 0y cos o’ s (.7((10 + 0y cos wd)’

If @, is less than 8, then @ will be negative over a portion of the half cycle (Figs
6 and 7). Again referning to Figs. 6 and 7 and using Eqs. (3) and (6). § can be determined

o

0 =a, s 0)coslz~f)

sy oo

a, 1

B = arcos 5]— @, < ¢, 3N ,.
. i

=0 a, > 0, I
13

S o r x4
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Fig. 6 Schematic Depiction of integral Limits for Polynomial Representation
of Bamping
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The odd terms are made positive (or absolute) in the cyclic region from x - § to 7 by E:
changing sign. With sefetence to Fig. 7 and Eq. (31), the same amounts of energy are 3
dissipated over each half cycle Censcquently, Egs. (35}, (36), and the results of Eq. (37) :
can be combwmned with Eq. (31) to gwe 3

n
2 o~ ra 2 .
C - = VEN 1 d E
"’D.” ”Io {EVENS] s1a° {wt) dfwt)
. n~f3
"8 + ;,2- f[ODDS] sin? fwt) Kot (38)
; ° :
. = : hd
- -2 § (0DDS] 3102 (o) ) .
3 -8
! The evaluation of Eq. ‘38) yields 4
%
C, =CyRy+ C R, CyRy+ CyRy+ CyRy
"y 00! : 39)
R + CyRg + CgRg + CrRa + Cy Ry
3 where
- Ry » 1.0 (40 ’
R Ry = pja, ~ % P20y “n
3 Ry =l v 3 0] (42)
: a 3 2
Jf R, - plag + 2paazd) + 3 psa,ﬁ; + 29‘0? (43)
ity < af, % a:,of + % 0: (44)
. 10 5 2 5
. Ry =~ pay o = paall) ~ 3 pgagfi + 2028707 ¢ 2 psa0] ¢ 2pg0} (45)
- 15 4.2 15 2.4 5 6 B
3 R, - ag T a 07 + + afly + o 0 (46) \
co 7. 0n -] B S S 35 3.4 £
. R. = pyal + 5 ey © I pyed0] v T0pal0] + 3 B 2
’ s 3 4 7
o & + 42p6a§0i’ . ﬁprxoﬁ‘g 3 Paol “n
: 2 3 t 35 7 8
"8 - a2 . 7(:?'0? . 1; ﬂ:(): + Tl aif)? + e 01 (48)
B
- and P
2/ wn 288 E
ro (3-8 5 ) 49) 3
1
? 16 :
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-: sinsﬂ (50)
2(z-p. 1) sH

;(—; snd B~ -;- sin® ,8) (52)

_:(_g ~B~ in‘_Z_@ sin lﬂ x1n ()B) (53)

E sin

I(eeB_2 g, o B (54)

--;I': l—: sinsﬁ cos? ﬁ) “ pg (55)
2 fni03 B cos®
po = 3 (B )

n

« b (56)

If a; = 0, the above results also apply to the type of frec oscillation about zcro
a which was considered in Ref. 6 In particular, if the ndd terms are ncglected for this
condition, Eq. (39) reduces to Eq. (13) of Ref. 6. The polynomial method may »'so
be applied to free-oscillation test data for a, not cqual to zero if the frec-oscillation

damping is determined for the same value of 0y from oscillation envelopes at different
values of a,.

Equation (34) (Cp, p) and Eq. (39) (CmD “) are reiated n that both contamn the
cocfficients Cp...Cg as unknown quantities Prachcal use is made of tins relationship by
curve-fitting the experimental values of C'"Dm as functions of a, and @3 with Lq (39)
and determining the coefficients Cp...Cy by a least-squares procedure. This unmediately

yields the corresponding values of Crpy since they can now be computed from Lq (34)
for 2 given a = a,.

This analysis was made for an cighth-order polyremial curve (mine unknowsns), but
1t 15 easily reduced to a sixth-order (seven unknowns) or a fourth-order (five unknowns)
curve by mercly deleting the higher-order terms. A program has been wnitten for the VKF
€DC-1604B computer which incorporates the above analysis refating the local and cffective
damping coefficients. The coefficicnts are determuned for a minumum square-crror fit to
the cxpesimental data points.

24 THE V-WELL AND SQUARE WELL

Qne of the earher appreaches to acquire insight conceming the local-effective damping
relationship expressed by Eq. (31) was to assume simple variations for the local damping
and compute the resulting effective damping, One such variation was the Vewell
representation of the local damping as depicted i Fig. 8. This simple variation 1s composed

v lilisnnctc
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b. Typical Effect of Oscillation Amplitude on Effective Damping
Fig. 8 V-Well and Square Well Representation of Local Damping
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of straight-line (linear) segments so that Eq. {31) is casy to cvaluate once the proper
integral Lmits have been established. These limits are shown schematically in Fig. 8a and
are computed as follows:

<1

7
y} = Qrcos ol >

laa—aol

9,

N
-1 >
ol

weo - (2759

as¢a°

7 > 1

The V-well shape can be represented mathematically as follows

(‘ml) - (‘.mn(a}) constant 0 . wt

m =

C 0+ a s w5 )
n

m

T 0 - In
0N
Cp. (ay) = constant
n
in which

C @)~ im

m L m

boa—n P oh)
ay,

Equations (3), (6), (60), and (61) are combined with Eq (31) to yueld the followang
resuits for the cffcctive damping of the V-well local damping.
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o =S N 29222
eff
e -2 - -y

i vty 1 i
“\7 -3 X* 3 [2 sin® Yy - 5|n3y| ~ om? )'3]}

The final result for the square well is:

2 2
2 yy smy) ¥s sty 63
Capy (02 = Gy + 2 [cnytar) = € 0] [_2- ) (-2 )] 63)

In a like manner, other variations of the local damping composed of straight-line (linear)
segments can be handled. However, the above results are sufficient to represent large
gradients or discontinuities in the local damping near zero angle of attack and predict
the balance output under such conditions. For example, Fig. 8b illustrates the rather large
effect of oscillation amplitude on the effective damping for an assumed V-well
representation of the local damping.

SECTION I}
RESULTS AND DISCUSSION

The polynomial curve fit analysis described in Section II has been applicd to
experimental nonlinear pitch-damping data from the VKF forced-oscillation balance. These
data and the acquisition of these data are described in Refs 3 and 4. Table I lists the
configurations and associated test conditions that were considered in the present report.
The configurations were 60- and 70-dcg half angle, blunted, cones with various afterbody
arrangements (Fig. 9).

Preliminary investigation revealed that the sixth-order polynomial representation gave
better rcsults for the fitted effective damping and computed local damping than cither
the fourth- or eighth-order polynomials. All the results presented herein are from a
sixth-order polynomial curve fit unless stated otherwise. The polynomial analysis gave
reasonable results for the majority of the test conditions considered for these
configurations.

A certain amount of discretion 1s mecessary when applying this technique and
evaluating results. A good polynomial curve fit to the experimental effective damping data
does not guarantee that the computed local damping will be realistic. That is, for all
practical purposes, the methed does not vield a unique solution for the local damping.
A slightly different fit to the experimental effective damping may change the computed
local damping considerably. The requirement was imposed that the computed local damping
must exhibit realistic behavior before the results can be considered satisfactory.
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s TABLE |
k- é VIKING PITCH-DAMPING TEST CONDITIONS*
23
i Configuration M, Reg x 106
e
g 610N 0.70 0.579
Y 1.00 0.440
g 1.30 0390
3 ; 1.50 0580
)
- 721 670 0.873
3 0.80 0.790
A Tg 0.90 0.732
- i‘ 1.00 0.689
. 1.10 0.655
b & 1.20 0.624
g 1.40 0.594
E 1.55 0581
- 1.60 0579
. 1.90 0.578
S 2.30 0624
g, 265 1299
. 3.00 0.730
¢ 720 0.70 0876
0.80 6.791
090 0.729
1.00 0686
1.10 0648
120 0625
1.40 0596
1.53 0582
1.90 0587
2.30 0616
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The results are presented in Fig. 10 (Configuration 610N), Fig. 11 (Configuration
721), and Fig. 12 (Configuration 720) as a function of angle of attack. Shown arc the o
spread in the experimental data (vertical lines), the sixth-order fit to the experimental ; E
data of equivalent damping (cashed line), and the computed local value. For all cases
the damping is stabilizing at higher angles and varies from mildly stabilizing to violently
destabilizing at zero angle of attack.

Figure 13 presents a summary of the damping coefficient at zero angle of attack
. £ versus Mach number, The basic character of the curve is the same for each configuration,
3 A ic., near-neutral st. hility at a Mach number of 0.7, becoming significantly unstable in
the Mach nuraber range from 10 to 2.2, and stable at higher Mach numbers

S8 Hr 8 Nt

Faken

Satisfactory results for polynomial representation could not be obtamned for

i. i Configurations 720 and 721 at M, = 1.40 to 1.90 The balance output for these condifions
js € (Figs. 11g, h, i, j, and 12g, h, i) reveals that the experimental effective damping has an

3 extremely strong (almost discontinuous) variation between a of zero and 1 deg. Also shown
3 E in these figures are the results of the effective damping computed from an assumed V-well

variation of the local damping. Other variations of the V-well and squarc well
representations, as well as polynomial curves, were also investigated, but the computed
cffective damping did not change substantially from that shown in these figures This
computed effective damping and the experimental effective damping differ considerably
at a = 1 deg, but compare favorably at @ = 0 and 2 deg

Ty g A

For M, = 1.20 to 2.0, it is possible that the highly nonlinear behavior observed
in the expenmental effective Jamping could be attributed to a destabilizing hysteresis ‘
effect in the static pitching moment and that these effects are greatest at a, = 0 (¥q )
(29)). The mathematical nature of the curve suggests this possibility, but there is no relevant ;

E

aerodynamic theory upon which to base this speculation Frec-oscillation data (for vanous
amplitudes and frequencies) will shed some light on this.

SECTION IV
SUMMARY AND CONCLUSIONS

A procedure to extract the local damping from the expenmental cffective damping
output of a forced-oscillation balance has becn derived because the local instantancous

¢ pitch damping is required for motion simulation of certain preliminary Mars unmanned
. reentry (Viking) configurations. The VKF forced-osciliation pitch-damping batance system
% has been briefly revicwed and a relationship has been establiched between the effective

damping output of the balance and the local aerodynamic damping. This relationship is

g

. & an integral equation which was solved to yield a practical connection between the local

and cffective damping. This connection mnvolves a high-order polynomial (up to cighth

{ A order 1n a and 8 ) representation of the damping coefficicnts. Practical use of this techmque L.
by Y requires a polynomial curve fit to the experimental effective damping which results i o
' 3 cocfficients for the polynomial representation of the local damping. This procedure has ‘

¥ been applied to cxperimental data obtained by the VKF forced-oscillation balance for 2

preliminary Viking configurations.




AEDC-TR.72-25

The following characteristics of the procedure and conclusions concerning its practical
usage are noteworthy:

1. Initial attempts to obtain a practical solution for the integral equation (Eq.
(31)) utilized a Fourier series representation of the local damping and also
a discrete variable approach. Both of these methods were unsatisfactory
and were abandoned 1n favor of a polynomial representation which proved
successful.

Discretion is necessary when applying the polynomial curve-fitting technique
and interpreting the results. A good polynomial curve-fit to the experimental
cffective data does not automatically yield reasonable resuits for the
computed local damping. The computed local damping alsc has to exhibit
realistic behavior before the overall results can be considered satisfactory.

The sixth-order polynomial representation gave better overall results for the
fitted effective damping 2nd the computed local damping than either the
fourth- or eighth-order polynomials.

The present polynomial technique may be applied to free-oscillation
damping data acquired by oscillating about a = 0, if a, is set equal to
zero in Eq (39).

The polynomial method may also be applied to free-oscillation data obtained
by small oscillation about a nonzero a,. In this case, the {rec-oscillation
damping must be determined for the same value of 8, from the oscillation
envelopes obtained by testing at different values of a,.

If the static moment is 2 multivalued function of a for an oscillation cycle
(hysteresis), thus wall create additional damping (or undamping) which will
add to any conventional aerodynamic damping already present The balance
output will contain the sum of both the hystercsis damping and conventional
damping. Forced- or frec-oscillation test data for different amplitudes and
frequencics will aid in interpreting this phenomenon.

The apparent damping effects of a raultivalued static acrodynamic pitching
moment are not included in the integral equation (Eq. (31)) relating local
and effective aerodynamic damping. This also applies to the polynomial
solution of the integral equation (Eqs. (34) and (39)).

e S gtk S O 4 o M Rl

The polynomial msthod gave reasonable results for the Mars unmanned
reentry configurations at tl- ysonic, transonic, and supersonic Mach
numbers above M, = 2.0, . wever, reasonable results could not be
obtained for Configurations 720 and 721 at Mach numbers from 1.49 to
1.90.
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a, deg

X Experimental, & = 1.8 deg
~=Fitted (C“‘q * Cmghett

= Computed (C ¢ Cpg}

2. M, =070

a, deg

I Experimentat, € = 1.8deg
== Fitted (cmq + cmd’eﬁ

— Computed Cy + Cpy.)

b. M, = 1.00

Local and Effective Pitch-Damping Coefficients versus Angle of Attack
for Configuration 610N
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3 10
a, deg

T experimental, 6; = 1.8 deg
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d. M, =1.00
Fig. 11 Continued
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